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Abstract: The analytic structure of elementary correlation functions of a quantum field is relevant

for the calculation of masses of bound states and their time-like properties in general. In quantum

chromodynamics, the calculation of correlation functions for purely space-like momenta has reached

a high level of sophistication, but the calculation at time-like momenta requires refined methods.

One of them is the contour deformation method. Here we describe how to employ it for three-

point functions. The basic mechanisms are discussed for a scalar theory, but they are the same for

more complicated theories and are thus relevant, e.g., for the three-gluon or quark-gluon vertices

of quantum chromodynamics. Their inclusion in existing truncation schemes is a crucial step for

investigating the analytic structure of elementary correlation functions of quantum chromodynamics

and the calculation of its spectrum from them.

Keywords: correlation functions; analytic structure

1. Introduction

Quantum chromodynamics (QCD) has a rich spectrum, and there are still many open
questions about it. Functional methods are one of several nonperturbative methods that can
be used to unravel its mysteries; see, e.g., [1–4] for results on baryons, mesons, tetraquarks
and glueballs. In recent years, much progress has been made in the calculation of elementary
correlation functions using functional methods, see, e.g., [5–12] and references therein.
However, as far as top-down calculations, which start directly from the Lagrangian of QCD,
are concerned, the most advanced calculational schemes for functional equations have
been applied to space-like momenta only. For time-like momenta, calculations are more
challenging due to the necessary adaptation of the numerical methods. Complementary
lattice methods provide direct access to correlation functions only at space-like momenta,
see [13–18] for some exemplary results.

For perturbative integrals, one can use the Landau conditions [19] to determine the
branch points of a diagram. They are typically derived using the Feynman parametrization
for the propagators. For dressed propagators, however, this is not a viable approach, and
an analysis more along the lines of numerical calculations is required.

Such an approach to access the analytic properties of correlation functions is provided
by the contour deformation method (CDM). It deals with the intricacies introduced by time-
like momenta by modifying the integration path in the integral appropriately. This enables
numeric calculations but also leads to insights into the analytic structure of correlation functions.
Originally it was devised for QED [20] for a special case and then subsequently generalized
[21–29]. Other direct methods include the shell method [30], the use of the Cauchy–Riemann
equations [31], the covariant spectator theory framework [32], the Cauchy method [33,34], or
spectral representations, including the Nakanishi integral representation [35–45].
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Here we summarize the case of three-point functions systematically. In particular, we
aim at an accessible description of the method in the spirit of [26], of which this article
can be considered a follow-up, hence the title. Calculational details, while mathematically
straightforward, can be found elsewhere [29]. First, we introduce the basic idea with the
example of a two-point integral in Section 2.1. As a new feature, we pay particular attention
to the possibility of deforming not only the integration contour in the radial variable but
also in an angle, thereby deforming the branch cuts that require a deformation of the radial
variable in the first place in Section 2.2. For the three-point function in Section 2.3, we start
with simplified kinematics before we discuss the general case.

2. Contour Deformation Method

In the following, we will work with propagators with a generic mass m. The analysis
is valid both perturbatively, where m is the bare mass, but also nonperturbatively if the
propagator features a single pole and m is the corresponding mass. Cuts can also be
considered [29].

2.1. Basic Example: The Two-Point Integral

For illustration purposes, we consider the Euclidean one-loop two-point integral

I2(p2) =
∫

ddq

(2π)d

1

q2 + m2

1

(q − p)2 + m2
, (1)

see Figure 1. For conciseness, we fix the number of dimensions to four in the following, but
the generalization is straightforward. Using hyperspherical coordinates, two angles can
be integrated out, and the radial variable r =

√

q2, as well as one angle θ1, remain. The
integrand has poles at q2 = −m2 and (q − p)2 = r2 + p2 − 2

√

p2 r cos θ1 − m2, which must
not be crossed during the integration. Performing the angle integration first, the second
propagator leads to branch cuts corresponding to the integration of θ1 from 0 to π. It can
be parameterized as (z1 = cos θ1)

γ±(z1; p2, m2) =
√

p2 z1 ± i
√

m2 + p2(1 − z2
1)

=
√

p2 cos θ1 ± i

√

m2 + p2 sin2 θ1, (2)

which is obtained by solving the quadratic equations (q − p)2 = −m2 for r. The analytic
structure of the remaining integrand in r thus consists of the poles at ±i m and these two
cuts. The dependence on the external momentum p enters via the latter. We stress that we
use the radial variable r =

√

q2 instead of q2 to avoid ambiguities later for the three-point
function [29].

pp

k2

k1

k3

pc

pbpa

k2k1 k3k2

pb

papc

Figure 1. Momentum routing for the propagator’s one-loop selfenergy (left), the triangle diagram

(center) and the swordfish diagram (right). The internal momenta ki are combinations of external

and loop momenta, see Equations (1) and (8).

The integration of r starts at 0 and ends at the chosen UV cutoff. When the external
momentum p2 is positive, neither the poles nor the cuts interfere, and the integration can be
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performed along the real axis. This changes when p2 is complex or negative. An example
is shown in Figure 2. For the chosen value of

√

p2, the cut crosses the real axis. To avoid
crossing the cut, the contour of the r integration needs to be deformed. A simple choice
is to integrate along a straight line from the origin to

√

p2 and further out until a chosen
stopping point. From there, the integration can be closed by continuing in an arc to the UV
cutoff; see [28] for details on a systematic implementation called the ray method.

-2 -1 1 2

-3

-2

-1

1

2

3

-2 -1 1 2

-3

-2

-1

1

2

3

Figure 2. Examples of the singularity structure γ±(z1; p2, m2) of the propagator r =
√

q2 integrand

for p2 = (−3 + 0.2i)m2 (left) and p2 = −3m2 (right). The lines denote branch cuts stemming from

the angular integral with the value of the angle θ1 indicated by the color. In the left plot, the angle

integral is performed in a straight line from 0 to π. In the right plot, the angle integral is modified, for

example, to avoid the poles at ±i m, and gaps are opened at ±
√
−2m using the path of Equation (6).

The two bulges at ±2 i m are a consequence of deforming θ1 around ±i m. The green dots are the poles

from the second propagator. The red dots indicate the external p2 and are only plotted for reference.

Analyticity of the integral means that it can be calculated in a neighborhood of a point
by continuously deforming the involved integration contours. If this is not the case, a
nonanalyticity is found. This happens in this example exactly then when an endpoint of
a cut from one propagator touches the pole of the other propagator. The deformation on
the r integration contour would then need to jump over the pole, thereby picking up its
residue. The condition that the endpoint of the cut touches the pole is [26]

γ±(±1; p2, m2) = ±i m. (3)

The only nontrivial solutions leads to p2 = −4m2, which is the result expected from the
Landau conditions [19].

2.2. Deformations of the Angle Integration Contour

Based on the left plot in Figure 2, one might wonder what happens when p moves
onto the imaginary axis, or, equivalently, when p2 is negative. Does the branch cut then
go over the pole? If the angular integration is performed in a straight line from 0 to π, it
indeed does, but we can also deform the integration contour for the angular integral. An
example of this is shown in the right plot of Figure 2. Two observations should be made.
First, this explains the relevance of the endpoints for Equation (3) because they cannot be
moved around in contradistinction to the integration path between endpoints. Second, if
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the contour is deformed to avoid a pole in one place, it introduces deformations elsewhere
as well.

When p2 is real and negative, the following values of θ1 need extra care. First, it is
possible that the pole lies on the branch cut. This happens at

θ
∗p±
1 = arccos

(

±i

√

p2

2m

)

. (4)

Second, the two cuts touch each other on the imaginary axis at

θ∗c±
1 = arcsin

(

±i
m
√

p2

)

. (5)

A concrete example of how to avoid a point θ∗1 in the integration of θ1 from 0 to π is in
the form of a semicircle with radius s:

θ1 → θ±1 =







θ∗1 + s e±i
θ1−θ∗1−s

s
π
2 |θ1 − θ∗1 | < s

θ1 otherwise
(6)

Note the free choice of the sign of the phase, which corresponds to two directions the
corresponding deformations in the r plane can have. For this reparametrization, the pattern
of evasive bulges in the complex r plane depicted in Figure 3 emerges.

-2 -1 1 2

-2

-1

1

2

Figure 3. Bulges from deforming the angle integration in θ1 via θ+1 as given in Equation (6) for the

indicated values of θ∗1 .

2.3. The Triangle Integral

We turn now to three-point functions. They can have two different diagrams, a
swordfish diagram and a triangle diagram, see Figure 1. By choosing the momentum
routing appropriately, the former can be described on the same footing as the two-point
integral. Hence, we only discuss the triangle diagram in the following.

The triangle diagram with external momenta pa, pb and pc = −pa − pb has the
following form:

I3(pa, pb, pc) =
∫

dr r3 f (q, pa, pb, pc) (7)
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with

f (q, pa, pb, pc) =
∫

(sin θ1)
2dθ1

∫

sin θ2dθ2
1

q2 + m2

1

(q − pa)2 + m2

1

(q + pb)2 + m2
. (8)

With the chosen routing, one propagator creates poles at p = ±i m and the other two cuts
of the form

γa±(z1; p2
a, m2) = γ±(z1; p2

a, m2), (9a)

γb±(z̃; p2
b, m2) = γ±(−z̃; p2

b, m2) (9b)

with

z̃ = cos θ̃ = cos θ cos θ1 + sin θ sin θ1 cos θ2. (10)

The analysis of the analytic structure of the r plane is more complicated than that of the
two-point integral due to the existence of twice as many cuts and the appearance of a
second angle integral. As it is instructive and already shows the basic features, we will in
the following discuss a simplified case first.

2.3.1. Restricted Kinematics

We restrict the kinematics by setting p2
b = p2

a = p2 and consequently p2
c = 2p2(1 +

cos θ). As a consequence, the cuts γb± are a subset of γa±. From the two-point integral
we know that a branch point in the external momentum arises when a cut in r =

√

q2

cannot be deformed such as to avoid the pole. This happened for the end points of the
cuts. Here, new possibilities arise because of the three present propagators. Deformations
of integration contours now need to respect constraints from all three of them. Only one
propagator depends on the angle θ2. In that case, the end points θ2 = 0 and θ2 = π are
relevant as they are fixed whereas we could perform an additional deformation of the θ2

integration in between. For conciseness, we work with θ2 = 0 in the following discussion.
As already mentioned above, the cuts created by the propagators lie on top of each

other. However, the important observation is that for a given value of the angle θ1, they do
not necessarily agree. To illustrate this, we add a third axis for θ1 in the plots of the branch
cuts. Two examples are depicted in Figure 4. There, one can see the four branch cuts (two
from each propagator) and the points where cuts from different propagators cross. This
happens when

θ1,c± =
θ

2
+

π

2
, (11)

which is the solution of the condition that the two propagators agree:

− cos θ1 = cos θ cos θ1 + sin θ sin θ1 . (12)

The left plot in Figure 4 corresponds to the case when the two cuts meet at a pole of
the third propagator. Plugging Equation (11) into the corresponding condition that the first
cut agrees with the pole i m,

γa,+(z1; p2, m2) = i m, (13)

leads to the following branch point in p2:

p2
B,1 = −4m2 cos2

(

θ

2
+

π

2

)

= −4m2 sin2 θ

2
. (14)
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One can convince oneself with the help of Figure 3 that it is not possible to deform the
angle integration in θ1, such as to open a gap around the pole, because each branch cut
requires a different sign of the phase in Equation (6).

Figure 4. Examples for the singularity structure of the triangle r =
√

q2 integrand. The lines denote

branch cuts stemming from the θ1 angle integral. The red line is γa+, the orange line γa−, the blue

line γb+, and the cyan line γb−. The green dots are the poles from a propagator, and the magenta

ones indicate where the relevant crossings of cuts/poles are. Left: p2 = −3m2, θ = 2π/3, θ2 = π,

two cuts cross at i m so the magenta dot is at the same point as a green one. Right: p2 = −4m2/3,

θ = π/3, θ2 = π, four cuts touch at −m2/3. The black lines are projections of the cuts into one plane.

When p2
> −2m2, the pole lies outside of the semicircle parts of the branch cuts and

does not interfere. However, for certain values of the external angle θ, the four cuts meet on
the imaginary axis; see the right plot in Figure 4. Again, there is no deformation possible,
and a branch point is created at this p2. The four cuts meet at the same value of θ1 when
the second term in Equation (2) vanishes, and θ1 is given by Equation (11). This leads to
the branch point

p2
B,2 = − m2

sin2
(

θ
2 + π

2

) = − m2

cos2 θ
2

. (15)

The corresponding point in the r =
√

q2 plane is

q2
c,2 = γ2

a±(θ1,c; p2
B,2, m2) = −m2 tan2 θ

2
. (16)

The two potential branch points p2
B,1 and p2

B,2 are shown in the left plot of Figure 5.

Since p2
B,1 > p2

B,2, one might think that p2
B,1 is the relevant branch point, but decisive is

which singular point appears closer to the origin in the r plane. By singular point, we refer
to the value of r, which forbids the contour deformation. In the first case, this is q2

c,1 = −m2,

and in the second one q2
c,2 from Equation (16). They are plotted as a function of θ in Figure 5.

For θ ≤ π/2, we have q2
c,2 > q2

c,1. When starting with p2 at zero and then decreasing it
(see left plot in Figure 5), the branch points in the r plane do not pose a problem as long as
−m2

< p2 because no circular parts crossing the real line are created. When p2 ≤ −m2, the
singular point q2

c,2 forbids deforming the contour if θ ≤ π/2 and the singular point q2
c,1 if

θ ≥ π/2 (see right plot in Figure 5).
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Figure 5. Left: The positions of the two potential branch points from Equations (14) and (15). Right:

The critical points as functions of θ. The dashed lines correspond to the irrelevant cases, and the

continuous ones to the physical solutions.

There is a simple way of finding the branch point p2
B,2. Since only two propagators are

involved, we can change the routing such that these two propagators have the momentum
arguments q and q − pi with i = a, b, c. The analysis is then equivalent to the two-point
integral and we obtain the branch point p2

i = −4m2. If we do this for the chosen kinematic
situation, we obtain p2

c = −4m2, which, in turn, leads to p2 = −2m2/(1 + cos θ). This is
equivalent to the solution found above. While this is a direct and simple way to find the
branch point, it is inconvenient for numeric calculations where one does not want to work
with different momentum routings.

To summarize, we have the following solution for the branch point of the triangle
diagram as a function of θ when p2

a = p2
b = p2:

p2
B =











−4m2 sin
(

θ
2

)2
π
2 ≤ θ ≤ π

−m2

cos( θ
2 )

2 0 ≤ θ ≤ π
2

. (17)

2.3.2. General Kinematics

We now remove the restriction on the kinematics and discuss the case for p2
a 6= p2

b.
Again we have to distinguish between the case when both branch cuts meet at the pole and
the case without the pole.

For the first case, we know that r must be equal to ± i m. We plug this into the other
two propagators and equate their denominators. This leads to the condition

p2
a p2

b p2
c =m2(p4

a + p4
b + p4

c − 2(p2
a p2

b + p2
a p2

c + p2
b p2

c )), (18)

where p2
c = p2

a + p2
b + 2

√

p2
a

√

p2
b cos θ was used. This equation has two solutions for θ. It

remains to check if the contour deformations are possible or not. As it turns out, they are
only for one solution; see Figure 6 for examples. Thus, we have found one surface in the
space spanned by p2

a, p2
b and p2

c corresponding to a threshold:

p2
c+ =

1

2m2

(

2(p2
a + p2

b)m
2 + p2

a p2
b +

√

p2
a

√

4m2 + p2
a

√

p2
b

√

4m2 + p2
b

)

. (19)

For the second situation, one can directly obtain the thresholds by considering all
possible pairs of propagators and adapting the routing to have the arguments q and q − pi,
i = a, b, c. This leads to the thresholds:

p2
a =− 4m2, (20a)

p2
b =− 4m2, (20b)

p2
c =− 4m2, (20c)
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which correspond to walls in the space spanned by p2
a, p2

b and p2
c . To find this result without

changing the routing, we need to find the singular point creating the branch point. It turns
out that this point is where the inner straight parts of the two cuts touch. We can determine
that by choosing two values for p2

a and p2
b and plugging in the value for θ determined from

p2
c = −4m2. If the cuts touch before the pole at −m2, this creates a branch point. If θ is

changed, the two cuts either do not touch or cross at two points. Exemplary situations are
depicted in Figure 7, where it is also shown that a contour deformation can be found in the
latter case. In the case where they only touch, no deformation is possible because there is
only one critical point, which would require opposite directions of the deformations for
each cut.

Figure 6. The cuts for p2
a = −1.8m2, p2

b = −2.4m2 and θ1 ∈ [0, π/2]. In the left/right plot, θ+/θ− is

used. The contours are deformed around the point where the cuts touch. This opens a path for θ−
but not for θ+ as can be seen in the projections (black). Colors as in Figure 4.

Figure 7. Cuts of the triangle diagram for p2
a = −1.2m2, p2

b = −2.2m2 and θ1 ∈ [0, π/2]. In the left

plot, p2
c = −4m2, and the cuts touch at

√

(p2
a + p2

b)/2 + m2. In the right plot, the value for θ is slightly

shifted compared to the left plot, and the cuts cross at two points. However, a contour deformation

can be found that allows leading the integration out of the two circles, as can be seen by the projected

cuts in black. Colors as in Figure 4.
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It remains to be determined which of the two possibilities leads to the critical point
closer to the origin and thus to the relevant threshold. For the case with two propagators,

one can determine the touching point to be at
√

(p2
a + p2

b)/2 + m2. The case with three

propagators, on the other hand, has the critical points at ±i m. Thus, they create the highest
threshold if p2

a + p2
b < −4m2, and the two propagators create them otherwise. The final

threshold surface is thus parameterized by the walls at −4m2 and the surface created by
p2

c+:























p2
c =

2m2(p2
a+p2

b)+p2
a p2

b+
√

p2
a(4m2+p2

a)
√

p2
b(4m2+p2

b)

2m2

for − 4m2 ≤ p2
a, p2

b ≤ 0, and p2
a + p2

b ≤ −4m2

p2
a = p2

b = p2
c = −4m2 else.

(21)

The resulting surfaces are shown in Figure 8.

Figure 8. Full solution for thresholds of the triangle diagram, including contracted diagrams.

We close this section with the remark that the case of three different masses can also
be analyzed in the same way [29].

3. Conclusions

Contour deformations are a powerful tool to access the time-like region of correlation
functions with functional methods. It encompasses the perturbative case for which the
original results of the Landau analysis are recovered but can also be applied nonperturba-
tively. We have applied this method to three-point functions to extract their thresholds. In
particular, we also find distinct cases depending on how many propagators are involved in
the creation of the branch point, reflecting the case of contracted diagrams of the Landau
analysis. The method was applied in Ref. [29] to the system of propagator and vertex
Dyson–Schwinger equations of φ3 theory. For the propagator, we could extract both the
pole mass shifted by the interactions as well as the branch point. The latter fulfills the Lan-
dau condition when the perturbative mass is replaced by the dynamical one. For the vertex,
we also confirmed the validity of the Landau conditions in a nonperturbative calculation.
Future applications are the three-point functions of quantum chromodynamics, which are
well-studied with functional equations but only for space-like momenta [5–11,46–53].
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