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Abstract

For the experimental distinction of two types of partons—quarks and glu-
ons, a method based on Monte Carlo simulaions which incorpolate the color-
fragmentation scheme such as String and Cluster models is proposed. A num-
ber of variables, including mechanical/electric moments, multiplicity, and EM
fraction, are calculated for Monte Carlo (reference) jets. The resulting distri-
butions of variables indicate that gluon jets are softer and broader than quark
jets, reflecting the nature of the double color charge of the gluon. The moment
analysis on the CDF dijet events shows that the CDF dijets are close to, but
slightly softer and broader than, the MC gluon jets. The gluon fractions in
the dijet and y+jet events obtained by the CDF experiment are estimated by
comparing the likelihood distributions for the reference and real data jets. In
the jet transverse energy range of 10—30 GeV, the dijet data are shown to
contain approximately 80% of gluon fraction, while the y+jet data about 40%
of gluon fraction. The gluon fraction in the CDF dijet sample decreases with
E, as expected from QCD. In addition, the y+jet data agree with the gluon
fraction determined from theoretical predictions and the expected 7°/7 ratio
in the CDF photon candidates. Some discrepancies between the QCD predic-

tions analyzed with current fragmentation models and the CDF results are also
discussed.



The difference of the structure between the quark-initiated and gluon-initiated
jets have been a subject which interested considerable number of authors[1—6]. In
this letter, we discuss the possibility of separating the quark jets from the gluon
; jets. The ideal way to study the quark ancestors is to use the experimental data sets
consisting of the pure ancestors. Since this is rather difficult at present, we resort in
this letter to the Monte Carlo (MC) events based on the phenomenological models
of fragmentation to get a clue to the problem. There are three kinds of well known
fragmentation models; the independent fragmentation (7], the string fragmentation
(8], and cluster fragmentation [9,10,11]. The independent fragmentation model is
not appropriate for our purpose of differentiating a quark from a gluon jet, because
this model has such fundamental problems [12,13] as energy non-conservation and
absence of any specific model of the gluon fragmentation. We therefore use two
Monte Carlo programs, Herwig [14] and Pythia [15,16], which are based on the
cluster and string models respectively.

The CDF detector has been described in ref. [17]. In this analysis, only jets
detected by the “central” detectors are used. In the 1.5 T magnetic field, there are
two kinds of tracking chambers, the vertex time projection chambers (VTPC) and
the central tracking chamber (CTC). The CTC covers |n| < 1.2, and the transverse
momentum resolution is Ap,/p? = 0.001 (GeV/c)~!. Outside the tracking chambers,
the central electromagnetic (CEM) and hadronic (CHA/WHA) calorimeters are
arranged in projective towers of size én = 0.1 by §¢ = 15°. The strip chambers
(CES) are embedded in the CEM at a depth of six radiation lengths.

We choose the CDF dijet events from 1987 run as a gluon rich-sample, because
the dominant dijet final state is gluon-gluon at the CDF energy. The integrated
luminosity for dijet events used in the analysis is approximately 26 nb~!. The data
were clustered using the fixed-cone algorithm [18] with a radius of 0.7 unit in R =
Vv dn? + d¢? . For the hardware ¥ E; triggers with threshold values of 20, 25, 40,
and 45 GeV, cuts in the off-line analysis were placed on central-central jets at 36,
48, 56, and 60 GeV respectively, after jet energy corrections to the calorimeter data
are made. We require the energy centroid of the leading and the next to leading
jets to be in the central region 0.1 < |n| < 0.7, and to be within 20° of back-to-back
in ¢ .

For the track association to a jet, we first boost the events to the longitudinal
dijet center of mass system using the corrected 4-vectors of the jets. In this Lorentz
transformation, the masses of all charged particles are assumed to be equal to the
pion mass. In the dijet rest frame, a cone is formed around the jet axis. This
cone is defined by a minimum pseudorapidity 1, with respect to the jet axis. The
tracks within the cone are selected as jet particles, but tracks with poor quality are
removed by requiring three-dimensional reconstruction capability and other quality
cuts such as impact parameter or delta-z cut [19]. For the 1987 data, we also exclude



these jets whose axis are in the region, —24° < ¢ < 35° and 188° < ¢ < 247°
~ (Dead Region £ 20°) because of the dead cells in the CTC.

! For a quark-rich sample we used photon+jet events. Events were selected from
the 1988-89 runs by requiring an isolated electromagnetic (EM) cluster and one
jet in the opposite hemisphere (£ 25° in ¢ ) in the central region. The photon
identification is done in the following way. We require that sharing of the lateral
shower energy between CEM towers to be consistent with that for a photon shower,
and that the averaged chisquared value derived from CES shower profiles in wire
and strip views, x2, = 0.5 X (X% + X2ire), to be less than 4. Both strip and wire
clusters are also required with approximately equal energies; %ﬁ;g—:ﬁ < 0.2. The
fitted cluster centroids are further required to be well within the active region of the
CES chamber. The hadronic-to-EM ratio of the energy in the cluster is required
to be less than 0.055 + 0.045 - E/100. An isolation requirement I = EﬂgTE* <0.15
is also made. Here, E; and E. are the total transverse energy of the EM cluster,
and that within a cone of radius R = 0.7 centered on the EM cluster, respectively.
Finally we require existence of no track pointing at the towers in the cluster.

For each jet in the dijet rest frame, we define the 2’ axis along the jet direction,
and the y' axis along the direction of p X 2, where p is the momentum of the proton
and 2z’ is the unit vector along the z’ axis.

Since the analysis is based on MC generators, we will describe how we produce
MC samples for gluon and quark jets We first produce quark and gluon jets in QCD
2 — 2 processes at /s =1.8 TeV by using event generators, Herwig and Pythia. We
pick up only those processes in which final partons are purely quarks or gluons: Thus
the q g — q g process is not used. The generated events are then processed through
a detector simulation program which reproduces the CDF detectors realistically.
Next we reconstruct events: The simulated events are clustered by one of the CDF
jet finding algorithms, in which one uses a cone of a fixed radius to define a jet.
We then select only dijet events according to the clustering algorithm. The events
are further divided into four samples, depending on the jet transverse energy Ei;
10-20,20-30,30-40 and 40-50GeV. In each E; range, 2000(quark)+2000(gluon) jets
are finally produced. We shall call gluon and quark sets as “reference” sets.

Such observables as multiplicity, a jet angular width, etc., have been pointed
out to show differences between quarks and gluons [1-3]. In this analysis, however,
we do not try to find ad hoc variables which are more sensitive to the differences
between the parton ancestors. Instead, we take a systematic approach of analyzing
the momentum distribution (the fragmentation function) of charged particles in
a jet by using a method of moment analysis. It is motivated by the fact that a
function (the momentum distribution function in a jet in this case) of variables (the
momenta of charged particles here) can generally be expressed by their moments as
defined by the Mellin transformation. More terms of different orders reproduce the



function more precisely. We take about 30 variables in the present treatment.

The variables which we choose are mainly divided into two classes: one is the
m-th power of the momentum, summed over all particles, which we call the “me-
; chanical moment”; "%, (pi;/M)™ and ¥, (psi/M)™, where the term (P,/M)™ rep-
resents the m-th power of the normalized momentum of the i-th charged particle,
n is the total number of charged particles in a jet, and M is the jet invariant mass.
The suffix [ and ¢ indicate the momentum components: longitudinal and transverse
to the jet axis respectively. The other is the m-th power of the momentum mul-
tiplied by the electric charge of the particle and summed over all particles, which
we call the “electric moment”; Y%, Ci(pii/M)™ and Y, Ci(pu/M)™, where C; is
charge of the i-th charged particle.

In this analysis, the moments are calculated in the jet rest frame which is ob-
tained, as mentioned earlier, by the Lorentz transformation along the jet axis. The
reason why we try this coordinate system is that the moment variables thus de-
fined are Lorentz invariant and are expected to be less energy (mass in this system)
dependent. In this treatment, however, a certain ambiguity is introduced for the
definition of moments, because we usually have soft particles in the lab system
about which we do not know whether they belong to the jet or to the underlying
event. The soft components do not give substantial effects in the determination of
the jet CM system, but they acquire large backward momenta by the Lorentz boost
to the jet CM frame, giving non-trivial contributions to the values of moments. In
order to remedy this flaw, we take sums only over particles whose momenta lie in a
forward hemisphere of the jet CM momentum space.

The choice of variables to form a set is somewhat arbitrary. Here we take a
variable set with integers, m = -3,-2,-1,0,1,2,3,4, for powers of moments as
shown in table 1. The negative power means that we deal with the inverse of
the momentum instead of the momentum itself, and the 0-th power corresponds
to the multiplicity of charged particles. By the uncertainty relation, the higher
positive moments provide information about the inner part of the jet in the ordi-
nary space, while the higher negative moments about the outer part of the jet. In
addition to the moments, we take three more measures; a) the ratio of the electro-
magnetic (EM) calorimeter response to the total (EM+HAD) calorimeter response
(EM/TOTAL), b) the “asymmetry” and c) the “oblateness” of a jet. The asymme-
try and the oblateness are measures about the non-uniform momentum distribution
with respect to the jet axis. For each jet, we calculate a tensor, Tpy = Y0, P2,
Toy = Ty = Tiey PiwPiy, and Typy = T, phy, where the axes 2’ and y' are
in the plane perpendicular to the jet axis (z’-axis). The asymmetry is defined as
A = (Tyy — Tpp)/(Tyy + Terr), where the z’ axis is in the jet production plane
and the y’ axis is in the direction perpendicular to it. The oblateness O is defined
by eigenvalues d; and d; (d; > d;) of the T-tensor as O = (dy — d2)/(d1 + d2).



Figures 1a), b) and c) show several distributions of the mechanical moments for
. the MC and CDF jets for the E; range of 30—40 GeV in the logarithmic scale. These
" moments are calculated from the transverse/longitudinal components of particle
momenta. Both distributions for the reference (MC) and the real (CDF) data are
normalized so that the integrations of the distributions over the entire moment range
are unity: [ Py(z)dz = [ Py(z)dz = [ P.(z)dz = 1, where P)(z), P)(z) and P,(z)
are distributions of a moment z for quark,gluon samples and real data, respectively.

First, we will discuss the results on the MC jets. As an example of the moment
distributions, we present those of the moment (P,/M)~® for MC quark and gluon
jets in fig. la. In this figure, gluon distributions peak at a larger value of the
moment than the quark distributions. The other distributions of the transverse
negative power moments, which are not presented, show similar trends. It implies
that the gluon jets are “broader” than the quark jet. The longitudinal moments
(P,/M)~! and (P;/M)? are also shown in fig. 1b and c, respectively. In these figures,
the quark jets have larger values of the positive power moments, and lower values of
the negative power moments than gluon jets. This means that fragments of quark
jets are “harder” than those of gluon jets. Finally in fig. 2b), we show the EM
fraction of jets. We see that the gluon jet has a larger EM fraction than the quark
jet: Fragments of gluon jet have more chances to shower in the EM calorimeter.
The EM fraction increases with number of produced 7%s in a jet. The gluon may
produce more 7°’s than the quark because of its neutral charge, and consequently
may get a large EM fraction.

Summarizing the results of figs. 1 and 2 about the MC events, we conclude that
gluon jets are broader and contain more soft particles than quark jets: Hadrons from
a quark are harder and more collimated than those from a gluon. The discrepancies
between the two MC generators are small, namely, both fragmentation models give
similar predictions. This is understandable, because they are based on the same
color-flow scheme.

Next, we will compare the moment distributions for the CDF and MC jets.
The results for the CDF jets are also presented in figs. 1 and 2. In figs. 1a),b),c),
we observe that the moment distributions for the CDF jets are generally close to
those for gluon jets. The distribution of the EM fraction and the multiplicity of
the real data are also close to those of the gluon jets as shown in figs. 2a) and
b). However, if one takes a closer look at the moment distributions of the CDF
dijets, one notes discrepancies between theory and the CDF results. According to
the QCD prediction, the CDF dijet sample should contain approximately 20% of
the quark jet fraction at low E; (10 GeV) and 30% at high E, (50 GeV). One thus
expects the moment variables for the CDF dijets distribute between those for the
quark and the gluon MC references. The moment distributions for the CDF dijets,
however, show that they are even softer and broader than the MC gluon jets. In



addition, as shown in figs. 3a), b), and c), this tendency is standing out at lower E,.
We hence conclude that real gluon-initiated jets are softer and broader than those
predicted by the current fragmentation models

Although there exist some discrepancies between the MC and the real jets as
discussed above, we use in the present analysis the current fragmentation models for
the quark-gluon separation. We propose a statistical approach which characterizes
each jet in a certain single measure. First, a quark vs. gluon likelihood is calculated
from single variable distributions as follows. Let us denote the i-th moment by z;
(i = 1,2,...,n), and its distributions for quark and gluon sets by P,(z;) and P,(z;),
respectively. A measure of the degree with which a jet with a moment z; is more
likely from a quark than from a gluon is the log-likelihood L;(z;), defined by

Lie) =1 [%] - 1)

-
e

where the integrations of the distribution functions over z;’s are normalized to
unity. The next question is how to integrate the information on the likelihood L;’s
obtained from individual moments to get a “global” likelihood. If the moments z;’s
are mutually independent, the global likelihood is a simple sum of L;’s. The distri-
butions of moments are actually not independent. For simplicity of the treatment,
we shall here take an equal-weighted sum, but also introduce one scale parameter
to represent the effect of correlations among variables. Thus in the present analysis,

the global likelihood is defined by

L'=,\iL.-=,\L, (2)

i=1

where A is a scale parameter. We will denote the difference of means of L (L) for
quark and gluon reference jets by A (A’), and the combined deviation for the two
references by o (¢’). As shown in Appendix A, if the global likelihood distributions
are symmetric Gaussian functions, L’ is the proper likelihood with a scale factor:

=5 3)

The figure of merit or the separation power of the global likelihood can be defined

as Al
S= ';,,- ) (4)
which is equal to ¢’ for the proper likelihood.
Let us next consider the errors of the likelihood. The errors of individual like-

lihood, op;'s, are in general mutually correlated, but we assume that the effect



is again represented by the scale factor A, and that the uncertainty of the global
; likelihood, oy, is given by ;

o =MD, k. (5)
The likelihood L; is evaluated from the distribution functions P,(z;) and P,(z;)
by eq. (1), hence its error is given by

2 2 :
oLi = J (pq) + (py) + (Pq P P B ¢ (6)

There are several sources of systematic uncertainties which contribute to oy;, in
particular when we deal with real data provided by experiments. The uncertain-
ties are of two kinds: One is that of the distribution functions themselves due to
our imperfect knowledge of the fragmentation. The other is the error in the ex-
perimental determination of z;, which is a combination of systematic effects due
to clustering, and detector originated uncertainties such as low energy calorimeter
responses, calibration systematic errors, finite detector resolution and simulation
uncertainties. We however do not assign here the errors from these sources to oy;,
just for simplicity. Note that the oZ; term in eq (6) has a coefficient which is small
when the P, and P, are nearly equal as in the present case. Thus, we ignore the
third term on the right hand side of eq. (6), and take only the statistical errors for
o, and o,, which are due to the finite number of events in a given z;-bin in the
reference data sets.

In the actual analysis described in this paper, the histogram of each moment was
divided into 50 bins, and the total binwidth was chosen wide enough. The statistical
errors, o, and oy, are assigned to each bin, assuming a Gaussian fluctuation. It is
to be noted that this kind of statistical error can be reduced as much as one likes
by accumulating the reference jet data.

Finally, we take eq. (5) as the error of L’ for a jet, and make a smoothing of
the L’ distribution, supposing that L’ is distributed with a Gaussian function with
uncertainty ops.

Before discussing the results on the global likelihood, we will review the discrim-
inating powers of individual moments. To quantify them, we use the figure of merit
defined by s; = %’- Fig. 4 shows the figures of merit for 30 variables Assignments
of variable numbers to moments are listed in Table 1. We note that some variables,
for instance, the multiplicity and a moment ¥ (P.;/M)?, have rather large figures
of merit. Also,the results from two MC generators show fairly good agreements,
except that for "transverse” moments Pythia predicts relatively larger figures of
merit than Herwig.

The resulting global likelihood shows different normalized distributions Q(L’) for
quarks and G(L') for gluons as presented in figs. 5a) and b). In these figures, the




global likelihood distributions for the CDF dijet and v+jet events are also shown.

When given a data set to analyze, which we will call an “analysis” sample, we can

determine a quark vs. gluon likelihood for each jet in the sample. By cutting jets

' below a certain level of the likelihood L/, we can enhance the quark-to-gluon ratio

and obtain a signal-richer sample accordingly. The signal-to-background ratio is
then given by ;
N, [; Q(L)dL'

"T NS G (7)

where N, and N, are numbers of jets in the original analysis sample respectively.

We can also determine the fraction of the gluon (or quark) jets in a given analysis
sample without any cut. The predictions from two references are fit to the analysis
sample in a form:

Di= XQG,' + (1 -_ X,)Q; (8)
by finding the coefficient X, which minimizes the chi-squared defined by

50 T - T A2
X2 i3 Z Ds (Xth +(1 Xy)Qt) !

i=1

= ©
In egs. (8) and (9), G;, Q:, and D; are (normalized) numbers of jets in the i-th bin
of the likelihood histograms for gluon, quark, and analysis samples respectively; o;
is an error on D;: /D;.

In fig. 6, we plot the fraction of the final state gluon in the CDF dijet events,
v+jet events, and 7%+jet events as a function of jet transverse energy E;. The =°
candidates are selected with the same cuts those for photon candidates, except the
strip x2, cut, i.e., the x2, is required to be greater than 5. As usual, the errors
on the gluon fraction are given by the set of X{~) and X{*) such that x*(X{7)) =
X} (X{P) = x2,;.+1. The figure shows that dijet data contain approximately 80% of
gluon fraction in the jet transverse energy (E;) range of 10—30 GeV, and reproduce
qualitatively the expected E, dependence of the gluon fraction, i.e. the fraction
gradually decrease with E,. However, this tendency appears more strongly on real
data than MC data. The difference is consistent with the results on the moment
distributions that the CDF dijets are softer and broader than the MC gluon jets,
a trend which enhances at lower values of E;. The 74.nq+jet data contain about
40% gluon fraction in E; range of 10—30 GeV. These results agree within the error
with the gluon fraction determined from theoretical prediction and the expected
70/~ ratio in the photon candidates. In addition, 7°+jet data agree quite well with
the MC simulation of the QCD process, in which very hard 7%’s (with momentum
fraction z > 0.7, 0.8) are assumed to be generated.
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Figure 1: Distribution of moments: a) In|¥(pu/M)™3|, b) In| X (p/M)~Y|, and c)
In| ¥ (pii/M)?|, where the sum is over charged tracks associated with a jet; Py(P;)is the track
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mass. Solid histogram: quark jets. Dashed: gluon jets. Dotted: CDF dijet data. The E,
range of jets is 30—40 GeV. The quark and gluon jets were produced with Herwig/Pythia
and a detector simulation.
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Appendix A

(Gaussian likelihood distributions

The procedure to find a global likelihood from multi-dimensional likelihood functions
is not unique. In this appendix, we point out a general relation which the properly
defined likelihood should satisfy, and discuss a simple case where the likelihood dis-
tributions for two reference samples are Gaussian functions.

If a parameter L’ is a properly defined likelihood, a relation for L/,

L'=In [%%] : (A1)

or, equivalently, a relation for the quark fraction f,,

TR +GL)  1+expl

should hold. In egs. (A.1) and (A.2), Q(L') and G(L') are likelihood distributions
for the quark and gluon samples.

If one assumes that L is a certain parameter representing a measure of likelihood,
and that Q(L) and G(L) are Gaussian functions with means y, and p, and variances
o, and o, respectively, then it is easy to show that the condition (A.1) requires

(A.2)

Bo = —po(= p), 04 = 0y(=0), (A.3)

and
Afot =1, (A.4)
where A = py — py = 2p.
Suppose one found a parameter L whose distributions are Gaussian functions

which satisfy eqs. (A.3). Then the condition (A.4) can be satisfied by a scale trans-
formation,

Lo )L=L,p=sdu=y,0dc=0d, A= 2A=4' (A.5)

with A = A/o?. The separation power for such samples is given by a simple parameter
o' as
A A

S =g (A.6)

a’ g
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