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Lay Summary

The discovery of the Higgs boson at the Large Hadron Collider at CERN,
confirming the predictions of the Standard Model, has marked the end of a chapter
in particle physics. To date, the Standard Model remains our best description of
how the most fundamental particles in our Universe interact with each other. No
matter how successful the Standard Model has been, though, it is also known to
be incomplete. There are many puzzles that it cannot fully explain, such as the

existence of Dark Matter, or the true nature of Gravity.

Various attempts to extend the Standard Model in order to explain these
mysteries exist, all of which ultimately lead to the prediction of new particles, or
changes to the behaviour of existing particles. It is these new particles that the
Large Hadron Collider is hoping to discover, but, so far, no such particles have

been seen.

Recently, however, some signs have emerged that certain rare particle decay
processes, involving particles known as B mesons, have behaviours that seem to
differ from what theoretical calculations predicted. These may be promising hints
of New Physics, but they are not yet significant enough to be called a definite
discovery. One of the reasons for this is that the decay processes themselves
are still not perfectly understood, even within the Standard Model. Making

predictions for such processes is difficult, as mesons are complicated objects.

This thesis aims to contribute to the understanding of these decay processes, and
their associated experimental results, in two related ways. The first part presents
a new method that helps to explain the origin of the structure in experimental
measurements of such decays. This is exploited to show how generic new effects
might interfere with and change the expected results within the Standard Model.
More importantly, it will be shown how these effects can be isolated from the

“normal” predictions of such decays, and thereby assessed separately.



In the second part, some new calculations are presented for a set of important
inputs in the theoretical prediction of B meson decay processes, where the B
meson decays to a particular class of mesons known as vector mesons. These
results update and extend previous calculations in the literature. It will be shown
how to exploit the patterns appearing in these calculations to make it possible to

isolate New Physics effects appearing in experimental measurements.
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Abstract

Recent results at the LHCb and B-factory experiments have suggested that rare
processes in B — V~ and B — V{{ decays, where V is a vector meson, show
some deviation from Standard Model predictions. Although these anomalies are
not yet at the level to constitute a formal discovery, they are certainly suggestive
of potential New Physics effects in flavour-changing neutral currents. However,

explanations within the Standard Model cannot yet be ruled out.

This thesis contributes to the understanding of such anomalies in two ways.
Firstly, the angular distribution of the B — K;(— Km)l1/y decay is derived,
for the full dimension-six effective weak Hamiltonian, using a generalisation of
the helicity formalism to effective theories mediating b — s¢1/, transitions. This
approach sheds light on the origin of the underlying structure, and in the process
extends the general angular distribution to decays in which the two leptons in

the final state, ¢1/,, are not necessarily identical.

An additional benefit of the derivation of the angular distribution presented in
this manner is that it lends itself to a moments analysis of the decay. It is
shown how the angular distribution changes in the presence of new operators,
predicted to be vanishingly small in the Standard Model. Such operators could
be sizeable in the presence of New Physics, but using a moments analysis enables

the contribution of such operators to be assessed.

Secondly, an analysis is presented of the three-particle vector and axial meson
distribution amplitudes. It is shown that the distribution amplitudes of both
particles are, up to corrections, nearly identical. These results are applied
to a new calculation of the long-distance charm loop contribution to radiative
B — V-~ decays, and it is shown that the approximate symmetry can be
exploited to provide an improved theoretical control in the search for New Physics

contributions to right-handed currents in radiative decays.
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Chapter 1

Introduction

The announcement of the discovery of the Higgs boson at the Large Hadron
Collider (LHC) in July 2012 is a triumph of modern science [I, 2]. The Higgs
boson was a central prediction of the Standard Model ([SM]), developed mainly
during the 1960s and '70s [36], and confirmation of its existence, at the most
complex experiment humanity has ever undertaken, marks the end of a chapter

in Particle Physics.

But as one chapter ends, another begins. Almost every thesis on Particle Physics
written in the last thirty years will inevitably draw attention to the deficiencies
of the SMl To put it simply, the is not, and cannot be, the end of the
journey, as many questions remain unanswered, many gaps remain unfilled, and
many puzzles remain unsolved. For example, the Brout-Englert-Higgs mechanism
[7HI0] successfully explains how particles can acquire masses, when symmetry
arguments otherwise forbid massive particles from existing. It cannot, however,
account for the observed hierarchy of masses within the fermions. The current
“answer” within the is to insert this hierarchy “by hand”, arbitarily tuning
the values of input parameters to produce the observed mass scales. Such a

resolution is hardly satisfying.

Another of the myriad questions that remain unanswered in the is the
problem of matter-antimatter asymmetry. Paul Dirac, in the late 1920s, famously
predicted the existence of antimatter as a by-product of his attempts to describe
the behaviour of the electron [I1} [12], and it did not take long for this theoretical
prediction to be verified by experiment [13]. Antimatter particles are, in a certain

sense, the mirror images of “normal” matter particles, differing only in their



charge and parity. But perfect mirror-image antimatter would behave in exactly
the same way as matter, and, luckily for life, this is not observed. For physicists,
though, this inevitably leaves another puzzle. How is the matter-antimatter

symmetry broken?

This time, the answer is already partially known, and a feature of the known
as the CKM matrix contains a parameter that leads to matter and antimatter
having subtly different behaviour. This is known as C'P violation. Still, a problem
remains: C'P violation is necessary for the formation of the universe as it exists
today [14], but the only source of C'P violation contained in the is insufficient

to account for the observed matter-antimatter asymmetry.

So it goes on, the [SM| providing a remarkably accurate description of most
particle phenomena observed so far, but falling short of a complete explanation.
These deficiencies have naturally inspired physicists to search for new theories
that resolve such shortcomings. The most well-known of these new models is
Supersymmetry, which predicts an additional relationship between the two classes
of fundamental particle, fermions and bosons; but Supersymmetry is far from the

only new avenue that theory has explored in the last few decadesE

Ultimately, all new models must, if they are worth proposing, make testable
predictions. In practice, this means that one or more new particles, beyond those
contained within the [SM] can be expected to exist. Following the launch of the
LHC in 2008, it was hoped that it would not take long for these anticipated new
particles to be observed. Yet, so far, such new particles as the LHC| has discovered
can all be understood within the [SMl While these discoveries are still exciting —
they include the Higgs boson itself, as well as exotic particles such as pentaquarks
[16], which had long been expected to exist — the absence of any genuine signal
of New Physics means that the questions attached to the remain unresolved.
Run IT of the [LHC] with collisions at double the energy of the earlier Run I, has
begun only recently, and it is not impossible that results from the latest set of

experiments will change this assessment.

On the other hand, even if no New Physics is directly observed, there remains the
difficult issue of understanding the predictions of the itself. The explains
the physics of ordinary matter by introducing the elementary particles known

as quarks, which combine together to create the baryons and mesons that are

1See [15] for a readable introduction to various scenarios of physics beyond the SM] as well
as a more complete discussion of problems with the [SMl



actually what is observed in experiments. The transition in theory between quarks
and hadrons is difficult to capture completely, but understanding the relationship

between the two is fundamental to making proper theoretical predictions.

One sector of particle physics where this interplay is particularly important is
B physics [17, [18]. B mesons are particles that contain at least one bottom (b)
quark, the second-heaviest quark in nature observed behind the top (¢) quark.
The mass of the b quark sits in between two other mass scales within the SMEt the
weak scale, defined by the masses of the heaviest particles in the SM (W, Z and
Higgs bosons along with the ¢ quark); and the Quantum Chromodynamics
scale, relevant for defining the relationship between quarks and hadrons. This
scale separation allows both weak and short-distance physics, where they
enter decay processes of B mesons, to be handled perturbatively. Although some
non-perturbative physics inevitably remains, related to the full internal structure
of hadrons, this can be separated from the perturbative physics and dealt with
separately. B physics therefore provides a natural laboratory for testing most of
the features of the

Recently, the predictions of theory and results of experiment have diverged in a
number of B physics decays [19-25]. This tension could arise either because the
theoretical predictions are, for some reason, incorrect [26], or because the [SM] is
incomplete after all [27]. At present, these anomalies, which appear in multiple
separate decay channels and have even been observed by separate experimental
groups, are neither fully understood nor properly confirmed, and remain at a level

below the “50” gold standard of a confirmed discovery [28].

The anomalies mentioned above appear specifically in decays mediated by b — s
and b — d transitions. As will be made clear later, these processes are expected
to be particularly rare within the[SM] as they can only proceed by loop processes.
Separately, there has also been evidence of anomalies in tree-level processes, such
as B — Dlvy and B — D*{v,, where the D mesons contain a charm quark [29-
32]. However, it is the loop decay anomalies that provide more interest, because
such processes are expected to be particularly sensitive to New Physics (ND))

effects, which may enter at tree level and so dominate the [SM| contribution.

Whether these anomalies persist and reach the 5o standard, or ultimately vanish,
it is still clear that they warrant further investigation. This thesis aims to play
a part in this investigation, and does so in two ways: firstly, by describing and

applying a systematic technique to understanding the angular distributions of



B — K;(— Kn)l1l; decays; and secondly, by fresh computations of parameters
in the distribution amplitudes (DAk) of vector mesons, showing explicitly the
relations to similar results for axial mesons. This will be applied to a study of
long-distance (LD]) contributions to right-handed currents (RHC) in B — (V, A)y

decays.

The remainder of the thesis is organised as follows:

Background

e In chapter [2| the effective theory for weak decays is introduced, defining
the necessary operators and explaining the calculation techniques required.
Attention is also paid to the properties of C'P violation, which will
be applied to define useful observables when searching for right-handed
currents. Material in this chapter relates primarily to the first part of the

thesis.

e In chapter [3] the [DAK are introduced, by first discussing the language of
conformal symmetry in which they are defined. The [DAE enter calculations
of hadronic matrix elements, and it is shown how these calculations are
performed using the method of Light-Cone Sum Rules (LCSRI). The Borel
transformation, an often-used technique in sum rules calculations, is also
introduced and discussed, with attention paid to competing considerations
when choosing Borel parameters. This chapter finally introduces the
notation for [DAk to be applied to the thesis. Material in this chapter

relates primarily to the second part of the main thesis.

Part One

e In chapter [ the angular distribution of decays of the general form
B — K;(— Km)lly is presented in the context of a generalised helicity
formalism. Although related techniques have appeared in other contexts
since the seminal paper of Jacob and Wick [33], this represents the first
systematic application of the technique in this context. Applications of
the method, in particular the implications for experimental studies using a
moments analysis, are discussed. In addition, this chapter provides the

link between the angular conventions for this decay in the theory and



experimental communities, which, prior to the release of [34], had not
been satisfactorally related to each other. Further material relevant to this

chapter is presented in appendix [C]

e Chapter[fillustrates the benefits of the approach of chapter 4l by considering
extensions to the angular distribution. These are presented in the context
of higher-dimensional, derivative operators, and how they enter the angular
distribution of the B — K(1430)(— Kn)¢1fy decay. The potential
impact of corrections, and how they might be distinguished from

[NPl scenarios, is also discussed.

Part Two

e In chapter [0 the calculation of the parameters for three-particle [DAk is
presented, demonstrating explicitly the relationships between vector and
axial meson [DAk, which have previously been un-noticed, or not completely
exploited. The contribution of the three-gluon condensate is also included
for the first time, and fresh determinations of the numerical values of
the first few parameters in these [DAk are given. Technical details of the
calculation, relevant for an extension to twist-4 [DAE, are outlined, with
preliminary twist-4 results in appendix [D] An alternative technique for
computing the leading contribution to the [DA] parameters, the diagonal

sum rules approach, is discussed in appendix [E]

e Chapter [7] presents a computation of long-distance contributions to B —
V'~ decays in a fully exclusive [LCSR] approach. The same calculation was
presented in [35], but certain disagreements are noted and commented on,
while explicit formulas not presented in [35] are given in appendix . The
fresh determinations of the [DAl parameters, in chapter [6] allows for an
updated evaluation of these results, along with an extension to the axial
meson processes. It is shown how the calculation of contributions can
be used to improve the search for right-handed currents. This relies on
exploiting the relationship between vector and axial mesons elaborated upon

in chapter @, along with the related paper [36] and proceedings [37].

e The thesis ends with conclusions, and a discussion of future extensions, in
chapter [§

e Alongside the appendices mentioned above, appendix [A] provides further



details on conventions used in the thesis, along with useful results of
integrals; and appendix [B| gives the numerical inputs used in this thesis,
as well as comments on competing estimates for the values of condensates

entering the sum rules results of chapter [6]



Chapter 2

Effective theory of weak decays

This chapter discusses various topics and techniques relevant to the material
presented later in the thesis, with a particular emphasis on the origin of the

effective theory of weak decays.

2.1 The flavour sector of the Standard Model

Since its development in the 1960s [3-10], the has remained at the forefront
of theoretical physics, and is to date the best description of nature available.
The particle content — three generations of quarks and leptons, the strong (g),
weak (W=, Z), and electromagnetic () gauge bosons, and the Higgs boson —

represents all matter so far observed in collider experiments.

More concretely, the tells us how these particles interact, by combining the
theories of [QCD] Quantum Electrodynamics and the weak interaction.
The gauge group of the SM| SU(3)c x SU(2) x U(1)y, determines the behaviour
of these interactions, while Yukawa couplings between the Higgs field and fermions
ultimately give rise to bare quark and lepton masses. Neglecting the terms specific
to leptons, all this is captured by the Lagrangian

1 A o 7
L= LB E 3 (1QLDLQ) + iy + idf Dty
f



+ (D) (Do) + 1Pl — Mplp)? ZQL Puy + Yiedy) + hec.

(2.1)

with the left-handed SU(2) doublets Qf = (uf,d}) and the right-handed singlets
ug, dr describing the quark content; ¢ is the Higgs field, also in an SU(2) doublet
(with ¢ the Higgs field in the anti-fundamental representation of SU(2)). The
fields F** implicitly contain all gauge bosons for the group, and split into three
parts for each part of the symmetry. The covariant derivative D, transforms
according to the relevant representation in the gauge group of the field on
which it acts, and is defined by

D, =0, —19,G, —1eY B, —igsW,. (2.2)

The form of the Lagrangian strictly applies only above the scale of
electroweak symmetry breaking, vy &~ 246 GeV, which is generated by the non-
trival vacuum behaviour of the Higgs potential Vi = —pu?pfp 4+ A(pTp)2. Below
this scale, the Lagrangian is rewritten to account for this effect. In particular, the
Higgs field can be replaced (in unitary gauge) by ¢ — h+wvygy, with the principal
consequence that the Higgs, W+ and Z bosons, and quarks and leptons all acquire
amass. It is important to stress that the gauge symmetry SU(2), x U(1)y forbids
the inclusion of explicit mass terms in the Lagrangian, and such terms can only
be generated by this spontaneous symmetry breaking. For the up-type quarks
(and charged leptons), the mass terms take the form vygyY4u4ul, and similarly

for the down-type quarks [40} [41].

The two matrices Y,y ¢ that arise are known as Yukawa matrices, and represent
the relationship between the weak and mass eigenstates of the quark sector. Up

to a redefinition in quark phases, they can be written as
Yu,d — Uu,dzu,d’ (23)

where Y are diagonal matrices whose entries are proportional to the observed
quark masses. The matrices U%? represent the fact that, in general, there is no
requirement for the mass and weak eigenstates to be the same. Transformation

to the mass basis of quarks then modifies, for example, the charged-current

IThe signs in the covariant derivative are a choice of convention. The negative sign is
standard in the literature, and is used by, for example, [38], [39], but occasionally the opposite
sign convention is used.



contribution to the form
Wb ytdy, — Wit ytdy (U U, (2.4)

where the new matrix U™U? = Vg represents the potential for mass and
weak eigenstates to mix into each other, and is known as the Cabibbo-Kobayashi-
Maskawa (CKM]) matrix [42, 43]. This is a 3 x 3 unitary matrix, which has four
degrees of freedom, of which one is a phase, with the remaining three interpretable
as angles [44]. The other five degrees of freedom possible in a unitary matrix
can be absorbed as phase rotations over the quark flavours. The phase degree
of freedom is responsible for the phenomenon of C'P violation, which will be
discussed in more detail in section Various ways of parametrising the matrix

exist; this thesis will make use of the Wolfenstein parametrisation [45], 46]

Vud Vus Vub 1- %/\2 A A)\?: (p - ”7)
V=1Va Vo Vol = —A 1— 42 AN? , (2.5)
Via Vis Vi AN (1 —p—in) —AN 1

which is an expansion in A ~ 0.23 accurate to O(A\)P| The Wolfenstein
parametrisation has the advantage that it reveals some structures to the CKM
matrix. Most notably, it can be seen that there is a clear hierarchy of magnitudes
of | V|, such that transitions are favoured between quarks of the same generation,
and generally suppressed otherwise. To date, the origin of this structure is an
open question [47]. In addition, the presence of the C'P violating parameter 7 is
crucial, as C'P violation provides one of three conditions required for baryogenesis
in the early universe [14], but its value is too small to be sufficient on its own to

explain the necessary matter-antimatter asymmetries [48].

Note that the matrix only couples to the charged currents of the weak
interaction. The neutral currents, mediated by the v and Z bosons, do see
the mass and weak eigenstates of the quark flavours as identical. This has the
consequence that flavour-changing neutral currents (FCNCE) cannot occur at tree
level in the SMl As a result, they are suppressed by at least loop factors, and
[FCNC processes can therefore be expected to be small. Examples of [FCNCk
include the b — s and b — d transitions, which can generate such decay channels

as B — K*0l or B — pll respectively.

2See appendix |B| for more discussion about the [CKM] matrix and its modern values.



u, ¢, t

Vi 4% Vs

Figure 2.1 A typical loop diagram mediating flavour-changing neutral currents
in the [SM. The matrices indicated at either vertex form the
product Vi; Vi, which, when summed over all possible quarks U =
u, ¢, t running through the loop, gives zero. This would lead to all
flavour-changing processes vanishing via the mechanism, were
it not for the non-equal quark masses.

In fact, there is a further suppression of implied by the structure of the
matrix. Because it is unitary, and because any quark flavour can appear in
the loop, processes exemplified by the diagram in figure lead, as long as the
quark masses are equal, to amplitudes proportional to V), Vis + Vi Ves + Vi Vis,
and unitarity implies that this sum is exactly zero. This is known as the Glashow-
iopolous-Maiani (GIM]) mechanism [49], and only the non-equal masses of quarks

means that [FCNC] processes occur at all.

These considerations mean that [FCNC| decays are expected to be rare within the
[SMI, but on the other hand it also follows that they could be particularly sensitive
to [N effects, which could be significant if such enters as a tree-level [FCNC]
process. Models do exist in which this occurs; in an example of relevance to this
thesis, models that contain leptoquarks could enter b — s processes including
lepton emissions [50]. In section , the properties of such transitions will be

explored more thoroughly.

The lepton sector of the has the same structure as the quark sector, but
the absence of right-handed neutrinos simplifies the discussion somewhat, as
it is possible to simultaneously diagonalise the weak and mass eigenstates of
leptons. The phenomenon of neutrino oscillations [51], 52] implies that neutrinos
do, in fact, have (very small) masses. Much of the discussion in this section can
therefore, in principle, be applied to leptons, by introducing the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix [53, 54], which is the leptonic equivalent of the
matrix (2.5)). The matrix, however, has a very different hierarchical
structure from the matrix, and it is also far from clear that the neutrino

sector should simply be a copy of the quark sector. One alternative is to generate

10



a mass for the neutrinos through introducing the Weinberg operator [55], [56]

ab
Ly = Z )j\/v (CcH*) (CeH*) + h.c. (2.6)

a,b

where ¢ is the totally antisymmetric Levi-Civita symbol of rank two, ¢¢ is the
charge-conjugated lepton doublet, and A is the scale at which this operator, not
present in the usual SM]| becomes significant. Introducing this new operator in
fact generates Majorana-type masses for the neutrinos, and is therefore distinct
from merely duplicating the quark sector. In addition, this operator would
provide a mechanism for lepton-number violating decay processes. One recent
review [57] explores various models related to the question of neutrino masses
and C'P violation in leptons. For the purposes of this thesis, however, neutrinos

are taken to be massless, and only the quark sector will be of interest.

2.2 (P violation

In the previous section, it was noted that the imaginary contribution to the [CKMI
matrix implies that weak decays exhibit C'P violation. This section outlines some
of the consequences of this property, as well as outlining the underlying theory.

Useful reviews of C'P violation can be found in, for example, [38] 58].

The charge C' and parity P are discrete transformations that can act on quantum
states to invert the charge of a particle or its spatial direction respectively. The
third discrete symmetry of time-reversal, T, combines with these to make the
CPT transformation, under which any physical process is invariant, a result
known as the C'PT theorem. This states that, as long as a quantum field theory
is Lorentz-invariant, local, and hermitian, then there is no difference between two
physical processes related by a C'PT transformation. The C'PT theorem is also
related to the fundamental distinction between bosons and fermions, as fermions
under (CPT)? gain an extra sign, whereas bosons do not (a result known as the

spin-statistics theorem [59]).

On the other hand, although the combination C'PT is always respected as
a symmetry under these conditions, it is not necessarily true that individual
symmetries hold. Of particular interest is the combination C'P (or, equivalently,
T'), which relates particles to their antiparticles. To see this, consider a situation

where, initially, C'P symmetry holds over a particle decay process a — b (and the

11



equivalent antiparticle process @ — b). By definition, this implies that
Aoy = -'Zla—ﬂ? ) (2-7)

where A, A are the relevant amplitudes, summed over all possible transitions of
a — b. In the case where there are two such intermediate processes, one could

also write

Aassy = |A1]e + | Aylei®
A, ;= \Alleiel + |A2\ei92 ; (2.8)

where the amplitudes of the subprocesses have been split into their magnitudes
and phases, and C' P-conserving phases 6; do not change sign: A, _,; # A% ,,. Not
all phases conserve C'P, however. In the equations above, these can be included

by adding a C'P-violating phase ¢; to each intermediate process

A,y = ’A1‘6i016i¢1 + ’A2’€i92ei¢2 ’
A = LA | fpfee, 29)

so that
|AP? — [A]* = 4] Ay || Az sin(6; — 6;) sin(¢s — ¢1), (2.10)

and, as long as the two intermediate processes generate a non-zero phase difference
¢o — ¢1 (which is almost certainly true by virtue of the intermediate processes
being different), then it follows automatically that particle and anti-particle
processes do not proceed at the same rate. This phenomenon is the most basic

illustration of C'P violation, but it has profound consequences.

In the [SM], under C'P, the weak charged currents go as

Wi dy (UM Uy — W'y (U0 (2.11)

ji>

which demonstrates that if the [CKM| matrix has a non-zero phase then it does

indeed provide a source of C'P violation, as such a phase behaves as ¢; does in

equation (12.9).
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Figure 2.2 Box diagrams contributing to B°-B? mizing. Both processes are
needed to generate C P violation, through interference effects between
the two amplitudes.

2.2.1 Time-dependent C'P violation

Another explicit demonstration of the importance of C'P violation is in the mixing
of two states related by a C'P transformation. Historically, the K°-K° system
was one of the first experimental verifications of the C'P violation (and the even
stronger property of weak interactions, that they violate the P symmetry), but,
as the focus of this thesis is B physics, the discussion below is presented in the

context of B%-B° mixing.
The time-dependent wavefunction for a B%-B° system is given by [58, [60]
|W(t)) = a(t) ‘BO> + b(t) ‘BO> , (2.12)

and a general Hamiltonian can be written, in the |BO)—|BO> basis,

7 Mll M12 7 I-‘11 F12
Mgl MQQ 1_‘21 1—‘22

where M and I' are Hermitian matrices, and the system is confined to two states

for simplicity. CPT invariance implies that M;; = My, and I';; = T'yy, but
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otherwise at this point the matrix elements are arbitrary (and all are possibly
complex). Physically, the matrix M carries information about the masses and
mass mixing, and I' carries information about the decay rates. The eigenstates
of H are then defined by

|Bi2) =p|B°) £4|B")

g _ [Mi—sTh (2.14)
p M — %Flz
In the B%-B° system, 'y, which represents the B°-B° width difference, is usually
assumed to be negligible, in which case % reduces to simply a measure of the
B°-BY mixing angle:

4 ::‘g‘ei¢mM, ’Q’:z 1. (2.15)
p o |p p

Note also that the states |Bi o), in the case where the mixing angle is zero, are
CP eigenstates with opposite sign: CP |By2) = = | By 2) | The time evolution of
the observed B’-B° states is then given by

[BO) = S () [B) + 1 (1) [B°)

|B(6)) = f+(1) | B®) + §f_<t> |B°) (2.16)
where
fult) = %e—iMlte—éFlt <1 + e—iAMte—%AFt> : (2.17)

with AM = M2 - Ml and AI' = FQ - Fl-

This can now be applied to decay processes with some final state |f) accessible
(either directly or indirectly) by both the BY and B°, which is to say that the
B® — f decay can also proceed via mixing into B — B® — f. The combination

I(B—f)—-T(B =)
[(B— f)+ (B — f)

Acp(t) = £0 (2.18)

is then a measure of C'P violation. In terms of the variables defined in the time-

3Briefly returning to the Kaon system, the fact that the K;o are CP eigenstates is
historically important because, initially, it was assumed that K; 2 were identical respectively
to Kg 1, where Kg 1 are defined by their principal decay chains: Kg — 7w and K — nnw.
The final states have C'P eigenvalues 1, matching those of the K 5, so assuming that CP is
a good symmetry, K; — 7w is impossible. K has a much longer lifetime owing to the smaller
available phase space of the 3-m decay. In fact, K — 77 decays are occasionally observed,
owing to the correct relation Ky = Ky + €K7, where ¢ is the C'P-violating parameter.

14



evolution functions f(t), the time-dependent decay rates I'(B(B) — f) are

['(B(B) = f) = Bpe™* (cosh(%t) - Hsinh(%t) F Ccos(AMt) £+ Ssin(AMt)) ,
(2.19)

so that Acp can also be written

Ssin AMt — C cos AMt
cosh %t — H sinh %t ’

Acp(t) = (2.20)
where S, C' and H are functions dependent on the specific Hamiltonian, and
S and C are respectively measures of indirect and direct C'P violation. The
particular form above relies on the assumption |¢/p| ~ 1, which is true (up to
negligible corrections) in the B°-B° system. This observable will be later used in

a more explicit set of scenarios in Chapter [7}

2.3 Renormalisation

It is almost inevitable that calculations in Quantum Field Theory will
run into divergent terms. This can be understood as a consequence of various
limiting behaviours to the theory; in general, it cannot be expected that a
is valid at arbitrary (very high or very low) energy scales. The two main classes
of divergence are the high-energy ultraviolet (UV]) and low-energy infrared (IR])
cases. Whilst these divergences arise naturally from calculations, they also have
a physical interpretation. [UV] divergences can be thought of as arising from the
mistaken assumption that the theory being considered is valid at all distance
scales, whereas in fact a more complete theory may be required to understand
the physics at ultra-short distances. On the other hand, [R] divergences can be
associated with the presence of massless particles in a theory: since massless
particles can have arbitrarily low energies, it is possible for an infinite number of

them to be produced but with a finite total energy.

One way of dealing with such issues is simply to impose a cut-off scale, excluding
either very low or very high energies from the integrals under consideration.
However, doing so immediately breaks Lorentz symmetry, as well as any gauge
symmetries of the theory, and therefore cut-off regularisation techniques are often
applied only when there is a well-motivated physical interpretation for the specific

value of that cut-off scale. In section [2.4] when the effective theory of weak
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interactions is introduced in more detail, the cut-off scale is naturally associated
to the mass of the W boson.

Regardless of the technique, the divergences must still be dealt with in a
systematic way in order to make meaningful predictions. If divergent terms were
not removed systematically, then, in principle, a calculation could lead to any
answer. Moreover, while there is some freedom to remove divergences from the
theory, in order to do so one needs at least as many free parameters as there are

distinct divergences.

The technical resolution of these issues is known as renormalisation, and was
actively researched in the 1950s and '60s [61} 62] before the seminal paper of 't
Hooft and Veltman, introducing dimensional regularisation, resolved the issue of
how to include renormalisation in gauge theories [63]. The general result of any
renormalisation procedure is that the couplings of a theory acquire a dependence
on a regularisation parameter €. Then the initial, “bare”, coupling, denoted Cj,

can be written

Co(e) = " Zc(g(p),€)C (1) (2:21)

where g(u) is the gauge coupling, dependent on the energy scale p, and d = 4 —2¢
defines the deviation ¢ from the usual number of dimensions. The parameter
n is fixed by measuring the natural dimension of the coupling. Zg is the
renormalisation constant, which depends on the scale p only implicitly, and
is dimensionless. The equation above can be extended naturally to theories
with multiple couplings Cy by promoting Zc(g(u),e) to a matrix, and so one

consequence of renormalisation is that couplings can mix under Renormalisation

Group (RG]) evolution.

Since the bare coupling Cy does not depend on the scale pu, it follows that
differentiating the right-hand side of (2.21)) with respect to u gives 0. Considering
the two cases where Cj is an arbitrary coupling, and Cj is the gauge coupling

itself, then this leads to the equations

dc ac
dg _ dg

where (3(g) is the p-function, and whose calculation in [QCD] was one of the most
celebrated results of renormalisation theory [64, [65]. ~c(g) is the anomalous

dimension of the coupling C', and both 5 and v arise from the dependence of Z¢
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on g.

Unfortunately, the equations (2.22)) cannot be solved except via a perturbative
approach, expanding in powers of the coupling g. The [ function of |QCD}| for
example, is defined by

a; aj ay
Blas) = _BOE - 51@ — o 12873 + ... (2.23)

where o, = ¢g2/(4m). The 3; are constants whose values have been determined
only for the first few terms, depending on the number of loops 741 in the diagrams.
The f function was recently computed to five-loop accuracy in 2017 [66], although
for the purposes of this thesis running of the coupling constant is restricted
to three loops at most [67].

As for general couplings C', the equation ([2.22)) is usually rewritten to be in terms

of the gauge coupling
dC _ e

Yo T 28

which can be solved at leading order to give

c, (2.24)

N0

_(alw )\
“”‘(MMJ Cluo) (2.25)

)

where po is the reference scale and véo is the leading contribution to the

anomalous dimension.

In the case of multiple relevant couplings, the equations above are promoted

to matrix equations governed by the anomalous dimension matrix 7;;, and the
solution ([2.25)) becomes, at leading order,

9,

)w%wmmm> (2.26)

1 ap)
=2 G
]7
where V' is the matrix that diagonalises ;.

Again, analytic solutions such as can only be obtained at leading order
in perturbation theory. At higher orders, the solutions to or its matrix
equivalent must be solved numerically. For the coefficients relevant to the physics
discussed in this thesis, the procedure is well-described in the appendices of [68],

as well as in a comprehensive review in [39)].
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Figure 2.3 Tree-level Feynman diagram for the b — ccs transition, which leads

to the amplitude in (2.27)).

2.4 Effective Hamiltonian at tree-level and the

Wilson coefficients () ,

The principal decays of interest to this thesis are those mediated by a b — (d, s)y
or b — (d,s)¢¢ transition. In both cases, the leading contributions are one-loop
diagrams, owing to the absence of tree-level [FCNCk in the SM] as discussed in the
introductory section. However, the typical energy scale of B decays is of the same
order as the B meson mass itself, 5 GeV, which is far removed from the weak
scale, defined by my, ~ 80 GeV. This can be exploited to develop an effective
theory, where the heavy particles are removed from the theory (“integrated out”)
and the residual operators define a new Hamiltonian, valid only at the energy

scales of interest [

This process can be made more formal by requiring that the effective theory
consists of all possible operators O; below a certain mass dimension that are
consistent with the symmetries of the full theory. These operators are associated
with Wilson coefficients C;, whose value is fixed such that the full theory is
recovered up to corrections in inverse powers of the heavy mass scale. It is
important to stress that these coefficients are related to the short-distance (SD))
physics, and so they are universal for all processes described by the effective theory
[39]. For the weak sector, this suffices to define the full operator set, although
the coefficients C; are affected by interactions, and so the theory must be
renormalised according to the procedure sketched out in section 2.3} To illustrate

4Historically, the effective weak theory was developed first by Fermi, and only later was the
full weak theory understood.
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Figure 2.4 [QCD corrections to tree-level weak decay, used in computing the
Wilson coefficients C1 2. Three more diagrams, related to the ones
drawn above by a reflection, are not shown.

this more completely, consider the leading contribution to effective weak theory,
which arises from b — c¢s processes and is represented in the diagram in figure
2.3l The discussion in this section is also heavily based on that in [39]P| The

amplitude in the complete theory is (in unitary gauge)

2

. gu) * 1 < C v

A= g VYo T (mIZ/Vnuu _kukl/) s (L=s)eicyy” (L=5)b;, (2.27)
W W

which, on expansion around low momentum exchange |k,| << my, can be

reduced to
id= CEyy (5¢),_ , (ed) +O< K ) (2.28)
= T =VesVeb _ _ —5 | > .
\/§ V—-A V-A m12/V
where (5¢),,_, = 5v.(1 — 7v5)c.  This amplitude, which can be defined

independently of the external physicsﬂ can be used to define the first effective
operator Oy = (5¢),,_, (¢d),,_,, where the subscript two arises for historical

reasons. The new coefficient G is Fermi’s constant, and has the value

2
G -5 -2
Grp=—"—=1.166 x 107> GeV ™~ 2.29
F 2\/§m%,v ( )

and defines the scale of low-energy weak interactions.

The operator O, is sufficient to capture the behaviour of weak effective theory
at tree level, but it is also possible to write down a second operator O; =

(5i¢j)1_4 (Gjbi)y,_ 4, which is related to Oy under a colour reordering. Thus,

5For a true b — s transition, the ¢ pair must close to form a loop, and this will form
the leading contribution to the Wilson coefficient C7, but, as Cy will enter into the long-
distance charm loop calculations discussed in chapter[7] it is pertinent to illustrate the matching
procedure on this simplest example.

5The technical definition of this amplitude is an “amputated Green’s function” [39].
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)

Figure 2.5 [QCD corrections to the effective theory, with effective operators
indicated by a cross. Three more diagrams, related to the ones drawn
above by a reflection, are not shown. The separation of the vertex
into two parts is useful for tracking the colour structure through
the vertex (which is different for the operators Oi3), but is a non-
standard representation.

a more complete tree-level weak effective Hamiltonian is

ree G *
HS’-Y )= TSVCS‘/cb (C10; + C,0,) (2.30)

This is generated through corrections to the tree-level theory, and, as such
corrections can be sizeable, it is therefore important to consider this operator
and to fix the coefficients (' o including these corrections. This is achieved by
comparing the results of the one-loop diagrams in the full theory, illustrated in
figure 2.4 with those arising from the effective theory, illustrated in figure 2.5

On performing these computations, it can be found that the matrix Zs, defined

in (2.21)), has the value [39]

47e
-3 3/N¢
in terms of which the anomalous dimension matrix is given by
O _ 1 d ,_a [0/Ne =6 (2.32)
Tig = dlnp”™  4r ' '
—6  6/N¢

Without [RGl improvement, the one-loop matching above would lead to

20



Cy=1+ N%Z—W In (mM—ZZV) (2.33)
but it can be seen that, as the energy scale ¢ moves away from myy, the resulting
logarithms are too significant for the expressions above to be truly perturbative;
at u = 1 GeV, the correction to Cs is well over 30%, at which level higher-
order terms might well also be significant, so that a one-loop calculation is no
longer trustworthy. This is a further motivation for the more rigorous approach
via the equations, which have the effect of resumming the large logarithms

a In(m, /p?)™ to all orders n.

Applying the equations (2.25) and (2.26) gives the RGlmproved Leading

Logarithmic behaviour of the Wilson coefficients as [39]

(0) (0)

Cio =+ (%) , <M) o), (239

2 as(my s (mw)

NS

where 7@ =6 F 6/N¢, and N is the number of colours.

The procedure can be extended to the full operator set relevant for b — sé/¢
transitions, and leads ultimately to the effective Hamiltonian to be introduced in
the next section, although the resulting [RGl behaviour of the Wilson coefficients

is much more complicated in this case.

2.5 Effective Hamiltonian for b — (s, d)y and
b — (s,d)¢¢ decays

The tree-level effective Hamiltonian is not sufficient to describe the decays
of interest to this thesis, as the [FCNCl transitions only appear at loop level. These
can, however, be generated by several types of operator. The full operator set
relevant to such decays is defined by the effective Hamiltonian [35] [39] (70} [71]

. e 2 10
Hgﬂ b= T; <Z ()\501'0? + )\?Cioic) — M Z Oi0i> ) (2.35)
i=1 3

where A} = ViipVy;, is a useful shorthand form for the product of two [CKM

matrix elements that arises from the two weak vertices at either end of the loop,

21



Figure 2.6 A typical diagram contributing to the operators O3 . This
diagram topology is known as a penguin diagram; such topologies
are ubiquitous in decays. In b — (d,s)y/tl decays, these
diagrams only contribute at loop level or through the definition of
effective Wilson coefficients C;]%c/ 4, but are still important subleading
contributions to these processes, such as in weak annihilation [69].

with D = d, s depending on the transition in question. The operators O; can
be split into five categories: the current-current operators (already defined in the

previous section)

O = (DrivuU;) (Uv"bi)
OU = (DL'VMUL) (UL’)/Hb) s (236)

the penguins (figure

Os = (Dryud) Y (@r"q) .

q

Oy = (Drivub;) Z (qr7"a) ,

q

Os = (Dryub) Z (qrY"q)

q

Os = (DLivub;) Y (@riv"a) (2.37)

q
the chromoelectric and chromomagnetic penguins (figure [2.7)

—emyp =

07 = WDLO'W/[)FMV s
Os = %DLJWZ)G’“’, (2.38)
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b s

Figure 2.7 Diagram contributing to the magnetic operators O7g . The
cross represents a mass insertion on the b quark propagator. Or
has been shown, as it is more relevant to the thesis; the diagram
for Og follows on replacing the photon with a gluon. In b —
(d, s)y processes, Og still contributes through loop effects, while both
diagrams can play a role in b — (d,s)ll through mizing, or a
redefinition of the Wilson coefficient Cy. The effect of Og has been
computed in [73, [75] using two different techniques.

and the semileptonic operators (figure [2.8))
@ 7 NIL
Oy = Oy = ypm (DLfyub) liaTat R
T
a

010=04= i (DL’Yub) (st (2.39)

where the notation Oy ;¢ for these last two operators is standard in the literature,
but they will typically be denoted Oy 4 from now on. The subscripts 7, j refer to
colour sums (which, when they are not explicitly indicated, can be taken to be
over the quarks inside the same brackets), while g, p = ¢(1 & 75)/2 is the left-
(right-)handed antiquark. The Wilson coefficients for this Hamiltonian exhibit a
clear hierarchy, with Cs much smaller than the remainder. In b — D/ decays,
these coefficients also enter only at next-to-leading order, and their effects are
therefore included via an absorption into effective coefficients C£% , (Cig = Ca
does not mix with any of the other coefficients, and is in fact constant), defined

for example in [6§].

It is also important to make clear that there are two bases for the effective
Hamiltonian (2.35)). The basis quoted above is based on that in [39], but most
calculations of the Wilson coefficients are performed in the basis of [74], which was
developed to ease the necessary loop calculations for computing the anomalous
dimension. The relevant anomalous dimensions and three-loop matching for all
coefficients are available from [75H77]. Finally, the signs of the operators above, in
particular Oz g, are sensitive to the convention for the covariant derivative. Those
above are based on the sign convention established by equation , whereas,

for example, [71] employs the opposite sign convention.
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(S

Figure 2.8 Diagrams featuring in the computation of the operators Oy, 4 (2.39).
Both the box and penguin diagrams contribute to both operators.

The operators above form a complete set within the for the decays of interest,
but it is important to note that the current-current and penguins only
contribute to the b — (d, s)y and b — (d, s)¢¢ decays through their mixing under
the evolution of the Wilson coefficients [7§]. The operator O, is nevertheless
important for the charm loop calculations in chapter [7} The magnetic operators
Oz s come with parity-flipped equivalents that, within the standard model, can

be written

—€emp

0,7 = 167T2 DRO'W,bF‘u
oL = _iqgﬂ DrowbG™ (2.40)

with mp = mg s much smaller than my, such that the right-handed contributions

to b — D~y are heavily suppressed within the [SML

In chapter [] and the results in appendix [C| the further operators Ogp7 are
included, which could arise in certain [NP| scenarios [79, 80], and are given below

for completeness:

Os = (Do) 12
Op = (DLb) Oys
Or = (DLUWb) bt 1, (2.41)

to which can also be added the parity-flipped equivalents O py 4 + = Os pv,aTl, 5
The further operator O = (D Lam,b) (o™ ~sl is not required, owing to the

relation o" 5 = —%e’“’pfam. The Hamiltonian used in chapters 4] and |5|is then

given more compactly by (cy = —75 15 Vin)
HT =cy Y (GO +ClO)). (2.42)
1=V, A,S,P,T
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Chapter 3

Distribution amplitudes

This chapter focuses on the structure of distribution amplitudes of vector and

axial mesons, as well as questions related to their calculation.

3.1 Conformal symmetry

Before moving on to defining the properties of matrix elements arising from
the effective Hamiltonian ([2.35)), it is worth giving an overview of the theory
of conformal symmetry, as this will soon be used to define the relevant objects of
interest to this thesis, namely the meson [DAK. These can be derived by exploiting
the properties of conformal symmetry, which is an inherent property of massless
at tree level[] This section largely follows the more detailed discussion
found in [81], which also provides many useful references. The direct application
to the processes considered in this thesis was established at the end of the 1990s,
chiefly by [82, [83].

The Poincaré group, which consists of Lorentz transformations and translations,
can be further extended by the inclusion of transformations under which the
light-cone ds? = 0 is invariant, or, equivalently, transformations that change the

scale of the metric g/, (2) = w(z)g,w (7). There are five such transformations: the

IClearly, the physical quark masses therefore break the conformal symmetry immediately,
but this does not affect the validity of the conformal expansion when applied to [DA, see p.35
of [&1].
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dilatation x, — Az, (for A real), and the four special conformal transformations

x, + 2%a
— T, = —2 £ 3.1
T P 14+ 2a-z+ a2’ (3.1)

where a, is some arbitrary vector. Taken together, these transformations add
five generators D, K, to the usual Poincaré algebra (four translations P, and six

Lorentz transformations M, ).

The action of these generators on an arbitrary fundamental field ®(x) is then

given by
o(x) = iP* ®(x)] = 0"d(x),
M ®(x) = MM ®(x)] = (xH0” — 20" — ") D(x)
dpP(x) = i[D,®(z)] = (z-0+ L) P(z),
e®(z) = iK' @(2)] = (22'z - 0 — 2°0" + 202 — 22, 5") ®(z), (3.2)

where ¢ is the scaling dimension, which specifies the action of the dilatation
operator, while ¥ is the generator of spin rotations for the field ®(z). For
scalar fields o(z), Dirac (spin-3) fields ¢(z), and vector fields A*(z), the action
of ¥X* is given by

Xo(r) =0,
() = S0 ()
S AT(z) = g"T A (z) — g'T AV (z) . (3.3)

Because the conformal group leaves the light cone invariant, particles moving
along (or, more generally, close to) the light cone can be usefully described in
the language of conformal symmetry. It therefore makes sense to consider the
subalgebra that acts on the light cone, and to work in the light-cone basis of

Minkowski space. An arbitrary four-vector is decomposed in this basis as

A= (Ap, AL, AMY,
© pl‘ 2 H mv
A+:A E, A_:AME, Al:gJ_AV7 (34)
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where p? = 22 = 0 are null vectors pointing along the light cone, and
72 nz 1 w v o v
91 =9 —E(pz +21pY) . (3.5)

In this convention, p, is a light-like momentum vector and z, a light-like position
vector, which helps to connect the general theory to the physics it will be
applied to. Fields travelling along the light cone are assigned a definite spin
value s, expressed by the condition ¥, ®(az) = s®(az), where « is some real
parameter. With these restrictions, the remaining symmetries are described by

four generators, which can be written as

L. =L, +iLs = —iP, | L,:Ll—iLQZ%K,,

Ly=5(D+M.), E=2(D-M,), (3.6)
where the Ly ( generate the algebra of SL(2,R), and E commutes with the other
generators. This last operator also defines the collinear twist, t, of a field, through
its action

1

E, ®(a)] = 5(6 —5)0(a) = -tP(a). (3.7)

The resulting group is known as the collinear conformal group. The states ®(az)

are eigenstates of the quadratic Casimir operator:

L*®(az) = Z [L;, [L;, ®(a2)]] = j(j — 1)P(az), (3.8)

1=0,1,2

which provides a definition of the conformal spin j. The operator L_ has the
important property that L_®(0) = 0, which means that ®(0) is the lowest state
in the conformal space. Higher states can be built up by a repeated application

of the raising operator L to ®(0).

In order to apply this algebra to the physics of hadrons, it is important to connect
the general fields ®(az) to operators representing processes. To this end,
consider a non-local quark bilinear g(z)I's(—z), which can arise as the leading
two-particle representation of a meson state. On defining the spin-projection

operators [70]

m, =7 oo 7 (3.9)

Tz T op )

with I, + II_ = 1, it is possible to project onto specific spins of the quark
fields. Using the definition of the spin operator £* (3.3)), it follows that the
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1
2

Jj = % respectively. It is usual to order operators by their twist value instead, so

projections Il = ¢, have spins = £3, and the conformal spins are j = 1,

the bilinear ¢I's can be split into twist-2, twist-3 and twist-4 components:

twist-2 : q+l'sy,
tWiSt—B . (j_,_FS_ + q_FS+ s
twist-4 : q-T's_. (3.10)

This connects general local quark fields to conformal fields. However, in practice
the hadron representations of interest are non-local operators. Returning to the
general case, a product of two conformal fields O, (v, ag) = $1(a12)Pa(ez) can

also be expanded about the origin:

On(O) = le’h (ﬁal, 8a2) @1(0&12)@2(0&22)’ (311)

a1=ag=0 7’

where the P,, are homogeneous polynomials of degree n. It is possible to show
(p.13 of [81]) that these polynomials take the form

o o y—x
Pivi2 (g y) = (x + y) P12 (L2 3.12
(v, y) = (x +y)" Py, ——p (3.12)

where the P,ga’b)(x) are Jacobi polynomials. A similar relation exists for the
important three-particle case, although there the relevant basis functions for the

conformal expansion are Appell polynomials [84].

The final connection to physics is made by considering, for example, the
matrix element
1
OIS M) = ify [ due™ VP, (313)
0
where f1, is the meson decay constant (whose value depends also on the specific
matrix element, indicated here by the superscript '), F(u,u) is a [DA] and pu
is a renormalisation scale, which enters into the complete definition of the [DAL
In the twist-2 case, the form of the [DA] denoted ¢y (u, i), can be extracted by

using the polynomials (3.12)), which for leading twist-2 reduce to the Gegenbauer
polynomials C2/ *(2u — 1). Hence, the moments of the [DA] are given by

[ w2 u = 1ot - (@), (3.14)

0
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where (Qf=2)) is the reduced matrix element of the operator Q!=2, which in turn

is given by

Q(0) = (i04)" <Q(0)F+03/2 (g—:) 8(0)) : (3.15)

— — yas
where the derivatives are defined by 0y = D+ D and Dy =D — D.

The Gegenbauer polynomials cy 2(2u — 1) are mutually orthogonal with respect
to the weight function 6u(l — u) = 6uu:

3n+1)(n+2)
2(2n+3)

1

/ du 6uaC??(2u — 1)C32(2u — 1) = dpnn (3.16)
0

from which it follows that the [DAlitself can be expanded in this basis. 1 =1—u

is a shorthand that will be used for the remainder of the thesis. As a consequence,

the [DAl can be written

Onr(u, ) —6uuZan )C32(2u — 1), (3.17)

where the a, (1) are the hadronic parameters that ultimately define the behaviour
of the [DAL The moments a,(u) are, in principle, scale-dependent, but obey
well-defined [RGl evolution equations [81), 85]. In the two-particle case, all such
moments are multiplicatively renormalisable — that is, they do not mix into each
other — although this behaviour does not necessarily hold for higher-twist [DAk.
In future, the [DA] will be normalised such that fol du ¢(u, ) = 1, which is

equivalent to fixing the zeroth moment ay = 1.

Finally, the asymptotic [DAl is defined as the limit when all moments a,, = 0 for
n # 0, which can be interpreted as the limit when all constituent particles in
the multiparticle state are “at rest”, or have their lowest possible conformal spin.
The general asymptotic [DA] for an n-particle state with conformal spins ji,

M

is given by

C(251 + 242+ -+ + 27,) 2j1-1,202-1 | 2jn-1

¢as-(ui) = F<2j1)r(2j2) - F(an) Uq U < Uy

(3.18)

Section [3.4] collects the definitions of the [DAk to be used in this thesis.
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3.2 QCD and light-cone sum rules

The effective Hamiltonian defined in (2.35)) is sufficient to describe all [FCNCE,
but there still arises a problem when it comes to calculations. The amplitude for
a general process ¢ — f, where ¢ and f are the initial and final states respectively,

can be described by matrix elements (f|#|i), which for the effective Hamiltonian
(2.35) leads to the definition of the amplitude

iA~ Z Ci(p) (f1Oi(p)]i) (3.19)

where the explicit dependence of both the Wilson coefficients and the matrix
elements has been indicated. Unfortunately, the initial and final states for the
decays of interest both include mesons, and these are bound states that cannot
be accurately described. Put another way, although the C;(x) can be computed
perturbatively, the matrix elements are complicated non-perturbative objects and

relate to long-distance properties of the decay.

This difficulty can be circumvented in a number of ways, one of the most
important of which is Lattice [QCDJP]| but the techniques exploited in this thesis
are based on the sum rules formalism, developed in [88, 89], and extended to non-
local Light-Cone Sum Rules (LCSRI) in [90, 9T]. The essence of these techniques
is to replace the hadronic matrix elements by correlation functions, by replacing
states |M) by suitable interpolating currents, which can be built up in terms
of the bare quark and gluon fields defined in the [SMl The resulting matrix
elements can then be calculated using standard techniques, but the important
extra feature is that non-perturbative effects can be classified in terms of non-
vanishing vacuum expectation values, such as the quark condensate (Ggq) and the
gluon condensate <G2>.E| These objects capture the non-trivial interactions with
the vacuum. In particular, the quark condensate (gg) has been studied
since 1968, and is related to the spontaneous chiral symmetry breaking of [QCD]
The Gell-Mann—Oakes—Renner relation [93]
ma fz _

2(my, + my) = ) (3:20)

relates the mass of the pion to the breaking of chiral symmetry (note that the

2Developed by Wilson in [86]; for a review see [87].
3This is formally known as the Operator Product Expansion (OPE) [92].
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chiral symmetry must be broken by both non-zero quark masses and a non-
trivial vacuum condensate (gq) in order to generate pion masses through this
mechanism). Here, f, is the pion decay constant; in the normalisation above, it
has the value of approximately 130 MeV, but other conventions exist in which
the pion decay constant is either v/2f; ~ 184 MeV [94] or Fy = f,/v/2 ~ 93 MeV
[39].

Having defined the vacuum condensates, the matrix elements can then be
expressed as a power series expansion in terms of these condensates. Alongside
the contribution from perturbation theory, this provides a means of estimating
the size of the relevant matrix elements. Unfortunately, there are still problems
with this approach: there is an infinite set of non-trivial vacuum condensates, and
there is no guarantee that the coefficients of higher-dimensional condensates will
converge. A second problem is that the condensates themselves must be evaluated
with non-perturbative techniques. As discussed in more detail in appendix B

even the leading condensates still come attached to sizeable uncertainties.

Still, when combined with the formalism developed in section [3.1] the problem of
evaluating the complicated matrix elements (f|O;(u)|i) can be reduced to one of

determining hadronic parameters.

As an illustration of the [LCSR] method, consider its application to the B — mwer

transition [95, [06]. The matrix element of interest is

(m(p)|a,b| B(pg)) = (05 + P)uf+ (@) + quf-(4%), (3.21)

where ¢ = (pp — p)? is the momentum transfer, and fi(q¢?) are the B — 7 form
factors. [LCSRI are most valid in the low-¢? region (which is to say, on or near
to the light cone). In this region, f,(¢*) is the dominant contribution to the
B — mer branching ratio, making it the form factor most accessible in a [LCSRI

calculation.

The first step in calculating this is to consider the correlation function

I1,.(¢% pB) = (P8 + P)uI14(¢°) + ¢u1T-(¢*)

= / d*ze™ 7 (7 (p) | T{(0)7,,0(0)b(w)ivsd() }|0) (3.22)

where the B meson has been replaced by the interpolating current b(x)iysd(z).

Allowing the b-quark to propagate, and performing a spin projection using the

31



Figure 3.1 Diagrammatic interpretation of , with the B-meson replaced
by an interpolating current. The pion is on the right, and, in a
representation used throughout this thesis, the b quark is indicated
by a double line.

decomposition (A.19)), results in

5y o 1 , Ak elhmpe)T - .
(g pp) = =7 [ d DTy — (7 (p) [u(0)y " y5d(2)[0) Tr [y7 757, (K + 120) 7]

. dAk ei(kpr)':p -
— / ' oty (M0 25()0). (3.23)
This leaves behind the pion-to-vacuum matrix element; using the techniques in
section this can be defined in terms of the leading twist-2 pion distribution
amplitude (3.17)):

(m(p)[w(0)7,75d(2)]0) = —ifrpy /0 due"™ " (u, 1), (3.24)

where, in this normalisation, f; &~ 130 MeV, as in (3.20) [97]. The physical
interpretation of the parameter u is that it is the momentum fraction carried by

the u quark. Using this definition, and performing the z- and k-integrals, leaves

1
I0,(q% p2) = f. / d or(u, 1)
u(a7PB) = frmupy ; umg — up?, — ug?

1 ' or(u, 1)
= T (¢*,ph) = §f7rmb/0 dumZ el (3.25)

where the second line follows from comparison with the decomposition given in

(3.21), and matching the coefficients of p,,.

Before moving on to the second aspect of form-factor calculations, quark-hadron
duality — outlined in more detail below — it is worth stressing that the computation
presented in is merely the leading contribution, and can be extended in
multiple ways. Firstly, the propagation of the b-quark can include higher-order
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(QCD| corrections. The necessary expression of the modified quark propagator
to account for these corrections is given in equation (A.33]), while an alternative
form will be used in chapter [7] for the related expansion of the charm quark
propagator. Expanding the b-quark propagator in this way leads to additional
loop and radiative corrections, and also necessitates an understanding of three-
particle distribution amplitudes for the final-state meson. The three-particle

distribution amplitudes in the vector-meson case form the topic of chapter [6

A second source is to include higher-twist corrections to the two-particle
correlation function (7(p)|@(0)7y,v5d()|0). These go beyond the purview of this
thesis, and the interested reader is referred to [08], as well as [99] for the similar

expansions of vector meson [DAK up to twist-5.

Bearing in mind these limitations, the computation can be regarded as the
leading computation. On its own, though, this is still not enough to compute
the form factor of interest fi(¢q?). The next step is to consider I, (¢?, p%) from
the point of view of hadrons: comparing and will then lead to an
expression for the form factor. In terms of hadrons, the leading contribution will

be due to a pole at the B meson resonance, which means that

mZBfB f+(q2)
my m%y—ph

I, (%, p%) = +..., (3.26)
where fp is defined, in analogy with f,, in terms of a B-to-vacuum transition:
m% fg = my(0|qivsb| B). The assumption that allows the two expressions to be
related is that of quark-hadron duality: in a given region, the results of calculating
processes in terms of quarks will coincide with those defined in terms of hadrons
[100, [10T]. This duality is clearly necessary in order to make any further progress,
but careful attention must be paid to the “+...”7 in ([3.26)). These represent
contributions from higher resonances, and in principle there is a continuum of

such resonances.

The more formal statement of the duality above is that

* ds *  ds
I (¢?, p? :/ 2 —/ ——(¢? 3.27
+(q apB) mg S_pQBp(q 75) sOB S_pQBp(q 75)7 ( )

where the parameter sf represents the width of the interval in which duality

applies, or, equivalently, the continuum threshold [95]. The function p(¢?,s) is
the spectral density, and, from comparing with (3.25)), can be expressed in terms
of the DAl o, (u, 1), which has the usual asymptotic form for a two-particle twist-
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2 DAl of . (u, ) = 6uu (3.18). Note that (3.27) is a consequence of Cauchy’s

integral theorem, which states that

fP) = — 75 as 18 (3.28)

- 2mi s—p

for analytic functions f(p?), where I' is a closed contour in the complex plane
that separates the pole at s = p? from all other discontinuities of f(s). If f(s)
falls off sufficiently quickly as |s| — oo, then the contour can be extended to oo
and be expressed only in terms of the discontinuities of f(s), i.e.

f*) =

1 /dSDisc.f(s) (3.29)

T s—p2

which will also be used in the context of the charm loop calculations of chapter
m. Here, though, it allows the left-hand side of (3.27)) to be written in terms of
the continuum of states, which manifests itself as a branch cut in the complex

plane of TI(¢?, s).

Explicitly, then, the form factor f, (¢®) can be expressed as

myfe fi(d) 1 pr(u, 1)
7 3 st =5 [ du—; 5 (3.30)
fwmb mp — Pp 2 w My — UPp — ug>
but the presence of further contributions to the left-hand side means, as stressed
earlier, that this first result is unreliable. The situation can be improved by
means of the Borel transformation, which will be discussed in more detail in the
following section, but in this case amounts to a further (exponential) suppression
of any higher resonances on the left-hand side. Using the results in appendix[A.5]

the final, leading order, result for f, (¢*) becomes

2 1

myfB (m2—m?%)/M? 2 1 / d ©r(u, p) —a(m2—q?)/(uM?)

— = - —_— 3.31

mgfﬂ_ € f+(q ) 9 v U U € ) ( )

h
winere mz B q2 (3 32)
Uy = ——5 .
0 S0 — q2 )

which follows from the continuum subtraction in (3.27). The [DAl ¢, (u, i) has
the form in (3.17)), with the further restriction that, owing to G—parityﬁ the odd-

4G-parity, defined by the operator G = Ce™ "2, where C is charge conjugation, and T5 is
the isospin rotation about the 2-axis, provides the extension of charge conjugation to particle
multiplets. It can be interpreted as a quark-antiquark exchange. The odd-numbered moments
an in are G-parity odd, and therefore in mesons with identical quarks (the v and d quarks
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Figure 3.2 Characteristic behaviour of the pion form factor f(q?) , where
the Borel mass scale M? has been given three different values Mé, =
5 GeV? (top line), Mé = 6.5 GeV? (middle line), and M12§ =8 Gel?
(bottom line). In this computation pr(u, ) — 6uu has been used,
so that the results are independent of the remormalisation scale
w. The predicted value of f1(0) ~ 0.20 above is somewhat lower
than that obtained from the more complete calculation in [95], but
the characteristic behaviour implied by the model s clearly

illustrated.

numbered Gegenbauer moments are identically zero.

This tree-level version of the sum rule is not accurate enough, but leads to the
results in figure 3.2l Further corrections, from higher-twist [DAk and radiative
corrections, are also rather important, but the qualitative behaviour is the main
feature of note in this leading calculation. Form factors can typically be modelled

by the form
F(0)

T -/}
which reflects the resonant behaviour, and this is also shown by the result in [3.2]

even for the leading calculation (3.31f). This simple expression is, on its own,

F(q?) (3.33)

insufficient to capture the full behaviour of form factors, as indicated by the dots.
In many cases extra ¢? poles, or a further quartic term in the denominator, will
be needed [99, 102], but nevertheless is the archetypal model for the ¢
dependence of form factors, and it is instructive to see how this is captured by

an [LCSRI calculation in the simplest case.

also being equivalent under G-parity) these moments vanish [70].
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3.3 Borel transformation

The sum rule derived for the form factor fi(¢?) in the previous section relied on
the Borel transformation to improve the convergence. The Borel transformation

is defined as

M) =Bf(Q) = i @) (4N e 3.34
where Q* = —p? is a Euclidean momentum and Q*/n = Mé defines the Borel
mass. The immediate advantage of using a Borel transformation in sum rules

calculations follows from the properties

B(pQ)” =0,
o 1 2 /02
__ _—m?/M?
b=
A1 1
B = (3.35)

@ (R

which implies that any uncalculated polynomial terms vanish under Borel
transformations, while poles appearing from higher resonances in the meson
spectrum are exponentially suppressed. Both of these properties therefore help to
improve the validity of the sum rules by removing or suppressing terms that were
neglected in the left-hand side of (3.31)). The trade-off is that this introduces
a new, arbitrary parameter Mé, which has no physical meaning. The Borel-

improved sum rules then can only have meaning in a region where the dependence

of (3.31) on M} is minimal.

On the right-hand side, in terms of the [OPEL a typical sum rules calculation leads
to contributions from vacuum condensates, here denoted schematically by (Q4)),

where d is the mass dimension of the condensate:
Cq
1(Q%) = Hpr(Q%) + Z W(Q(d)) ; (3.36)
d

where the correlation function IT(Q?) has a mass dimension n, and ITpr(Q?) is the
perturbative contribution to the correlation function (along with any polynomial
terms). The Borel-improved version of this sum rule ensures that the polynomial
terms vanish, but will introduce only a factorial suppression of the condensates,
according to the third line of . In practice, therefore, the sum in (3.36]) must
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be truncated at some mass dimension d. This introduces yet another uncertainty
into the method: there is no guarantee that the coefficients ¢, will be sufficiently
small to be completely negligible, but on the other hand condensates of higher
mass dimension can be increasingly difficult to calculate to any degree of certainty.
But then, since the point of this computation is to evaluate the non-perturbative
effects, it would be pointless to suppress these terms altogether by taking M ; —

Q.

A further practical difficulty emerges when considering the sum rules for a particle
for which it is known that there is a lower resonance in the spectrum, as well as
the continuum lying above the meson of interest. This can be a problem when
calculating the sum rules for axial mesons, such as the a;, which are contaminated
by the presence of the pion. The way to circumvent this difficulty is to ensure
that the left-hand side of scales with the meson mass, since m2e ™r <
mgle_mgl, whereas ™™+ > ¢ ™. If this does not occur by definition of the
correlation function, then it is legitimate to introduce this scale by taking instead
the Borel transformation of Q*IT1(Q?) instead. This exploits the relation
Q2 Q4 m? m2 m2

- . - .
m2+Q2 m2+Q2 m2+Q2 m2+Q2’ (3 37)

and then the residual polynomials so created by these manipulations vanish under

Borel transformation.

The trade-off for this is to reduce the suppression of higher condensates on the
right-hand side, but this is often a price worth paying; for typical values of
2
/

mfg, ~ 2 GeV, the exponential e "'~ ™% is about twice the size of ¢ "/ m%, but

2,\

2/,.2 . . . .
ma /M 8, which is a clear improvement.

2
is no more than 5% of m2 e /™

mie”
Not sufficiently suppressing higher condensates, however, increases the potential

uncertainty due to their contribution.

The net effect of all these competing considerations is that there is a limit to the
accuracy attainable through any sum rules calculation. Despite this, the method
has been shown to work in practice, and an uncertainty in the region of even 30%

can be easily tolerated.

The rule of thumb adopted in Borel-improved sum rule calculations in this thesis
is to insist that the Borel scale is fixed such that the contribution to the final
result from the condensates of highest dimension is between ~ 10% and ~ 30%

of the total value; this will define the “Borel window”. This rule also amounts to
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Figure 3.3 Scaling of f1(0) (3.31)) with increasing Borel mass, for central values
of the parameters. Again, the numerical estimate of the form factor
s not the feature of interest, and instead the qualitative behaviour
18 the main point. It can be seen that for values of the Borel mass
that are too low, the sum rule estimate is unstable; on the other
hand, choosing a Borel window that is too high risks suppressing the
non-perturbative behaviour altogether. This leads to a typical range
for sum rules of this kind of process in the range 5 GeV? < Mé <

10 GeV? [95].

requiring that the variation of the extracted value of any sum rule be only weakly
dependent on the Borel parameter M é, in a given range. Figure illustrates this
idea by plotting the dependence of f,(0) (3.31) on Borel mass, where the Borel
window is taken to be around 5 to 10 GeV?. The Borel window will, however,
vary depending on the specific computation. In the calculations for vector meson
sum rules, in chapter [6], the typical scale of Borel mass will be rather lower, as

the appropriate scale is somewhat influenced by the mass of the relevant meson.

Useful results for the Borel transformation of different functions are given in

appendix [A.5]

3.4 Definitions of distribution amplitudes for

vector and axial mesons

This section collects the definitions of the[DAk used in this thesis, establishing the
notation of chapters [6] and [7l Throughout this section, and the work in chapter
[0, the two quark flavours are distinguished for clarity. The three classes of meson

under consideration are the vector mesons, J® = 177, and two axial meson
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nonets, the J©¢ = 1 and 17~ nonets. In spectroscopic notation, these are
denoted 3P, and ' P, respectively, although results will primarily focus on the 2P

nonet.

Definitions of the[DAk can also be found in [82] 83 [R5, 99, 103}, 104], with differing
notation developed as the field has progressed. The notation below is somewhat
inspired by that used in the earlier works of [82], [83], but relations to the more
modern notation are provided in table The reason for this reversion is that
relations between vector and axial meson [DAk can be made more transparent
when the [DAk are labelled in terms of the current that generates them. Thus, for
three-particle[DAE especially, those generated by vector, axial, and tensor currents
will be denoted V, A, T respectively for vector mesons, and V, A, T respectively

for axial mesons.

The two-particle twist-2 matrix elements for vector mesons are defined as

1
0125 K* (1, p)) = Flhomicen, / due= =gl (u, 1),

1
<0|Q(Z)UILVS(0)|K* (U,p)> = Z.f[%*n[upu] /0 due_wp‘zﬁbé;[(* (u, :u) ) (338)

where 7 is the polarisation vector. Terms of higher twist are neglected for
simplicity. The twist-2 [DAk have the usual conformal expansion in terms of

Gegenbauer polynomials

S (u, 1) = 6ui <1 + Z I ()32 (2 1)) , (3.39)

where p is the [RGl scale. All results will be only for the first few moments,
as beyond n = 2 in the conformal expansion the contributions from higher
condensates become increasingly significant and the sum rules approach becomes
unreliable at lower order. Definitions for higher-twist two-particle [DAk can be
found in, for example, [82, [99] [103]. The equivalent twist-2 matrix elements for

axial mesons are defined by [104]

1
(017(2)7755(0) | K a (1, 9)) = Freemsy sl /0 due™ 2l o (u, 1),

1
<0|€7(2)UW753(0)|K1A(777p)> = Z‘fléan[upl/] / due_wp.zQSQL;KlB (U, ILL) ) (340)
0

where, owing to G-parity, ¢2 Kos (3P)) has vanishing odd moments in the limit of
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equal quarks, and qbi k., has vanishing even moments. The opposite is true for
the K15 (1P)) state.

The matrix elements for the three-particle [DAk are defined as

(O] (JY (2,02,00) ™ |K*(n, p)) = 0Dt flompc V(v p - 2),
(0] (JA(Z, vz, 0>)a6u |K*(n,p)) = U[Lapmp“ }l(*mK*.A(v,p - z),
aB * e
O] (J5(2,02,0))" |K*(n,p)) = in*p” fie.m%.S(v,p - 2) ,
af * e
O] (J7(2,02,0))* [K*(n,p)) = in'*p” frm%. P(v,p- 2)

afuv (2 afuv4-(3
LT W 2) + LT 0p - 2)

T ) ) (3.41)
where JX = q(2)G*(v2)xs(0), with G*(vz)x determined by the current of
interest, according to the definitions in tables and [3.2l Each three-particle
[DAlis further specified by

O(v,p-2) = /Dgeip'z(QQJ“”a?’)q)(g, ", (3.42)

where Da = daydasdasd (1 — Z?:1 ai). In analogy with the variable u of two-
particle DAL, the three «; can be interpreted as the momentum fractions for the
three particles in the meson: specifically, (aq, ag, ag) are the momentum fractions
of the s quark, ¢ quark, and gluon respectively. The delta function then imposes
conservation of momentum on these partons. The further variable v € [0, 1]
determines the spatial separation along the light cone direction z between the s

quark and gluon.
The L are Lorentz structures given specifically byﬂ

n-z Bv v
L1 = 2p—z (papugL — pﬁpugi — (< V)) )
Loy =iy =gl — (u e v),
Lo =p"nigl" —p"nlg? — (nev)

1
_ o, B v Yo v
Ly = o 02 = P2 = (p o v))

5Owing to the conventions for indices in this thesis, this expression appears to differ from
that given in equation (4.1) of [103], but the two are identical up to a relabelling of indices.
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DA twist chirality | G x rx
V= <I>H[ ] 3 even GoPiyt o
A= @g[p] 3  even GoBrybirys
Tz = 3[ J 3 odd

TW=a; V| 4 odd
TH =0t 4 oad GoBgt | go'#
TV =0, 4 odd
TW=a, | 4 odd
S= \IJL[ ] 4  odd G*81 o
P =g, 4 odd GPirys

Table 3.1 The currents of interest, labelled by the gluon field type and Dirac
structure of the current and the corresponding distribution amplitude.
This thesis uses the labels S, P, etc., to distinguish each current and
more simply. The leftmost column indicates the conversion to
the standard literature definitions for these[DAls [85, [103]. The right-
hand column represents the vertex used in the non-diagonal sum rules,
to be computed in chapter @

1
_ - a, B v__ B v
Ly =-— (p mipt =Pt = (n e V)) : (3.43)

For axial mesons, the definitions follow by replacing the currents in (3.41]) above
by the equivalent definitions in table , leading to the [DAk V, and so on. The
properties of these [DAk for the 3P, mesons are shown in the same table; those

for ' P, mesons are outlined in [104].

The DAk V, A, T, 71(1), 71(3) above all have a well-defined conformal expansion,
which can be written in the basis of Appell polynomials [84]

D (j1, f2, J3, @) = @O (j1, fia, G, Z Wy ]l’h’% T (2(J1 + g2 + 73) — 1,272, 2J3, 0, )
k=0
(3.44)

where

['(2(51 + j2 + j3)) N N

O (j1, jz, ja. @) = 3.45
(]17]27]3,@) T (2]1) T (2]2) T (2]3) (6% Oy ( )
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[DA] twist chirality | G x X
Y= (IDHH 3 odd GoBay o
I » T
A= <I)3[p] 3  odd GoPiryteys
T = 3 even
71(1) = @zg) 4 even
~4(2) = (I)i[(ﬁ?) 4 even (—i)éaﬁa"” o'?
72(3) = <I>i[§’) 4 even
7;(4) = CI>4L[/(;]1) 4 even
S = \Ifl[ j 4 even GoPi1 .
a5
P= ‘114[ J 4 even GBrys

Table 3.2 The equivalent definitions to those in table for 3P, mesons, using
p = a1 as a template.

is the asymptotic [DAl and explicit expressions are

3 3
q)(1,1,3/2)( ) _ 360a1a2a3 (w[()161,3/2) + w§}61,3/2) (043 . 5()41) + w(()}l,l,sm) (a3 _ —a2>) :

2
3
(I>(1/2’1’3/2)(g) _ 60a2a3 (w((JI({Q 1,3/2) + C0510/2,1,:’)/2) (a3 — 3a1) + W((),l1/2’173/2) <a3 _ 50@)) ,
3
L1232 () = 6002 (w((Jlol/2 A2 4 WS(SI/Q’?)/Q) <a3 - 5041) +w (1 12372 (a3 — 3a2)) )
O () = 1200 apars ( (() Dy w(l’l’l) (ag — o) + w(l’l’l) (s — ag)) .
(3.46)

®(1:13/2) (@) is the expansion for all twist-3 three-particle[DAk, while the others are
important only for twist-4 expressions. For the twist-3 [DAk, it is more convenient
to work in the basis [81], T04]

® (j1, 2, j3, @) = @ (ji, 2, Js, @) Z Z UN,HYJSIITLQB (a1, az, as) (3.47)
N=0n<N

(12)3 DN @121 (21-1.2j2-1) [ X2~ 1
YNn (Oél, g, 063) = (1 Oég) PN—n (]_ 2043) Pn s
2 1— Q3
(3.48)
where the P (x) are Jacobi polynomials. This basis is orthogonal, but can only

be applied to [DAk for which the conformal spins of the quarks are identical, a
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fact that appears to have been overlooked, or at least not emphasised, in previous
literature. When extending to twist-4 [DAk, it will therefore be essential to work
in the basis of Appell polynomials. The relationship between the two bases can

be also expressed in terms of the parameters:

A =
1
2 (G o) =,
3
B (Gl ol ) Zuy, 3.9

In future applications, this series expansion will be restricted to the first three

terms, where hereafter (using the V [DA] as a template)
voo = Vo, vi1=Vayv, vio=Vov- (3.50)

The relation of the first three parameters in the notation of this thesis to the

standard literature notation [85] is as follows:

Vow =Ky Vaw = wiy Ve = My,

ll ol ~l
A(O)V — 53V A(l)v = )‘3V ) A(Z)V = Way
Tow = ’{?%V ’ Tayw = Wal\/a Ty = )\év. (3.51)

The DAk S, P, ’7;(2), ’72(4) do not have a well-defined conformal expansion by

themselves, and instead one must define auxiliary functions

Fr=8+T7",
Fl=s-T",
Fr=P-T",
F=P+7, (3.52)

which do have an explicit conformal expansion [103], making use of the functions
P(/213/2) (o) and ®11/23/2) () in equation ([3.46)).

This thesis focuses on applications of the methods above to the twist-3 case, with
some results for twist-4 [DAk presented in appendix [D] but it is hoped that the
more general notation developed above will be useful for extensions of the work
presented in chapters [6] and [7]
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Chapter 4

Generalised helicity formalism and
the B — K*(— Kr)({ decay

In the 1990s, the B factories at Belle and BaBar began gathering data related
to B meson production and decay properties. Almost inevitably, in anticipation
of the results and continuing through the full programs of these experiments,
theoretical predictions associated to relevant decay processes were developed and

enhanced.

The research programme investigating decays specifically of the type B — K®*)¢¢
can be said to have begun at the end of the 1980s [105, 106]. The earliest
studies were restricted to the decay rate, before moving to consider the angular
distribution without the subsequent decay of K* — K [107], and finally with
the full four-body final state in [I08]. After mass corrections from the final-state
leptons were added [109] [110], studies of this process were extended to include the
full dimension-six operator basis, including scalar and tensor structures [78, 111}~
113].

The B — K*(*{~ decay was first observed in 2003 by both the Belle [114] and
BaBar [I15] Collaborations, although it was not until later that more detailed
measurements were made [116] [117]. Once the LHC began operations, the LHCb
experiment also started to study the decay, and in 2013 announced the first signs
of a possible deviation from the [SMlprediction in the observable known as P [20].
This has prompted further experimental measurements of these observables, both
by the LHCb and other experiments [22], 24] 25, 118]. ATLAS and CMS have also
released results on the angular distribution [119, [120]; the ATLAS result supports
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the P! anomaly, whereas the CMS result appears more consistent with the
prediction [121]. Currently, the tension between experimental measurements and
theoretical prediction is not significant enough to declare a certain discovery (of
either bona fide NPl or some previously unanticipated effect within the [SM]), but
it is usually held that the tension is approaching the level of 50 [27, [122]. The
latest status of decays of this type is summarised in [123], which also provides

many other useful references.

This chapter presents a generalisation of the helicity formalism to effective
field theories of rare decays of the type B — K, (— Kn){1ly, and illustrates
its application by deriving the full angular distributions for B — K¢l and
B — K*(— Kn)lly for the complete dimension-six effective Hamiltonian,
including with non-equal lepton masses. With the inclusion of non-equal lepton
mass terms, the principal results of this chapter can be regarded as a completion of
the theoretical description of the full angular distribution of this decay, following

the work described above. The method was also discussed in chapter 8 of [124].

This chapter is based on work previously published in [34].

4.1 Introduction to the helicity formalism

The helicity formalism, introduced in 1959 [33], presents an alternative method to
compute the structure of angular distributions for a given decay. The formalism
relies on conservation of total angular momentum of a system, and on the
invariance of the helicity, A = s-p, under Lorentz transformations centred on the
direction of momentum. This section introduces some of the key concepts of the

formalism; for a more complete review, see, for example, [125H127].

The base unit of the helicity formalism is a one-to-two particle decay chain A —
B1B,. In the rest frame of the initial particle A, the state of that particle can be
written |J4 M), and, for a decay governed by the operator O, the matrix element

of interest is

Mop,B, = (P1, M, P2, o] O] Ja M)
= <97¢7 )\17)\2|OA|JAMA>7 (41)

where in the rest frame of A, the two decay products are produced back-to-back

along some axis defined by the angles 6, ¢. The final-state |p1, A1, p2, A2) is a
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plane-wave state, but it does not have a definite angular momentum 5. To move
to the helicity formalism, the final state above is projected over states |7, m, A1, A2)

with definite helicities m, so that

MA—>B1B2 = Z<07 ¢7 )‘17 )‘2|j7 m, >‘17 >‘2><]7 m, )‘17 /\2|OA|JAMA>

j7m

12J4 +1
= A DZ{/I[L&A,M*)\Q (¢7 0, _(b) A>\1/\2 ) (4'2)

which splits the amplitude into two separate parts: the Wigner functions,

D}(jm M, (0,0, =), describing the angular structure; and the helicity amplitude
(HA]) A,,»,, containing all physical information about the decay.

The Wigner functions provide a representation of SO(3) of dimension (2.J + 1),

as seen through the action of the rotation operator on the state |jm),

i
R(a, B,y)|jm) = Y Doy (0, 8,7) jm) (4.3)

with Euler angles (a, £,7). The final angular distribution is given by the square

of the matrix element, summed over external helicities.

The Wigner functions obey many useful properties, fulfilling in particular the

orthogonality relations

_ 872
/ Dfn,n (Oé7 57 fy) D;;,q (Oé, 67 ’Y) dad cos Bdry = méjlémpénq ) (44)
along with the general representation
Dﬁn,n (Oé, /87 7) = eiimadin,n (ﬁ) e*in’}’ )
D, (0, B,7) = emd), , (B) €™, (4.5)

where the d} . (B), the little-d functions, are standard, and can be found

tabulated in many places in the literature, e.g [128].

A striking feature of the helicity formalism can be seen when considering

sequential decay chains; in the simplest example, in the decay chain A — By(—
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C4C5) B3, the matrix element becomes [125]

2Ja+12J5+1
MA—>Bz(—>C4C5)B3 = \/ A A Z D}%A,)\Q—Ag (QA> A>\2)\3D]{/§2,>\4—)\5 (QQ) B)\4>\5 )

N (4.6)

which is to say that the amplitude becomes a product over two decay chains,

coherently summed over the helicity states of the internal particle By. The angles
Qu = (04,04) and Qy = (0, ¢y) are defined in the rest frames of particles A
and Bs respectively. This procedure can be applied arbitrarily often to describe

increasingly complex decay chains built out of any number of 1 — 2 decays.

Using the helicity formalism therefore reduces the calculation of the angular
distribution to one of computing the [HAk. In general, these can be complicated,
non-perturbative objects, but once computed, or parametrised, they can be fed

through the formalism above in a systematic way.

4.1.1 Helicity formalism for B, — K, (— K1K>)ys (— (10s)

Consider the following sequential decay:
By, = Ky (= KiKy)y, (= lils), (4.7)

where Jp, J, and Jgk denote the spin of the particles B, v, and K ;. Assuming
the decay to be a series of sequential 1 — 2 decays, the amplitude can be written
in terms of a product of 1 — 2 [HAk multiplied by the corresponding Wigner

functions

A(QBa QE? QK|)\Ba )\K17 >\K2a )\1; )\2) ~
= = =.J
D D s () Hane DR s e () Ko ey, DX, (20) L,
Ay AK

(4.8)

where the \; are helicity indices, and
)\g = )\1 — )\2 (49)

is a convenient shorthand notation. The [HAk H, K and £ correspond to the
transitions By, — Kj.v5,, Kj, — KKy, and 75, — (105 respectively. The

helicities of the internal particles v; and K ; have to be coherently summed over.
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In order to ease the notation slightly, it is convenient to move straight to the case
B — K;(— Kn)v, (— 61672) The relation D)\ o /\V_AK(Q) = 0p,n,—2, implies
equality of helicities

A=\ = Ak . (4.10)

One may therefore write Hy r, — H,, which is the quantity known as the
(hadronic) [HAlin the B — K*¢*{~-literature, and carries the non-trivial dynamic
information. The [AICy, x,, reduces to a scalar constant (denoted by gr,xr),
since K1 — K, Ky — 7 are both scalar particles. The third [HA] £, ,, depends on
the interaction vertex of the leptons, and can be systematically computed once

the interaction is known. One may rewrite the amplitude (4.8)) as

A(B = K, (= Ky, (= Gf) ~ > D (Q) DYy, () Ay, (411)

A=—Jxk
where the angles, depicted in figure , are Qg = (0,0k,0) and Qy = (¢y, Op, —p).

Note that the passage from D to D-functions from (4.8)) to ([4.11)) is related to
passing from B to B.

In this template, the amplitude Ai”/\l Ny ~ HxLxx,|s, is the product of the
hadronic and leptonic matrix elements. The angle ¢, is the helicity angle, and is

usually called simply ¢. The fourfold differential decay is then given by

d‘r 9
~ ~ 4.12
dq?d cos 6,d cos O dp /\X)\: A (412)

1/2

JK — JK
> Z AN o AN e Die” () DS Q) Dy, () D37y, ()

A, Ae=—1/2 AN =—J,

Although the work until now has been somewhat general, the remainder of the
chapter focuses on the specific decays of interest, using B — K*(( as a reference.
Throughout this section, the further assumption will be made that the decay
proceeds to its final state mesons via a long-lived intermediate meson state, an

assumption also known as the narrow-width approximation [78].

It is important to be clear about the conventions for angles. These have been

!The decay mode B — K j¢1{5 serves as the main template for the results in this chapter
and the associated appendix. Such transitions are governed by the b — s Hamiltonian ,
which is the standard in the theory literature and is used to define the Wilson coefficients. In
the more conceptual sections, the B — K ;{15 transition is used instead. The two are related
by a C'P transformation.
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Figure 4.1 Decay geometries for B — K*{10y (above) and B — K*{1{3 (below).
In both cases €1 = £, £y = £~ denote the negatively charged lepton.
The conventions are the same as used by the LHCbH collaboration
in [129] (cf. appendiz A therein). Comparison to the convention
used by the theory community can be found in section [{.4 It is
important to remember that the angles 0y i are drawn in the rest
frame of the lepton-pair and the K*-meson. For decays that are
not self-tagging, such as Bs, Bs — ¢(— KTK " )uTu~ at the LHCb,
the angles (0¢,0k,¢) — (m — by, — Ok, 2m — @), and one can only
measure the sum of both decay rates (see also discussion in section

.
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somewhat ill-defined in the previous literature, and in particular the theoretical
and experimental communities have tended to use different conventions. In this
chapter, the angular conventions are the same as the LHCb collaboration ([129],
appendix A), which differ from those used by the theory community. More precise

statements, including a conversion diagram, can be found in section

4.1.2 Effective theories rewritten as a coherent sum of

sequential decays

The amplitude is of a completely general form for the decay where v, is
an actual particle of spin J,. In B — K*(— Km){1ly a part of the amplitude
is in this form where the photon corresponds to the intermediate state (y; = 7).
In general, there are effective vertices where the intermediate particles are not

present.

The effective Hamiltonian for the decays considered in this chapter was presented
in (2.42). In the case where electroweak corrections are neglected, one may
factorise the hadronic from the leptonic part. This is referred to as the Lepton
Factorisation Approximation (LFAl). Schematically, the Hamiltonian can be seen
as a product of a hadronic part H and a leptonic part £ with a certain number

of Lorentz contractions between them:
No N N
HT ~ N HLy+ Y HLLY+ > H L0 (4.13)
a=1 b=1 c=1

The sum over a, b and ¢ extends over operators with 0, 1 and 2 Lorentz
contractions between quark and lepton operators. In the example of the operator
Oy = CVEL'yMb@y“K , then in the notation above H,, = Cy517,b and LV = Oy
On a formal level, Oy (Og) can be thought of as originating from integrating out a
vector and a scalar particle, in the sense that the Lorentz contraction over index
p can be written as the sum of products of a spin-one and a (timelike) spin-0

polarisation vector. This is expressed by the well-known completeness relation
(e.g. [109, 130, 131])

g’w = Z WM(A)@V(A/>G)\X 5 G)\)\’ = dlag(L _17 _17 _1) ’ (414)

AN E{t,+,0}

where the first entry in G,y refers to A = X' = t, and an explicit parametrisation
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is given by

K — L 7
wh(£) = \/ﬁ(o,il, ,0),
1
WMO = T = z70707 0/
(0) \/?(q %)
wh(t) = ! (40,0,0,¢.) , (4.15)

which is consistent with the parametrisation ¢* = (go, 0,0, q).

It is worth noting that intermediate results, in particular the [HAK, depend on
the choice of convention for the polarisation vectors, although the final results at
the level of the angular distribution do not. The conventions above are chosen
to be consistent with the Jacob-Wick phase conventions [33]. These issues are
discussed in more detail in appendix [C.1]

The vectors w can be associated with the Lorentz group SO(3,1). In particular,
in the rest frame ¢, = 0 the timelike polarisation tensor transforms as a scalar
under the restriction of SO(3,1) to spatial rotations SO(3). Insertion of the
completeness relation (4.14]) corresponds to the decomposition, or branching rule,

(1/2, 1/2)50(3,1) — (1 + 3)50(3) s (416)

50(3)

where (1/2,1/2) is the irreducible vector Lorentz representation. The single
completeness relation (4.14]) can also be written in the form

1 J
Gap = Z Z Ei’AEZ’A ; (4.17)

J=0 A=—J

with €/ = §10a(N) + 00wa(t). Written this way, it is more transparent that
the completeness relation can effectively be decomposed into spin-1 and spin-0

contributions.

This can be extended in a natural way to higher-spin operators. Inserting
the completeness relation twice corresponds to the tensor product (1/2,1/2) ®
(1/2,1/2), which decomposes as

((1/2,1/2) ® (1/2,1/2))s01) = ([(1L D] @ [(1,0) & (0, D] © (0, 0)sown |, . =

(1-5@1-301-1]@[2-3]@1-Dso@ =(1-503-302-1)s0 - (4.18)
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More generally, for an effective operator with n Lorentz indices, the completeness
relation can be inserted n times to obtain a [HAl with n helicity indices.
The direct product of SO(3,1) polarisation tensors decomposes into irreducible
representations of SO(3) polarisation tensors ef“’\ i
helicity A = —7,..., 5. This allows the completeness relation to be extended to

of spin j = 0,...,n and

operators of arbitrarily high Lorentz index and spin decomposition. To illustrate

this point, the explicit “double completeness relation” has the decomposition

JapG~ns = 5&675 + 5aﬁﬂ/5 + 5aﬂ76 s (419)
where
JA—J,A st EA—LA EA—LA st tt —tt
Oagys = Z Z Woy W5+ Oapys = Z WayWes — Z WaWss 5 Oagys = WarWss -
J=0 A=—J A=—1 A=—1
(4.20)

represent the contributions to the completeness relation with zero, one, or two
timelike polarisation vectors, and

wg;\ = wa(t)wvo‘) ) wgy = wa()wy(t) ,

Z Ciainaa(An)wn (X2) | (4.21)
A1, de=—1

with A = A; 4+ Ag in the first term. The minus sign in front of 4.5 in
arises from an odd number of timelike polarisation vectors, and this pattern would
continue to higher completeness relations. The first, second, and third term in
correspond respectively to the (1,1)-, [(1,0) @ (0,1)]- and (0, 0)-terms in
. One may also rewrite in a form that makes the decomposition into
the different spins j explicit:

2 J
Jas9rs =D D € Ep (4.22)
J=0A=—J
where the scalar product “” stands for

A 2SN 0,000 it —t =LA A=t A A=2,\
€y €55 = 00 [wcww/% —I—wwwﬁa} +d1 [wmwm —w L Wss wwwéﬁ ]+5J2 [ch Wy

(4.23)

Using the expressions in equations (4.17) and (4.23), the combined [HAI Ai”)\l Xy
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in ([{.11) can be written af]

(

(Hu)(Ca)+ (HPNLR)epe”  H(HE L)) s I, =0

AN = 4 (HEWLEYLAELN  (HENLof) ) e T, =1

\ (HI) (L0 e & 0y =2
(4.24)

where summation over Lorentz indices and the number of operators in (4.13)) are
both implied, and

() = (RO [H By, (£6047) = (6 () B (o) £ [0) - (4.25)

are the leptonic and hadronic matrix elements. The helicities in (4.24]) are those of
the outgoing particles of the [HAk, with A for K;()\) in HZ 757k and Ay = A\| — Ay
for £1(\1)fa()2) in L7708 This is the main idea of the formalism: the angular
dependence from the ingoing to outgoing particle is governed by the Wigner D-
function, e.g. €/t = D \, (20) € eltxe for LN 7AAECR) which is inherent in
(4.2). The generalised IHE then becomes a sum over all spin components J,

necessary to saturate the Lorentz indices in the effective Hamiltonian

m min(Jy,Jk)
Ly Y

Jy=0 A=—min(J,JK)

AB = Ky, (= Kn)lyly) = D5 (Que) DYy, (Q) Ay, 5

(4.26)

where the overall factor follows from (4.2). A schematic representation of

equation ([4.26) is given in figure [1.2] The differential decay distribution (4.12) is

replaced by a similar expression

d'T 2JK +1
dq?d cos 0yd cos O do Z Al* = Z Z Z X

A1 JyA J’ N

Jy Iy N7
A}\,/\l,)\g ,\' AL, AQD% (QK) D .0 (QK) D,\,,\e (QE) DX,)\,_; (QE) ) (4-27)

*In the notation used throughout the literature, H* = (H}")e)* = (H})w,(t) is known as the
timelike [HA] [109, [130]. By virtue of the equation of motion, the timelike [HAk can be absorbed
into the scalar and pseudoscalar [HAEK, cf. appendix @
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Figure 4.2 A diagrammatic interpretation of the process described in equa-
tion . The decay to two leptons is treated as being mediated
by an effective particle v, of spin J,. The factor gk k= has no
dependence on helicities and depends only on the dynamics of the
K* decay.

with additional coherent sums over the spins J,

1/2 min J.y,JKJ
> = 2 Z DS (4.28)
A1)a >\17)\2__1/2 Jy=0 A=—min(Jy,Jk ;)

and likewise for the sum over J, \'.

Before moving on to specific applications, one further note is in order. When
applying the double completeness relation to generic decay structures, it can be
seen from (| - that, in general, one expects two distinct contributions to the

amplitude from ¢}, 4.5,
HMVL/W — — (Ht)\»ct)\ + H)\t*cz\t) + ..., (429)

where H;\ = H, ,Ww{; %, and analogous notation for Hy, L, and Ly;. If, however,
the objects H,, and L*” are both symmetric or antisymmetric in the Lorentz
indices, then HyLy = HonLi and the two contributions can therefore be
combined. This simpliﬁcation will be used in defining the generalised [HAEk for
the B — K*(10s (& and B — K/(lly (4 - 4.47)) decays respectively, resulting in
the extra factor of 2 associated with the terms H Ttﬁh », and hTtﬁ |, relative

to other contributions in the generalised [HAk.
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4.2 Angular distribution and Wigner D-functions

In this section, the method introduced previously is now applied to decays
governed by the b — sty effective Hamiltonian (2.42)); firstly, the decay
B — K* (—> KTI‘) (105, followed in section by similar results for B — K{14,.
The related decay A, — A (— Nm){l1l5, where N = (p,n), can also be treated
within this formalism, and will be briefly considered in appendix [C.6]

The use of the effective Hamiltonian (2.42)) in the [LFAl restricts the partial waves
to J, =0, 1 terms in equation (4.24)). The matrix element for (2.42) is then given
by the sum of an S,- and Pj-wave amplitude (with the subscript ¢ referring to

the partial wave in the angle 6,):

Mo = (K (= Km)li(\) (M) H|B)

V3
= Ag,)\h)\gDé,O (QK)5A1>\2 + Z Ai,xl,,\QD,l\,o (QK)Di,,\Z (Qé) )

47
A==+,0
(4.30)

where the hat denotes the effective Hamiltonian without the cy prefactor defined
by . There is no D-wave, since the two indices in the tensor operator (2.42))
are antisymmetric and therefore in a spin-1 representationﬂ The K* has spin 1
and so is always in a P-wave in the fg-angle. In the scalar part of the matrix
element, one can use D8,/\Z (Q) = do»,, which leads to the presence of dy,,,. The
principal objects to be calculated are the amplitudes .Ai”)\h »,- For H eff the

Sp- and P,-wave amplitudes (A° and A' respectively) are written as

0 178 pS P pP
Ao, = H7LY N, + HU LY,
1 _ Vv ApA T AT T, pT)
Asoe = —HYX Ly, — HILN A, + HYLY o, —2H LY (4.31)

with the relative signs and factor of 2 emerging from the double completeness

relation (4.19)), and the leptonic and the hadronic [HAk are

£, = ()G |IDY0) ,  HY = (K*(\)[5T b|B) | (4.32)

3Consequences of breaking this restriction will be explored in the next chapter.
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siPl TVIAl [T

DX | L] | v sl () | 0wl o)

uv
J(X)| 0 1 1

Table 4.1 The definitions of the TX and their associated spin J,(X). The
contributions J(X) = 0,1 give rise to the S¢- and Py-wave amplitudes
respectively. The basic polarisation vector w,, is given in and
the composed ones can be found in equation . The precise
value of the helicity indexr A\x is specified when the leptonic and
hadronic [HAls are defined in equations (C.15]C.18]C.29). Note that
the additional structure T'T5 = owYs can be absorbed into the other
tensor structures due to the identity o™~ = —%eaﬁ“’jaw. Timelike
contributions Y*[vs|w,(t) can be absorbed into I'5F respectively, as

detailed in appendiz @

which arise from the expressions in contracted with the corresponding
polarisation vectors. The Lorentz structures I'* are defined in table Explicit
results for the[Ak, as well as a more precise prescription concerning I'* | are given
in appendices and in equations ((C.15)) and ((C.18)) respectively. Squaring

the matrix element in (4.30)), summing over external helicities, and averaging over

final-state spins, one obtains an angular distribution

2

2 d'T
52T . (4.33)

I (2, 0%, Q) =
K (q7 K 6) 3 dq? dcosb, dcosbBy do

=N [ Mo,

A1,A2

where I+ is a shorthand, and 327 /3 is a convenient normalisation factor. The

factor NV,
NoY N

297T3m?]9q2 )

(4.34)

N = |CH|2fikin y  Kkin =

is the product of the prefactor resulting from the effective Hamiltonian cg
and the kinematic phase space factor. The matrix element is defined in (4.30)).
Above, A\ = Mm%, m%.,q%) and A« = X(¢%, m7 ,m?) where A(a,b,c) is the
Kallén-function defined in .

4.2.2 Angular distribution

The squared matrix element initially contains a plethora of different products

of four Wigner functions. However, these correspond to pairs of direct products
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that can be reduced to single Wigner functions by the Clebsch-Gordan series

J+l J J

D, (D, ()= > > CitrpCiong Dy () - (4.35)

J=|j—l| M=—J N=—J

Applied separately over the angles Qi = (0,0,0) and Q, = (¢, 0y, —¢), along
with the identity D!  (Q) = (—=1)™' ™D

m,m’ —m,—m/

(), this allows the angular

distribution to be written in the compact form

1 (¢ e, ) = Re[ G208 + G4 ()2 + GI2(2)90* +
GRUMIR + G+ G+
GROR + G0 + GRS |L ()

where the superscript (0) serves as a reminder that only S,- and P-wave
contributions have been used to describe the amplitude (4.30). The angular

functions {2 are given in terms of Wigner D functions
Quete = Qle (g, ) = Dyt () Dy () = Dyt (V) Dito (%) - (4:37)

The variables Q) = (¢, 0k, —¢) and Q) = (0, 6,,0) form an angular reparametri-
sation that will prove convenient in the discussion of partial moments. The label
I corresponds to the (Km)-system, I, to the dilepton system, and the common
index m is the azimuthal component ¢ of either partial wave. The observables
G!xle are functions of ¢2, and the relation to the standard observables in the
literature is given in section [4.2.3l The explicit Wigner D-functions used above

are given by

1 .
Dg,o Q) =1, D(Q)’0 (Q) = 5 (3 cos® f — 1) , D;O Q) = \/ge_m’ sin? @ |

1 3
D&o (Q2) = cos?, D%,o Q) = —EB_“‘S sinf , D%,o Q) = —\/;e_w sin 20 ,

(4.38)

and can be related to spherical harmonics Y}, (0, ¢) or associated Legendre

polynomials P, (z) as

2 g (Il —m)!

l _ —
Dm,O (¢797 _¢) - 2 + 1Ylm (97¢) - (l + m)|

Pin(cos@)e ™ . (4.39)

57



The angular distribution above clearly has a great deal of structure. In particular,
it is helpful to comment on four features of the angular distribution (4.36)), all
of which are encoded by the double Clebsch-Gordan series (4.35]), but which can

also be seen to emerge from the underlying physics:

e The second helicity index of all Wigner D-functions in the angular
distribution is zero. This index is the difference of the helicities of the final-
state particles, which is zero since these helicities are summed incoherently:
(A — X)) — (M — X)) =0.

e The first helicity index m is identical in all pairs of Wigner D-functions
appearing in the angular distribution. This index contains the helicities
of the internal particles, summed coherently. One can also see this as a

property of the freedom of defining the reference plane for the angle ¢.

e The range of the indices Ik and [, is fixed between the range 0, . . ., 2 max[Jg 4|.
Including only J, < 1 contributions emerging from the dimension-six
effective Hamiltonian hence imposes 0 < I, < 2, and likewise Jx = 1
imposes 0 < [ < 2.

e The absence of angular structures with { = 1 is specific to this decay, due

to the final state consisting of pseudoscalar mesons.

The first three features are universal to such decay chains, and apply even if some

of the particles involved are fermions, such as in the decay Ay, — A (— (p, n)7) £14;

(see appendix [C.6)).

Explicit results for the GU<' are presented in section for the case of identical
final-state leptons my, = my,, and section for the more general case my, #

my, .

4.2.3 Relation of the G'x' to standard literature observables
The angular distribution for B — K*(— K7){1ly is usually (e.g. [113]) presented
in the form

8 AT 12 .
?dq2 dcost, dcosby do - Z = (915 + g2 €05 20, + gz 08 0) sin” O +

(g1c + g2c €08 20, + gg. cos Oy) cos? O +
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(g3 cos 2¢ + gg sin 2¢) sin” O sin? O, +
(g4 cos @ + gg sin @) sin 20 sin 26, +
(g5 cos @ + grsin @) sin20 sinf, ,  (4.40)

which can be condensed as

8_’/T d‘T
3 dq?dcosb, dcosly do

= Re [ (g1 + gas c0s 20, + ggs cos O;) sin O +

(g1e + Gac €O 20, + g, cos By) cos® O +
e 219G, sin? O sin® 0, +

e " sin 20k (Gysin20, + Gssinfy) |,  (4.41)

where

Gsa5 = (9345 +19987) - (4.42)

In fact, when the angular distribution is written in this basis, the angular
observables are usually written J; rather than g;. The choice of notation g;
rather than J; is used in order to minimise potential confusion due to the angular
conventions discussed in section [4.4. This gives the same angular distribution as
derived in , but in a different basis. The relationship between the g;(q?)
and the Glxle(g?) is

G0 = 5 (3o +201) — (920 202) GO = 2 (goe +20m) , G9P =3 (oo + 200.)
Gg’o = g (6 (910 — 915) — 2 (g2c — 92s)) » Gg’l = 2 (96c — os) GSQ - % (g2e = 925)
G = \Lﬁ (95 + ig7) , G =2 (givig), G = (g5t igy)
S — S e
(4.43)

Either the Gl (¢?) or the g;(¢?) form the full basis of twelve observables for this
decay, which have been rewritten in several ways in the literature. A frequently-
used form is the set of observables given in [121], constructed to be insensitive to
uncertainties in form factors. In the notation of LHCb [20], the observables are
given in terms of Gle hyff]

_ (Re[GF])y,

— N L~ 2 J/bin < > <2G871 B G(2)71>bin
LHCb Noin ’ 2/bin

LHCb 3Nbin ’

(P1)pin

4The extension of these relations to C’P-odd and C' P-even combinations, in the spirit of [78],
is straightforward (see section 4 of [121]).
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(I [GE),,

(s bin LHCb 2Nbin ’
/ o <R‘e [G%z} >bin / _ <Im [G%ﬂ >bin

<P4>bin LHGb T | 8>bin LHCH T )

<Pl> ) — <Re [G%l} >bin < /> ] — <Im [G%l} >bin (444)
5/bin LHCb 2\/5'/\/'{)”1 ’ 6/bin LHCH 2\/5./\/'1;111 )

where

<f(q2)>bm=/ dq® f ()

bin

is the integral over ¢? bins of the observable of interest, andE|

1 1
M=t (G- ) M= - (- 2) (e,
bin bin

(4.45)

dr
dqQ )

the forward-backward asymmetry Agg, and the longitudinal polarisation fraction
Fp, [113]:

Three other combinations of the G can be related to the branching fraction

dr’ 3,00 B 1<G871>bin
<_dq2 >bin =1 <G0 >bin ) (AFB) pin LHCh 9 <G8,0>bin' )
(Go )y (G0 )y
). = in in 4.46
< L>b1n 3<G870>bin ( )

The observables in equations (4.44}}4.454.46)) correspond to the twelve g;.
The definitions of the P! above correspond to those used by LHCb [20]; their

7

relationship to the observables defined in [121] is presented in section [4.4]

The decay channel B — K/1/, can be similarly described using the formalism
presented above, and the general procedure very closely follows that of B —
K*(10y. Analogously to equation (4.31)), the Sy- and Pj-wave amplitudes are

0 1.8 pS P pP
Aoxipe = WL n THhLY N,

Abang = —hVLY o\, —hLS L, + AT LY, —2h" LY o (4.47)

®In terms of the g;(¢?) basis, Npin = 6—34 (925) 1, and NY;, = %\/— (92¢)1in (925) bin-
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where the 55\(1 2, are the same as in the B — K*{1/, decay, and the hadronic
[HAk are taken over the same set of operators, but defined instead for B — K
transitions. All signs and factors emerge once more from the double completeness
relation (4.19)).

The reduced matrix element is then the sum of the S,- and P-wave amplitudes

~ 1
M)\17>\2 = E (A87)\1,)\25>\1)\2 + A(l))\l,)\zD(l],)\( (QZ)) ? (448)

where €y = (0,6,,0) in this case. The angular distribution (with 0 < 6, < 7) is

given by squaring the matrix element

Ix(q?,0,) = % = N}% /\;l,\l,AQ i (4.49)
Using one obtains
1) = GO + GV (@) Dhy () +GP(¢*) Dy ()
= GO + GY(¢*)Pi(cos b)) + GP (%) Py(cos b))
=GP + GV (¢} cost,  + G(Q)(qQ)% (3cosf, — 1) , (4.50)

where Py(cos 0;) = D}, () and DJ, () = 1. For convenience, these results are
also given in terms of the explicit angle 6, using equation (4.38|). The superscript
(0) is again a reminder that the restriction to I, < 2 is a consequence of only
including Sy- and P,-waves in . The explicit functions G2 (¢?) are given
in appendix in terms of Ak ]

In [I33] the angular distribution was given in the alternative form

1 ar 3 o
Tdcosf, 4 (1= Fpr) (1 — cos™ 0) + §FH + Arpcos O, (4.51)

and the relation to the parametrisation (4.50)) is given by

1)
_ (0) — () _
F—Q(G >, AFB_UQ(G(O)>7 gy =

(GO) + (G
o)

(4.52)

where (X)) = f dq*X denotes the integration or appropriate binning over ¢2, and

6The observables G(*) and the angular coefficients used in [I32] are related by a(q?) =
GO — %G(Q), b(g?) = GW and ¢(¢?) = 3G where Iﬁ?) =a -+ bcosly + ccos? by.
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o = £1 depending on angular Conventionsﬂ

4.3 Method of total and partial moments

The Method of Moments (MoM]) is a powerful tool to extract the angular
observables G5+ by the use of orthogonality relations. In B physics, for example,
the method has been applied to B — J/U(— #)K*(— K) type decays [134]
during the first B-factory era.

In previous experiments, the angular information on B — K*¢¢ has been
extracted through the likelihood fit method at the level of I 0 [22], and it has
also been suggested that a likelihood fit analysis can be applied at the amplitude
level [135]. A possible advantage of the [MoM] over the likelihood fit is that it
is less sensitive to theoretical assumptions. More precisely, one can test each
angular term independent of the rest of the distribution. The fourfold angular
distribution can be expanded over the complete set of functions Q!

min(lg,ly)

I (4%, Qk, ) = Z Z Re [GE Q05,04 0)] (4.53)

lK,l[ZO m=0

of which the distribution I[((Oz (4.36]) is a subset. Note that the sum over m does
not need to be continued for negative values since [k~ is real-valued. By using the

orthogonality properties of the Wigner D-functions (e.g. [136]) with Q = («, 3, 7)

1 27 27 ) _, 871'2
/_1 dcosﬂ/o da/o dy D}, .. (Q) D, (Q) = méﬂémpénq : (4.54)

the [MoM allows the extraction of the observables G!x! from the angular
distribution. In particular, one can test for the absence of all higher moments,
and therefore test very specifically the assumptions made when deriving the
distribution I[(?E (4.36)). The results of this projection onto total moments are
given in section [4.3.1] Integrating over a subset of angles, referred to as partial
moments, is discussed in section [£.3.2] In the latter case orthogonality does not

hold in the generic case and different GU¢¢ enter the same moment.

"Defining ogrz = 1 in [34], the translation to the LHCb conventions [133] are ogruz = o(BY)
and oguz = —U(BO,BO). The charged and neutral decays are different because the neutral
mode, being observed in Kg, is not self-tagging. Comparing with[132], one has oguz = —opnp
for both charged and neutral modes.
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I 0,0
M5 Gy

0,1 0,2 20 | 1 21| 1,22 121 | 1 22| 1 22
Go Go GO 15 GO 25 GO 30 Gl 50 Gl 50 GZ

Table 4.2 Moments ML in terms of Gﬁf{’lz, as defined by equation (4.56)); the

proportionality factors cff{’ll come from inserting the specific values

of i, ly and m into (4.57).

Elements of the[MoM]have also previously been applied to A, — A (— (p,n)w) £14s
[137], and more systematically to the other channels discussed in this paper,
crucially including a study of how to account for detector-resolution acceptance
effects, in [138]. LHCDb has now also applied the method to the B — K*{*T¢~
channels. [22] [139] However, studies such as those in [I38] proceeded essentially
“backwards”, deriving the angular distribution through more conventional
techniques, then expanding that result in the basis of associated Legendre
polynomials. This can be compared to the derivation above, where this basis
was used from the start at the level of the [HAE, and provides additional insight
on the origin of the structure in the decay distribution (4.36)), as well as what
type of physics might go beyond it. This aspect will be explored further in the

following chapter.

4.3.1 Method of total moments

Defining the scalar product

(F(0)]9(2))ax0,6 = %/_1dCOSHK /_ldcos@ /Oﬂdgbf(Q)g(Q), (4.55)

normalised such that (1]1) = 1, it is possible to extract all observables G

separately from each other, by taking momentsﬁ
e — (Olicsle 2 _ dileilile
Mm = <Qm |]K* (q , e, QZ»HK@M? =Cn Gm ) (456)

where
CZKJ(& _ 1+ 5’”0

™2k + )2+ 1)
Using the equation above the terms in (4.36]) are given in table[d.2] Furthermore,

(4.57)

8The moments M are related to the quantities Sy, ;. introduced in [I38] by
SWGgﬁoslz,lK,m = Glnlr,“le = M%,(’lz/cirlf’lg'
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the orthogonality condition also implies that

M#¥W'=0, VYmandj>3orj >3,
MY'=0, Vi m. (4.58)

Hence the higher and [ = 1 moments vanish, providing a very specific test of

the theoretical assumptions behind [ 0

4.3.2 Partial moments

The results given previously show how to extract the individual G!%+%. One can
also consider partial moments, whereby one integrates only over a subset of angles.
The distributions might be regarded as generalisations of uni- and double-angular
distributions, as these in turn can be viewed as partial moments with respect to
unity. The method is effectively a hybrid between the likelihood fit and the total
[MoMl This presents a useful compromise between the two methods of analysis of
experimental studies into this decay. Such a compromise is advantageous because,
whereas the [MoM] is well-suited to studies with a small number of events, can
allow access to a wider range of observables, and is more flexible in terms of the
underlying physical assumptions, it does tend to come at the expense of larger
uncertainties compared with a likelihood fit. A more complete comparison of the

two methods is presented in [138].

To this end, defining the further scalar products

@@ = - [ deoso [ dofe@.
Ul = 1 [ deostic [ deosof@a(@),  (459)

which are again normalised such that (1|1) = 1, the orthogonality relation (4.54])

can then be rewritten as

1

(DLo () [D2, 4 ()0, = 1

§i10mp - (4.60)
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4.3.3 Integrating over 0, ¢: k' (0x)-moments

The partial moment over 6, and ¢ is defined by

146
kA 0) = (Dl () e (6 0 Wl = %5 3 Dl () Gl
I >0
(4.61)
Assuming the distribution (4.36) (Ix = 0,2), there are six non-vanishing
moments:
1
kK (0x) = Go° + Gy D () = G + 5 (3cos® Ok — 1) G5,
1 1 1
ki (k) = 3 (Gy'+Gy'Diy () = 3 (val +5 (3cos® Ok — 1) Gg,l) ,
1 1 1
ko (0x) = ¢ (Go* +G3°Dg, () = = (va2 + 5 (3cos” O — 1) Géﬁ) :
1 1 o109 -1 /3 . 2,1
kl (9[() = EGl DI,O (QK) = ? g Sin 29[( Gl y
2 L 92,2 -1 /3 . 2,2
kl (0[() = 1—0G1 ‘Dl,O (QK) = 1—0 g Sin 29[( Gl s
2 1 22,2 L /3 .5 2,2
k?g (QK) == 1—0G2 D270 (QK) == E gSlIl QK G2 s (462)

where the explicit angular representation has also been provided for clarity. As
was the case in the [NIoM| with respect to the distribution I'*) higher partial
moments vanish:

ke (0g) =0 Vi, >3,Ym . (4.63)

4.3.4 Integrating over 0y, ¢: 1" (6,)-moments

The partial moment over i and ¢ is defined in complete analogy with the

previous partial moment (4.61) by

14+ dmo
15(00) = (Dl (%) s (6", U )ows = gy D Dhvo () G5

1p>0

(4.64)
which makes use of the reparametrisation of angles given in (4.37). Again,

assuming the distribution (4.36) (I, = 0,1,2), there are four non-vanishing
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moments:
10(6:) = Gy + G Dy () + G Di ()
1
= GY° + cos 0,G" + 3 (3cos® 6, — 1) Go?

5(0r) = = (Gg" + Gg" Dy () + Go” Dg (%)

cnl»— cnl»—t

(G + cos HKGQ (3 cos? 6, — 1) G§’2> ,

1 /
1(6) = = (G DLy (%) + GE2D} 0 (9)

—1 . 2,1 \/§ 2,2
= —— | sin0,G7" + 1/ -sin 20,G7 ,
10\/5( . TR

1 3
2(6,) = G2 2D2, () = 1—0\/; sin? 0,G22 . (4.65)

With respect to the distribution I}?Z, higher partial moments vanish:

“(0,) =0, Vig>3, VYm and Ix=1, Vm. (4.66)

4.3.5 Integrating over 0y, 0,: le I ($)-moments

Finally, one can project on to moments of the form D! ,(Qg) D" o (§2) with
respect to Ok, 6,. In this case, the full orthogonality relatlon (4.54) no longer
holds, but, due to (4.35), there exist selection rules as to which of the G can
contribute to the partial moments

plm}(,;l;f’(qs) = <D£rIL{,0 (07 QKa O) DZ@’,O (07 eﬂv O) |IK* (QQ, QKa Qg»@ng : (467)

. 0 . .
Assuming [ﬁ() , a few non-vanishing moments are

M) = 5 (668" + Rele 2°G3Y) , plib(o) = 3GB

PA6) = o (6687 ~ Rele2°G3%) . p(6) = 55 (6G3° — Rele 2G37) ,
Pib(9) = T GE P(0) = éo (6G3* + Rele 24G3%) |
PA(6) = pReleGR] PA6) = Rl G (469
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A consequence of the fact that the full orthogonality of the Wigner functions has
been lost is that higher moments contain lower G-functions. As an interesting
example, it is possible to show that

(81 +63") =

pao(d) = (4.69)

4
~——Jec -
9\/ 9v107
This quantity is of some interest since gg. = 0 in the SM], as it involves scalar and
tensor operators at the level of the dimension-six effective Hamiltonian ([2.42)).

While these moments all arise ultimately from the same predictions, they provide
a range of potential measurements and observations that are complementary; the
particular case (4.69) may also serve as a useful null test for New Physics in its

own right.

4.4 Angular conventions in the decay B — K*(T(~

Historically, there has been some discrepancy between the experimental (in
particular, the LHCDb) and theory (e.g. [113]) angular conventions, which until
recently had not been addressed satisfactorily. This section serves to clarify the

relationships. The main result is shown in the form of a commutative diagram in

figure [4.3]

The LHCb conventions [129], which are adopted in this chapter, were earlier
shown in figure 4.1 The rationale behind the definition of the conjugate mode
is as follows: firstly, particles are mapped into antiparticles, corresponding to a
C transformation. Then the momenta of all particles are reversed, changing the
angle ¢ — 2m — ¢. This leads to sign changes in g7 g9. Therefore, the conjugate

mode corresponds to a full C'P transformation

B d‘r
LHCb  dg2d cos 0yd cos Oxdplep’

d‘T
dq?d cos 0,d cos O dg

and the quantity -
44T +T)
dq?d cos 0yd cos O dg lLucy ’
is therefore C'P-even (-odd). Above, I' = ['(B — K*/f;) and [ =
I'(B — K*l1(5), with the (perhaps surprising) anti-relationship between barred

decay rate and unbarred B meson explained by noting that theoretical papers

67



traditionally use B — K*{,/5 as the principal reference decay channel.

The theoretical community uses conventions for C'P conjugates such that they
facilitate the implementation of decays that are not self-tagging (eg B, By —
¢(— KTK){t¢~ at hadron colliders). When going between conjugate modes,
the angles transform as (6, 0, ¢) — (7 — 0y, m — O, 2 — ¢), which leads to sign
changes in g5 6 3 9. This transformation rule corresponds to a full C'P-conjugation,
but with the angles 6y, 6 associated to the same particle rather than the anti-

particlel]

To find the transformation between the theory and LHCb conventions is not
straightforward, because it is difficult to find a theory paper that resolves the
four-fold ambiguity of defining the angle ¢ and/or shows a figure consistent with
the definitions used in the corresponding work. Nevertheless, it is possible to
check that the results in, for example, [78, 110, 113] agree with each other for
common contributions, and that results in appendix are also in agreement
with these contributions for B — K*¢1/5 if one makes the identification Jigr9 =
—ga6,70 and Jig358 = 91,2358 This completes the diagram in figure .3 These
conclusions on angular conventions and the relations between them were also
reached in [141].

4.4.1 Relations between angular observables

Alongside the clarification of relationships between angular conventions, it is
equally important to clarify the relation between angular Pi(,
defined in [121I] and their adaptation by LHCb [20]. In matching the results
and creating the dictionary, one needs to pay attention to the fact that [20]

and [121] define the P/ in terms of g; and J; differently, as well as the different

(2

) observables as

angular conventions for g; and J; themselves (shown in figure [4.3). Amongst the
twelve observables discussed in section 4.2.3, eight of them, Py 53, P} 5 4 s and Ap,

depend upon angles and definitions.

9Tagging is the identification of whether the B meson contains a b or b quark, and is an
important aspect of B physics. Self-tagging decays are those where the identification of the B
meson can be inferred from its final state. In the B°(BY) — Kx/,/5 decay, for example, the
final state is K7~ for a B® and K~ 7t for a B® meson, so that the initial B meson can be
tagged merely from the charge of the final-state kaon. The By(Bs) — ¢(— KTK~){t{~ decay,
on the other hand, cannot be so tagged, and other techniques are required. For one useful

discussion of experimental aspects of tagging, see [140].
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9459 — —Ja59

B — K*€£|LHCb B — K*Katheory

9789 — —97.8.9 J5.6.8,9 — —J56,8,9

B — K*€£|LHCb B — K*Egltheory

9ga6.7.9 — —Ja6.7.9

Figure 4.3 Changes of angular functions between decay modes. For CP
conjugates, the conjugation of the CP-odd (weak) phases are
suppressed. Angular functions whose signs do not change are not
indicated.

The P! and App are defined by LHCb [20] as

S457.8/LHCH 3(S6s|Lucn)

Py 5.68lumcy = m . ArplLac, = m 5
L= rp

where S; are C'P-even quantities, defined (alongside the C'P-odd quantities A;),
by

(4.70)

_giigicp
- [+ CP

and 2N}, = /F(1 — Fy) in the notation of section 4.2.3 LHCb has not defined

P, 5 3, but it is reasonable to assume the same functional form as in [I21]. From the

Si[Ai (4.71)

angular convention relations defined above, the relations between experimental

and theory angular conventions are equivalent to

(9,A4,9)12358/Lncy = + (J, A, 5)1,2.358]|theory
(9,A,9)s670lLHc = — (J, A, S)1679]theory - (4.72)

In [I21] the eight equivalent angular observables are defined as followsﬂ

1 1
P = S = S = + P,
1 55, 3 2523( 3|Laen) + Pi|uaes

ONote that [78, [113] define App = 4(%%517) which results in AFB|[78, 113 = —ArB|LHCDH-
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1 1

P = _852 Ses = 85, (_565|LHCb) = = P2|LHCb ’
1 1
P3 = 452 5'9 = 452 (—59|LHCb) = - P3|LHCb ’
1 1 1
P =—=25 = ——(=S[Lrcr) = — 5 AlLaes
bin bin
/ 1 1 /
P5 = WS5 == W(S5|LHCb) = + P5|LHCb )
bin bin
3565 3(—Ses|Lucn)
A e — = — — - +A 9
B AT +1) A +1) rB|acy
—1 —1
Pé = WS7 = W(_S7’LHCb) = + Pé|LHCb )
bin bin
-1 -1 1
Pé = —,Sg = _,(SS|LHCb) = - 5 é|LHCb )
bin bin

which can be directly translated into the LHCb conventions, as shown on the
right of the equations above. It seems that there is some discrepancy between the
definitions above and those used by previous papers in the sign of the observables
S[A]7s9. For example, both P} = Pf|iucy, and P = —$P|uucy differ from the
relations given in the caption of table 1 in [I42] by the aforementioned sign. The
relation S[A]g = —S[A]g|Lucy also differs from the one given by [143] in table 1
by a sign. Nevertheless, the dictionary provided above will hopefully prove useful
in standardising and harmonising the conventions and definitions used between

different communities in future studies of this decay.

4.4.2 Comparison of angular distribution with the literature

An overview of the history behind the research of this decay was given at the
beginning of this chapter. The most recent reference prior to the results presented

in this thesis is [IT3], to which results given in the appendix can be comparedﬂ

Taking into account the change gs679 — —Ji679 (as shown in figure , and
comparing at the level of form factors (assuming naive factorisation), the results
in appendix [C.4.1|are in agreement with [113] except for tensor interference terms,
with full agreement established with the replacement Crs — —Cops in [113]. This
may be related to the fact that the relations tr[y®y%777%y5] = 4Xie*®? and

oPrys = —)\%e‘w”‘saw; (with A = 1 depending on conventions, A = 1 being the

1At the time this research was initially performed, the latest version of [T13] was (v3) as seen
on the arXiv link. Since then, the authors of [I13] released a revised version that restores total
agreement by carrying out the change in definition of C'r5 suggested in the following paragraph.
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convention used in this thesis) are not consistent with equation C.16 [113] (v3).

A more cosmetic difference is that the authors of [I13] chose not to present the
tensor contribution in Jgg(gse), since such contributions vanish in the narrow-
width approximation. There are further apparent disagreements in the definitions
of the [HAK between the work above and those found in [I13], but these are down

to conventions and such discrepancies do not carry forward to the final expression.

Finally, it is important to note that v3 of [I13] states that their results agreed
with those in [144] up to the sign of one scalar-tensor interference term in the
observable g; (J; in [113]). The results presented in appendix then agree
with [II3] but not [144] in this respect.

4.5 Conclusions

The results presented in this chapter, and the associated explicit expressions
in appendix [C| provide the complete angular distribution for the most general
dimension-six effective Hamiltonian applied to the B — K*(— Kn){1{5, and the
formalism leading to this can be applied to a host of related decays. Apparent
anomalies observed in such decays persist, in particular in P} [20] and the related
By — ¢(— KK){1l decay, where the branching ratio is currently 30 away from
the prediction [23], and so further analyses of these decays are vital to confirm
and then interpret these anomalies. Some of the methods outlined in this chapter
have already been applied by the experimental community. LHCb performed a
moments analysis of B — K decays in [I139]; and with further work from the
Belle IT experiment expected shortly alongside Run II data from the LHC, it can
be expected that the theoretical and experimental interest in this decay will only

continue to grow in the near future.

This chapter has also presented, in section [£.4] the correct relations between
angular conventions and observables between the theory and experimental
communities. The conclusions presented in that section have since been accepted
by the theory community, as can be found in, for example, [123] 141, 145] [146],
facilitating future comparison between theoretical predictions and experimental

results.

At the current time of writing, the anomalies in b — s decays remain at a level

where they can be seen merely as a curiosity, a tantalising hint that there is more
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to these decays than would be apparent from predictions. It may not be long
before this picture changes in the light of new experimental data, but even at the
~ 3o level it is still reasonable to treat these anomalies as a strong motivation
for further experimental studies [I47]. A global analysis of all such anomalies,
meanwhile, has suggested that the deviation from the in the light of all data
is close to, or even beyond, the 5o gold standard for a discovery. The studies in
[27, 122, 145, 146, [148] point to various [NP| scenarios in which the data can be
well-described by a simple modification in the Wilson coefficient Cy,, although
at this stage it remains equally likely that the anomalies can be explained within
the context of the [SM] via charm-related anomalies [26].

In either case, the fully general angular distribution presented in this chapter
may play an important part in resolving such questions; for example, the
phenomenological code flavio [149] has made use of the angular observables
and conventions defined above. The following chapter, meanwhile, discusses
two scenarios in which the angular distribution of B — K 70105 decays may be
modified, and how they might be distinguished from each other using the methods

outlined above.
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Chapter 5

Higher-spin operators and QED|

corrections in b — s decays

This chapter presents results pertaining to the addition of higher-spin operators to
the effective Hamiltonian when computing the angular distribution of B — K ;(—
Km)lily decays. Although the work is preliminary, it is sufficient to provide
some hints of the effects of such operators, how to search for them, and how to
distinguish them from other modifications to the theoretical assumptions that led
to the angular distribution in the previous chapter. Research in this chapter was

inspired by the preliminary discussions found in appendix F of [124].

Some sections of this chapter have previously appeared in [34].

5.1 Introduction

In the previous chapter, the angular distribution for the B — K;(— Km)li/ls
decay was presented in the context of the full dimension-six effective Hamiltonian
([2.42). Along with the assumptions that there were no interactions between
the final-state leptons and the hadrons in the decay (the Lepton Factorisation
Approximation (LFAJ)), and the further restriction to a single partial wave in the
K channel, this led to the highly compact expression for the angular distribution
19 ([@.36).

It is natural to ask what the effects are of dropping any of these assumptions.
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This chapter goes some way towards answering this by discussing in particular the
impact of including higher-dimensional operators in the effective Hamiltonian, as
well as a partial consideration of how such effects might be distinguished from
corrections arising from the explicit breaking of the [LFAL

In one sense, at least, the answer is apparent: any new operators in the effective
Hamiltonian will either induce new contributions to the observables G!x:(g?),
or lead to “new” observables with indices [, now allowed to be greater than 2
(as well as modifying the observables with lower values of ;). On the other
hand, the number of potential angular structures that emerge grows rapidly with
increasing values of [ and [,, and it is important to make these effects explicit. To
go some way towards achieving this, the new angular coefficients are presented
with reference to an explicit higher-dimensional “derivative” operator, and in
the context of the decay of the K3(1430) resonance, which has received some
attention in the literature [130, 150, [151]; recently, it has become accessible at
the LHCD [I39]. Since this is a D-wave resonance that emerges from the same
Hamiltonian as the usual K* resonance, investigating this decay in the same
language developed in the previous chapter might help shed further light on the

origin of the reported K* anomalies.

The remainder of this chapter is organised as follows. In section [5.2] an example
of such an operator is presented, along with a preliminary estimate of the size of
its associated Wilson coefficient (at the Weak scale). In section the relevant
[MAk for the new operator are computed in the context of the B — Ky(— K)l/;
decay, which allows access to the full range of new contributions to the angular
distribution. While the full structure of the general angular distribution with
higher-spin operators is exceedingly lengthy, the contributions to new observables,
not accessible with the dimension-six effective Hamiltonian, are presented in
section 5.4l  Section discusses in more general terms how the angular
distribution can change in the light of new operators, as well as interactions
between the leptonic and hadronic parts of the decay. Such considerations are of

importance in light of the Rx anomalies [19].
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5.2 Double partial wave expansion and higher-spin

operators

In order to discuss the origin of generic terms in the full distribution (4.53)), it
is advantageous to return to the amplitude level. Symbolically, one may rewrite

the amplitude (4.26]), omitting the sum over J,, as
A(B = Ky (V) (= Km)er (M) (%)) = A DY () DYy, () (5.1)

with Ay = A\{ — \o, as defined in . The two opening angles 0 and 6, allow
for two separate partial wave expansions. The partial waves in the - and 6,-
angles are denoted by Sk, Pk, ... and Sy, P, ... respectively. The decay channel
with K; = K* imposed the condition Jx = 1, leading to the presence of only
a Pg-wave. The signal of K* is part of the (Km) Pg-wave. The importance
of considering the Sk-wave interference through K§(800) (also known as £(800))
was emphasised in [152]. The separation of the various partial waves in the (K)-
channel is a problem that can be solved experimentally e.g. [I53], and see also
[154] for a generic study of the lowest partial waves at high ¢2. Tt is also possible to
employ an analysis similar to the but for the hadronic contributions from,
for example, D-wave hadrons, such as the Ky [I51], I55]. The second partial
wave expansion originates from the lepton angle 6,, which will be the main focus
hereafter. By restricting to the dimension-six effective Hamiltonian , as well
as the [LFAl only Sy- and Pj-waves were allowed (cf. equation (4.30])), bounding
I, < 2 in (£53)[1] This pattern is broken by the inclusion of higher spin operators
and non-factorisable corrections between the lepton pair and the quarks, including
the exchange of electroweak gauge bosons. It is therefore important to be able

to distinguish these two effects from each other.

One natural way to introduce higher-spin operators is by the insertion of
derivatives. Each extra derivative can potentially increase the spin of a natural
spin-one operator by one unit. For a single derivative correction to vector or

axial currentsf| four new operators can be defined according to the symmetry

!This is the same approximation that is relevant for the endpoint relations [T31] [156].

2In the discussion that follows, only derivative corrections to the vector and axial operators
will be considered, although scenarios will exist where derivatives are also attached to scalar or
tensor-like operators. Since this chapter is merely concerned with illustrating the consequences
of such new operators, it is natural to consider only a minimal extension of the operator basis.
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properties of the resulting indices:

Og;:ln:l:z — §LS;EV1() ZS:I:Q;MU(,YE,))[,

O = 5, A5 AR (5)0 (52)
where
+ _ 9
S/w a{u%} ’
+ _ 9+
A;w - 8[#”] ’ (5:3)

“— — —

and 0F = 0 £ 9 is the directional derivative. Brace (square) brackets denote
symmetrisation (antisymmetrisation) in the Lorentz indicesﬁ Such operators may
arise in the presence of new spin-two particles (e.g. [I57]), or as next-to-leading

corrections to the effective Hamiltonian (2.42]).

The derivatives in ((5.2)) can be rewritten in terms of momenta, using 0,19 (p) =

JRUE

él(Sv A):’L_VZQ = _i(Qu€17ug2 + Quél')/ng) )

gl(S, A);Vgg = —i(qﬂgl’}/ylﬁg + qygl”)/ugg) s (54)

where ¢ and @ are the sum and difference of the two fermion (here denoted by
leptons) momenta respectively. These equations will shortly be used to compute
[HAK, but the relationship to momenta also leads to an estimate of the Wilson
coefficients for the leading operators within the SMl To see this, consider the box
diagram (figure [5.1)), which at first order leads to the Wilson coefficients Cy (Cy)
and Ca(Cyp) (and their parity-flipped equivalents Cy, 4). In Feynman gauge, it is

proportional to the loop integral

/ d%k (k+p1)P(k +p1 +p2+ps)”

(2m) (k2 = mpy) (k4 p1)? = m7) ((k + p1 + p2)?) ((k + p1 + p2 + p3)? — miy)
SRR I

_ / W | i@y (5.5)

where [dU = fol du,y folful dus 017u17u2 duz and M? = uym? + (1 — uy — uz)miy,

while the momenta in the numerator are given by

Uf(l’pi,ui) = (4 (1 —uy — ug — u3)py — (ug + uz)p2 — usps)”,

3In a more complete theory, the derivatives here will be promoted to covariant derivatives.

76



s(p2) b(p1)

Figure 5.1 Box diagram relevant to the computation of the Wilson coefficients
Cv,a as well as the derivative operators, presented below. The
momentum assignments have been indicated.

Lyl piyui) = (L + (1 —uy —ug — ug)py + (1 — ug — uz)pa + (1 —uz)ps)”. (5.6)

Defining the quantities p = py +p2, P = p1 — p2, ¢ = ps + pa, @ = p3 — p4, and
dropping the terms proportional to the loop momentum (which would provide
the leading contribution to the box diagram), allow L;, L to be rewritten in the

form

LT(Z, {pv P, q,Q},Uz') =

Lg(l, {p7 P, q, Q}7 ul) =

(1 —up — 2up — 2uz)p + (1 —u1) P —uz(q + Q)" ,

| =D =

((2—u; —2up — 2uz)p —u P+ (1 —u3)(¢g+ Q))" .
(5.7)

All of the various coefficients of the different momentum structures have well-
defined integrals, but only terms that are products of p, P and ¢, () are interesting,
as these can be directly related to one derivative acting on each of the quark or
lepton parts of the operator. Matching the relevant structures leads to Wilson

coefficients

. Lo(1-2 o 3r-1
= n S —
L= 2 \ B —1p T 6—12)

1 1 1

Csi-p = nz— — 5.8

TR Ami, <6(ac—1)2 e 6(1:—1)) ’ (5.8)
m2

where © = —gt . For my; = 173 GeV and my, = 80.2 GeV, this leads to typical
my,

values Cpy p o~ 752 ~ 3 x 107 GeV™?, Coo =~ 0900 ~ —1 % 10°° GeV~2. As

w w
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was stated earlier, these have been evaluated only in the Feynman gauge, and
possible further corrections from penguin diagrams have been neglected, although
the main feature of note is that such operators are heavily suppressed in the

(as compared with, for example, the related Wilson coefficient Cy, = Cy ~ 4).

As expected, the Wilson coefficients arising from the [SM| weak interaction are
suppressed by a factor of m,, meaning that any observation of higher-spin
contributions to B — K;(— K7){1l5 decays could well be attributable to [NP|

contributions.

5.3 Leptonic and hadronic [HAs

It is not difficult to show that only the operator Og_, can lead to spin-two
contributions to B — Kjl1l5 decays. The operators that are antisymmetric
in Lorentz indices certainly cannot, owing to the symmetry of the spin-two
polarisation tensor in (4.24]). The other condition is that the derivative acts on
the fermion current to create the difference in momenta rather than the sum, as
w(A)-g = 0 unless w(A) is the timelike polarisation, thus imposing the + structure
in the leptons . Over the hadrons, as one particle is in the inital state and
the other in the final state, the opposite argument applies to the sign of the
derivatives, imposing the structure Og_,. This operator will simply be referred

to as Oy,y(a) from now on, alongside its chiral-flipped partner 0" = O, 5.

To make the results more explicit, consider the template decay B — Ksy(—
K)l1ls, where (as before) the lepton flavours need not be identical. Restricting
as in the previous chapter to the [LFAl the decay then proceeds from the
generalised [HAk

A = HSZV L5 (A, o) + Hy 24 L574 (A1, M)
Ay = —HY LY (M, A) = HELAN, Ag) — 2H2Y L7 (A, Ao) — 2HOZA L7 (A, Aa)
0 = HL5 (A, o) + HPLP (A, Aa) + HEPY £977 (Mg, Aa) + HSP A L9 (A, Ao)
+HG™Y L (O, g) + H L% (M, ) (5.9)

where the new operator allows for the presence of possible spin-two Contributionsﬁ

Terms such as the spin-one contribution from the derivative operator are omitted

4For ease of notation, the contributions from the tensor operator are omitted, as they add
no new angular structures.
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as they vanish, owing to the contraction between symmetric and anti-symmetric
Lorentz structures. Assuming that the Ky — K7 decay can be approximated in
the same way as a K* — K decay (the narrow-width approximation [78]), the
angular distribution is given, in complete analogy with the results in the previous

chapter, by

327 d*‘T B
3 dq? dcost, dcosb dp

2
I, (6,9, ) = , (5.10)

A1,A2

with the only change from the similar equation (4.33)) being the normalisation
factor NV, defined in (4.34)), using the K, mass rather than the K* mass. The
remaining details are analogous to the K* decay so it only remains to compute

the new [HAK for the spin-two operator over the leptonic and hadronic sectors.

5.3.1 Leptonic [HAk for the spin-two operator

The calculation of the [HAk is standard, and the full details of the calculation
are presented more fully in appendix (see also [126]). For the spin-two
projections, one needs the Clebsch-Gordan coefficients for spin two, as shown
by equation , but otherwise the calculation is systematic and follows the
procedure outlined in the previous chapter. The leptonic[HAE for different masses

for the spin-two operator O,y (4) can be written

D
o
Q
=
|
DO
o~
>
\2*
wm\

(B B2 —BiBy) —2(B B + B by)
) )

(
(ﬁ% +678;) \JR(BTBE - 66y
)

Lon_ 2/ [ 3B - 50B) 2818 + 878
2 - 3
Ve Bzwlﬁg) — 2 (6185 - BT B)
N (87 8y — 676
Ve (0 =) V2(Ey — B\ (815 + 87 57)
i | - B E)E (BB B8

I N (B By — By By
V2E = BV (B8 + By By) Voo (B8 - B85
— (B = Bx)\/ @ (B B3 — By By)
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Os;a i
L, = —q2
an;v _ 22}/)\7*
’ V3¢
OB;A 2Z V A’V*

0 \/g\/?

OQ;V o
‘Ctt -

Os,a
Ett -

2 (B, —

2 (By —

VA (BB — BBy
— (Br — Ex)\/@ (B By — By B7)

V2(Ey — Ex) /@ (87 By + By Bs)

Br By — BBy 0
0 By By — BBy
Br By — Bi By 0
0 Bi By — By By

—R+ _ pt+pa- 0
) By By — B B,

By By — By By 0

EQ)

0 By By — BBy

0 B B3 — By By

—V2(Ey — E2)\/¢ (B 85 + B 55)

VA (B By — BB
+ (B — E2)\/¢* (87 B3 — B 57)

, (5.11)

where the spin-one contribution vanishes, as the decomposition in equation (|4.20)

is antisymmetric, whereas this is a symmetric operator.

dramatically for

identical leptons:

2) %M
£ =aigp, | VOV
-1 2
Op;a ) 1
‘C2 - 2Zq ﬁ[ )
-1 0
£?B;V - O 0 )
0 0
1 0

These [HAk simplify
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[0 _ ~4iBme/2 | 10

£Ona_ 00 |
00
00
L = ,
00
00
L7 = , (5.12)
00

from which it can be seen that, for this operator at least, all but the strict spin-two

contributions Ly are O(my) effects.

5.3.2 Hadronic [HAk for the K, meson

From the relation
s
aﬂ(g’yl/b) = 58:71/67 (513)

R4
it is clear that 8: represents nothing but a total derivative, and hence the
momentum transfer between the quarks. Hence the form-factor parametrisation

for the derivative operators in the Ky decay becomes

(K (p, 77uu)|§L/RS;yb’B(pB)> =—1 (QM<K2|§L/R’YVZ7’B> + QV<K2\§L/R%5|B>) )
(Ko (D, ) |51/ 8S,, 0 B(ps)) = —i (pu + pBu) (K2|51/ 77,0 B)
+ (pv + pBV)<K2|§L/R7ub’B>) ) (5.14)

This confirms the statement earlier that only S™-type operators can access the
spin-two observables, while any other operator constructed from derivatives in

this way can be seen as corrections to the Oy 4 operators.

)

9,V (A)

derivatives operators and their chiral-flipped versions. Note that H, ,"* = 0,

For the spin-two case, the Wilson coefficents are C’g for the vector and axial

owing to symmetry properties over the Lorentz indices. The vector and axial

matrix elements can be defined in terms of the analogous form factors to those
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for the B — K* transition. The [HAk are then given by

Ops,v(a)
HZ,iQ =0,

3/2 2 2
HOB;V(A) :F)‘B (OOE);V(A) + Cba;v(m> V+ (mB + sz) AB (Coa;vm) - Cé’)@;V(AJ Ay

2,41 - )
dmpmy, (mp + mg,) /¢*

Osvia)y 8AB /
HQ,O - 3q2 COB;V(A) - COB;V(A) Az,

gOova _ (s =1, (:F)\B <CO‘9?V(A) + Céof’;v(‘”) V)
t, 41 4\/§mBmK2 /—q2
(m% + ) VA (Copy i = Copn ) A

- 4\/§mBmK2\/? ’
H = s (o= ) (S, (= ) A+ )
H(?B;V(A) _ 4?32)‘3 <Coa;v(A) — Cé)a;vm)) Ao,
Ht(tga;vm) _ _)\E\;/(g?:jg;;:?;) <COB;V(A) _ Céa;V(A)) Ay, (5.15)
where A\gp = A(m%,mk,q% is the Kallén function appropriate to this decay,

defined in (C.2). The remaining [HAk for the K5 can be computed from those
presented in the appendixﬂ for the K* from the general relation

iOope VA (5.16)

A) — _ V2B
nu( ) CATly, mp )\QmBng

with the sign due to the parametrisation 7(0) = (—g¢.,0,0,q0)/mg,, and
ci1 = 1/v/2 and ¢y = /2/3 are factors emerging from the Clebsch-Gordan
decomposition. Similar results can also be derived for the tensor operators,
allowing one to build up the angular distribution of the B — Ks-type decays in
the same way as for the B — K* decays, laid out in more detail in the previous

chapter.

5All the [HAk for vector and scalar operators also vanish at the kinematic endpoint, as they
g0 as v )‘B X f(q27 ‘/7 A07 Ala A12>~
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5.4 Angular distribution and coefficients for m, =0

The resulting angular distribution includes contributions up to spin-two in the
lepton partial waves. Summing and squaring gives an angular distribution of the

usual form
I, ~ Y Re[Ghqueh] (5.17)
Lic leym
with 0 < [, < 4, lx = 0,2,4 and 0 < m < min|lg,l)]. In total there are
32 separate angular coefficients Glrf{’lf emerging from the operator set above,
independent of lepton mass corrections or the presence of scalar/pseudoscalar

operators.ﬁ

The angular distribution can be split into three classes of contribution:

1. Observables that would emerge without the presence of spin-two op-
erators but are modified in their presence, of which there are nine:
00 02 ~20 ~22 ~22 ~22 ~42 ~42 ~A42
Gy, Gy, Gy, Gy7, GY°, GY°, G, Gy, Gy

2. Observables that cannot be generated due to interference terms between

SM| and spin-two operators, of which there are also nine, namely G8’4, Gg’4,

24 ~24 ~44 ~44 A4 44 4.4
Gy, G, Gy, Gy, Gy, Gy and Gy

3. Observables generated strictly from the mixing of operators and spin-
two contributions, of which there are 14. All these observables have an odd

value of [y, and complete the set of observables.

The full general angular distribution in the presence of all operators considered
in this chapter and the effective Hamiltonian is exceedingly lengthy. As
this is only a preliminary study, only the results for some of the new observables
are presented below, focusing in particular on the higher structures that might
arise. Only the terms arising from the spin-two V-type operator are presented,
although the extension to A-type operators including mixing is natural. Results
for the Gt = Ng*Glxle are
192

4.4 t1,v gt v
G, = __HQ,Q HQ,—2 )

35

6This counting is based on no further assumptions about the form of the hadronic [HAk.
For the explicit expressions given in (5.15]) the observables in (5.18]) with m = 3,4 also vanish,
reducing the count of angular coefficients by three.

83



() ) o -

q=1{1+1{ I
[ LT [
A

Figure 5.2 Ezamples of virtual [QED| corrections to B — K{1{~, where either
a photon is exchanged between the decaying b-quark and a final state
lepton, with effective operators Oy, a (left) and O (middle), or a
second photon is emitted by the charm loop (right). Other topologies
relevant for higher moments include the interaction of the leptons
with the spectator as well as the B- and K*) -meson.

96 - —
Gy' = — o (M Hy' + Hyy ™)
96 . . .
Gy = — s BHy Hy " + SH 5 Hy™ + 3Hys  H57)
96 - ! . A
Gt = — g LY + GH Y+ 6HLYY g + Hys Hy)
48 . - ; 7 7
Gy = —%(HESHQS + 16 Hy" HytY + 36 Hy ' Hyl' + 16H, Y HyY + Hy'y  Hy's')
2.4 64 3 t1,v gty tiv gt v t1,v gyt v
Gy = 49 E(HZO Hy "y —2H, " Hy ' + Hyy Hy ') /49,
2,4 32 6 t1,v rti,v t1,v gt v t1,v 7t v ti,v i, v
Gy = 49 E(H27—1H2,—2 —Hyg Hy "y — Hyy Hyy + Hyp Hyj )
32 _ . . y :
Gy = o (5 Y + 2 LY — GHY G + 2008 M)+ ) )
16 - f . 7 :
Gy = —Jee (Hy 5 Hyy — AH, Y Hy™, o+ GH Y Yy — AR HLY -+ Hy5 ).

(5.18)

The expressions presented above, along with the method outlined in the previous
chapter to compute more general observables in these decays, should prove helpful
in studying the more complete angular distribution in the full presence of mass

effects and other operators.
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5.5 Distinguishing higher-spin corrections from

effects

While the inclusion of higher partial waves (from the introduction of higher spin
operators or from considering higher resonances in the (K7) channel) is one
way to modify the angular distributions seen so far, both of these effects were
still considered in the context of the [LFAl Tt is worth briefly discussing the
consequences of breaking the [LFAl and how one might distinguish this effect

from the inclusion of higher-spin contributions at the operator level.

The B — K{™¢~ channel provides a simplified set-up for this discussion, and
is of particular relevance because of the recent LHCb measurement of Ry, that
showed a deviation from the [SM] prediction of Rx = 1 [132] [158] at the level of
3o [19].

In the [CFAI (4.49), the single opening angle 6, of the decay is restricted to I, < 2
moments in I}?) ([#53). More precisely, I, < 2j with OY as in (5.2)) (see also
the discussion following equation (4.36])). From the viewpoint of a generic 1 — 3
decay, there is no reason for this restriction, as it is only the sum of the total
(orbital and spin) angular momentum that is conserved. However, in the [LEA]
the B — K[(T¢7] decay mimics a 1 — 2 process, imposing this constraint.
This pattern is broken by exchanges of electroweak bosons (especially the «), as
depicted in figure for operators relevant to the decay. The W and Z are too
heavy to impact on the matrix elements, but their effect will be included in the

Wilson coeflicients.

Nevertheless, generic [QED| corrections will turn the decay into a true 1 — 3
process, and this necessitates a reassessment of the kinematics. By crossing, the

process can be written as a 2 — 2 process
B(pg) + 7 (=t1) = K(p) + " (L) , (5.19)

with Mandelstam variables s = (p + £3)%, t = ({; + €2)? = ¢* and u = (p+ £1)?,
and explicitly

1
slu] = 5 (m% +m3 + 2m§ — )+ ﬂg\/)\ (m%,m2., q?) cos | (5.20)

obeying the Mandelstam constraint s + ¢t +u = m% + m% + 2m?. Importantly,
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the kinematic variables s and u become explicit functions of the angle 6,. In a
generic computation these variables enter (poly)logarithms that, when expanded,
give contributions to any order [, in the Legendre polynomials. This statement
applies at the amplitude level and therefore also to the decay distribution ,

which becomes a sum over all values of {,:

(B — K(+7)

= GWPp 0,) . 5.21
dq? dcost, ZZ;] 1 (003 0r) ( )
L=
The B — K/{¢ moments are given by
! d’T(B — K{+(7) 1
MU = / d cos 0P, (cos 6 = Gl 5.22
Z . c0s 0¢ 1, (cos 0r) dgq? dcosf, 2, +1 « 7 (5-22)

where the lepton subscript has been introduced for further reference later. In the
[SM], the effects are dependent on the lepton mass, for example through logarithms
of the form «In(my/my), where « is the fine structure constant. There are new

qualitative features, of which it is worth highlighting the following two:

e Both vector and axial couplings Oy 4y = Oy contribute to any
moment [, > 0. In the[LFAl /,-odd terms (which measure forward-backward
asymmetries) arise from broken parity through interference of Oy and Oy4
(2.42). The physical interpretation is that there is a preferred direction for
charged leptons in the presence of the charged quarks of the decay. In the
specific diagram, on the left of figure the charge of the b-quark attracts
or repels the charged lepton(s) with definite preference. It is possible that
one can establish a higher degree of symmetry by using charge-averaged

forward-backward asymmetries.

e A key question is how the moments vary in [,. Absent a full computation,
a precise answer is not possible. Nevertheless, it is insightful to address the
question semi-quantitatively by considering, for example, the triangle graph
that would emerge from the exchange of a photon between either lepton and
the b-quark (on the left of figure , along with the corresponding graph
for the s-quark). Neglecting the Dirac structures and any further infor-
mation, one can expect the resulting loop integral to include contributions

proportional to Cy(m2, p%, s[cos 95],m§,0,mg)ﬂ Expanding this function

"This analysis can be refined by taking into account that the b- and s-quark only carry
a fraction of the momentum of the corresponding mesons. This amounts to the substitution
p% — (pp — xp)? and s[u] — (2[¢1] + zp)?, where z is the momentum fraction carried by
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in partial waves Cp = >, C’él‘)PZZ (cos ;) shows that there is a fall-off of
\Co(l‘)] with increasing [,. Averaging over several configurations (cf. footnote
7)), one can conclude that the I, = 2 (D-wave) contribution is suppressed by
approximately a factor of 2 with respect to [, = 0, with a slightly steeper fall-
off with increasing I, for the b-quark versus s-quark vertex correction. The
graph where the photon couples to the other lepton comes with a different
Dirac structure, and is not obtainable through a straightforward symmetry
prescription; therefore, it is sensible to consider those graphs separately. It
is important to stress that this semi-quantitative analysis does not replace
a complete computation, which would include corrections to Wilson

coeflicients, all virtual corrections, and the real photon emission.

The most important consideration is the relative size of the [QED] corrections as
compared with those arising from higher spin operators. In the [SM] one expects
QED) effects to dominate over those due to higher spin operators, except for 7 = 2

where they could be comparable.

The discussion of B — K*(— Km)¢*¢~ is similar, but involves the kinematics of
a 1 — 4 decay. The decay distribution becomes a generic function of all three
angles 0,, 0 and ¢. It should be added that the selection of the K* — K signal

(Pk-wave) restricts [ = 0, 2.

5.5.1 Diagnosing background to Ry

Given the predictions of the standard dimension-six effective Hamiltonian,
throughout this chapter it has been stressed that probing for moments that are
vanishing in the decay distributions I\, of B — K*(— Kr)¢f and I\
of B — KUl respectively is of high importance. These clean predictions
of vanishing higher moments provide an important signal for [NP| effects, or
of corrections emerging from other sources. One particular case where such
observations may provide further insight is in tests for lepton universality, as

explained further in what follows.

In the SM] the decays BT — K*ete™ and Bt — K*u*u~ are identical up to

the s-quark. For the vertex diagrams, one expects the Feynman mechanism (i.e. z ~ 0) to
dominate. This changes when spectator corrections are taken into account.
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phase-space lepton mass effects and electroweak corrections. The observable

B _ B(B* = K*fptpo)
K’[Qi,in,qgnax] = B(B+ — K+€+€_) [q2 q?nax]

min’

(5.23)

was put forward in [I59] as an interesting test of lepton flavour universality.
Above, ¢2. Jmax stands for the bin boundaries. Neglecting electroweak corrections,
the prediction is RK|[1,6} Gey? = 1.00(1) [132 I58], which is at 2.60-tension
with the LHCb measurement at 3fb™" [19]

Ry = 0.745700%0 (stat) £ 0.036(syst) . (5.24)

Previous measurements [160, [161], with much larger uncertainties, were found to
be consistent with the as well as ([5.24)). This led to investigations of physics
beyond the with Cg £ CI* (where O = byasly() (eg [50, 162 170], along

with [I71] for further references).

As outlined above, corrections break the [LFA] and therefore give rise
to higher moments. Such corrections have a clear dependence on lepton mass
through logarithmic terms o In(m,/m;). However, the corrections will also
impact the predicted value of R.

In view of the lack of a full [QED] computationﬁ it may be insightful to diagnose
the size of (QED|corrections, as well as their lepton dependence, by experimentally
assessing higher moments, where the impact of the [QED|correction is more readily

distinguishable from other effects.

5.6 Conclusions

This chapter has presented some preliminary studies of the impact of spin-two
operators, and their origin, on the angular distributions of B — K ;(— K)l/;
type decays. The number of terms in the angular distribution in the presence of
spin two operators grows markedly larger, but the new structures that emerge

can be naturally understood in the formalism developed in the previous chapter.

The principal results of this chapter are in the new [HAk for the spin-two derivative
operators O,y (4), and their contribution to the new angular observables,

presented in equation (5.18)). These preliminary expressions do not capture the

8A partial result, photon emission from the initial and final state, was reported in [172].
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full complexity of the new distribution in the presence of non-zero (or non-equal)
lepton masses and the full operator set. However, as within the [SM it is not
difficult to deduce that the size of such new operators must be small with respect
to the dimension-six operators (by a factor of order 1/m%;), the most important
prediction is that such higher-spin operators are almost zero in the[SMl The main
purpose of considering higher-spin operators is that they imply that new angular
observables, in the form of higher moments, can provide a new window on possible
corrections to the usual theoretical predictions for the B — Kj(— Km)ll;

decays.

The key motivation of all such studies is the apparent discrepancy between various
predictions of, in particular, Ry [19] and P! [20], which raise the possibility
that there are New Physics effects in the b — s transitions. Regardless of the
origin of these anomalies, it is clear that the study of related decay channels
will aid in understanding their nature. Such channels would naturally include
higher resonances of the Kaon, with the K5(1430) discussed above being a prime
example; but it is important to emphasise that all related b — s decays can be
understood and analysed within the formalism developed in this chapter and the

preceding one.

Although this chapter has refrained from making concrete theoretical predictions,
the proposal of studying higher moments of these decays is still worth stressing
as a valuable new approach to the decays. Hopefully, the LHCb analysis of [139]
marks only the first step in a more systematic study of the Kaon resonances and

their apparent anomalies.
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Chapter 6

Three-particle sum rules for vector

and axial mesons

The dominant contribution to B — Vv/¢¢ decays within the SM]is given by the
short-distance (SDI) physics of the effective Hamiltonian in . It is, however,
clear that the effect of long-distance (LD contributions needs to be properly
understood, and disentangled from the behaviour, in order to search for any
contributions to these processes. Understanding such contributions, in
turn, requires a more complete understanding of the structure of mesons. It
became clear over the 1980s and 1990s [I73] that the leading behaviour of mesons
(equivalent to the leading, twist-2, [DAK) was not necessarily enough on its own

to understand these processes.

The first systematic studies of the twist-3 and twist-4 [DAE of vector mesons were
performed at the end of the 1990s [82, 83]. It was, however, not until some
time later [85], 103] that results including the corrections necessary to distinguish

p, K*, and ¢ mesons (SU(3)g-breaking corrections) were included.

Separately, there is the question of understanding the related structure of the
axial mesons. Owing to the experimental difficulties of studying axial meson
decays (the decay chains typically include more hadrons in the final state, for
example), these have received less attention. Currently, the most comprehensive
study of axial twist-3 available is in [I04], and it seems that twist-4 results

are still not available.

This chapter presents a fresh calculation of the twist-3 [DAE for both vector and
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axial mesons, including new numerical estimates of the parameters. For the first
time, the contribution of the three-gluon condensate is included. While this is
small for the leading parameters, it nevertheless can have some effect on higher
moments in the conformal expansion. In addition, the results in this chapter
explicitly show the relationships between vector and axial [DAk that appear not to
have been exploited in previous computations. Analytic expressions for the twist-
4 [DAk are presented in appendix [D] although results for the tensor contributions
will also be necessary to probe the full behaviour of twist-4 parameters. A

separate computation, using diagonal sum rules, is presented in appendix [E]

As will be shown in the following chapter, these results are also important in the

computation of long-distance charm-loop contributions to B — (V, A)v decays.

Material related to this chapter is to be published in [174].

6.1 Definitions of the sum rules

Throughout this analytic section, vector mesons will be denoted p and axial
mesons p, while the current template will be in terms of K* mesons. The
advantage of the latter choice is that the distinction between the origins of
terms proportional to quark masses and condensates will be clear. Results
for the physical p particle then follow from the replacements m; — m, and

(ss) = (qq), (50 - Gs) — (Go - Gq), and vice-versa for the physical ¢ meson.

The starting point for the non-diagonal sum rules in this chapter is the correlation

function of the general form

(Hg)aﬁa’ﬂ/ - i/d4ye_ip.y<0|7‘{(‘]g(zv vz, O))aﬂ §F§’B/ Q(y)} |0> ) (61)

where the currents (J5(z,v2,0))as = q(2)Gap(v2z)xs(0) are defined in tables
and [3.2] for the p and p, respectively. The quantity G,s represents either the
gluon field or its dual, with the choice being fixed by the current and meson of
interest, according to tables 3.1 and 3.2l In this way, it is possible to compute
the correlation function of all sum rules simultaneously, and choose the correct
configuration of Lorentz structure x and gluon field G as inputs to extract the
relevant sum rule. The structures I' are imposed by the choice of x and the parity

of the meson in question, with a more precise definition given according to the
right-hand column in tables[3.1)and [3.2] Note also that the index 3’ is redundant
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in the twist-3 V, A case.

The definition (6.1)) can be used to compute twist-3 and twist-4 sum rules, but
in either case the relevant structure must be projected out and the correct twist

obtained. For the twist-3 sum rules, this can be achieved using the projector

1

P = T s~ o~ + ’ 3

(6.2)

which follows from [85].

After the projections, and following the contributions below, the final relation

H’é(pz,p2) = /Dge_ipz(aﬁw?’)ﬁé(g,ﬁ), (6.3)

defines the 7, in terms of which the results will be presented. The exponential
factor follows from the definition of the three-particle [DAK, and it is vital to
ensure that any residual exponentials in intermediate calculations are matched
onto the standard form in (6.3)). This will be illustrated in more detail in the
calculations for the perturbative contribution. Results for the = for all DAk will

be presented in [6.3]

The contributions considered for this calculation are the perturbative contri-
bution, as well as all condensates up to dimension six. This includes, for the
first time, the three-gluon condensate, which was previously neglected in non-
diagonal computations [85 103 104]. The necessary non-local expansions for

these condensates are presented in appendix 7 and can also be found in [175, [176].

Using the definitions of the currents in tables[3.1and[3.2] it is possible to calculate
both the vector and axial meson sum rules separately. However, the results
for vector and axial mesons are related by simple transformations. Specifically,
terms proportional to ms, (Ss), and (5o - G's), as defined below, all change sign
separately — so that contributions arising from products m4(ss) do not change
sign between vector and axial contributions. The four-quark condensates are
also sensitive to this transformation, as will be made explicit by the results,
but the summary is that, when transferring between the results of vector and
axial mesons, the condensates (V*V*) and (A*A%) interchange, as do (S%S*) and
(P*P®). This result follows from the chiral restoration limit [36], [I74], but was
computed explicitly for this thesis.

The following section describes how to compute the individual contributions.
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Throughout this chapter, the notation « = 1 — u has been used, where u stands

for any parameter that ranges between the values 0 and 1.

6.2 Contributions to three-particle non-diagonal

sum rules

6.2.1 Perturbative Contribution

Figure 6.1 Perturbative contributions to the non-diagonal sum rules. The left-
hand diagram has also been annotated with key features to make
the meaning of the diagram more transparent. In this, and all
future diagrams, the s-type quark terms are along the bottom of the
diagram, and the g-type quark terms along the top. The local part of
the matriz element is at the right, where a momentum insertion
p has been indicated. At the left of the diagram is the non-local part
of the matrix element , which, by convention, runs from 0 to
z. The choice of —z to z can also be made, which serves as a useful
cross-check of the calculations, as well as emphasising the symmetry
of the results. The definitions of loop momenta in the perturbative
diagram, and their respective propagators, have also been indicated,

clarifying the result in .

The perturbative contribution arises from the diagrams in figure [6.1 Following

the notation, the left-hand diagram corresponds to the expression

. TR
M. = [ diyate e PV OT S 0(:)Gus(w2 xS OR0) Ty 4 Al2)alz) § 10).
(6.4)

where the necessary Wick contractions have been indicated. To deal with the

gluon propagator, it is helpful to write Gog = g.a9,8G"", so that both the gluon

93



field and its dual can be handled at once. The information about the type of
gluon field in the correlation function of interest is then contained in the Lorentz

structure

Gpadvp » gaﬁ = Gaﬁa
i, ={ " (6.5)

afuv

S€apur s Gap = Gag-

Performing the Wick contractions and the spatial integrals leads to the general

expression

. l# vT [V gHT (5
Iy = 16ﬂa82£gﬁw/ . GgléTig (622( ot Ty [Sq(lg + lc)xSs(lg + p)T'S(lg) 7]
Grlq

+ e—iz~(vlc—lq+P)Tr [Sq(lq — p)XSs<lq — lG)VTSs(ZQ)F]) ’
(6.6)

where [ is the momentum in the gluon field and [/, the most convenient choice
of momentum in the quark propagators. The first term corresponds to the
diagram on the left of figure [6.1], which should clarify the notation. The fermion
propagators are defined in appendix [A.4.3] and for the perturbative contribution
only the leading part of the propagator is required. This is a two-loop calculation,
but can be factorised into two separate one-loop integrals, and the necessary
general integral results are presented in appendix [A.4.1] The choice of loop
momentum assignments has been made to correspond to the general integrals

therein.

After the loop integration, care must be paid to terms proportional to p-z. These

can be dealt with by partial integration, with the replacement rules

(5, —0}p - 2F (uy, us) — —u%aimF(ul, ),
({7, —v}p - 2)° Flun, us) — (M%a%)z Flug, up) |
(—(1 = 5y), (1 — v }p - 2F (g, ug) — —iaiuzF(ul,uQ) |
(—(1 = 5y, (1 — v }p - 2)° Fug, ua) — (—ia%)g Flug, up) |
{—0(1 — o1y, —v(1 — viig) }p - 22F(uy, up) — —uiza%la%zF(ul, ug), (6.7

where u; are the Feynman parameters for the first and second loop integrals. The
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last line can arise from mixed linear terms from the two loop integrals, and the
uy derivative does not act on the ai? factor, which is why it has deliberately been

placed outside the partial derivatives.

After all loop integrals and derivatives have been performed, the residual
exponential must be matched to the “canonical form” . In this case, this
is equivalent to changing variables from the Feynman parameters u; to the [DA]
parameters «;. The two diagrams require a separate, but consistent, treatment.
The residual exponentials from the non-local integrals in equations
are e~ P*2(1=v41) for the diagram on the left in figure|6.1, and e~#*(1— “2(1 ”“1) for
the diagram on the right in figure [6.1l These can be matched to the canonical

form e~P#(e2tvas) by

e pAu2(1-011) /D(a)é(al — )8 (vy — uplin)0 (g — Ty Tig e~ P2 tvas)

e~ pr(1-iz(1—vin)) — /D(Ct>5(042 — ug)d (g — uptin)d(az — 711?12)67ipz(a2+m3) .

(6.8)

These results (which correct those presented in [70]) correspond to the choice of
Feynman parameter us switching from either the top or bottom quark line. The
third § function above encodes the rule a; + oy + a3 = 1. One can then perform
the integrals over u; and us using the delta functions, and the final result for the

perturbative contribution is
/duldUZe—ipzﬁg(l—ﬁﬂl)Fl (uh u2) + e—ipz(l—ﬁg(l—vﬂl))F2(u1, Ug)

1 1
/D fzpz(aervozs) ( Fl(_ CVl) _FQ(% QZ)) , (69)

Qq 651 (%) (%)

where F; and F; are the general structures arising from loop integrations in the

diagrams on the left and right of figure respectively.

Results for the perturbative contribution are presented in the full results section
later; here, it is worth noting that the expressions presented therein do not
include quark mass corrections, unlike the results in [85]. However, as will be
seen in the numerical analysis, the perturbative contribution is far from the
leading contribution to these sum rules, and these higher-order corrections are
not significant enough to impact the results. Such corrections can, in principle,
be included by considering only quark mass contributions from the numerator of
the propagator, in which case the integral expressions in equations
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will be of use in including these corrections in future work.

6.2.2 Gluon Condensates

Figure 6.2 Two-gluon condensate contribution to the non-diagonal sum rules.
As before, the s-quark is at the bottom and the q-quark at the top of
each diagram. The fermion propagators have been taken to second
order in the background field gauge, as found in appendiz .

From the correlation function (6.1)) with the gluon field G*? open, it follows that
M) =i [ dye ™IS, (0 NS00 0z) (6.10)

where the definitions of the propagators can be found in appendix [A.4.3] The
two-gluon condensate then emerges from the first correction terms S (z,y) to
each propagator, whereas the three-gluon condensate emerges from terms up to
and including S™®(z,y), along with the second-order expansion in G*. Hence,

the two-gluon condensate is given by

(Y| , =i / dty e P (T[S0 (y, 2)xS2 (0, y)TY]

+ Tr [852) (y, 2) xS0, y)TX]) G (vz), (6.11)

where S(2) are defined in (A.33)). The three-gluon condensate can be constructed

similarly, but requires more terms.

The computation is facilitated by making the identification y — i0,, where
the partial derivative acts on the propagators according to . In practice,
derivatives over the external momentum p vanish, as they lead to symmetric
contributions contracted with the antisymmetric gluon field. All gluon condensate
contributions are proportional to d(«s), representing the fact that the gluon
emitted from the non-local operator carries no momentum, and this can be used
to match to the exponential (6.3).
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Figure 6.3 Diagrams representing the various contributions to the three-gluon
condensate in non-diagonal sum rules, arising from higher-order
corrections to the fermion propagators (A.33|). The triangle vertex

represents a field expansion, as in .
The expansion in G*° deserves attention. It is given by
1
G (vz) = G*(0) + (v2)"V,G**(0) + E(vz)p(vz)TVpVTga’B(O) +... (6.12)

After various contractions, and using z?> = 0, then the contributions from

expanding G*(vz) are proportional to vp - z6(a3). Noting that
vp - Ze—ipz(ag-l—voag) _ i8a3€—ip~z(oc2+va3) (613)

means that, again, extra factors of p-z can be dealt with using partial integration

to derive the replacement rules

up Z(S(Oég)gefip-z(afrvag) - i@aS (5( )5) —ip-z(aztvag) ’

p- 28(ag)fe PO g (5(ag)d)e At L (6.14)

where § = d(1 — a3 — ag — ag). Similarly, the second-order term in can
be related to §”(a3). However, this contribution ends up vanishing, as it picks
up only the symmetric contribution to the relevant condensate , leading to
a term proportional to 22 = 0. Hence only the first-order expansion to G*(vz)

survives in the end.

The final diagrams for both two- and three-gluon condensates arise from non-
local one-loop integrals, and the expression in ({A.26)) can be used to obtain the

final expressions.



Results for the two- and three-gluon condensates are given alongside the
remaining contributions in section [6.3] The two-gluon results are available for
non-local twist-3 sum rules in [85]. Results for the three-gluon condensate are
new, and were previously neglected as, for the leading [DAl parameters, they were
only O(1%) contributions. Numerical results show that, for higher moments in
the [DA] the three-gluon contribution can be more significant, and it is thus worth

including.

In comparing results with previous calculations, it seems that there is a typo in
[85]: in the denominator for the two-gluon condensate in equations (C.4 - C.6), ay
and as should be interchanged. The Feynman parameter for the integrals above,
u, can be identified with as following the same procedure as in the perturbative

calculation.

6.2.3 Two-quark condensates

Figure 6.4 Diagrams leading to two-quark condensate contributions.

The two-quark contribution arises from the diagrams in figure [6.4] which are
also non-local one-loop integrals. The two-quark condensate has the expansion
given in the appendix in equation (A.16)), and can also be found in [I75]. Care
must be taken to deal with the divergences correctly, as the second diagram in
figure has a subdivergence that must be subtracted. Final contributions are
associated with a ¢ function, depending on which quark condenses. Specifically,

the condensate (3s) is associated with d(aq) terms, and (Gq) with d(ap).

In higher-twist computations, it is also possible for additional p - z factors to
appear. These can be dealt with via partial integration, as was shown in the
previous section, and lead to contributions proportional to derivatives acting on
the moments. All such terms vanish at twist-3, but are relevant for the twist-4

results.

Results are in disagreement with those in [85], as shown in equations (C.4 - C.6)
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therein. There are strong reasons to prefer the present calculation, as the results

are more symmetric than those obtained in the previous calculation.

6.2.4 Four-quark and mixed condensates

The four-quark condensate contribution to the sum rules in fact emerges from
two types of contribution. The first type also includes the mixed condensate,
and is depicted in Fig. 6.5] This leads to the condensate (g(z1)G**(y)q(z2)),

Figure 6.5 Four quark condensates of the first kind. Such contributions are
fized in the change from vector to axial mesons, although the related
mized condensates are sensitive to the change according to the rules
given for the two-quark condensates.

or its equivalent for the s-quark, where x; — (z,y), x2 — (y,0) and z — vz,
respectively. The expansion for this condensate is given in equation (A.17). The
y variable can be replaced with a momentum derivative via partial integration,
whereas the terms proportional to z ultimately vanish under projection as they
go as z? = 0. The final results are proportional to d(a3)d(a;2) depending on
which quark is in the condensate, as the only momentum transfer is through the

propagating quark.

Terms proportional either to p- z or to vp- z can be traded for derivative terms by
partial integration, and this will be important in results for twist-4[DAk. Initially,
it seems that the two diagrams lack an «a; <+ s exchange symmetry, but this
is an artefact of choosing the asymmetric configuration g(2)G*(v2)s(0). Setting

s(0) — s(—z) restores the symmetry, and serves as a useful cross-check.

The second type of contribution proceeds from the diagram in Fig. [6.6]
The calculation is standard, as the diagrams are tree-level, and all non-zero

contributions are proportional to §(ay)d(as). In computing these diagrams the

spin sum ({A.19) proves useful.

99



Figure 6.6 Four-quark condensates of the second kind. Such contributions are
sensitive to the change from vector to azial mesons.

6.3 Analytic results

The final expressions for the correlation function (6.1]) are formed by the sum of

all contributions considered above. Recalling the definition
I3 = /Dge_ip‘z(o‘2+”°‘3)7r§ (6.15)

then the results for the 7T>g<, including quark mass corrections to the denominator

for the gluon condensates, are, for twist-3 [DAE,

2
v O —p 1 1
Ta = —sz th (051062063 <O_5_1 — 0_4_2))
aran(ar — a)d(as) , o ajag (2(ar — a2)0(as)0us) |, s
9672 W <G >+ 192722 <fG >

3%2% {H% (mq(Gq)d () — m(55)d(en))

2

+ o {1 + oy <ln (a3di) + In M—];)] (m(Gq)3(cn) — my(55)3(n)) }

* 12p45(043) (mqg(qo - Gq)o(az) —my(s0 - Gs)o())
- 2?;%5(043) ((VI'V7) dlaz) = (ViVf) 8(an))

2
A Qs o, =D 1 1
A _ In —— 4=
e g3l w2 <a1a2a3 <071 642))

106 (as) <G2> 4 O‘%O‘%(;(O%) (1 +20a,) <fG3>

962 W 192722
]. Qg 1 — 043663 _ _
e {0 ) as) + o f55)5 ()

2

+ o {1 —ay (m (a363) + In ;—ZH (M (qq)5 () + mg(55)6(n)) }

+ %ﬂlé(ag) (mg(Go - Gg)d(az) + ms(50 - Gs)d(aq))
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(A% B(a)Bl) — 6 0a) (VY7 Ble) + (VY7 b))

P - Oéspln_p2 - i_i
G o3 112 3 a; Qs

(g — ag)d(as) (G2 + afas (2(on — a2)0(3)0a,) (5%

4812 W 9672 W2
2 as [1 _ _
3—p2? 2 (mq<QQ>5(Oé2) — m(5s)d (1))

2

#as |1+ s (1n () + 1o )| (mataa)d(a) — my(ss)d(en) }

+ () (my{do - Ga)d(az) — ma(5o - Gs)d(an)

6p*
— 250 o) (V7 60) — (VIVE) lan)
Wg - 7TGlms (@9)——ms (Gq),mq (55)——mq(5s),(As Aa) s (VaVay
TG = T o 0) > —mo (@0} ma (55)—>—ma(5s) 5
772 = W(T; ms(Gq)——ms (qq),mq(3s)——my(3s) > (6.16)

where W = W(m2, m2,p*) = aam?2 + apm? — ayasp® is a useful shorthand. The
0 functions impose all further necessary constraints, alongside the global delta

function 6(1 — oy — s — ag).

6.4 Mixing of axial mesons

Before presenting numerics, it is important to address the question of mixing,
which is particularly important for the axial mesons, as the mixing behaviour is

not yet completely understood.

All the mesons with the same values of J? form SU(3)r nonets, according to the
quark model of mesons. The 1~ nonet, for example, is composed of the three p
mesons p0; the four K* mesons K**% and K*°, and the ¢ and w mesons. The

¢ and w are admixtures of the singlet and octet states

1) =

8) =

(|uu> + |dd) + \55>) ,

(|auy + |dd) — 2|3s)) . (6.17)

%IH%I

The same applies to the 17 states, where the analogues of the ¢ and w are the
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Source Ok, /°  0f/° 0n/°
Cheng, [179)] 34(4)  23(6) 28(4)
Erkol et al, [IS0] | 39(4) 30.3(53) 28.7(35)
Present thesis | 37(4) 27.5(56) 30.5(34)

Table 6.1 Mizing angles, taken from [179] and [180], and the values used in this
work, where O serves as an input to determine the mizring angles
O¢n via the Gell-Mann—Okubo mass relation . The angles Oy,
were not computed in [180], but can be inferred using said relations.
Since [179] was released, the mass estimates for the mesons have been
updated in the PDG, in particular the hi(1380); the present thesis
uses the latest values [128]. Error estimates are due to the variation
in g only.

two f1 (hy) states. These also are mixtures of the singlet and octet states, but,
unlike for the ¢ and w, the mixing angles are not precisely determined. Likewise,
the physical K;(1270) and K7(1400) are usually held to be admixtures of the pure
states K74 (belonging to the a; nonet) and Kip (the by nonet). This introduces
a third mixing angle, 0k, , which is also yet to be precisely determined [177, [I7§].

The most recent studies appear to be arriving at a value of about 0y, ~ 35°.

Defining the mixing angles 6, 6,, the physically-observed states are written [104]
179]

| f1(1285)) = cos O | f1) +sinfy |fs) ,

|£1(1420)) = —sin 0 | f1) + cos by |fs)

|h1(1170)) = cos Oy, |hy) + sin by, |hs) |

|h1(1380)) = —sin 6y, |hy) + cos by, |hs) . (6.18)

Note that the angle for decoupling into pure the light quark state and the |3s)
state is given by the fixed angle 64, = tan'(1/v/2) ~ 35°, and this is the angle
that applies for the ¢-w mixing.

To determine the mixing angle for the f; and h; states is non-trivial, but use of
the Gell-Mann—Okubo mass relation [104], 181, 182] provides a phenomenological
method to determine the angles. Using this, it follows that (ff = f1(1285), f =
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f1(1420), and similarly for the h mesons)

2 2 2
) 4mK1A—ma1—3m1L
cos” O = ,
2 .2
; (mle mf%)
4m3. —m2 —3m?,
h
cos? 0, = Z - ! (6.19)

b
3 <m2 —m?2 )
hi! hi

where one also needs the mixing angle for the K4, Kip states in terms of the
physical states K7(1270), K;(1400), which is defined [I77-179]

|K1(1270)> = COS(9K1 |K13> + SiH0K1 |K1A> s
|K1(1400)> = —sin@Kl |K1B> -+ cos 9}{1 |K1A> . (620)

Table presents the extracted values of 0; using the input value of Ok,
indicated, based on two previous determinations [179, 180], with the present
calculation assuming a naive average of the two values. These values suggest
that the heavier f; and h; states are not far from being pure |ss) states;
this assumption will therefore be made in the numerical estimates of the [DAI

parameters.

6.5 Numerical results

To extract the [DA] parameters, it is necessary to consider the left-hand side of
the correlation function (|6.1f) , which is given by

HX

( ) m%/fe/ /D *iPZ(OéQJrvaS)q)X[P}( ) + (6 21)
V,p2) = —5——= ae (6% PN .
)V P m} — p? - N

where the dots stand for higher contributions from the hadronic spectrum. As
seen in the case of the B — m sum rules, the necessary contribution can
be extracted by subtracting the continuum contribution, performing a Borel
transform and equating to in terms of a dispersion relation. The
integrals over (ai,as,as3) can be performed, along with a projection onto the
relevant moment, by exploiting the orthogonality relations of the basis function
in ([3.48]).

To illustrate this procedure, the Borel-transformed sum rules for the leading
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parameters for the p and p = a; mesons are given below. The notation used
below, and its relation to the previous literature [85], was established in (3.51)).
Defining

2,42
m 02 2
'/\[3"/ — fv—gve mv/mg’
B
12
m _
) m=
B

then the non-zero parameters are, for the p meson,

a 0o g 2 1 1 1 1
_ s i —s/Mhd - G2 - GS
Nap Aoy = 115 0 Mge BT Mg< )+ 19272 Mg<f )

2mog 1

a a 1 a a
as [P0 s g 1 1 11
NopAer = 350 We Mods — 5 2W< A 1447r2ﬁg<f i
8ma, 1 a 327ras o r1a
Tov S _g/M2 7 28mas 1 “
Noo Vit = 7o /0 e s 1447T2@<(ﬁ> - )
T s g 7 1 56T g ara
/T = 36073 f, 222° /M“d8+m@< ) -3 M_g(2<quf>)v
(6.23)
and, for the p = a4,
~ Qg s g 1 1 1 1
./\/’?),ﬁV(o)p = 144703 A Mée /MBdS + 967’[’2@<G2> —+ 19922 Mé<fG3>
2mag 1 ara 1t
~ —as [0 s g 1 1 11
Ns Vo = 15,3 | Mz Mods — o 2W< Ot 1447r2ﬁg<f )
87Tozs a 327Ta5 atra
. T so S —s/M2 7 28mas 1 u
N37/3A(1)ﬂ = 72073 0 M2 M 5ds + 14471 2m< 2> - 3 M4 ( <V Vf >)
. Toug s g 7 1 567 g ara
3Lﬁ Mr = 36073 ; Mge /M6d5+72 2M2< 2>_ 3 Mg (2<quf>)'

(6.24)
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Expressions for the K*- and ¢-type mesons follow from including mass corrections,

but the corresponding analytic expressions are longer, and are not given explicitly.

Numerical inputs, and errors, for the condensates are given in appendix [B], along
with a discussion of the competing estimates of these values. Here, it suffices to
say that the numerical values for all condensate parameters align with the values
in [103]. The renormalisation scale is set to p = 1 GeV. The evolution of
the [DA] parameters, including mixing with twist-2 parameters, can be found in
[85],T03]. Values for the quark masses are assumed to be m, = 0 and m4(1 GeV) =
133(27) MeV, also used in [85 [103]. For simplicity, only linear quark mass
corrections are applied, arising from the two-quark and mixed condensates, and

quadratic quark mass corrections are neglectedﬂ

The decay constants are taken, for vector mesons, from the results of [99], and
for axial mesons, the results below are based in the observation of the Weinberg

sum rules [I83] that m?f? = mj, a21E|

The remaining question is of the Borel parameters. The continuum threshold s
can be determined from experimental data; threshold parameters sg are chosen,
for the vector mesons, to coincide with those used in [85]. For the axial mesons
the sg is taken to be slightly higher, based on the data of, for example, [184]. An
alternative model that is often used in sum rules is to fix s}/ = (my + A)? for
some parameter A, where m); is the mass of the relevant meson. Here, using
sh = 1.3 GeV? implies A = 0.36 GeV, which in turn would give s&' ~ 2.55 GeV?,
consistent with [L04], but rather higher than the observed threshold in [184].

Coinciding with the values in [85], the choices for the sy for vector mesons are
so A (p,w, K*) = 1.3(3) GeV2, sT(p,w, K*) = 1.6(3) GeV?, s0"(¢) = 1.4 GeV?,
and s] (¢) = 1.7(3) GeV?. For axial mesons, the equivalent thresholds are chosen
to be lower than in [I04], but higher than the vector meson thresholds, using the
results for the a; spectrum in 7 — Av, decays from the ALEPH experiment [184]
as a guide. This leads to all axial sy being 0.4 GeV? higher than the equivalent

vector thresholds.

!These include corrections from propagators in the gluon condensates, although such
corrections can nevertheless be obtained from the analytic expressions provided in equation
(16.16]).

2The values for the decay constants obtained in [104] are much higher than the inputs used
in the present calculation, although it will also be seen that the threshold parameter used in
that paper is much higher than the value implied by experimental data. The choice based on
the Weinberg sum rules is more consistent with the arguments of [36].
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Figure 6.7 Dependence of A, on the Borel mass, for central values of the
condensates, at three different values of the threshold parameter
(from top to bottom, so = (1.6, 1.3, 1.0) GeV?). For low values of
the Borel mass it can be seen that the range is too great for results
to be trustworthy, whereas the relative smoothness in the chosen
window is well-established.

For the Borel mass parameter, this will be fixed by establishing the Borel window
(c. 10% to c. 30% contribution of highest-dimensional condensate) for the leading
[DAl parameter, chosen to be, by convention, A, = C:! ,- Lhis leads to the Borel
window 2 GeV? < Mg < 5 GeV?, which is somewhat higher than the window
quoted in [70] but is actually more consistent with the graphs provided in, for
example, figure 4.10 therein. This window is then used for all the parameters,
which allows to compare the changes in importance of different contributions
with the same conditions, rather than arbitrary variations for each parameter.
Figures [6.7] [6.8, and [6.9] illustrate the dependence on Borel mass of three of the

p parameters, justifying the choice for the Borel window.

For the p meson, the numerical results for the [DAl parameters are

A, = 0.0032[pr 4 0.022|g2 + 0.00053|gs + 0.0032|(z9)(ss) + 0.0022] 2
= 0.031(9),

Ay = —0.0038]pr — 0.087|gz + 0.0077|s + 0.017]zq)(ss) — 0.0086] 2
= —0.075(22),

Vay, = 0.0044|pr + 0.102] = + Ofes + Ol(gg)(ss) + 0-030] 52
—  0.136(41),

Ty = 0.018]pr + 0.360|c2 + Olgs +  Olgayiss) + 0.107] g2
= 0.49(15), (6.25)
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Figure 6.8 Dependence of A(z), on the Borel mass, for central values of the
condensates, at three different values of the threshold parameter
(from top to bottom, so = (1.0, 1.3, 1.6) GeV?). The equivalent
plot (figure 4.10) in [T0] shows the opposite behaviour at low values
of the Borel mass. The differing behaviour can be attributed to the
behaviour of the three-gluon condensate, which is dominant for small
vliaues of Mé Both the plot above and that in [70] converge to
similar values in the region of interest.

where the breakdown into the individual contributions has been indicated,
distinguishing the two sources of the four-quark condensate contribution. The
uncertainty in the overall parameter arises from uncertainties in the values of the
condensates, the Borel parameters, the strange quark mass, and «g. It has been
assumed that these errors are uncorrelated. It can be seen that the two-gluon
condensate provides the dominant contribution, while the three-gluon condensate
is relevant to the proper evaluation of A )y, as it is of the same order at the four-

quark condensates. For the p meson, the equivalent numerical results are

]}(0)@1 = 0.0065‘pT + 0.028‘642 + 0.00068|G3 — 0-0042‘(@)(53) + 0'0028‘(@)2

— 0.0342(95) ,

Vi = —0.0078|pr — 0.113]g2 +  0.010]gs — 0.023|(gg)(ss) — 0.0113[ 2
= —0.14(5),

Ay, = 0.0091]pr + 0.132| e + 0lgs + 0l (gg) sy + 0.039] 702
= 0.181(67),

Ts = 0.020[pr 4 0.265|g2 + 0l + Ol(gg)(ssy + 0.079] 502
= 0.36(13), (6.26)

where the extracted [DAl parameter for the tensor current is for the by, rather than
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Figure 6.9 Dependence of V1), on the Borel mass, for cenlral values of the
condensates, at three different values of the threshold parameter
(from top to bottom, sq = (1.6, 1.3, 1.0) GeV?).

the ay, owing to the fact that the a; does not couple to the tensor current.

The equivalent results for the ¢ and f;(1420)(h;(1380)) mesons, assuming that the
higher-valued f; and h; are pure |ss) states, also include contributions from the
(ss) and (So - G's) condensates. For the ¢ meson, the corresponding breakdown

1S

Aws = 0.0020[pr +  0.012ge +  0.00029]gs + 0.0011](gq)(ss) + 0.0008] ;2
+ 0.0060|(s) — 0.0013|(s.0) = 0.0207(79)

Apye = —0.0024|pr — 0.048|c2 +  0.0042|gs + 0.0061](gg)(ss) — 0.0030] g2
4+ 0.014|(55 — 0.0053|(s50.c5p = —0.023(17),

Vaye = 0.0028|pr + 0.056|¢2 + Olgs + Ol (ggy(ss) + 0-011f 72
+  0.016|5 — 0.019|(s0.c5) = 0.066(26),

Ty = 0.011|pr + 0.166| 2 + Oles + Of(gqy(ss) + 0.032[ g2
4+ 0.043|(5 — 0.056(s0.csp = 0.196(75), (6.27)

and, for the fi(hq)

V(1420 = 0.0052[pr +  0.016]g2 +  0.00038|gs — 0.0015](gg)(ss) + 0.0010] )2
—  0.0036] (5 — 0.0018| (5.5 = 0.0157(50) ,

Viynaa20) = —0.0062/pr —  0.064|g2 +  0.0056]gs — 0.0081](gg)(ss) — 0.0041] ;2
—  0.015|s) + 0.007](s0.csy = —0.085(35)
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[DA] parameter p K* ¢ w
Ay 0.031(9) | 0.031(10) | 0.0207(79) | 0.035(10)
Ay 0 0.027(17) 0 0
Ay —0.075(22) | —0.048(23) | —0.023(17) | —0.086(26)
Vioyv 0 —0.001(2) 0 0
Vv 0.136(41) 0.112(36) 0.066(26) 0.157(47)
Vo 0 —0.012(7) 0 0
Tow 0 —0.003(5) 0 0
Ty 0.49(15) | 0.37(12) | 0.196(75) | 0.56(17)
Toyw 0 —0.040(22) 0 0

Table 6.2 Summary of numerical results for all parameters for the vector
mesons, with uncertainties in the last digit(s) in brackets. All values
above are at the [RG scale p = 1 GeV. The notation is new to this
thesis, and can be related to that of the previous literature [82, (85
using the dictionary in equation . G-parity odd parameters are
sensitive to the sign convention for the covariant derivative, which
here is D,, = 0,,—1A,. The values for the w are also given separately,
for the first time.

A(l)f1(1420) = 0.0073|pT + 0.074|G2 + O|G3 + 0|<qq><§s> + 0.014|<qq>2
4+ 0.017|s — 0.025|(s0.cs = 0.088(37),
+ 0.027|5 — 0.049| (5005 = 0.166(69) (6.28)

Table contains a summary of the numerical results, including those for the

K* mesons, and table [6.3] contains similar results for the *P; axial mesons.

6.6 Conclusions

This chapter has presented a fresh determination of the three-particle twist-3
distribution amplitudes for light vector and axial mesons. The main result of
this computation is to demonstrate explicitly that the resulting sum rules are
identical, up to corrections from the quark condensate and hadronic parameters,
where these corrections are systematic and described in . The calculations
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parameter a f1(1420) f1(1285)
Vioya 0.034(9) | 0.014(5) | 0.041(12)
Viya 0 0 0
Vioya —0.14(5) | —0.084(35) | —0.173(65)
Awya 0 0 0
Aya 0.181(67) | 0.086(37) | 0.215(83)
Aw@ya 0 0 0

Table 6.3 Summary of available numerical results for vector and axial
parameters for the 3Py axial mesons, with uncertainties in the last
digit(s) in brackets. All values above are at the[RG scale p =1 GeV.
A full analysis, including the tensor [DAls and ' Py results, will be
provided in [17})].

also update those in [85] and [104], and will lead to fresh numerical results,
preliminary values for which are given in tables [6.2] and [6.3]

Although the analysis has yet to be extended completely to the 'P; mesons,
combining the analysis of vector and axial mesons in a systematic manner will
render future experimental studies far less susceptible to the vulnerability of using

competing calculations.

The corresponding results for the twist-4 distribution amplitudes are dependent
on a proper study of the tensor current, which has so far not yet been attempted.
Preliminary analytic expressions, which will enable a full moments analysis of
these [DAk, including the SU(3)r breaking effects, are given in appendix @

The following chapter will show an immediate application of the twist-3 results,
as they will enter into the computation of long-distance charm loop contributions

to radiative B — (V, A) processes.
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Chapter 7

Long-distance charm loops in
B — V'~ decays from light-cone sum

rules

7.1 Introduction

The leading contribution to radiative B meson decays arises from the operator
O (defined in (22.38)), but repeated below for convenience),

GF D e — v B v
Heff,? - E)\t 4—7_(_2 (mbC7 DLO'/WbFu + mDC§ DRO'NVI)F“ ) s (71)
where the right-handed amplitude arising from the contribution has also been
explicitly indicated. Tt follows that, although right-handed currents (RHC]) in
b — D~ decays can be generated by the[SM], they appear to be heavily suppressed
by a factor mp/my. As a result, it can be expected that the presence of significant

[RHCl in such decays is a strong signal of NPl

This statement is, however, complicated by the presence of other operators in the
effective Hamiltonian. The Oy operator (2.36)), in particular, could also play a
significant role in generating [RHC| contributions. This has led to some research
in attempting to compute such contributions to b — D~ processes. An inclusive
B — X~ computation suggested that the contribution of Oy to [RHC could be
surprisingly large compared to the mp/m; scaling of , on the order of 10%
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[185]. However, computations of the same effect in exclusive channels [I86HISS]
have led to a far smaller contribution of @, to [RHC, in line with the implication
from (7.1 that [RHC| should be small in radiative b — D~ decays.

Aside from the theoretical ambiguity, there is also the question of how to measure
[RHC in experiment. It was shown that the time-dependent decay rates and C'P
asymmetries are sensitive to the interference of left- and right-handed amplitudes
[189, [190], and since then the B factories have attempted to measure these effects,
as well as at LHCb in 2016 [191HI93]. All experimental results so far suffer
from significant uncertainties, so that the next generation of B factories may be

required to untangle such effects properly.

Regardless, the problem of distinguishing sources of [RHC from the
contamination is important to solve. In [36] it was proposed that one way to
resolve this is to exploit the approximate symmetry, that applies exactly in the
chiral restoration limit, between vector mesons and their parity-doubled axial
meson partners. Then, by combining the analysis of B — Vv decays with the
respective B — A~ decay under parity doubling, it is possible to separate the
measurement of [LDl effects from genuine [NP] effects in RHC], providing potentially

significant improvements to the sensitivity of experiments to such effects.

This chapter presents a computation of the long-distance charm-loop in exclusive
b — D = (d,s)y decays, in the case where a gluon radiates into the final-state
meson, using the [LCSR]approach. In [35] the same calculation was also presented,
and extended to b — D = (d, s)¢ decays, but results in that thesis were confined,
at least explicitly, to the leading contribution from the necessary three-particle
[DAlL Furthermore, in light of the updates to the three-particle [DAl parameters,
as provided in the previous chapter, an update of the preliminary results of [35]
is desirable. Although numerical results are restricted to ¢ = 0, the presentation
through the analytic section will allow for a future extension to ¢® # 0, which

allows the results below to be applied to the b — D = (d, s)¢/ case.

Parts of this chapter have been published in [36], with the remaining material to
be published in [194].
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Figure 7.1 The contribution of interest, where the charm loop radiates a gluon
into the final-state meson, while the B meson is replaced by an
interpolating current, following the usual [LCSR procedure. Other
contributions, where the gluon attaches either to the B meson or to
any of the quark lines, are not indicated. The spurious momentum
k, inserted at the vertex, deals with parasitic cuts, to be made clear

in figure[7.3,
7.2 Charm loop matrix element

The B — V'~ amplitude can be expressed in terms of the two photon polarisations

as

A= (7(q,€)V (p,0)| Hea| B(ps)) = A] V'S + AR Sp . (7.2)
where
Sury = [e(€™n",p,q) Ti{(e" 0" )(p-q) — ()" - @)}, (7.3)

label the left-and right-handed contributions to the amplitude. The extension to
the ¢ # 0 case can be achieved using the basis [69]

Py =2¢"(n",p,q),

¢ A * * ~ ~ o
Pl = — ()\VmQBn F—2n*-q ((1 - m%/ - qQ)p“ - Qm%/q“)) ,

4im . R . .
B = ———=n" - q (2¢*p" — (1 — 0} — §*)q") , (7.4)

\ 282y
where the hats denote normalisation to the B meson mass

Ag_q ~ _mV
4 = —5 my = —,
mpy mp
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5‘V = )‘<17 m%/? (j2> ) (75)

and A(a, b, ) is the Kéllén function (C.2)). It is convenient to work in the (V, A, 0)
basis as this allows to project onto the basis of [DAk used in the previous chapter.
Note that when ¢?> — 0, the invariants S L(r) can be expressed directly in terms
of Py, as 2p-q = m% —mi, — ¢* and £* - ¢ = 0 in this case. More precisely, the
relations are

.1,
SL(R) = lim 56 : (PV :l:PA), (76)

q%2—0

with P} vanishing at ¢* = 0.

The matrix element of interest is

L-QP“:4—7T2' d*ze = (V (p)|T (e(z)v*e(x)2Q5(0) ) | B 7.7
Z ei(q”) P} o ze' T (V (p)|T ( e(z)y"e(2)2Q1(0) ) [B(ps)), (7.7)
i=V,A,0
where | .

Qi = 5 <O§ - N—COT) = EL/\QC §L>\ab (78)

is the colour-traceless part of the current-current operators in the effective
Hamiltonian . Only the contribution arising from the charm loop has been
provided above, although other quark-loop contributions arise from the natural
replacement ¢ — ¢ = (u,d, s,b). The total contribution from such quark loops

leads to the overall function

D

e A
L7 = =CoQu ), 5 Lai(0®) + CsQaLai(®) + (Ci = C5) 3 QuLaila®).
t
q

q=u,c

(7.9)

where the final sum runs over ¢ = u,d, s,c,b. Owing to the hierarchy of Wilson
coefficients, the dominant contribution to the long-distance quark loops is from
the Cy term, while the hierarchy leads to [AP/AP| ~ 1, |A5/X5| ~ 1/50,
A2 /A4 ~ 3/10. Hence, the charm loops are the most significant, although B — p

transitions are also sensitive to the up-quark contribution.

Equation defines the full contribution due to charm loops, but there
are several possible classes of contribution to this diagram, which can be divided
according to the nature of the gluon radiated from the charm loop. The particular
case of interest in this chapter is that where a soft gluon is radiated into the final-
state meson, although further important contributions include those where the

gluon is instead radiated into the initial-state meson or any of the quark lines.
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Invariant | Quark content | Interpretation

Q? cc Charmonium resonances
_ Bp meson, parasitic contribution to

2 )

q Db
charmonium dispersion relation

pE qb B meson

) o parasitic contribution to B meson dispersion
P ccDq

relation from multi-hadron states.

Table 7.1 Physical interpretations of the momentum invariants and their
associated cuts. In the limit k — 0, the invariants ¢°> and P>
are indistinguishable from Q? and pQB, which are the physically
meaningful quantities, as they are associated with the charmonium
resonances and physical B meson states respectively. This justifies the
introduction of the spurious momentum k, which allows the parasitic
cuts to be separated, as discussed in the text.

These have been considered previously in [35] [188] for initial-state radiation, while
vertex corrections have been partially considered in [68] and, in the inclusive
case, in [195]. A full exclusive calculation of these two-loop diagrams has not
yet been completed. The implication from [195] is that such corrections could be
sizeable compared to the leading diagram, as the resulting correction to C7 is of
order 25%, but Lf;(¢*) can also be expected not to lead to a significant right-
handed amplitude. In any case, this thesis only presents the results for soft-gluon

radiation into the final-state meson.

7.3 Outline of the calculation

Following the approach of [35] [71], the first step is to replace the B meson in (7.7))
by an interpolating current (see also (3.22))), so that the correlation function of

Iinterest is

4% 2

my me2B

C*(p, Q. k) = [ty @ (v )T (e #el0)225(0)Ia(0) 10).

(7.10)
where Jp(y) = b(y)ivsd(y) is the same interpolating current that was used in the

sum rule calculation of section 3.2

The first problem is to ensure that the dispersion relation arising from this matrix
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Figure 7.2 The cut structure of the diagram in figure . Without the spurious
momentum k, it would be impossible to distinguish the cuts in pQB and
P? from each other, but, as shown, the cut over P? does not provide
the correct quantum numbers for a B meson state. A similar issue

affects the dispersion relation for Q?, also resolved by introducing
the momentum k. See also table .

element is the correct one to isolate the contribution we are interested in. This is
not immediately possible, as initially there are two distinct cuts in the diagram
(figure that would appear to be related to the momentum p%, but the second
one also intersects with the charm loop and thus does not, in fact, have the correct
quantum numbers for the B meson. The same issue impacts the ¢* behaviour,
as cuts either side of the vertex would both isolate the invariant ¢, but the one
passing “below” the vertex has the quantum numbers of a B meson, rather than

the charmonium resonances. These are summarised in table [7.1]

The resolution of these issues was introduced, in the context of B physics, in
[196], and applied to the related light quark loop calculations in [71]. It amounts
to inserting a spurious momentum £ at the vertex, which ensures that the two
“parasitic” cuts described above do not have the correct momentum, and allows
the correct cuts to be isolated. The price of this is to introduce the further

momenta

P=pp—k, Q=q—k, (7.11)

with k? = 0, as its only role is to separate the correct cuts from any parasitic
contributions. The new momentum () replaces ¢ in the exponential in ((7.10)).
After applying the dispersion relations over p% and (for non-zero ¢?) Q?, it is
then possible to restore the equalities P = pg and () = ¢ at the end of the

calculation.
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One also needs the expansion of the charm propagator in a background gluon
field, valid on the light-cone [35]

So(k) =80 485® 4
o Kk4+me
S = m
1
2 gs %_I_mc — %+mc
S,E):—E/O dv (vo-G(vx)(k2_mg)2+v(k2_mz)2a-G(U$))a (7.12)

or the equivalent expansion in equation (A.33). This leads to the expressions for

the correlation function

oV — _M /d ST w(P* — Q) V(a),

meZB 2 —

- mi)(pb mg)
I 2 2
cy - -y | s Q) ), (7.13)

femip Pomy)(py —mg)”

where the subscript on C relates to whether the contribution is the coefficient of
the Py or P4 Lorentz structures in ([7.4), and the superscript refers to the fact

that these are results for vector mesons. The five-parameter integration is defined

/dug,:/oldx/Dg/Oldv, (7.14)

and the mass and momentum invariants are

I? = vazP? + (1 — va3)Q* + vaz(1 — vaz)mi
Py = auq” + aapy — cnamy;

m2 = I—; (7.15)

In the limit m, — 0, m2 — 0, so that the z integral drops out, recovering the
light quark loop results of [71], although m, = m. # 0 requires that the x integral
be included. The equivalent results for axial mesons can be obtained through the

replacements

ca =y
ci=cY

‘V—Mi ’

| e (7.16)

To proceed further, it is useful to work in the limit m? — 0, which greatly sim-

plifies the resulting integrals, and allows some progress to be made analytically.
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It is worth noting here that, if one were to include the twist-4 contributions to
the correlation functions , then it would also be necessary to restore the
m3, contribution to the momentum invariants (7.17]), as both enter at the same
order in conformal twist. All four contributions above can also be performed in
the same manner, so it is only necessary to present the approach for one such

integral.

Following [71], the integrals over oy, @ and v can be performed directly, to give

dx das x B
o = [ [ st ((ntnd — 5 — ] — apfy — sg)) EY” + 7L
x <(1n(mz — QY — In(m? — asP? — a5Q%)) P + P4(O)> PO (7.17)

where the P; are polynomial functions of the masses, momenta, and «s, with
explicit definitions in appendix [F.I] Note also that this specific structure
only applies to the leading [DA} those for the Next-to Leading Order (NLOJ)
contributions are similar, but, again, the explicit form is presented in appendix
[F.1] One can also see, from the form of the integral above, that the dispersion
relations do indeed depend only on p% and Q?, so that the spurious momentum &
introduced at the vertex has had the desired effect of isolating the required cuts

from parasitic cuts.

The discontinuity in p% arises solely from the logarithms, as the residue due to
the pole at p% = ¢ vanishes, so that PQ(O) can be dropped, and the dispersion

over p% arises from

o _ [~ da:& (0) p(0)
Cr / dxm (5= q2)3P1 Py
X ((ln(mx - Q? ) ln(m — azP? — a3Q°)) Py P + P(O)> (7.18)
where
2 9
-5 1 7.19
%] s — q2 ) ( )

and with this result, the final analytic integral that can be performed is the a3

integral, leading to

1 . (0)_/1 d(L’CE
7TD1sc.(] =/ (PQ—Q2)3(s—q2)3X

((n(m2 = Q%) —n(m2 — a3P* - a30%) R + B ) RY,
(7.20)

118



where the Rz(j ) are polynomials in the masses and momenta, and are defined
explicitly in appendix [F.2]

The final dispersion relation is therefore

B

S0 1
LY(q% Q%) = / ds "5 Ms “Disc. €Y (¢, Q% s,my +i0),  (7.21)
’ 2 7

mb

where, as the correct cut has been made, it is possible to set P? — m% + 40,
the on-shell condition, with the +i0 ensuring the correct analytic continuation.

Results for radiative decays follow from setting Q? = ¢? = 0.

The extension to ¢? # 0 requires further care, owing to the fact that the invariant
(Q)? is sensitive to charmonium resonances. The procedure for dealing with this
is presented in [35], with further details also to be given in [194]. At ¢* = 0,
however, these subtleties do not enter the sum rule, and so setting Q? = ¢> = 0

is indeed sufficient for calculating the radiative charm loops.

The remaining two integrals are the z-integral and the s integral appearing in
(7.21)). For general ¢*, the x integral cannot be integrated analyticallyE] so the
remaining computations must be numerical. Care must be taken to avoid issues

at the boundaries of the x integration. The first of these can be removed by using

/0 1 vF(aT) do = /0 v F(z7)dz, (7.22)

which follows from the symmetry in z <> Z, and removes the issues of numerical

evaluation at x = 1. The numerical issues at = 0 can be dealt with by imposing

1 4m?
= (1- =), (7.23)
2 M

which can also be associated with charmonium resonances leaking into the

a cut-off

dispersion relation as x — 0.

7.4 Numerical results at ¢°> =0

It is convenient to consider the behaviour of the integrals separately from that of

the external hadronic parameters, as the structure of these integrals is universal

1At ¢ = Q% = 0 it is possible to obtain an analytic expression for the z-integral in terms of
polylogarithms, but the resulting analytic form is far too cumbersome to be of any use.
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Figure 7.3 The real (top) and imaginary (bottom) parts of the integral in
equation , plotted as a function of the Borel mass and for
central values of the other parameters. The B meson mass still
enters as an input; the plots above assume that the state is a B,
meson, where ¢ = u,d. The difference due to a Bs meson state is
around 10% to both real and imaginary parts. The relative stability
for Mg ~ 12 GeV? can be clearly seen, as can the strong phase,
which for this term leads to a significant imaginary part.

for all twist-3 functions of interest. With this in mind, results are presented

separately for the normalised integrals ﬁ(j), defined in terms of the result from

20 by

2
my, fymy i) 7
LE(0) = =55 > L) (0), (7.24)
fsm B 50
so that all information about the specific state and [DA] parameters is separated
from the integral as an overall normalisation and summed over the [DA] parame-

ters.

The Borel parameter ranges are M 12,3, = 1243 GeV? and sf = 35+2 GeV?, which
is consistent with the typical values used in B meson sum rules calculations in the
literature [95], I86]. The quark masses are taken in the M S scheme, and, in the
latest Particle Data Group (PDGI) data, are given as m.(m.) = 1.28 +0.03 GeV,
my(mp) = 4.2 £0.03 GeV. Uncertainties are assumed to be independent and
Gaussian. It can be seen from the graphs in figure that the leading term in
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the conformal expansion possesses a strong imaginary phase, while the stability
for the given range of Borel masses is also apparent, justifying the values chosen

above.

With these inputs, the evaluation at ¢> = 0 of the three integrals is, for B,

mesons,

Lioy(0) = (—=0.319 £ 0.127) — (2.110 = 0.197)i,
L1y(0) = (—=0.661 = 0.061) — (0.197 = 0.073)i,
Li2)(0) = (+0.256 + 0.037) — (0.159 + 0.049)i , (7.25)

while for B, mesons the integrals evaluate to

Lioy(0) = (—0.283 + 0.140) — (2.337 + 0.252)i,

A

L1y(0) = (—0.746 + 0.078) — (0.167 4 0.081)i ,
L2)(0) = (+0.278 + 0.046) — (0.174 & 0.058)i . (7.26)

The values above are particularly sensitive to the charm mass, and the resultant
uncertainty is therefore the dominant source of error. The results above also
show that, while the leading integral in the conformal expansion ﬁ(o) has a large
strong phase, the next term in the expansion i(l) is roughly 7 /2 out of phase with
the leading term. This can be contrasted with the results in [35], as they were
presented in table 6.2, where it seems that the phase difference in the leading and
next-to-leading integrals was far less dramatic. It should be noted, though, that
no explicit expressions for the polynomials P, and R; were provided beyond the

leading integral, so that a direct comparison is not possible.

Note that the absolute values of the integrals above exhibit the expected falloff
for the NLOl terms, so that it appears legitimate to treat the conformal expansion

as perturbative and consider only the first few terms in the full [DAl

The remaining input is the B meson decay constant. This can be determined
in one of two ways: either from a lattice calculation or from sum rules. Lattice

computations lead to the values [197]
f=102.0(4.3) MeV,  fp = 228.4(3.7) MeV, (7.27)

based on lattice calculations with Ny = 2 + 1 sea quarks. On the other hand, in

[LCSR] calculations it is perhaps more appropriate to use a sum rules estimate for
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Process 10°LY,,,(0) 10°LY 4 (0)
By —p | —9.27 —2.76i | —3.43 — 4.86i
By — K* || —8.45 — 1.98i | —4.48 — 6.50i
By — ¢ || —6.31 —1.41i | —1.98 — 5.53i
B, — K* || —8.51 — 1.40¢ | —4.21 — 6.33i

Table 7.2 Central wvalues for the charm-loop contribution to the processes
indicated at ¢> = 0. The errors have not been indicated, but are
sizeable. Values for the parameters have been evolved using the
equations (ignoring the small twist-2 corrections) from [85] to the
scale = 2.2 GeV.

the decay constant [05]. In that case, the value fpm% is given by the estimate
[198]

2 2 sP 2 212
2\2 o my —m; 3 0 my; — s\ (s —my)
(fem3)” = mj exp ( MZZ; > (8%2 /mg ds exp < Mé > .

2

)~ e (1= ) o) (729

where the appropriate value for m;, in this case is the pole mass, which is

my = 4.7 £ 0.1 GeV, while the Borel mass can be lower than for the charm
loop calculation. This implies an approximate value for the combination fpm%
of around 3.89 + 0.51 GeV? for By, and 4.36 + 0.54 GeV? for B,. The sum
rules estimate for the B meson decay constants is markedly smaller than lattice
computations, and the resultant error somewhat larger, dominated by the errors

in my, and sf.

Following the approach of [95], the results for the charm-loop calculations will
use the sum rules value for fpm?% instead of the lattice average values quoted
above. In the final prediction for ratios of right-handed charm currents between

vector and axial mesons, of course, this contribution will vanish.

When combined with the results for the twist-3 parameters in the previous
chapter, the full results, at ¢* = 0, are given in table . The hadronic parameters
are evaluated at the scale p = 2.2 GeV, with the RG] evolution taken from [85]

and using the value of «; in appendix [B]
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7.5 Searching for right-handed currents using
parity doubling

In [36], it was shown that, in the chiral symmetry restoration limit, the B — Vv
and B — A~ amplitudes obey well-defined relations

AT7(C.0) = AT (-C.C") . x=L,R, (7.29)

where the C' and C’ are Wilson coefficients associated with generic operators

contributing to the effective Hamiltonian
HYZP" ~ CDTbO, + C' DrI'b O, (7.30)

and O!) stands for the remaining part of the effective operator. Each chirality
amplitude in (7.2)) can then be decomposed into contributions from O and O’

operators

- =/

AB—V~y _
A7 =A 4+ A, . (7.31)
The relation (7.29) (with summation over ¢ = u, ¢ implied) leads to
B a - - -/ -/
X—m( 2 ASD,X ALD,X ASD,X ALD,X
y=1L +1 +he,, |0 Neiy (7.32)
X = R 0 ij\iei/;R md75 + AR€i¢AR :\iEI&R

where 5\2 = A/ is the normalised [CKM]| factor. The contribution to the
[RHC| encoded in C%, is parametrised by

/

=1
Cr

pA = thgs + Age®ar | (7.33)
where Are’®2r is the NPl contribution to the RHC. The remaining terms in the
breakdown correspond to, for example, the quark loop contributions,
or corrections due to the Og contribution, with A} pr = 0 and Al p.r small in
the normalisation above [72]. Finally, the zero entries in follow from the
algebraic relation c®v; = —%eaﬁ“ﬂsaw, which descends to the form-factor relation
T1(0) = T5(0).
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The signs in ([7.32)) follow from the identity
75587) (w,z) = —Séq) (w, 2)7s , (7.34)

where Sg(;q)(w,z) = (w|(P + im,)~']2) is the quark propagator in the gluon
background field. This only applies in the restoration limit

{mq,<q_q>,...} —0 , = SU(NF)V —)SU(NF)V X SU(NF>A X U(l)A,
(7.35)

where the dots stand for other SU(Ng)a x U(1) s-violating condensates, such as
(Go - Gq). In the previous chapter, this limit was seen explicitly in computations
of the [DAl parameters, but the argument can also be made based on a path-

integral approach [36].

The crucial point is that the sign relations in survive the breaking of the
chiral symmetry, even if exact equality of the contributions to (7.32)) no longer
holds. This will now be exploited to show that combining the time-dependent
C'P asymmetries of B — V(A)y decays provides a powerful technique to search

for RHCL

7.5.1 Time-dependent C'P asymmetries

The time-dependent C'P asymmetry (2.20) was used to define general observables
S, C, and H, where S and C' are respectively measures of indirect and direct C'P

violation. For the more specific case of B — V+~ decays, the definitions of S and
H are?

S(H) = 2Im(Re) %(ALA2+ARA;) N,

C = (AL + AR = (ML + [ ARIN T (7.36)

where N' = |Ar|? + |AL|? + |Ag|? + |Ag|? is the normalisation. It can be seen
from these definitions that S and H arise from interference terms between the
left- and right-handed amplitudes, whereas C' is not so sensitive to [RHC| (on the
assumption that such currents are suppressed, then the [RHC contribution to C'

is dominated by the leading left-handed amplitude).

2In the [PDGl notation [128], H = AAT.
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These amplitudes can be written

AL ~ (1 + 5\1 EZ{'/’L) = AR ~ fv(l + 5\: G&L) ,
AR ~ (é§ + 5\1 GZI'/,R) = Ap ~ fv(éé + 5\: 6%&]%) , (7.37)

where the result on the right follows by CP conjugation, and &y is the CP
cigenvalue of V. Assuming |07 < [C7| and €y, < 1, then S and H are
well-approximated by

S(H)v(ay = 2£V{|5‘i|Re[€€/(A),R] o (¢¢ + ¢i — PBp) £
cos

(TYZD Sin (2¢t . ¢BD) + AR sm(
COSs COS

20 + ¢or — ¢B,))},  (7.38)

where the sines and cosines refer to S and H, and the signs + follow from the
breakdown ((7.32)).

The mixing angles ¢p,, are
OB, =28, ép, = 2\ (7.39)
and the ¢; (i = u,c,t) in the above general expressions ([7.38)) are

b—d: ¢u~—7, ¢po=7—AN\* ¢, =,
b—s: pu~—y, ¢.=0(\) ¢r 2 — N, (7.40)

where the angles above are expressed in terms of the Wolfenstein parameters,
to O(\Y), and B ~ 23°, v ~ 70° and A’y ~ 1°. With the approximations
mg ~ 0, \*n ~ 0, and |5\Z| < 1, explicit forms of S, H for the channels above can

be written more compactly as
SByplar) = 2 (sin BRe[e%HS\ﬂ + Agsin ¢g + sin(5 + v)Reler] IS\ZD ;
. ms . . c11\s
SBy—kr(iy) = 2§ <¢ (AR sin(28 — ¢r) + " Sin Qﬁ) +sin 26Re[€R]|)‘c’> ,
Sp.—o(n) = 2(£Arsingg) ,

SB, k() = 28 (:Z—Z sin 23 + sin(ﬁ)Re[e%HS\‘cﬂ + Agsin(26 + ngR)) . (7.41)
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and

Hp, s pa) = 2 (cos BRe[e]|X°| & Ak cos ¢ + cos(B + 7)Re[e}§]|§“|) :
Hp,k+(ky) = 26 (:I: <AR cos(28 — ¢r) + %Z cos 26) + cos 26Re[e‘§]|5\c|) :

ms c11Yc
Hp,»o(51) = 2 (i (AR cos gr + E) — Releg][A |) ’
Hp roreyy = 26 (:I:AR cos(28 + ¢r) + cos ﬁRe[e‘j%HS\C]
+cos(f — 7)Re[e%]|5\“|> . (7.42)
Of this set, Hp, is in practice not measurable, as the decay width I'; is too small
to have an observable effect, while the B, — K* decays are experimentally less
attractive. The remaining four observables are, however, of some interest. In

particular, both S and H can be well-measured for the By, — ¢(f1)y channels.

Combining the results above, it follows that

(Hay & Hyynayy) > = 2Releg n + €7y 5l

= —2Re[eg zl(1 + R 1)) » (7.43)
and
Apcos(6,) = 3(Hor F Hyu) + 5Reléhn = ol — e (744
where .
Ry 4 = %"Z}j} =1+ 0(my,{qq)) . (7.45)

In the chiral restoration limit (7.35)), the ratio Ry 4 approaches one, but, using
the results in table [7.2] along with the estimates for axial mesons in the previous
chapter, a more accurate estimate for the By — ¢(f1(1420))~ channel is

C T17f (0)

T1,4(0) -
The remaining inputs are the tensor form factors. The most recent evaluations of
tensor form factors are in [99] for vector mesons, and [199] for axial mesons. As
?1"2(((%)‘ is within 30% of 1, which is consistent
with the expectations in [36]. This means that (7.44) provides a potential

extraction of [NP| contributions to [RHC] with a remarkable improvement, in the

a preliminary estimate, the ratio

region of an order of magnitude reduction in the total uncertainty from
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contributions.

7.5.2 B — V// and other decay channels

Although the analysis above was restricted to ¢> = 0, the results in appendix
, along with the extension of to ¢* > 0, allows for an estimate of the
charm-loop contribution to B — V¢ decays, using the angular observables
defined by the angular distribution in (4.40). From the explicit definitions in
equation , it can be seen that C~¥§2 is also sensitive to[RHCl This observation
was also made in [I10], 200], where the same observables were referred to as Ag,? ),
or P, 3 in the notation of [121].

A measurement of the right-handed contribution to B — (V, A), ¢ decays,
at at low ¢2, could therefore also be a promising probe for NP in RHCl In
this respect, B — K*eTe™ is a promising channel to complement the parity-
doubling approach described above. This has already been studied at the LHCb
experiment [201], and Belle II is likely to study this channel as well. Exploring
the potential of time-dependent angular distributions would also seem to be an

interesting possibility [202].

7.6 Conclusions

This chapter has presented a preliminary analysis of the long-distance charm
loop contribution to B — (V, A)y decays, with an extension to B — (V, A)¢¢
anticipated in the related paper [194], currently in preparation. The preliminary
results show that an exclusive calculation of long-distance charm loops indeed
leads to only a small contribution, particularly to the right-handed currents,
which is in line with the observations of [35] and [I86]. The latter calculation used
a different method, relying on the large m, limit, which in particular provides no
possibility of a strong phase in the contribution, but the full [LCSRI computation
does indicate the presence of a strong phase in such loops, even at ¢> = 0. Both
results disagree with the inclusive computations in [195], but the computation
above shows that the scale of contributions to right-handed currents from the
charm loop is set by the leading parameters in the three-particle distribution

amplitudes, which were computed in the previous chapter and found to be small.
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It appears that the charm loops do not generate large contributions to right-
handed currents, but the results come with sizeable errors, so it is still important
to measure the presence of right-handed currents in radiative and semileptonic
B — V~/tl decays. The discussion of section , based on the expanded
arguments of [36], shows that it is possible to isolate the charm-loop contribution
from other, short-distance sources of right-handed currents. Moreover, the
approximate symmetry between vector and axial mesons leads to results for a
ratio of the right-handed currents contribution from charm loops that is very
close to one, even with the breaking of this symmetry due to effects. The
numerical closeness to 1 is an accidental value, but as errors in the distribution
amplitude parameters largely cancel in the ratio, it is reasonable to assume that
the method presented in section can offer a significant improvement in the

search for right-handed currents.
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Chapter 8

Conclusions

The recent experimental results at the LHCb and the first generation of B
factories have provided several potential hints of New Physics in rare B meson
decay processes. This thesis has provided two promising new avenues that may
help to clarify the nature of these anomalies, and in the process has provided
improved results for important inputs to the theoretical predictions of these

decays.

The first of these approaches, presented in chapter 4} is in understanding more
systematically the structure of the B — K;(— K W)@lgz angular distributions.
The rich structure of these distributions had already been explored, and gradually
expanded to include the full dimension-six effective Hamiltonian , since the
results of [I08], but the results presented in this thesis complete the angular
distribution for the J = 1 (K*) channel, including results for non-equal lepton
masses for the first time. Alongside these new results, the method detailed in
chapter [4] also provides far greater clarity on the origin of the angular structure in
the canonical distribution . It was seen how the restriction to the dimension-
six effective Hamiltonian imposes the limitation to moments up to [, = 2, and, as
a result, plenty of null tests in the form of taking higher moments of the angular
distribution at the K* resonance can be performed in future experiments. This
has already happened at LHCb [139], albeit at the K5(1430) resonance rather
than the K*(892), but it is likely that the same analysis will be applied to future

data sets.

The prediction that higher moments vanish, however, only applies in theoretical
predictions limited to the dimension-six effective Hamiltonian (4.13)) and with the
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condition that there are no corrections, arising from interactions between
the final-state leptons and the mesons. Understanding the full consequences of
breaking this assumption will require a more complete computation in future,
but chapter [5| provided a first step on the road to this. The effects of extending
the effective Hamiltonian to include novel derivative operators, which may be
generated in exotic [NP| scenarios including spin-two particles, were analysed in
some detail, and it was seen how higher moments then become non-zero in the
presence of such operators. An estimate of the scale of these higher moments,
within the [SM| was provided by a calculation of the Wilson coefficients of these
operators, and it was confirmed that these terms are heavily suppressed by a
factor 1/m%, in the [SMl While the picture in the presence of corrections is
more complicated, it was still shown that it is reasonable to expect that the
leaking of these corrections into higher moments will fall off with increasing
moments. This thesis, in conjunction with the paper [34], therefore provides
a strong indication that a moments analysis will be useful in understanding the
origin of the present anomalies in b — s transitions, most notably the Ry and

P! anomalies.

The second part of the thesis, in chapters [0] and [7], considered the question of
searching for right-handed currents in radiative B — V'~ decays. Based on the
suggestion in [36], the key idea is to exploit the approximate symmetries, exact in
the chiral restoration limit, between vector and axial mesons. These symmetries
were explicitly verified in chapter [] for the three-particle twist-3 [DAk. In the
process, new and updated numerical estimates and uncertainties for three-particle
[DAk have been provided, updating the previous results in [85, 104] by including
for the first time the three-gluon condensate. There are some disagreements with
the analytic results presented in the previous literature; however, the systematic
relationships between the [DAk for vector and axial mesons provide a powerful

sign that the results in the present work are more reliable.

One application of these parameters is in the computation of long-distance loop
contributions to exclusive B — V' processes. Any attempt to search for [ND|
origins of right-handed currents will necessitate a more complete understanding
of such contributions, and chapter [7] presented the calculation of charm-
loop contributions with a gluon radiated into the final-state meson. A similar
calculation was also given in [35], but it appears that there are some disagreements
away from the leading moment, and this thesis is the first to present explicit

expressions for the next terms in the conformal expansion. When extended to
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q*> # 0, the same results will also be useful for estimating contributions to
B — VUl decays.

The secondary result of chapter [7] was to show that decays to vector and axial
mesons are linked by the same symmetry, in the chiral restoration limit. This
was exploited to show that combining the analysis of B — Vv and B — Ay
decays, for example with a measure of time-dependent C'P violation, can provide
a much-improved measurement of [NP| contributions to right-handed currents. A
first estimate of the ratio of contributions to By — ¢(f1)y was provided,
which supports the expectation of [36] that these ratios should be close to 1, with
deviations only at the order of corrections and hadronic parameters.

At the time of writing, the LHC experiment has only just started to release results
based on data collected in Run II, while the Belle II experiment is expected to
begin collecting data this year. Both experiments are certain to provide vastly
improved results concerning rare B decay processes, and it is highly likely that
these new results will either confirm or rule out the anomalies so far seen in B
decays. In either case, a better understanding of such processes within the [SMl is

clearly important to complement the rapid progress in experimental precision.
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Appendix A

Conventions

This appendix collects general conventions and useful general results used
throughout the thesis.

A.1 Conventions

The covariant derivative has the sign convention
D, =0, —1eA, —igit* A}, (A.1)

which is consistent with that of [38]. The relative sign of the gluon contribution
to the covariant derivative is important in terms that are linear in the coupling to
the strong force g,, and terms sensitive to this (including, for example, G-parity

odd parameters of [DAK) change sign according to the choice of convention.

The Levi-Civita tensor €,,,. can also have differing sign conventions. This thesis
uses the convention €pjp3 = +1, equivalent to the result that Tr[y y"yPyTvs] =

AiervPT.

When working with FeynCalc [203], 204], it is important to ensure that the correct
sign convention for the Levi-Civita tensor is employed. In older versions this

would be achieved using the commands

SetOptions[Tr, LeviCivitaSign->1];

SetOptions[DiracTrace, LeviCivitaSign->1]; ,
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although the most recent version of FeynCalc uses instead the global command
$LeviCivitaSign = 1;

to achieve the same effect[]

A.2 Fock-Schwinger gauge

The fundamental interactions in the possess a gauge symmetry defined by
their respective gauge groups. This provides a choice of gauge-fixing condition for
the fields A,. Many different choices can be made, each one being particularly
suited for different situations. In chapter [6] heavy use was made of the Fock-
Schwinger gauge condition [I75], 176 205 206], and its properties are briefly

described here.

The principal definition of the Fock-Schwinger gauge is
(x —x9) - A(x) =0 (A.2)

where zy is a random point in space-time that expresses the residual gauge
freedom in this choice of gauge and, in practice, is usually set to zero (although
preserving this freedom is useful to test whether or not particular quantities are
indeed gauge-invariant). As an immediate consequence of this gauge choice, it

can be seen that
(x —z9)- 0= (x—x0) D, (A.3)

which is to say that the partial derivatives in a Taylor expansion can always be

replaced with covariant derivatives. It is possible to show that [175]

A, (z) = /0 daa(x — x0)“F,,(ax), (A.4)

and, in turn, using a Taylor expansion of F),,, about the fixed point and exploiting
(A.3)), one obtains

o0

1 w wi Wn
Az) = Z m(m—xo) (x—20)" .. (x=20)“" [Dwy, [ - - [Dion» Fropu(z0)] - - ]] -
(A.5)

n=0

'A bug related to this command was fixed after it was pointed out by the author.
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The Fock-Schwinger gauge also allows the freedom to write the quark fields in
terms of a Taylor expansion using the covariant derivative instead of the normal

derivative:

- 1
Z —(x —x0)*" ... (x — 20)*" Dy, ... Dy, q(x0) , (A.6)

n=0

and the conjugate of this for g(z). Using these relations, normal products of fields
can always be expanded in terms of gauge-invariant local quantities, even if the

original normal product is non-local and not itself gauge-invariant.

A.3 Vacuum condensates

The condensates used in this thesis are all those that appear up to mass
dimension-six. These include the two- and three-gluon condensates, the two-
and four-quark condensates, and the “mixed” condensate, made from two quark
fields and one gluon field. Throughout, the shorthand notation G, = gst.Gg s has
been used, while the dual field G is defined by G, = 5€43,G"”. The t, = A, /2,
and A, are the usual Gell-Mann matrices for SU(3), and are used to define the
structure constants f of SU(3), with the algebra

[taa tb] = Z.fabctc . (A?)

The relevant gluon condensates can be found in [88| [I76]. This thesis uses

normalisations in which
(G?) = (G}, G™) = 472<%G2>svz, (A.8)
(5% = (g, GG 49)

where SVZ refers to the convention in [88]. Then, in d dimensions, the two-gluon

condensate is given by

1
(0]GapGarg|0) = ) (9oar 988 — Gap 9ors) (G?) | (A.10)

2d(d -1
while the three-gluon condensates are given by

575 (o = Gt a7 = (! o )

<0‘GQ5GO/5/GPT’0> - 4d(d—

134



— (p<—>7’))<fG3>, (A.11)
-1

(0IV,GasVGarp|0) = SE(d—1) (((9apGars — Gaorgsp) gorr — (& > B')) — (p <> 7)

+ 2(Gaar 985" — Gap o) Gpr) (fG*). (A.12)

All other gluon condensates up to dimension six either vanish or are related to

those given above via partial integration.

The remaining condensates used in this thesis all include quarks, and are best-
defined within the Fock-Schwinger gauge, outlined in section [A.2] to make the

spatial dependence explicit. The expressions below are adapted from [70, [175].

It is traditional to assume that four-quark condensates can be reduced to products
of two-quark condensates by use of the Vacuum Factorisation Approximation
[89, [175]. This will be used in numerical results, but it is convenient to preserve
the specific origin of four-quark contributions in the analytic expressions, which
make use of the following notation to represent the various condensates that arise.

The first kind of four-quark condensate is written
(Vovi) = <@Wf"Q > f’y“t“f> , (A.13)
/

where @) = ¢, s, and the sum is over (light) quark flavours f = wu, d, s.

Condensates of the second kind are written
(I*r*y = (grt*ssI't%q) , (A.14)

where I' = {S,P,V,A, T} = {1,ivs, Vu, V5,0 } are the possible Lorentz

structures that arise, and summation over colour and Lorentz indices is implied.

For comparison with the previous literature, it is, however, important to apply

the Vacuum Factorisation Approximation. The translations are

ama OF _ _
<F I >‘F:{S,P,V,A,T} = m <QQ> <88> X {_17 17 _4747 _12}7
aysa CF 2 2
(Vovyi) = N (QQ)” (A.15)
where —& = é
c 9
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Using these definitions and working in Fock-Schwinger gauge, one finds

y y L1 B o, [ 1 axra
<qm($1)qrf(x2)> = 0gq0" {12 (1 + m#u) (qq) + 79 (ﬁ$%2(¢12)"m <Vq Vi >)
1 /) _
+@ﬁ2(1 + émq¢12)nm<q0 : G@} ) (A.16)

where z15 = (21 — x2). The mixed condensate can be written, up to first order
in the fields, as

Z7TOés a fY o [
(G (@) (G (2)d Vo (2)) = 0087 =2 (VEVE) (0%, — 107 + 202197
1 o
+ 5qql52] 288 <q0— : Gq> (20&5 + mq ( [O‘l”f% + e ﬁ(¢12)>>nm )
(A.17)
where the Chisholm identity
Y VYo = GuvVp = GupVv T GupVu — ifVT’YSEuupT (A'18)

has been employed to write the first line in a form symmetric in z; <> z5. Note
that this is different from equation (4.23) of [70], disagreeing with the factor of
the v1*2% term in the first line and the relative sign of the two contributions in
the second line

The projection of free quarks onto states of specific spin is given by

qmSn = Z(q_815> (gz)nm

1 1 1 B 1
= (QS)Zénm — (QZ%S)Z(Z%)W + (q%S)Zvﬁm - (qw%«S’)Z(v"%)nm
1
+ (qauus)g(auy)nm 3 <A19)

which is used particularly often when computing four-quark condensate contri-
butions to [DA.

?The first line of (A.17) can also be written 6% Z%= <V“Vf > (0B (#, — ) + 207 (2 — 2)P),

which makes the gauge invariance more manifest.
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A.4 Expressions for one-loop integrals

A.4.1 Massless one-loop integrals with one external

momentum and up to four momenta in the numerator

In calculating the two-loop diagrams in this paper, it is useful to have a general
expression for one-loop integrals with propagators to an arbitrary power. These
can be found in, for example, appendix C of [175] . Defining structures k™ =

k(mpzin) such that k™ is traceless over any contraction of two indices, then

A’k k™
(2m)d (k2 + i)™ ((k + p)? + ie)®

L) = [

167 \—p ez L(r)L(s)D(n —r — s +4 — 2e)
(A.20)
The p™, up to n = 4, are
=1, (A.21)
p=p (A.22)
1

P = - e (423

v 1 L ,
W=V = gt W P ) (A.24)
p(4) _ p“p”pPpT B p2 (p,opTg,uV + pupTgup + puppguf + p,upfgz/p + puppgm- + p“p”g"”)

d—+4
4 HT AVP WP 4VT WV A PT
+p(9 g’P + g"° g’ + g"gPT) )

(d+2)(d+4)

Inverting these relations allows one to compute general one-loop integrals with

up to four loop momenta in the propagator.

For the non-local sum rules one also needs the following integrals:

. k- z)m i Ila+b—d/2]
I — ifih-z ( = —)ett
bl = ey = G
1
y (p ) Z)m / du ¢ 158®2) ua—lab+m—1(A2)d/2—(a+b) , (A,26)
0

3Note that the authors of [I75] use conventions in which the dimensional regularisation
scheme is performed in d = 4 + 2¢ dimensions, as opposed to d = 4 — 2¢ in the results above.
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and

ko k-z)™(k-w _
Bt = e gy = Ol
i arp1lla+b—d/2—=1]w- =z 1
* ) Ta]T (0] 7 (P 7)

1
% / du eifkﬂp-z ua—lab+m—2(A2)1+d/2—(a+b) (ifkﬁp Ry m) :
0

(A.27)
e (2w (k)
N G
= (ap-wilifa,b,m,ws] + (wy <> we)) — up - wiup - walpla, b, m|
1 app1Lla+b—d/2 —1]w; -w, m
+ (47)61/2(—) ’ Tl 5 (P-2)

1
du eszupz uaflaberfl <A2)1+d/27(a+b)

X
S~

) aplla+b—d/2 —=2lw; - zws - 2

iz ) TTall (0] 7 -2

1
% / du eifkﬂpz ua—lab+m—3(A2)2+d/2—(a+b)
0

1 -1
X <§(z'fKup 22 A+ mifrup - 2+ %) : (A.28)
where A = —p?uu + um? + um3, m; = m, and my = m, in this case owing

to momentum assignments, fi is some constant factor, and w is an arbitrary
four-vector. To relate to the results in chapter [6] the Feynman parameter v is
further identified with «y or as, depending on the relevant diagram, by matching
the exponential that results on to the canonical form e~?#(@2+v@3) These results

match equations (B.1,B.2) of [70], in the limit of zero masses, and with a factor of

—1

e difference (which is merely a choice of normalisation). They can be derived
through a series expansion, use of z?=0, and general one-loop integrals from, for

example, appendix A of [38].
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A.4.2 Passarino-Veltmann functions for massless one-loop

integrals

The conventions are as in FeynCalc [203], 204], while analytic results have been
checked against [207] and Package-X [208], 209]. For notational convenience, the
mass arguments of the function have been omitted. Dimensional regularisation

with d = 4 — 2¢ dimensions has been used.

The general loop integral is then defined by

4—D 1

Lt ) =t [ e T
(A.29)

where, eg, Iy = Ay and I; = By in the usual notation of Passarino-Veltmann

functions. Specific examples used in these computations, including the pole in ¢,

are
1 —p2
2 _
BO(P) —g+2—ln77
1 1. —p?
Cy(0, p?, p? =+ —In—
0(,p,p) €p2+p2nu2,
D(Op20p2p2p2):—i—|—£ —1+1n_—p2 (A.30)
0o\Y, )y Yy ) ) 5]74 p4 MQ . .

For the two-loop integral in diagonal sum rules, it is also helpful to have the
unexpanded form of By(p?) [207], which is

Bo(p?) = (%) (é + 2) . (A.31)

A.4.3 Fermion propagators in external gluon field

The fermion and gluon propagators can be expanded order-by-order in the
external field. Below, the explicit expansion for the fermion propagator in a
background field with Fock-Schwinger gauge z - A(x) = 0 has been provided
[210] [] Defining

S(z,y) = —i (TY(@)d(y)), = SV (x,y) + SP(z,y) + ¥ (2,y) + SW(z,y)

“4For a general Fock-Schwinger gauge (x—x¢)-A(z) = 0, one replaces * — x—x¢ or y — y—2o
in the prefactors with derivatives.

139



then the explicit contributions S® to the fermion propagator ar

— —ip(a — —ip(x p+m
S(O)(%Z/) = S(z—y) = /pe " _y)S(P) :/pe p(_y)mj (A.32)
1 (10) + x)a ,
SOwy) = — 5G] [erenswrsia).,
(it + ) | 7
1 (10 + x)a (10, + )5 o
S9(w9) = = 5VaGn(0) [ esmmsia),

(_iaq + y)a(_iaq + y)ﬁ P

(+10p+ )0 (+i0p1q+1),

1 |
SO (z,y) = 1GasGas / e~V S(p)vsS(q)vsS (k)

(=i0g+k + y)a(—iOk +y)y ) 7
1 (10p + )a (10, + x)5(i0, + ) ,
VaVssd TR T [enenspasia).
(y—10y)a(y—10y)5(y—1i9y)4 P

where two possible representations are given, either of which can be chosen, with
the choice dictated by whichever is most convenient for the specific calculation.

The derivatives act on the propagator according to

9 S(p) = =S S(p) - (A.33)

A.5 Borel transformations

The Borel transform is defined as

Fo(M2) = BF(QY) = lim @2)"”( d ) FQY. (A3

Q% —00,n—00 n! dQ2

where Q% = —¢? is a Euclidean momentum, and Q*/n = M} defines the Borel

massE]

5This also includes the S®)-contribution , which can be inferred from Eq. 2.7 of [211].
SNote that the Borel transformation can also be defined as

n n+1
(M2 = BRQ) = tm (D) +1( d) Q).

Q2 —00,n—00 n! dQ2
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Here is a selection of useful results.

l%'(@2 +m?H* =0,

A 1 1 2 2
B — —m?/M?2
(@ +m2 T2
2 2 2
B(Q* +m?)"1 Q# = (1) T(a + 1)(M2) e /Ms
ol

s, 1 Q*+m?>  (I'(a) M 1 /2
M T —(r<a>““7> AT

In practice, one also needs to perform the Borel transform with a continuum

subtraction, defined by the general form

Bou f(Q%) = /SO ds e_s/Mz?%%Imsf(s)
0
= 55082) = [ dse PR g (o). (A.36)

S0

where the two definitions above are equivalent, but one may be practically easier
than the other in numerical applications. In this context the results above can

be expressed as

lf;,sub.(CQ2 + m2)a = Oa

A 1 1 2 /M2
Bsub - /M s
(@ +m2)r  T(a)(Mgy—'"

5 2 2 Q2 + m? a+1 s/MA 2 2
B (Q° +m~)*In — dse 5(s —m?)"O(s —m?),
3 1 2 F/ 2 me/M2 e °] 1
Bsub. 1 Q _|— m _ (a') + l _B 2 - / dS e—s/Mg

m a s—m

(@2 4+ m?)° p? I'(a) pr ) Tla)(Mg)e=t Jy, ( 2)e
(A.37)

It is also useful to note that the vanishing of polynomial terms under a Borel
transformation allows for replacements such as 77(52_);2 — 75:;‘2;

which preserves the dimensionality, but the convention used above is standard in sum rules
literature (e.g. appendix B of [70]), and leads to the same results.

141



Appendix B

Numerical inputs

This appendix briefly presents numerical inputs used in the thesis.

B.1 Meson parameters

The latest meson mass parameters have been taken from the 2016 edition of the
[128]. For most of the mesons under consideration, these values have not
changed significantly from the 2006 edition [212], except for the f and h particles,
where there have been small corrections. These values are presented in tables

and B.2l

B.2 [CKMI matrix

The matrix was defined, within the Wolfenstein parametrisation, in ([2.5)).
This is useful for phenomenology, but the [128] uses a parametrisation
in terms of the three angles 65, 13, and 653, along with the CP-violating
phase d13. These have the physical interpretation of representing probabilities

of transitioning between the three quark generations, and in these terms the
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Meson || mass/ MeV | '/ MeV | fl / GeV | f+(1 GeV)/ GeV
p | 775.26(25) | 147.8(9) | 0.213(5) 0.160(7)
K* || 895.55(20) | 50.3(8) | 0.204(7) 0.159(6)
1019.46(2) | 4.247(16) | 0.233(4) 0.191(4)
w | 782.65(12) | 8.49(8) | 0.197(8) 0.148(13)

Table B.1 Central values and error estimates for the masses and widths I, taken
from [128], and the decay constants, from [99], for the neutral J¥ =
1~ mesons. ft is[RG-dependent, and the value above is taken at the
scale py =1 GeV.

CKM]| matrix is expressed

1 0 0 C13 0 813672613 C12 s1o O
V= 0 Co3 593 0 1 0 —S12 C12 0
0 —S93 (€23 —51362513 0 C13 0 0 1
061
C12€13 $12C13 Syge” 0t
— 5 i
—512C23 — C12523513€"°13  C12C23 — S512523513€"13 $23C13 ) (B.1)
_ 613 _ _ i073
512523 — C12C23513€ C12523 — S12€23513€ C23C13

where ¢;; = cos6;; and s;; = sin6;; .

The Wolfenstein parametrisation |45l [46] can be derived from this by using the

redefinitions

S12 = A,
S23 = A>\2 )
s13e” 0 = AN (p —in), (B.2)

where these relationships apply to all orders in the expansion parameter A\. The

series expansion can then be derived from, for example, replacing c1o = v/ 1 — A\2.
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Meson | mass / MeV | T/ MeV | fl / GeV | f+(1 GeV)/ GeV
a1 (1260) | 1230(40) | 250-600 | 0.134 0.134
b(1235) | 1220.5(32) | 142(9) | 0.134 0.134
Ki(1270) | 1272(7) | 90(20) | 0.204 0.159
Ki(1400) | 1403(7) | 174(13) | 0.204 0.159
£i(1285) | 1281.9(5) | 22.7(1) | 0.120 0.120
£(1420) | 1426.4(9) | 54.9(26) |  0.166 0.166
hi(1170) | 1170(20) | 360(40) | 0.132 0.132
hi(1380) | 1407(12) | 89(23) | 0.169 0.169

Table B.2 Central values for the masses and widths for the azial mesons [12§].
The decay constants are computed from the Weinberg sum rules
relation mi f& = m2 fi [183], while = L is assumed. These
inputs will be updated based on sum rules determinations in the future
[17}). For the fi and hy sector, the light and heavy mesons are
taken to be exactly analogous to the ¢-w sector, although a future
determination will more properly account for the mixing, as discussed

in section @]

To fourth order in A, the [CKM| matrix is

1— 3222 — 1M A AN (p —in)
V= - 1= IA2 = 114 44%)\ AN? +0O(X),
AN (L—p—in) —AN+ AN (L —p—in) 1-3142N
(B.3)

where the modifications from the expansion in are relatively slight, and in
fact a third-order expansion is on its own reasonably accurate. Nevertheless, the
elements V.4 and V., acquire non-zero phases at O(\°) and O(\%) respectively,
and this does have an impact on the expressions for observables S, H, defined in

equation ([7.38]).

The latest values for the parameters are [12§]

A = 0.22506(50),
p = 0.124(18),

A =0.811(26),
n = 0.356(11),
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with the uncertainties in the last two digits given in brackets. These can be used
to determine the full [CKM| matrix.

B.3 «; running

Quite an important input is the value of a;. As the energy scale decreases,
a increases, and approaching the scale A ~ 200 MeV is no longer
perturbative. Meanwhile, coefficients in the S-function of have only
been computed up to five-loop accuracy, so the full [RG] dependence is not yet
known. Nevertheless, g running is far from the dominant uncertainty in sum

rules calculations, and three-loop running is sufficient.

The typical procedure is to extract the value of a at the Z-mass scale, and the
extracted value of ay(myz) has changed slightly in the iterations of [PDGl The
2006 average was as(mz) = 0.1176 [212], whereas in 2014 the average was
as(myz) = 0.1184 [213]. Most recently [128], the average has converged between

the two, but for a, running the 2014 average will be the preferred value.

As the [RGl equations are evolved down to lower mass scales, the number of active
quark flavours also changes. This has to be taken into account by matching the
value of ag across the quark mass thresholds, which in this thesis are taken to be
at m. = 1.29 GeV and mj; = 4.2 GeV (i.e. the MS masses according to the 2014
averages):

as(me, Ny = 3) = ag(me, Ny = 4) (B.5)

and similarly for my,.

The necessary definitions of S-function coefficients can be found in the [PDGI,
but the results below have been computed for the purposes of this thesis. They
include independent definitions of the scale for 3, 4 and 5 active flavours,
for both two- and three-loop running. To check the method against the previous
sum rules literature, the 2006 values have also been used, and the running

is also performed for both two- and three-loop definitions.

At two loops, the [RGl behaviour of «y is given by

2
4 B In (ln AQ(Nf)>
) = (1= ) (B.6)
Foln A2(Ny) 0 In A2(Ny)
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Figure B.1 Two-loop running of o, based on the procedure described in the text,
for as(mz) = 0.1184 (top line) and as(mz) = 0.1176 (bottom line).
The gap at my is an unfortunate relic of the matching procedure
as implemented in Mathematica, but it can nevertheless be seen
that the values are consistent with the matching condition over this
boundary. Matching at the charm threshold is visible as a slight
“kink” around p = me = 1.29. The lower line is the most consistent
with the determination of [85], confirming the independent code
written for this thesis.

where

2

/80 — 11 - ng,
2
1 5033 325
ﬁ2—§(857——9 f+2—7 f>, (B?)

and Ny is the number of active quark flavours. The expressions above can also be
generalised to arbitrary gauge groups SU(N), but for simplicity these expressions
are given for No = 3. The equivalent three-loop expression is too lengthy to be
included here, but is presented in [I128]; nevertheless, the necessary coefficient (s
is given above. It is a scheme-dependent quantity, although the expression above

is for the most commonly-used M S scheme.

The matching requirement imposes different values A(Ny) depending on the initial

value and number of loops. For example, for two-loop running with ag(my) =
0.1184, the extracted values of A(Ny) are A(3) = 376.1 MeV, A(4) = 330 MeV,
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Figure B.2 Three-loop running of as, based on the procedure described in the
text, for as(myz) = 0.1184 (top line) and as(mz) = 0.1176 (bottom
line). As with the two-loop graph, the gap at my is an unfortunate
relic of the matching procedure as implemented in Mathematica,
but it can nevertheless be seen that the values are consistent with
the matching condition over this boundary. Matching at the charm
threshold is visible as a slight “kink” around p = m. = 1.29. Three-
loop running produces somewhat lower values for as(1 GeV), but
are still close enough to the two-loop values that a perturbative
description of as can be said to apply in this region.

and A(5) = 231.4 MeV. The equivalent values in three-loop runnings will be
somewhat lower, but these values can be determined by matching by hand, and

are specific to the code used for this thesis.

The resulting values of as(1 GeV) are presented, for central values, in table ,
and graphs showing the [RG] behaviour are in figures and for two-loop
and three-loop running respectively. It is safe to assume, based on these results,

that [85, [103] made use of two-loop running only.

The final value for as(1 GeV) is taken to be the average of these four

determinations, with a naive estimate of the error following from the range:

a,(1 GeV) = 0.488 = 0.030, (B.8)
s(2.2 GeV , : .
while the ratio %, which enters the[RGlevolution of the[DA]lparameters,
a,(1 Ge
is found to be (2.2 GeV)
(2.2 Ge
—— = =10.592 £ 0.027. B.9
as(1 GeV) (B9)
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running || as(myz) = 0.1184 | as(my) = 0.1176

two-loop 0.5205 0.4998
three-loop 0.4744 0.4586

Table B.3 Values of as(1 GeV) based on two- or three-loop running with
the initial value as(myz) set by either the 2006 or the 201/
averages. In numerical estimates for the[DAl parameters, the average
of these determinations will be used, with the range providing an error
estimate for the value. As ay is not the dominant uncertainty in the
three-particle sum rules, this method of estimating as(1 GeV) and its
error is sufficiently accurate to give reliable numerical values.

B.4 Vacuum condensates

The values used in this thesis for the two- and three-gluon condensates are given
in (B.13)), but it is worth considering these more carefully, in particular for the
two-gluon condensate, in the light of some disagreement in the literature over

their correct values.

Sum rules papers, as exemplified by [85] 103, 214], all use a central value <%G2> =
0.012 GeV?. However, this appears to be based on an old estimate from the
original SVZ sum rules [88, [89]. Recent papers have attempted to compute the
condensate using various other methods, and have arrived at a range of values.
These are summarised in [215], which gives a higher value, based on experimental,
over twice as large as the SVZ value: <%G2> = 0.037 GeV*. A recent lattice
computation [216] gives an intermediate value: (%G?) = 0.028 GeV?. Since, in
many sum rules in this thesis, the two-gluon condensate is dominant or at least
significant, this tension over the value can have a major impact on the extracted

values of parameters.

For the three-gluon condensate, the opposite problem occurs. In earlier work
on two-point sum rules, it was found that the three-gluon condensate does not
contribute [I76]. As a result, it seems that the numerical determination of the
three-gluon condensate has received comparatively little attention, and the only
source for its value appears to be [21I7], as cited in [103]. With the possible
exception of [218], it appears that the three-gluon condensate has not received
any fresh attention since the early 1990s; although this time the competing results

are in broad agreement with each other.
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For the single-quark condensate, the papers [85, 103, 214] all cite (gq) = (—0.24+
0.01)® GeV?, while [219] gives (gq) = (—0.229+0.009)® GeV®. Here there is much
less uncertainty, owing to the Gell-Mann-Oakes-Renner relation [93]. As these
values are consistent with each other, again, the values from [85] [103] 214] will

be used in numerical outputs.

The mixed and strange condensates (go - Gq), (5s) can be related to the light

condensates through the relationships

(go - Ga) = mq(qq)
(s5) = (1 —d5) (qq),
(so-Gs) = (1 —05)(go - Gq), (B.10)

where [219] provides the first line, and gives the value of m2 = 0.8 & 0.1 GeV?.
The definitions of d35 are as in [85], but these values are not well-determined.
One more recent estimate [220] gives the ratio

ﬂ =06=+0.1, (B.11)

(qq)

from which d3 = 0.4£0.1, while a Lattice calculation in 2012 [221] found that, at
the scale 4 = 2 GeV, the same ratio equals 1.08+0.17. It is safe to say, then, that

there is no fixed determination of these inputs or ratios, and that these issues are

Q)

not yet resolved. It is beyond the purview of this thesis to determine which values
are the most reliable. Priority is given to the values used in [85, 103], 214], with
the intent of maintaining as much consistency as possible with those results, to

enable an easier comparison with previous determinations of the [DA] parameters.

Consequently, the input central values and uncertainties for the condensates are
(G2) = 47 (22G*) = 47%(0.012 £ 0.006) GeV* = 0,474+ 0.237 GeV*, (B.12)
T
and

(fG*) = (0.08 £0.02) GeV®,
(qg) = (—0.24 £0.01)* GeV?, (B.13)

which values are valid at scale p = 1 GeV only. The parameters d35 are both
taken as 0.2 £ 0.2, which encompass the values in both [220] and [221], while
being taken directly from [85].
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Appendix C

Additional material for the
B — K*(— Km){1{> decay

This appendix presents explicit results relevant to the work presented in chapters

4] and B

C.1 Details on kinematics for decay modes

In this section, the specific kinematics of the decay
B — R* (—> K(p[{)ﬂ'(pﬂ-)) 61(61)52(62) , (Cl)

with (¢, = ¢~ and f, = ¢* in the equal-mass case), are parametrised. Within
the helicity formalism described in this thesis, it is not essential to consider the
full kinematics, as the evaluation of the hadronic and leptonic helicity amplitudes
(HAK) can be performed within their respective rest frames. However, calculating
the angular distribution using the Dirac trace technology approach [108| [109]
serves to provide a useful cross-check of the results. The Kéllén function A(a, b, ¢)

is defined as
AMa,b,c) = a* + b* + ¢ — 2(ab + ac + be) . (C.2)
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and, for a decay A — B + C, in the rest-frame of A, is related to the absolute

value of the spatial momentum of the B and C particles as

VA, my,me) (C.3)

QmA

1pB| = |pc| =

C.1.1 Basis-dependent kinematics for B — K*(,/,

It is simplest to first obtain the momenta ¢, » and p, g in the rest frame of the

lepton pair and the K*-meson respectively:

o-rest frame : = (Ey, |gi| £), 05 = (B, — Pl 1) ,
prc-rest frame :  phe = (Eg, |px| k), p* = (BEr, — |Px| k) (C.4)

with the definitions

oW
2%
VAR

2m}(*

{ = (cos ¢sin by, —sin psin Oy, cos0y) , |y =

k= (—sinfg,0, — cosbk) , DK | =

where

/\’Y* = )‘(q2am?7m§) ) A = )\(m%*,m%,mi) ) Ap = )‘(m2B7m%(*7q2) > (CG)

are the explicit Kéllén functions. The lepton and hadron energies are then given

by Ei2 = 1/m§m + |7e|* and E, g = \/ ek T 17x|, and obey Ey + FEy = \/¢?

and E, + EFx = mp~.

The polarisation vectors n*(\) of the K*-meson in its rest frame, using the

conventions in [I31], ard[]

n*(0) = (0,0,0,1), 7n*(zx)=(0,F1,4,0)/V2. (C.7)

!The polarisation vector 7 corresponds to v in [I31] (c.f. appendix A therein). The exact
correspondence between the convention used in [34] [I31] and the Jacob-Wick convention [33]
126] is U(i)u|[131] = —n(:l:)u\[%], 77(0)”\[131] = 77(0)”\[33]. The final distributions remain the
same, but the off-diagonal elements of the leptonic [HAk (or matrices) change sign . Note
in particular that the hadronic [[IAk remain unchanged.
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In the B-rest frame, pg = (mg,0,0,0), the momenta take the form

( (
(L))" = (fe(E2, o, —qz), — |Pe| sin O cos ¢, + [Py sin O sin ¢, fo(Es, ¢z, —qo))
( (
( (

pﬂ)u = fK* (Ewap07 _QZ)a |ﬁK| sin eKa 07 _fK* (E7ra qz, _p0>) ) (08)

with fe(a, b, ¢) = (ab+c|pi| cos0)/+/q* and fx-(a,b,c) = (ab+c|pi| cos Ox)/mi,
and it can be verified that

qﬂ = (61 + €2>M = (q07 07 07 QZ) ) p,u = (pK +p7r)“ - (p07 07 07 _qz) ) (Cg)

(where py = Ek- is the energy of the K*). The polarisation vectors of the K* in

the B-rest frame are
77“(0) = (_QZv 07 Oup(])/mK* ) U”(i) = (07 :F17 Iia 0)/\/5 ) (C10>

where pg + qo = mp, and ¢, = VAp/(2mp), in accordance with (C.3|), is the
three-momentum of the lepton pair.

For the CP conjugate decay, B — K*(,(¢1)l5({5), the replacement rule
i — f¢_>_¢ = (cos ¢ sin by, + sin ¢ sin by, cos ;) applies, while the kinematics for

identical lepton masses can be recovered by the replacements
Eis—= Va2, /Ay — (q2)5€7 (C.11)
where 5, = /1 — 4%?. The kinematics for the decay B — K /{5 can be obtained

by setting 0 = ¢ = 0, equivalent to the simplifying case of no subsequent decay
K* — K.

C.1.2 Basis-independent kinematics for B — K*(,/

Defining the momentum differences

Q"' =ty — )", P'=(px—p), (C.12)
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in addition to (C.9)), the invariants that can be formed out of p, P, ¢, and @) are
given by

1
¢-Q =mi —mi,, Q=2(m} +mi)—q, ¢p=g(mh-—mi.—q")
2p-Pyq- O/ A K+
PP o=k —md, PP =2 (et md) -, g p= LD ORI
mK*
0 P_p-P\/mcosﬁg—l—Qq-p\/mcos@Kcos@+\/msin&(sinegcosqﬁ
2m2..q> M/
) . P
L4 Q2q |
q
2q-Qq-p+costi/ApAy
Q.p = 2q2 J
Sin O sin 0 sin o/ A A= Ay
E(Papa Q7q) = - Y (013)

QmK*\/?

with p> = mi., €(P,p,Q,q) = €apsPP’Q7¢°, and using the ego3 = +1
convention for the Levi-Civita tensor. The kinematic invariants for B —
K*01(£1)l5(l5) are the same up to € (P,p, Q,q) — —e (P, p, Q, q), which originates
from the change in angles ¢ — —¢.

C.2 Leptonic HAs

The calculation of the leptonic[HAE is an important part of the generalised helicity
formalism described in this thesis, and the method for their calculation is outlined
in [126]. Within the Lepton Factorisation Approximation (LFAI), the leptonic[HAk
are universal to all relevant decays. The expressions for different lepton masses
my, # my, can be applied to studies of lepton flavour-violating processes, or to

decays involving an [7 in the final state e.g. B — D*{D.

In the Dirac basis of the Clifford algebra, with ¢ as the usual 2 x 2 Pauli matrices,

70 = ) ’YZ = ) V5 = ’ (014)

the particle and anti-particle spinors u, v are given by

1 T i _ T
(7 5 :(\/El"i_mfu()?\/El_mgl’O) :(ﬁl’o’ﬁl’o) ’
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1 T

U <_§) (07 V El —|—TTL£1,07_\/ El —m£1,> - (O’BT’O’_B;)T ’
1 T

v(g) (\/EQ—meQ;O,—\/Ez-i-mégaO) :(62_707_5;70)T 7

1 T
v (_5) B <07 \/E2 —ng,O, \/E2+m42> - (0’62_70’6;_)T ’

with implicit definition of ﬁf = /E; £my,. The spinors are normalised as
w(A)u(A2) = daa2me, and 9(A)v(Ae) = —dxx,2my,. The leptonic matrix
elements (4.25) contracted with polarisation vectors give rise to the HAs £y, z,,

L5, = (LGOI TX0) = a(A)T¥v(\) | (C.15)

where the T'* [y, ), (Ae = A1 — \2) are defined in table . Using the definitions
above, the evaluation of the leptonic [HAk is then straightforward, and the results

are presented below. The first row (column) corresponds to Aj(A\y) = and

1

29
the second row (column) to A;(A2) = +3. For the B — K*(;0, decay mode, i.e.
¢, = {~, the leptonic [HAk are given by

owagy - | PECAE VR )
—V2(BI65 +600) BTG - BB
LA ) — Por sl VR(E AR |
~V2(B7 By + BB BB - BBy
+ 00— — o+ 0
Sung = | T |
0 B By + By Ba
+ 5+ —n- 0
L= | T |
0 -B1 B3 — B By
£ Oy = —iv2 (B By + BrBT) —2i (B By — B BY) |

2i (87 By — BTBY) W2 (BTBy + Br BT
(Rt Tt - - /2 (BB — BB
LT (A, o) = PR A R i) . (C.16)
—ivV2 (BB —BiBy) (BB +56s)
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where Bﬁ = /FE12+my, , as before. Note that the scalar transitions S and
P are necessarily diagonal, since \; = A\; — Ay = 0. Timelike vector and axial

leptonic [HAE are integrated into the hadronic [HAk (C.19).

In the case where the lepton masses are equal, the leptonic [HAk simplify to

2my  —+/2q%

£v<)\1, )\2) — )
—\/2¢2 2my
0 V2¢*8
LA, o) = .
—/ 2%, 0
q*f 0
[,S<)\1, )\2) - \/_ ‘ )
0 Ve
LA, A2) = ,
-
—i\/2¢%03 0
LT()\I, )\2) — ‘ I

[,Tt()\l, )\2) - 5 (Cl?)

4m?
where 6, = /1 — q—zf.

C.3 Explicit hadronic [HAs in terms of form factors

Provided below are the definitions of the hadronic [HAk in terms of the standard
matrix elements and form factors (e.g. [99]), in terms of which the results are
expressed. The hadronic [HAl is defined by

HY = (K*(\)|5T b B) | (C.18)
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with fX| Ax—x as defined in table , and the further replacement w — @ from
(4.15).

Explicit results for the B — K*(¢,/;)-mode are given by

4imBmK* [(CV — C{/) (mB + TTLK*) A12 + mb(C7 — Cé)ng]

HY = |
\/?(mB + M)
dimpm -
a4 dimpmg -
Hy = \/q_2 (CA CA)A127
v o_ i . B ¥ -
Y = S (£(Cv + COVABY = (m +mic-)* (Cv = CL) A )
m , /
+ 2 ((Cr+ COVART: = (Cr =€) (mhy = mik) )
A _ i ) B ¥ -
HY = 2 (mp + ) (:E(CA+CA)\/)\BV (mp +mg~)" (Ca OA)A1> :

HP — VoN (Cp — C;; n my, + My,

2 my +m q> (CA_C;‘)> Ao

i\/)\B Cs—cl My, — My
HS: S 1 2 C _Ol A
2 (mb+ms+ q> (Cv v)) Ao
2\/§mBmK*
Hf = ——"— (C7+CHT
0 R (Cr 4+ C7) Tns
QmBmK*
Hjt=—""—(Cr—Cy) T
0 mB‘l—mK*(T 7') 23
1

(+(Cr = Cp) VAST: = (Cr + C) (% = m3e) o)

VAR

1
HE = (£(Cr +Cp) VAT — (Cr — Cp) (mh —m3) 1), (C19)

2P

where Cy 4y = Cy(1p) in the standard notation used in the literature, and the
¢*-dependence of the form factors is suppressed. The zero-helicity form factor
combinations are defined by [99, 222]

(mp + mK*)2 (WQB - m%(* —¢*) Ay — A\pAsy

A = , (C.20)

16mpm?2.. (mp + mg-)
Ty — (m% —m2.) (m% + 3m2%. — ¢*) Ty — T3

C.21
8mpm?3. (mp — my-+) ( )

The “timelike” [HAK, often denoted by H; in the literature [I13], have been
absorbed into H® and H”. This is exceptional and follows from the vector and
axial Ward identities g"u(€1)v,[v5]v(l2) = (me, F myg,)u(ly)[ys|v(€2). A similar

simplification procedure could be repeated by use of the equation of motion
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-
i0”(5i0,,b) = —(ms + my)5y,b + i0,(3b) — 25i D,, b [223] for H', if all of the
operators present in the equation were used in the effective Hamiltonian. Since

the higher derivative operators are not present in the effective Hamiltonian used
in this thesis (2.42)), such a simplification does not occur.

C.4 G%" for B — K*(,l, in terms of [HAs

C41l my,=my

When the masses of the leptons are identical, the results for Glole = N g2Glrole

(with NV defined in (4.34)) are

63 =5 (1= (JHY[ + |+ 1 v = )

4mg

(1L + |E |+ |y | - V—>A)>+ Zp2 |H5|” + 2 \HP\
+§(1+8mg)<’Hft‘ +|HE ]+ |HE )+§5£ (laf)? +\HT| + 87"
4 ?mg Im [HY AT + HYHT + HY AT |

GY' = %ﬁ‘f (Re [HY H — HY HA) + T [V2HT B + 2H] 11|

—2m,Re [HY H®] + 4m,Im [HAHT — gAA"]) |

Gh* =~ (2 = B — |HY P+ (v > ) 2 (2| mE P - |1 — |m2))
—4 (2= R - )
63" = —5 (1 =) (L] +|HY P =2 |HY P+ (v = )

4m42

(\HHQJr|HY\2—2]H(‘)/\2—(V—>A)>+ B2 | HY 4 2 }HP|

3
8 .
— S (e sm) (| + |0 2 ) - 5g (B + »HT! - 2|H{[")
—?mglm [H{HT + HYH" —2HJ H'| |
G2 = _ﬂ@e [AY A = HY ] = 21m [V2HT A" + 2H ¥ |
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+ drivy (Re [HY H®) + Im [HLHT — HAHT]) )
G22 = _;33 (4 \HY [P+ | HY |+ |HY )+ (V= A) =2 (4 |HI|* + |HT) + \HT|2>
—a (a|HE 4 | [HT]))

4 _ _ _ _ _ _
G = 4P (HY Hy' + HYHY — HY B — H}HY + 2m (HY H® + HSHY)

V3
—V2i (HPHT — AT 42 (HE AT — 1Y )

— dimyy (HPHy' + Hy' HY — H Hg' — Hg“HTt)> :
4 _ _ _ _ _ _
G = 287 (HYHY + HYHY + (V — A) = 2 (HLH] + HTHT +2 (H] A + H'H))) .
8 _ _ _ _
G3* = —5 6 (HYHY + HEH — 2 (H{HT + 20T HY)) (C.22)

where my, = mg/\/? and 8, = \/1—747%2. The index m in G corresponds to
the units of positive helicities (where, for example, H}: and HY both carry one
unit of positive helicity). The common factor of ¢? in all observables as compared
with standard literature results is a consequence of the choice of normalisation,
whereby all global factors are placed outside the [HAk. The factors of i where
they appear (explicitly and implicitly) in Gf’l, G?Q and G§’2 are not accidental,

as the results given above are complex, and one must take the real and imaginary

77777

It is sometimes convenient to express results in terms of the transversity

amplitudes, which possess a definite parity. The relations to the [HAK used above

are

HIR = %(Hﬁm + 1R

Hy =H", H, =H',

Al = SS(HT £ HT) . HE =

Hlyy= %(Hf +H"), H[ =H]. (C.23)
In [II3], the notation A;;, with i,j =||,L,0, is used for the transversity

158



amplitudes. Note that, when comparing to the results above, the difference in

the convention of the polarisation vectors has to be taken into account.

C.4.2 my, 7§ my,

Using the leptonic [HAk (C.16)) allows a simple extension to the case my, # my,,
so that the results presented in ((C.22]) can be adapted to test for possible lepton-

flavour violating processes. Using the simplification

(Ay-

A
BBy By By = 4;2 : (C.24)

given in (C.6) and By, = \/E12 £ my,,), the results for Glxle = NGlle

(with AV defined in (4.34))) are

50,0
Gy =

~0,1
Gy =

4 Ay
5 (385 + 35 ) (VP + [P+ |+ 0V )
4m41m52

L (JHY [+ | Y+ [HY [ = (v = 4))

4 Ay 4 Ay
+3 <E1E2 — My, My, + —) ‘HS‘ + 5 (E1E2 + My, my, 4;2) ‘HP}Z

2 (3 (BLEs + moyme,) — 27;) (jH7 ] + | + 1)
+§ <3(E1E2—mglm52) i\q2) <‘HT| _'_’HT‘ +|HT‘ )
22 (g, By e ) I [HYH 4+ HYH 4 1Y

] _ _ _
+ Tf (me, By — mg, By) T [HAAT + HAAT + HPAAT)

4@_7* (Re (Y i — Y A4+ 2yEl q}mé Re [HIH] — HIH]
4 Q%Im (HAAT — HAA™) + ﬁ%m (HYAT — gV A7)
_ _leq_me Re [HA AP - %Re [Hy H] + Im [ﬁHE HY + 2H§fHS]> )
:_gz (218" = By = (Y4 (v = A) =2 (2]mg | = | L] = i)

(2|~ [HEP - [HO]))
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G20 = 3 (3E1E2 + %) (1 [ [ =2 | [ (v = )

- (2 v )
8 Ay 8 Ay

-+ § (E1E2 My, My, + H) ’Hs‘ + = (E1E2 —+ My, My, —+ 4—q2> ‘HP}
16 /\ T T Ty

- 3 (BB 4 mg,my,) — 17 (|H \ +|H! | —2|Hgt| )
8 A

-5 <3 (ErEy — myg,my,) — 4—;2> (‘HI‘Q +[HT]P =2 ‘HOT}2>

- ? (mgy B +my, 1) Im [HY HY* + HY H™ — 2H) H{"]

- % (me, By — mg, 1) Im [HYH] + HYA" — 2H{'H] ] |

63,1:_4\/;‘7* <Re [H}:HA HVHA]+2\/‘ hq EQR [HTHT — H'H"]

2(7”21 +m€2) A 75T, AT, \/§<mﬁ1_m€2> vV 5T V 75T
20 D T [HART - HAHT 4 Im [HYHT — HY AT
\/q—g [ +50+ } \/q_2 [ + 5+ }
My, — M _ My, + M _ _ _
- Q%Re [(HHT) + Q%Re [HY H] = 2Im [\@HOTHP + 2H0TtHS]> ,
égvzz_gﬁ 4|HV] +\HV| +]HV\ + (V= A)—2 4]HT} +|HT\ +|HT]
9 ¢?

4 (a[HP[ 4 | 4 B

o , _ _ _ , ,
GHl = V2 ((HXHg‘ + HARY — HY B — BPAY) + "0 (gVES + gAY

V&

= V2i (HPHT — HEA” /2 (HS ™ — 0T )

My, — My, A TP P A
+ 2 (HAA" + H
\/? ( + )
My, + M - _ _ _
— 2 77 2 (HYH + Hy'H* — HY Hg' — H H™)
~ Vet T (g A+ BEAY - HUAY — B AT
Ve

mg m2 T _ T =
+2v2———% (HTH' + HFH — HFH™ — H'HY) | |
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22 %A_ (HYHY + HYHY +(V — A) =2 (HTH] + HUH” + 2 (HIHS + HIPA™))) |

— 2 (HYAY + HIA* — 2 (HTH” + 2HT A™)) | (C.25)

C.5 Specific results for B — K¢/,

The angular distribution for this decay is

d*T

dg? dcost, GODG, () + GV D54 () + GP DY ()

where, using the general leptonic[HA in appendix and taking my, # my,, the
functions G = N'GU) (with A defined in ([4.34)) are given in terms of B — K
[HAE by

) Ay 2
G(O) — (4 (E1E2 —|—melm€2 ) ‘hv| + < ElEQ - m€1m€2) 3;2) ‘hA}

Py
+(4<E1E2 i)+ 25 )W} +( <E1E2+mglmb>+q%) PP

A Ay
+16 <E1E2 + Mg, my, — D 2) ‘hTt‘ + 8 (ElEQ My, My, — 12q2) ‘ T}

+ 16 (myg, By + mg, E1) Im [AYR"] + 8V2 (my, By — mg, E1) Im [A4R7]
My, + My, hVﬁS + My, — My, hAhP]

= —4+/ ) | Re
k ( Ve V&
~Im [2/#%5 i ﬁhThPD ,

@) _43)\772* (|hV|2+ ‘hA‘Q _ 9 ‘hT}Q _4‘hTt|2> ' (C.26)

The equivalent expressions for equal lepton masses are, using the notation G =

NqQG(ll)’

GO =_(1+2m Q)W\ + @W‘} + 232 |hS| +2|hP(

Wloooolyp

+ 2 (1+8m2) [p" ] +§5£ |RT|* + 1607, Im [RVRT]

GM = —48, (mg Re [hVA%] — Im [21#}35 + ﬁhTﬁPD :
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483 t
GO = — 2L (|0 AP =2 T — 4wt ) (C.27)

where m, = my/+/q? and B, = /1 — 4m3.

C.5.1 Explicit B — K [HAk in terms of form factors

As for B — K*(;(5, the hadronic [HAk are given below for form factor
contributions only, which allows for comparison with the literature. The
form factor matrix elements relevant to B — K transition, in standard

parametrisation, are

m2 2

mmmmmm»:@wMJmﬁ+J§$%Amﬁ—ﬁ@»,
(K(p)|50,,0|B(pp)) = i [(pB +9), 0 — (ps +p), qu} % ,
(K(p)lsblB(pn) = = 2" fold”) (C.28)

with (K (p)|57,75b|B(ps)) = (K (p)|575b|B(pp)) = 0 in QCD. The hadronic [HA]
is defined by
KX = (K|5Tb|B) (C.29)

where fX| Ax—0 as in table and w — w from (4.15)), containing the full set of
dimension-six operators in the effective Hamiltonian (2.42)). The [HAk are

v )\BK 2mb ! /

0 _;vgz(mB+mK«»+cwﬁwwcv+OWﬁ),
VA

ht = BK(CA_’_CIILX)f—I—u

24/ ¢?
hS _ m2B _m%{ ((CS—I—C{S”) + My, — My,
2

(Cv + C(/)) Jo

my — Mg q2

2 2 C —I—Cl 1+ . ,

p = K (( p+Cp) , e ¥ i (0A+CA))fo,
my — Mg q

. VABK
ht = —i Cr — " ,

\/§(mB+mK)( T—C7) fr

VA

W= - = (Cr +C) fr, (C.30)

2(mp+mg)

where the Kéllén function (C.2) Apx = Mm%, m%, ¢*) replaces A\p = A(m%, m%., ¢%),

and Cya) = Cyp) in the standard notation used in the literature. These
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results are consistent with previous work [132], so long as the angular redefinition

0, — m™ — 0, is taken into account.

C.6 A, — A(— (p,n)r)/l; angular distribution

The decay Ay, — A (= (p,n)m) {145 with a final-state proton or neutron, recently
measured by the LHCb Collaboration [224], can also be considered within the
generalised helicity formalism, and is particularly relevant because this decay can
also be described using the effective Hamiltonian defined in . In this case,
equation becomes, in the rest frame of the Ay,

A(QAb7 QZ? QA|>\A177 )\Nu )\17 )\2) ~

1
> G Han Dy ()N DL S, (Q0) Gy
Ay Ay (C.31)

1
2 : 5 J.
= H)"‘h)‘ﬁf)‘/\b D>2"Y_>\Ab1>‘N (QA) N)\NDA::,AK (QZ) g)\1>\2 Y
Aysdsy

where the leptonic [HAk are the same as before, and N, is the [HA] for the decay
A — N analogous to the gk« factor in the B — K* decay, this time carrying
non-trivial dependence on helicities, owing to the final state particle N having
spin—%. The terms H_», are the [HAE for the Ay, — A decay, and can be expressed

in the form
Hann = (AAW[ST B[A,(An,)) | (C.32)

with the T the same as defined in table The resulting angular distribution

is then

K (g% Q. Q) ~ Re [0 (., Q) + Ko Q0" (Q, Q) + Ko? Q07 (Qa, )
+ Ko7 (Qn, Q) + K5 (R, ) + Ko? Q% (2, )
+ KT (Qa, Q) + K200 (Qa, Q)] (C.33)

where Qp = (0,60,,0) and Q; = (¢, 0s, —¢). A theoretical angular analysis of this
decay has been performed in [137], 225], and more recently in [226] 227]. In terms
of the functions defined in [I37], the K2 above are

1
IC870 - g (chc + 2Klss> ) K:871 = Ky, IC872 = (KlCC - Klss) ’

[GVRI )
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1
IC(?O - g (KZCC + 2K255) ) IC(1)71 = KZC ) ’C(1)72 = (KQCC o KQSS) ’

Wl N

1
Kh = Ky, + Ky, Ki? = 7 (K3sc + 1 K4s) . (C.34)

These results can also be compared with those found in [I38]. It follows that the
will be equally useful in future angular analyses of this decay.
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Appendix D

Results for twist-four non-diagonal

distribution amplitudes

This appendix presents the analytic expressions for non-local twist-4 [DAk. The
details of the computation for individual contributions are given in chapter [6]
Many of the complicated aspects of the computation first enter at twist-4, in

particular when computing the perturbative contribution.

The leading non-diagonal sum rules for twist-4 [DAk were first presented in [103].
Comments on the comparison to these results will be given at the end of this

appendix.

For the scalar and pseudoscalar currents, the correlation function can be written

more explicitly as

() gy = i / dye= P O| T { (TP (2,02,0))0p500s (15)q(y) } 0)

(o]
= Xaﬂa’ﬁ’]:[f;] (p2> + Xaﬂalﬁl]:[f(ﬁ} (p2) =+ O(Z) s (D].)

where the Lorentz structures X, X are given by

1

Xoparp = e (papor (—Pag) + antisym)
~ 1 d&/”/ aa’ / ao’ / ol o
Xoc,Bo/ﬂ’ - Zeaﬁagﬁalﬁl&/g/X BB =X pB + (g gﬁﬁ —g /Bg B> ,
(D.2)
where P.g = (gap — Paps/P?) = — Y. \mins follows from the sum over
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polarisations. Defining the structures

2
'Pféalﬁﬁl _ p a o BB

@—@@wvzz%-’
aa/ / 1 aa/ !
then the projectors
1

Pl = (=P +Py)

- 1
bl — = (9P, — D.4
P = (2P~ Py) (D.4)
satisfy Pl). X = Pll. X =1 and PlP . X = Plrl. X = 0, and are thus sufficient
to extract both of the possible scalar correlation functions in (D.1]).

In the results below, the derivatives are understood to act on the projection
functions that will be used to extract the parameters of the distribution
amplitude. For the gluon condensate, it is convenient to include dependence
on the dimensional-regularisation parameter €, as the divergence only appears

following integration over the [DA] parameters (a).

2
In —5- ( 3 (o(1 = 20aq) + @y (6ay — 1)) + g > a2>
o5

[65X8
W1+e< 2> - 1921 2?/\} 043)8,13<fG3>

~ a, (1 — 205 + (1 — 2asas) In %) (ms(@q) () + mg(5s)d(ar))

— —W5(043)(041 — az)*(aq + ay

1 —pPasa
+ o (1 +2a; + alln %) (mq(dq)0(az) + my(5s)8(ay))

3 —pPasdg _ _
— 150 daz —1—(1—3a3)In ez (mg(qq)0(a2)0ny + ms(55)0(a1)0a,)

(a3) (6(az)(qo - Gq) (2mg — 2ms + MmgOay)

24p?
+0(a1)(50 - Gs) (2ms — 2my + Mms0a,))
2;‘ (as) ((VAVE) 6(2) (2 + Bay) + (VEVE) 6(01)(2 + Ou,))

1 50 50.59) ()b ()

2

P Qs 4 —-P 1 2 _ _

Tr=—=p ln—— (_— as(l —2a1) + 20107 a3(1 — 3aq)) + a1 & a2>
G 1673 ,U2 Oz% ( 2 )
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1 L(e)W + 2a1a0(aq + az)p?

(G*) = 222 5(03)0,, (FG?)

W1+e

— — Oy <1 — 20[3 — 20{30_63 In B
m u

1

a2 (1 —2as3 + as(1 + az)In
6 a3
Q

— éas (1 —4dos — (14+a3)In

2 —
—p- Qa3

5762 W
) (1 (d9)8(0) + my (35)3(en)

2 —
—p azag
2

o

—p*azag _ _
. ) (g (d9)3(0) + o (55)3(an)

) (11g (0)3(02) s + 1 (55)5(01) o)

L 5(as) (me(go - Gq)8(as) +my (50 - Gs)3(an)

Oé3 (<V“Vf > (S 042 8a2 + 26a3) + <VS“Vf“> 5((11) (2 — 8a1 + 28a3)) s

12p?
B 7r04S
6p?
o o'l —p* [(az(1 — 2a1)_ga2 —aqay)
1673 2 a;
1 p
+ 1927T2(5(Oé3)<1 — 20(1042)(0[1 —+ 062) W1+6

—p iz

12
— —ay (1 — 23+ (1 — 3a3) In
T

21p ~6(a3) (6(az)(qo - Gq) (2m,

7TOéS

6p>

2

Qs 4. —P 2

+ oy & Oég>

(G%) — 1905;O;§/v5<0‘3><fG3>

+ a—wozs (1 + asln Mj’ ) (m4(Gq)0(aa) + mg(38)0(ay))
T <1 +asln _p2a3a3) (mq(qg)d(az) + ms(5s)0(ar))

2 —
—p asag

5 ) (g (0)3(012) Oy + 1 {556(01) )

— MgOa,) + (0(1) (50 - G's) (2mg — ms0ay))

CY3 (<V Vf>(50{2 2“‘8@2 +<V“Vf>(50z1 2+3a1 ),

1
= ——D In — (@ (a2(1 — 20(1) + 20[%0710(3) + oy < o

1673 w2 7

1 LW + ajas(ag + az)p

g620(0)

WlJre
Qg (043 — 043(1 + @3) In ,uz

1 1

2 —
—pazag

2<G2>+ 1925 (aug) (3 + 400, ) ( FG5)

5762 W

) (1 (@0)3(02) + g (55)5(an)

2 —
—prazag

— —ay— (1 — azag — azaz(l + az)In e ) (mg(qq)o () + ms(5s)d(cn))

+—as (1 —2a3— (1+a3)n
127

2 —
—prazag
2

W

) (g (0)5(002) Dy + 11, (55)5(1) )

CE3 (<V Vf > (S Cl/2 (%2 + 28a3) + <V5“Vf“> 5(011) (2 — 8a1 + 28a3))

Mg + Mg N ~
~ g 9(es) (50 Gs)d(an) + (30 - G)d(o))
. s o

6p?

8T | 0
— —5 (P'P") 6(ar)d(a) ,

p
- _ﬂ-g|ms<q7q>4>*m8<@1>,mq<53>*>7mq<§s> )
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P S
Tg = _7TG|ms<(jq)—>—ms<(jq>,mq(55)—>—mq(55),(5‘15’“)—)(P‘1P“) )
-5 _ _ =P
G _ﬂ—é ms{(qq)——ms(qq),mq(3s)—>—mgq(3s),(P*P%)—(5252) »
- p ~5
Tg = —TGIms(Gq)——ms{(Gq),mq(3s)——mg(5s) - (D5)

To relate the results above to those in [I03], the following equations hold:

I (g = /Dg (mg+xk) (D.6)

I | g = /Dg (Fg £ 75) . (D.7)

The results above are found to be in agreement with [L03], apart from the

following;:
e The gluon contributions match the logarithmic terms in equation (C.6) of
[103], but not the constant terms;

e The sign of the mixed condensate cross-terms, m,(so - G's), mg(go - Gq), is

opposite to that given in the functions IIy, , of [103];

e Results for the non-logarithmic terms for the two-quark condensates are

also in disagreement.

Constant terms will vanish under a Borel transformation, so these disagreements

should not be relevant to numerical results.
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Appendix E

Three-particle diagonal sum rules

This appendix presents computations related to the diagonal sum rules for twist-
3 and twist-4 [DAk. As will shortly become clear, the diagonal sum rules are
not well-suited to computing three-particle DAL, and even without this handicap
the results presented below are confined to local sum rules, meaning that the
results presented below merely serve as alternative computations for the leading

parameters in the three-particle DAs.

Nevertheless, the computation for the twist-3 case of the diagonal sum rules
is new, and still instructive precisely because of these limitations. Results for

diagonal twist-4 sum rules were first considered in [103].

E.1 Definition of diagonal sum rules

As opposed to the interpolating currents in the right-hand column of table [3.1],
the second possible choice for an interpolating current of the vector meson is
to replace it again by the current of interest, leading to the general correlation

function
@5 = i [atyer i {30 o),
- (e i) 6

where JX(y) = q(y)G(y)xs(y), and the x, x are defined in table[3.1] In principle,

one could also consider cases where the y and Y are different structures, but in
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all cases of interest, such cross-terms do not contribute, and so to ease notation
correlation functions will be denoted A’é in future. The Lorentz structures X ' #%'
are identical to those defined in equation . To eliminate potential spin-two
contributions in the V, A currents, the relevant correlation functions are further

contracted with p*p” /p?. In the local case, the projectors

OCOCI / _1 o Oé, / ~OCOCI / aOé/ / 1 aa/ ’
paa’ BB = Al g Pl el geel g (E.2)

suffice to extract the two structures cleanly. In fact, one only needs to compute

the A’g‘é explicitly. The A-functions can be obtained through the relations
XX _ AXX
Agg = A*g*g , (E.3)

where the % denotes the Hodge dual.

The twist-4 diagonal sum rules were considered in appendix C of [I03]; the

relationship between the sum rules defined above and those in that paper is

I 2 gy = (A% a0 AT ey A 4 (1) ATT) (E.4)

where potential non-zero cross-terms A have been included, but in fact these
identically vanish. As noted above, there has not been a previous computation

of the diagonal sum rules for twist-3 matrix elements.

It is worth noting that the three-particle diagonal sum rules have a higher mass
dimension, owing to the presence of an extra G field, and for this reason it would
formally be important, in a complete calculation, to include higher-dimensional
condensates. In [I03], this was partially achieved by including the dimension-eight
condensate (Gq)(go - Gq), a step not performed here. Dimension-eight corrections
are on the order of 10-20%, depending on the Borel parameters, so restricting to
dimension-six contributions is unlikely to be sufficient to provide a reasonably

accurate value for the [DAl parameters.

Moreover, as will be seen in the explicit results, the prediction for the [DA]
parameter V), is non-zero, whereas G-parity imposes V), = /f!p = 0. This
arises because the diagonal sum rules cannot separate states of different parity,

so the p and a; sum rules can mix into each other.

The remainder of this appendix presents the individual contributions considered

in the three-particle diagonal sum rules, with analytic results in [E.2|
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E.1.1 Perturbative contribution

Figure E.1 Perturbative contribution to the diagonal sum rules. In this
diagram, and subsequent diagrams in this appendix, the q-quark line
is on the top and the s-quark line is on the bottom, as was the case
with the non-diagonal sum rules diagrams in chapter[6. Momentum
insertion is indicated by the dotted line to the left.

The perturbative contribution emerges from the diagram in figure [E. 1] with the

general expression

( Axic)aﬁo/ﬁ’

port, ! / d'y e Tr [Sy(0,y)xS:(y, 0)X] G ()G (0)  (B.5)

where the contraction over the general gluon fields leads to the propagator

‘g d%  —
of o8 —
G y)GTT0) = / (2m)? k2 + ie
~ ~ 1l 1 Y d —1
GG (0) = CHC O + [ G

e (Y R S R S

(2m)d k2 + e

,ik-ka (gag/gﬁa/ . gaa’gﬁﬁ/> .

(E.6)

This is a two-loop integral, but can be performed as two one-loop integrals, using
the results in and the unexpanded form of the Passarino-Veltmann function
Bo((k + p)?) (&31).

E.1.2 Gluon condensates

The second contributions considered are those from the two- and three-gluon
condensates. The two-gluon condensate arises from the diagram at the top-left

of figure [E.2] with general expression

(Axfc)ocﬁo/b”

L= / d*y €Y Tr [S,(0, y)xSs(y, 0)x] <G°‘ﬁ Q_W> (E.7)
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@ @
@ @

Figure E.2 Gluon condensate contributions to the diagonal sum rules. Top
left:  Two-gluon condensate contribution. Top right:  three-
gluon condensate contribution from expansion of the background
fields . Bottom: three-gluon condensate contributions from
expansion of the fermion propagators. As discussed in the text, these
contributions vanish upon contraction with the projectors (E.2]).

where the general condensate <ga5 Q_a'5'> can be related to the definition of the
two-gluon condensate given in (A.10)).

The three-gluon condensate emerges, in principle, from two types of contribution:
corrections to the propagators in the two-gluon result, and the expansion of
the gluon fields G**. The first type of contribution, however (shown at the
bottom of figure , always vanishes, independent of the structure y,y, as
the projection acting on the three-gluon condensate is zero. The
three-gluon contribution instead comes from expanding the gluon fields. The
double expansion reads

=~ 37 - ]_ — 1/ 1 — 1
GG (2) =G + Sy YTV, VGG + DG TV, VG

+y°V,G%27V.GY? + (linear terms) + h.o. (E.8)

where linear terms contributing to the mixed condensate (Go - Gq), are neglected,
as they are quark mass corrections at dimension six. For the terms of interest,
making the identifications y — —id, and z — —i (0, — Oax), where Ak = ks — kg,
then, after partial integration, the three-gluon contribution becomes

—1

__° efiy(ksfkqu)efiz(kqfks) <V gaﬁng*a/5/>
2y P

X (agkagk + 0PNy — 3&9;) Tr [S(ke)xS(ks)x] . (E.9)

( Axi)aﬁa/ﬁ’
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The antisymmetric term vanishes, leaving the trace

Oy OakTr [S(kg)xS(ks)x] = Tr [Syv Sy ™ SqxSsX + Sqv™Sv” SqxSsx]
— Tr [Syy"SyxSsv”SsX + Sv”Sqx S5 SsX]
+ Tr [SyxSs7°Ss7™SsX + SyxSs7™ 97" Ssx] - (E.10)
= Trveve (X X)

The resulting integral is again a one-loop diagram, and final expressions can be
obtained using the results given in appendix [A.4.2] Note that the diagrams
are divergent in d = 4 dimensions, and care therefore needs to be taken in

implementing d-dimensional traces.

E.1.3 Four-quark condensate

Figure E.3 Four-quark condensate contribution to the diagonal sum rules.

The final contribution to the diagonal sum rules relevant at dimension six is
the four-quark condensate, which arises from figure [E.3] and has the general

expression

@] =i [ g)s@s0)%a0) 6 )6 0),
(E.11)

where the contraction over gluon fields is given as before in equation (E.6|). There

is no loop momentum to integrate over, so this reduces to

(A Four-quark = —4mas (@(y)xt*s(y)5(0)xt"q(0)) (E.12)
(A ~0, (E.13)

Four-quark

Q=
N—

and similarly for A¥, where instead AY =0.
Four-quark
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E.2 Results

The resulting sum rules have the following form, with other combinations being

Zero:
AS — as 611’1 _p2 + 1 21n ln__p2<fG3> _ 471_04 <SaSa>
¢~ Tooret M2 T 102027 s ,
—p2 1 _pg 1
AL =y P 2 2 (G?) -
¢~ Toeoml Mz 10wt M2 (@) -5 47T
AP Qg 6 _p2 1 9 5 L
G~ T 960ms” n 112 T 19227 *In— 12 <G >+ 1ﬂ—<fG ) — dma, (P*P?)
—p2 1 1
A‘S = — Qs 61 p _ 21 G2 .
¢ 96071'3p i /’LZ 1927T2p n NQ < > 247T
2
as _p a a
A6 = ~Trgm? lnT +(0+0())(G) = = (vevey,
A_ 0 g =D )
AG n 17287T3p In ,u2 (0 + O(a5>> <G > + 4872
Qs p 1 pQ
AA —_ 61 L 2 U 3 i 4 AaAa
¢ 17287T3p ,u +(0+0O(ew) <G > A8 72 2 <fG > Tas ( )
1
DG = g0 ’ E.14
¢ 17287?3p +(0+0(a)) (G%) + 4872 ( )

where any constants arising from the loop integrals are dropped, as they either
vanish under the Borel transformation or are scheme-dependent terms that must

ultimately cancel from any combination.

As noted before, the twist-4 results can be related to a previous computation,
presented in appendix C of [I03]. The results above, however, are not consistent
with those expressions. In particular, in the three-gluon contribution, the
equivalent expression for A2, is

1 —p?

S _
G}G3,BBL - _487r2p2 log M2 )

(E.15)

which differs from the result in this thesis by a factor of —1/2. Tt is possible
that this discrepancy arises from an error in the definition of the three-gluon
condensate used by [103].

Results for the twist-3 diagonal sum rules are new. Again, it is clear that the
prediction for AY, which can be related to the leading parameter in the vector

[DAE, is non-zero in general, which strongly indicates that these sum rules are
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unreliable or, at the very least, require careful study in order to extract useful

information about the parameters of interest.

As a result, the non-diagonal sum rules, presented in greater detail in chapter [6]

should be preferred for numerical evaluation of the three-particle sum rules.
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Appendix F

Further material for the
long-distance charm loop

calculation

Here the polynomials P; and R;, defined in the main text but whose explicit forms

were not given in chapter |7 are provided in full.

It is helpful to note that, owing to the structure of the three-particle DAk ((3.48]),

each result can be expanded in the form
Cr = CP O + CPpM 1+ CPp® (F.1)

where the ) stand for generic [DAl parameters, as specified by the defintions
in section [3.4] Hence, only three integrals need be calculated, and the input
parameters that distinguish one from another can be separated from the

properties of the integral.

The leading results were first provided in [35], and are consistent with the

expressions below. The remainder are given for the first time.
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F.1 Explicit expressions for the Pi(j)

The P; are defined in terms of the integrals

o = [ [ rttst (i —}) — nlmd — s — ) £ + ")
xﬂwm—Q%AMm—%W—@Q»%”HfU%W

C’}I) = / / chdo;;Bx o ((ln(m% —p%) — In(mj — aspy — @3(]2)) Pl(l) + P2(1)>
x (2 — Q%) = n(m? — asP* — asQ%) PV + P{V) PV

CJ('-'Q) = / / dx dOég :C_ ?)? <(1n( pB) In (mg - 0431923 - @3612)) P1(2) + P2(2)>
x <(ln(mx - Q?) ln(m —ayP? — asQ?) PP + PP ) PP (F.2)

where there is an extra factor of (p% — ¢*)~! for the Cj(rl)—type integral, owing to
the different functional dependence on «; 2, but otherwise the structures for all

[DAE are universal.

The explicit forms of the P; are then given below. For i =1, ..., 4, they are

P = 2(m2 — p3)(m? — azp? — asq?)
P = as(p}; — ) ((m} — o) + (m} — asph — asd?®))

P = ay(P* - Q)
P = 6(mi — p)(m}, — asply — as®) ((m] — ph) + (m} — asps — asq?)) |
B = as(py — ) [ ((m}, = ph) + (m}, — asply — asg?))”

+ 8(mj — ph)(mp — asph — asq®)]

P3(1) :Q2_miu
P = ag(P = Q).
PP =pY =1 .. 4. (F.3)

The overall normalisations are contained in Ps, and are

1

po = Ly v g,
2 femy
—1

PO —mmeZfVSGO,
6 meB
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lmbmva

P(2) _
i 4 fpmy

360(Tas — 3) . (F.4)

F.2 Explicit expressions for the Rl(j)

The polynomials R; are defined in terms of the integrals

1. 0) /1 dx x
—Disc. =
A= ) B s g

((n(m? = @) —n(m? — 3P — a30%) B + B &Y.
1 ! dx x
~Disc.CY = /
P T P
((ln(mi - Q% —In(m2 — a3 P* — a3Q )) Yy R§1)> Rg) :
L. @ /1 drx
—Disc. =
BT e
((n(m2 = Q%) = In(m2 — a3P* - a50%) RY + RY) RY . (F.5)

where, again, away from the leading [DAl one can pick up extra poles in s — ¢* and
— %, but otherwise the structure is identical to that outlined in chapter .

The polynomials are also universal up to the specific values for [DAl parameters.

The Réj ) contain all dependence on hadronic parameters, and are given by

© _ 1 myfymy _
R = 35 3000 m2) |
L my fymy
R = = 2V 360(s — m?
3 36 meQB (S mb) Y
L my fymy
R(z) = — 227 7 360(s — m?). F.6

Specific forms for the remaining R, are given below. «oj is as defined in (7.19)),

and m2 = m?/(x7).

R = 6(m2 — Q) (m2 — a5P* — a3Q)(P*¢*(aj — 2) + 2m (P* = Q°)
+50°Q° — a3 Ps + (14 a3)Q%s + (¢° — s)my) |
RYY = 6(m2 — Q) ((Q* = P*)aj +m} — Q) (—(P* = @)(¢ — s)a (9m}(Q* — P?)
+2m2(s — ¢*) + 6P%¢* + 3P%*s — 4¢°Q* — 5@25) +2(P?* — Q*)*(q* — 5)*(a3)?
—3mp(P?* — Q%) (3mi(s — ¢*) + 6P*¢* + 2P%s — 3¢°Q* — 5Q°s)
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+ 12mp(P? — Q*)* + m2(q* — 5)(2m2(q* — s) — 6P*¢* — 3P%s + 2¢°Q* + 7Q*s)
+6P'¢*(¢° + 5) — 3P*Q*(2¢" + 5¢°s + ) + Q*(2¢" + 5¢*s + 557))
R = —6(m} — @) ((Q* = P*)a} +m} — Q) (P* = Q*)aj (21m3(Q° — P?)
+ 14m? 2(s— ¢*) + 30P%¢* — 9P*s — 16¢°Q* — 5@23)
—14(P? = Q*)*(¢* — s)(3)? + 3my (P? — Q*)(=Tm3 + 6P* + Q%)
—m2(14m3(q* — 5) — 30P%¢* + 9P*s + 2¢°Q* + 19Q°s)
—2¢*(9P" = 3P*Q* + Q) + @*s(9P* + 5Q%))
RY) = —(P? — Q%) (303(P? — Q%) (2m2(Q* — P?) + m2(¢* — 5) + 2P*¢* — 3¢°Q* + Q%)
— 4(P? = @Q*)*(¢" — s)(a5)? — 6(Q* —m2) (2my(P? — Q) + m3(q” — s)
—2P%¢" + Q*(¢" +9))) ,
Rgl) = —(P* - Q*)>(a})? (4a3 s—q* (9m — P?) +m2(¢* — s) + 6P%¢* + 3P%s
—T¢°Q* = 2Q%s) + 9(P* — Q°)(¢” — 5)*(3)* + 18(P* — Q*)(¢* — mj)
(=2mj + ¢* +5)) +3(P* = Q*)*(¢* — 5)(Q* — m7)(3)*(9mi(Q* — P?)
+2m2(s — ¢*) + 6P*¢* + 3P%s — 4¢°Q* — 5Q%s) — 6 (P* — Q*)(Q* — m2)
(=3m2(P% — Q*)(3m2(s — ¢°) + 6P%¢* + 2P?%s — 3¢°Q* — 5Q%s) + 12mj(P? — Q?)*
+m(q* — 5)(2mi(¢° — 5) — 6P*¢* — 3P%s + 24°Q° + TQ%s) + 6P*¢*(¢* + 5)
—3P%Q*(2¢" + 5¢°s + 8%) + Q" (2¢" + 5¢%s + 557))
R = a3(P* — Q*)(=3(P* — Q*)aj(=3m} (P* — Q*)(Tm} + 6P* — 13Q%) — m2(14m3(¢* — s)
— 30P%¢* + 9P%s + 2¢°Q* + 19Q%s) + 2¢*(9P* — 33P?Q? + 17Q*")
+Q%s(9P? +5Q%)) + 4(P? — Q*)*(3)*(21m (Q* — P?) + Tm(q* — 5)
+30P%¢* — 9P%s — 37¢°Q* + 16Q%s) — 63(P? — Q*)*(¢* — s)(a3)?
—6(Q* —m2)(=3mi(P? — Q*)(=7Tm + 6P* + Q%) + m3(14m3(¢* — s)
—30P%¢* 4+ 9P?%s + 2¢°Q* + 19Q%s) + 2¢*(9P* — 3P*Q* + Q") — Q*s(9P* + 5Q?))).
(F.7)

These results are for general ¢2, although the method for evaluating the sum
rules beyond ¢? = 0 is non-trivial, owing to the issue of dealing with charmonium
resonances. The resolution is described in [35, 194]. Away from ¢* = 0, one also
needs the longitudinal contributions, which can be calculated in like manner to the
transverse results derived above, but the polynomials involved are far lengthier,

and are not given here.
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List of Acronyms

CKM Cabibbo-Kobayashi-Maskawa

DA distribution amplitude

FCNC flavour-changing neutral current
GIM  Glashow-Iliopolous-Maiani

HA helicity amplitude

IR infrared

LCSR Light-Cone Sum Rules

LD long-distance

LFA  Lepton Factorisation Approximation
LHC Large Hadron Collider

MoM Method of Moments

NLO  Next-to Leading Order

NP New Physics

OPE  Operator Product Expansion
PDG Particle Data Group

PMNS Pontecorvo-Maki-Nakagawa-Sakata
QCD Quantum Chromodynamics

QED  Quantum Electrodynamics
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QFT
RG
RHC
SD
SM

uv

Quantum Field Theory
Renormalisation Group
right-handed currents
short-distance
Standard Model

ultraviolet
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