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Abstract: We present the formulation of a version of Lorentz covariant quantum mechanics based on
a group theoretical construction from a Heisenberg–Weyl symmetry with position and momentum
operators transforming as Minkowski four-vectors. The basic representation is identified as a coherent
state representation, essentially an irreducible component of the regular representation, with the
matching representation of an extension of the group C∗-algebra giving the algebra of observables.
The key feature is that it is not unitary but pseudo-unitary, exactly in the same sense as the Minkowski
spacetime representation. The language of pseudo-Hermitian quantum mechanics is adopted for
a clear illustration of the aspect, with a metric operator obtained as really the manifestation of
the Minkowski metric on the space of the state vectors. Explicit wavefunction description is given
without any restriction of the variable domains, yet with a finite integral inner product. The associated
covariant harmonic oscillator Fock state basis has all the standard properties in exact analog to those
of a harmonic oscillator with Euclidean position and momentum operators. Galilean limit and the
classical limit are retrieved rigorously through appropriate symmetry contractions of the algebra and
its representation, including the dynamics described through the symmetry of the phase space.

Keywords: Lorentz covariant quantum mechanics; Minkowski Metric Operator; pseudo-unitary
representation; pseudo-hermitian quantum mechanics; symmetry contraction limits; quantum nonrel-
ativistic and classical limits; quantum relativity; WWGM formulation; coherent state representation;
noncommutative spacetime

1. Introduction

Our group had implemented a, quantum relativity symmetry, group theoretical for-
mulation of the full dynamical theory of the familiar quantum mechanics with rigorous
classical limit given as the Newtonian theory, obtained through a contraction of the relativ-
ity symmetry applied to the specific representation [1]. The latter is taken as essentially
an irreducible component of the regular representation of H(3), the Heisenberg–Weyl
group. The full quantum relativity symmetry, denoted G̃(3), can naturally be seen as
a U(1) central extension [2] of the Galilean symmetry. HR(3) is (or is isomorphic to) its
subgroup, left after the ‘time-translation’ is taken out. A H(3) representation is a spin
zero, time independent representation of G̃(3). The representation is really the one of the
canonical coherent states [3–5]. The matching representation of the group C∗-algebra [6,7],
further extended to a proper class of distributions, gives the observable algebra as functions,
and distributions, of position and momentum operators, X̂i = xi? and P̂i = pi?, as given
by the Weyl–Wigner–Groenewold–Moyal(WWGM) formulation [8–11]. The operators
α(pi?, xi?) = α(pi, xi)? act as differential operators on the wavefunctions on coherent state
basis φ(pi, xi) by the Moyal star-product α ? φ; α ? β? = (α ? β)?. X̂i and P̂i can be seen
as operator coordinates of the quantum phase space [12,13], which has been argued to
serve as a proper quantum model for the physical space [1,14]. We naturally seek a Lorentz
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covariant version of that with a c → ∞ contraction of the symmetry taking the Lorentz
boosts to that of the Galilean ones [15]. Such a contraction is the mathematically rigorous
way to look at the full approximation of a theory under a certain limit, from the symmetry
theoretical perspective.

The relativity symmetry for the quantum theory is one of HR(1, 3), which fits well into
the contraction chain, at least at the symmetry and coset space level [16,17]. It has been
well known that from a group theoretical perspective, a general overcomplete coherent
state basis can naturally be identified with points of the appropriate coset. The latter in
our cases corresponds to something like the classical phase space. The formulation of
a fully Lorentz covariant version of quantum mechanics, with position and momentum
operators X̂µ and P̂µ transforming as Minkowski four-vectors, has been around since
the early days of quantum mechanics. A naive thinking would be to represent those
operators as xµ and −ih̄∂xµ , respectively, acting on the wavefunctions ψ(xµ) with the
simple inner product giving the squared integral norm, and to take a unitary Schrödinger
evolution under the Einstein proper time τ, which gives the Klein–Gordon equation as
the τ-independent equation of motion. Explicit group theoretical picture of that has been
available since the sixties [18,19]. The truth is, in any theory of quantum mechanics with
wavefunctions on Minkowski four-vector variable(s), the real symmetry behind the system
is the HR(1, 3) group instead of only its Poincaré subgroup. There are, however, difficulties
with the unitary theory, especially well illustrated in the covariant harmonic oscillator
problem [18,20], which we show explicitly in the Appendix A.

Other than being of interest on its own, the harmonic oscillator problem is of great
theoretical importance. For our usual quantum mechanics, we have the well appreciated
close connection between the Fock states, as the eigenstates of the harmonic oscillator
Hamiltonian, and the canonical coherent states. The set of Fock states is one of the most
useful orthonormal basis for the Hilbert space and the latter, as the space of rapidly de-
creasing functions spanned by their wavefunctions, giving the states on which the position
and momentum operators are truly Hermitian in a completely consistent formulation [8].
Upon a more careful inspection, the Fock states are simultaneous eigenstates of the number
operators N̂i, or equivalently of X̂2

i + P̂2
i . The subspace spanned by the Fock states of a

fixed eigenvalue n of the total number operator ∑ N̂i corresponds exactly to the space of
symmetric n-tensors of the three-dimensional Euclidean space. In particular, the three
n = 1 states transform exactly as components of a three-vector in a complexified Newtonian
space. A perfectly nice embedding of all that into the space spanned by Fock states of the
Lorentz covariant harmonic oscillator problem should be expected to have a fully parallel
structure of symmetric n-tensors in the (1 + 3)-dimensional Minkowski spacetime [20].
Unlike for the SO(3) symmetry, however, the noncompact nature of Lorentz SO(1, 3) sym-
metry means that the corresponding spaces for the symmetric n-tensors, as its irreducible
representations, cannot be unitary.

Replacing the full unitarity of the irreducible representation of HR(1, 3) by a pseudo-
unitarity exactly in line with the Minkowski spacetime may be a good direction to for-
mulate a theory of covariant quantum mechanics [21]. The representation as one for the
SO(1, 3) subgroup would reduce to a sum of finite dimensional irreducible components
each labeled by two integers, the n and a nonzero positive integer characterizing the spin in-
dependent Casimir invariant. The latter corresponds to one plus the rank of the symmetric
n-tensors [22].

We have presented in Ref. [22] the complete set of Fock states wavefunctions of such
a pseudo-unitary representation of HR(1, 3) symmetry on a space of rapidly decreasing
functions, hence completely free from divergence in themselves as well as in the Lorentz
invariant indefinite inner product. Formulation given there corresponds to writing the time
coordinate as ict. Here, the representation is rather given in the form of the |pµ, xµ〉 coherent
states, with pµ and xµ being real Minkowski four-vectors, from our group theoretical grand
framework [1,16,17].
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We want to emphasize that quantum dynamics is a symplectic dynamics and the
physical Hamiltonian is just one among the many general Hamiltonians with the generated
Hamiltonian flows as symmetries of the phase space. It is the symplectic structure of the
latter as fixed by the inner product, or the metric for the vector space or its projective space,
that is really the key. The actual symmetries of a physical system of course correspond to
Hamiltonian flows the generators of which commute with the physical Hamiltonian, with
the generators giving the conserved physical quantities.

As a preparation, we first sketch the notion of pseudo-Hermiticity and pseudo-
unitarity clearly in the next section. In Sections 3 and 4 below, we start with an explicit
presentation of the regular representation, and its irreducible components, of the H(1, 3)
group. A major part of that is also needed to formulate the c→ ∞ contraction. Each such
component is shown to give essentially the same physical theory of covariant quantum
mechanics we present in detail on the coherent state basis, in the abstract form and in
wavefunctions, with the Lorentz invariant indefinite inner product. The part that involves
the inner product and the pseudo-Hermitian/pseudo-unitary nature of the theory is put in
Section 4 after the presentation of the space of state vectors as the Fock space for covariant
harmonic oscillator. Section 5 deals with the Lorentz to Galilean, c→ ∞, contraction of the
representation, i.e., the retrieval of the ‘nonrelativistic’ limit, the part for the dynamics of
which is left to the last subsection of the Section 6. The latter is first devoted to the WWGM
framework or the observable algebra, focusing on the symmetry transformations and the
dynamics as a specific case of such a symmetry flow, with the real parameter characterizing
transformation corresponding to an evolution parameter, which is taken as the proper time
in the case. In Section 7, we give a brief description of contraction to the classical theory
and conclude in the last section.

2. Pseudo-Hermiticity and Pseudo-Unitarity

Pseudo-unitarity is about an inner product that is not positive definite, like the
Minkowski metric. Lorentz covariant quantum theory with an indefinite inner prod-
uct vector space of states was first introduced by Dirac and Pauli [23,24]. However, an
explicit detailed formulation of quantum mechanics with a careful attention paid to the co-
variant and contravariant indices seems not to be available. More interest has been focused
on quantum field theories, such as quantum electrodynamics (see Ref. [25] for a review).
It has been a common strategy, especially in gauge theories since Gupta–Bleuler [26,27],
to formulate a theory on such a Krein space [28] and then project it onto the ‘physical’
Hilbert space as the positive normed subspace (see also Ref. [20] for the harmonic oscillator
case), retrieving a standard probability interpretation. Interest in the related subject matter
for quantum mechanics has been brought back to popularity from works on the so-called
pseudo-Hermitian quantum mechanics [29–31], which we, in a way, rediscovered in our
work of Ref. [22].

Let us sketch pseudo-Hermitian quantum mechanics here. A naive direct picture
starts with a Hamiltonian operator ÂH that is not Hermitian with respect to the given inner
product of the Hilbert space. If a Hermitian operator η̂ can be found such that

Â†
H = η̂ÂH η̂−1 , (1)

the operator ÂH is called pseudo-Hermitian and η̂ the (pseudo-)metric operator [24,31]. We
think metric operator is the more appropriate name than pseudo-metric operator, especially
because in our case it is essentially the exact manifestation of the Minkowski metric ηµν.
The interesting thing is that a new inner product

η
〈·|·〉 can be introduced with respect to

which the operator ÂH is really Hermitian, namely Â†η

H = ÂH for the Hermitian conjugation
satisfying

η

〈
·|Â†η ·

〉
=

η

〈
Â · |·

〉
. (2)
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(We introduce the somewhat unusual notation for a reason. Since we are talking about a
second inner product on the same vector space, we want the vectors, kets, to be independent
of the inner products, while the sets of bras as functionals can be defined differently [22],
giving the different Dirac brackets as the different inner products). To be more specific, one
can call it a η-Hermiticity.

The new inner product is not required to be positive definite. More importantly, the
evolution generated by ÂH is ‘unitary’ [31] in the sense that it preserves the inner product
between any two states. In the case of an indefinite inner product, the transformations
preserving it are truly represented by the pseudo-unitary, rather than unitary, matrices.
Adopting from the terminology of special relativity, we have states with norms that can
be spacelike (+ve), timelike (−ve), or lightlike (0). For the nondegenerate case, explicitly,
one can find a countable orthonormal basis, like the Fock basis in our case, with L vectors
of the norm −1, M vectors of +1 and none of the vanishing norm, in which the ‘unitary’
transformations generated by any pseudo-Hermitian operator satisfying Equation (2) are
represented by SU(L, M) matrices, including the case of L, M→ ∞.

Ref. [31] restricted the term ‘inner product’ to positive-definite products, which is not
within its mathematical definition. That is the source of many ‘pseudo-’ terminology as
in ‘pseudo-inner product’ and ‘pseudo-metric’, which we see as unnecessary. Defining an
absolute pseudo-Hermiticity for the otherwise Hermitian operators which generate pseudo-
unitary transformations preserving the indefinite inner product could be quite sensible
though. Actually, the theory of quantum mechanics we are interested in here is a pseudo-
unitary representation of the background (relativity) symmetry group. The generators of
the symmetry are all pseudo-Hermitian operators. These are ‘Hamiltonian operators’ in the
sense of a symplectic/geometric picture of the theory. An acceptable physical Hamiltonian
operator in the theory, of course, has to satisfy the same pseudo-Hermiticity, namely the
η-Hermiticity.

Note that the notion of pseudo-Hermiticity is a relative one. ÂH is not Hermitian and
is pseudo-Hermitian only with respect to the original inner product 〈·|·〉, for which the
Hermitian conjugate Â†

H is defined as the operator satisfying〈
·|Â†·

〉
=
〈

Â · |·
〉

. (3)

Looking at the theory as a dynamical one with the physical Hamiltonian operator, the

η
〈·|·〉 inner product is the only one relevant. The inner product certainly gives a metric to

the vector space and its projective space, which also fixes the symplectic structure. That
is the meaning of the choice of the (nontrivial) metric operator. The bottom line is, two
different inner products on the same vector space really make two different inner product
spaces and we generally do not have any necessity to consider two different inner products
for a single theory of quantum dynamics. Often time, as in Ref. [22], it is just that the
simplest or the most familiar kind of inner product is the ‘wrong’ one, based on which
one can construct the ‘right’ one more easily. In this case,

η
〈·|·〉 = 〈·|η̂|·〉, or equivalently

η
〈·| = 〈·|η̂. Obviously, that is the same as 〈·| =

η
〈·|η̂−1, so the two sets of bras are really

on the equal footing. The naive perspective that the inner product 〈·|·〉 is more basic is
only a consequence of the presentation. Furthermore, the reality of an eigenvalue for an
η-Hermitian operator follows in the same way as for a usual Hermitian one so long as the
norm, i.e., η-norm here, of a corresponding eigenstate is nonzero. The latter, of course,
always holds on a Hilbert space or, equivalently, for a positive definite inner product.
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3. The Irreducible Representations of HR(1, 3)

We give the Lie algebra for HR(1, 3) as

[Jµν, Jρσ] = 2i
(
ηνσ Jµρ + ηµρ Jνσ − ηµσ Jνρ − ηνρ Jµσ

)
,

[Jµν, Yρ] = 2i
(
ηµρYν − ηνρYµ

)
,

[Jµν, Eρ] = 2i
(
ηµρEν − ηνρEµ

)
,

[Yµ, Eν] = 2iηµν I , (4)

where ηµν = diag{−1, 1, 1, 1}. The choice of notation with Yµ corresponding essentially
to spacetime position observables and Eµ to energy–momentum observables is somewhat
unusual. The reason for it should be clear from the analysis below. Notice that the
generators are all taken to have no physical dimension, and the factor 2 corresponds to h̄
in the chosen units, which is at least convenient for the coherent state formulation [1]. In
terms of the group element g(pµ, xµ, θ, Λµ

ν), we have the group product (with the indices
suppressed)

g(p′, x′, θ′, Λ′) g(p, x, θ, Λ) = g
(

p′ + Λ′p, x′ + Λ′x, θ′+ θ− x′Λ′p + p′Λ′x, Λ′Λ
)
. (5)

The story is an extension of what has been done in Ref. [1,14] for HR(3) = H(3)o SO(3) to
the framework of

HR(1, 3) = H(1, 3)o SO(1, 3) , (6)

the focus of which, for the spin zero case here, is only on the irreducible representation of
the Heisenberg–Weyl symmetry H(1, 3) and H(3). A key point of difference between the
two cases is that SO(1, 3) is noncompact, the finite dimensional representations of which,
as a direct extension of those compact ones of SO(3), are pseudo-unitary instead of unitary.
The basis of that pseudo-unitarity is the indefinite Minkowski norm associated with the
metric ηµν extending the Euclidean δij [21,22]. In the case of HR(3), the representation is
naturally an irreducible component of the regular representation of H(3), which all can be
seen actually as physically equivalent. It comes naturally as wavefunctions in the coherent
state basis, on which the observables are represented as differential operators, essentially
those obtained from the WWGM framework. Details of all that for the case of H(3) group
has been presented in Ref. [1].

We present first the results from a harmonic analysis of Heisenberg–Weyl groups
adapted to our case of H(1, 3) [32]. We write the left regular representation in h̄ = 2 units

as V(pµ, xµ, θ) = ei(pµYL
µ−xµEL

µ+θ IL), where

YL
µ = ixµ∂θ + i∂pµ ,

EL
µ = ipµ∂θ − i∂xµ ,

IL = i∂θ (7)

are the left-invariant vector fields. In an irreducible representation, the central generator
I has to be represented by a multiple of identity. We write the one parameter series Vς

(ς 6= 0) of representations for the generators as operators {ŶL
ς , ÊL

ς , ς Î}, where Î is the identity
operator and [ŶL

ςµ, ÊL
ςν] = 2iςηµν Î. The VL

ς set can be considered the set of equivalence classes
of irreducible representations with nonzero Plancherel measure. The limit of VL

ς as ς→ 0
gives the whole set of irreducible one-dimensional representations. The latter set has zero
Plancherel measure and together with the VL

ς exhausts all equivalence classes of irreducible
representations. Based on the measure, one should consider the expansion

α(pµ, xµ, θ) =
1

(2π)
1
2

∫
dς ας(pµ, xµ) e−iςθ |ς|n , (8)
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n = 1 + 3 here, given as the inverse Fourier–Plancherel transform. The actions of the
left-invariant vector fields on α(p, x, θ) in the form of Equation (8) are given by their
actions on ας(p, x)e−iςθ parts as ςx + i∂p, ςp− i∂x, and ς, respectively. Here, and below,
we suppress the indices wherever it is unambiguous. We can see that the action at each
ς 6= 0 corresponds exactly to the VL

ς representation with the generators represented by
{ŶL

ς , ÊL
ς , ς Î}. That is the reduction of the regular representation into irreducible components.

For positive values of ς, one can introduce the ς-independent operators

X̂L
(ς)µ ≡

1√
ς

ŶL
ςµ = x(ς)µ + i∂pµ

(ς)
,

P̂L
(ς)µ ≡

1√
ς

ÊL
ςµ = p(ς)µ − i∂xµ

(ς)
, (9)

where we have x(ς) =
√

ςx and p(ς) =
√

ςp. VL
ς(p(ς), x(ς), θ(ς)) is then given by ei(p(ς)X̂L

(ς)
−x(ς) P̂L

(ς)
+θ(ς) Î),

with θ(ς) = ςθ, hence, in a form formally independent of ς. X̂L
(ς) and P̂L

(ς) are still SO(1, 3)
vectors, and so are p(ς) and x(ς). The (ς) index becomes completely dummy and analysis
based on the new operators and parameters is independent of ς so long as we are looking
only at a particular irreducible representation. One can even simply drop it. From a physics
perspective, we have absorbed the value of ς by a choice of physical unit for measuring the
observables corresponding to Y and E, here all in the unit of

√
ς. For ς being negative, we

should switch ŶL
ς with ÊL

ς first; i.e., we take

X̂L
(ς) ≡

1√
|ς|

ÊL
ς = x(ς) + i∂p(ς) ,

P̂L
(ς) ≡

1√
|ς|

ŶL
ς = p(ς) − i∂x(ς) ,

achieved by taking x(ς) = −
√
|ς|p and p(ς) = −

√
|ς|x. The result for VL

ς(p(ς), x(ς), θ(ς)) still
maintains. (From the physical point of view, the representations corresponding to different
values of ς can be seen as describing the same physics. The parameter ς may then be taken
as the physical constant h̄c2

2 . For that matter, ς cannot be negative. Physicists identify
the symmetry algebra from a relevant representation with X̂L

(ς) and P̂L
(ς) as the position and

momentum observables satisfying [X̂L
(ς)µ, P̂L

(ς)ν] = 2iηµν, in the h̄ = 2 units. However, the
mathematical case of a product of two representations with different ς values may have
interesting physics implications if a composite physical system corresponding to that exists
in nature.) ς can actually be seen as the eigenvalue of I, essentially the Casimir operator. The
semi-direct product structure HR(1, 3) = H(1, 3)o SO(1, 3) says that with each irreducible
representation of the subgroup H(1, 3)o SÔ, where SÔ ⊆ SO(1, 3) is the stability subgroup
for an orbit Ô of SO(1, 3) in the space of equivalent classes of irreducible representations
of H(1, 3), one can associate an induced representation which is irreducible [33]. We have
seen that, apart from the set of measure zero, each of which only gives one-dimensional
representations, the irreducible representations are characterized by the nonzero value of ς
and the representations (though mathematically nonequivalent) can be cast in the same
form as VL

ς(p(ς), x(ς), θ(ς)). It is obvious that the representation is invariant under the SO(1, 3)
transformations, hence each is an independent orbit. That is to say SÔ = SO(1, 3). The
fact is of paramount importance for unambiguously identifying the nature of the coherent
states below. In view of the discussion above, we can see that for any of the VL

ς(p(ς), x(ς), θ(ς))
representation, we can simply write it in the simple notation VL(p, x, θ), like taking the
ς = 1 case as a representative. That is essentially what has been done in Ref. [1] for the H(3)
or HR(3) case. However, for the reason to be clear below, we keep the explicit ς-notation
for the most part of the manuscript.
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The standard approach is to introduce the abstract canonical coherent states as∣∣∣pµ
(ς), xµ

(ς)

〉
≡ Vς(pµ

(ς), xµ
(ς))|0, 0〉 ≡ e−iθ(ς)Vς(pµ

(ς), xµ
(ς), θ(ς))|0, 0〉 , (10)

for

Vς(pµ
(ς), xµ

(ς), θ(ς)) ≡ ei(pµ
(ς)

X̂(ς)µ−xµ
(ς)

P̂(ς)µ+θ(ς) Î) , (11)

representing the H(1, 3) group element W(pµ
(ς), xµ

(ς), θ(ς)) satisfying the group product

W(p′µ(ς) , x′µ(ς) , θ′(ς))W(pµ
(ς), xµ

(ς), θ(ς)) = W
(

p′µ(ς) + pµ
(ς), x′µ(ς) + xµ

(ς), θ′(ς) + θ(ς) −(x′(ς)µ pµ
(ς)− p′(ς)µ xµ

(ς))
)

. (12)

Each group element can be identified with a point in the HR(1, 3)/SO(1, 3) coset space [14,17].
X̂(ς) and P̂(ς) are operators on the abstract representation spaceHς spanned by the

∣∣∣pµ
(ς), xµ

(ς)

〉
vectors, and |0, 0〉 = |0(ς)〉 is a fiducial normalized cyclic vector corresponding to the points
(0, 0, θ(ς)) in the coset space, each of which is fixed under SO(1, 3) transformations.

4. Pseudo-Hermitian Nature of the Representation of Symmetry Generators from the
Fock States

The kind of operator representation of the four-vector observables given in Equation (9)
would be naively seen as Hermitian, hence the full representation of the HR(1, 3) group
as unitary. To be more careful, the unitarity of a representation is really to be defined
with respect to the inner product assumed for the representation space. The operator
representation sure is Hermitian with respect to the usual squared-integral inner product,
(with bar denoting the complex conjugation),

〈
φ|φ′

〉
=

1
π4

∫
d4 p d4x φ̄(pµ, xµ) φ′(pµ, xµ) , (13)

for the wavefunctions that vanish at infinity. In the equivalent formulation in terms of
standard Schrödinger wavefunctions ψ(xµ), that is exactly the unitary representation
given explicitly first in 1966 [18,19]. The short-comings of the formulation are best seen
in the covariant harmonic oscillator problem [18,20]. We illustrate them explicitly in
the Appendix A. To illuminate the pseudo-Hermitian nature of our representation, we
present in the following the pseudo-unitary Fock space and complete the coherent states
representation, together with the appropriate Lorentz invariant integral inner product. For
convenience, in this section we drop the (ς) and ς subscripts.

We start with summarizing the more transparent abstract algebraic results for the
Fock space [20,22] in a better logic and notation. For the Hamiltonian X̂µX̂µ + P̂µ P̂µ, we
consider âµ = ηµν(X̂ν + iP̂ν), â†η

µ = X̂µ − iP̂µ and N̂(µ) =
1
4 â†η

µ âµ without summation (the
index (µ) is not a vector one) with

[N̂(µ), âν] = −ην
µ âµ , [N̂(µ), â†η

ν ] = η
µ
ν â†η

µ ;
[

âµ, â†η

ν

]
= 4η

µ
ν . (14)

Here, we introduce the †η
notation for a yet unspecified η̂, not excluding that being trivial,

requiring however the η-Hermiticity of X̂µ and P̂µ. Note that the feasible inner product is
still to be determined. The Fock states are simultaneous eigenstates of the N̂(µ), and hence
also the N̂ = ∑ N̂(µ), operators. The last one is of course Lorentz invariant.

|n〉 ≡ |n0; n1, n2, n3〉 =
1

2n
√

n0! n1! n2! n3!

(
â†η

0

)n0
(

â†η

1

)n1
(

â†η

2

)n2
(

â†η

3

)n3 |0〉 , (15)
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with

â0|n0; n1, n2, n3〉 = 2
√

n0|n0 − 1; n1, n2, n3〉 ,

â†η

0 |n0; n1, n2, n3〉 = 2
√
(n0 + 1)|n0 + 1; n1, n2, n3〉 , (16)

and the exact corresponding results for âi|n〉 and â†η

i |n〉. The HR(1, 3) canonical coherent
states, satisfying âν|pµ, xµ〉 = 2(xν + ipν)|pµ, xµ〉, can be expanded as

|pµ, xµ〉 = e−
xµ xµ+pµ pµ

2 ∑
1√

n0! n1! n2! n3!
(x0 + ip0)

n0
(
x1 + ip1

)n1

×(x2 + ip2)
n2(x3 + ip3)

n3 |n0; n1, n2, n3〉 , (17)

with |0, 0〉 = |0〉. Moreover, those are exactly the states defined earlier, obtained by an
action of V(pµ, xµ) = ei(pµX̂µ−xµ P̂µ) on |0〉 state, or equivalently

V(pµ, xµ)|0〉 = e−
xµ xµ+pµ pµ

2 e
(xν+ipν)â†η

ν
2 |0〉 .

The right inner product to complete the familiar algebra of the problem is, however,
nontrivial. While the operators âµ, â†η

µ and N̂(µ) with the commutation relation of Equa-
tion (14) give a convenient generalization of the âi ≡ âi, â†

i and N̂(i) system, insensitive to
the metric signature yet having the right Lorentz transformation properties of the Fock
state solutions built in, â†η

0 is not a naive Hermitian conjugate of â0. In fact, we can obtain
from Equation (16) that 〈âµ · |·〉 =

〈
·|â†η

µ ·
〉

when the usual orthonormality 〈m|n〉 = δmn is
assumed. We need a new inner product defined as

η
〈m|n〉 = (−1)n0 δmn , (18)

i.e., η̂ = ∑(−1)n0 |n〉〈n|, with the corresponding η-Hermitian conjugation, â†η

µ = η̂−1 â†
µη̂,

giving
η

〈
âµ · |·

〉
=

η

〈
·|â†η

µ ·
〉

. Note that specifying the inner product for a complete basis

uniquely defines the inner product over the whole space. One can easily see that (âµ)† = â†η

µ

implies Hermiticity of X̂i and P̂i operators, while from equating
(
â0)† =

(
X̂0 + iP̂0

)† with
â†η

0 , we see that X̂0 and P̂0 are anti-Hermitian with respect to the usual inner product,
i.e., the one with η̂ being the identity. However, all of the HR(1, 3) generators are rep-
resented by pseudo-Hermitian, or η-Hermitian, operators. The operators all have real
spectra, as we show explicitly below. Explicitly, X̂µ, P̂µ and Ĵµν = X̂µ P̂ν − X̂ν P̂µ (and Î)
all satisfy Equation (1) in the place of ÂH, and we have a pseudo-unitary representation
with invariant inner product

η
〈·|·〉. In particular, the coherent states are normalized as

η
〈0|0〉 =

η
〈pµ, xµ|pµ, xµ〉 = 1, hiding the inner product indefiniteness. We can see the latter

either through the explicit use of Equation (17), or directly from the fact that V(pµ, xµ)
in Equation (10) is an η-unitary operator. From the definition of η̂ in Fock basis and
Equation (17), we obtain

η
〈pµ, xµ| = 〈pµ, xµ|η̂ =

〈
pµ, xµ

∣∣ , (19)

showing explicitly the metric operator η̂ is a direct manifestation of the Minkowski metric
in the Krein space of our quantum theory, exactly as we are looking for [21].

As the state |0, 0〉 = |0〉 has zero expectation values for the X̂µ and P̂µ operators, we
get

η

〈
pµ, xµ|X̂ν|pµ, xµ

〉
= 2xν ,

η

〈
pµ, xµ|P̂ν|pµ, xµ

〉
= 2pν . (20)
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The generic wavefunctions can be introduced as φ(pµ, xµ) ≡
η
〈pµ, xµ|φ〉, satisfying

η

〈
pµ, xµ

∣∣X̂ν

∣∣φ〉 = X̂L
νφ(pµ, xµ) ,

η

〈
pµ, xµ

∣∣P̂ν

∣∣φ〉 = P̂L
νφ(pµ, xµ) , (21)

with

X̂L
µ = xµ + i∂pµ ,

P̂L
µ = pµ − i∂xµ , (22)

exactly in the form of Equation (9) and

VL(pµ, xµ)φ(p′µ, x′µ) ≡
η

〈
p′µ, x′µ|V(pµ, xµ)|φ

〉
= φ(p′µ − pµ, x′µ − xµ)ei(x′µ pµ−p′µxµ) . (23)

We see that the abstract formulation from the set of canonical coherent states based on the
H(1, 3) manifold and the one from the irreducible component of the regular representation
are really the same one. Wavefunction of a coherent state labeled by A is given by

φA(pµ, xµ) ≡
η

〈
pµ, xµ|pµ

A , xµ
A

〉
= ei(xµ pµ

A−pµxµ
A)e−

1
2 [(x−xA)

2+(p−pA)
2] , (24)

where (x− xA)
2 and (p− pA)

2 are the Minkowski vector magnitude squares, and can be
seen as a special case of Equation (23), namely

φA(pµ, xµ) =
η

〈
pµ, xµ

∣∣∣V(pµ
A , xµ

A )
∣∣∣0, 0

〉
= VL(pµ

A , xµ
A)φo(pµ, xµ) . (25)

In particular, we have

φo(pµ, xµ) =
η
〈p, x|0〉 = e−

pµ pµ+xµ xµ

2 ,

which is the Lorentz invariant symmetric Gaussian.
To obtain the inner product on the space of wavefunctions, one simply has to look for

the proper resolution of the identity operator on the Krein space. We have

Î = ∑|n〉η〈n|η̂ =
∫

d3pd3xdp0dx0 e−2(x0)
2−2(p0)

2

π4 |pµ, xµ〉
η
〈pµ, xµ|η̂ . (26)

Therefore, the functional
η
〈ψ| is represented on the space of φ(pµ, xµ) as

∫
d3pd3xdp0dx0 e−2(x0)

2−2(p0)
2

π4 ψ̄(pi, xi,−p0,−x0)

(
·
)

,

with the very nontrivial integration measure. The inner product
η
〈ψ|φ〉 is then given by

η
〈ψ|φ〉 = 1

π4

∫
d3pd3xdp0dx0 ψ̄(pi, xi,−p0,−x0)

e(x0)
2
+(p0)

2

φ(pµ, xµ)

e(x0)
2
+(p0)

2 . (27)

Each of the basis functions φn(pµ, xµ), and hence any general φ(pµ, xµ) in the spanned
space, is formally divergent at timelike infinity of the four-vector variables. On the other
hand, all φn(pµ ,xµ)

e(x0)
2
+(p0)

2 , and hence all φ(pµ ,xµ)

e(x0)
2
+(p0)

2 , are rapidly decreasing functions. The factor

e−(x0)
2−(p0)

2
takes the e

(x0)
2
+(p0)

2

2 factor in all φn(pµ, xµ) back to e− (
x0)

2
+(p0)

2

2 , which char-
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acterizes the class of functions. The integral is finite for all wavefunctions as finite linear
combinations of the Fock state basis φn. Using φ(pµ ,xµ)

e(x0)
2
+(p0)

2 as the wavefunctions cannot be

correct, though. That would, for example, make the wavefunction for |0〉 not Lorentz
invariant and mess up the right transformation properties of all those for the Fock states,
described in Ref. [22]. Thinking further about ψ∗(pi, xi,−p0,−x0) as ψ∗(pµ, xµ), one can
see in hindsight that the inner product expression is indeed exactly what it should be. Of
course we have that here rigorously established.

One can now easily show that the Fock states wavefunctions φn(pµ, xµ) have the proper
norm ±1, and therefore are non-divergent without restricting the domain. The analytical
feature is much better than that of the unitary representation (see the Appendix A). Note
that, other than having a different inner product with a nontrivial integration measure, our
formulation in terms of the wavefunctions and differential operator representation of the
X̂µ and P̂µ really are the same as the usual unitary one. That illustrates clearly that the basic
observables X̂µ and P̂µ, as well as other observables in the form of their real functions, all
have the same eigenvalues and eigenfunctions. In particular, the spectra are real.

5. Lorentz to Galilean Contraction

A contraction [34,35] of the Lorentz symmetry SO(1, 3), sitting inside the HR(1, 3), to
the Galilean ISO(3) has been discussed in Ref. [17], together with the corresponding coset
spaces of interest. The full (quantum) relativity symmetry group obtained by contraction is
named HGH(3), with commutators among generators essentially given by

[Jij, Jhk] = 2i(δjk Jih + δih Jjk − δik Jjh − δjh Jik) ,

[Jij, Xk] = −2i(δjkXi − δikXj) , [Jij, Pk] = −2i(δjkPi − δikPj) ,

[Jij, Kk] = −2i(δjkKi − δikKj) , [Ki, Kj] = 0 ,

[Ki, H] = −2iPi , [Ki, Pj] = 0 , [Xi, Pj] = 2iδij I′ ,

[T, H] = −2iI′ , [Ki, T] = 0 , [Ki, Xj] = −2iδijT . (28)

Note that the full result for the other commutators beyond the Jij and Ki set, originated
from SO(1, 3), is essentially fixed by the requirement of having the Galilean Ki-H and the
Heisenberg X-P commutators. However, for the purpose here, the explicit contraction is
to be implemented a bit differently. It is taken as the c → ∞ limit of Ki =

1
c Ji0, Pi =

1
c Ei,

Xi = 1
c Yi,T = −1

c2 Y0, I′ = 1
c2 I, with the renaming H ≡ −E0. In the contraction, Ki, as

generators for the Galilean boosts are the basic starting point, and we would like to be able
to trace physics, including the relative physical dimensions of quantities, by considering
the speed of light c as having a physical dimension. Introducing Xi =

1
c Yi is to keep the

same physical dimensions for Xi and Pi. However, the essence of the contraction scheme
as a formulation to retrieve an approximate physical theory from a more exact one is really
to implement the contraction at a representation level.

To implement the contraction on VL
ς , or the matching Vς as a representation of the orig-

inal H(1, 3), it is important to note that the original central charge generator I represented
by ς Î in Vς would give the representation of the contracted I′, which remains central, as ς

c2 Î.
For a sensible result, one needs to consider ς = c2χ with χ staying finite at the contraction
limit, hence I′ represented by χ Î (recall: Î is the identity operator). Therefore, Vς contracts
into Vχ. In other words, the Vς representation of the original H(1, 3), and the full HR(1, 3),
survives as the Vχ (χ = ς

c2 > 0) representation of the H(3) in the contracted HGH(3), as well
as of the full group.

For the c→ ∞ limit of VL
χ(pµ

(ς), xµ
(ς)), we have to consider first

P̂L
χi =

1
c

ÊL
ςi , X̂L

χi =
1
c

ŶL
ςi , ĤL

χ = −ÊL
ς0 , T̂L

χ = − 1
c2 ŶL

ς0 ,
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and take that to obtain

X̂L
(χ)i =

1√
χ

X̂L
χi = X̂L

(ς)i , P̂L
(χ)i =

1√
χ

P̂L
χi = P̂L

(ς)i ,

T̂L
(χ) =

1√
χ

T̂L
χ = −1

c
X̂L
(ς)0 , ĤL

(χ) =
1√
χ

ĤL
χ = −cP̂L

(ς)0 , (29)

(with ς = c2χ). The above are the basic set of operators acting on the functional space of
φ(p(ς), x(ς)), with the variables properly rescaled to a new set of variables to match with the
operators. There is also the exactly corresponding set of operators, X̂(χ)i, P̂(χ)i, T̂(χ), and Ĥ(χ),
and Vχ on the abstract Hilbert space which are helpful for tracing the proper description.

The proper labels for the states
∣∣∣pµ

(ς), xµ
(ς)

〉
at the contraction limit should be

∣∣∣pi
(χ), e(χ), xi

(χ), t(χ)
〉

,
satisfying

2x(χ)i =
η

〈
pi
(χ), e(χ), xi

(χ), t(χ)
∣∣X̂(χ)i

∣∣pi
(χ), e(χ), xi

(χ), t(χ)
〉

,

2p(χ)i =
η

〈
pi
(χ), e(χ), xi

(χ), t(χ)
∣∣P̂(χ)i∣∣pi

(χ), e(χ), xi
(χ), t(χ)

〉
,

2t(χ) =
η

〈
pi
(χ), e(χ), xi

(χ), t(χ)
∣∣T̂(χ)∣∣pi

(χ), e(χ), xi
(χ), t(χ)

〉
,

2e(χ) =
η

〈
pi
(χ), e(χ), xi

(χ), t(χ)
∣∣Ĥ(χ)

∣∣pi
(χ), e(χ), xi

(χ), t(χ)
〉

, (30)

and hence giving naively

φ(pµ
(ς), xµ

(ς)) −→ φ(pi
(χ), e(χ), xi

(χ), t(χ))

with

x(χ)i = xi
(χ) = xi

(ς) , p(χ)i = pi
(χ) = pi

(ς) ,

t(χ) =
1
c

x0
(ς) , e(χ) = c p0

(ς) . (31)

We have then, at least formally,

X̂L
(χ)i = x(χ)i + i∂pi

(χ)
, P̂L

(χ)i = p(χ)i − i∂xi
(χ)

,

T̂L
(χ) = t(χ) − i∂e(χ) , ĤL

(χ) = e(χ) + i∂t(χ) . (32)

The crucial quantities controlling the nature of the representation are the overlaps

η

〈
pi
(χ)B, e(χ)B, xi

(χ)B, t(χ)B|pi
(χ)A, e(χ)A, xi

(χ)A, t(χ)A

〉
.

From the original
η

〈
pµ
(χ)B, xµ

(χ)B|p
µ
(χ)A, xµ

(χ)A

〉
, given in Equation (24), we have it as

ei
(

e(χ)Bt(χ)A−t(χ)Be(χ)A+δijxi
(χ)B pj

(χ)A−δij pi
(χ)Bxj

(χ)A

)
e
− 1

2

[(
xi
(χ)B−xi

(χ)A

)2
−c2(t(χ)B−t(χ)A)

2
+
(

pi
(χ)B−pi

(χ)A

)2
− 1

c2 (e(χ)B−e(χ)A)
2
]

to be taken at the c → ∞ limit. It holds e
1

2c2 (e(χ)B−e(χ)A)
2

→ 1, but the e
c2
2 (t(χ)B−t(χ)A)

2

factor diverges in the limit, except for t(χ)B = t(χ)A, which indicates that we should consider
only the latter case. The magnitude of the overlap being independent of e(χ)B and e(χ)A is still
puzzling. The answer to that comes from a more careful thinking about the nature of the

variables e(χ). Unlike t(χ) =
x0
(ς)

c , which is to be taken to be finite as in the general spirit of
symmetry contraction, e(χ) = c p0 is of quite different nature. The Lie algebra contraction
to begin with only has a relabeling H = −E0 involving no c. One may wonder if the c in
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ĤL
(χ) = −cP̂L

(ς)0
should be taken as giving a diverging energy observable ĤL

(χ) for any finite

P̂L
(ς)0

. Furthermore, for an Einstein particle of the rest mass m, i.e., the particle in Einstein’s
theory of special relativity,

e = mc2 +
pi pi

2m
+ · · ·

where the neglected terms involve negative powers of c2. At the c→ ∞ limit, it is indeed
diverging. Even p0 is diverging. That is the result of the rest mass as an energy. Hence, it
suggests that we should take our variable e(χ) as infinite, and the ‘non-relativistic’ energy we

are interested in is the kinetic energy pi pi

2m given by the limit of e−mc2. Taking that feature
into our consideration, the Hilbert space of interest under the contraction is really only
the space spanned by the H(3) coherent states

∣∣∣pi
(χ), xi

(χ)

〉
for a fixed time t(χ) and a formally

infinite e(χ). To be exact, we should be implementing that logic from an Einstein particle to
our quantum observables Ĥ(χ), P̂0

(χ), and P̂(χ)i or their expectation values, but the conclusion

is the same. The coherent state wavefunction φA(pµ
(ς), xµ

(ς)) is equal to
η

〈
pµ
(ς), xµ

(ς)|p
µ
(ς)A, xµ

(ς)A

〉
,

hence at the contraction limit there is no more dependence on t(χ) and e(χ), reducing it
essentially to just φA(pi

(χ), xi
(χ)). The operator T̂L

(χ) acts on the space of wavefunctions only
as a multiplication by t(χ) and is just like classical, while ĤL

(χ) is not physically relevant.
Note that the full contracted representation is then simply unitary. The part of the inner
product

η
〈·|·〉 independent of p0

(ς) and x0
(ς), hence t(χ) and e(χ), is exactly the usual one, i.e., η̂

essentially reduces to identity under the contraction. The space of wavefunctions spanned
by φA(pi

(χ), xi
(χ)) is a Hilbert space.

6. Group Theoretically-Based WWGM Framework with Wavefunctions in Coherent
State Basis

The above analysis gives a successful picture of the phase space of the HR(1, 3) theory,
giving in the Galilean limit the phase space of the HR(3) theory at each fixed ‘time’ value.
The infinite dimensional manifolds give, at the proper relativity symmetry contraction
limit, the familiar finite dimensional classical models as approximation. The explicit results
of the classical limit for the present case are presented in the section below. The merit of
our group theoretical approach is that it gives a full dynamical theory associated with
the corresponding spacetime/phase space model for each relativity symmetry, mutually
connected through the contraction/deformation pattern. The dynamical theory is naturally
a Hamiltonian theory from the symmetry of the phase space as symplectic geometry. The
dynamics is better described on the algebra of observables as essentially the matching
representation of the group C∗-algebra [1,14,21]. Moreover, all those fit in well with the
idea of the position and momentum operators as noncommutative coordinates of the phase
space [12,13,21].

6.1. The Algebra of Observables, Symmetries and Dynamics

The algebra of observables is depicted essentially as the one from a WWGM formalism,
as functions and distributions of the position and momentum operators X̂µ and P̂µ. The
basic dynamical variables of our representation on the space of wavefunctions φ(pµ

(ς), xµ
(ς))

are X̂L = x + i∂p = x? and P̂L = p− i∂x = p?, where we have dropped the µ indices and
the subscript (ς). We may also write a general function of (pµ

(ς), xµ
(ς)) as simply α(p, x), and the

? is as in the Moyal star product

α ? β(p, x) = α(p, x)e−i( ~∂p~∂x− ~∂x~∂p)β(p, x), (33)

with α(p, x)? = α(p?, x?). Under such notation, the story looks quite the same as the case
for HR(3) with only X̂L

i , and P̂L
i as xi? and pi?, given in details in Ref. [1]. Hence, we present

here only a summary of the results, leaving the readers to consult the latter paper and
references therein.
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Let us take a little detour first to clarify our theoretical perspective. What we have is
rather like the WWGM put up-side-down [1]. We start with the quantum theory as an irre-
ducible representation of a (quantum) relativity symmetry, including the Heisenberg–Weyl
symmetry. With the wavefunction in the coherent state basis as the natural reduction of the
representation of the group algebra, the corresponding representation of the latter properly
extended serves as the algebra of observables. The latter can be seen as a collection of func-
tions and tempered distribution of the position and momentum operators represented as
differential operators by x? and p?. The real variables x and p are not quite the coordinates
of the classical phase space. Only their rescaled counterparts under the contraction of the
symmetry to the classical relativity symmetry are. Contrary to a deformation quantization,
a contraction is a de-quantization procedure. From the algebraic point of view, the defor-
mation of an observable algebra as in WWGM is really a result of a deformation of the
classical relativity symmetry to the quantum one, pushed onto the group C∗-algebra of the
symmetry. The contraction is exactly the inverse of the deformation [36], at a Lie algebra
level and beyond.

In the usual unitary quantum mechanics, on the Hilbert space K of wavefunctions
φ(p, x), symmetries are represented in a form of unitary and antiunitary operators, factored
by its closed center of phase transformations. On the set P of pure state density operators
ρφ(p, x)?, corresponding to the abstract projection operator ρ̂φ = |φ〉〈φ| for normalized |φ〉,
the automorphism group Aut(P) is characterized by the subgroup of the group of real
unitary transformations O(K̃R) compatible with the star product, K̃R being the real span
of all ρφ(p, x)?, the complex extension of which is the Hilbert space of Hilbert-Schmidt
operators, as in the Tomita representation. We write the unitary transformations in the
form

Ũ?α? = µ(α)? = U?? α ? Ū?? ,

with µ ∈ Aut(P), where U?? ≡ U?(p, x)? is a unitary operator on K, generated by the
Hermitian operator in the form of a real function Gs(p?, x?), and Ū?? is its inverse obtained
by the complex conjugation and Ũ? ∈ O(K̃R). We refer to the U?? as star-unitary, in
particular whenever necessary to highlight it being a function of the p? and x? operators.

The above, illustrated for the case of HR(3) formulation of standard quantum me-
chanics in Ref. [1], can be applied to our HR(1, 3) case with a slight modification. We need
to use the invariant inner product with ρ̂φ = |φ〉

η
〈φ| for normalized |φ〉, and replace the

Hermitian and unitary requirements by η-Hermitian and η-unitary ones. Our relevant
symmetry transformations are to be given by η-unitary operator V?(s)? generated by η-
Hermitian Gs(p?, x?), which are real functions of the basic η-Hermitian operators (p?, x?),
i.e., Gs(P̂L

µ , X̂L
µ) = Gs(P̂L

µ , X̂L
µ), and we use the ᾱ to denote the ‘complex conjugate’ of α as

a function which correspond to ᾱ? as the η-Hermitian conjugate of α? as an operators
as an element of the observable algebra. The conjugation is the involution of the latter
as a ∗-algebra. V?(s)? of a η-unitary V?(s)? is to be interpreted in the same manner. The
feature of V?(s)? to be the inverse of V?(s)? is exactly η-unitarity. Again, η-Hermiticity is
the Hermiticity so long as the algebraic analysis is concerned. Though η-unitarity here
is really pseudo-unitarity, only the inner product preserving nature of it is relevant here
and it is as good as unitarity. Of course, Krein spaces are to be allowed in the place of the
Hilbert spaces.

Generators of our relativity symmetry HR(1, 3) are to be represented as a subgroup of
Aut(P) of the observable algebra. All HR(1, 3) generators are η-Hermitian, hence each is
given by a real Gs, generating (star-)η-unitary V?(s)? = e

−is
2 Gs? as one-parameter groups of

symmetry transformations. Note that the factor 2 is really h̄. We have Ṽ?(s) = e
−is

2 G̃s ,

Ṽ?α? = µ(α)? = V?? α ? V?? (34)

with

G̃sρ = Gs? ρ− ρ ?Gs = 2i{Gs, ρ}? , (35)
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where ρ(p, x) ∈ K̃ and {·, ·}? is the Moyal bracket. Hence, with ρ(s) = Ṽ?(s)ρ(s = 0),

d
ds

ρ(s) = {Gs, ρ(s)}? . (36)

The equation is the Liouville equation of motion for a mixed state ρ in D̃, the self-dual
cone of K̃. The class of operators on K̃ representing symmetry generators are important,
especially for tracing the symmetries to the classical limit where all Gs? reduce essentially
to the commutative Gs, as multiplicative operators on the functional space of classical
observables. We can write G̃s = ĜL

s − ĜR
s , where ĜL

s ≡ Gs(p, x)? = Gs(P̂L, X̂L) is a left action
and ĜR

s is the corresponding right action defined by ĜR
s α ≡ α ?Gs(p, x) = Gs(P̂R, X̂R)α.

Analogously to X̂L and P̂L coming from the left-invariant vector fields of the Heisenberg–
Weyl group, there are those from the right-invariant ones given by

X̂R = x− i∂p , P̂R = p + i∂x . (37)

From Equation (23), we see that

V?(−x′µ)? φ(pµ, xµ) = e
−ix′µ

2 (−pµ?)φ(pµ, xµ) = φ

(
pµ, xµ +

x′µ

2

)
e

ix′µ pµ

2 ,

V?(p′µ)? φ(pµ, xµ) = e
−ip′µ

2 (xµ?)φ(pµ, xµ) = φ

(
pµ +

p′µ

2
, xµ

)
e
−ip′µ xµ

2 . (38)

In the above, for the wavefunctions, we show only the involved pair of variables in each
case, and there is always no summation over indices. The other variables are simply not
affected by the transformations. In terms of the parameters xµ and pµ, we have

G−xµ? = pµ? , G̃−xµ = −2i∂xµ ,

Gpµ? = xµ? , G̃pµ = 2i∂pµ , (39)

all in the same form as in the HR(3) case. The factors of 2 in the translations V?(x)? and
V?(p)?, though somewhat suspicious at the first sight, are related to the fact that the ar-
guments of the wavefunction correspond to half of the expectation values, due to our
coherent state labeling. Thus, xµ? and pµ? generate translations of the expectation values,
which is certainly the right feature to have. For the Lorentz transformations, we have
Gωµν = (xµ pν − xν pµ),

Gωµν? = (xµ pν − ixµ∂xν + ipν∂pµ + ∂xν ∂pµ)− (µ↔ ν) ,

G̃ωµν = −2i(xµ∂xν − pν∂pµ)− (µ↔ ν) . (40)

with the explicit action (no summation over the indices)

V?(ωµν)? φ(p, x) = e
−iωµν

2 (Gωµν?)φ(p, x) = φ
(
e

iωµν

2 Ĝωµν [p, x]
)

, (41)

where Ĝωµν are the infinitesimal SO(1, 3) transformation operators corresponding to the
coset space action to be obtained from Equation (5).

All the G−xµ , Gpµ and Gωµν (and Gθ = 1) make the full set of operators for the gen-
erators ĜL

s = Gs? of the HR(1, 3) group representing the symmetry on K, and constitute
a Lie algebra within the algebra of physical observables. ĜR

s set does the same as a right
action, and ĜL

s always commute with ĜR
s′ since, in general, [α̂L, γ̂R] = 0. These fourteen Gs as

multiplicative operators, of course, all commute among themselves. The commutators for
G̃s are same as those for ĜL

s , with however the vanishing G̃θ giving a vanishing [G̃pµ , G̃−xν ].
For any function α(pµ, xµ), there are four associated operators on K̃. Those are α, α̂L, α̂R

and α̃, but only two of them are linearly independent. For our relativity symmetry oper-
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ators, the independent set {G−xµ , Gpµ , Gωµν , G̃−xµ , G̃pµ , G̃ωµν} has the only non-vanishing
commutators among them given by (we also have Gθ = 1, the identity, and G̃θ = 0)

[Gωµν , G̃ωαβ ] = 2i(ηνβGωµα − ηναGωµβ + ηµαGωνβ − ηµβGωνα) ,

[Gωµν , G̃−xα ] = −2i(ηναG−xµ − ηµαG−xν) ,

[Gωµν , G̃pα ] = −2i(ηναGpµ − ηµαGpν) ,

[G̃ωµν , G−xα ] = −2i(ηναG−xµ − ηµαG−xν) ,

[G̃ωµν , Gpα ] = −2i(ηναGpµ − ηµαGpν) ,

[Gpµ , G̃−xν ] = −[G−xµ , G̃pν ] = 2iηµν ,

[Gpµ , G̃pν ] = [G−xµ , G̃−xν ] = 0 . (42)

Quantum dynamics is completely symplectic, whether described in the Schrödinger
picture in terms of real/complex coordinates of the (projective) Hilbert space or the Heisen-
berg picture as a description in terms of the noncommutative coordinates [12]. The explicit
dynamical equation of motion is to be seen as the transformations generated by a physi-
cal Hamiltonian characterized by an evolution parameter. In the HR(3) case of the usual

(‘non-relativistic’) quantum mechanics, it is Gt =
pi pi

2m . For our HR(1, 3) case, we consider

Gτ =
pµ pµ

2m with the parameter τ being the Einstein proper time, which is expected to give
the standard covariant description of Einstein particle dynamics, as we see explicitly below.

For some s-dependent operator α(pµ(s), xµ(s))? and a general Hamiltonian Gs, the
Heisenberg equation of motion is given by

d
ds

α? =
1
2i
[α?, Gs?] . (43)

The right-hand side of the equation is simply the Poisson bracket of α(p?, x?) and Gs(p?, x?),
functions of the noncommutative canonical variables pµ? and xµ?. The equation can simply
be written as

d
ds

α = {α, Gs}? =
−1
2i

G̃sα , (44)

and is exactly the differential version of the automorphism flow given in Equation (34),
here with our η-unitary symmetry flows V?(s)? = e

−is
2 Gs? generated by a η-Hermitian Gs?.

−1
2i G̃s is really a Hamiltonian vector field for a Hamiltonian function Gs(p?, x?) [12].

Our physical Hamiltonian operator Gτ(p?) is such a η-Hermitian Gs?. The correspond-
ing Heisenberg equation gives, in particular,

d
dτ

xµ? =
1
2i

1
2m

[xµ?, pν ? pν?] =
pµ?

m
=

∂Gτ(p?)
∂(pµ?)

,

d
dτ

pµ? =
1
2i

1
2m

[pµ?, pν ? pν?] = 0 = −∂Gτ(p?)
∂(xµ?)

, (45)

which are exactly

d
dτ

X̂L
µ =

∂Gτ(P̂L
ν)

∂P̂Lµ ,
d

dτ
P̂L

µ = −∂Gτ(P̂L
ν)

∂X̂Lµ , (46)

the standard form of Hamilton’s equations of motion for the canonical η-Hermitian op-
erator coordinate pairs X̂L

µ-P̂L
µ. As usual in a Hamiltonian formulation, the constant, or

τ-independent, momentum P̂L
µ is obtained from the equations of motion as velocity multi-

plied by the particle mass m. Here, −m2 is just the constant value of pν pν as 2mGτ .
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For the Schrödinger picture, as η-unitary flows on K, we have the equation

d
ds

φ =
1
2i

Gs ? φ , (47)

which for Gτ? gives the τ-independent solution for φ in the exact form of the Klein–Gordon
equation, provided that the Gτ? eigenvalue is taken to be −m

2 . Explicitly, in terms of the
basic variables pµ and xµ, we have

Gτ ? φ(p, x) =
1

2m
pµ ? pµ ? φ(p, x) =

1
2m
(

pµ pµ − ηµν∂xµ ∂xν − 2ipµ∂xµ
)
φ(p, x) , (48)

giving the wavefunctions φ(p, x) = ei(2kµ−pµ)xµ
for eigenvalues 2kµkµ

m . Eigenvalues of the
momentum operators pµ? are 2kµ, satisfying (2kµ)(2kµ) = −m2. The factor of 2 really
corresponds to h̄, as in the standard textbook expression. Finally, the τ-dependence is then
given by d

dτ φ = −m
4i φ, as expected.

6.2. Lorentz to Galilean Contraction

Contraction to Galilean limit has been presented in Section 5 at the kinematical level.
In this section, we present the corresponding contraction in the observable algebra given
in the WWGM formalism. Recall that the original Krein space under the contraction
becomes reducible into a sum of essentially identical irreducible components, each being
spanned by the wavefunctions φ(pi, xi) ≡ φ(pi

(χ), xi
(χ)) for a particular value of ‘time’ t(χ). A

general operator α(X̂L
µ, P̂L

µ) should then be seen as α(X̂L
i , P̂L

i , T̂L
(χ), ĤL

(χ)) with X̂L
i ≡ X̂L

(χ)i and
P̂L

i ≡ P̂L
(χ)i, from results of Equation (32). Hence, on φ(pi, xi) we have effectively Hermitian

actions of operators X̂L
i = xi + i∂pi , P̂L

i = pi − i∂xi , T̂L
(χ) → t(χ), and ĤL

(χ) → e(χ), with the last
two reduced to a simple multiplication by the ‘variables’ t(χ) and (formally infinite) e(χ),
respectively. All α(pµ?, xµ?) operators on φ(pi, xi) reduce to α(pi?, xi?, t(χ), e(χ)), or rather
simply to α(pi?, xi?) like in the basic quantum mechanics, a unitary representation theory
of HR(3). The ? should now be seen as the one involving only variables pi and xi.

The transformations generated by the Hermitian G−xi?, Gpi? and Gωij? obviously do
not change. They represent generators of the HR(3) subgroup of HR(1, 3) to begin with.
G̃−xi , G̃pi and G̃ωij are also unchanged. G−x0? and Gp0?, representing P̂L

(ς)0 and X̂L
(ς)0, are to

be replaced under the contraction by ĤL
(χ) and T̂L

(χ), respectively, with V?(−x0) = e
ix0
2 G−x0

and V?(p0) = e
−ip0

2 Gp0 re-expressed as V?(t) = e−
it
2 Gt and V?(e) = e

ie
2 G−e , where Gt? = ĤL

(χ)

and G−e? = T̂L
(χ). On the wavefunction φ(pi, xi), we have the infinite Gt? = e(χ) and finite

G−e? = t(χ). We also have G̃t = 2i∂t(χ) and G̃−e = −2i∂e(χ) . None of the four operators are of
interest, so long as their action on the observable algebra for an irreducible representation
φ(p, x) is concerned.

The other interesting ones to check are the Lorentz boosts under the contraction. The
generator Ji0 in the Lie algebra is replaced by the finite Ki =

1
c Ji0. The group elements

eiωi0 Ji0 are to be re-expressed as eiβiKi with βi = c ωi0. In the original representation, the Ji0
action is given by Gωi0? = X̂L

(ς)i P̂
L
(ς)0 − X̂L

(ς)0P̂L
(ς)i, from which follows the action of Ki as

Gβi? = X̂L
i

(
−1
c2 ĤL

(χ)

)
−
(
−T̂L

(χ)

)
P̂L

i → t(χ)pi? = t(χ)G−xi?

with V?(βi) = e
−iβi

2 G
βi (no summation over i), a re-writing of V?(ωi0) with the new finite

parameter βi. We have seen, in Equation (38) explicitly, that V?(−xi)? gives a translation in
the variable xi of the wavefunction. V?(βi)? is then a time variable t(χ)-dependent translation,



Symmetry 2021, 13, 22 17 of 23

a Galilean boost exactly as the Lie algebra contraction promised, and is now unitary.
Similarly, we have

G̃βi =
1
c

G̃ωi0 = − 2i
c2 (xi∂t(χ) + e(χ)∂pi ) + 2i(−t(χ)∂xi − pi∂e(χ))

→ −2i(t(χ)∂xi + pi∂e(χ)) . (49)

We keep the ∂e(χ) since the G̃βi may act on the mixed states. We have the newly relevant
nonzero commutators involving a Gβi , Gt, or G−e, and a G̃s as well as those involving a G̃βi ,
G̃t, or G̃−e and a Gs, all from the generators of the Lie algebra, as

[Gβi , G̃ω jk ] = −2i
(

δijGβk − δikGβj

)
,

[Gωij , G̃βk ] = 2i
(

δikGβj − δjkGβi

)
,

[Gβi , G̃t] = [G̃βi , Gt] = −2iG−xi ,

[Gβi , G̃pj ] = [G̃βi , Gpj ] = −2iδijG−e ,

[G−e, G̃t] = −[Gt, G̃−e] = −2i . (50)

Since on the Hilbert space of the contracted theory we have only φ(pi, xi) and the
corresponding observable algebra as α(pi?, xi?), the loss of p0? and x0?, the quantum
observables of energy and time, means that the Heisenberg equation of motion, in the form
of a differential equation in τ, effectively corresponds to the part of Gτ? involving only pi?.
We have

d
dτ

α? =
1
2i
[α?, Gτ?] =

1
2i
[α?, Gt?] , (51)

where Gt =
pi pi

2m , giving the right time evolution in the ‘non-relativistic’, or HR(3), quantum
theory, as expected. At the c → ∞ limit, the proper time is just the Newtonian time.
One can also see that the quantum Poisson bracket 1

2i [· · · , · · · ] does suggest that the now
multiplicative operators t(χ) and e(χ), from the original p0? and x0?, are to be dropped from
the canonical coordinates of the noncommutative symplectic geometry, in line with the

Hilbert space picture. A Gt of the form pi pi

2m + v(xi), i.e., with a nontrivial interaction
potential of course cannot be retrieved from a Gτ which does not allow that, so long as the
Einstein theory is concerned. If we allow a nontrivial v(xµ) in Gτ , however, everything
works fine. For the latter Gτ to be taken as a ‘relativistic’ Hamiltonian, one would have to
allow violation of the Einstein relation of pµ pµ = −m2.

7. Contraction to Classical Theory in Brief

In this section, we look at the corresponding classical theory at the Lorentz covariant
level through the contraction along the line of the one performed in the ‘non-relativistic’,
HR(3), case presented in Ref. [1]. Only a sketch will be presented where the mathematics is
essentially the same with the latter. The contraction trivializing the commutators between
the position and momentum operators is obtained by rescaling the generators as

Xc
µ =

1
kx

Xµ and Pc
µ =

1
kp

Pµ , (52)
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and taking the limit kx, kp → ∞. The only important difference between kx and kp param-
eters is their physical dimensions, giving the Xc

µ and Pc
µ observables with their different

classical units. For the corresponding operators we have

X̂cL = xc + i
1

kxkp
∂pc −→ xc ,

P̂cL = pc − i
1

kxkp
∂xc −→ pc , (53)

and the Moyal star-product reduces to a simple commutative product. Functions α(p?, x?),
representing quantum observables, reduce to multiplicative operators α(pc, xc), the classical
observables acting on the contracted representation space of the original pure and mixed
states.

For the Krein space of pure states, the coherent state basis is taken with the new labels
as |pc, xc〉, where 2pc

µ and 2xc
µ characterize the expectation values of X̂c

µ and P̂c
µ operators.

We have

η

〈
p′cµ , x′cµ |X̂c

µ|pc
µ, xc

µ

〉
= [(x′cµ + xc

µ)− i
kp

kx
(p′cµ − pc

µ)]
η

〈
p′cµ , x′cµ

∣∣∣pc
µ, xc

µ

〉
,

η

〈
p′cµ , x′cµ |P̂c

µ|pc
µ, xc

µ

〉
= [(p′cµ + pc

µ) + i
kx

kp
(x′cµ − xc

µ)]
η

〈
p′cµ , x′cµ

∣∣∣pc
µ, xc

µ

〉
, (54)

with
η

〈
p′cµ , x′cµ

∣∣∣pc
µ, xc

µ

〉
at the contraction limit going to zero for two distinct states. Note

that the kp-kx ratio is, at the contraction limit, a constant with physical dimension and
it is showing up in the above equations only to take care of the difference in physical
units for pc and xc. The Krein space, as a representation for the contracted symmetry,
as well as a representation of the now commutative algebra of observables, reduces to
a direct sum of one-dimensional representations of the ray spaces of each

∣∣∣pc
µ, xc

µ

〉
. The

only admissible pure states are the exact coherent states, and not any linear combinations.
The obtained coherent states can be identified as classical states, on the space of which
the G̃s-type operators act as generators of symmetries. Gs?-type operators, as general
α? in the original observable algebra, contract to commuting multiplicative operators
corresponding to classical observables. Results suggest that the projective Krein space, the
true quantum phase space, in classical limit gives exactly the classical phase space with pc

µ

and xc
µ coordinates. The Krein space, or Schrödinger, picture at the classical limit serves

rather as the Koopman–von Neumann formulation in a broader setting of mixed state, i.e.,
statistical mechanics. We do not intend to explore that aspect further in this article. The
observable algebra, or Heisenberg picture, gives a much more direct way of examining the
full dynamical theory at that contraction limit. It also gives a direct and intuitive picture
of the phase space geometry too. The original position and momentum operators, xµ?
and pµ?, can be seen as noncommutative coordinates of the noncommutative symplectic
geometry of the phase space [12]. The contracted versions as xc

µ and pc
µ are the classical

phase space coordinates with no noncommutativity left.
Let us turn to the noncommutative Hamiltonian transformations. As mentioned

above, at the quantum level, a Gs? = Gs(pµ?, xµ?) operator is a Hamiltonian function of
the phase space coordinates p? and x?, and the corresponding −1

2i G̃s is the Hamiltonian
vector field. It is, of course, well known since Dirac that what has now been identified as a
quantum Poisson bracket 1

2i [·, ·] [12,13] (and see references therein) reduces exactly to a
classical Poisson bracket, which works in our formulation, explicitly shown in Ref. [1]; i.e.,

Gs(pµ?, xµ?)→ Gc
s (pc

µ, xc
µ) ,

−1
2i

G̃s =
1
2i
[·, ·]→ {·, Gc

s } =
−1
2i

G̃c
s .
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The explicit expressions are in exactly the same form as those of the quantum case, namely

G̃c
ωµν = G̃ωµν = −2i(xc

µ∂xcν − pc
ν∂pcµ)− (µ↔ ν) ,

G̃−xcµ = −2i∂xcµ , G̃pcµ = 2i∂pcµ . (55)

Note their independence on the contraction parameter k (or kp and kx), even before the
k→ ∞ limit is explicitly taken. In conclusion, from the quantum Poisson bracket in terms
of the Moyal bracket, or the Hamiltonian vector field given in terms of G̃s, we retrieve the
Hamiltonian flow equation

d
ds

α(pc, xc) = {α(pc, xc), Gc
s } =

−1
2i

G̃c
s α(pc, xc) (56)

for any classical observable α(pc, xc) as a function of basic observables xcµ and pcµ, which
also serve as canonical coordinates for the phase space, with the standard expression for
the classical Poisson bracket. The Hamilton’s Equations (46), as a specific example, become

d
dτ

xc
µ =

∂Gc
τ

∂pcµ =
pc

µ

m
d

dτ
pc

µ = − ∂Gc
τ

∂xcµ = −∂v(xcν)

∂xcµ . (57)

Gc
τ =

pcµ pc
µ

2m is the covariant classical Hamiltonian.

8. Conclusions

We presented a formulation of covariant quantum mechanics as an irreducible compo-
nent of the regular representation of the HR(1, 3) (quantum) relativity symmetry, with a
pseudo-unitary inner product essentially obtained from an earlier study of the covariant
harmonic oscillator problem identified as a representation of the same symmetry [22]. The
pseudo-Hermitian nature of operators in the observable algebra is emphasized, with a
metric operator η̂ as the exact quantum manifestation of the Minkowski metric for the clas-
sical spacetime. The natural wavefunction representation φ(pµ, xµ) is the one in a coherent
state basis. The Fock states as eigenstate solutions to the covariant harmonic oscillator
Hamiltonian are a great orthonormal basis for the Krein space as a representation space.
Actually, the overcomplete set of coherent states and the position and momentum operators
as differential operators all have the usual form exactly as in the otherwise unitary repre-
sentation, completely hiding the incompatibility of the latter with the Fock state system
assuming an invariant n = 0 state. That seems to have made the incompatibility to escape
the attention of the previous authors. Our different starting perspective [21] and a careful
analysis, especially in the language of pseudo-Hermitian quantum mechanics allowing
a general metric operator η̂, and hence a general metric/inner product on the space of
state vectors, illustrate the proper mathematical description well. In particular, we obtain
explicit form of the nondegenerate but indefinite inner product for the wavefunctions
φ(pµ, xµ), with a nontrivial integration measure, to go along with the η-Hermitian nature
of the position and momentum operators. Though the wavefunctions for the Fock states
are divergent at timelike infinity, the ‘probability amplitude’ is finite over any parameter
interval. As a complete solution to the covariant harmonic oscillator problem, our results
have all the desirable features which have not otherwise been fully available.

To retrieve the standard probability interpretation for the formulation of Lorentz
covariant quantum mechanics, one can simply project the theory onto the Lorentz invariant
subspace of positively normed states. The very nice properties of the full theory under
the Lorentz transformations, again well illustrated in terms of the Fock basis, assure the
projection does not lead to any undesirable feature.

Our study is a part of our fully quantum relativity group-theoretically-based program.
The constructed quantum mechanics is the ‘relativistic’ version of the so-called ‘non-
relativistic’ theory based on the HR(3) group, or on the G̃(3) group, a U(1) central extension
of the Galilean group. HR(3) is a subgroup of the HR(1, 3) group, while together with
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G̃(3) they are both subgroups of the c → ∞ approximation of the HR(1, 3), obtained as
a symmetry, or Lie algebra, contraction. The study here successfully completes the full
picture from ‘relativistic’ quantum mechanics down to the ‘relativistic’ classical and the
‘non-relativistic’ quantum and classical theories as successive contractions/approximations.

Some comments on the relation of the work to the noncommutative geometric per-
spective of quantum physics and quantum spacetime may be in order. Our idea of having
the pseudo-unitary metric on the space of states comes mostly from the intuition on the
need to take the pseudo-unitary Minkowski metric seriously as a quantum notion, for the
noncommutative position and momentum operators as coordinates for the space [21]. The
quantum phase space, exactly the projective Hilbert space for the ‘non-relativistic’ theory,
has been shown to serve as the quantum model of the physical space [1,14]. Well known
as an infinite dimensional symplectic manifold, a noncommutative geometric picture of it
has been presented [12] with the position and momentum operators as coordinates. A new
conceptual notion of noncommutative values for the quantum observables [37] has been
introduced to achieve a consistent interpretation of the values of the six coordinates being
able to specify a point in the phase space otherwise described by an infinite number of real
number coordinates. The noncommutative value of an observable for a state carries the full
information the mathematical formulation of the theory actually contains for that. The no-
tion gives an intuitive, but noncommutative, picture of quantum physics [13]; perhaps also
a noncommutative notion of ‘local realism’. The current Lorentz covariant theory is what
would allow an analogous picture with X̂µ and P̂µ as coordinates bearing the Minkowski
nature. Our background group theoretical framework has a stable symmetry with X-X and
P-P type noncommutativity to which the HR(1, 3) symmetry is a contraction limit [16,17].
Other forms of covariant X-X noncommutative geometry with or without consideration of
gravitation have been available in the literature(see for examples Refs. [38–40]). We share
the belief that the proper theory of quantum gravity has to be a geometrodynamics of
quantum, noncommutative, spacetime. Our framework has the unique feature that one has
to take the ‘phase space’ as the model for the spacetime, as one irreducible representation.

The work focuses only on the formulation aspects, establishing such a theory that
has all the nice properties mentioned and can successfully address the various concerns
raised on such covariant theories. It may be considered mathematically involved, but
unfortunately quite necessary. The only practical physical problem we have addressed
is the free particle case, and arguably the covariant harmonic oscillator problem, with
the latter being of great theoretical importance. However, practical application of ‘rela-
tivistic’ quantum mechanics is generally tricky [41]. Even with dynamics for the electron,
quantum field theory is usually preferred. Applying the usual Dirac equation at the par-
ticle dynamics level has to confront the tricky issue of the negative energy solutions and
the related zitterbewegung. There is also the fact that it gives dX̂i

dt = − c
2 γ0γi 6= P̂i

m , (here,
γ0 =

(
0 −1
−1 0

)
and 2 for h̄). Otherwise, the ‘nonrelativistic’ and classical limits of the theory

are well analyzed (see for examples Refs. [42,43]). On the other hand, our group theoretical
framework naturally gives the dynamical theories in a covariant symplectic formalism
with dynamical evolution to be described through an invariant parameter, like τ. The
equation of motions, spin zero and probably also for the higher spin cases, are really in the
form initiated by Stückelberg early the 1940s (see Refs. [44,45] and references therein). The
studies stick with unitary representations of the Poincaré symmetry, though having to live
with a non-Hermitian γµ P̂µ for a Dirac spinor. Yet there are some nice theoretical features
from the theory, including good position operators X̂µ. Modifying the spin 1

2 theory to
our pseudo-Hermitian setting has a good chance of improving its physics picture better.
We plan on taking the theory more seriously along the line of our HR(1, 3) representation
framework in terms the formulation before going into studies of practical systems. We
hope to report on the results in the near future.



Symmetry 2021, 13, 22 21 of 23

Author Contributions: conceptualization, O.C.W.K.; formal analysis, S.B., O.C.W.K., and H.K.T.;
writing-original draft preparation, S.B. and O.C.W.K.; writing-review and editing, S.B., O.C.W.K.,
and H.K.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by MOST of Taiwan grant number 109-2119-M-008-016.

Acknowledgments: S.B. thanks the Center for High Energy and High Field Physics, National Central
University for hospitality. O.C.W.K. and H.K.T. are partially supported by research grant number
109-2112-M-008-016 of the MOST of Taiwan.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Illustration of Problems in Unitary Formulation of Covariant Harmonic
Oscillator

In this appendix, we summarize the standard approach to covariant harmonic oscil-
lator problem, which attempts to construct a unitary Fock space, assuming the position
and momentum operators being Hermitian. A special attention will be given to its prob-
lems [18,20], here especially as seen in the φ(pµ, xµ) wavefunction picture, which are all
avoided in our pseudo-unitary representation. The difference in the two representations is
in the inner product, which is simply

〈
φ|φ′

〉
=

1
π4

∫
d4 p d4x φ̄(pµ, xµ) φ′(pµ, xµ) ,

for the unitary case. The first sign of the problem arises already in the abstract vector space.
The ladder operators are given essentially in the same way, âµ = ηµν(X̂ν + iP̂ν),

â†
µ = X̂µ − iP̂µ, where we drop the corresponding trivial η̂. As illustrated in the main

text, the abstract algebraic analysis is not sensitive to the nature of the metric η̂. The same
conclusion of 〈m|n〉 = (−1)n0 δmn cannot be avoided [20]. Therefore, the Fock space is still
the same Krein space, which then cannot be the Hilbert space of the unitary representation
of the HR(1, 3) symmetry. The only way to avoid that is to take a |0〉 state that is not Lorentz
invariant [20], meaning that the Lorentz symmetry is spontaneously broken in the system,
which hardly sounds like the quantum version of the classical covariant harmonic oscillator
system or anything we may have a good reason to be interested in. The key thing is
that the noncompact nature of SO(1, 3) gives no finite-dimensional unitary representation.
Since the Hamiltonian for the problem, or the operator N̂, is Lorentz invariant, the n-level
subspaces are likewise invariant and hence can only be infinite-dimensional, so long as
unitary representations are concerned. The states on a fixed n-level do not transform as
symmetric Minkowski n-tensors. That is the key issue behind the incompatibility of the
latter and the kind of nice physics picture one would like to have for the system [21], which
our pseudo-unitary formulation successfully retrieved.

Now, let us turn to the wavefunction representation. The Fock state wavefunctions
are eigenfunctions of

N̂ =
1
4

(
xµxµ + pµ pµ − ∂2

∂pµ∂pµ −
∂2

∂xµ∂xµ + 2ixµ∂pµ − 2ipµ∂xµ

)
− 2

operator. One can easily check that

φn(pµ, xµ) = e−
xµ xµ+pµ pµ

2

3

∏
µ=0

(
xµ − ipµ

)nµ

are solutions for the eigenvalue n0 + n1 + n2 + n3, with φo corresponding to |0〉 state. To
stick to the probability interpretation with the trivial measure in the integral inner product,
one has to restrict the domain of the wavefunctions to spacelike region of pµ and xµ.
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In order to normalize the wavefunction, we need to calculate the integral

∫ d4xd4 p
π4 φ̄n(pµ, xµ)φn(pµ, xµ) =

∫ d4x
π2

∫ d4 p
π2 e−xµxµ

e−pµ pµ
3

∏
µ=0

(
x2

µ + p2
µ

)nµ

over the parameter domain. Without the domain restriction the integral surely diverges.
Let us focus on the parts of the integral for the ∏3

µ=0 x
2nµ
µ term, and similarly the ∏3

µ=0 p
2nµ
µ

term, from the expansion of the last factor. Specifically, we have an integral of the form∫ d4x
π2 e−xµxµ

∏3
µ=0 x

2nµ
µ to deal with. The integral can be evaluated with coordinates in a

polar form as in Ref. [18], by defining r2 = xµxµ, ρ = x0/
√

xixi, and the spatial angular
coordinate of which we skip the details. We obtain

I0 =
1

π2

∫
dΩ

∫ ∞

0
dr r3e−r2

∫ 1

−1

dρ

(1− ρ2)2 =
2
π

∫ 1

−1

dρ

(1− ρ2)2 (A1)

for the n = 0 case, with Ω denoting the spatial solid angle. The ρ-integral is still divergent.
The integrand for the specific case is ρ-independent. The divergence is simply due to
the infinite range of the boost parameter (ρ being its hyperbolic tangent). Hence, it has
been suggested to define the integral with ‘the infinite volume factor’ absorbed [18,20].
However, there is really no sensible way to do that so long as the Fock state wavefunctions
are concerned. The corresponding ρ-integral of φn for a nonzero n0 has an extra factor of

ρ2n0

(1−ρ2)n from the integrand, giving a higher order divergence for each larger n value. From
the structure of the full integral inner product, it is clear that such contributing terms of the
higher order divergence stay. That is to say, none of Fock state wavefunctions are really
normalizable under the unitary formulation. This is not an artifact of the coherent state
framework. The usual Schrödinger wavefunctions ψ(xµ) for the Fock states have the same
problem.

There is an alternative approach of taking a timelike, instead of spacelike, parameter
restriction for the domain of the wavefunctions, really corresponding to defining |0〉 as
satisfying a†|0〉 = 0. Similar problems persist.
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