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Abstract
As a toy model for understanding the soliton resolution phenomenon we con-
sider a characteristic initial boundary value problem for the 4d equivariant
Yang–Mills equation outside a ball. Our main objective is to illustrate the
advantages of employing outgoing null (or asymptotically null) foliations in
analyzing the relaxation processes due to the dispersal of energy by radiation.
In particular, within this approach it is evident that the endstate of evolution
must be non-radiative (meaning vanishing flux of energy at future null infinity).
In our toy model such non-radiative configurations are given by a static solu-
tion (called the half-kink) plus an alternating chain of N decoupled kinks and
antikinks. We show numerically that the configurations N = 0 (static half-kink)
and N = 1 (superposition of the static half-kink and the antikink which recedes
to infinity) appear as generic attractors and we determine a codimension-one
borderline between their basins of attraction. The rates of convergence to these
attractors are analyzed in detail.
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1. Introduction

According to the soliton resolution conjecture, global-in-time generic solutions of nonlinear
dispersive wave equations resolve for t →∞ into a superposition of decoupled nonlinear bound
states (solitons) and radiation [1]. There are numerous physical manifestations of this phe-
nomenon, ranging from the formation of solitons in optical fibers (modelled by a nonlinear
Schrödinger equation) to the formation of stationary black holes in binary black hole mergers
(modelled by the Einstein equation).

The past decade has seen a significant progress in mathematical understanding of the soliton
resolution, especially for radial solutions of the energy critical nonlinear wave equations (see
[2] for a survey and references therein). Notably, the soliton resolution was recently proved for
the equivariant wave maps R2+1 → S

2 [3, 4] and the equivariant Yang–Mills (YM) equation
in 4 + 1 dimensions [4] (both for the global and blowup solutions). These remarkable results
are abstract in the sense that they enumerate all possible asymptotic scenarios but do not settle
which scenarios are actually realized.

As a toy model for more quantitative description of the soliton resolution phenomenon, in
this paper we consider the equivariant YM equation in 4 + 1 dimensions

Wtt = Wrr +
1
r

Wr +
2
r2

W(1 − W2), (1)

where W(t, r) is the YM potential. As the spatial domain we take the exterior of the unit ball,
i.e. r � 1, and impose the Dirichlet condition on the boundary W(t, r = 1) = 0. The associated
conserved energy is

E[W] =
1
2

∫ ∞

1

(
W2

t + W2
r +

(1 − W2)2

r2

)
rdr. (2)

Finiteness of energy requires that |W(t,∞)| = 1. Since the singular point r = 0 is outside
the domain, it is easy to see that solutions starting from smooth, finite-energy initial data
(W(0, r), Wt(0, r)), which are compatible with the boundary condition, remain smooth for all
times. Our goal is to describe their asymptotic behavior for t →∞.

The key role in our analysis will be played by the half-kink

Q(r) =
r2 − 1
r2 + 1

, (3)

which is the unique (modulo sign) static solution of equation (1) satisfying the boundary con-
dition Q(1) = 0. The half-kink is a global minimizer of energy (see the Bogomolnyi inequality
(20) below) and thereby a natural candidate for an attractor. Indeed, we will see that on any
compact interval [1, R) every smooth solution W(t, r) converges to Q(r) or −Q(r) as t →∞.
However, for sufficiently large energies a nontrivial coherent structure can simultaneously
develop in the asymptotic region (R,∞). This behavior is intimately related to the energy crit-
icality of the model and is absent in supercritical dimensions; cf the soliton resolution for the
equivariant wave maps exterior to a ball in 3 + 1 dimensions [5, 6].

The paper is organized as follows. In section 2 we first recall from [4] the formulation of the
soliton resolution conjecture for equation (1) in the whole space. Then we present an analogous
conjecture in our model and support one special case by a heuristic argument based on the
method of collective coordinates [7]. In section 3 we reformulate the initial-boundary problem
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in terms of null foliations of constant retarded time and compactified spatial domain. Using
this formulation, in section 4 we consider the late-time behavior (the quasinormal ringdown
and the polynomial tail) for the linearized problem. Finally, in section 5 we present numerical
evidence supporting the soliton resolution conjecture.

2. Soliton resolution

Let us first recall what is known about equation (1) posed on the whole space r � 0. In this case,
equation (1) is invariant under scaling, i.e. if W(t, r) is a solution, so is Wλ(t, r) = W(t/λ, r/λ)
for any positive number λ. The conserved energy

E0[W] =
1
2

∫ ∞

0

(
W2

t + W2
r +

(1 − W2)2

r2

)
rdr (4)

is scale invariant, i.e. E0[Wλ] = E0[W], which is a distinctive feature of the critical dimension
d = 4 allowing for the existence of nontrivial static solutions in the presence of scaling symme-
try. These static solutions, hereafter called kinks (also referred to in the literature as instantons,
solitons, or bubbles), form a one-parameter family

Qλ(r) =
r2 − λ2

r2 + λ2
(5)

with energy E0[Qλ] = 4
3 which is the minimum energy for solutions interpolating between

different vacuum states W = ±1 at the origin and at infinity. Obviously, the antikink −Qλ(r)
is also the solution with the same energy.

Jendrej and Lawrie proved (see theorem 1 in [4]) that any finite-energy solution of
equation (1) posed on the whole space tends (modulo sign) either to the vacuum W = 1 or
to an alternating chain of N rescaled kinks and antikinks4

1 +

N∑
j=1

(−1)N+ j
(
Qλ j(t)(r) − 1

)
. (6)

Here λ j(t) are continuous positive functions such that for each j = 1, . . . , N

λ j(t)
λ j+1(t)

→ 0 as

{
t →∞ (for global − in − time solutions)

t → T (for blowup at finite time T),

where by convention λN+1(t) = t (in the global case) or λN+1(t) = T − t (in the blowup case),
corresponding to the non-existing self-similar expansion and collapse.

We return now to our toy model and make the soliton resolution conjecture:

Conjecture 1. Any smooth, finite-energy solution W(t, r) of equation (1) subject to the
boundary condition W(t, 1) = 0 tends for t →∞ (modulo sign) either to the half-kink or to

4 Strictly speaking [4] deals with 2d equivariant wave maps which split into equivariance classes indexed by a positive
integer k. The case k = 2 is essentially equivalent to the 4d equivariant YM. The only qualitative difference is that for
wave maps there are infinitely many topological sectors, while for YM there are only three sectors. For this reason, in
the case of wave maps the chain of kinks and antikinks in theorem 1 in [4] need not be alternating.
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the rescaled half-kink plus an alternating chain of N rescaled kinks and antikinks:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q(r) if N = 0,

−Qμ(t)(r) +
N∑

j=1

(−1) j+1Qλ j(t)(r) + 1 if N is odd,

Qμ(t)(r) +
N∑

j=1

(−1) jQλ j(t)(r) if N � 2 is even.

(7)

Here λ j(t) are continuous positive functions such that for each j = 1, . . . , N

λ j(t) →∞ and
λ j(t)
λ j+1(t)

→ 0 as t →∞, (8)

where by convention λN+1(t) = t. The function μ(t) is determined by the functions λ j(t)
through the boundary condition W(t, 1) = 0 which implies that μ(t) → 1 as t →∞.

In the rest of the paper we confirm this conjecture for N = 0 and N = 1 and determine the
rate of convergence to the attractors. In addition, we find a borderline between the basins of
attraction using bisection along an interpolating one-parameter family of initial data.

Before presenting the results of numerical simulations, we wish to put forward a heuristic
argument based on the method of collective coordinates [7] that helps to understand some
aspects of asymptotic dynamics. According to (7), in the case N = 1 the attractor has the
following form:

W(t, r) = 1 − Qμ(t)(r) + Qλ(t)(r), μ2(t) =
λ2(t) − 1
λ2(t) + 3

, (9)

where the formula for μ(t) follows from the boundary condition W(t, 1) = 0. Inserting this
ansatz into the Lagrangian

L =
1
2

∫ ∞

1

(
W2

t − W2
r − (1 − W2)2

r2

)
rdr (10)

and integrating over r, in the limit of large λ we get the effective Lagrangian (we retain only
the first two leading terms)

Leff =

(
4
3
− 32

λ4

)
λ̇2 −

(
2 − 16

λ2

)
, (11)

hence (
4
3
− 32

λ4

)
λ̇2 +

(
2 − 16

λ2

)
= Eeff = const. (12)

Thus, the λ-particle starting at some large λ(0) with velocity λ̇(0) > 0 escapes to infinity if
Eeff � 2, while if Eeff < 2 it reaches a turning point in a finite time. The ODE (12) provides
a qualitative picture of the attractive interaction between the anti-half-kink and the expanding
outer kink. This approximation ceases to work when the outer kink starts shrinking because
the PDE solution is no longer close to the ansatz (9) (see figure 4 below). At the quantitative
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level the predictions of the effective model should be taken with caution because the ansatz (9)
neglects radiation. In particular, according to conjecture 1 the expansion rate λ̇(t) in (7) must
go to zero as t →∞, whereas the ODE yields λ̇(∞) > 0 if Eeff > 2.

3. Characteristic formulation

We now reformulate our problem as the characteristic initial boundary value problem. To this
end we define new coordinates

u = t − r, x = r−
1
2 .

Then, on the interval 0 < x � 1, the YM potential w(u, x) = W(t, r) satisfies

−4x wxu + 4wu = x4 wxx + x3 wx + 8x2w(1 − w2), (13)

w(u, 1) = 0, w(0, x) = g(x), (14)

where the function g(x) is assumed to be smooth and satisfying the finite energy condition
g(0) = 1. For such data, the solution w(u, x) remains smooth for all future times u > 0. More-
over, the results by Chruściel and collaborators [8, 9] imply5 that the following asymptotic
expansion holds near x = 0:

w(u, x) = 1 +
∑
n �1

cn(u)xn. (15)

Inserting this expansion into equation (13) and equating the coefficients of the same pow-
ers of x, we obtain an infinite system of ordinary differential equations for the coefficients
cn(u). This system can be solved recursively one-by-one starting from the radiation coefficient
c1(u) which is free. For n = 2 we get ċ2(u) = 0, hence the coefficient c2 is constant (so called
Newman–Penrose constant). For large n the nonzero coefficients cn(u) grow polynomially for
u →∞ which is a reflection of the well-known fact that the expansion (15) is not uniform; see
e.g. [10].

Multiplying equation (13) by x−3wu we get the local conservation law

∂u

(
x
2

w2
x +

2
x

(1 − w2)2

)
= ∂x

(
2
x2

w2
u + x wu wx

)
. (16)

Integrating this over x and using (15), we obtain the energy loss formula

dE
du

= −ċ2
1(u), (17)

where

E[w] :=
∫ 1

0

(
1
4

w2
x +

1
x2

(1 − w2)2

)
x dx (18)

is the Bondi-type energy (hereafter just called energy). Note that E[w] is equal to the potential
part of the total conserved energy E[W]. In terms of x the half-kink reads

5 We are grateful to Piotr Chrúsciel and Roger Tagné Wafo for checking that the hypotheses of theorems on propagation
of polyhomogeneity in [8, 9] hold for our equation. This, together with the absence of log x terms in the formal
polyhomogeneous series, shows that the solution is smooth in x.
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q(x) :=Q

(
1
x2

)
=

1 − x4

1 + x4
. (19)

It is the global minimizer of E[w] as follows from the Bogomolnyi inequality

E[w] =
∫ 1

0

[
1
2

wx +
1
x

(1 − w2)

]2

x dx −
∫ 1

0
∂x

(
w − 1

3
w3

)
dx � 2

3
, (20)

which is saturated on w = q(x), i.e. E[q] = 2
3 .

Since E[w] is non-increasing and bounded below, there exists a limit

E∞ = lim
u→∞

E(w(u)) � E(q) =
2
3
.

According to conjecture 1 the endstate (which clearly must be non-radiative) has the form (7),
where due to (8) the kinks and anti-kinks in the chain become decoupled for t →∞, hence the
energy tends to the sum of the energies of the half-kink and N kinks/antikinks, i.e.

E∞ =
2
3
+

4
3

N. (21)

In section 5 we describe the relaxation to the N = 0 and N = 1 attractors. In our numerical
simulations we have not observed N � 2 attractors which suggests that, if they exist, they are
nongeneric.

4. Linearized dynamics near the half-kink

Let w = q(x) + x f (u, x). Substituting this into equation (13) we obtain

fux +
1
4
∂x(x3 f x) − U(x) f − 6q(x)x2 f 2 − 2x3 f 3 = 0, f (u, 1) = 0, (22)

where

U(x) =
3x(5 − 22x4 + 5x8)

4(1 + x4)2
=

15
4

x +O(x5). (23)

Dropping the nonlinear terms and the O(x5) term in the potential, we get the linear equation
(corresponding to linearization around w = 1 rather than q)

fux +
1
4
∂x(x3 f x) − 15

4
x f = 0. (24)

This equation has an explicit solution

f0(u, x) = u− 5
2 (ux2 + 2)−

5
2 . (25)

General solutions of equation (24) for initial data with the vanishing NP constant behave simi-
larly to f0(u, x) for u →∞, i.e. they decay as u−5 in the interior (x > 0) and u−5/2 at future null
infinity (x = 0). This can be shown directly, or by defining F(t, r) = x5 f (u, x) and rewriting
equation (24) in terms of the original coordinates (t, r). Then, F(t, r) satisfies the free radial
wave equation in 6 + 1 dimensions Ftt − Frr − 5

r Fr = 0, for which the late-time pointwise
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Figure 1. Linear evolution about the half-kink q(x) for sample initial data with zero
and nonzero NP constant, respectively: f (0, x) = cos2

(
πx/2

)
(top row) and f (0, x) =

cos2
(
πx/2

)
+ (1 − x)x (bottom row). On the left, we plot log | f (u, xi)| at different grid

points (solid lines labelled by the grid point number i, where x256 = 0; see section 5 for
the details) together with the theoretical decay rates (dashed/dotted lines). On the right,
we plot the local power index p(u, x j) := u∂u f (u, xi)/ f (u, xi) evaluated at different grid
points.

decay F(t, r) ∼ (t − r)−5/2(t + r)−5/2 is well known [11]. The rate of decay of linear pertur-
bations about q(x) is the same because the term O(x5) in the potential (23) is asymptotically
negligible. The numerical verification of this claim is depicted in figure 1 where we also show
that solutions with nonzero NP constant exhibit slower decay.

Having determined the late-time linear tail, now we turn to the computation of quasinor-
mal modes. They govern the relaxation to the half-kink for intermediate times before the tail
is uncovered. It is convenient to rewrite the linear part of equation (22) in terms of y = x2.
Substituting

f (u, x) = esu v(y), (26)

we get the eigenvalue problem

2sv′ + (y2v′)′ − V(y)v = 0, V(y) =
15
4

− 24
(1 + y2)2

y2 (27)

with v(1) = 0. Following Leaver [12] we seek solutions of (27) in terms of the power series

v(y) =
∑
n�1

an(1 − y)n, a1 = 1. (28)

Since the nearest singularity from y = 1 is located at y = 0, this power series is absolutely
convergent for y ∈ (0, 1]. The eigenvalues sn, called quasinormal frequencies, are selected by
the condition that the power series is absolutely convergent at y = 0; as follows from (26), the
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Figure 2. The solution depicted in blue on the top left plot in figure 1 is shown here for
early times when the relaxation to the half-kink is governed by the quasinormal mode.
The fit (dashed red line) of a superposition of an exponentially damped oscillation and
the polynomial tail to the numerical data (black line) gives the quasinormal frequency
s = −0.364 271 ± 0.476 856i, in very good agreement with the perturbative calculation.
The pure quasinormal ringdown is depicted for reference by the dashed blue line.

corresponding solutions fn(u, y), called the quasinormal modes, are purely outgoing6. Inserting
(28) into equation (27) we get a seven-term recurrence relation. Among its six linearly inde-
pendent solutions, four solutions decay as an ∼ 2− n

2 for n →∞, hence they do not affect the
convergence properties of the series at y = 0. Using the method of successive approximations
[13] one can show that the remaining two solutions have the following asymptotic expansions

a(+)
n ∼ n− 3

4 e
√

8sn
∑
k=0

c(+)
k n− k

2 , a(−)
n ∼ n− 3

4 e−
√

8sn
∑
k=0

c(−)
k n− k

2 , (29)

where the coefficients c(±)
k can be determined successively by plugging the expansions (29)

into the recurrence relation. We conclude that for n →∞

an = C+(s)a(+)
n + C−(s)a(−)

n +O
(

2− n
2

)
. (30)

For |arg(s)| < π, the series
∑

|a(+)
n | diverges while the series

∑
|a(−)

n | converges, therefore
the quasinormal frequencies are given by the roots of the coefficient C+(s). There are several
alternative ways to find these roots. The most frequently used is Leaver’s method of continued
fractions [12]. It is stable and accurate but tedious in the case at hand because the recurrence
relation must first be reduced to three terms by Gaussian elimination. Employing this method
we found exactly one pair of complex conjugate frequencies s ≈ −0.364 322 ± 0.476 858i.
To verify this result, we have reproduced it by two different methods: a brute force evaluation

6 An alternative way of selecting the outgoing solution by a certain Gevrey-class regularity condition has been recently
proposed by Gajic and Warnick [14]; see also [15]. For a very interesting discussion of hyperboloidal approach to
quasinormal modes and Leaver’s method we refer the reader to [16, 17].
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of a dominant solution by forward recurrence and an algebraic method introduced in [18].
We skip the details of these straightforward but dull computations. We confirmed the above
perturbative analysis by the direct numerical integration of the linearized equation; see
figure 2.

Remark. It is instructive to compare the above computation of the quasinormal modes for
the half-kink with an analogous computation for the vacuum solution w = 1 of equation (13)
with the boundary condition w(u, 1) = 1 (as mentioned above, this is equivalent to the free
wave equation in 6 + 1 dimensions). For the ansatz w = 1 +

√
y esu v(y) (where y = x2), we

obtain the same eigenvalue equation as (27) but with the potential V = 15/4. Repeating the
above analysis, we get a three-term recurrence relation having two linearly independent solu-
tions a(±)

n with the asymptotic behavior (29), hence as before the quasinormal frequencies are
given by the roots of the coefficient C+(s) of the dominant solution. We remark that in this
case the analysis based on the recurrence relation is purely academic because the eigenvalue
equation can be solved exactly and the outgoing solution is given by vout = y−

1
2 es/yK2(s/y),

where K2(z) is the modified Bessel function of the second kind. Thus, the quantization con-
dition for the quasinormal modes is K2(s) = 0, which has exactly one pair of complex con-
jugate zeros on the principal branch s = −1.281 373 ± 0.429 4849i [19]. We verified that
the roots of C+(s) are the same, which provides a reassuring benchmark test for Leaver’s
method.

5. Numerical results

In this section we corroborate conjecture 1 with direct numerical simulations of the initial
boundary value problem (13) and (14). As in section 4, we write w = q(x) + x f (u, x) and
then solve equation (22) numerically using the method of lines. To this end, we first discretize
equation (22) in space using the pseudospectral approach. For numerical convenience, we
rescale the spatial domain to the interval [−1, 1] using z = 2x − 1 and work with function val-
ues { f j(u) ≡ f (u, z j)} evaluated at K Chebyshev points of the second kind {z j = cos

( ( j−1)π
K−1

)
},

1 � j � K. Spatial derivatives ∂z and ∂2
z are replaced by the corresponding spectral differentia-

tion matrices D(1)
K and D(2)

K [22] and then both the derivatives and nonlinear terms are evaluated
using the grid function { f i}. The resulting semi-discrete system takes the following schematic
form

∂u f1 = 0, ∂u(D(1)
K f ) j = F j(D

(2)
K f , D(1)

K f , f , z), j = 2, . . . , K, (31)

where the boundary condition f1 = 0 replaces the equation at the grid point z1 = 1. We bring
this system to an explicit form by solving the linear system for u derivatives of { f j}. This
requires inverting the operator D(1)

N with the first row replaced by a condition ∂u f1 = 0. Note
that this linear operator is invertible and non-degenerate. The solution uses the LU decomposi-
tion of the resulting matrix. For efficient time integration we use an implicit scheme. We employ
the BDF method (variable-order, variable-coefficient, in fixed-leading-coefficient form) which,
for the best performance, we limit to the second order (higher-order methods struggled to find
the optimal step size/order, probably due to the stiffness of the equation). We used the IDA code
[23], as available in Wolfram Mathematica [24], in which we set the error tolerances to very
conservative values (typically 10−13) so that the spatial resolution determines the errors in the
numerical solution. Tests of the final algorithm show the spectral (exponential) convergence
with increasing K.
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Figure 3. Pointwise decay to the half-kink for the initial data (32) with b = 1 (top row)
and for the same data with an extra term x(1 − x) which generates a nonzero NP constant
(bottom row). Compare with the analogous plots of the linear decay shown in figure 1.

Using the above method we have simulated the evolution of various initial data. Here we
illustrate the results for a sample one-parameter family

w(0, x) = 1 + bx4 − (1 + b)x6, (32)

where b is a free parameter. For this data the NP constant is equal to zero. To see how a nonzero
NP constant affects the dynamics we look in parallel at the evolution of initial data (32) with
the additional term x(1 − x). The energy of initial data (32) attains the minimum value 0.6672
at b ≈ −2.1022. For −7.7295 � b � 2.5933 we have E < 2, hence according to (21) the half-
kink q is the only possible attractor (the N = 0 case in our terminology). In agreement with
this, we observe rapid convergence to q through a short ringdown and then the late-time tail;
see figure 3. Notice that the linear decay rates determined in the previous section, namely u−5

in the interior (x > 0) and u−5/2 along the future null infinity (x = 0), are not propagated by
the nonlinear flow7 for which the decay rates are slower by one power of u. Most important for
us is the decay rate for the radiation coefficient c1(u) ∼ u−3/2, however establishing this fact
rigorously is a task that goes beyond the scope of this paper. We remark that similar nonlinear
tails (but only in the interior) have been studied in the literature for semilinear wave equations in
high even spatial dimensions (in particular, for the quadratic wave equation in 6+ 1 dimensions
which is relevant in our context); see [20, 21].

Next, we consider initial data with energy greater than 2. For moderate positive values of
b the solution again quickly converges to the half-kink, however for larger values of b we
observe formation of the superposition of the anti-half-kink and the expanding kink (the N = 1
attractor in our terminology). We find that the transition between these two scenarios occurs at
b0 ≈ 12.4582. For marginally subcritical solutions (i.e. for b = b0 − ε with small positive ε)

7 Interestingly, if the NP constant is nonzero, then the linear and nonlinear tails decay at the same rate: u−3 for x > 0
and u−1/2 for x = 0; see the bottom rows in figures 1 and 3.
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Figure 4. Snapshots from the evolution for the initial data (32) with marginally subcriti-
cal (blue) and supercritical (red) values of b near b0. The half-kink and anti-half-kink are
plotted with dashed lines. For the subcritical evolution the turning point is at uR ≈ 1000.

Figure 5. The energies of solutions from figure 4. In the inset we zoom into the inter-
mediate phase of subcritical evolution when the energy of the outer kink is radiated
away.

a superposition of the anti-half-kink and the expanding kink appears for intermediate times but
at a later time the expansion stops, the kink starts shrinking and is quickly annihilated. In this
process the energy of the kink is rapidly radiated away and the solution settles down to the
half-kink. This behavior is shown in figures 4 and 5 where we plot the snapshots of marginally
subcritical and supercritical solutions and the corresponding energies, respectively.
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Figure 6. Left panel: for marginally subcritical solutions we plot the zero of w(u, x),
denoted by x0(u), for several values of log(b0 − b) (depicted by different colors). For
almost critical data the fit gives x0 ∼ u−0.2494. This is in accord with the ODE approxima-
tion (12) which gives λ(t) ∼ t1/2 for motion on the separatrix with Eeff = 2. Right panel:
x0(u) at the return time uR as the function of b0 − b. The fit gives x0(uR) ∼ (b0 − b)0.2495

(red line).

Figure 7. The speed of expansion of the outer kink for supercritical evolution with
b = 20. To compute the function λ(t), we first find the zero x0(u) of the solution w(u, x),
then translate the result to the variables (t, r), and finally compare it with the ansatz (9).

For a more quantitative description of the expanding phase of subcritical solutions, let x0(u)
be the zero of the solution w(u, x) and uR be the return time when the expansion stops. We find
that uR ∼ ε−1 and x0(uR) ∼ ε1/4; see figure 6. Translating these scaling relations to the original
variables and comparing with the ansatz (9) we get tR ∼ ε−1 and λ(tR) ∼ ε−1/2. This is in
agreement with the ODE approximation (12) which predicts that for marginally subthreshold
effective energies we have λ(tR) ∼ (2 − Eeff)−1/2.

Increasing b we find that above b1 ≈ 47.9041 the solution again settles down on the
half-kink after a few rapid nonlinear oscillations. A similar transition occurs below b−1 ≈
−53.9447. As |b| grows further the endstate keeps flipping back and forth between the N = 0
and N = 1 attractors. We conjecture that there are infinitely many critical values bn (n ∈ Z) at
which the curve of initial data (32) intersects the codimension-one manifold that separates the
N = 0 and N = 1 basins of attraction.
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In the case N = 1 of conjecture 1, it remains to verify that the speed of expansion of the
outer kink goes asymptotically to zero, i.e. λ(t)

t → 0 for t →∞. This is shown in figure 7.
Unfortunately, we are not in position to say more about the dynamics of λ(t). The computation
of the precise asymptotic behavior of λ(t), which takes into account the loss of energy by
radiation, is a challenging open problem that we leave to future work8.
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[8] Chruściel P T and Łȩski S 2006 Polyhomogeneous solutions of nonlinear wave equations without

corner conditions J. Hyperbolic Differ. Equ. 3 81–141
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