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ABSTRACT Modern renewable power operations can be enhanced by integrating deep neural networks,
particularly for forecasting solar irradiance. Recent advancements in quantum computing have shown
potential improvements in classical deep neural networks. However, current challenges with quantum
hardware, such as susceptibility to noise and decoherence, pose risks to its practicality. Hybrid quantum
neural networks (HQNNs) are found to mitigate these issues, especially when integrated with graphics
processing unit (GPU)-based pipelines. This paper presents a comparative study of different software
platforms for developing HQNNs, using multi-location very short-term solar irradiance forecasting as an
example. A classical benchmark model is initially designed based on statistical analysis of a 10-minute
resolution solar irradiance dataset, with its parameters further optimized using Bayesian Optimization.
The experimental design of this paper includes a loss comparison between classical neural networks and
HQNNs across different seasons and a performance comparison between Pennylane, Torchquantum, and
CUDA Quantum (CUDA-Q) as HQNN development platforms. Experimental results show that HQNNs
achieve up to a 92.30% improvement in testing loss compared to classical neural networks. Regarding
HQNN development platforms, Pennylane shows an 81.54% testing loss reduction from classical models,
Torchquantum shows a 90.34% improvement, and CUDA-Q shows a 92.30% improvement in testing
loss. Implementing hardware acceleration libraries for GPU-based state vector simulation demonstrates an
approximate 275% speedup in average latency per epoch, a 218% speedup in inference time, and a 10.20%
improvement in testing loss compared to CPU-based simulations. CUDA-Q achieves a training time 2.7 times
shorter and an inference time 2.9 times shorter compared to Pennylane, while it is 32.3 times faster in training
and 31 times faster in inference compared to Torchquantum.

INDEX TERMS Hybrid quantum neural network, solar irradiance forecasting, CUDA-Q, Pennylane,
Torchquantum.

NOMENCLATURE
Rz,Rx ,Ry Rotation gates along the ẑ, x̂, ŷ axes.
ω, θ Weights of a classical and quantum layer,

respectively.
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φ Classical data to be quantum encoded.
U (φ, θ) A quantum neural network represented

as a Unitary.
B̂z An observable in the z-basis.
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´
q Expectation of a quantum layer.
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A transformation considering a quan-
tum. layer and an observable.
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∇q, ∇c Gradient of a quantum and classical
layer, respectively.

x, y Input and output vectors for a neural
network model.

b The batch size of an input vector.
3 Number of locations in an input vector.
8 Number of features in an input vector.
T Planning horizon period in an input

vector.
Tseason Total time in a season.
X ,Ygt Dataset used for training given the

features and ground truths, respectively.
z Activation of each classical neural net-

work layer.
κ Number of variables for a combination

of parameters.
h A convolution kernel.
l, 1l Lag and lag increment.
k1, k2 Number of kernels of convolution lay-

ers.
c Number of channels of convolution

layers.
u Number of neurons of a dense layer.
p, p1 Configuration sample of parameters of a

model.
p˚ Optimal parameter configuration.
P Search space of all combinations of

parameters for a model.
P Set of feasible configurations with cor-

responding model loss.
ε Threshold constant for the stopping

criterion.
σ Gaussian noise standard deviation.
fz, fs Zeromeasurement and spikingmeasure-

ment frequency.
s Model sensitivity.
r() A rectified linear unit (ReLU) function.
F() A flatten function.
a() Acquisition function of the Bayesian

Optimization Algorithm.
s() Stopping criteria function of the

Bayesian Optimization Algorithm.
m() The objective function pertaining to the

hybrid quantum model.
URyxz pφq Unitary for encoding classical data.
URxyz pθq Trainable parametric quantum circuit.
X̂ A CNOT gate.
Uc Unitary representing circular entangle-

ment.
Uq(θ ) Unitary for a single parametric quantum

neural network block.

I. INTRODUCTION
The operation of power generation from renewable energy
sources is essential for modern power systems. However,

it presents a challenge for power grid operators due to
the inherent uncertainty of sources such as wind and
solar energy [1]. Modern energy research employs artificial
intelligence, specifically deep learning models, to profile and
predict renewable power generation with a higher level of
certainty [2], [3], [4], [5].

A recent trend in employing deep learning models for
predicting renewable energy generation involves quantum
computing [6], [7], [8], [9], [10]. Quantum computing is
an emerging technology that leverages concepts such as
quantum bits or ‘‘qubits,’’ superposition, and entanglement
to represent and process information [11], [12], [13]. These
concepts are not inherent in existing computing paradigms,
referred to as ‘‘classical.’’ Recent developments in quantum
computing have demonstrated its applicability to machine
learning tasks, including classification [14], [15], [16] and
regression [17], [18], [19]. However, quantum computing in
industrial practice faces challenges due to current quantum
hardware limitations, such as the limited number of qubits
available. This limitation can result in insufficient data for
mitigating errors in reading out information from qubits [20],
[21], and it may not be suitable for handling high-dimensional
data or the weights within a neural network [22], [23].
A new paradigm in machine learning and quantum

computing has been introduced to address the challenge
of insufficient qubits for neural networks: hybrid quan-
tum neural networks (HQNNs). HQNNs are variants of
variational quantum circuits in which central processing
units (CPUs) or graphics processing units (GPUs) are used
to optimize quantum circuits alongside classical neural
networks. In recent years, efforts have been made to employ
HQNNs for renewable energy prediction. For instance, wind
energy prediction using quantum neural networks (QNNs)
has been explored by several researchers [7], [8], while solar
irradiance forecasting has been achieved by [6], [9], and [24].
The training and deployment of large neural networks often

involve high-performance computing (HPC) setups and typ-
ically utilize hardware acceleration libraries such as CUDA.
A similar trend is observed for HQNNs, where training these
models can benefit from the same hardware acceleration
used for classical neural networks. As HQNNs mature and
gain traction in academia and industry, several libraries
and platforms have emerged to support their development.
Platforms such as Pennylane [29] are widely used across
various disciplines, including power engineering and renew-
able energy planning. When selecting libraries for HQNN
development, considerations include model performance,
ease of use, documentation and support, and applicability
for deployed systems with limited resources. Although
hybrid quantum deep learning approaches for renewable
energy forecasting already exist, this paper utilizes a deeper
parametric quantum circuit (PQC) than those in [6], [9],
and [24], resulting in improved regularization and reduced
testing loss for smaller classical neural network architectures.
Additionally, this paper explores various hybrid quantum
computing platforms beyond Pennylane, including CUDA
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Quantum (CUDA-Q) and Torchquantum, to demonstrate
their applicability in operationalizing quantum computing for
AI in energy operations and planning.

This paper presents a comparative analysis of Global
Horizon Irradiance (GHI) prediction using three existing
hybrid quantum deep learning platforms, focusing on HPC
and cost-effective GPU workstations. The contributions of
this paper include:

‚ This paper proposes a statistics-driven architec-
ture design for classical neural networks, specifi-
cally tailored for northwestern Taiwan, considering
cross-sectional and solar GHI time-series characteristics
of the data. By utilizing a Bayesian Optimization
Algorithm, the parameters of the classical neural
network are optimized to minimize validation loss.

‚ This paper presents a performance analysis comparing
classical and HQNNs using a multi-location very short-
term solar irradiance forecasting model across multiple
deep learning platforms.

‚ This paper presents a comparative analysis of different
HQNN development platforms, considering their loss
and timing performances. This analysis aims to deter-
mine the advantages and disadvantages of using specific
platforms for the development HQNNs.

The paper is structured as follows: Section II discusses
an overview of the related works. Section III discusses the
basic concepts of quantum computing and information repre-
sentation, neural networks, and different implications in the
industry. Section IV introduces three hybrid quantum deep
learning platforms and provides a comparison. Section V
outlines the methodology adopted in this study, including the
model architectures and parameter optimization. Section VI
presents the experimental results. Finally, Section VII
concludes the paper and discusses future works.

II. RELATED WORKS
Solar irradiance forecasting is crucial for optimizing renew-
able energy utilization. Numerous methods have been
employed to enhance the accuracy of solar irradiance
forecasting models. Early time-series forecasting approaches
include statistical models such as ARIMA, SARIMA, and
ARIMAX, which rely on autoregressive and moving average
statistics [25], [26]. While these models are effective for
small datasets, they become less accurate when applied to
larger datasets with longer time horizons, spanning decades,
or high-resolution data with minute, second, or millisecond
sampling rates, where they fail to generalize effectively over
extended planning periods.

A. CLASSICAL DEEP LEARNING APPROACHES
Recent advances in solar irradiance forecasting leverage
deep learning techniques, including multi-layer artificial
neural networks (ANNs), convolutional neural networks
(CNNs), and recurrent networks such as long short-term
memory (LSTM) networks [4], [27]. Many contemporary
deep learning-based solar irradiance forecasters use hybrid or

ensemble models. A common approach combines CNNs and
LSTMs, where CNN layers extract high-dimensional spatial
features and LSTM networks capture temporal dynamics [2],
[28]. However, LSTM-based models can suffer from the
vanishing gradient problem, especially in deeper structures or
with longer memory sequences. This issue is often addressed
using attention mechanisms, as seen in attention-based
models like transformers. Sharda et al. [29] employed
a self-attention model for multi-horizon solar irradiance
forecasting using the National Renewable Energy Laboratory
(NREL) benchmark dataset, which improved learning over
intermittency and provided more robust predictions. Sim-
ilarly, Zhang et al. [30] enhanced the robustness of solar
irradiance forecasters against incomplete data with a hybrid
transformer network.

B. HYBRID QUANTUM DEEP LEARNING APPROACHES
Quantum computing has the potential to enhance machine
learning and deep learning models for specific problems.
Emmanoulopoulos and Dimoska [31] demonstrated that
time-series forecasting can be improved by incorporating
quantum computing-based layers into neural networks. These
approaches modify existing deep learning architectures by
adding or substituting quantum computing layers. Evidence
of quantum computing’s application in renewable energy
forecasting is already apparent. For instance, hybridized neu-
ral networks for wind energy forecasting have utilized varia-
tional quantum eigensolvers (VQEs) combined with LSTM
architectures [7], [8], with Pennylane and the lightning-
qubit configuration [32]. Solar irradiance forecasting has also
benefited from hybrid quantum neural networks (HQNNs),
as seen in [6], where a variational quantum circuit (VQC) was
integrated into an LSTM gate rather than as a neural network
header. Sagingalieva et al. [9] introduced several hybrid
quantum architectures, including HQNNs, hybrid quantum
LSTMs (HQLSTMs), and hybrid quantum sequence-to-
sequence (HQSeq2Seq) networks, showing that HQLSTMs
outperform other models in accuracy and model loss when
using Mediterranean PV data [33]. Similarly, Sushmit and
Mahbubul [24] developed a variant of HQNNs by incor-
porating feed-forward ANNs with quantum neural network
(QNN) layers, which demonstrated promising results in solar
irradiance forecasting compared to bidirectional LSTMs.
Like their counterparts in wind speed forecasting, the studies
in [9] and [24] employed Pennylane for developing their
hybrid quantum models.

This paper presents an approach for forecasting solar
irradiance using HQNNs applied to the Taoyuan Region of
Taiwan. Taiwan’s distinct four seasons, each with significant
variations in means and standard deviations, necessitate
different architectural adaptations to effectively capture
localized seasonal trends. The study will also incorporate
robust tests similar to those in [29] and [30] to evaluate
HQNNs’ performance under noisy and extreme conditions.
Additionally, it reviews various platforms for developing
HQNNs, with a focus on ensuringGPU acceleration across all
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TABLE 1. Gap analysis of related works in solar irradiance forecasting using hybrid quantum neural networks.

HQNN layers—an aspect not commonly addressed in prior
literature, where lightning-qubit configurations typically rely
on CPU-based forward and backward propagation. A gap
analysis comparing the works in [6], [9], and [24] with
the proposed method for solar irradiance forecasting using
HQNNs is provided in Table 1.

III. QUANTUM COMPUTING AND QUANTUM MACHINE
LEARNING CONCEPTS
A. QUANTUM INFORMATION AND COMPUTING
In quantum computing, information processing occurs
through encoding available data onto quantum bits or qubits.
Qubits are mathematically represented as vectors and carry
this information within a quantum computer. The advantage
of having qubits over classical bits is that they can enjoy
quantum properties such as superposition and entanglement.

Qubits can exist in a superposition of states, enabling
them to represent more information than classical bits. While
classical bits can only hold a value of 0 or 1 at any given
time, based on their energy potential, qubits can represent
both values simultaneously in a superposition. The energy
potential of a qubit is linked to its amplitude, and the
probability of measuring a particular state of the qubit is given
by the squared root of the amplitude. According to Born’s
rule, the sum of all measurement probabilities must equal 1.
For example, if a qubit has an amplitude of 1{

?
2 for both |0y

and |1y, the probabilities of measuring |0y and |1y are both
50%, as illustrated in Fig. 1.

Multiple bits combine to form a binary word, which is
organized into a register. Similarly, multiple qubits can form
a quantum register. The size of a classical register is directly
equivalent to the number of bits it contains; thus, a classical
register of size n has n classical bits. In contrast, a quantum
register, consisting of n qubits, can represent 2n different
states simultaneously due to superposition. Therefore, the
size of a quantum register is 2n, reflecting its ability to
encode a vast amount of information compared to its classical
counterpart.

Operations on qubits are performed using specialized
functions known as quantum gates, represented by Hermitian
matrices. These quantum gates act as linear operators tailored

for manipulating prepared qubits. These quantum gates can
be put into an ensemble of operations to form a quantum.
A special type of quantum gate that is parametric is called a
Rotation Gates where specific phases can be input to induce
vector rotations about either in the x̂, ŷ, or ẑ-axis, as seen in
Fig. 2.

FIGURE 1. Classical and quantum information representation.

FIGURE 2. Representations of the rotation gates Rx, Ry, and Rz.

B. QUANTUM NEURAL NETWORKS
When different rotation gates, such as Rz, Ry, Rx , or generic
Unitary gates, are compounded in a quantum circuit and
may form a Parametric Quantum Circuit (PQC) [34]. PQCs
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may be used as variational quantum circuits so that the
angles in each rotation gate can be fine-tuned to modify the
measurement of a quantum circuit. This idea led to using
PQCs as an analog to a multilayer Perceptron, which can then
be called a Quantum Neural Network (QNN).

1) QNN ARCHITECTURE
As depicted in Fig. 3, a basic QNN consists of three main
components: an encoder, an ansatz, and a measurement
part. The encoder transforms classical inputs or activa-
tions from previous neural network layers into a format
understandable by a quantum circuit. Various methods for
encoding classical data onto a QNN include Angle or Phase
Embedding, Amplitude Embedding, Instantaneous Quantum
Polynomial (IQP) Embeddings, and other custom embedding
circuits.

The next component of the QNN is the parametric ansatz.
The ansatz adjusts parameters to transform the input into the
desired output. These parameters, serving as the weights
of the QNN within the deep learning model, typically
require rotation gates or unitary gates to receive updatable
parameters. In cases where QNN outputs exceed one qubit
(for binary classification), entanglement between qubits is
applied after the rotation gates. Entanglement layers enforce
weight-tying between rotation gates, akin to weight-tying of
neurons in classical neural networks.

The final component of the QNN is the measurement layer,
where measurement gates are applied to observe the quantum
circuit, usually in the Z-basis. Measuring the quantum circuit
enables the transfer of processed quantum information from
qubits to classical bits.

FIGURE 3. Simplified quantum circuit for a single trainable quantum
neural network layer.

2) PARAMETER SHIFT RULE
Another consideration in designing and implementing
HQNNs is coordinating the weight update routine of each
layer. Computing the gradient of a classical layer with a
quantum layer cannot be done in the same fashion as classical
neural networks. Weight updates in the quantum layer use the
Parameter Shift Rule [35] to compute its gradient instead. The
expectation of the quantum layerEq is computed with respect
to the weights of the previous layer ω and the parametric

phases of the layer θ as seen in (1).

Eq pω; θq “ xω| Jθ
´

B̂z
¯

|ωy “ xω|U† pθq B̂zU pθq |ωy (1)

A gradient depends on the measurement of the quantum
layer U pθq with a corresponding observable B̂z wherein the
z-basis is used in this paper. A shift factor is needed to apply
the parameter shift rule to compute the gradient for a quantum
layer. In this implementation, the shift factor is supposed to
be π

2 . The parameter-shift rule-based gradient is presented
in (2), where∇q represents the gradient of the quantum neural
network. This gradient is computed as the difference of half
of each expectation, with angles shifted by a factor of ˘π /2.
Finally, if the QNN is preceded by a classical neural network
layer, the quantum gradient is computed with the gradient of
the preceding layer, as seen in (3).

∇q pω; θq “
1
2

¨

˝

A

ω

ˇ

ˇ

ˇ
Jθ` π

2

´

B̂z
¯
ˇ

ˇ

ˇ
ω

E

´
A

ω

ˇ

ˇ

ˇ
Jθ´ π

2

´

B̂z
¯
ˇ

ˇ

ˇ
ω

E

˛

‚ (2)

∇q pω; θq “
1
2

´

E`
q ´ E´

q

¯

∇c (3)

C. INDUSTRIAL APPLICATION CHALLENGES OF
QUANTUM DEEP LEARNING
Although recent years have demonstrated proof-of-concept
for the technical applicability of quantum computing, the
adoption of quantum deep learning in industrial settings still
faces several challenges

1) SCALABILITY
The effectiveness of deep learning models in feature extrac-
tion is closely linked to the depth and dimensionality of their
architectures. While quantum computing offers substantial
technical advantages, the current limitation in the number
of available qubits prevents the creation of purely quantum
counterparts to existing state-of-the-art models. To address
this, the current approach involves combining classical neural
networks with a limited number of quantum neural network
layers that can be represented by the available qubits. This
integration results in HQNNs, leveraging the strengths of
both classical and quantum systems for enhanced feature
extraction and information representation.

2) AVAILABILITY
Currently, most resources for running quantum circuits are
accessible only through cloud platforms, which can hinder
the development and validation of quantum circuits and
HQNNs. The absence of local execution capabilities may
delay progress in engineering these systems. To address
this, simulations can be run on local computers using
central processing units (CPUs), but this approach presents
challenges for neural network training, as best practices
recommend using graphics processing units (GPUs). Train-
ing bottlenecks arise when feature vectors processed by
multiple GPUs are retrieved and handled by a single CPU,
affecting both feed-forward and gradient-update operations.
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Recent advancements in quantum circuit simulation leverage
GPUs for quantum operations, as quantum information is
represented as vectors and matrices that GPUs can efficiently
process. This paper demonstrates the use of GPU resources
for both classical and quantum layers in training an HQNN
model, showcasing the benefits of GPU acceleration in this
context.

3) DEPLOYMENT
AI’s widespread adoption across various industries is driven
by its versatility in deployment across different platforms,
including embedded systems, mobile phones, and the cloud.
Another key factor contributing to AI’s success in intelligent
systems is its operational speed. While quantum circuits can
be accessed through cloud services, deploying them as saved
models may require additional effort. The operational speed
of quantum circuits is largely dependent on the quality of the
hardware on which they are executed.

4) ENVIRONMENTAL AND ETHICAL IMPLICATIONS
Although quantum computing is still in its early stages,
its potential implications should be proactively considered
to avoid regulatory issues and mishandling, similar to
concerns associated with AI. One significant challenge
facing quantum computing, particularly superconducting
qubits, is high electricity consumption, which hampers
the scalability of these systems. To address this, research
is underway into alternatives such as neutral atom and
photonic-based quantum systems, which promise reduced
electricity consumption and a smaller carbon footprint.
Quantum computing holds the potential for substantial
advancements in various fields within computer science
and engineering, potentially leading to the hyper-automation
of processes. While hyper-automation can offer significant
business benefits, it is crucial to establish regulations to
ensure that safety-critical processes and the handling of
personal and private information remain secure and well-
regulated.

IV. HYBRID QUANTUM DEEP LEARNING DEVELOPMENT
WORKFLOW
Designing HQNNs closely resembles designing and devel-
oping classical neural networks. Fig. 4 illustrates a generic
HQNN development workflow, considering the diverse usage
of CPUs and GPUs for data handling, model development,
and quantum circuit simulation tasks. Hybrid quantum
development platforms commonly used are also introduced
in this section, including their simulation capabilities on GPU
hardware and their compatibility with hardware accelerators.

A. HQNN DESIGN AND DEVELOPMENT
Data preparation tasks such as data wrangling, cleaning,
statistical analysis, aggregation, and splicing are typically
accomplished using CPU-based computing. The design of
HQNNs involves both classical deep neural network model
architecture programming and quantum circuit encoding as

quantum neural network layers. The development of classical
and quantum layers can be determined by whether they
can be loaded onto the GPU for access to GPU-based
acceleration. The architecture model and prepared dataset
may also be loaded to the GPU to prepare for optimization.
Optimization of HQNNs is variational since it would involve
an external optimization algorithm to tune the weights of
a quantum layer. Feedforward and backward propagation
consider both classical and quantum layers as part of the
total loss of the HQNN model. Operations on the classical
layers can improve performance using specific hardware
acceleration libraries such as cuDNN [36], and quantum
simulations would benefit from cuQuantum [37]. However,
backpropagation considering the quantum layer would use
the parameter shift rule to compute its gradient.

B. DEVELOPMENT PLATFORMS
The implementation and development of hybrid quantum
deep learning models require specialized software. In recent
years, Python has become one of the preferred programming
languages for implementing quantum computing, aside from
C`` and Rust [38]. Software packages such as Qiskit [39],
Cirq [40], and Q# [41] are also popular among quantum
machine learning practitioners and researchers. While Qiskit
has been widely utilized in quantum machine learning
research and TensorFlow Quantum [42] in production
settings, this paper focuses on libraries or platforms tailored
for hybrid quantum deep learning. These platforms are
designed to leverage GPU acceleration and are compatible
with similar classical deep learning backends. Furthermore,
this subsection discusses three platforms: Pennylane, CUDA
Quantum, and Torchquantum. A high-level comparison is
presented in Table 2.

1) PENNYLANE
Pennylane [29] is a Python-based platform developed by
Xanadu, Inc., focusing on variational quantum circuits. The
platform adopts an object-oriented Pythonic approach to
building and training quantum circuits. With Pennylane,
quantum devices can be configured to run on a local device’s
CPU, GPU, or even on an external quantum computer.

Several initiatives in hybrid quantum computing for renew-
able energy forecasting [7], [8] have predominantly utilized
Pennylane due to its compatibility with other deep learning
platforms like Keras and PyTorch. This cross-compatibility
facilitates easy integration with existing neural networks,
enabling the addition or modification of classical layers as
QNNs.

In Pennylane, GPU acceleration is achieved through
the ‘lightning-gpu’ device configuration, which leverages
cuQuantum, specifically cuStateVec within cuQuantum.
Developed by NVIDIA, Inc., cuQuantum is a compre-
hensive software development kit (SDK) comprising low-
level primitives, including cuStateVec and cuTensorNet.
cuStateVec focuses on state vector simulation of quantum
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FIGURE 4. A generic GPU-based workflow for Hybrid Quantum Neural Network development.

TABLE 2. Summarized high-level comparison of Pennylane, Torchquantum and CUDA-Q.

circuits, offering significant speedup and efficient memory
usage. Conversely, cuTensorNet accelerates tensor-network-
based simulations, representing quantum circuits as tensor
networks. Pennylane with cuQuantum acceleration demon-
strates a notable speed advantage over the ‘lightning-qubit’
configuration for operations requiring a large number of
qubits.

2) CUDA QUANTUM
CUDA Quantum [43], or CUDA-Q for short, is an open-
source quantum computing programming platform launched
by NVIDIA, Inc. The platform focuses on interoperability
with existing quantum hardware, GPUs, and CPUs in a
single system. The CUDA-Q toolkit offers C`` and Python
versions for tightly coupled hybrid quantum-classical system
developments. Since CUDA-Q is relatively new, specific
methods or sub-packages dedicated to HQNNs have yet to
be developed. However, as of this writing, the open-source
software and official documentation provide examples of
HQNN training. One advantage of the platform is the ability
to parallelize quantum workstreams across multiple GPUs,
HPC nodes, or multiple available quantum processing units
(QPUs).

3) TORCHQUANTUM
In 2022,Wang et al. fromMIT developed Torchquantum [44],
a library specifically designed for the Torch deep learn-
ing platform to facilitate the implementation of HQNNs
within Torch architectures. This library leverages CUDA

acceleration, which is the native accelerator for PyTorch
deep learning pipelines. While it is possible to convert
and accelerate quantum circuits using cuQuantum, this
functionality has not yet been integrated as a built-in feature
within the package.

V. METHODOLOGY
Comparing different HQNNs necessitates a standard com-
parison between classical neural network architectures and
hybrid quantum neural network architectures. This paper
presents a study for solar irradiance prediction to illustrate
these comparisons in the context of renewable energy
operations.

A. DATASET PREPARATION
Classical and hybrid quantum models would use a solar irra-
diance dataset from the National Solar Radiation Database
(NSRDB) [45] provided by NREL. The dataset contains
spatial and temporal features and locations in available
meteorological data points of the United States and a subset
of international locations. Multiple features such as Global
Horizon Irradiance (GHI), Diffused Horizontal Irradiance
(DHI), Diffused Normal Irradiance (DNI), wind speed, wind
direction, surface albedo, ambient temperature, precipitation,
solar zenith angle, cloud types as well as clear sky GHI, DHI,
and DHI are considered. The dataset consists of 2,893,968
samples collected at 10-minute intervals from 2016 to 2021,
spanning 11 locations across Taiwan (see Fig. 5). Data from
2021 is designated as the test set, while the remaining samples
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are used for training and validation. However, 10-minute
resolution data for the years 2022-2023 were unavailable in
the source database at the time of this study.

The input vector x for the neural network is prepared as
a three-dimensional vector so that multiple predictors may
be considered compactly. The input then has a shape of
p3,T, 8q wherein the symbol 3 represents the number of
locations; the shifted time sample T means a time horizon
of 60 minutes for different seasonal periods Tseason; and
8 denotes the number of multiple features. Supporting
statistics for identifying 8 and T are shown in the subsequent
subsections. The output vector y is a one-dimensional vector
(GHI) with a size of 6 (i.e., 1 hour-ahead; 6 ˆ 10 minutes),
as illustrated in Fig. 5.

FIGURE 5. Characterization of the solar irradiance forecasting model’s
input/output vector.

B. STATISTICS-DRIVEN ARCHITECTURE DESIGN FOR
LOCALIZED SOLAR IRRADIANCE FORECASTING
Developing a generic set of initial spatial and temporal
features is challenging due to the variability and locality of
meteorological data, which are influenced by a country’s cli-
mate, topology, and the presence of microclimates. This study
presents a localized analysis of northwestern Taiwan, focus-
ing on a GHI-centric statistical approach to inform the design
specifications of the initial classical deep learning model
architecture. The statistics-driven design includes correlation
analysis for cross-sectional features, time-series analysis
for temporal features, dimensionality reduction, and further
architecture optimization using Bayesian Optimization.

1) CORRELATION ANALYSIS
The features used for modeling the solar irradiance forecast-
ing model were initially filtered using statistical methods.
Cross-sectional analysis among the features was conducted
using Pearson correlation to identify linear relationships and
Spearman correlation to identify non-linear relationships.
As shown in Table 3, the correlation analyses reveal
that the features Surface Albedo, Latitude, and Longitude
have the least correlation with the target feature GHI.

Additionally, the selected locations (10 red dots in Fig. 5)
were subjected to correlation analysis to determine their
significance to the target location (Taoyuan City in Taiwan
(24˝59’29’’N, 121˝18’52’’E), orange dot in Fig. 5). The
Pearson and Spearman correlation statistics indicate that
all other locations have considerable correlation with the
target location. The photovoltaic (PV) capacity studied in
Taoyuan City, Taiwan, is 55.324MW, while the total installed
PV capacity across Taiwan is 13.517 GW, with a system
peak load of 41.42 GW in 2024. Accurate solar irradiance
forecasting is crucial, as PV power generation impacts the
scheduling of gas-turbine generators and pumped-storage
units, which are used to compensate for the intermittent
power generation from PV farms.

2) TIME-SERIES ANALYSIS
Individual features of the dataset are subjected to time-series
statistical analysis due to their temporal nature. The goal of
the time-series analysis is to (1) identify the ideal lag of
the GHI and (2) remove features and locations (red dots in
Fig. 5) that do not contribute to the target (Taoyuan City,
represented by the orange dot in Fig. 5) in the temporal aspect.
The samples are temporally divided by season, as Taiwan
experiences four distinct seasons: winter, spring, summer, and
autumn. Fig. 6 (a) illustrates the monthly GHI distribution,
while Fig. 6 (b) presents the seasonal distribution. The trends
show significant variability across the seasons, prompting
this study to propose four distinct forecasting models, each
tailored to a specific season.

a: GHI LAG
Autocorrelation and partial autocorrelation statistics indicate
that a lag (l) of 6 is most significant. Therefore, the value of t
in the input data is set to 6. Additional stationarity tests were
conducted on the target feature to assess its viability for time-
series prediction.

b: TEMPORAL FEATURE PRUNING
Granger causality tests were performed for each pair of fea-
tures and locations to determine their viability as time-series
predictors for the GHI of the target location. The results,
shown in Table 3, indicate that all features, except for Surface
Albedo, exhibit causality with respect to GHI. Consequently,
Surface Albedo is excluded, while all locations are retained
due to their demonstrated causality. Thus, the3 dimension of
the model input vector is set to 11, ensuring that all locations
are considered significant in relation to the target location.

The number of features to be used, 8, is set to 12. This
is because a total of three features were removed: longitude
and latitude were eliminated based on the cross-sectional
analysis, and Surface Albedo was removed based on the
Granger causality test.

3) DIMENSION REDUCTION
Principal Component Analysis (PCA) is a widely used
unsupervised machine learning technique for dimensionality
reduction. In this study, PCA was applied to the filtered
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TABLE 3. Correlation and Granger causality for feature analysis.

FIGURE 6. GHI distribution in Taiwan in (a) monthly resolution and in
(b) seasonal resolution.

features alongside traditional statistical analysis. Fig. 7
illustrates the relationship between the reduced feature
dimensions and their explained variance. Following Occam’s
razor, the optimal representation of the feature set is
achieved with approximately three components. A separate
dataset was prepared using 12 features and a 3-component
representation, which will be used to train the deep learning
models.

C. CLASSICAL CONVOLUTIONAL NEURAL NETWORK
(CNN)
The architecture of the baseline model for comparing
the HQNN is described in this section. A convolutional
neural network (CNN) is used as the feature extractor
because the input vector for the solar irradiance forecasting
model is a three-dimensional matrix with a batch size
of b.

FIGURE 7. Characterization of the solar irradiance forecasting model’s
input/output vector.

1) NEURAL NETWORK DESIGN
The classical neural network in Fig. 5 (a) is comprised of two
convolution layers implemented as (4) whereas zp

ℓq

Conv pc, kℓq

represents generic convolution layer in the ℓth order of a
neural network. It is noted that the input vector x has a lag
of l and an additional variable delay of 1l depending on the
season. The general lag l is the baseline lag for the entire
dataset. A variable lag1l is introduced as part of optimizable
parameters p to capture different periodicity within seasons.
The convolution operation, f, involves the input vector from
the previous layer and a kernel hℓ, which has a shape that
varies on dimensions kℓ and c. The output tensor of the
convolution is then subjected to a ReLU activation function
represented as r(). The convolutions are succeeded by a flatten
layer in (5) whereas F is a flattening function that transforms
zp
2q

Conv that has a shape of (H,W) into a one-dimension vector
of size H ˆ M. The flatted feature vector zflat is then inputted
to fully connected neural networks or dense layers as seen
in Fig. 8. The dense layers mathematically represented in (6)
and (7) are functions of a variable neuron count u. The shape
of the weight ω1 is defined by the shape of zflat , which is
denoted as sF and u. Finally, the output layer in (7) produces
the weight ω2 that has a shape of

`

u, sy
˘

, where sy is the
expected size of the prediction ŷ which is 6.

zp
1q

Conv p1l, c, k1q “ r
ˆ

x[l ´ 1l, n,m]f
h1 rn,ms

˙

h1 P R3ˆcˆk1

(4)

VOLUME 12, 2024 145087



Y.-Y. Hong et al.: Solar Irradiance Forecasting Using a Hybrid Quantum Neural Network

zp
2q

Conv pc, k2q “ r(zp
1q

Conv f h2 rn,ms) h2 P Rcˆ3ˆk2

zflat “ F
´

zp
2q

Conv

¯

(5)

z(1)Dense(u) “ r
`

zflat ¨ ω1
˘

ω1 P RsFˆu (6)

z(2)Dense(u) “ r
´

zp
1q

Dense puq ¨ ω2

¯

ω2 P Ruˆsy (7)

m(X ,Y gt , p) “ min

¨

˝

1
|X |

|X |
ÿ

i“0

´

ygti ´ yi
¯2

˛

‚ (8)

The learning rate was set to 1e-4, and a batch size of 1 was
used in the optimizer RMSProp during the training phase.
Since the characteristics of solar irradiance trends differ for
each season, four models were created to suit the forecasting
task for each season.

2) PARAMETER OPTIMIZATION
Selecting kernel sizes, feature channels for convolutional
layers, and the number of neurons for dense layers is a
common challenge in designing neural networks. Arbitrary
selection of these parameters for four different models may
introduce design flaws. Instead of arbitrary selection, this
paper employed parameter-search optimization using the
Bayesian Optimization (BayesOpt) algorithm to automate the
neural network design process.

The BayesOpt algorithm [40] is a machine-learning-
based optimization method used to search parameters or
configurations of a global model aimed at finding a global
optimum. It is typically represented as Algorithm 1.

Algorithm 1 Bayesian Optimization for Parameter Selection
Input: P,m
Output: p˚

Prepare p
P “ H

while s pp; Pq ě 0 do:
p1 Ð argmin

pPP
pa pp; Pqq

y Ð m
`

p1
˘

P Ð P Y
␣

(p1, y)
(

end while
p˚ Ð min

(p,y)PP
P pyq

The BayesOpt Algorithm takes in the classical model
function m which also serves as a fitness function and p P P
is the latent space for all possible parameter configurations
with a dimensionality of Rκ . Each parameter configuration
p consists of the four parameters 1l, k1, k2, c, and u which
then corresponds to κ . P is then feasible set within Rκ which
is initially an empty set before performing the optimization.

a
`

p1
; P

˘

“ E
“

minm(p1)|p1, P
‰

´ minm(p) (9)

s pp; Pq “ min
pPP

ra pp; Pq ´ εs (10)

Each iteration of the BayesOpt requires selecting a
parameter using an acquisition function a(). The acquisition

function selects a parameter as the difference from the
expectation from a conditional probability of the objective
and the minimum objective value m considering the current
configuration p. The conditional probability is represented
by the minimum objective value of m when a configuration
p1 is used, given the prior configurations p1 and P. The
optimization process is halted when the value of (9) drops
below 0. The stopping criterion in (10) identifies the
minimum difference between the value of the acquisition
function and a threshold ε. The resulting network parameters
and the convergence quality of the BayesOpt are reported in
Section VI.

D. HYBRID QUANTUM CNN (HQCNN) DESIGN
The classical neural network architectures configured by
the BayesOpt algorithm serve as templates for the hybrid
quantum neural network architecture, as illustrated in
Fig. 8 (b). Convolutional layers are retained as classical layers
to maintain the model’s performance for high-level feature
extraction. The output layer is converted from a classical
dense layer to a quantum layer, hence termed a quantum head.

This design is advantageous for assessing the impact of
a quantum layer in a hybrid quantum model because the
gradient of the quantum layer can be propagated to all
classical layers during backpropagation. However, this design
is limited by the number of qubits available in current
quantum hardware or simulators. The quantum head utilizes
only six qubits, as the output vector has a shape of (1, 6).
For models where the output vector cannot be represented
by the available number of qubits, a dressed quantum layer
is suggested. Design of the proposed hybrid quantum CNN
(HQCNN) is detailed as follows.

1) ENCODING LAYER
An encoding layer is necessary for the hybrid quantum
architecture presented since the input to the quantum layer
consists of the classical activations from a preceding classical
layer. An RYXZ encoding layer is chosen over Angle and
Phase encoding to ensure equal treatment and difficulty
for both Pennylane, CUDA Quantum and Torchquantum.
This choice is made because RYXZ encoding is not a
built-in function in either platform, thereby providing a fair
comparison.

URyxz pφq “

N´1
â

i“0
Ry pφiqRx pφN`iqRz pφ2N`iq (11)

A RYXZ encoding layer can be defined as a parametric
unitary URyxz in (11) that accepts classical data φ for N
number of qubits. The classical data φ should have a length of
3N to accommodate a depth of three rotation gates per qubit.

2) ENTANGLEMENT LAYERS
Similarly, to avoid any platform-based biases in forward
and backward propagation, the entanglement layer is imple-
mented without using built-in functions. The entanglement
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FIGURE 8. (a) General neural network architectures for both classical and hybrid quantum CNNs implementations and (b) the specific design for a
quantum neural network layer.

layers are followed by measurement gates in the Z-basis,
which observe the quantum information and convert it to
classical information.

URxyz pθq “

N´1
â

i“0
Rx pθiqRy pθN`iqRz pθ2N`iq (12)

Uc “

˜

N´1
ź

i“1

X̂i´1,i

¸

X̂i,0 (13)

Uq pθq “ URxyz pθqUc (14)

An entanglement layer is defined using a parametric
unitary as shown in (12) and an entanglement unitary as
shown in (13). The parametric unitary in (12) is similar to
the encoding layer in (11) in terms of arranging parameters
for the rotation gates. However, instead of classical data, this
unitary accepts the layer weights θ . The entanglement unitary
implements a circular entanglement where X̂qi,qj represents a
CNOT gate where qi is the control qubit index and qj is the
target qubit index.

3) GRADIENT COMPUTATION
A block of a quantum neural network can be represented
using (11) and (14). A quantum neural network can then be
represented as multiple sequential blocks as seen in (15) with
a sequence length R.

U pφ, θq “

R
ź

URxyz pφqUq pθq (15)

Jθ
´

B̂z
¯

“ U† pφ, θq B̂zU pφ, θq (16)

The expected value of a quantum neural network in (1)
is then revised as (16), considering the entire quantum
circuit block (15). It is also noted that a complex64 data
type is asserted during gradient computation. Models are
coded using the PyTorch Python package for Pennylane,
CUDA-Quantum and Torchquantum platforms. Pennylane
can readily compute gradients of quantum layers using vari-
ous methods, such as backpropagation and adjoint methods.

The parameter-shift rule is implemented in this paper’s hybrid
quantum model. Designing quantum-ready hybrid quantum
neural networks should consider their execution on quantum
resources. As of the writing of this paper, CUDA-Quantum
has built-in functionality for the parameter-shift rule in
their optimization routines, while Pennylane restricted the
use of the parameter-shift rule to non-trainable broadcasted
parameters [41]. Hence, a custom parameter-shift rule is
implemented to compute the gradient of the quantum layer.

VI. EXPERIMENTAL RESULTS
This section presents the comparative results for training and
testing classical CNN and HQCNNs for very short-term solar
GHI forecasting. The first part of the result discussion covers
the network architecture of the baseline classical neural
network, which is subjected to parameter optimization using
the Bayesian Optimization Algorithm. The second part of the
discussion involves a comparative analysis of the baseline
classical models with the hybrid quantum models and a
performance comparison of the hybrid quantum platforms for
a selected season.

A. NETWORK ARCHITECTURE PARAMETER
OPTIMIZATION
As discussed in Section V, parameter optimization is
conducted to automate the neural network design process by
searching for the values of the kernel sizes, channels, and
neuron counts that yield the lowest validation loss, expressed
in RMSE.

An initial comparison was conducted with Particle Swarm
Optimization (PSO) [46], a commonly used metaheuristic
for parameter and hyperparameter optimization. BayesOpt
optimized a classical CNN model in 32 minutes over
250 iterations, while PSO required approximately 10 hours.
BayesOpt achieved its best RMSE at 2.625%, while PSO
reached a slightly lower RMSE of 2.058%. Despite PSO’s
more optimal RMSE, BayesOpt was chosen for further

VOLUME 12, 2024 145089



Y.-Y. Hong et al.: Solar Irradiance Forecasting Using a Hybrid Quantum Neural Network

model optimization due to its significantly faster conver-
gence, reducing turnaround time in developing foundational
architectures for future hybrid quantum models.

The convergence graph for the models of each season is
depicted in Fig. 9. A maximum of 200 iterations was set
for parameter optimization of each model. Specifically, the
spring model converged at 110 iterations with a validation
loss of 1.97%, and the summer model converged after
171 iterations with a validation loss of 2.66%, the autumn
model converged after 59 iterations with a validation loss of
2.62%, and the winter model converged at 120 iterations with
a validation loss of 1.88%.

The autumn model required the fewest optimization itera-
tions, suggesting that the general neural network architecture
might be suitable for the autumn data obtained, unlike
the summer model, which required the most iterations for
optimization. However, it’s important to note that initializa-
tion conditions may influence optimization speed, as initial
configurations closer to the global minima can accelerate
convergence. As observed in the solved parameters of each
season model in Table 4, the converged losses of the spring
and winter models have approximate values, as do those of
the summer and autumn models. This pattern is reflected in
the determined number of neurons for the dense layers.

FIGURE 9. Convergence graphs of the parameter optimization of the
classical neural networks for all seasons.

TABLE 4. Solved network parameters of models per season.

B. ARCHITECTURE COMPARISON OF CLASSICAL AND
HYBRID QUANTUM MODELS
The performance of the classical and hybrid models for
each season is compared based on their training and testing
loss. Additionally, the hybrid models are further compared
between the platforms they were developed on, namely
Pennylane and CUDA-Q.

Fig. 10 indicates that classical models exhibit lower train-
ing losses in terms of RMSE compared to hybrid quantum
models for autumn, winter, and spring. However, Pennylane

shows an average testing loss improvement of 81.54%
compared to the classical baseline, while Torchquantum
demonstrates a 90.34% improvement, and CUDA-Q achieves
an average improvement of 92.30%. This indicates that the
classical models may have overfitted the training data for
autumn, winter, and spring within just five epochs. Pennylane
and Torchquantum exhibit greater training and testing
loss among the hybrid quantum platforms than CUDA-Q.
This suggests that CUDA-Q may have a more optimized
implementation of quantum algorithms than Pennylane and
Torchquantum. A more conclusive test will be presented in
the succeeding sub-section.

FIGURE 10. Per season RMSE (%) comparison of classical and hybrid
quantum neural networks.

Further tests using the best hybrid quantum model were
conducted by evaluating test data loss on a monthly basis,
as shown in Fig. 11. It can be observed that the loss
for classical models is generally higher than that of the
hybrid quantum counterpart. Both models exhibit increased
losses during the seasonal transitionmonths—February,May,
September, and November—corresponding to the transitions
between winter-spring, spring-summer, summer-autumn, and
autumn-winter. These months in Taiwan are characterized
by significant temperature fluctuations and cloud movement,
which impact the accuracy of predictions.

FIGURE 11. Per Month RMSE (%) comparison between classical CNN and
proposed HQCNN.

Further experiments were conducted on other deep neural
networkmodels to evaluate the advantages of hybrid quantum
models. Foundational classical architectures, such as ANN
and LSTM, were selected as additional benchmarks for
simplicity. Additional tests were performed using hybrid
quantum ANNs with the dimensionally reduced dataset.
As shown in Fig. 12, LSTM outperforms the other classical
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models. Comparing ANN and PCA`ANN, the dimension-
ally reduced model using PCA shows only a slight increase
in RMSE%. However, consistent with Fig. 10, the hybrid
HQNN and the proposed hybrid quantum CNNs (HQCNN)
generally outperform the foundational classical models,
indicating that the inclusion of quantum layers significantly
reduces RMSE values.

FIGURE 12. RMSE comparison of classical and hybrid quantum neural
networks.

C. ROBUSTNESS ASSESSMENT
The robustness of the proposed HQCNN and classical CNN
models was evaluated using simulated sensor fault scenarios
from the modified test set. The experiment incorporated
sensor/environment noise, no measurement, and spiking
measurement fault scenarios, as shown in Table 5. The
test set was modified by introducing noise to simulate
common sensor measurement issues. Sensor or environment
noise was modeled by adding Gaussian noise to the GHI
feature, using a Gaussian distribution with varying noise
standard deviations (σ ). Zero or no measurement scenarios
were simulated using a modified dropout routine, where a
frequency parameter (fz) indicates how often data fails to be
recorded. This frequency ranges from 0.0 (no missing data)
to 1.0 (complete data loss). A Bernoulli function applied to
fz creates a binary mask that simulates zero measurements
in the GHI data. Spiking or glitching scenarios, which may
result from external disturbances or electrostatic discharges,
were simulated using a random spiking function applied to
the GHI data at a given spiking frequency (fs).

The summer season test set was used for the experiments.
Three values of σ (0.05, 0.1, and 0.15) were considered
for sensor/environment noise scenarios to simulate varying
degrees of information loss. For zero measurement scenarios,
frequencies fz of 0.05, 0.1, and 0.2 were used, while spiking
measurement scenarios employed frequencies fs of 0.02,
0.04, and 0.08. The sensitivity (s) of the model to noise is
detailed in Table 5, where it is calculated as the ratio of the
error with the noisy modified test set to the error with the
original test set.

Both classical CNN and proposed HQCNN are expected
to experience degradation in prediction quality. Observations
show that classical CNNs generally have higher sensitivity,
averaging 11.82, compared to HQCNNs, which average 2.5.
This suggests that the quantum layers in HQCNNs may

contribute to improved feature learning and generalization.
The spiking measurement scenarios impact both classical
CNN and HQCNN models the most, highlighting the
severity of these scenarios in obscuring predictions. Although
HQCNNs generally exhibit lower sensitivity, their sensitivity
increases linearly with the intensity of different noise types,
unlike classical models, which show only variable sensitivity.

D. PLATFORM PERFORMANCE COMPARISON
Additional experiments detailing the advantages of each
hybrid quantum platform are presented in this subsection. The
effects of using hardware acceleration are also included in
the succeeding discussions. Further, the training and testing
of the HQCNNs are done with a hybrid CPU and GPU
setup. The experiments primarily focus on testing GPU
workstations or high-performance computers, specifically
for GPU-based quantum circuit simulations. The hardware
setup used in this experiment comprises a GPU workstation
equipped with an 11th Gen. Intel i7-11700 processor,
NVIDIA RTX 3070 GPUs, and 32 GB of RAM. The summer
dataset is representative to facilitate a standard comparison
for different model setups. All models are trained for only
5 epochs to assess their efficiency for short training periods.
To ensure fairness, batch sizes were set to 1 for Pennylane,
CUDA-Q and Torchquantum’s training pipelines, resulting in
each epoch looping over 145,728 samples.

Pennylane is widely utilized in numerous applied research
involving hybrid quantum neural networks. Table 6 provides
a performance analysis using Pennylane for the HQCNN
utilized in this paper. Both neural network optimization and
quantum circuit state vector simulation are conducted with
various combinations of CPU and GPU modalities. Several
GPU acceleration libraries are compared alongside CPU-
based computation. While CPU-based computations do not
utilize any acceleration libraries, GPU-based computations
may invoke CUDA, CUDA with cuDNN for GPU accel-
eration in classical neural network layer operations, and
cuQuantum for state vector computations.

Both loss and timing performance changes are observed
between CPU and GPU-based operations. An approximate
average testing loss improvement of 10.20% is seen between
models that utilize cuQuantum as an accelerator for quantum
layers compared to those that do not. Additionally, improve-
ments in timing performances, such as total training time
and inference time, are noted. Using accelerators for classical
layers leads to an expected decrease in total training and
inference time. However, combining classical and quantum
layer acceleration results in significant latency reduction,
with amaximum speedup of approximately 275% for average
latency per epoch and approximately 218% for inference
time. This suggests that most of the complexity of the
HQCNN training is attributed to operations related to the
quantum neural network, such as forward and backward
propagation. Similar to most deep learning applied research,
CUDA, and cuDNNdemonstrate improvements in timing and
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TABLE 5. Robustness comparison between classical and hybrid quantum CNNs.

TABLE 6. Pennylane performance analysis.

TABLE 7. Performance comparison among Pennylane, Torchquantum and CUDA-Q.

loss performances compared to implementations that utilize
only CPU for neural network operations.

The performance of CUDA-Q is compared with those of
Pennylane and Torchquantum for the same dataset, as shown
in Table 7. The column for GPU acceleration of the quantum
layers is omitted, as all experiments involve GPU-based
acceleration in state vector simulation using cuQuantum.
A noticeable difference in timing performance is observed
between Pennylane and CUDA-Q. CUDA-Q is 2.7 times
faster than Pennylane for training and 2.9 times faster for
inference. CUDA-Q is also 32.34 times faster for training
and 31.29 times faster for inference compared to Torchquan-
tum. The classical layers of the models implemented
in Pennylane and CUDA-Q are designed and developed
similarly in PyTorch. Therefore, it can be inferred that
CUDA-Q can compute forward and backward propagation
for the quantum layer more efficiently than Pennylane,
considering complex64-based data computation. A similar
improvement can be observed in loss performance when
using acceleration on both classical and quantum layers.
An observed 39.02% and 70.97% testing loss improvement
is seen for pipelines running CUDA and CUDA`cuDNN,
respectively.

Pennylane offers a convenient platform for designing
and implementing variational quantum circuits and quantum
neural networks, allowing for more flexible ways to proto-
type variational quantum circuit formulations. Additionally,
Torchquantum needs to improve its implementation of the
parameter-shift rule for gradient computation and enhance
its use of GPU acceleration for statevector simulations.
On the other hand, CUDA-Q has not yet implemented
abstracted functions and APIs for high-level quantum circuit
design. However, experimental results demonstrate that
CUDA-Q outperforms both Pennylane and Torchquantum
in terms of loss and timing performances for training and
testing HQCNNs. This improvement may be attributed to
the optimized compiler toolchain for the quantum kernel
execution and additional GPU memory allocation techniques
and data structures implemented in CUDA-Q.

VII. CONCLUSION
This work compares the design and implementation of hybrid
quantum neural networks (HQNNs) across development
platforms for GPU-based operations pipelines. This compar-
ison is demonstrated using a multi-location, very short-term
solar GHI forecasting model as a use case. The main
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contributions of this paper can be summarized as follows: (a)
A statistics-driven classical neural network architecture with
further parameter optimization by Bayesian Optimization is
presented. (b) A performance comparison of hybrid quantum
neural network architectures and classical neural networks
is presented. (c) A comparative analysis of hybrid quantum
deep learning platforms considering their loss and latency
performances is presented.

In summary, the experimental results demonstrate the
following: (a) The initial statistics-driven approach for
neural network model design, combined with Bayesian
Optimization for design refinement, offers an automated
method for developing localized classical neural networks for
the northwestern Taiwan region, resulting in low validation
losses. The summer model required the highest number
of iterations to converge at 171, while the autumn model
needed the least, at 59 iterations. (b) When comparing
classical and hybrid quantum neural networks, hybrid
quantum neural networks exhibit lower testing losses.
Specifically, Pennylane achieves an average of 81.54%
testing loss improvement, while Torchquantum achieves
90.34%, and CUDA-Q achieves an average of 92.30%
testing loss improvement. (c) Pennylane’s performance, when
considering hardware acceleration, shows that GPU-based
computations with cuDNN and cuQuantum provide signif-
icant speedup in training and testing times. This indicates
that GPU acceleration libraries enhance efficiency for hybrid
quantum operations. (d) Comparing the performance of
Pennylane, Torchquantum, and CUDA-Q, CUDA-Q shows
significant improvements over Pennylane in terms of testing
loss, training time, and inference time. This suggests that
CUDA-Q has the potential for deployed operational purposes.

The comparative study demonstrates that using GPU
and GPU hardware acceleration platforms can significantly
improve performance over classical implementations for
multi-location, very short-term solar GHI forecasting. Future
enhancements to this study could include exploring different
neural network architectures, such as attention-based models.
Additionally, deployment strategies for quantum-enhanced
and quantum computer-integrated solutions could be inves-
tigated. These considerations highlight potential areas for
future research and development in the operability of systems
involving hybrid quantum algorithms.
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