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Abstract. Machine learning technology based on artificial neural network has been successfully
applied to solve many scientific problems. One of the most interesting areas of machine learning
is reinforcement learning, which has natural applicability to optimization problems in physics. In
the quantum control task, it is necessary to find a set of optimal control functions to transfer a
quantum system from the initial state to the target state with the highest fidelity possible, which
is essentially an optimization task. In this paper, we use Deep Deterministic Policy Gradient
algorithm (DDPG) to study the quantum control tasks. We use the algorithm to control the
transfer of several quantum systems from one state to another. The results show that DDPG
algorithm can find a control strategy to make the fidelity of the final state and the target state of
the quantum system be maximum value 1. The results show the potential of DDPG in quantum
control.

1. INTRODUCTION

In many areas of physics, such as NMR experiments, ultracold atom systems and quantum computing
[1], we need the ability to prepare a physical system to an ideal state. So the development of reliable
quantum control technology is essential. In the quantum control tasks, the time evolution of a controlled
guantum system satisfies the Schré&linger equation

d T
e = Hotbe + Z wi(0) e (1)

where H,is freedom of system evolution of Hamiltonian,H;is the control Hamiltonian, u;(t) is the
corresponding time-dependent control function. The goal of quantum control is to find a set of control
functions u;(t) to transfer the controlled system from the initial state |y()to the target state |1,bf). The
quality of the state transfer at time t is evaluated using the fidelity, defined as

F = (sl @)
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Therefore, the key problem is how to find a set of control functions to make the final state of the
system close to the target state. With the development of machine learning [2,7,8,9] in recent years, it
has been used to solve various complex optimization control problems in science and engineering.

In 2019, Wang Xin [3] et al compared the performance of stochastic gradient Descent (SGD), Krotov
optimization algorithms and deep reinforcement learning algorithms such as DQN and PG in the task of
controlling qubit evolution. The results show that the DQN and PG algorithms based on deep
reinforcement learning are superior to the other two algorithms. However, the DQN and PG used in their
work selected control functions only in a discrete action space, so the control sequence that can be found
by reinforcement learning will be limited, and it may be impossible to control the evolution trajectory of
a quantum system throughout the whole Hilbert space. In this paper, we use Deep Deterministic Policy
Gradient (DDPG) algorithm [4] suitable for continuous action space to study its performance in
guantum control tasks.

2. THE MODEL SYSTEM

In this section, we introduce several quantum systems to be controlled.First we control the evolution of
single qubit and multiple qubits whichonlycontains a single control parameter.We then control a more
complex guantum system with two control parameters.

2.1 Single qubit and multiple qubitssystem
We first consider a simple model that control the evolution of a single qubit, which Hamiltonian is

H=u(t)o, + o, (3)
where g, and o, are pauli operator, u(t) is control parameter. Here the deep reinforcement
learning task is to find the best u(t), makes the qubit from initial state |i,) transferred to the final

state i)

[wr) = U®)|wo) 4
T .
whereU (t) = elo =14t \We make the initial state [,) = [1,0] and the final state [1p;) = [0,1].

We've looked at single qubit, and now we're looking at multiple qubits. Consider the following
Hamiltonian

L
Hlwe (0] = = ) $faq SF + 957 + u(OS7 5)
j=1
Set g to 1 in the calculation and consider the case of L=2.There is no restriction on the selection of
the initial state and the final state. We set the initial state as the ground state of u(t) = —2 and the
final state as the ground state of u(t) = 2.

2.2 Quantum system with three-mode interaction

we consider a quantum system with three-mode interaction, in which two modes are coupled together by
an intermediate mode with two coupling coefficients [5]. Each mode can be regarded as a simple
harmonic oscillator. The Hamiltonian of this system is

Where a;(a;)(i = 1,2,3) is the creation(annihilation) operator of every mode, g, (t)andg,(t)is the
coupling strength between the corresponding two modes. This hamiltonian can be written as
0 9:1(®) 0 ]
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The evolution of this quantum system

P = [a;(8), a3 (1), a, ()" (8)

is determined by Heisenberg equation

idy,
L= H(OW, ©

We consider the initial state of this system in mode a;

|l/)0> = [1'0'0]T (10)
We use the DDPG algorithm to find a suitable set of time-varying coupling coefficients
[g1(t), g2 ()] to transfer the state to the mode a,. So the target state |1,bf) =[0,0,1]7.

3. IMPLEMENTION AND RESULTS
In this section, we will introduce how to use Deep Deterministic Policy Gradient algorithm (DDPG) for
guantum control, and give the calculation results.

3.1 Deep reinforcement learning algorithm

In reinforcement learning [6], the agent needs to observe the environment to get the state of the
environment, and then choose the next action according to the observed state. After the environment
receives the action of the agent, the state changes and returns the changed state to the agent, at the same
time giving the agent a reward. Thenthe agent decides the next action according to the feedback
information.

Deep reinforcement learning is the combination of deep learning and reinforcement learning.It uses
neural network to act as an agent. The DDPG algorithm we used is based on the work [4]. It adopts an
actor-critic structure. A network called Critic is used to approximate the value function, its input is the
action of the agent and the state of the environment and its output is the value function about the state.
The other is called Actor network, its role is to fit a policy function, its input is the state ofthe
environment and the output is the next action of the agent.

In the calculations, we use feedforward neuralnetworkto act the Critic and Actor. Each neural
network consists of one input layer, two hidden layers where every layer contains 30 neurons and one
output layer.

3.2 Results
In our control task, we divided the evolution time T into N segments on average
T
dt = — 11
5 (11)

During the evolution time of each segment dt, the coupling coefficientsg,, g, and the control
parameteru(t) are fixed value andthey are selected in the interval [0, E] as the action of the agent. We
use the state of the quantum system ), as the state of the environment. The reward function defined as

10F(t), F € (0, 0.5)
R =<100F(t), F € (0.5, 0.9) (12)
1000F(t), F €(09, 1)
whereF (t)is the fidelity of each segment.
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Figure 1. single qubit
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Figure 2. multiple qubits
Fig. 1 shows the training result of single qubit evolution and Fig. 2 shows the training result of
multiple qubits evolution. In our calculations, we choose T = 2w, N = 20, E = 20. The red dot
represents the fidelity at the end of each period, and the blue line is the cumulative average of fidelity for
all periods. It can be seen that with the increase of training periods, DDPG algorithm can find the best
control strategy and make the fidelity equal to 1.
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Figure 3.quantum system with three-mode interaction

The Fig. 3 shows the result of quantum system with three-mode interaction. In our calculations,we
choose T =5, N =50, E = 20. The first 8000 periods is training phase. To explore strategies, the
algorithm randomly choosea coupling coefficient in a very small probability e, and with 1 —¢
probability choose the optimal value. With the increase of training periods, the & gradually narrowed to
0. It can be seen that the fidelity of most training periods can reach the maximum value 1, while the
fidelity of a few periods will fluctuate due to random actions. Within 8000-10000 periods we stop
exploring the strategy, so the coupling coefficient selected by the algorithm for each period is the
optimal value. It can be seen that in this case, the fidelity of each period can be maximum value 1.
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Figure 4.populations of the three modes
Fig. 4 shows that under the optimal strategy, the populations of the three modes change over time.
when the control time t = 0.3, we can see the evolution of the quantum system is end.
Andthepopulationof mode as;goes up to 1, the population of mode a;goes down to 0.

4. CONCLUSION

We have successfully controlled several quantum systems with Deep Deterministic Policy Gradient
algorithm. First, we study the control task of single qubit. The results show that the algorithm can
control the evolution of qubit with fidelity close to 1. Then the research object is extended to the case of
multi-qubits and the result shows that DDPG also can accomplish the task well. Second, we control a
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more complex quantum system with three-mode interaction, in which two modes are coupled together
by an intermediate mode with two coupling coefficients. We use DDPG algorithm to control the transfer
of the quantum system from one mode to another by finding the best set of coupling coefficients so that
the fidelity close to maximum value 1 and give the population changes with time.
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