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Introduction 
 

The lifetime of nuclear excited state is a 

very important observable in nuclear 

spectroscopic studies. The transition probability 

is associated to the transition matrix elements of 

the initial and final wave functions of the states 

that make the transition. Experimental lifetime of 

a nuclear state provides essential information for 

comparison the nuclear models. The long 

lifetime is a sign of their unique structure and 

special kind of excited state. The study of 

isomers and their decay leads to a better 

understanding of the microscopic structure. 

There could be several underlying reasons for the 

long life of excited nuclear states, which form 

the basis for the classification of isomers. 

Accordingly, they are broadly classified into spin 

isomers, K-isomers, shape isomers and fission 

isomers. It is now common practice to compare 

the experimental half-life to the theoretical half-

life and is defined as the hindrance factor. 

Typically, the Weisskopf hindrance factor [1–3] 

FW, is defined as the ratio of experimental 

γ transition lifetime and the Weisskopf estimate 

[4]: 

 

 

 
 

 

 

 

here  is the partial γ-transition half-life, 

which is measured experimentally. The 

K−hindrance factor Fν for K−isomer [5–7], is 

given as Fν = (FW ) 1/ν , where ν = ∆K−L, and ∆K 

is the change in K, and L is the angular 

momentum carried by the emitted γ-ray photon. 

Here, K is the projection of the total angular 

momentum, I, on the symmetry axis. 

 

For electric transitions, there is a strong 

indication that odd-neutron nuclei have indeed 

lower radiation probabilities than odd-proton 

nuclei [8]. For g factor, odd proton single quasi-

particle states have higher gR values and odd 

neutron single particle states lower gR factor 

values than their even-even neighbors [9]. The 

systematic for gR as a function of the difference 

between the numbers of proton and neutron 

quasiparticles Nπ − Nν, in the K-isomer was 

discussed [10]. By considering the above effect 

of quasiparticle nature, we similarly modified the 

hindrance factor Fν by adding ±(Nπ − Nν), the 

effect of the difference between the numbers of 

proton and neutron quasiparticles involved in the 

K-isomer. In this analysis the hindrance factor 

will be empirically correlated with the 

Weisskopf hindrance factor.   

 

 

 

 

 
 

 

Fig. 1 The comparison of logarithmic of 

hindrance factors from present empirical 
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correlation LogF  and known reduce hindrance 

LogF for various K−isomer states. The error 

was considered 10-20% and therefore, the errors 

marks come within the size of symbols make for 

data points. 

 

The Log F values are in a linear pattern, and are 

found to be on the order of ~1. Any deviation in 

Log F  from the smooth trend may imply a 

questionable that can be removed. The 

configuration of isomer state (15, Ex= 3863.2 

keV) of  184W [11] was assigned as either 11/2+ 

[615] 9/2+ [624] 7/2− [503] 3/2− [512] or 

11/2+ [615] 7/2− [503] 7/2+ [704] 5/2+ 

[402]). The LogF  values are same for both 

configurations. However, the LogF  depends on 

the number of quasiparticles and has different 

values. The LogF  values for the isomer state 

configurations 11/2+[615]9/2+[624]7/2−[503] 

3/2−[512] and 11/2+[615] 7/2− [503] 7/2+ 

[704] 5/2+ [402] are 4.53 and 0.91, respectively. 

Based on the systematic, the configuration 

whose LogF  value is near to linear pattern or 

the order of 1 is preferred. Therefore, we 

preferred 11/2+[615] 7/2−[503] 7/2+[704] 

5/2+[402] configuration instead of 11/2+ [615] 

9/2+ [624] 7/2− [503] 3/2− [512].  
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