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Ab.tract 

An analog VLSI neural network chip (ETANN) hu been trained 
to detect I«ondazy vertices in simulated data (or a ftxed t&l'gd heavy 
flavour production experiment . The detector teapolUe and auociative 
memory trw finding WCIC modelled by & ,im.ulation. but the vertex 
detection was performed in hardware by the neural network chip and 
requires only a few uUcrote(:ond. per event. The chip correctly taga 
30% o( the heavy liavour event. while r~ecting 99% of the ba.c.kground, 
aad is thus well adapted for le(:ondary vertex triggering applications. 
A general purpoae VME module for interfacing the ETANN to exper­
iments, equipped with ADC/ DAC circuit. and a 68010 CPU, is also 
presented . 

tcurrenUy at ENEA, Rama. 
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1 Introduction 

The study of particles containing heavy flavour quarks continues to be a 
major topic in High Energy Physics (REP), both at fixed target and col· 
lider experiments. The high resolution silicon rnicrovertex detectors with 
which many of today's experiments are equipped are powerful tools for of­
fline validation and reconstruction of heavy flavour eveuts. Heavy ftavour 
events however are very rare compared to background processeSj the signal 
to background ratio ranges from 1:1000 (hadron colliders) to 1:50000 (fixed 
target experiments) . 

The signal to background ratio for the events written to tape can be 
significantly improved by implementing triggers which select certain subsets 
of all heavy quark decays, for example by looking for the rugh transverse 
momentwn lepton from a semileptonic decay or the J / t/J emitted in some of 
the B meson decays. These triggers have low inherent efficiency smce they 
are sensitive only to a fradion of all heavy flavour decaysj furthermore, high 
transverse momentum leptons and J/",'s can emerge from other sources as 
well. The ideal trigger for heavy flavour decays would be sensitive to the 
presence in the event of secondary decay vertices as detected in the silicon 
microstrip detector, smce it would then have high efficiency for all types of 
heavy flavour decays and excellent rejection of background. 

Reconstruction of secondary vertices is a challenging problem even in 
the oOOne analysis; to attempt it in the trigger is even more difficult be­
cause the very short time available and the large nwnber of channels (sev­
eral thousand), which predude preprocessing and necessitate special trigger 
hardware. Nevertheless a number of projects are underway to install sec­
ondary vertex triggers in working experiments. In [I I, involving the WA92 
experiment at CERN, signals from the microvertex detector which have been 
preprocessed by a contiguity procellor i2J will be examined, along with other 
event information, by two types of artifidal neural network chips operating 
in parallel (the 80170NX or ETANN by Intel [3J ) and the MA16 of Siemens 
[4]}. In [5J, which describes a trigger being prepared for the COF proton an­
tiproton collider experiment at the Fermilab Tevatron, hit information from 
the .ilicon detetedor is pu.ed to the .o-c.alled 4.t1ociative memory chips [6J 
which generate a track lilt. Digital signal proces.ors (DSP's) will then be 
used to detect secondary vertices. Allociative memory chip. will also be 
used in a secondary vertex trigger for the upgrade of the E711 experiment 
at Fermil.b [7J. 

The present work reports on a hardware study of the Intel ETANN chip 
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for trigger level secondary vertex detection in a fixed target experiment. In 
an earlier work [81, neural network algorithms were investigated for finding 
secondary vertices in such an experiment [9], using as input the track list 
found by a set of associative memory chips. As in that work, the present 
results are based upon events generated by Monte Carlo [10], passed through 
a detailed detector simulation [n l, and finally through ~ simulation of the 
associative memory chips [12]. In [8] preprocessing was performed on the 
associative memory track list before it was passed to the (software) neural 
network. In the present work an improved associative memory simulation 
is used, and the track list is converted to analog information and passed 
directly to the ETANN for vertex detection, without preprocessing. 

2 Experiment Simulation 

We simulated here a fixed-target experiment (NAn at CERN) which was 
proposed to investigate triggering on B decays. It is representative of many 
of the experiments using silicon vertex detectors to search for decays of long­
lived heavy flavour particles. A proton beam of energy 450 Gev is directed 
onto a 1 mm copper target (see figure 1). Particles emerging from the 
interaction are detected in a set of silicon micros trip detectors downstream 
of the target , which measure the intercepts of the tracks at each plane in 
each of two perpendicular coordinates, x and y. Signals on the micros trips 
are amplified and passed via cables to the data acquisition system, where 
digitization takes place, and where the hit positions are calculated. The hit 
positions for each plane are then passed serially to the associative memory 
chips , which can be thought of simply as look-up tables of all possible tracks 
in the system (see section 3). As the hit information passes through the 
associative memories, the track list is generated; when all hit information 
has passed through, the track list is complete (figure 2). 

The track. are parametrized by the impact parameter D which measures 
the di.tance of clo.est approach of the track to the origin, and 'I, which is 
the angle of the track with respect to the beam direction. Note that the 
vertical di.placement of the beam is not constant. In the general case, tracks 
emanating from a common vertex should lie upon sinusoids in this space; 
however, since the decay angles are smail, tracks from a common vertex will 
in fact lie upon a line whose slope is proportional to the distance of the 
vertex from the primary vertex. In the ideal case, then, the primary vertex 
will appear as a set of points on a horizontal line, and secondary vertices as a 
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set of points on sloped lines intersecting the primary line. In practice, finite 
acceptance, noise, interactions within the silicon, spurious tracks, etc., can 
significantly alter the picture. A few typical signal and background event's 
are shown in figure 3. 

3 The Associative Memory Readout 

The Associative Memory is functionally similar to a Content Addressable 
Memory which stores all possible hit configurations for legal. tracks, e.g., 
strip 105 in layer one, strip 115 in layer two, strip 125 in layer three, etc. 
Presentation of a valid hit configuration outputs an address in RAM which 
contains the slope and intercept of the track. The pattern presented need not 
match exactly the template stored in the memorYi a programmable number 
of missing hits can be tolerated. Each chip stores patterns corresponding 
to 128 different tracks; many chips are ganged together to store the many 
thousands of patterns corresponding to all possible tracks . 

The actual operation of the Associative Memory is in fact quite different 
from that of a CAM, in that the patterns are presented 'on the fly', as 
shown in figure 2. The columns in the figure correspond to silicon layers and 
the rows to stored hit patterns. After an event is registered, hit addresses 
from each layer pass sequentially down the columns, and if the address 
corresponds to one contained in a particular track, a latch is set at that 
memory location. When all of the latches in a given row (or an acceptable 
subset in the case of missing hits) are set , then the corresponding track is 
'found ' and the RAM address for that track is sent out on the bus . Thus, 
after all the data from the layers has passed through the memory, all of the 
addresses of found tracks will have been sent out on the bus . 

The Associa tive Memories (in the present version) can be clocked at 
about 20 MHz, so that an event with 20 tracks (i.e. approximately 20 hits 
per detector plane) can be handled in a little more than a microsecond. 

The operation of the AM chips W&I simulated with a FORTRAN routine 
which modelled varous instrumental effects such as inefficiencies in track 
finding (about 16 %) and generation of spurious tracks (of the order of 2%) 
[12[. 
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4 Generation of Data 

Data were generated with the PYTHIA Monte Carlo Program [lOJ assuming 
a proton on proton collision. The interaction with the nucleus and conse­
quent particle production was treated in a special generation routine, added 
to the main p - p interaction routine [12J. Events were generated without 
heavy flavour production (background sample, only QeD minimum bias 
events), and with heavy flavours (signal sample, only bb events). The in­
coming beam energy was 450 GeV and a 1 mIn copper target was asswned 
(figure I) . 

The detector consisted of 10 planes of silicon mic:rostrip telescope, each 
plane 300 ~m thick and 5 by 5 em square, the first plane at 4 em from the 
target, the last plane at 13 em. There were 4 planes with X·oriented strips, 
4 with Y·oriented strips, 1 U and 1 V stereo planes. In the present work, 
the X and Y patterns were treated separately, and the Itereo pl&nes were 
not used. 

Tracks were straight in the detector region (no magnetic field). The 
particles were traced in the detector using the GEANT code Ill]: all the 
possible secondary decays, interaction with the detector, gamma conver· 
sions, delta rays etc. were "switched on" in the simulation. The operation 
of the silicon detectors allowed for charge spread onto strips neighboring the 
hit strip. To reduce the number of bits entering the Associative Memories, a 
barycenter algorithm waa applied. Such an algorithm, to achieve a higher ac­
curacy, c&n output strip coordinates which correspond to non-integral strip 
numbers. This effectively doubled the number of possible strip addresses to 
consider per plane, thus quadrupling the number of patterns which must be 
considered for the track finding. The algorithm is applied to purely digital 
information (no pulse height was used). In the present work it was part of 
the FORTRAN Associative Memory simulation, but it can be implemented 
in real time in a real experiment using only simple electronics. 

5 Training the Network 

The neural network waa implemented in the ETANN VLSI chip[3]. The 
use of this chip for detector pattern recognition tuks has been described 
previowly 113J [14J. Since the methods of emulating, training and testing 
the chip for this test are similar, we will only briefiy review the steps here 
and refer the reader to those works for more details. 
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A single ETANN can implement a network with up to 64 inputs, 64 
hidden units and 64 outputs. Here the inputs to the network are the D and 
<I values for each track in both planes. The 64 inputs were divided into 4 
sections of 16 inputs each. The first 16 inputs were used for the D values 
of up to 16 tracks in the xz plane. The second 16 inputs were for the ~ 
values for those tracks. Similarly, the third and fourth r.ections were used 
for the D and t values of up to 16 tracks in the yz plane. (The tracks in the 
two planes are not correlated by the associative memory so the number of 
tracks found in the two layers can be different due to different solid angles, 
efficiencies, etc.) The D and t values were normalized to a · 1 to 1 scale 
for the software emulation, corresponding to O.Ov to 3.0v for the actual. chip 
inputs. 

The network had 64 hidden units and 8 output units. The first four 
outputs should each be equal to 1 for background events, · l for signal events. 
Similarly, outputs 5·8 should be complementary to the first four .outputs: 
·1 for background and 1 for signal. In an experimental setup, each of the 
four outputs could be fed into a summing junction to obtain a single output 
value. Although each output in a set of four is trained to the same target 
value, there can be slight variatioDJ in the outputs due to variations in 
the performance of the analog componenh. As described in reference [14], 
summing of multiple outputs can average out some of these variations. 

With the event generation and detector simulation described in section 
4, there were 2500 background (BG) events produced and 500 signal (SIG) 
events. To increase the statistics, both samples were doubled taking these 
events and reversing the D and t values in the xz plane. This is allowed by 
the symmetry of the problem. The data was divided into 4000 BG events + 
800 SIG events for training, and 1000 BG evenh + 200 SIG events for testing. 
The signal events were distributed uniformly throughout the samples. 

The Intel iNNTS PC· based system [15] controls the basic communication 
functions between the PC and the chip via an extender board connected by 
a cable to an external trainer box. In addition, an ETANN simulation 
program. [161 was wed for both the software training and, in combination 
with the iNNTS software, the chip·in· the-Ioop training. With this sytem a 
table of input values ver • .., neuron output wu obtained directly from one of 
the chip neurons and wed in the software for the Deuton transfer function. 
The ETANN transfer functions are not exact ligmoid functionl as normally 
used in neural network. simulatioru 10 it il important to Ule the hardware 
function in the simulation. (see reference [141 for a dilcussion of the ETANN 
transfer function.) The ETANN weights are limited to ±2.5j thil restriction 
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was also held in software. 
The training in software was done in two steps. First, the net was trained 

on only events having between 3 and 8 tracks in each plane. Second, after the 
network performance for this subset was deemed satisfactory, it was trained 
on the full sample. There were about 1 million training back-propagation 
iterations for each step. 

After the software training, the weights &om the simulated network were 
downloaded into the chip. Because of imperfections in such an analog sys­
tem, the chip will not immediately perform exactly as the simulation. To 
reach suitable performance levels, it is necessary to do chip-in-the-loop train­
ing as well. Patterns are presented to the chlp and outputs compared to the 
target values. In software, the necessary weight adjustments are calculated 
and then downloaded to the chip. Starting from a net downloaded from 
a simulation greatly reduces the time needed for the chip to train as com­
pared to starting from random weights. For this case the chip approached 
simulation performance levels after about 12000 iterations. 

6 Results 

After training, both software and hardware networks were tested using a 
data set independent of the training set. The efficiency for correct identifi­
cation of the target patterns is measured with a .drict and a limited criteria. 
The strict criteria demands that both the BG outputs and the SIG out­
puts agree with the target. That is, the event is declared background if the 
BG outputs are > 0.0 and the SIG outputs are < 0.0, vice versa for signal 
events. If both output sections are above or below zero, then the result is 
labeled ambiguous. The limited criteria only looks at the SIG outputs . If 
the swnmed output is above some cut, then the event is labeled a signal 
event. If the output is below the cut then the event is labeled a background 
event. 

Table 1 .hows the .oftware and chlp network performance on the test 
data wing the strict criteria. The simulation and the chip perform fairly 
c!o.ely, although the .imulation does somewhat better than the chip for 
signal identification. 

Figure 4 show. result for the chip and the simulation according to the 
limited criteria for correct identification as a function of the cut on the 
output. For a tight cut on the output, the efficiency is about 99% for back­
ground identification and about 30% for .ignal. A loose cut on the output 
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Strict Cut Results 
Simulation Good Sad Ambiguous 
Signal 57.0% 37.0% 6.0% 
Background 91.8% 6.4% 1.8% 
ETANN Good Sad Ambiguous 
Signal 47.5% 47.5% 5.0% 
Background 91.7% 6.4% 1.9% 

Table 1: Percentages of signal and background events which are identified 
correctly (Good), incorrectly (Bad) or which are ambiguous, for neural net 
executed in software (Simulation) and hardware (ETANN). 

gives about 90% background and 50% signal efficiency. The simulation and 
the chip are in rough agreement for the background cuts but the software 
does better on the signal acceptance by about 10%. 

7 VME Interface Board 

With its large number of neurons and synapses and its fast processing, the 
ETANN was judged the only suitable chip now available for this applicationj 
however, there is the complication of having digital signals from the asso­
ciative memory as inputs to the analog chip. A VME board has been built 
which can be used to interface the ETANN to a variety of environments. The 
board can accept either analog signals, received directly through front panel 
inputs, or digital signals, which are used to set DAC's (one DAC per input 
signal) connected to the ETANN inputs. The analog outputs of the ETANN 
are also available on the front panel, either directly or after summing and 
discrimination, or they can be digitized by the fast ADC's provided for all 
64 outputs. The DAC's have a 4 Ils settling time and the ADC's a 5 III 
digitisation time. These overheads increase the total processing time. 

The board was built with an ELTEC SAC· 711 VME card [17J . which 
employes a 68010 CPU, 2 MB of dual-ported memory, I/ O-channels, etc., 
as well as a prototyping section connected to a proprietary bus. This card 
was previously used for a purely analog input implementation [14J. A block 
diagram of the present solution is shown in fig. 5 and a photograph of the 
VME module is shown in fig.6 . A detailed description of this VME-board, 
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as well as its performace will be given in ref. 118J. 
Software was developed in assembler and downloaded to the 68070 / 80170 

VME card in S-format . This code is used to set the ETANN output gain 
voltage and the reference voltages to the values used during the CIL training. 
It will then wait for a Hag in the common SRAM, set a busy flag and read 
64 bytes from the SRAM into the ETANN inputs. Controlling the ETANN 
time-sequences , the code will then read the ETANN outputs and copy them, 
following the digitization by the AD7228 ADC chips [19J, to the SRAM. 

To test the functionality of the 68070 / 80170 VME-module, C code was 
developed in a VME-based PC/ AT residing in slot 1 of the crate. This code 
can present patterns to the chip and display the desired and actual outputs 
on the screen. ~ 

A chip i. ful!t trained and~mted_:with the iNNT-5 Iytem, thep. inItalle:d ' 
in the VME board (which has no w~ght .etting capabilitie.) and u.,d in the 
feed-forward mode. With the above C code, te.t patterns can be Pfuented 
to the chip to measure its performance. It i. important that the control 
voltages be the same within a few tens ormV to the values in the trainer . 
Following this procedure we obtained performance for the chip in the VME 
board similar to those in the trainer. 

8 Conclusions and Discussion 

We have shown that an analog VLSI neural network can be trained to sepa­
rate events with secondary vertices from background events with good effi­
ciency, using as input a list of the impact parameters and angles of the tracks 
as determined by an associative memory technique. The best background 
rejection was obtained by, using the limited cut procedure, i.e., simply re­
quiring the 'signal' output units 'to be above a' threshold.: The performance 
obtained, 99% back~un.~!ej!!=ti~ 30% signal efficlibcy,-il (ompueble t'8 
that obtained by Mal heavy ftavour uperimenh in~ ' _h_ ofIine· analyses, 
and would provide a high enrichment of the data with heavy quuk events 
if IUch a IYltem were implemented in the trigger. 

Although the allociative memory pro ceiling was done in a simulation, 
the total procelling time through the entire system, including associative 
memoriel, lettling of input DAC's, and processing by the ETANN should 
be no more than several microseconds, This il adequate for many triggering 
application. (faster analog processing times with other chips may be possi­
ble [20]). Although the chip is analog and the input! from the associative 
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memory are digital, we have shown that a compact VME board with the re­
quired D-A and A-D conversions can be built that performs to the necessary 
processing accuracy and speed. 
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Figure 1. NAn experiment layout. See section 2 for a description. 

Figure 2. Operation of the Associative Memories. See section 3. 

Figure 3. Two signal and two background events in D-Phl space, and net 
the hlstogram representation of an event as input to the ·ETANN. 

Figure 4. Identification efficiency versus cut on the output (fraction of out­
put full scale.) 

Figure 5. Block diagram of the hardware implementation on a VME pro­
totyping card. The main structure is built around the local bus with the 
dual-ported SRAM as an essential part. A,D and C stands for address, data 
and control, respectively and DEC refers to decoding. Signals correspond­
ing to 'signal' and 'background' are available following the discriminators 
(DISCR). 

Figure 6. Photograph of the VME module sketched in fig . 5. Eight 8-
fold DAC's are mounted below the ETANN piggy-back card. 
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Figure 6. Photograph of the VME module sketched in fig. 5. Eight 8· 
fold DAC's are mounted below the ETANN piggy-back card. 


