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Abstract

An analog VLSI neural network chip (ETANN) has been trained
to detect secondary vertices in simulated data for a fixed target heavy
flavour production experiment. The detector response and associative
memory track finding were modelled by a simulation, but the vertex
detection was performed in hardware by the neural network chip and
requires only a few microseconds per event. The chip correctly tags
30% of the heavy flavour events while rejecting 99% of the background,
and is thus well adapted for secondary vertex triggering applications.
A general purpose VME module for interfacing the ETANN to exper-
iments, equipped with ADC/DAC circuits and a 68070 CPU, is also
presented.

fcurrently at ENEA, Roma.



1 Introduction

The study of particles containing heavy flavour quarks continues to be a
major topic in High Energy Physics (HEP), both at fixed target and col-
lider experiments. The high resolution silicon microvertex detectors with
which many of today’s experiments are equipped are powerful tools for of-
fline validation and reconstruction of heavy flavour events. Heavy flavour
events however are very rare compared to background processes; the signal
to background ratio ranges from 1:1000 (hadron colliders) to 1:50000 (fixed
target experiments).

The signal to background ratio for the events written to tape can be
significantly improved by implementing triggers which select certain subsets
of all heavy quark decays, for example by looking for the high transverse
momentum lepton from a semileptonic decay or the J/¢ emitted in some of
the B meson decays. These triggers have low inherent efficiency since they
are sensitive only to a fraction of all heavy flavour decays; furthermore, high
transverse momentum leptons and J/4’s can emerge from other sources as
well. The ideal trigger for heavy flavour decays would be sensitive to the
presence in the event of secondary decay vertices as detected in the silicon
microstrip detector, since it would then have high efficiency for all types of
heavy flavour decays and excellent rejection of background.

Reconstruction of secondary vertices is a challenging problem even in
the offline analysis; to attempt it in the trigger is even more difficult be-
cause the very short time available and the large number of channels (sev-
eral thousand), which preclude preprocessing and necessitate special trigger
hardware. Nevertheless a number of projects are underway to install sec-
ondary vertex triggers in working experiments. In (1], involving the WA92
experiment at CERN, signals from the microvertex detector which have been
preprocessed by a contiguity processor [2] will be examined, along with other
event information, by two types of artificial neural network chips operating
in parallel (the 80170NX or ETANN by Intel [3] ) and the MA16 of Siemens
(4]). In [5], which describes a trigger being prepared for the CDF proton an-
tiproton collider experiment at the Fermilab Tevatron, hit information from
the silicon detetector is passed to the so-called associative memory chips [6]
which generate a track list. Digital signal processors (DSP’s) will then be
used to detect secondary vertices. Associative memory chips will also be
used in a secondary vertex trigger for the upgrade of the E771 experiment
at Fermilab [7].

The present work reports on a hardware study of the Intel ETANN chip



for trigger level secondary vertex detection in a fixed target experiment. In
an earlier work (8], neural network algorithms were investigated for finding
secondary vertices in such an experiment (9], using as input the track list
found by a set of associative memory chips. As in that work, the present
results are based upon events generated by Monte Carlo [10], passed through
a detailed detector simulation [11], and finally through a simulation of the
associative memory chips [12]. In [8] preprocessing was performed on the
associative memory track list before it was passed to the (software) neural
network. In the present work an improved associative memory simulation
is used, and the track list is converted to analog information and passed
directly to the ETANN for vertex detection, without preprocessing.

2 Experiment Simulation

We simulated here a fixed-target experiment (NAxx at CERN) which was
proposed to investigate triggering on B decays. It is representative of many
of the experiments using silicon vertex detectors to search for decays of long-
lived heavy flavour particles. A proton beam of energy 450 Gev is directed
onto a 1 mm copper target (see figure 1). Particles emerging from the
interaction are detected in a set of silicon microstrip detectors downstream
of the target, which measure the intercepts of the tracks at each plane in
each of two perpendicular coordinates, x and y. Signals on the microstrips
are amplified and passed via cables to the data acquisition system, where
digitization takes place, and where the hit positions are calculated. The hit
positions for each plane are then passed serially to the associative memory
chips, which can be thought of simply as look-up tables of all possible tracks
in the system (see section 3). As the hit information passes through the
associative memories, the track list is generated; when all hit information
has passed through, the track list is complete (figure 2).

The tracks are parametrized by the impact parameter D which measures
the distance of closest approach of the track to the origin, and ®, which is
the angle of the track with respect to the beam direction. Note that the
vertical displacement of the beam is not constant. In the general case, tracks
emanating from a common vertex should lie upon sinusoids in this space;
however, since the decay angles are small, tracks from a common vertex will
in fact lie upon a line whose slope is proportional to the distance of the
vertex from the primary vertex. In the ideal case, then, the primary vertex
will appear as a set of points on a horizontal line, and secondary vertices as a



set of points on sloped lines intersecting the primary line. In practice, finite
acceptance, noise, interactions within the silicon, spurious tracks, etc., can
significantly alter the picture. A few typical signal and background events
are shown in figure 3.

3 The Associative Memory Readout

The Associative Memory is functionally similar to a Content Addressable
Memory which stores all possible hit configurations for legal tracks, e.g.,
strip 105 in layer one, strip 115 in layer two, strip 125 in layer three, etc.
Presentation of a valid hit configuration outputs an address in RAM which
contains the slope and intercept of the track. The pattern presented need not
match exactly the template stored in the memory; a programmable number
of missing hits can be tolerated. Each chip stores patterns corresponding
to 128 different tracks; many chips are ganged together to store the many
thousands of patterns corresponding to all possible tracks.

The actual operation of the Associative Memory is in fact quite different
from that of a CAM, in that the patterns are presented ‘on the fly’, as
shown in figure 2. The columns in the figure correspond to silicon layers and
the rows to stored hit patterns. After an event is registered, hit addresses
from each layer pass sequentially down the columns, and if the address
corresponds to one contained in a particular track, a latch is set at that
memory location. When all of the latches in a given row (or an acceptable
subset in the case of missing hits) are set, then the corresponding track is
‘found’ and the RAM address for that track is sent out on the bus. Thus,
after all the data from the layers has passed through the memory, all of the
addresses of found tracks will have been sent out on the bus.

The Associative Memories (in the present version) can be clocked at
about 20 MHz, so that an event with 20 tracks (i.e. approximately 20 hits
per detector plane) can be handled in a little more than a microsecond.

The operation of the AM chips was simulated with a FORTRAN routine
which modelled varous instrumental effects such as inefficiencies in track
finding (about 16 %) and generation of spurious tracks (of the order of 2%)
[12].



4 Generation of Data

Data were generated with the PYTHIA Monte Carlo Program [10] assuming
a proton on proton collision. The interaction with the nucleus and conse-
quent particle production was treated in a special generation routine, added
to the main p — p interaction routine [12]. Events were generated without
heavy flavour production (background sample, only QCD minimum bias
events), and with heavy flavours (signal sample, only bb events). The in-
coming beam energy was 450 GeV and a 1 mm copper target was assumed
(figure 1).

The detector consisted of 10 planes of silicon microstrip telescope, each
plane 300 pm thick and 5 by 5 cm square, the first plane at 4 cm from the
target, the last plane at 13 cm. There were 4 planes with X-oriented strips,
4 with Y-oriented strips, 1 U and 1 V stereo planes. In the present work,
the X and Y patterns were treated separately, and the stereo planes were
not used.

Tracks were straight in the detector region (no magnetic field). The
particles were traced in the detector using the GEANT code [11]: all the
possible secondary decays, interaction with the detector, gamma conver-
sions, delta rays etc. were "switched on” in the simulation. The operation
of the silicon detectors allowed for charge spread onto strips neighboring the
hit strip. To reduce the number of hits entering the Associative Memories, a
barycenter algorithm was applied. Such an algorithm, to achieve a higher ac-
curacy, can output strip coordinates which correspond to non-integral strip
numbers. This effectively doubled the number of possible strip addresses to
consider per plane, thus quadrupling the number of patterns which must be
considered for the track finding. The algorithm is applied to purely digital
information (no pulse height was used). In the present work it was part of
the FORTRAN Associative Memory simulation, but it can be implemented
in real time in a real experiment using only simple electronics.

5 Training the Network

The neural network was implemented in the ETANN VLSI chip[3]. The
use of this chip for detector pattern recognition tasks has been described
previously [13] [14]. Since the methods of emulating, training and testing
the chip for this test are similar, we will only briefly review the steps here
and refer the reader to those works for more details.



A single ETANN can implement a network with up to 64 inputs, 64
hidden units and 64 outputs. Here the inputs to the network are the D and
® values for each track in both planes. The 64 inputs were divided into 4
sections of 16 inputs each. The first 16 inputs were used for the D values
of up to 16 tracks in the xz plane. The second 16 inputs were for the &
values for those tracks. Similarly, the third and fourth sections were used
for the D and @ values of up to 16 tracks in the yz plane. (The tracks in the
two planes are not correlated by the associative memory so the number of
tracks found in the two layers can be different due to different solid angles,
efficiencies, etc.) The D and & values were normalized to a -1 to 1 scale
for the software emulation, corresponding to 0.0v to 3.0v for the actual chip
inputs.

The network had 64 hidden units and 8 output units. The first four
outputs should each be equal to 1 for background events, -1 for signal events.
Similarly, outputs 5-8 should be complementary to the first four outputs:
-1 for background and 1 for signal. In an experimental setup, each of the
four outputs could be fed into a summing junction to obtain a single output
value. Although each output in a set of four is trained to the same target
value, there can be slight variations in the outputs due to variations in
the performance of the analog components. As described in reference [14],
summing of multiple outputs can average out some of these variations.

With the event generation and detector simulation described in section
4, there were 2500 background (BG) events produced and 500 signal (SIG)
events. To increase the statistics, both samples were doubled taking these
events and reversing the D and @ values in the xz plane. This is allowed by
the symmetry of the problem. The data was divided into 4000 BG events +
800 SIG events for training, and 1000 BG events + 200 SIG events for testing.
The signal events were distributed uniformly throughout the samples.

The Intel INNTS PC-based system [15] controls the basic communication
functions between the PC and the chip via an extender board connected by
a cable to an external trainer box. In addition, an ETANN simulation
program [16] was used for both the software training and, in combination
with the iNNTS software, the chip-in-the-loop training. With this sytem a
table of input values versus neuron output was obtained directly from one of
the chip neurons and used in the software for the neuron transfer function.
The ETANN transfer functions are not exact sigmoid functions as normally
used in neural networks simulations so it is important to use the hardware
function in the simulation. (see reference [14] for a discussion of the ETANN
transfer function.) The ETANN weights are limited to +2.5; this restriction
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was also held in software.

The training in software was done in two steps. First, the net was trained
on only events having between 3 and 8 tracks in each plane. Second, after the
network performance for this subset was deemed satisfactory, it was trained
on the full sample. There were about 1 million training back-propagation
iterations for each step.

After the software training, the weights from the simulated network were
downloaded into the chip. Because of imperfections in such an analog sys-
tem, the chip will not immediately perform exactly as the simulation. To
reach suitable performance levels, it is necessary to do chip-in-the-loop train-
ing as well. Patterns are presented to the chip and outputs compared to the
target values. In software, the necessary weight adjustments are calculated
and then downloaded to the chip. Starting from a net downloaded from
a simulation greatly reduces the time needed for the chip to train as com-
pared to starting from random weights. For this case the chip approached
simulation performance levels after about 12000 iterations.

6 Results

After training, both software and hardware networks were tested using a
data set independent of the training set. The efficiency for correct identifi-
cation of the target patterns is measured with a strict and a limited criteria.
The strict criteria demands that both the BG outputs and the SIG out-
puts agree with the target. That is, the event is declared background if the
BG outputs are > 0.0 and the SIG outputs are < 0.0, vice versa for signal
events. If both output sections are above or below zero, then the result is
labeled ambiguous. The limited criteria only looks at the SIG outputs. If
the summed output is above some cut, then the event is labeled a signal
event. If the output is below the cut then the event is labeled a background
event.

Table 1 shows the software and chip network performance on the test
data using the strict criteria. The simulation and the chip perform fairly
closely, although the simulation does somewhat better than the chip for
signal identification.

Figure 4 shows result for the chip and the simulation according to the
limited criteria for correct identification as a function of the cut on the
output. For a tight cut on the output, the efficiency is about 99% for back-
ground identification and about 30% for signal. A loose cut on the output



Strict Cut Results

| Simulation | Good | Bad | Ambiguous
Signal 57.0% | 37.0% 6.0%
Background | 91.8% | 6.4% 1.8% |
ETANN Good | Bad | Ambiguous |
Signal 47.5% | 47.5% 5.0%
Background | 91.7% | 6.4% 1.9%

Table 1: Percentages of signal and background events which are identified
correctly (Good), incorrectly (Bad) or which are ambiguous, for neural net
executed in software (Simulation) and hardware (ETANN).

gives about 90% background and 50% signal efficiency. The simulation and
the chip are in rough agreement for the background cuts but the software
does better on the signal acceptance by about 10%.

7 VME Interface Board

With its large number of neurons and synapses and its fast processing, the
ETANN was judged the only suitable chip now available for this application;
however, there is the complication of having digital signals from the asso-
ciative memory as inputs to the analog chip. A VME board has been built
which can be used to interface the ETANN to a variety of environments. The
board can accept either analog signals, received directly through front panel
inputs, or digital signals, which are used to set DAC’s (one DAC per input
signal) connected to the ETANN inputs. The analog outputs of the ETANN
are also available on the front panel, either directly or after summing and
discrimination, or they can be digitized by the fast ADC’s provided for all
64 outputs. The DAC’s have a 4 us settling time and the ADC’s a 5 us
digitization time. These overheads increase the total processing time.

The board was built with an ELTEC SAC-711 VME card [17], which
employes a 68070 CPU, 2 MB of dual-ported memory, I/O-channels, etc.,
as well as a prototyping section connected to a proprietary bus. This card
was previously used for a purely analog input implementation [14]. A block
diagram of the present solution is shown in fig. 5 and a photograph of the
VME module is shown in fig.6. A detailed description of this VME-board,



as well as its performace will be given in ref. [18].

Software was developed in assembler and downloaded to the 68070/80170
VME card in S-format. This code is used to set the ETANN output gain
voltage and the reference voltages to the values used during the CIL training.
It will then wait for a flag in the common SRAM, set a busy flag and read
64 bytes from the SRAM into the ETANN inputs. Controlling the ETANN
time-sequences, the code will then read the ETANN outputs and copy them,
following the digitization by the AD7228 ADC chips [19], to the SRAM.

To test the functionality of the 68070/80170 VME-module, C code was
developed in a VME-based PC/AT residing in slot 1 of the crate. This code
can present patterns to the chip and display the desired and actual outputs
on the screen.

A chip is first trained and. tested. thh the iNNTS sytem, then installed-
in the VME board (which has no weight setting capabilities) and used in the
feed-forward mode. With the above C code, test patterns can be presented
to the chip to measure its performance. It is important that the control
voltages be the same within a few tens of mV to the values in the trainer.
Following this procedure we obtained performance for the chip in the VME
board similar to those in the trainer.

8 Conclusions and Discussion

We have shown that an analog VLSI neural network can be trained to sepa-
rate events with secondary vertices from background events with good effi-
ciency, using as input a list of the impact parameters and angles of the tracks
as determined by an associative memory technique. The best background
rejection was obtained by. using the limited cut procedure, i.e., simply re-
quiring the ‘signal’ output units to be above a threshold.. The performance
obtained, 99% background rejection; 30% signal efficiency, is comparable t6
that obtained by real hea.vy flavour experiments in their offtine analyses,
and would provide a high enrichment of the data with heavy quark events
if such a system were implemented in the trigger.

Although the associative memory processing was done in a simulation,
the total processing time through the entire system, including associative
memories, settling of input DAC’s, and processing by the ETANN should
be no more than several microseconds. This is adequate for many triggering
applications (faster analog processing times with other chips may be possi-
ble [20]). Although the chip is analog and the inputs from the associative



memory are digital, we have shown that a compact VME board with the re-
quired D-A and A-D conversions can be built that performs to the necessary
processing accuracy and speed.
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Figure 1. NAxx experiment layout. See section 2 for a description.
Figure 2. Operation of the Associative Memories. See section 3.

Figure 3. Two signal and two background events in D-Phi space, and net
the histogram representation of an event as input to the ETANN.

Figure 4. Identification efficiency versus cut on the output (fraction of out-
put full scale.)

Figure 5. Block diagram of the hardware implementation on a VME pro-
totyping card. The main structure is built around the local bus with the
dual-ported SRAM as an essential part. A,D and C stands for address, data
and control, respectively and DEC refers to decoding. Signals correspond-
ing to ‘signal’ and ‘background’ are available following the discriminators
(DISCR).

Figure 6. Photograph of the VME module sketched in fig. 5. Eight 8-
fold DAC’s are mounted below the ETANN piggy-back card.
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£0.25

.15
0.1
0.05

-0.05
-0.1
-0.15
-0.2
-0.25

0.25
€ 0.2
0.15

0.1
0.05

-0.05
-0.1
-0.15
-0.2
-0.25

:llliIIIIIllll'lllIIIIII[IIIIIIIIIIIIIIllIIIII!II

I | I L1 1l I L il l | | I Ll

o 9 g4

-0.2

-0.1 0 0.1 0.2

D vs Phi, XZ, Event 10

SRR R LR LR
 LLLL) BLAR] BERL LEAL] RALL) LERLY EALE] RAEL]|

I LL L L L L L 1 L“LJ L1 Il Ll II L

I'."I\:Fll:l

-0.2

-0.1 0 0.1 0.2

rads
D vs Phi, XZ, Event 62

Signal Even
.38

€ 0.2
0.15
0.1
0.05
0
-0.05
-0.1
-0.15
-0.2
-0.25

g0.25
£ 02
0.15
0.1
0.05
0
-0.05
-0.1
-0.15
-0.2
-0.25

ts

E_ o

O

e O & pg o

: a

3 o

é 1 I L1 11 I Ll l_LJ_l]. Ll l L1l L1 I 11

-0.2 -0.1 O 0.1 0.2
rads

D vs Phi, YZ, Event 10

llllllllllllllllllilltll

-0.2 -0.1 0 01 0.2

rads
D vs Phi, YZ, Event 62




Percent

100

80

60

40

20

& @
® ® .
~ [ ]
)
8
L4
a L =]
. u
a
O @
a
(]
0
® O Percent of bg removed, software/chip
B O Percent of signal left, software/chip
A
llllll]‘lllllllllll'llllllllllllllllllllllllll].!.].

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Cut on Signal
Eff. va Cut on Signal Output

Figure 4. Identification efficiency versus cut on the output (fraction of out-
put full scale.)




VME
BUS

ADC
WATCH
VME IF DOG B
ETC
110
2 MB
SRAM
T
I
68070 |
2 MB [
EPROM CPU |
|
LOCAL BUS |
12 8 |
|
I
DEC | | DEC H 64 DAC DEC —8ADC| |
|
S I
I
|
80170 |
SUM | [ Ipiscr| |
ETANN AMPL |
641 :
. T4 SN 1 LL___I
Alt. ETANN SB
analog input

Figure 5. Block diagram of the hardware implementation on a VME pro-
totyping card. The main structure is built around the local bus with the
dual-ported SRAM as an essential part. A,D and C stands for address, data
and control, respectively and DEC refers to decoding. Signals correspond-
ing to ‘signal’ and ‘background’ are available following the discriminators

(DISCR).



ANAAAANAEG S

_a_

ArfrfeflrAphoteArgrn, or
pregries e g

[

-

FarERssacys

rrnnnnTmn

e mmmay temm-y
.. - [
* L

-

rep oL - - A
COPEv e TR UIVIFYY

SesvescpRwwDEn

ssssssoweed®

WERRRRRRNL

_=_==:,_ 33003

T e L]

Eight 8-

. Photograph of the VME module sketched in fig. 5.
fold DAC’s are mounted below the ETANN piggy-back card.

Figure 6



