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Abstract 

For the experimental distinction of two types of partons-quarks and glu­
ons, a method based on Monte Carlo simulaions which incorpolate the color­
fragmentation scheme such as String and Cluster models is proposed. Anum· 
ber of variables, including mechanical/electric moments, multiplicity, and EM 
fraction, are calculated for Monte Carlo (reference) jets. The resulting distri­
butions of variables indicate that gluon jets are softer and broader than quark 
jets, reflecting the nature of the double color charge of the gluon. The moment 
analysis on the CDr dijet events shows that the CDr dijets are close to, but 
slightly softer and broader than, the Me gluon jets. The gluon fractions in 
the dijet and i+jet events obtained by the eDF experiment are estimated by 
comparing the likelihood distributions for the reference and real data jets. In 
the jet transverse energy range of 10-30 GeV, the dijet data are shown to 
contain approximately 80% of gluon fraction, while the i+jet data about 40% 
of gluon fraction. The gluon fraction in the eDF dijet sample decreases with 
E j as expected from QCD. In addition, the i+jet data agree with the gluon 
fraction determined from theoretical predictions and the expected 11"0 Ii ratio 
in the eDF photon candidates. Some discrepancies between the QeD predic­
tions analyzed with current fragmentation models and the CDF results are also 
discussed. 
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The difference of the structure between the quark-initiated and gluon-ini t iated 
jets have been a subject which interested considerable number of authors[1-6]. In 
this letter, we discuss the possibility of separating the quark jets from the gluon 

! jets. The ideal way to study the quark ancestors is to use the experimental data sets 
consisting of the pure ancestors. Since this is rather difficult at present, we resort in 
this letter to the Monte Carlo (MC) events based on the phenomenological models 
of fragmentation to get a clue to the problem. There are three kinds of well known 
fragmentation models; the independent fragmentation [7], the string fragmentation 
[8] , and cluster fragmentation [9,10,11]. The independent fragmentation model is 
not appropriate for our purpose of differentiating a quark from a gluon jet , because 
this model has such fundamental problems [12,13] as energy non-conservation and 
absence of any specific model of the gluon fragmentation. We therefore use two 
Monte Carlo programs, Herwig [14J and Pythia [15,16J, which are based on the 
cluster and string models respectively. 

The CDF detector has been described in ref. [17J. In this analysis, only jets 
detected by the "central" detectors are used. In the 1.5 T magnetic field, there are 
two kinds of tracking chambers, the vertex time projection chambers (VTPC) and 
the central tracking chamber (CTC). The CTC covers 1'71 < 1.2, and the transverse 
momentum resolution is 6.pdp~ = 0.001 (Ge V / ctl. Outside the tracking chambers, 
the central electromagnetic (CEM) and hadrooic (CHAjWHA) calorimeters are 
arranged in projective towers of size 0"1 = 0.1 by o<f, = 15° . The strip chambers 
(CES) are embedded in the CEM at a depth of six radiation lengths. 

We choose the CDF dijet events from 1987 run as a gluon rich-sample, because 
the dominant dijet final state is gluon-gluon at the CDF energy. The integrated 
luminosity for dijet events used in the analysis is approximately 26 nb- t

. The data 
were clustered using the fixed-cone algorithm [18] with a radius of 0.7 unit in R = 
..; d~' + d¢'. For the hardware L E, triggers with threshold values of 20, 25, 40, 
and 45 GeV, cuts in the off-line analysis were placed on central-central jets at 36, 
48 , 56, and 60 GeV respectively, after jet energy corrections to the calorimeter data 
are made. We require the energy centroid of the leading and the next to leading 
jets to be in the central region 0.1::; 1"11 ::; 0.7, and to be within 20° of back-to-back 
in ¢. 

For the track association to a jet, we first boost the events to the longitudinal 
dijet center of mass system using the corrected 4-vectors of the jets. In this Lorentz. 
transformation, the masses of all charged particles are assumed to be equal to the 
pion mass. In the dijet rest frame, a cone is formed around the jet axis . This 
cone is defined by a minimum pseudorapidity '7l. with respect to the jet axis. The 
tracks within the cone are selected as jet particles, but tracks with poor quality are 
removed by requiring three-dimensional reconstruction capability and other quality 
cuts such as impact parameter or delta-z cut [19]. For the 1987 data, we also exclude 
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these jets whose axis are in the region, _ 240 :5 4> :5 35° and 1880 :5 ¢ :5 2470 

(Dead Region ± 20') because of the dead cells in the CTC. 
f For a quark-rich sample we used photon+jet events. Events were selected from 

the 1988-89 runs by requiring an isolated electromagnetic (EM) cluster and one 
jet in the opposite hemisphere (± 25° in 4> ) in the central region. The photon 
identification is done in the following way. We require that sharing of the lateral 
shower energy between CEM towers to be consistent with that for a photon shower, 
and that the averaged chisquared value derived from CES shower profiles in wire 
and strip views, X;" = 0.5 x (X~jr;p + X~ire)' to be less than 4. Both strip and wire 
clusters are also required with approximately equal energiesj ~ .. ~~P:~ ... ~~~ < 0.2. The 

. urlp .... r. 

fitted cluster centroids are further required to be well within the active region of the 
CES chamber. The hadronic-to-EM ratio of the energy in the cluster is required 
to be less than 0.055 + 0.045 . ElIDa. An isolation requirement 1 = EeBcE! $; 0.15 
is also made. Here, Et and Ee are the total transverse energy of the EM cluster, 
and that within a cone of radius R = 0.7 centered on the EM cluster, respectively. 
Finally we require existence of no track pointing at the towers in the cluster. 

For each jet in the dijet rest frame, we define the z' axis along the jet direction, 
and the y' axis along the direction of p X ii, where p is the momentum of the proton 
and i' is the unit vector along the Zl axis. 

Since the analysis is based on MC generators, we will describe how we produce 
MC samples for gluon and quark jets We first produce quark and gluon jets in QCD 
2 -+ 2 processes at .jS =1.8 TeV by using event generators, Herwig and Pythia. We 
pick up only those processes in which final partons are purely quarks or gluons: Thus 
the q g -+ q g process is not used. The generated events are then processed through 
a detector simulation program which reproduces the CDF detectors realistically. 
Next we reconstruct events: The simulated events are clustered by one of the CDF 
jet finding algoritluns, in which one uses a cone of a fixed radius to define a jet. 
We then select only dijet events according to the clustering algorithm. The events 
are further divided into four samples, depending on the jet transverse energy Eti 
10-20,20·30,30-40 and 40-50GeV. In each E, range, 2000( quark)+2000(gluon) jets 
are finally produced. We shall call gluon and quark sets as "reference" sets. 

Such observables as multiplicity, a jet angular width, etc., have been pointed 
out to s-how differences between quarks and gluons [1-3]. In this analysis, however, 
we do not try to find ad hoc variables which are more sensitive to the differences 
between the parton ancestors. Instead, we take a systematic approach of analyzing 
the momentum distribution (the fragmentation function) of charged particles in 
a jet by using a method of moment analysis. It is motivated by the fact that a 
function (the momentum distribution function in a jet in this case) of variables (the 
momenta of charged particles here) can generally be expressed by their moments as 
defined by the Mellin transformation. More terms of different orders reproduce the 
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function more precisely. We take about 30 variables in the present treatment. 
The variables which we choose are mainly divided into two classes: one is the 

m-th power of the momentum, summed over all particles, which we call· the "me­
chanical moment"; 'L.'=I(PH/M)m and 'L.i:l(p,;/M)m, where the term (p;/M)m rep­
resents the m-th power of the normalized momentum of the i-th charged particle, 
n is the total number of charged particles in a jet, and M is the jet invariant mass. 
The suffix I and t indicate the momentum components: longitudinal and transverse 
to the jet axis respectively. The other is the m-th power of the momentum mul­
tiplied by the electric charge of the particle and summed over all particles, which 
we call the "electric moment II i L:i=l C.(p,;! M)m and L:~l Ci(Ptt/ M)m, where C, is 
charge of the i- th charged particle. 

In this analysis, the JIloments are calculated in the jet rest frame which is ob­
tained, as mentioned earlier, by the Lorentz transformation along the jet axis. The 
reason why we try this coordinate system is that the moment variables thus de­
fined are Lorentz invariant and are expected to be less energy (mass in this system) 
dependent. In this treatment, however, a certain ambiguity is introduced for the 
definition of moments, because we usually have soft particles in the lab system 
about which we do not know whether they belong to the jet or to the underlying 
event. The soft components do not give substantial effects in the determination of 
the jet eM system, but they acquire large backward momenta by the Lorentz boost 
to the jet eM frame, giving non-trivial contributions to the values of moments. In 
order to remedy this flaw, we take sums only over particles whose momenta lie in a 
forward hemisphere of the jet eM momentum space. 

The choice of variables to form a set is somewhat arbitrary. Here we take a 
variable set with integers, m = - 3, - 2, -1 , 0, 1, 2, 3, 4, for powers of moments as 
shown in table 1. The negative power means that we deal with the inverse of 
the momentum instead of the momentum itself, and the O-th power corresponds 
to the multiplicity of charged particles. By the uncertainty relation, the higher 
positive moments provide information about the inner part of the jet in the ordi­
nary space, while the higher negative moments about the outer part of the jet. In 
addition to the moments, we take three more measureSj a) the ratio of the electro­
magnetic (EM) calorimeter response to the total (EM+HAD) calorimeter response 
(EM/TOTAL), b) the "asymmetry" and c) the "oblateness" of ajet. The asymme­
try and the oblateness are measures about the non-uniform momentum distribution 
with respect to the jet axis. For each jet, we calculate a tensor, T~r :::;; L:i=l P~r' 
Try' = Ty'.' = L:i=l Pi.'Piy', and Ty'y' = L:i=l P~y" where the axes x' and y' are 
in the plane perpendicular to the jet axis (zl-axis). The asymmetry is defined as 
A:::;; (Tyl,,1 - T.,.,)/(T",,,, + Tot'.')' where the x' axis is in the jet production plane 
and the y' axis is in the direction perpendicular to it. The oblateness 0 is defined 
by eigenvalues d l and d, (d l > d,) of the T-tensor as 0 = (d l - d,)/(dl + d,). 
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Figures 18), b) and c) show several distributions of the mechanical moments for 
the MC and CDF jets for the E, range of 30-40 GeV in the logarithmic scale. These 
moments are calculated from the transverse/longitudinal components of particle 
momenta. Both distributions for the reference (MC) and the real (CDF) data are 
normalized so that the integrations of the distributions over the entire moment range 
are unity: f P,(x )dx ~ f P,(x)dx ~ f P,(x )dx ~ 1, where P,(x), P,(x) and P,(x) 
are distributions of a moment x for quark,gluon samples and real data, respectively. 

First, we will discuss the results on the Me jets. As an example of the moment 
distributions, we present those of the moment {Pt/Mt3 for Me quark and gluon 
jets in fig. 1a. In this figure, gluon distributions peak at a larger va.l~e of the 
moment than the quark distributions. The other distributions of the transverse 
negative power moments, which are not presented, show similar trends. It implies 
that the gluon jets are "broader" than the quark jet. The longitudinal moments 
(P,fM)-' and (P,fM)' are also shown in fig. Ib and c, respectively. In these figures, 
the quark jets have larger values of the positive power moments, and lower values of 
the negative power moments than gluon jets. This means that fragments of quark 
jets are "harder" than those of gluon jets. Finally in fig. 2b) , we show the EM 
fraction of jets. We see that the gluon jet has a larger EM fraction than the quark 
jet: Fragments of gluon jet ha.ve more chances to shower in the EM calorimeter. 
The EM fraction increases with number of produced 1l'°'S in a jet. The gluon may 
produce more 1l'° 'S than the quark because of its neutral charge, and consequently 
may get a large EM fraction. 

Summarizing the results of figs . 1 and 2 about the Me events, we conclude that 
gluon jets are broader and contain more soft particles than quark jets: Hadrons from 
a quark are harder and more collimated than those from a gluon. The discrepancies 
between the two MC generators are small, namely, both fragmentation models give 
similar predictions. This is understandable, because they are based on the same 
color-flow scheme. 

Next, we will compare the moment distributions for the CDF and MC jets. 
The results for the CDF jets are also presented in figs. 1 and 2. In figs. la),b),c), 
we observe that the moment distributions for the CDF jets are generally close to 
those for gluon jets. The distribution of the EM fraction and the multiplicity of 
the real data are also close to those of the gluon jets as shown in figs. 2a) and 
b) . However, if one takes a closer look at the moment distributions of the CDF 
dijets, one notes discrepancies between theory and the CnF results. According to 
the QCD prediction, the CDF dijet sample should contain approximately 20% of 
the quark jet fraction at low E, (10 GeV) and 30% at high E, (50 GeV). One thus 
expects the moment variables for the CDF dijets distribute between those for the 
quark and the gluon Me references. The moment distributions for the CDF dijets , 
however, show that they are even softer and broader than the MC gluon jets. In 
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addition, as shown in figs. 3a), b), and c), this tendency is standing out at lower E,. 
.We hence conclude that real gluon-initiated jets are softer and broader than those 
predicted by the current fragmentation models 

Although there exist some discrepancies between the Me and the real jets as 
discussed above, we use in the present analysis the current fragmentation models for 
the quark-gluon separation. We propose a statistical approach which characterizes 
each jet in a certain single measure. First, a quark vs. gluon likelihood is calculated 
from single variable distributions as follows. Let us denote the i-th moment by Xi 

(i = l ,2,,, .,n), and its distributions for quark and gluon sets by Pq(x;) and Pg(Xi), 
respectively. A measure of the degree with which a jet with a moment Xi is more 
likely from a quark than from a gluon is the log-likelihood Li(Xi), defined by 

[
PU)(x .) ] 

L;(x;) = In 1;) • • 
P, (x;) 

(1 ) 

where the integrations of the distribution functions over Xi'S are normalized to 
unity. The next question is how to integrate the information on the likelihood Li'S 
obtained from individual moments to get a "global" likelihood. If the moments xi's 
are mutually independent, the global likelihood is a simple sum of Li 'S. The distri­
butions of moments are actually not independent. For simplicity of the treatment, 
we shall here take an equal-weighted sum, but also introduce one scale parameter 
to represent the effect of correlations among variables. Thus in the present analysis, 
the global likelihood is defined by 

" L' = ,ILL; =,\L, (2) 
i=l 

where A is a scale parameter. We will denote the difference of means of L (L') for 
quark and gluon reference jets by C::. (c::"), and the combined deviation for the two 
references by u (u'). As shown in Appendix A, if the global likelihood distributions 
are symmetric Gaussian functions, L' is the proper likelihood with a scale factor: 

(3) 

The figure of merit or the separation power of the global likelihood can be defined 

6.' 
S=-, (4) ,,' 

which is equal to (1' for the proper likelihood. 
Let us next consider the errors of the likelihood. The errors of individual like­

lihood, ULi'S, are in general mutually correlated, but we assume that the effect 
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is again represented by the scale factor >., and that the uncertainty of the global 
I likelihood, (1L', is given by 

(5) 

The likelihood Li is evaluated from the distribution functions P,(Xi) and Pg(Xi) 
by eq. (I), hence its error is given by 

(1Li = (6) 

There are several sources of systematic uncertainties which contribute to (1Li, in 
particular when we deal with real data provided by experiments. The uncertain­
ties are of two kinds: One is that of the distribution functions themselves due to 
our imperfect knowledge of the fragmentation. The other is the error in the ex­
perimental detennination of Xi, which is a combination of systematic effects due 
to clustering, and detector originated uncertainties such as low energy calorimeter 
responses, calibration systematic errors, finite detector resolution and simulation 
uncertainties. We however do not assign here the errors from these sources to (1L., 

just for simplicity. Note that the (1;; term in eq (6) has a coefficient which is small 
when the P, and Pg are nearly equal as in the present case. Thus, we ignore the 
third term on the right hand side of eq. (6), and take only the statistical errors for 
(1g and (1" which are due to the finite number of events in a given xi-bin in the 
reference data sets. 

In the actual analysis described in this paper, the histogram of each moment was 
divided into 50 bins, and the total binwidth was chosen wide enough. The statistical 
errors, C1, and (1g, are assigned to each bin, assuming a Gaussian Huctuation. It is 
to be noted that this kind of statistical error can be reduced as much as one likes 
by accumulating the reference jet data. 

Finally, we take eq. (5) as the error of L' for a jet, and make a smoothing of 
the L' distribution, supposing that L' is distributed with a Gaussian function with 
uncertainty (1 L' . 

Before discussing the results on the global likelihood, we will review the discrim­
inating powers of individual moments. To quantify them, we use the figure of merit 
defined by .s. = ~. Fig. 4 shows the figures of merit for 30 variables Assignments 
of variable numbers to moments are listed in Table 1. We note that some variables, 
for instance, the multiplicity and a moment 'L,(Pcli /M)3, have rather large figures 
of merit. Also,the results from two Me generators show fairly good agreements, 
except that for "transverse" moments Pythia predicts relatively larger figures of 
merit than Herwig. 

The resulting global likelihood shows different normalized distributions Q(L') for 
quarks and G(L' ) for gluons as presented in figs. 5a) and b). In these figures, the 
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global likelihood distributions for the CDF dijet and 7+jet events are also shown. 
When given a data set to analyze, which we will call an "analysis" sample, we can 
determine a quark vs. gluon likelihood for each jet in the sample. By cutting jets 
below a certain level of the likelihood L~, we can enhance the quark-t<rgluon ratio 
and obtain a signal-richer sample accordingly. The signal-t<rbackground ratio is 
then given by . 

N, Iv Q(L')dL' 
r = N, It G( L')dL' ' (7) , 

where Nq and Ng are numbers of jets in the original analysis sample respectively. 
We can also determine the fraction of the gluon (or quark) jets in a given analysis 

sample without any cut. The predictions from two references are fit to the analysis 
sample in a form: 

D; = X,G; + (1 - X,)Q; (8) 

by finding the coefficient Xg which minimizes the chi-squared defined by 

x' = ~ [D; - (X,G;:; (1- X,)Q;) ]' . (9) 

In eqs. (8) and (9), G;, Q;, and D; are (nonnalized) numbers of jets in the i-th bin 
of the likelihood histograms for gluon, quark, and analysis samples respectively; Ui 

is an error on D i: ..fIJi. 
In fig. 6, we plot the fraction of the final state gluon in the CnF dijet events, 

7+jet events, and 1\'"°+jet events as a function of jet transverse energy E!. The 1\'"0 
candidates are selected with the same cuts those for photon candidates, except the 
strip X~II cut, i.e., the X~II is required to be greater than 5. As usual, the errors 
on the gluon fraction are given by the set of XJ-) and X!+) such that X2(X!-) :;:::: 
X2(X!+)) = X~in + 1. The figure shows that dijet data contain approximately 80% of 
gluen fraction in the jet transverse energy (E!) range of 10-30 GeV, and reproduce 
qualitatively the expected E j dependence of the gluon fraction, i.e. the fraction 
gradually decrease with E!. However, this tendency appears more strongly on real 
data than M C data. The difference is consistent wi th the results on the moment 
distributions that the CnF dijets are softer and broader than the MC gluon jets, 
a trend which enhances at lower values of E j • The 1~4nd+jet data contain about 
40% gluon fraction in E! range of to-30 GeV. These results agree within the error 
with the gluen fraction determined from theoretical prediction and the expected 
1\'"°/7 ratio in the photon candidates. In addition, 1\'"°+jet data agree quite well with 
the MC simulation of the QCD process, in which very hard 1\'"°'S (with momentum 
fraction z > 0.7,0.8) are assumed to be generated. 
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Quark and gluon jets, which were generated with Herwig and Pythia, and simulated with a 

detector simulation QFL. 
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Appendix A 

G a ussian likelihood distributions 

The procedure to find a global likelihood from mu1ti~dimensionallikelihood functions 
is not unique. In this appendix, we point out a general relation which the properly 
defined likelihood should satisfy, and discuss a simple case where the" likelihood dis­
tribu tions fo r two reference samples are Gaussian functions . 

If a parameter L' is "a properly defined likelihood, a relation for L', 

, [Q( L') ] 
L = In G(L') , (A.I) 

or, equivalently, a relation for the quark fraction /q, 

Q( L') I 
f. = Q(L') + G(L') - 1+ exp L' 

(A.2) 

should hold. In eqs. (A. I ) and (A.2), Q(L') and G(L') are likelihood distributions 
for the quark and gluon samples. 

If one assumes that L is a certain parameter representing a measure of likelihood, 
and that Q(L) and G(L) are Gaussian functions with means J.'q and J.lg and variances 
aq and 179 , respectively, then it is easy to show that the condition (A.I) requires 

P. = - p,(= p), u. = u,(= u), (A.3) 

and 
6./u' = I , (A.4) 

where c.. = JJq - JJg = 2JJ. 
Suppose one found a parameter L whose distributions are Gaussian functions 

which satisfy eqs. (A.3) . Then the condition (A .4) can be satisfied by a scale trans­
formation, 

L -+ )"L = L', JJ -+ )'JJ = JA', a -+ ).a = a', D.. - )".6. = .6.' (A.5) 

with), = 6../a2• The separation power for such samples is given by a simple parameter 
u' as 

6.' 6. 
S= - = -=a'. 

u' u 
(A.6) 
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