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Abstract
The laser interferometer space antenna (LISA) will open the signal-rich
100 μHz to 1 Hz gravitational wave window. LISA is expected to be lim-
ited by acceleration noise in the low frequency range and noise associated
with the optical measurement system above a few mHz. Of the latter, appar-
ent length changes due to spacecraft (SC) angular jitter are among the most
critical contributors. One of the coupling mechanisms is via wavefront error in
the transmitted beam. Utilizing a Zernike polynomial decomposition of such
wavefront error, we introduce and explore the validity of extremely fast best fit
polynomial expansion based noise recreation tools that provide a clear picture
for which transmit beam perturbations couple most strongly with SC jitter into
LISA noise.
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1. Introduction

The laser interferometer space antenna (LISA) will be the first space-based laser interfero-
metric gravitational wave observatory [1]. It complements current and future ground-based
observatories such as LIGO [2, 3, 6, 7], VIRGO [4–7], KAGRA [6–8], Einstein telescope
[9, 10], and Cosmic Explorer [11, 12]. LISA will listen in the 100 μHz to 1 Hz frequency
range to signals from a very diverse range of sources, from massive black hole binaries with
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constituent masses from O(107)–O(108) solar masses at the high mass end, to thousands of
potentially resolvable galactic white dwarf binaries at the low mass end [1, 14].

LISA consists of three spacecraft (SC) in a near equilateral triangular configuration with
a 2.5 Gm baseline. Laser beams will be exchanged between the SC to measure (in-band)

length changes at nearly the pm
√

Hz
−1

level [1, 21]. As in ground-based observatories [13],
tilt-to-length (TTL) coupling might be one of the dominant noise contributors. The tilt in
LISA is caused by angular SC motion a.k.a. SC jitter which become apparent length changes
in readout due to optical or instrumental imperfections. Unwanted aberrations in the phase
of transmitted beams, denoted wavefront errors (WFE), generate wavefront gradients at the
receiving SC. As the sending SC jitters, this wavefront sweeps over the receiving telescope and
changes the phase of the received field. This paper introduces fast, transparent modeling tech-
niques for the purpose of estimating TTL-noise associated with various WFE, and discusses
the accuracy of such techniques.

Our analysis of TTL noise induced by WFE begins in section 2 as a first order expansion
in SC jitter components coupling to the received field’s phase gradient, yielding two TTL
coupling components to two jitter degrees of freedom. This first order expansion in jitter allows
for actual recovery of expected TTL noise as a function of receiving SC location, in contrast
to methodologies of prior studies [18, 19] where the TTL is defined more as a statistic over
the entire map. We discuss how gradients are obtained via a Hermite–Gaussian (HG) modal
decomposition based propagation of an approximation in our initial beam, and the limitations
of this approximation. Restricting to a cone of the far field (FF) out to 50 nrad, section 3
details how TTL expressions in terms of the field’s phase gradient can be written accurately
as first or second order polynomials in amplitudes of the Zernike polynomials contributing to
WFE. Having verified the accuracy of these expansions, the maps associated with polynomial
terms show only some Zernikes within WFE, specified in section 4, couple significantly to
TTL noise. We can then neglect a significant number of unimportant terms in the expansions,
further speeding up this fast modeling technique without a loss of accuracy, allowing for more
extensive simulations than those of prior studies [18, 19].

2. Mechanism of wavefront error based tilt-to-length noise within LISA

The three SC of the LISA constellation form the arms of a huge interferometer of side
roughly 2.5 Gm in length. The laser beams exchanged within these arms are expected to be
nearly Gaussian, with spherical wavefronts centered on the test masses (TM) about which any
SC jitter will occur. As jitter of the transmit SC sweeps the spherical wavefront across the
receiving SC the phase of the received light, and thus measured arm length, should remain
constant.

WFE produced by imperfections of real optics within the telescope generate deviations from
a spherical wavefront at the receiving SC. Now a varying phase sweeps across the receiving SC
whenever the transmit SC jitters. The change in received phase induces TTL noise in length
measurements (figure 1).

2.1. Tilt to length calculations

As the transmit SC jitters by angle J, the transmitted field remains the same in the transmit
frame while the receiving SC appears to moves over an arc of the FF of length J ∗ L where L
is the 2.5 Gm inter-SC distance. We can recover the length change to first order by taking the
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Figure 1. Transmitting SC rotation shifting the wavefront off the sphere of at the receiv-
ing SC, thus inducing TTL noise. We show here the cone examined our simulations.

derivative of the FF phase at the receiving SC with respect to the introduced jitter:

Δl = J
∂ΦFF

∂J
(1)

where J dependence comes through the coordinates of the receiving SC in the transmitting SC
frame. Writing rotational jitter of the transmit SC by angle J about vector ĵ as�J = J ĵ, we show
in appendix A that by decomposing this jitter vector into components (Jx , Jy, Jz) the change in
length signal can be written:

Δl −→

TTLθ︷ ︸︸ ︷
−λ

2π
∂ΦFF

∂θ
Jy +

−λ

2π
∂ΦFF

∂φ︸ ︷︷ ︸
TTLφ

Jz. (2)

This gives the TTL noise induced by WFE associated with transmit SC jitter4. This decompo-
sition, with coordinate system definitions, can be found in appendix A. The effective roll term
Jx enters only to second order in the combination of DC pointing offset and jitter components.
The mission DFACS system constrains DC pointing offset to 10 nrad and in band misalign-

ment jitter J to 10 nrad
√

Hz
−1

[1, 21], so that this roll term would be suppressed by an order
of 10−8 relative to other terms above.

The calculation of these components in the FF given some initial WFE written as a sum of
Zernike polynomials (orthogonal polynomials over the unit disk ideal for representing phase
aberrations over an aperture [15]), is performed via Hermite Gauss (HG) modal decomposition
[16]. Appendix B more thoroughly explains how this, and the Fresnel diffraction integrals of
2.2, are utilized in TTL calculations.

4 Technically this is only a part of the TTL noise associated with the transmit SC jitter, the portion due to a net piston
effect on the received beam phase. Tilts introduced to the received beam through this transmit SC WFE and jitter may
also contribute to TTL noise.
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2.2. A note on validity of TTL calculations

As mentioned, TTL estimates of this paper are all initially extracted from fields found with an
HG modal decomposition based propagation scheme [16]. These utilize an expansion for the
initial outgoing beam:

U0 eiΦWFE −→ U0(1 + iΦWFE) (3)

with initial field U0 the clipped Gaussian transmit beam and ΦWFE the phase of the additional
WFE. We originally expected this to be accurate for LISA because of the 35 nm RMS WFE
requirements [20–22]. It turns out that peak to valley phase variations, even in these WFE, can
be large enough to significantly reduce the accuracy of FF recreations based on a first order
expansion in ΦWFE.

To asses for what WFE such simulations remained accurate, we examined the error in TTL
recreation as a function of the order to which the initial eiΦWFE was Taylor expanded. Numerical
integration was used to evaluate TTL expressions based on Fresnel diffraction of the Taylor
expanded beams5 (detailed in appendix B). We looked at WFE composed of the first 36 Zernike
terms in Noll indexing. TTL recreation error was then examined over a FF grid of potential
receiving SC locations with points every 12.5 m in the y–z directions of figure 1 and extending
out to angular offsets of 50 nrad (or transversely 125 m). For LISA our concern is TTL noise

at or above the picometer level. With up to 10 nrad
√

Hz
−1

of in band SC jitter allowed by
mission constraints, the error in recovered TTL coefficients must be below 0.1 pm nrad−1 for
sub-pm level error in noise simulations.

The error introduced in TTL estimates by expanding the initial phase to various order
was looked at for 650 different WFE, using a uniform random number generator for the
Z4 through Z36 amplitudes in each map6. Figure 2 illustrates that first order expansion based
propagation can be inaccurate for relatively small WFE. For general WFE with RMS heights
as low as 14 nm the error in TTL coefficients recreated via our HG modal based propaga-
tion could be larger than 0.1 pm nrad−1. It is important to note that by expanding the initial
eiΦWFE to only second order, such simulations appeared accurate for WFE up to the LISA
requirement.

Thus techniques of this paper should only be applied to analysis of sufficiently small
WFE. More specifically, this can be used for LISA WFE based FF TTL studies involving
WFE with RMS heights up to 10 nrad, but is not sufficient for the full range of potential
LISA WFE.

5 Fresnel diffraction and HG modal propagation of an initial beam are equivalent when utilizing an infinite number of
HG modes [23]. Although often more accurate than the finite mode representation in an actual simulations, numeri-
cal Fresnel diffraction is often significantly slower for all practical purposes, especially when recreating the FF at a
significant number of points.
6 The 35 nrad requirement corresponds to Z4 and higher Zernikes. Z1 or piston is a constant phase offset which is
taken out by the differential phase measurements employed in LISA, while Z2 –Z3 correspond to beam tilts i.e. part
of LISA’s 10 nrad pointing accuracy requirement. This is accounted for in our simulation by allowing for an angular
offset of the receiving SC from beam center, although we’ve allowed for offsets up to 50 nrad which are significantly
larger than the LISA requirement.
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Figure 2. Agreement of various order expansions of the WFE term in recreating FF
TTL couplings for general WFE as a function of the WFE RMS height. The first order
outgoing beam expansion utilized in this paper appears accurate for WFE RMS heights
as large as 14 nm.

3. Far field TTL components: linear and quadratic Zernike contribution
expansions

To speed up simulations for large scale WFE analysis, we examined whether it was possible
at relevant FF point to accurately represent TTL components of equation (2) as a linear:

TTLθ/φ, FULL ≈ TTLθ/φ, 1st. = TTLθ/φ,0 +
∑

m

cmAθ/φ,m, (4)

or second order7:

TTLθ/φ, 2nd. = TTLθ/φ,0 +
∑

m

cm

⎡
⎣Aθ/φ,m +

∑
n�m

cnBθ/φ,m,n

⎤
⎦, (5)

expansions in Zernike contributions to initial transmit WFE:

ΦWFE =
∑

m

cmZm. (6)

Here Zm refer to normalized Zernike polynomials written with Noll indexing [15]. Although
beam propagation is done with a linearized WFE contribution to the initial field, discussed in
section 2.2, this does not guarantee obtained TTL can be accurately written as a linear expan-
sion in WFE Zernike amplitudes cm. That depends on linearizability of the complex argument

7 Note the existence of the Bθ/φ,m,n terms mean the optimal Aθ/φ,m obtained via least squares for equation (5) can differ
from the Aθ/φ,m minimizing the squared TTL recreation error using equation (4).

5



Class. Quantum Grav. 39 (2022) 195016 A J Weaver et al

Figure 3. Example of how the linearized recovery of TTLθ works given an initial WFE
composed of only Z4–Z6. As mentioned maps are generated at a grid of points occurring
every 1.25 m along transverse dimensions over the FF extending out to 50 nrad. We’ve
explicitly included grid point boundaries in the FF maps (images to the right).

or phase function about the phase at each point in the FF. To avoid confusion with the terminol-
ogy of section 2.2, for the remainder of this paper first and second order refers to the expansion
order of TTL in terms of Zernike contributions to WFE, i.e. whether results come from using
equation (4) or equation (5). It does not refer to the order eiΦWFE has been expanded to in our
initial beams, which is first order.

To obtain the coefficient maps TTLθ/φ,0, Aθ/φ,m, and Bθ/φ,m,n, we first generate TTL com-
ponents as described in appendix B for some generating set of initial WFE. This is done
for each FF point on a grid with 1.25 m transverse resolution extending out to 50 nrad
(125 m) to account for DC pointing misalignment (10 times higher resolution than the sim-
ulations of section 2.2, this grid is visualized in figure 3). The coefficient maps at each FF
point are then found by minimizing the sum of all generated WFE of squared errors of
equation (4) or equation (5) at that point. Appendix C more fully describes this least-squares
(LS) minimization process, as well as our choice for the generating set of WFE. A visual
of the linearized TTLθ recovery associated with a single WFE realization is provided by
figure 3.

We tested for 1123 randomly generated 10 nm RMS WFE8 the linear and second order
TTL approximations against actual TTL obtained from FF propagation based on HG modal
decomposition [16, 17]. These simulations are binned in histograms of figure 4 by great-
est error in the magnitude of TTLθ components recovered (φ component errors are nearly
identical) over the FF grid of receiving SC positions. As an example of how this would be
read, in the top histogram the bin at −1 fm nrad−1 extending to nearly 0.04 tells us that for
about 44 test maps the greatest error produced by linear TTLθ recreation occurred when it
underestimated the magnitude of the actual TTLθ by between 0.95 and 1.05 fm nrad−1 at
some possible receiving SC location. The top two histograms detail linear recreation perfor-
mance while the bottom two detail the second order recreation performance. Both first and
second order recreations yield order of magnitude improvement in recreation time over the
original HG modal based propagation methods. More so, errors in even the linear recreation
were below 0.1 pm nrad−1 for any WFE that we could utilize our HG modal propagation to
investigate.

8 Each Zernike coefficient in a map for Z4 –Z36 was generated from a uniform distributions, with the total maps scaled
to an RMS height of 10 nm.
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Figure 4. Histogram organized by greatest errors (from full HG mode based propaga-
tion simulations) in TTLθ component recreation based on linear and second order TTL
approximations (TTLφ matches this well). We see both linear and second order expan-
sions produce errors below 0.1 pm nrad−1 error for 10 nm RMS WFE and thus should
be accurate enough for simulations with any such WFE.

4. TTL contributions of individual or coupled Zernikes

With the polynomial in Zernike amplitude for TTL component recreation, we can easily iden-
tify which Zernike terms generate problematic TTL, potentially guiding the polishing process
for LISA telescope mirrors. We can also see which contributions can be completely neglected
in order to speed up computation. We consider only simulations involving WFE up to an RMS
height of 10 nm, guaranteeing accuracy of results.

For a WFE with RMS height h, the maximal individual Zernike amplitude |cm| of
equation (6) is also h (all WFE comes from Zernike Zm). This yields a value of h2 for the
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Figure 5. Maximal contribution of linear couplings within TTL expressed as a poly-
nomial to second order in Zernike WFE contributions over a 50 nrad FF cone. Given
expected WFE and jitter tolerances, only Zernike polynomials Z4 –Z6, Z11 –Z13, and
Z22–Z24 have the potential to contribute to TTL through these.

maximal c2
m amplitude, while the maximal value of |cmcn| can be shown to be h2

2 for m �= n
(i.e. when all WFE comes from two equally contributing Zernike polynomials). Thus we can
write the maximal contribution to TTL possible from individual maps Aθ/φ,m and Bθ/φ,m,n for
any WFE having RMS heights up to 10 nm as:

TTLmax(Aθ/φ,m) = (10 nmWFE)MAX

{
Aθ/φ,m

(
pm nrad−1

nm WFE

)∣∣∣∣50 nrad FF

}
(7)

TTLmax (Bθ/φ,m,n) =

(
102

2 − δm,n
nm2WFE

)
MAX

{
Bθ/φ,m,n

(
pm nrad−1

nm2 WFE

)∣∣∣∣50 nrad FF

}
(8)

Figure 5 shows noise contributions are only significant from those Aθ/φ,m maps associ-
ated with three tiers of Zernike polynomials, Z4–Z6 (first tier), Z11–Z13 (second tier), and
Z22–Z24 (third tier). Figure 6 illustrates maximal contributions of the 595 Bθ/φ,m,n maps to
TTL based length noise generated by 10 nrad of SC jitter about the corresponding axis
(i.e. 10 ∗TTLmax

(
Bθ/φ,m,n

)
). Thus the error in TTL noise estimates by neglecting any such

term is below 115 fm for any WFE we consider here. Additionally, the most significant second
order contributions are those cross-couplings to azimuthally symmetric polynomials within
these tiers (Z4, Z11, and Z22). These couple into TTLφ noise significantly through combi-
nation with Z7, Z17, and Z29, while rotated versions of these (Z8, Z16, and Z30) couple into
TTLθ, as would be expected. However both show any contribution in the regime considered
depends most heavily on the nine Zernike polynomials contributing to the linear recreation
terms.

The magnitude of both first and second order couplings decreases as we move from tier
one to three, with the magnitude of noise decreasing by a factor of three to five with an
increase in tier. As only second order cross couplings are significant, this corresponds directly

8
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Figure 6. Maximal contribution of second order couplings within TTL expressed as a
polynomial to second order in Zernike WFE contributions over a 50 nrad FF cone. For
significant cross couplings we list both Zernikes in each pair that contribute. We see that
for 10 nm WFE it appears utilizing only the first order expansion in Zernike coefficients
introduce errors on the order of 100 fm

√
Hz

−1
in TTL noise estimates.

to relative allowable RMS contributions between different tiers. Thus in the regime of WFE
considered the LISA mission can tolerate three to five times more second tier contribution
to WFE than first, and similarly three to five times more third tier than second. It’s impor-
tant to note that although we are considering TTL generated by smaller WFE, and over a
smaller FF region, than [18], their prediction of 0.02 pm nrad−1 of TTL given a λ/40 initial
WFE RMS height seems reasonable when compared to our prediction of a maximal coupling
of 0.005 pm nrad−1 of TTL generated per nanoradian of defocus and astigmatism Zernike
polynomials.

We thus significantly speed up simulations by summing only the nine significant linear terms
of figure 5:

{Z4, Z5, Z6, Z11, Z12, Z13, Z22, Z23, Z24}, (9)

for both φ and θ TTL components. Simple Cauchy–Schwartz based inequalities using the
maximal values of coefficient maps can be used to show that TTL component estimates using
only these terms recreation will differ by less than 40 fm nrad−1 from component estimates
using the full 595 term second order summation, thus having a maximal error in predicted
TTL noise below 0.6 pm. This is accurate enough for LISA simulations involving any WFE
up to 10 nm in RMS height.

5. Conclusions

LISA wavefront error (WFE) based TTL noise may present a significant obstacle in meeting
mission sensitivity requirements. We’ve shown our ability to write TTL coefficients accurately
as a first order polynomial in Zernike contributions to the WFE. This is accurate for WFE up

9
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to 10 nm in RMS height, providing an extremely fast TTL recreation scheme for which it is
clear which Zernikes couple most heavily to TTL noise.

Initial simulations with WFE having large contributions from those Zernikes coupling heav-
ily into TTL noise showed certain combinations of these Zernikes were capable of producing
noise far below LISA requirements, indicating a degree of TTL cancellation between terms.
Ongoing work aims to improve representations of our initial field to guarantee suitable recre-
ation of TTL noise for even the largest WFE LISA telescopes may introduce. Currently we’ve
been able to show second order expansions for TTL components in Zernike amplitude, now
based on Fresnel diffraction of initial beams without simplification of the initial eΦWFE term,
are accurate for nearly any WFE LISA may have. Using these results we hope to exam-
ine which Zernike combinations maximally and minimally couple to TTL noise, exploiting
such TTL cancellation. Such work may produce a more ideal basis for representing defects
within LISA WFE. Simple projections to terms in this basis may then be sufficient to iden-
tify whether or not LISA TTL requirements can be satisfied without post-processing noise
removal. The aim is to provide definitive metrics for mirror manufacturers to use in the devel-
opment of telescope components to meet LISA requirements, and workarounds in case they
do not.
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Appendix A. Jitter-to-TTL coordinate system

We first begin with our transmitting SC outgoing beam reference system, defining the optical
axis as oriented along the x axis of this frame which we initially align with a global frame for
the purpose of working with rotations. These are defined via⎛

⎝x
y
z

⎞
⎠

T

= x x̂ T + y ŷ T + z ẑ T (10)

⎛
⎝x

y
z

⎞
⎠

G

= x x̂ G + y ŷ G + z ẑ G (11)

where T as a subscript denotes coordinates in the transmit telescope frame, which can change
with respect to our unchanging global coordinate frame specified by the G subscript. The beam
center falls along the x axis in the transmit SC coordinate system, and falls on the receiving
SC in the case of zero pointing alignment at (L, 0, 0)T = (L, 0, 0)G with L the 2.5 Gm inter-
SC distance. The receiving SC will be offset from the beam center by an angle θDC but still a
distance L away, so that we can write this in general as:

�r R = L

⎛
⎝ cos θDC

sin θDC cos φDC

sin θDC sin φDC

⎞
⎠

T/G

(12)

10
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there θDC is the pointing offset from beam center, limited to 10 nrad, while φDC further specifies
the orientation but can take on any value. Note these receiving SC coordinates will only change
in the T basis.

Now we apply a jitter to our transmit SC as shown in figure 1:

�J =

⎛
⎝Jx

Jy

Jz

⎞
⎠

G

= J ĵ (13)

corresponding again to a rotation of
√

J2
x + J2

y + J2
z ≡ J radians about the corresponding unit

vector ĵ . For computational convenience we write out without loss of generality:⎛
⎝Jx

Jy

Jz

⎞
⎠

G

= J

⎛
⎝sin θ j cos φ j

sin θ j sin φ j

cos θ j

⎞
⎠

G

= J ĵ (14)

noting this is just temporary for moving forwards. Rotating a vector about this will keep the
inner product between it and ĵ constant, while the projection to the orthogonal plane will have
polar coordinates (where we assume right-handed systems) advance by angle J.

We do this naturally by first choosing an orthogonal vector to ĵ , lets call it:

γ̂ T = (sin φ j,− cos φ j, 0)G, (15)

where we have just used the T superscript to denote transpose or row vector for writing in line.
This γ̂ will be equivalent to the x axis of our polar coordinate plane (with the y axis of this
plane naturally defined by the cross product ĵ × γ̂ , naturally guaranteeing the polar angle
correspond to what would be expected in a right-handed). Denoting

β̂ T ≡ ( ĵ × γ̂ )T = (cos θ j cos φ j, cos θ j sin φ j,− sin θ j), (16)

the polar coordinates of some vector �r are then defined by

rP cos φP = �r · γ̂ (17)

rP sin φP = �r · β̂ (18)

where P denotes the polar coordinate component. Rotation about ĵ corresponds to a shift in
this polar angle, so for general vector �r rotated about �J to �r ′ we must have

�r ′ · γ̂ = rP cos φ′
P = rP cos(φP + J) = rP(cos φP cos J − sin φP sin J)

= �r ·
(

cos J γ̂ − sin J β̂
)

(19)

�r ′ · β̂ = rP sin φ′
P = rP sin(φP + J) = rP(sin φP cos J + cos φP sin J)

= �r ·
(

cos J β̂ + sin J γ̂
)

(20)

so that

�r ′ = ĵ
(
�r · ĵ

)
+ γ̂

(
�r ·

(
cos J γ̂ − sin J β̂

))
+ β̂

(
�r ·

(
cos J β̂ + sin J γ̂

))
(21)

11
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= ĵ (�r · ĵ ) + (�r · γ̂ )
(

cos J γ̂ + sin J β̂
)
+
(
�r · β̂

)(
cos J β̂ − sin J γ̂

)
= R̂ (·, �r )

(22)

where the matrix R̂ is defined by

ĵ ⊗ ĵ + γ̂ ⊗
(

cos J γ̂ − sin J β̂
)
+ β̂ ⊗

(
sin J γ̂ + cos J β̂

)
(23)

This is exactly the coordinate transformation jitter induces to each basis vector of the transmit
frame, with the components for the location of the receiving SC in the transmitting frame as
a function of this rotation given by the dot product of �r R with each of these rotated basis
vectors.⎛
⎝rR,T,x′

rR,T,y′

rR,T,z′

⎞
⎠ =

⎛
⎝ x̂ ′

T · �r R

ŷ ′
T · �r R

ẑ ′
T · �r R

⎞
⎠ =

⎛
⎝ R̂ (�r R, x̂ T )

R̂ (�r R, ŷ T )
R̂ (�r R, ẑ T)

⎞
⎠ (24)

=

⎛
⎝ x̂ T

T

ŷ T
T

ẑ T
T

⎞
⎠ R̂ T �r R =

⎛
⎝ x̂ T · ĵ x̂ T · γ̂ x̂ T · β̂

ŷ T · ĵ ŷ T · γ̂ ŷ T · β̂
ẑ T · ĵ ẑ T · γ̂ ẑ T · β̂

⎞
⎠
⎛
⎝1 0 0

0 cos J sin J
0 − sin J cos J

⎞
⎠
⎛
⎝ �r R · ĵ
�r R · γ̂
�r R · β̂

⎞
⎠
(25)

=

⎛
⎝

1 0 0
0 1 0
0 0 1

⎞
⎠
⎛
⎝

sin θ j cos φ j sin φ j cos θ j cos φ j

sin θ j sin φ j − cos φ j cos θ j sin φ j

cos θ j 0 − sin θ j

⎞
⎠
⎛
⎝

1 0 0
0 cos J sin J
0 − sin J cos J

⎞
⎠

(26)

×

⎛
⎝sin θ j cos φ j sin θ j sin φ j cos θ j

sin φ j − cos φ j 0
cos θ j cos φ j cos θ j sin φ j − sin θ j

⎞
⎠
⎛
⎝ L cos θDC

L sin θDC cos φDC

L sin θDC sin φDC

⎞
⎠ (27)

This is still completely general. We get rid of the identity matrix at the start which arises because
our transmit SC basis originally aligned with our global basis. We now write out this in terms
of typical spherical coordinates, i.e. defining angular θ and φ by⎛

⎝sin θ(J) cos φ(J)
sin θ(J) sin φ(J)

cos θ(J)

⎞
⎠ ≡

⎛
⎝sin θ j cos φ j sin φ j cos θ j cos φ j

sin θ j sin φ j − cos φ j cos θ j sin φ j

cos θ j 0 − sin θ j

⎞
⎠ (28)

×

⎛
⎝1 0 0

0 cos J sin J
0 − sin J cos J

⎞
⎠
⎛
⎝sin θ j cos φ j sin θ j sin φ j cos θ j

sin φ j − cos φ j 0
cos θ j cos φ j cos θ j sin φ j − sin θ j

⎞
⎠

×

⎛
⎝ cos θDC

sin θDC cos φDC

sin θDC sin φDC

⎞
⎠ (29)
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So that we can now write out the effective length change due to jitter via

Δl =
J
k
∂ΦFF

∂J J=0
=

1
k

(
J
∂θ(J)
∂J

∂ΦFF

∂θ
+ J

∂φ(J)
∂J

∂ΦFF

∂φ

)
J=0

(30)

To calculate these derivatives we do so implicitly, taking the derivatives of the left and right
hand sides above at J = 0 giving

⎛
⎜⎜⎜⎜⎜⎝

J cos θ0 cos φ0
∂θ

∂J
− J sin θ0 sin φ0

∂φ

∂J

J cos θ0 sin φ0
∂θ

∂J
+ J sin θ0 cos φ0

∂φ

∂J

−J sin θ0
∂θ

∂J

⎞
⎟⎟⎟⎟⎟⎠

= J

⎛
⎝sin θ j cos φ j sin φ j cos θ j cos φ j

sin θ j sin φ j − cos φ j cos θ j sin φ j

cos θ j 0 − sin θ j

⎞
⎠
⎛
⎝0 0 0

0 0 1
0 −1 0

⎞
⎠

(31)

×

⎛
⎝sin θ j cos φ j sin θ j sin φ j cos θ j

sin φ j − cos φ j 0
cos θ j cos φ j cos θ j sin φ j − sin θ j

⎞
⎠
⎛
⎝ cos θDC

sin θDC cos φDC

sin θDC sin φDC

⎞
⎠

(32)

=

⎛
⎝ 0 Jz −Jy

−Jz 0 Jx

Jy −Jx 0

⎞
⎠
⎛
⎝ cos θDC

sin θDC cos φDC

sin θDC sin φDC

⎞
⎠ (33)

where we have rewritten in terms of our original definitions for the jitter vector. Multiplying
both sides by a common matrix to isolate terms we get⎛

⎜⎝J
∂θ

∂J

J
∂φ

∂J

⎞
⎟⎠ =

⎛
⎝cos θ0 cos φ0 cos θ0 sin φ0 − sin θ0

− sin φ0

sin θ0

cos φ0

sin θ0
0

⎞
⎠
⎛
⎝ 0 Jz −Jy

−Jz 0 Jx

Jy −Jx 0

⎞
⎠

×

⎛
⎝ cos θDC

sin θDC cos φDC

sin θDC sin φDC

⎞
⎠ (34)

Now these expressions are first order in the jitter variable, on the order of 10 nanoradians,
while θDC is of the same order of magnitude, so that any first order term in θDC is suppressed
by O(10−8) relative to zeroth order terms. Thus only including the zeroth order θDC expansion,
evaluating the θ0 and φ0 here at J = 0 now gives

sin θ0 cos φ0 = cos θDC −→ 1 (35)

sin θ0 sin φ0 = sin θDC cos φDC −→ 0 (36)

cos θ0 = sin θDC sin φDC −→ 0 (37)
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and our expression becomes

J

⎛
⎜⎝

∂θ

∂J
∂φ

∂J

⎞
⎟⎠ =

(
0 0 −1
0 1 0

)⎛⎝ 0 Jz −Jy

−Jz 0 Jx

Jy −Jx 0

⎞
⎠
⎛
⎝1

0
0

⎞
⎠ (38)

=

(
−Jy

−Jz

)
(39)

yielding the final expression:

Δl =
−λ

2π

(
Jy
∂ΦFF

∂θ
+ Jz

∂ΦFF

∂φ

)
(40)

Appendix B. Far field phase and phase derivative derivations

B.1. HG modal decomposition based propagation and TTL extraction using it

The majority of beam recreations in this paper are based on the HG modal decomposi-
tion based propagation described in [16]. This exploits that for sufficiently paraxial light,
such as the LISA transmit beams we are concerned with, the projection to each HG mode
is unchanging (for more on HG modes and the parameters they depend on such as waist
size and waist size location, see [16, 17, 23]). Thus if the amplitude of the initial outgoing
LISA beam in the (0, 0) or fundamental Gaussian HG mode in some basis is a0,0, the ampli-
tude of the FF in the propagated form of this mode is still a0,0. This allows us to write the
transmitted field

E(x, y, z) = e−ik(z−z0)
∑
m,n

am,nHGm,n(x, y, z;w0, zb) (41)

where

am,n =

∫∫
S

dxdyE(x, y, z0)HGm,n(x, y, z0;w0, zb)∗. (42)

Here S is taken to be the exit aperture of the transmit telescope at plane z = z0, with
outgoing field there E(x, y, z0). HGm,n(x, y, z;w0, zb) is HG mode (m, n) at position (x, y, z)
taken from HG mode basis of proper wavelength having waist size w0 at location zb

along the optical axis. [16] gives an analytic formula for such am,n obtained for fields of
the form HGm,n(x, y, z;w0, zb) Z̃ m

n

(
x
R , y

R

)
passing through a circular aperture of radius R.

Z̃ m
n

(
x
R , y

R

)
here are the Zernike polynomials9 of angular index m and radial index n scaled

for orthogonality over the disk of radius R, exactly what will be used to decompose the
WFE10. The initial un-aberrated LISA beam is an HG0,0 mode, and thus for ΦWFE decom-
posed as in equation (6) we have the outgoing beam over the telescope exit aperture of

9 Use of Z̃ as opposed to simply Z distinguishes we have written the Zernike polynomial in terms of Cartesian
coordinates and not the traditional polar coordinates these are typically functions of.
10 Zernike polynomials labeled by both upper and lower indices are traditionally defined Zernikes with upper angular
index and lower radial index. As mentioned in earlier sections, Zernike polynomials labeled with only a single subscript
refer to the corresponding Zernike polynomial in the Noll indexing scheme. For example, Z0

0 and Z1 refer to the same
polynomial.
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radius R:

HG0,0(x, y, 0;wLISA, 0)ei
∑

mcm Z̃ m( x
R , y

R ) −→ HG0,0(x, y, 0;wLISA, 0)

×
(

Z1

( x
R

,
y
R

)
+
∑

m

cmZm

( x
R

,
y
R

))
(43)

when expanded to first order in the WFE phase (wLISA is taken as the expected LISA Gaussian
transmit beam waist size). Thus each am,n used in writing the total field when expanding to first
order in ΦWFE is simply a sum of terms obtained from [16].

Utilizing an HG modal basis (choice of w0) optimized to represent the transmit beam with
no WFE present in terms of as few modes as possible with waist at the center or rotation i.e.
the TM center or origin of our coordinate system, we obtain am,n for the transmit beam with
WFE as described above yielding beam at the receiving SC having angular coordinates θ/φ
from appendix A:

E(θ,φ) = e−ikL sin θ sin φ
∑
m,n

am,nHGm,n(L cos θ, L sin θ cos φ, L sin θ sin φ;w0, 0)

(44)

The phase can then be written using the complex argument function with some choice of branch
Arg as:

ΦFF(θ,φ) = arctan

(
2L sin θ sin φ

kw2
0

)

−
kL sin θ sin φ

(
1 + sin2 θ sin2 φ+

k2w2
0

2L2

)
2 sin2 θ sin2 φ+

k2w2
0

2L2

+ Arg[Eres] (45)

Some care should technically be taken to write the terms outside of the complex argument func-
tion Arg as modulo 2π plus some factor to guarantee it is consistent with the branch of complex
argument function used for Arg, however since relevant quantities for TTL are derivatives with
respect to θ and φ, this actually won’t matter. The terms before the complex argument func-
tion are phase elements common to every HG mode of this particular basis (i.e. background
Gouy phase, radius of curvature phase, and e−ikz phase, all better detailed in [16, 17, 23]). They
contain no information about effects of WFE. The remaining portion Eres contains information
unique to each mode:

Arg[Eres] = Arg

⎡
⎢⎢⎣∑

m,n

am,ne
i(m+n) arctan

(
2L sin θ sin φ

kw2
0

)

√
2m+n m!n!

× Hm

⎛
⎜⎜⎝ L cos θ

w0

√
1 +

(
2L sin θ sin φ

kw2
0

)2

⎞
⎟⎟⎠Hn

⎛
⎜⎜⎝ L sin θ cos φ

w0

√
1 +

(
2L sin θ sin φ

kw2
0

)2

⎞
⎟⎟⎠
⎤
⎥⎥⎦ (46)
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Here H j(t) is the jth physicist’s Hermite polynomial evaluated at t, and all information about
the initial WFE is encoded in the am,n terms.

Evaluation of TTL elements requires derivatives of equation (45) with respect to angu-
lar variables θ and φ. While we have implemented programs based on a purely ana-
lytical expressions for this, we’ve found it faster to implement algorithms that only
utilize analytical expressions for the angular derivatives of terms in equation (45)
outside the complex argument function. Then we add to these numerically approxi-
mated angular derivatives of the numerically evaluated Arg[Eres] function at appropriate
FF points.

B.2. Fresnel diffraction integrals for field and TTL calculations

The TTL expressions obtained via the HG modal decomposition described above are based
on a first order expanding eiΦWFE in the outgoing field. Had we not required the expansion
of this initial phase, TTL obtained via an infinite modal expansion would be exact for any
sufficiently paraxial light (which is certainly the case for the LISA beam at the receiving SC,
which has been transmitted 2.5 Gm, for more on paraxial light and the paraxial approximation
see [17, 23]).

To estimate the introduced error in TTL estimates, we need another way to obtain the prop-
agated field without requiring this simplification of our initial field. We utilize the Fresnel
diffraction integral for a propagated field:

E(x, y, z) =
ie−ikΔz

λΔz

∫∫
S

dx0dy0

⎡
⎣ET(x0, y0)e

−ik

(
(x−x0)2

+(y−y0)2
)

2Δz

⎤
⎦ (47)

where here ET(x0, y0) is the field in the plane of the transmitting telescope exit aperture and
Δz is the propagation distance along the optical axis from this aperture to the point of interest,
ideally the location of the receiving SC. This simplification of the full wave-equation based
Kirchoff diffraction integral produces a paraxial light equivalent. One can show [23] that any
paraxial propagation scheme is equivalent, i.e. this yields the same exact field we would get
with an infinite HG modal decomposition scheme if the initial field utilized was also ET(x0, y0).
The key difference here is that by evaluating this integral numerically we need not expand the
initial fields WFE dependence.

To evaluate accuracy of an order N expansion in initial phase ΦWFE of the initial field, we
then evaluate the difference in TTL estimates found with the simplified initial field:

ET(x0, y0) = HG0,0(x0, y0, 0;wLISA, 0)
N∑

p=0

(iΦWFE(x0, y0))p

p!

≡ HG0,0(x0, y0, 0;wLISA, 0)FN(x0, y0), (48)

from those found with the actual initial field

ET(x0, y0) = HG0,0(x0, y0, 0;wLISA, 0)eiΦWFE(x0,y0)

≡ HG0,0(x0, y0, 0;wLISA, 0)F∞(x0, y0), (49)
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where FN is implicitly defined above with N = ∞ the unexpanded case. To evaluate these at the
proper FF points and obtain TTL expressions, we first rewrite the Fresnel diffraction integral
in terms of the proper angular coordinates of appendix A:

E(θ,φ) =
ie−ikL sin θ sin φ

λL sin θ sin φ

∫∫
S
dx0 dy0

⎡
⎣ET(x0, y0)e

−ik

(
(L cos θ−x0)2

+(L sin θ cos φ−y0)2
)

2L sin θ sin φ

⎤
⎦. (50)

However, at this point numerical evaluation would yield unusable phase information for taking
angular derivatives because of the massive kL sin θ sinφ phase element outside of the integral.
In addition, this must be evaluated numerical at each point we want the field. If calculating
phase derivatives numerically, this means multiple evaluation points FF location we hope to
find the TTL, bogging down computations. To improve computational speed, we instead sepa-
rated as much phase as possible out of the integrals, then took angular derivatives analytically,
yielding derivatives within the Fresnel diffraction integral, and then evaluated these expres-
sions numerically. We first simplify the expressions slightly by expanding out the exponent
terms

E(θ,φ) =
ie

−ikL(1+sin2 θ sin2 φ)
2 sin θ sin φ

λL sin θ sin φ

∫∫
S
dx0 dy0

[
ET (x0, y0)e

−ik((x2
0+y2

0)−2L(x0 cos θ+y0 sin θ cos φ))
2L sin θ sin φ

]

(51)

=
i
√

2e
−ikL(1+sin2 θ sin2 φ)

2 sin θ sin φ

√
πwLISAλL sin θ sin φ

∫ R

0
dρ

[
ρe

− ρ2

w2
LISA

− ikρ2
2L sin θ sin φ

∫ 2π

0
dγ

×
[
FN(ρ cos γ, ρ sin γ)e

ikLρ(cos γ cos θ+sin γ sin θ cos φ)
sin θ sin φ

]]
(52)

where we have plugged in explicitly the form of the unaberrated HG0,0 mode for LISA as well
as explicitly written integral bounds to the telescope exit aperture radius R (γ was used as the
polar angle to avoid confusion with FF angular variables θ/φ). Again, here we use N = ∞ for
the actual TTL to compare finite N values to. This allows us to ignore unnecessary constants
and write the FF phase as

ΦFF(θ,φ) =
π

2
− kL

(
1 + sin2 θ sin2 φ

)
2 sin θ sin φ

+ Arg[DN(θ,φ)] (53)

where

DN(θ,φ) =
∫ R

0
dρ

[
ρe

− ρ2

w2
LISA

− ikρ2

2L sin θ sin φ

∫ 2π

0
dγ

×
[
FN(ρ cos γ, ρ sin γ)e

ikLρ(cos γ cos θ+sin γ sin θ cos φ)
sin θ sin φ

]]
(54)
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where as in the last section, the terms outside the argument function carry information inde-
pendent of the WFE, while WFE information is carried explicitly in the complex argument of
the DN function. Using that

∂

∂Arg[ f (x)]
x =

∂ ln( f (x))−ln( f∗(x))
2i

∂x
=

∂ f
∂x

2i f (x)
−

∂ f∗
∂x

2i f ∗(x)
= Im

[
∂ f
∂x

f

]
(55)

at any point where f (x) �= 0, where Im is the imaginary part of a complex number, we then
wrote

∂ΦFF(θ,φ)
∂θ/φ

= −kL
2

∂

∂θ/φ

[
1 + sin2 θ sin2 φ

sin θ sin φ

]
+ Im

[
∂DN (θ,φ)
∂θ/φ

DN(θ,φ)

]
. (56)

In evaluating this the first term was differentiated purely analytically. For the second term,
the integrand in DN(θ,φ) was first differentiated analytically within the integral (the portion
dependent on θ/φ is independent of WFE and thus will remain the same for all WFE), and the
resulting expression numerically integrated using Matlab’s 2D integration function.

Appendix C. Coefficient map recovery

A general LS based method minimizes the error of a linear combination of basis functions
in approximating a known set of data. For example, if we have some function we wish to
approximate F, known only at a set of N data point vectors {�x i}N

i=1, with a set of known
functions { f j}K

j=1, the least squared solution is the set of coefficients {a j}K
j=1 such that the

expression

Fapprox(�x ) =
K∑

j=1

a jF j(�x ) (57)

minimizes the sum of squared errors from known data values F( �xi ) over all known values of
F. This squared error becomes

E2 =
N∑

i=1

⎛
⎝F(�x i) −

K∑
j=1

a jF j(�x i)

⎞
⎠2

(58)

Minimizing this by setting derivatives with respect to {ai} to zero yields the set of linear
equations

〈FiF〉 =
K∑

j=1

〈FiF j〉a j (59)

Where this is the traditional expectation value over the known data set i.e. for function g(�x ):
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〈g〉 = 1
N

N∑
i=1

g(�x i) (60)

Defining matrix M̂ by ( M̂ )i j ≡ 〈FiF j〉, if this matrix is invertible (which depends on the values
of the basis functions over the data set) we can then write out minimizing choice of {ai}:

ai =

K∑
j=1

( M̂ −1)i j〈F jF〉 (61)

If we have more basis functions than known data points, we see this becomes degenerate as we
will necessarily have Fm =

∑
j�=m c jF j for some m at all known points {�x i}N

i=1. More specifi-
cally we can show the functions must be linearly independent over the chosen data set for this
to be successful.

In our case of approximating of TTL components, our F function is now the correspond-
ing TTL component value at a specific point in the FF. Thus we use this for each relevant FF
point we wish to approximate TTL at, meaning the aj are now maps of values at each rel-
evant FF point. For our situation �x i= �WFE i = (c4, c5, . . . , c36)i where here the cm are the
heights in nm of the mth contributing Zernike in the ith generating WFE used. The aj we are
finding are the coefficient maps such as TTLθ/φ,0. As mentioned above, we need at least as
many data points as we have representative functions to approximate the TTL. These include
the constant function (with corresponding ai the TTLθ/φ,0 map) and the linear projection func-

tions Πm

(
�WFE

)
= cm for 4 � m � 36 the mth Zernike amplitude (with corresponding ai

the Aθ/φ,m map), giving a total of 34 representative functions (33 projections plus constant)
in our linear approximations. The second order case has additional representative functions
of the form ΠmΠn, so that we have an additional 33 + 33∗32

2 = 561 terms (33 quadratic and
528 cross). This means for a first order LS based method we need at least 34 generating WFE
while for second order we require 595 generating WFE. Just having this number is not enough
to guarantee non-degenerate M̂ matrices. Utilizing more may guarantee a better representa-
tive expression over a larger range of WFE, however if restricting to only linear or second
order regimes additional generating WFE will contribute little to changing optimal coefficient
map values.

For example, in linear recreations we utilized a generating WFE set composed of:

�WFE 1= �0 (62)

Πm

(
�WFE 1+n

)
= 2δm,n+3 (63)

so that besides the first �0 WFE vector the n + 1 generating vector has an RMS height of 2 nm
contributed by Zn+3, i.e. �WFE 2 is just 2 nm of Z4 or defocus. This set gave nearly identical
coefficient maps to a set found by using several hundred randomly generated WFE all having
RMS heights below 10 nm.

For second order recreation, we added additional WFE having contributions of −2 nm from
each individual Zernike, as well a single WFE for each pair of Zernike terms having both having
heights of 2 nm.
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