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Abstract. Machine learning technology based on artificial neural network has been successfully 

applied to solve many scientific problems. One of the most interesting areas of machine learning 

is reinforcement learning, which has natural applicability to optimization problems in physics. In 

the quantum control task, it is necessary to find a set of optimal control functions to transfer a 

quantum system from the initial state to the target state with the highest fidelity possible, which 

is essentially an optimization task. In this paper, we use Deep Deterministic Policy Gradient 

algorithm (DDPG) to study the quantum control tasks. We use the algorithm to control the 

transfer of several quantum systems from one state to another. The results show that DDPG 

algorithm can find a control strategy to make the fidelity of the final state and the target state of 

the quantum system be maximum value 1. The results show the potential of DDPG in quantum 

control. 

1. INTRODUCTION 

In many areas of physics, such as NMR experiments, ultracold atom systems and quantum computing 

[1], we need the ability to prepare a physical system to an ideal state. So the development of reliable 

quantum control technology is essential. In the quantum control tasks, the time evolution of a controlled 

quantum system satisfies the Schrödinger equation 

𝑑

𝑑𝑡
𝜓𝑡 = 𝐻0𝜓𝑡 + ∑ 𝑢𝑖(𝑡)

𝑟

𝑖=1

𝐻𝑖𝜓𝑡 (1) 

where 𝐻0is freedom of system evolution of Hamiltonian,𝐻𝑖is the control Hamiltonian, 𝑢𝑖(𝑡) is the 

corresponding time-dependent control function. The goal of quantum control is to find a set of control 

functions 𝑢𝑖(𝑡) to transfer the controlled system from the initial state |𝜓0⟩to the target state |𝜓𝑓⟩. The 

quality of the state transfer at time 𝑡 is evaluated using the fidelity, defined as  

𝐹 = |⟨𝜓𝑓|𝜓𝑡⟩|
2

(2) 
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Therefore, the key problem is how to find a set of control functions to make the final state of the 

system close to the target state. With the development of machine learning [2,7,8,9] in recent years, it 

has been used to solve various complex optimization control problems in science and engineering. 

In 2019, Wang Xin [3] et al compared the performance of stochastic gradient Descent (SGD), Krotov 

optimization algorithms and deep reinforcement learning algorithms such as DQN and PG in the task of 

controlling qubit evolution. The results show that the DQN and PG algorithms based on deep 

reinforcement learning are superior to the other two algorithms. However, the DQN and PG used in their 

work selected control functions only in a discrete action space, so the control sequence that can be found 

by reinforcement learning will be limited, and it may be impossible to control the evolution trajectory of 

a quantum system throughout the whole Hilbert space. In this paper, we use Deep Deterministic Policy 

Gradient (DDPG) algorithm [4] suitable for continuous action space to study its performance in 

quantum control tasks. 

2. THE MODEL SYSTEM 

In this section, we introduce several quantum systems to be controlled.First we control the evolution of 

single qubit and multiple qubits whichonlycontains a single control parameter.We then control a more 

complex quantum system with two control parameters. 

2.1 Single qubit and multiple qubitssystem 

We first consider a simple model that control the evolution of a single qubit，which Hamiltonian is 

 

𝐻 = 𝑢(𝑡)𝜎𝑧 + 𝜎𝑥 (3) 

where 𝜎𝑧 and 𝜎𝑥 are pauli operator, 𝑢(𝑡) is control parameter. Here the deep reinforcement 

learning task is to find the best 𝑢(𝑡), makes the qubit from initial state |𝜓0⟩ transferred to the final 

state |𝜓𝑓⟩ 

 

|𝜓𝑓⟩ = 𝑈(𝑡)|𝜓0⟩ (4) 

where𝑈(𝑡) = 𝑒∫ −𝑖𝐻(𝑡)𝑑𝑡
𝑇

0 . We make the initial state |𝜓0⟩ = [1,0] and the final state |𝜓𝑓⟩ = [0,1]. 

 

We've looked at single qubit, and now we're looking at multiple qubits. Consider the following 

Hamiltonian 

 

𝐻[𝑢𝑥(𝑡)] = − ∑ 𝑆𝑗+1
𝑧

𝐿

𝑗=1

𝑆𝑗
𝑧 + 𝑔𝑆𝑗

𝑧 + 𝑢(𝑡)𝑆𝑗
𝑥 (5) 

Set 𝑔 to 1 in the calculation and consider the case of 𝐿=2.There is no restriction on the selection of 

the initial state and the final state. We set the initial state as the ground state of 𝑢(𝑡) = −2 and the 

final state as the ground state of 𝑢(𝑡) = 2. 

2.2 Quantum system with three-mode interaction 

we consider a quantum system with three-mode interaction, in which two modes are coupled together by 

an intermediate mode with two coupling coefficients [5]. Each mode can be regarded as a simple 

harmonic oscillator. The Hamiltonian of this system is 

 
𝐻 = 𝑔1(𝑡)𝑎̂1

+𝑎̂3 + 𝑔2(𝑡)𝑎̂2
+𝑎̂3 + 𝐻. 𝑐. (6) 

Where 𝑎̂𝑖
+(𝑎̂𝑖)(𝑖 = 1,2,3) is the creation(annihilation) operator of every mode, 𝑔1(𝑡)𝑎𝑛𝑑𝑔2(𝑡)is the 

coupling strength between the corresponding two modes. This hamiltonian can be written as   

𝐻(𝑡) = [
0 𝑔1(𝑡) 0

𝑔1(𝑡)
0

0
𝑔2(𝑡)

𝑔2(𝑡)
0

] (7) 
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The evolution of this quantum system 

𝜓𝑡 = [𝑎̂1(𝑡), 𝑎̂3(𝑡), 𝑎̂2(𝑡)]𝑇 (8) 

is determined by Heisenberg equation  

 
𝑖𝑑𝜓𝑡

𝑑𝑡
= 𝐻(𝑡)𝜓𝑡 (9) 

We consider the initial state of this system in mode 𝑎1 

 

|𝜓0⟩ = [1,0,0]𝑇                               (10) 

We use the DDPG algorithm to find a suitable set of time-varying coupling coefficients 

[𝑔1(𝑡), 𝑔2(𝑡)] to transfer the state to the mode 𝑎2. So the target state |𝜓𝑓⟩ = [0,0,1]𝑇. 

3. IMPLEMENTION AND RESULTS 

In this section, we will introduce how to use Deep Deterministic Policy Gradient algorithm (DDPG) for 

quantum control, and give the calculation results. 

3.1 Deep reinforcement learning algorithm 

In reinforcement learning [6], the agent needs to observe the environment to get the state of the 

environment, and then choose the next action according to the observed state. After the environment 

receives the action of the agent, the state changes and returns the changed state to the agent, at the same 

time giving the agent a reward. Thenthe agent decides the next action according to the feedback 

information.  

Deep reinforcement learning is the combination of deep learning and reinforcement learning.It uses 

neural network to act as an agent. The DDPG algorithm we used is based on the work [4]. It adopts an 

actor-critic structure. A network called Critic is used to approximate the value function, its input is the 

action of the agent and the state of the environment and its output is the value function about the state. 

The other is called Actor network, its role is to fit a policy function, its input is the state ofthe 

environment and the output is the next action of the agent. 

In the calculations, we use feedforward neuralnetworkto act the Critic and Actor. Each neural 

network consists of one input layer, two hidden layers where every layer contains 30 neurons and one 

output layer. 

3.2 Results 

In our control task, we divided the evolution time 𝑇 into 𝑁 segments on average 

𝑑𝑡 =
𝑇

𝑁
(11) 

During the evolution time of each segment 𝑑𝑡 , the coupling coefficients𝑔1, 𝑔2 and the control 

parameter𝑢(𝑡) are fixed value andthey are selected in the interval [0, 𝐸] as the action of the agent. We 

use the state of the quantum system 𝜓𝑡 as the state of the environment. The reward function defined as 

𝑅 = {
10𝐹(𝑡)， 𝐹 ∈ (0，0.5)

100𝐹(𝑡)，𝐹 ∈ (0.5，0.9)

1000𝐹(𝑡)，𝐹 ∈ (0.9，1)
(12) 

where𝐹(𝑡)is the fidelity of each segment.  
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Figure 1. single qubit 

 

Figure 2. multiple qubits 

Fig. 1 shows the training result of single qubit evolution and Fig. 2 shows the training result of 

multiple qubits evolution. In our calculations, we choose 𝑇 = 2𝜋, 𝑁 = 20, 𝐸 = 20. The red dot 

represents the fidelity at the end of each period, and the blue line is the cumulative average of fidelity for 

all periods. It can be seen that with the increase of training periods, DDPG algorithm can find the best 

control strategy and make the fidelity equal to 1. 
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Figure 3.quantum system with three-mode interaction 

The Fig. 3 shows the result of quantum system with three-mode interaction. In our calculations,we 

choose 𝑇 = 5, 𝑁 = 50, 𝐸 = 20. The first 8000 periods is training phase. To explore strategies, the 

algorithm randomly choosea coupling coefficient in a very small probability 𝜀 , and with 1 − 𝜀 

probability choose the optimal value. With the increase of training periods, the 𝜀 gradually narrowed to 

0. It can be seen that the fidelity of most training periods can reach the maximum value 1, while the 

fidelity of a few periods will fluctuate due to random actions. Within 8000-10000 periods we stop 

exploring the strategy, so the coupling coefficient selected by the algorithm for each period is the 

optimal value. It can be seen that in this case, the fidelity of each period can be maximum value 1. 

 

Figure 4.populations of the three modes 

Fig. 4 shows that under the optimal strategy, the populations of the three modes change over time. 

when the control time 𝑡 = 0.3, we can see the evolution of the quantum system is end. 

Andthepopulationof mode 𝑎3goes up to 1, the population of mode 𝑎1goes down to 0. 

4. CONCLUSION  

We have successfully controlled several quantum systems with Deep Deterministic Policy Gradient 

algorithm. First, we study the control task of single qubit. The results show that the algorithm can 

control the evolution of qubit with fidelity close to 1. Then the research object is extended to the case of 

multi-qubits and the result shows that DDPG also can accomplish the task well. Second, we control a 
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more complex quantum system with three-mode interaction, in which two modes are coupled together 

by an intermediate mode with two coupling coefficients. We use DDPG algorithm to control the transfer 

of the quantum system from one mode to another by finding the best set of coupling coefficients so that 

the fidelity close to maximum value 1 and give the population changes with time. 
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