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Introduccion

La fisica de particulas esté sin lugar a dudas en un momento historico. Casi cuarenta
anos después de que se formularan las bases tedricas del llamado Modelo Estandar
de las interacciones electrodébiles y fuertes, estamos a punto de dar un paso mas y
ver qué nos tiene reservado la Naturaleza. Nuevas simetrias, nuevas interacciones o
incluso nuevas dimensiones podrian ser descubiertas en los préximos anos.

Este paso adelante en nuestra comprension del mundo microscopico es un proyecto
que involucra a toda la comunidad de fisica de altas energias. Sera el resultado de
anos de duro trabajo llevado a cabo por nuestros companeros experimentales en el
Gran Colisionador de Hadrones (LHC) en el CERN, construyendo el més potente
acelerador de particulas, que ha comenzado a funcionar hace tan solo unos meses.
Y no s6lo en el LHC sino también en otras increibles instalaciones experimentales,
como laboratorios subterrdneos o detectores instalados en satélites. Seré el producto
de décadas de trabajo teodrico, aprendiendo a realizar calculos precisos dentro del
Modelo Estandar, absolutamente necesarios para desentranar la eventual senal de
Nueva Fisica de entre los millones y millones de datos que se recogeran, y también
el resultado del trabajo de todos esos fisicos tedricos que decidieron no esperar la
informacion experimental y ya han explorado todo tipo de posibles escenarios de
Nueva Fisica.

El primer objetivo de este proyecto global es encontrar una explicacion dindmica
de las masas de las particulas, o lo que es lo mismo, averiguar cual es mecanismo que
rompe la simetria electrodébil. De acuerdo con el Modelo Estdndar, el responsable
es un campo escalar conocido como campo de Higgs. Si esta descripcion es correcta,
las medidas experimentales realizadas hasta la fecha nos dicen que la particula de
Higgs estaba s6lo un poco més alla del alcance de LEP y que sera encontrada en
el LHC tras algunos anos de colisiones y analisis de datos. Diversas alternativas
a este sencillo mecanismo han sido propuestas, aunque todas ellas presentan algin
defecto que no las hace convincentes. Huelga decir que tanto el descubrimiento del
boson de Higgs estandar como de cualquier mecanismo alternativo representara un
descubrimiento de enorme importancia en la historia de la fisica de particulas. Se
tratara de la tltima pieza del Modelo Esténdar o de la primera pieza del proximo
paradigma teodrico.

En el supuesto caso en el que el boson de Higgs sea encontrado, uno debe pre-
guntarse por qué el Modelo Estandar no puede ser la descripcion final del mundo
microscopico. No puede serlo esencialmente por las mismas razones por las que la
tabla periddica de Mendeleev no podia ser toda la historia: porque hay hechos expe-
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rimentales que el actual modelo no puede responder (la simetria materia-antimateria,
qué particula constituye la materia oscura, la explicacion de la energia oscura, la
gravedad cuéntica, las masas de los neutrinos, ...) y porque incluso en el sector en el
que el las predicciones del modelo se ajustan perfectamente a los datos, la filosofia de
la ciencia nos obliga a buscar un modelo méas simple (jpor qué tres generaciones de
particulas? ;por qué estas masas para las particulas? jpor qué hay tres constantes
de acoplo? etc.).

Pero atn asi, incluso tras esta respuesta afirmativa, uno debe hacerse la pre-
gunta concreta de por qué el actual Modelo Estdndar de la Fisica de Particulas
debe fallar en la descripcion de los datos experimentales que seran medidos en la
prozima generacion de experimentos. La respuesta es que podria no fallar. Pero en
cierto sentido esto seria un gran descubrimiento, porque implicaria que no hemos
comprendido algo profundo sobre la Teoria Cuantica de Campos, el marco tedrico
que describe el mundo microscopico, donde los efectos cuanticos y relativistas estéan
presentes. El escenario conocido como “gran desierto” donde sélo un Higgs ligero es
observado y nada nuevo se encuentra en el rango del teraelectronvoltio (TeV) genera
con total seguridad més preguntas que respuestas.

Como ya hemos senalado, la carrera para descubrir la Nueva Fisica no esta
monopolizada por el LHC, sino que hay por todo el mundo otros experimentos
tremendamente sofisticados que escudrinaran direcciones en las que el LHC es com-
pletamente ciego. Es realmente increible que midiendo por ejemplo kaones y piones
en experimentos donde la energia de las particulas es mucho mas pequena que en el
Tevatron o el LHC, uno sea sensible a escalas mucho mas altas que el TeV. Este he-
cho anti-intuitivo es en parte solo otra consecuencia de las propiedades cuénticas del
mundo microscopico que estamos explorando, y donde las particulas de gran masa
(atin por descubrir) contribuyen a procesos de energias bajas a través de correcciones
cuanticas. De este tipo de experimentos hemos aprendido en las ultimas décadas
que la estructura de sabor de la nueva teoria que reemplazara al Modelo Estandar
es altamente no genérica, hecho que permanece sin explicacién por el momento. La
proxima generacion de experimentos en el sector de sabor (las llamadas fabricas de
B’s, los experimentos con kaones, ...) alcanzaran sensibilidades sin precedentes y
por tanto exploraran energias aiin méas altas.

Esta interaccion entre experimentos de energias altas y bajas es absolutamente
necesaria y va mas alla de la primera observacion de una senal de Nueva Fisica.
En la probable situacién donde la primera discrepancia con el Modelo Estdndar
aparezca en el LHC, ser4 muy dificil interpretar esta senal y discernir entre la enorme
cantidad de posibles modelos teéricos, principalmente debido al hecho de que el
LHC es un colisionador de hadrones, donde los efectos de la interaccion fuerte son
omnipresentes. La complementariedad con otros experimentos seré crucial en la
comprension de la estructura completa de la nueva teoria.

El esfuerzo hecho por la comunidad cientifica en todo el mundo ha sido enorme
y hay mucho en juego. Las apuestas estan ya hechas, aunque como siempre en la
ciencia, la Naturaleza tendra la tltima palabra.

En esta tesis doctoral abordaremos dos aspectos diferentes de la parte teorica
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de este gran proyecto. Por una parte trataremos con las interacciones fuertes y
con su naturaleza no-perturbativa, un marco teérico extremadamente complejo que
representa el mayor obstéculo hoy dia en la obtenciéon de predicciones precisas para
los distintos observables. Por otra parte, iremos mas alla del Modelo Estandar y
analizaremos el impacto fenomenologico de la Nueva Fisica en los observables de
energias bajas (procesos con kaones, fisica del tau, desintegracion del neutrén, ...)
donde la precision experimental es tan alta que pueden extraerse fuertes cotas. A
continuacion desarrollamos estos dos puntos.

El Modelo Estandar: cuando predecir es el reto

Realizar calculos precisos en el Modelo Estandar no es una tarea facil en absoluto. La
Teoria Cuantica de Campos, el lenguaje matematico en el que las leyes de las fisica de
particulas estdn escritas, es una teoria tremendamente complicada y la extraccion
de soluciones precisas a las ecuaciones es literalmente un reto para la comunidad
de fisicos teoricos. Los métodos perturbativos disponibles en el sector electrodébil
del Modelo Estandar pierden su validez en la descripciéon del mundo hadrénico de
energias bajas, y nos vemos obligados a buscar herramientas alternativas.

En las dltimas décadas diversas propuestas se han aplicado con éxito para mejo-
rar nuestra capacidad para realizar célculos tedricos en el sector hadrénico (Teoria
de Perturbaciones Quirales, Reglas de Suma de QCD, ...), mientras que al mismo
tiempo el estudio de las ecuaciones de la teoria formulada en el reticulo (lattice
QCD) y su solucién numérica se ha desarrollado considerablemente, y para muchas
cantidades es ya la fuente de informacién mas precisa.

Lattice QCD es una disciplina muy prometedora y en el futuro, los métodos
analiticos alternativos podrian no ser capaces de competir con ella. Uno podria
ingenuamente pensar por tanto que la mejor estrategia es sentarse y esperar el de-
sarrollo de los calculos en el reticulo, y olvidarse de los enfoques analiticos. Pero
por una parte hay que tener en cuenta que hay observables para los que los calculos
en el reticulo estan muy lejos de ser competitivos y el avance cientifico no puede
simplemente congelarse durante décadas. Por otra parte, lattice QCD es una disci-
plina en pleno desarrollo y necesita de los enfoques alternativos para comprobar sus
resultados y detectar posibles errores sistematicos. Es més, la combinacion de lattice
QCD con la Teoria de Perturbaciones Quirales es de crucial importancia desde un
punto de vista préactico, ya que permite trabajar con masas de quarks no fisicas
y extrapolar los resultados a los valores fisicos, lo que es muy ttil para reducir el
tiempo de calculo necesario.

Nos centraremos en esta tesis en las llamadas Reglas de Suma de QCD, que
representan un método analitico para trabajar con las interacciones fuertes. Este
método ha sido muy 1til desde su formulacion a finales de los setenta, pero tal y
como veremos hay aspectos tedricos que aun merecen un cuidadoso estudio. For-
mularemos el método desde sus principios bésicos, analizando con visiéon critica los
diversos elementos e incertidumbres asociadas, para posteriormente aplicarlo en la
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determinacion de diversos parametros a partir de los datos de las desintegraciones
hadronicas del lepton 7, medidos principalmente por las Colaboraciones ALEPH y
OPAL en el CERN.

En la parte final de la tesis iremos més alla de la desintegracion del lepton 7
y repasaremos el estado actual de las diferentes determinaciones de los elementos
Viua ¥ Vus de la matriz de Cabibbo-Kobayashi-Maskawa (CKM), lo que nos con-
ducira al estudio de las desintegraciones semileptonicas de kaones y piones, de la
desintegracion del muon y de los procesos nucleares. En estas extracciones, veremos
la interaccion y la complementariedad de los distintos enfoques. Necesitaremos la
Teoria de Perturbaciones Quiral para realizar calculos teéricos con kaones y piones,
calculos perturbativos con varios loops para tener en cuenta los efectos electrodébiles
y lattice QCD para extraer el valor de ciertos parametros hadroénicos.

Mas alla de las leyes conocidas: buscando en la os-
curidad

Desde la misma formulacion del Modelo Estandar a finales de los anos sesenta y
principio de los setenta, los fisicos tedricos han intentado encontrar una extension
convincente de él (o una alternativa), que pudiera explicar al menos algunas de las
cuestiones todavia no resueltas. El espectro de posibilidades es enorme, desde pe-
quenas extensiones del Modelo Estandar donde s6lo una particula es anadida (como
por ejemplo el axion, asociado al problema con la simetria CP en las interacciones
fuertes) hasta teorias tremendamente ambiciosas que pretenden unificar no soélo las
interacciones electrodébiles y fuertes, sino también la gravedad, como por ejemplo
la teoria de cuerdas.

Quizéas podemos senalar supersimetria como la extension mas popular, que sigu-
iendo el camino de los avances tedricos que desembocaron en el Modelo Estandar usa
la simetria como referente. Supersimetria seria una nueva simetria de la Naturaleza,
que relaciona bosones y fermiones y que conlleva la existencia de un super-companero
por cada particula conocida. Al igual que ocurre con la simetria electrodébil, tiene
que existir un mecanismo que la rompe a una energia muy alta para que las masas
de estas super-particulas queden por encima de los limites experimentales actuales.
Esta teoria representa una extension del Modelo Estdndar muy atractiva desde un
punto de vista tedrico y ademés parece encajar de manera natural en el contexto
de la teoria de cuerdas (de hecho fue formulada por primera vez en este marco)
y podria resolver diversos problemas, como por ejemplo la existencia de un can-
didato para la materia oscura (la particula supersimétrica més ligera). En cualquier
caso, la motivacion original y principal de supersimetria fue la solucion al problema
de la jerarquia, ya que las contribuciones cuanticas de las super-particulas pueden
cancelar las contribuciones de sus particulas companeras, estabilizando la masa del
boson de Higgs. De esta manera seria posible tener un campo escalar fundamental
con una masa que no necesita un ajuste no-natural de su valor (fine-tuning). Esta
busqueda de naturalidad ha sido la principal fuente de inspiracion para los tedricos
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en la busqueda de posibles extensiones del Modelo Estdndar. Sin embargo, las me-
didas realizadas por LEP en el CERN y por otros experimentos de gran precision
han arrinconado las teorias supersimétricas hasta una posicién no-natural, donde
algin tipo de fine-tuning parece inevitable. De esta forma, la principal motivacion
para la teoria parece haberse casi desvanecido.

Esto ha incentivado la exploraciéon de otras posibles soluciones y nos ha con-
ducido a nuevos escenarios, algunos de ellos realmente exéticos e interesantes, con
dimensiones adicionales de tamano macroscopico y pequenos agujeros negros en el
LHC. También ha provocado un renovado interés por antiguas teorias alternati-
vas, como por ejemplo technicolor, donde la simetria electrodébil esta rota por una
nueva dindmica fuertemente acoplada a la QCD. En cualquier caso, las investiga-
ciones realizadas hasta la fecha parecen indicar que todas las posibilidades requieren
fine-tuning en alguna medida.

Existe una perspectiva alternativa que puede seguirse en el estudio de la Nueva
Fisica, basada en el concepto de Teorias de Campos Efectivas. Esta metodologia
no escoge ningun modelo en particular sino que parte tan solo de un contenido de
particulas a energias bajas y de unas ciertas simetrias de la teoria, lo cual permite
un estudio casi independiente del modelo. Por tanto, en este enfoque el Modelo
Estandar representa una buena descripcion de la Naturaleza hasta una cierta escala
de energias que es muy superior a la masa de la particula estandar més pesada (quark
top o boson de Higgs), salvo por ciertas correcciones que pueden ser parametrizadas
en términos de operadores de dimensiones més altas.

De esta forma es posible analizar la informacion experimental disponible en un
marco tedrico general y concluir qué operadores estan mas o menos suprimidos.
Los resultados de este anédlisis indicaran qué experimentos pueden ser interesantes
para estudiar aquellos operadores menos acotados y qué experimentos son en cierto
sentido redundantes ya que explorarian regiones que ya han sido excluidas por otras
medidas.

La interaccion de estos estudios independientes del modelo y de los anélisis re-
alizados dentro de una extension concreta del Modelo Estdndar es muy necesaria.
El primer enfoque puede indicar nuevas direcciones que no estan acotadas por los
datos y estimular nuevas ideas entre los tedricos para la construccién de modelos,
mientras que el segundo es necesario para evitar trabajar con un ntmero infinito
de pardmetros y también para indicar posibles canales de deteccion directa de las
nuevas particulas.

En la segunda parte de esta tesis seguiremos este analisis independiente del mod-
elo de Nueva Fisica, repasando la derivacion del Lagrangiano méas general compatible
con la conservacion del ntimero leptonico y barionico, que fue realizada hace ya méas
de veinte anos, y donde el Modelo Estandar es el término dominante y la Nueva
Fisica a la escala del teraelectronvoltio aparece como una correcciéon. Aplicaremos
este marco tedrico al estudio de la desintegracion del muén y de las desintegraciones
semileptonicas de los quarks ligeros, poniendo las bases para un analisis sistematico
de los efectos de Nueva Fisica en los procesos de energias bajas, y manteniendo
pleno contacto con la fisica del TeV. De esta forma puede evaluarse, en un marco
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general que no prioriza ningin modelo concreto de Nueva Fisica, la relevancia de
las medidas experimentales de energias bajas para la restriccion de las extensiones
del Modelo Estandar.

Mas concretamente analizaremos con gran detalle los test de unitariedad de la
primera fila de la matriz CKM, y mostraremos como la enorme precision alcanzada
tanto a nivel experimental como teérico en los observables asociados pone esta cota al
mismo nivel de relevancia que aquellas que vienen de colisionadores u otras medidas
electrodébiles de gran precision.

De esta forma, comprobaremos de manera explicita como los experimentos de
bajas energias exploran regiones de la fisica desconocidas hasta hoy, aportando una
informacion de gran valor sobre la estructura de la nueva teorfa que reemplazara al
Modelo Estandar. Por lo tanto, estos experimentos podrian adelantarse al LHC y
ser los primeros en encontrar una senal experimental que no pueda explicarse sin
dar un paso mas allé de las leyes conocidas. Tras décadas de enorme trabajo tedrico
y experimental, este capitulo de la historia de la fisica de particulas se encuentra en
su momento més algido y ya s6lo nos queda esperar.



Chapter 1

The New Physics Quest

The real benefit of science is to know, deep inside,
that you are following the narrow path which has
lead humanity out of the dark ages, and which might
make us reach goals which are unthinkable now.

T. Dorigo

Particle physics is certainly living a historical moment. Almost forty years after
the foundation of the theoretical basis of the so-called Standard Model (SM) of
electroweak and strong interactions we are about to go one step beyond it and see
what Nature has in store for us. New symmetries, new interactions or even new
dimensions can be just around the corner.

This step beyond our current understanding of the microscopic world is an en-
terprise of the whole high-energy physics community. It will be the result of years
of hard work performed by our experimental colleagues at the Large Hadron Col-
lider (LHC) at CERN, building the most powerful particle accelerator, that has
just started to operate, and also at other amazing experimental facilities, like un-
derground laboratories or detectors assembled in satellites. It will be the product
of decades of theoretical work, learning to perform precise calculations within the
Standard Model, absolutely necessary to disentangle the eventual New Physics (NP)
signals from billions and billions of data, and also the result of the work of all those
theoreticians that could not wait for the experimental information and have already
explored all kinds of possible New Physics scenarios.

The first goal of this global enterprise is to find a dynamical explanation of the
particle masses, that is, to find out which is exactly the mechanism that breaks the
electroweak symmetry. According to the Standard Model, a scalar field known as
Higgs field is responsible for it. If this description is right the data collected so far in
different experiments tell us that the Higgs particle was just a bit beyond the LEP
reach and that it will be found at the LHC, after some years of collisions and data
analysis. Different alternatives to this simple mechanism for the origin of mass have
been proposed, although none of them is free of flaws. Needless to say that both
the discovery of the standard Higgs boson or of any alternative mechanism would
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represent a major discovery in the history of particle physics. It would be either the
final piece of the Standard Model or the first piece of the next theoretical paradigm.

Assuming the Higgs boson is found, one must wonder why the Standard Model
cannot be the final description of the microscopic world. Essentially for the same
reasons that the Mendeleev periodic table could not be the whole story: because
there are some experimental facts that the current model cannot answer (matter-
antimatter asymmetry, dark matter constituent, dark energy explanation, quantum
gravity, neutrino masses ...) and because even in the sector where the model fits
perfectly the data the philosophy of science forces us to search a more simple model
(why 3 generations? why these values for the masses? why three coupling constants?
etc.).

But still, even with this affirmative answer, one must ask the precise question of
why the current Standard Model of Particle Physics must fail in the description of
the data collected in the next generation of experiments. Well, the answer is that it
might not fail. But in a certain sense this would be a huge discovery, since it would
mean that we have not understood something deep about Quantum Field Theory,
the theoretical framework that describes the microscopic world, where the quantum
and relativistic effects are present. The scenario known as “big desert” where only
a light Higgs particle is observed and nothing new is found in the TeV range would
certainly provide more questions than answers.

As we have already pointed out, the race for the discovery of New Physics is not
an LHC monopoly. There are other very sophisticated experiments all around the
world looking at corners where the LHC is absolutely blind. It is really amazing
that measuring for example kaons and pions in experiments where the energy of
the particles is very much smaller than in Tevatron or the LHC, one is sensitive
to energy scales beyond the TeV range. This counterintuitive fact is in part just
another consequence of the quantum properties of the microscopic world that we
are exploring, and where the heavy particles (still to be discovered) contribute to
low-energy process through quantum corrections. From these kind of experiments
we have learned in the last decades that the flavor structure of the new theory that
supersedes the Standard Model is highly non-generic, something that remains unex-
plained so far. The next generation of experiments in the flavor sector (B factories,
kaon experiments, ...) will achieve unprecedented sensitivities and therefore will
explore even higher energy scales.

This interplay between low- and high-energy experiments is absolutely necessary
and goes beyond the first observation of a New Physics signal. In the probable
scenario where the first discrepancy with the SM appears at the LHC, it will be very
difficult to interpret this signal and to distinguish among the plethora of possible
theoretical models, essentially due to the fact the LHC is a hadron collider, where
the strong interaction effects are omnipresent. The complementarity with other
experiments will be crucial in the comprehension of the complete structure of the
new theory.

The effort made by the scientific community all over the world has been enor-
mous. The stakes are quite high. As always in science, Nature will have the final
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word.

In this PhD thesis we address two different aspects of the theoretical part of this
enterprise. On one hand we will deal with the strong interactions and their non-
perturbative nature, an extremely difficult theoretical framework that represents the
main obstacle nowadays for obtaining precise predictions for the different observables
in the Standard Model. On the other hand we will take a look at the physics that
can lie beyond it, and its phenomenological impact on low-energy processes (kaon
processes, tau physics, neutron decay, ...), where the experimental accuracy is so
high that very strong bounds can be obtained. Now we develop these two points.

1.1 The Standard Model: when predicting is the
challenge

Performing accurate calculations within the Standard Model is not an easy task at
all. Quantum Field Theory, the mathematical language in which particle physics is
written, is a very complicated subject and the extraction of precise solutions to the
equations is literally a challenge for the theoretical community. The perturbative
methods available in the electroweak sector of the SM cannot help us in the descrip-
tion of the low-energy hadronic world from the Quantum Chromodynamics (QCD)
Lagrangian, and we are forced to search for other tools.

In the last decades different analytical approaches have been successfully used in
order to improve our capabilities to perform theoretical calculations in the hadronic
sector (Chiral Perturbation Theory, QCD Sum Rules, ...), whereas at the same time
the study of the equations of the theory formulated on a lattice and their numerical
solutions has developed considerably, and for several quantities is already the most
reliable source of information.

The lattice approach seems to be very promising and in the future the alternative
analytical approaches might not be able to compete with it. One could naively think
that therefore the best strategy is to sit and wait for the lattice development and
forget about analytical methods, but things are not that simple. First of all, there
are observables where the lattice calculations are very far from being competitive
and one cannot simply freeze the scientific advance for decades. Secondly, Lattice
QCD is a developing discipline and needs the alternative approaches to check results
and detect possible systematic errors. And moreover, the combination of the lattice
methods with for example Chiral Perturbation Theory is of crucial importance from
a practical point of view, since it allows to work with non-physical quark masses
and extrapolate the results to the physical points, what is very useful reducing the
computational time needed.

We will concentrate in the first part of this thesis in the so-called QCD Sum
Rules, that represent an analytical method to deal with the strong interactions.
This method has been very useful since its modern formulation in the late seventies,
but as we will see there are theoretical aspects that still deserve a careful study.
We will formulate the method from its very basis, analyzing critically the different
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elements and uncertainties. And later we will apply it for the extraction of different
parameters from the precise hadronic 7 decay data collected principally by the OPAL
and ALEPH Collaborations at CERN.

In the final part of the thesis we will go beyond the 7 decays and we will re-
view the current status of the different determinations of V,, and V,,, elements of
the Cabibbo-Kobayashi-Maskawa (CKM) matrix, what will lead us to the study of
semileptonic kaon and pion decay, muon decay and nuclear processes. In these ex-
tractions, we will see the interplay and complementarity of the different approaches.
We will need Chiral Perturbation Theory to perform theoretical calculations with
pions and kaons, perturbative multi-loops calculations to take into account the elec-
troweak effects and Lattice QCD to extract the value of certain hadronic parameters.

1.2 Going beyond: searching in the darkness

Since the very foundation of the Standard Model in the late sixties and early sev-
enties, the theoreticians have been trying to find a convincing theoretical extension
of it (or an alternative to it), such that it could explain at least part of the so far
unsolved questions. The spectrum of possibilities is huge, from small extensions of
the SM where only one particle is added (like e.g. the axion, associated to the strong
CP problem) to very ambitious frameworks that aim to unify not only strong and
electroweak interactions but also gravity, like string theory.

We can maybe point supersymmetry as the most popular extension. It follows
the path of the theoretical discoveries that ended with the formulation of the SM
and uses the symmetry as the guiding principle. Supersymmetry would be a new
symmetry of the world that relates bosons and fermions and entails the existence
of a super-partner for every known particle. As the electroweak symmetry it has to
be spontaneously broken at a very high scale in order to push the masses of these
super-partners above the experimental limits. It is a nice theoretical extension of the
SM that moreover seems to arise naturally in the context of string theory (indeed
it was first formulated in that context!) and that could solve several problems; like
for example the existence of a dark matter candidate (the lightest supersymmetric
particle). In any case the original and main motivation for supersymmetry was the
solution of the hierarchy problem, since the super-partners quantum contributions
in the loops can cancel the other quantum contributions, stabilizing the mass of the
Higgs boson. In this way one could have a fundamental scalar with a mass that
does not need an wunnatural fine-tuning. This search of naturalness has been the
main source of inspiration for model-builders when looking for possible extensions
of the SM. However, the measurements performed by LEP at CERN and by other
precision experiments have cornered supersymmetry to an unnatural place where
some fine-tuning seems to be necessary. In this way, the main motivation for the
theory seems to have been almost lost.

This has triggered the exploration of other possible solutions and has led to
new scenarios, some of them very exotic and exciting, with large additional spatial
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dimensions and microscopic black holes that could be found at the LHC. It has
also led to a revival interest in old alternatives like technicolor theories, where the
electroweak symmetry is broken by new strong interacting dynamics a la QCD. In
any case, the investigations made so far indicate that all the known possibilities
require some degree of fine-tuning.

There is an alternative perspective that can be taken for the study of New
Physics, based on the concept of Effective Field Theory. In this approach one does
not commit with any particular model but only assumes the low-energy particle
content and the symmetries of the theory, what allows a quite model-independent
study. Therefore one has that the Standard Model (or a certain modification of it)
represents a good description of Nature up to a certain scale that is well above the
heaviest SM particle (top quark or Higgs), but for small corrections that can be
parameterized in terms of higher dimensional operators.

In this way one can analyze the current experimental information in a general
framework and conclude which operators are more or less suppressed, revealing
which experiments can be interesting in order to probe those operators less con-
strained and which experiments are somehow redundant since they will explore
regions already excluded by other measurements.

The interplay of these model-independent studies and the analyses performed
within particular New Physics scenarios is very necessary, since the former can
point at unconstrained new directions and trigger new ideas among the model-
builder community, whereas the later are needed in order to avoid working with an
infinite number of parameters and also in order to indicate possible direct detection
channels of the new particles.

In the second part of this thesis we will follow this model-independent approach,
reviewing the twenty years old derivation of the most general effective Lagrangian
assuming only lepton and baryon number conservation, where the SM is the first
term and the New Physics at the TeV scale appears as corrections to the SM dom-
inant contribution. We will apply this framework to the study of the muon decay
and the semileptonic decays of light quarks, putting the basis for a systematic anal-
ysis of New Physics effects in low-energy processes, keeping full contact with the
TeV physics. In this way one can assess in a model-independent framework the
relevance of the current experimental measurements constraining the extensions of
the Standard Model.

In particular, we will analyze with great detail the unitarity test of the first
row of the CKM matrix, and we will show how the achieved experimental and
theoretical precision in the associated observables puts this constraint at the same
level of relevance than those coming from colliders or other electroweak precision
measurements.
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Chapter 2

Hadronic tau decays: a QCD
laboratory

(In this respect,) it would have been much nicer
if the tau-lepton had had a mass of 5 GeV!
R. D. Peccei & J. Sola [1]

2.1 Introduction

The 7 particle is a lepton of the third generation of the Standard Model, that
has negative charge and a mass of 1776.99 + 0.29 MeV. During the three decades
passed since its discovery it has been deeply studied with different accelerators and
detectors.

The 7 lepton is the only lepton massive enough to decay into hadrons what makes
it a very interesting object for the study of the strong interaction, given its relative
simplicity compared with the purely hadronic processes. Its mass is such that gives
us access to the low and intermediate energy regions where the non-perturbative
effects are very important (resonances), but where the perturbative calculations can
be still used within the appropriate framework that will be explained in the next
chapter. In this way it offers many interesting, and sometimes unique, possibilities
for testing the Standard Model and learning about QCD, both in the perturbative
and non-perturbative regimes.

We can classify the 7-decays in leptonic and semileptonic (or hadronic) decays.
There are two leptonic channels

T +W v+ 0+, l=p,e, (2.1)

and for them the SM prediction, including the electroweak corrections and neglecting
the neutrino masses is [2]

B - GZm?> [ m}
L, =0 -l y) = 19FQ7T3 f(m—g) TEW (2.2)
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where f(z) =1 — 8z + 82% — 2* — 1222 log z, and the factor rgy = 0.99986 takes
into account the small radiative corrections and the non-local structure of the W-
propagator.

The hadronic decays take place when the W-boson couples to a pair of quarks
(see Fig. 2.1), that after the hadronization process give rise to the experimentally
observed hadrons. We can divide in turn these decays in those where the total
strange charge in the final state is zero and those where it is not-zero, that at first
order in the strong interaction are given by

T—ov,+W v, +d+7, (2.3)
Tov,+W - v+ s+,

respectively.

Figure 2.1: Feynman diagram at tree-level for the 7-decay.

Another well-known process where the strong interaction effects can be studied
in simple conditions is the process eTe~ — v — hadrons. But notice that whereas in
that process only the electromagnetic vector current J* = 5" s Qq7"q 1s examined,
the hadronic 7 decays offer the possibility of studying the properties of both the
vector VZ’]‘ = ;7" ¢; and the axial-vector Aé‘j = q;7"5¢; (con qj,¢; = u,d, s) currents,
in such a way that these two processes are complementary.

2.2 Experimental overview

Tau physics in the last decades has been dominated by two different and complemen-
tary experimental facilities: on one hand the LEP experiments ALEPH, DELPHI,
L3 and OPAL, operating at the Z resonance at center-or-mass energies of 91.2 GeV,
and on the other hand CLEO at CESR running at the T(45) resonance (10.6 GeV).
Up to 1.6 x 10° 7 pairs have been recorded by each of the LEP experiments be-
tween 1990 and 1995, and in CLEO one has even larger statistics, although with
less precision.

Given a specific channel 7 — v, n, where n stands for a certain hadronic system,
one measures the number of events N, (s) where this hadronic system is emitted
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with a total invariant mass y/s. In this way one can construct the so-called spectral
function that gives the associated probability of that event

1 dN,

Pr—vmn(8) ~ — X

N, ds ’

(2.5)

where we have omitted for simplicity the different factors usually included in the
definition.

Although experimentally one observes the individual events, i.e. the exclusive
decays, we will work with the following inclusive observables in this work:

e non-strange vector contribution to the total 7 hadronic width, i.e. the sum
over all the decays that have zero strangeness in the final state, and that
are mediated by the vector current. It can be shown that these modes are
those with an even number of pions!. The corresponding spectral function is
precisely defined as

dNy m? B(r—V"v,) 1

1
_ 2.6
Vud (5) Ny ds 1272 |V,q|?Sgw B(t™— e~ Dv;) (1_i)2 (14_&) (2.6)

where V'~ stands for a strangeless hadronic system with an even number of
pions and where the different factors added to 1/Ny x dNy/ds have been
included for later convenience;

e non-strange axial-vector contribution to the total 7 hadronic width, i.e. the
sum over all those decays that have zero strangeness in the final state and an
odd number of pions. In this case we define the spectral function as

dN 4 m? B(T_—> A_I/T) 1

T

1
- 2.7
ud <8) NA ds 1272 ‘Vud‘QSEW B(Tf—> e ﬁeI/T) (1_i>2 <1+£) ( )

where A~ stands for a strangeless hadronic system with an odd number of
pions, except the one-pion state that is excluded. This exclusion of the 7 —
v, and the different factors will be understood in the next section;

e strange contribution to the total 7 hadronic width, i.e. sum over all the decays
that involve non-zero total strange charge in the final state. In this case the
separation in vector and axial-vector mediated decays is not possible.

The measurements of these spectral functions performed by ALEPH [3] are the most
precise available and they are shown in Fig. 2.2.

Modes with a KK pair contributes both to the V and A channel, what generates a certain
error that will be taken into account.
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Figure 2.2: Vector (V'), axial-vector (A), V + A and V' — A 7 hadronic spectral
functions measured by ALEPH [3|. The shaded areas indicate the main contributing
exclusive 7 decay channels. The curves show the predictions from the parton model
(dotted) and from massless perturbative QCD using ag(Mz) = 0.120 (solid).

2.3 Theoretical calculation

From the electroweak Lagrangian

G
Loy (z) = —TI;VZ-]-EMh% , (2.8)

where €, = 77,(1 — v5)v; and hj; = ;" (1 — 75)d;, it can be formally calculated
any exclusive tau decay 7 — v,n (where n stands for a certain hadronic system) in
terms of the hadronic matrix element (n|h;(0)|0) that cannot be calculated from
first principles due to its non-perturbative nature.

If we consider an inclusive tau decay defined as the sum over all the possible
channels mediated by a certain quark-current Jj;(z), then we end up with the
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following objects

Pyzs) = (2m)* Y (01T} (0)|n) (n|75(0)1]0) 6 (p — pn) (2.9)
= (=g"¢ +a"q") P} 7 (0%) + ¢"a” P (D) (2.10)
where we have shown their Lorentz decomposition. In particular we will find the

following result for the inclusive strange and non-strange decay widths mediated by
the quark-currents J',(x) and JF (x)

2
_ M d
Rf}o = 127TSEWCOSQGC/ —ix
7 m2 mz
s\ s
0+1 0
m2 d
™ ds
RYZ' = 12nSpwsin®f, / — x
’ 2
mK T

2
S S 0+1 0
<1—ﬁ) |:<1+2W)pist7?7<8)+p§Ls),JJ(S> ) (2.12)

T T

where s = p? is the invariant mass of the final hadronic state, Spw = 1.0194 [2] is
an electroweak correction factor and 6¢ is the Cabibbo angle.

We focus now on the non-strange case. The (0)-component of both currents
is well known theoretically: in the isospin limit the vector part pq(il),vv@) vanishes
due to the conservation of the vector current (CVC), whereas the axial-vector part
,01(31), 44(8) is almost saturated by the pion pole contribution, fully calculable within

xPT. Therefore we have

PO a(s) =2 f2 0(s —m?) (2.13)

and therefore

2 2
. m? g
RS = 12wSEWcos200/ i(l—%) <1+2%) P ov(s)  (2.14)

S0 m72' T T
2
_ m: g
Rf,go = 127 Sgw cos? 6, —82 X
S0 mT
S 2 S
1
(1-) |12 ) +2 2o -n)| . @9

From these results we can easily see that the p&l) VV/A 4(s) functions are nothing but

the spectral functions v;/a;(s) that we have defined in Egs. (2.6) and (2.7) but for
a 272 factor

1 1 1)
Prdvv(s) = 55u(s) . pllaals) = gzm(s) . (2.16)
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These spectral functions are not calculable from first principles, at least not in
the whole integration range from s = 0 to s = m? since our perturbative calculations
are valid only at high energies. And so it seems that we cannot calculate either the
exclusive or the inclusive decay widths.

But in the next chapter we will explain a theoretical framework that will allow
us to re-write this kind of integrals of the inclusive spectral functions as contour
integrals calculable within QCD. And therefore we will able to connect the QCD
calculations with the hadronic tau decays. Thanks to this framework and depending
on the goal, it may be interesting to study the integrals of one spectral function or

other. Here we give some examples:

e The non-strange vector and axial-vector spectral function (and its sum) are
well suited to study the perturbative physics and can be used to determine
the strong coupling constant [4];

e The non-strange difference v;(s) — a;(s) is well suited to study the non-
perturbative physics, as we will see in Chapters 4 and 5;

e The difference between the strange and non-strange spectral function can be
used to determine the value of the strange quark mass and the element V,,, of
the CKM matrix [5,6];

The spectral functions embody both the rich hadronic structure seen at low
energy, and the quark behavior relevant in the higher energy regime and play an
important role in the understanding of hadronic dynamics in the intermediate energy
range. They represent the basic input for QCD studies and for evaluating low-energy
contributions from hadronic vacuum polarization.



Chapter 3

QCD Sum Rules: derivation and
dissection

Not only God knows, I know,
and by the end of the semester,
you will know.

Sidney R. Coleman

As we already emphasized in the Chapter 1, due to the non—perturbative character
of the strong interaction described by the QCD Lagrangian, it is extremely difficult
to cover the path that goes from the quarks and gluons to the observable hadrons.
In this Chapter we will present a method that has been very useful during the last
thirty years to help us in covering at least part of this path.

This method is known under the name of QCD Sum Rules and it was introduced
in its modern form in 1979 |7| by Shifman, Vainshtein and Zakharov'. These QCD
Sum Rules [7-9] are the result of the combination of the operator-product expansion
developed by Wilson in 1969 [10] with the old dispersion relations known since the
fifties [11] and with low-energy theorems. So as we see the bases of the QCD Sum
Rules are even older than the Lagrangian of Quantum Chromodynamics, and this
is so because the method is based on very general principles of Quantum Field
Theory like causality and unitarity, that govern the analytic behavior of the two-
point correlation functions, that will be introduced later. But the knowledge of the
fundamental QCD Lagrangian is also an essential ingredient of the QCD Sum Rules
for the exact calculation of the operator-product expansion and in order to prove
the low-energy theorems that may be needed.

The QCD Sum Rules go far beyond the perturbative QCD calculations and
take into account the highly non-perturbative nature of the QCD vacuum, a very
complicated and unknown entity where the operators of the theory have in gen-
eral non-vanishing expectation values. Non-perturbative effects are parameterized
in terms of these vacuum expectation values, that we will consider free parameters

'Due to this work, carried out at the Institute for Theoretical and Experimental Physics (ITEP)
in Moscow, this method is also known as SVZ (or ITEP) sum rules.
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in the absence of an analytic way of calculating them from first principles (lattice
determinations cannot compete still with phenomenological methods), and in this
way the QCD Sum Rules start from the perturbative calculations and the QCD vac-
uum and connect them with hadronic observables. This is what makes the method
so interesting. It goes from pure QCD to the hadronic resonances.

As we will see the QCD Sum Rules do not represent a method that can be
refined indefinitely to any desired precision, like a Taylor expansion of a function,
but has some systematic limits that it is important to understand. Given that the
strong interaction is usually the main culprit of the SM uncertainties, it is crucial
to be able to assign realistic errors to any QCD prediction in such a way that we
can be in a position of claiming the eventual discovery of New Physics or discard
it. So it is necessary to evaluate the different sources of error of a given sum rule
prediction and to evaluate also the possible improvements of this prediction and
the limits of this method for that particular calculation. This kind of analyses are
extremely important in order to know which experiments must be undertaken in the
near future and which are not useful since the theoretical knowledge is still poor.

The central objects of the QCD Sum Rules are the two-point correlation functions
(correlators) 145 (¢?), that will be introduced in the next section.We would like to
keep the derivation and the discussion as general as possible and with this purpose
we will work with a general correlator I145(¢?). But at the end of every section we
will particularize to the case

Map(¢®) — Hur(q®) (3.1)

where I z(¢?) will be defined in the next section. We do this with the intention
of making the derivation more pedagogical and because this correlator will be the
central object of the next two Chapters

3.1 Correlation Function

A two—point correlation function of two operators A(x) and B(x) is the vacuum
expectation value of their T-ordered product

K(z —y) = (0|7 (A(z)B(y)")[0) . (3.2)

where we have explicitly shown that the correlation function only depends on the
relative distance z — y, due to the homogeneity of the vacuum. We will work in the
momentum space

anl) =i [ dte ™ OT(A@BO) (33
and the operators A(x) and B(z) will be two-quark currents with the generic form

gT"¢’, where T = 1,75, 7", 775, 0" (or any linear combination of them) and
¢ =u,d,s..
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We will extract the Lorentz structure of the correlators in such a way that we
end up working with scalar objects that contains the dynamical information and
that only depend on ¢?. For the sake of simplicity and in an abuse of terminology
we will call them also correlators.

Depending on the phenomenology that one wants to study it is interesting to
work with one correlator or another. We will be interested during the next Chapters
in the LR correlator, and so we move on now to its rigorous definition.

3.1.1 The LR correlator

The vector and axial-vector quark currents V;’; (r) = @y*¢’ and Afj = @'Y y5¢7 are
specially interesting because they are realized in nature through the electroweak
vector bosons W, Z and v and there is a very rich associated phenomenology. Be-
cause of that, the sum rules generated by the corresponding correlators can be used
to connect the hadronic world with the QCD Lagrangian.

In Chapters 4 and 5 we will pay special attention to the non-strange (or Cabibbo-
allowed) left- and right-handed currents

Ligy(x) = Vigx) — ALy(x) =uy" (1 —ys)d (3.4)
Ryy(x) = V(o) + ALy(z) =" (1 +75)d 5

and the associated LR correlator

W aa) = 0 [ da e OIT (L) BL,(0)1) 0)
= (9" + ") U (@) + "¢ T pp(@®) . (3.6)

where we have shown the Lorentz decomposition. This two-point function is also
called V — A correlator because?

HZZ,LR(S) = HZZ,VV(S) - HZZ,AA(S) ) (3.7)

since the VA (and AV) correlation function vanishes due to parity invariance of the
vacuum. More specifically we will be working with the following object

0+1 0 1
HELd—,’_L)R(S) = Hud),LR(S) + HSLd),LR(S) ) (3.8)
that abusing of the terminology and notation we will call LR correlator and denote

by I r(s) for the sake of brevity.

3.1.2 Analytic structure of the correlators

Although the correlators are defined in principle for real values of ¢?, the definition
is formally valid also for complex values, in such a way that we can consider them

2In the literature, when the currents A(z) = B(x), as in the V'V or AA case, the subindex of
the correlator is commonly reduced to just V' or A.
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complex functions of a complex variable ¢?. The QCD Sum Rules take advantage of
their analytic properties in the complex plane to relate different regions and connect
the hadronic data with the QCD calculations.

It is always assumed that the correlators are analytic functions of ¢? in the whole
complex plane except in the positive real axis, where they have a cut and maybe
also some poles before the beginning of the cut®. This mathematical assumption
comes from very general physical requirements, like causality and unitarity [12| and
it is known since the times of the S-matrix theory.

It is usually said that the correlator satisfy the Schwarz reflection property across
the real axis?

Map((¢*)*) = Mas()]* (3.9)

and that consequently the correlator takes real values for real ¢? and the discontinuity
in the positive real axis associated to the cut is suffered only by the imaginary part.

It is obvious that mathematically this property cannot be true for arbitrary
currents A(z) and B(x), since one can always redefine A(z) — ¢ A(z) and then the
reflection property will not be satisfied. And indeed the property can in principle
be false for the correlator even if we allow this rephasing.

But it is the physics that tells us that our correlators will satisfy this property
up to a factor ¢ that can appear due to conventions. In order to prove it for a
particular pair of currents, the standard procedure is to demonstrate it in the deep
euclidean region where QCD perturbation theory is reliable and, because of the
analytic structure of the correlator, analytically continue this result to the rest of
the complex plane.

In this way it can be proved that the LR correlator satisfy the Schwarz reflection
principle and that is why we did not extract any factor 7 in the Lorentz decomposition
(3.6). On the contrary, in the explicit analysis of the VT correlator of Ref. [13] we
can see that it is necessary to extract a factor ¢ from the definition of the correlator in
order to satisfy the reflection property and therefore to have a real spectral function
(see section 3.3).

3.2 General derivation of a QCD Sum Rule

Let us consider the general correlator 1T45(¢?) defined in Eq. (3.3) (we will omit
in this section the AB subindex for brevity), a weight function w(q?), that must be
analytic in the whole complex plane but for a possible pole at the origin®, and the

3There is a subtlety that must be noticed. This property of analyticity affects the whole
correlator, but once we Lorentz-decompose it, the remaining pieces may have a different analytic
structure at the origin. In the case of the LR correlator (3.6) this happens for the (0)- and (1)-
components, but not for the objects H(Logl)(s) and s - H(LO])%(S) that must be analytic at s = 0. Due
to this we will use this second decomposition.

4We discuss this issue for completeness, although it is not necessary to use this property at any
moment to formulate the QCD Sum Rules.

°It is also assumed the weight function takes real values for real ¢?. The derivation can be
generalized in a straightforward way to weight functions with poles also out of the origin, but here
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£
S

(T

Figure 3.1: Circuit of integration in the ¢?-complex plane. The radius of the inner
circle is €, the radius of the outer one is sy and the separation between the horizontal
parts of the circuit is proportional to e. We indicate the possible pole of the correlator
at ¢> < sy, and the cut starting at ¢*> = sy,. The possible pole of the weight function
at the origin is not marked.

circuit C' in the ¢*-complex plane that is shown in the Fig. 3.1. Taking into account
the discussed analytic properties of the correlator and the weight function inside
this circuit C' we have by the Cauchy’s theorem

f[é M(2)w(z)dz = 0, (3.10)

where we have already used the notation z = ¢? that emphasizes that we are working
in the complex plane. We can divide this integral in three contributions as it is shown
diagrammatically in Fig. 3.2 finding

/cm I(2)w(z)dz + /cm I(z)w(z)dz +/ I(z)w(z)dz =0, (3.11)

Ccut

where Cj,, Cy, and C,,; referred to the circuits of Fig. 3.2. Taking the limit ¢ — 0
we have the ezact relation

7{ I(z)w(z)dz — 2mi I;{Zeos (I(2)w(z)) + /SO Discll(s)w(s)ds =0,  (3.12)
Cout 0

where RS()S [F'(s)] is the residue of F'(s) at s = 0 and Discll(s) = II(s+ie) —I1(s—ie),
that is, the discontinuity of the correlator at the positive real axis. These three pieces
are the main ingredients of a QCD Sum Rule, although we must make still some
changes to arrive to its final form. Let us now explain the main features of the three
contributions to (3.12) and in the following sections we will analyze them carefully:

we restrict ourselves to this case to simplify the equations and the discussion.
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(a) (b) (c)

Figure 3.2: Diagrams that represent the different contributions to the integral (3.10)
(see Eq. (3.12)).

If sg is high enough, we can calculate within QCD the first integral of (3.12)
(Fig. 3.2a) making use of the Operator-Product Expansion, a useful tool
that will be explained in Section 3.4. Therefore we have

%c (z)w(z)dz = 7{ MOPE()w(2)dz + 2mi DV[w(z), so) ,  (3.13)

Cout

where DV[w(z), so] is the error associated to this OPE-substitution in a circuit
of finite radius so. This error is called quark-hadron duality violation (DV)
and will be analyzed carefully in Section 3.5.

If w(s) has a pole at the origin we will have the second term of (3.12) (Fig. 3.2b)
and then we will need to know the structure of the correlator near the origin.
This can be rigorously calculated using Chiral Perturbation Theory, the
effective theory of QCD in the low-energy regime (see Section 4.1).

Spectral functions.- In the third term of (3.12) (Fig. 3.2c), we have the
discontinuity of the correlator at the positive real axis, that as we will show in
Section 3.3, is related to the measurable spectral functions introduced in the
previous Chapter in the following way

(g +ie) — I(q* — ie) = 2mi p(q?) . (3.14)

This is where the hadronic observables enter in our analysis.

Therefore, we can re-write our general expression of a QCD Sum Rule (3.12) in the
following way

J

S;(s)w(s)ds = Res I (2)w(z) — 740 d—z,HOPE(z)w(z) — DV[w, so]. | (3.15)

2=0 211
out
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This ezact expression represents a non-trivial constraint for the hadronic integral,
that is nothing but a sum over hadronic states. This is why they are called sum
rules. Notice that given a correlator we still have freedom in the choice of the weight
and the value of the Cauchy’s radius sy, what will generate a plethora of sum rules
for the same correlator, each with some problems and virtues.

Eq. (3.15) is the main result of this Chapter. In the following sections we will
explain thoroughly the different ingredients that we have already introduced: the
spectral functions, the operator-product expansion and the duality violation.

3.3 Spectral representation of a general correlator

Assuming just translation invariance and unitarity it can be shown that the corre-
lators satisfy the so-called dispersion relation®

() = [ 2220 (3.16)

where pap(t) is the spectral function, defined by

pan(a®) = (2m)° Y (0]A(0)|n)(n| B(0)']0) 6®(q — pn) , (3.17)

n

where we see that in the case A(z) = B(x) the spectral function is by construction
a real and non—negative function.

The original proof was made more than fifty years ago by Kéllen and Lehmann
[11] for the case A(z) = B(x) and still today this is the standard assumption. We
show in the Appendix A the demonstration for the general case where A(x) and
B(z) are different.

From the dispersion relation (3.16) and using the identity

1 1
——— =PP +i7d(t —q° 3.18
t—q* T ie (t—OF) twoE =) (3.18)
one finds that the discontinuity of IT45(g?) across the real axis is related to the
spectral function pap(¢?) by:

Map(q® +ie) — Map(q® —ie) = 27ipan(q®) , (3.19)

that was the pursued result that we used in the preceding section for the derivation of
the QCD Sum Rule (3.15). We see then that the dispersion relation (3.16) connects
the correlator evaluated at an euclidean point with the discontinuity in the opposite
part of the real axis, that is, the timelike region.

Now we take a careful look to the LR spectral function and how it can be
extracted from 7-data.

5We work for the moment with an unsubtracted dispersion relation, where the integral at the
r.hs. of (3.16) converges and one does not have to add any arbitrary polynomial. We will come
back to this issue later.



26 QCD Sum Rules: derivation and dissection

3.3.1 LR spectral function: connection with data

In the previous Chapter we introduced the non-strange VV and AA spectral func-
tions with their Lorentz decomposition

Prga®) = 20 Y (0]T5(0)n) (n]T(0)10) 60 (p —pu) . (3:20)

n

17 v 1 v 0
= (—9" ¢+ ¢"0) P 77 (0) + A" Pl 77 (P7) - (3.21)

and we explained that they are measurable quantities that can be obtained from the
leptonic tau decay. We focus now on the V-A difference

P Lr(8) = P (5) = pU) 4a(s) - (3.22)

As we explained in the previous Chapter the (0)-component is well known theoreti-
cally, with only the pion pole contribution in the axial-vector channel. Therefore

Patrn(s) ~ —2 f28(s—m?) (3.23)
pUTR(s) =2 f2 8(s —m2) + pl)  p(s) O(s — 4m2) (3.24)

where the 6(s) function has been introduced just to emphasize that ,05;)7 rr(s <4m?)

is zero. This spectral function p&l) r(8) is the part that we are not able to predict

from first principles, but we know it experimentally (for s < m?2). We will work with
it during the next two Chapters, and sometimes we will call it just LR spectral
function for brevity and denote it by prr(s) or even p(s) if the context allows us
to do it without confusion.

The determination of this spectral function by the ALEPH Collaboration is
shown in the Fig. 3.3.

o(s)
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]
]
L]
0.1 .
]
° ]
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% 2
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-0.05

Figure 3.3: V-A spectral function measured by ALEPH [3].
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3.4 The operator-product expansion

We are going to rely on the operator expansion
beyond perturbation theory. Every step here is a

new one and by no means evident.
M. Shifman, A. Vainshtein, V. Zakharov [7].

3.4.1 Definition

In the operator-product expansion proposed by Wilson in 1969 [10] the product of
operators, say A(z) and B(z), is expanded in a series of well defined local operators
O;(x) with singular c-number coefficients C;(z).

AW B) = 3 Cila )0, <l° . y) (3.25)

The local operator O;(x) is regular in the sense that the singularity of the product
A(x)B(y) for x = y is fully contained in the coefficient functions C;(x — y). In Eq.
(3.25) we have arranged each term in the order of decreasing singularity. Hence
Co(x — y) is the most singular as y — x, the next one is C}(z — y) and so on.

Applied to a two-point correlation function in the momentum space the OPE
is equivalent to the assumption that at large external momentum ¢ the following
operator expansion is valid:

ap(—¢*) = i/d4x ¢ (0| T (A(x)B(0)T|0)

= D GE@)00.]0) = Y CIF@)0n) . (326)
n n
where CAB(¢?) are coefficients and O,, are gauge-invariant local operators con-
structed from quarks and gluon fields. We will consider only spin-zero operators
since only these contribute to the vacuum expectation value.

As we said, the operators O, are conveniently classified according to their di-
mension n. An increase in dimension implies extra powers of M?/(—¢?) for the cor-
responding contribution, where M is some typical hadronic mass entering through
the matrix element of O,, and therefore even at intermediate (—¢?) ~ 1 GeV?,
the expansion can safely be truncated after a few terms. So we list now all the
gauge-invariant operators with zero Lorentz spin and n < 6

Oy = 1 (3.27)

O3 = qq (3.28)

Oy = Go,G™ (3.29)
)\a

05 = qouw—G""q, (3.30)

Of = (qrvq)(alsq) , (3.31)

O(? = fachZngchg‘u7 (332)
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where I', s denote various combination of Lorentz and color matrices. The unit
operator is associated with the perturbative contribution that enters through its
Wilson coefficient C{'Z(¢q?). The corresponding vacuum averages of O3 and Oy are
known as quark and gluon condensates, respectively, and as quark-gluon, four-quark
and three-gluon condensates the rest of them. Notice that there are no colorless
operators in QCD with dimension d = 1,2. So we see that the non—perturbative
contributions are suppressed by large powers of M?/(—g?).

The OPE has been proved rigorously by Zimmermann [14] within the framework
of perturbation theory, but there exist no non-perturbative proof of the OPE except
for illustrations in some model field theories. We will assume the validity of the
expansion also beyond perturbation theory as far as the first few terms are concerned,
since explicit instanton solutions show that in higher orders in (—¢?) the operator
expansion becomes invalid [7].

3.4.2 Physical picture

The physical meaning of the operator expansion is the separation of scales. The
OPE assumes the possibility of separating short and large distance effects and indeed
being precise we must have written

Map(—q*) = D CiP(¢% m)(On) (1) (3.33)

n

where p is an arbitrary scale that defines what will be consider short-distance and
large-distance physics. Of course, this dependence is non-physical and will not
appear in any observable.

The interactions at momenta p*> > u? (short distances) are included in the co-
efficients C2P(q¢?; 1), and if we take u large enough we can calculate them pertur-
batively, thanks to asymptotic freedom”. In the free field theory we can extract the
singularity structure of them just from dimensional arguments. In QCD and for
high values of —¢? we expect the corrections to this free field behavior to be small
(logarithmic) thanks again to the asymptotic freedom. According to this we have

: G®
Map(q®) = ) e (O,) (3.34)

n

up to logarithmic corrections, that only in the case of the perturbative contributions
will be important. On the other hand, the large-distance contribution (p? < p?) is
accounted for phenomenologically, through the vacuum-to-vacuum matrix elements.

In practice, using the standard methods of the Feynman-diagram technique, an explicit separa-
tion of distances is impossible in the quark-loop diagrams. One is forced to take into account both
the soft parts of perturbative diagrams and the long-distance condensate effects simultaneously.
This yields a certain amount of double counting, which is, fortunately, in many cases numerically
insignificant, because the condensate contributions turn out to be much larger than the soft tails
of perturbative diagrams.



3.4 The operator-product expansion 29

Figure 3.4: Quark-antiquark creation and annihilation by the virtual photon in the
electron-electron scattering.

It is clear then that the contribution of the large-size fluctuations (independent of ¢?)
of the vacuum fields, can be consistently kept within the framework of the operator
expansion, whereas the small-scale fluctuations cannot be included into the operator
expansion, at least in its present form.

We can try to visualize the correlator and this separation of scales. The creation
of quark-antiquark pair by the external current at one point and its absorption at
another point by another current (see Fig. 3.4) is the physical process behind the
formal definition of 145 (¢?). It is clear that this quark-antiquark pair interacts with
the vacuum fields, and that this interaction is beyond QCD perturbation theory and
has to be taken into account separately. The vacuum fields in QCD are very compli-
cated objects, with their origin in the nonlinear nature of the QCD Lagrangian. Let
us just say about it that various non—perturbative approaches (instanton models,
lattice simulation of QCD, etc.) indicate that these vacuum fields fluctuate with
typical long-distance scales Ay, ~ Agep.

We explain now qualitatively how the contributions to the correlators coming
from the vacuum fields can be performed. It can be shown that at large —¢* > A%
the average distance between the emission and absorption of the quark-antiquark
pair is smaller than the scale of the vacuum fluctuations and so the quark-antiquark
pair behaves as a short-distance probe of long-distance fields, being sensitive to
averaged characteristics of these fields. Therefore quarks with large momenta inter-
act with external static fields composed of soft vacuum gluons and quarks, as it is
diagrammatically shown in Fig. 3.5.

It is important to say that, in addition to these mild effects of the quark scattering
over the vacuum fields, there are specific vacuum fluctuations at short distances
~ 1/4/—¢?, which absorb the whole momentum of the external quark current, and
that violate the condensate expansion (direct instantons).
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Figure 3.5: Diagrams corresponding to the gluon (a,b,c), quark (d), quark-gluon (e)
and four-quark (f) condensate contributions to the OPE of a correlation function.

3.4.3 OPE of the LR correlator

In the Ref. [4] can be found a detailed analysis of the operator-product expansion
of the VV and AA correlators. There we see that in the chiral limit (m, = my = 0)
these two correlators coincide to all orders in perturbation theory, and consequently
the LR correlator vanishes in perturbation theory, what makes it a purely non-
perturbative quantity.

Still in the chiral limit the first term of the OPE of the LR correlator is that of
dimension d = 6, that have the three gluon (3.32) and the four-quark component
(3.31). In Ref. [4] we can see that at leading order in the ag expansion of their
Wilson coefficients we can neglect the three-gluon contribution and we have

(D=6)
(—¢*)° [H(LOE 1)(qz)] = —87ras( (uy, Td - uy*Td)

(@, sT°d - afy“%T“d)) . (3.35)

The nonzero up and down quark masses induce tiny corrections with dimensions
two and four, which are negligible at ¢ << 0. Therefore we will have

Mor(q®) = Oy u)(Oxp)) + CYR (% ) (Oa(p)) + C&™(q?; 1) (O6(1)) + - ..

&) G (u)

~ (_q2)3 <O6<M)> + (_q2>4 <08<:u>> T,

S L (3.36)
q q

where we have introduced the objects OLF that are p-independent and approxi-
mately ¢*>-independent and that will be extracted from the data in the next Chapter.
We will call them LR (or V-A) condensates.



3.5 Violation of the quark-hadron duality 31

3.5 Violation of the quark-hadron duality

In Section 3.2, when deriving the general expression of a QCD Sum Rule, we have
followed the standard procedure of any sum rule analysis of replacing the correlator
for its OPE expression in the whole circumference of radius sg, see (3.13), in order
to be able to calculate theoretically the associated contour integral

7{ dz H(2)w(z)dz — dz TOPE(2)w(2)dz . (3.37)

z|=s0 |z|=s0

As we explained in the previous section the OPE of II(¢?) has been defined for
q*> < 0, and in this integral we are using it for any complex value such that |¢*| = so.

But one cannot perform this analytic continuation in the whole circuit and obtain
the right expression of the correlator II(¢?) in the positive real axis, since that would
mean that we could calculate then the associated spectral function, something that
it is not possible, since the OPE is written in terms of quarks and gluons and cannot
predict the production thresholds of hadrons and resonances, and indeed it will have
production thresholds of pairs of quarks, that we know are confined. One says that
there is no local quark-hadron duality if sq is finite, i.e.

I(g* > 0) # I°PF(¢? > 0) . (3.38)

Therefore the OPE substitution of the correlator in (3.37) introduces an error,
known as quark-hadron duality violation DV[w(z), s¢] formally defined by

1

2ri

DVi]w(z), so] = 7{|: dz (I1(z) — IO (2)) w(2)dz , (3.39)

where it is explicitly shown that the DV of a given sum rule depends crucially on
the weight function w(s) and the value of the Cauchy radius s.

The duality violation is older than the SVZ sum rules themselves and was dis-
cussed in the seventies in the context of the calculation of the process ete™ —
hadrons [15,16]. It was conjectured by Poggio, Quinn and Weinberg [16] in 1976
that the OPE represents a good approximation in the whole complex plane except
in the region close to the positive real axis. This is equivalent to say that we cannot
use the OPE to predict the value of the spectral function p(s) at a given point s,
but it can predict the average of the spectral function over a wide enough interval
of energies.

This DV has been commonly disregarded in the sum rules analyses and indeed
its definition has not been clear in the literature during decades. Let us remind that
there are two kinds of errors in any practical OPE of a correlator. On one hand there
is the fact that the OPE does probably not represent a perfect approximation of the
real correlator, as simple instanton models show [7], since there are small effects
that cannot be included in the OPE. And on the other hand, the OPE itself cannot
be calculated with infinite precision, since we have to truncate the calculation of the
Wilson coefficients at a certain order in «g and also the condensates series.
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Therefore we can calculate the correlator in the euclidean region with a certain
error € and the key point is that this error is enhanced during the analytic continu-
ation to the positive real axis, generating there an error qualitatively bigger than e,
and this is what we call DV [17]°.

It is very instructive to work on a certain model (e.g. an instanton-based model)
[17,19-21] where the appearance of the DV can be seen explicitly in the analytic
continuation of the OPE. We refer the interested reader to the nice reviews of M.
Shifman [17].

During the first years of application of the SVZ sum rules the DV was usually
disregarded, under the assumption of being negligible. Later it received more at-
tention, and different authors started to assign it a certain error, extracted from an
analysis of the stability of the results under changes in the Cauchy’s radius sq, since
if the DV is negligible then there should not be any sqo-dependence”. Only in the last
years a different approach has been followed to estimate the DV [17,19-26], based
on the use of simple models and general parametrizations, as we will explain with
detail in Chapter 5.

3.5.1 An alternative expression for the DV

Now we want to perform some manipulations in (3.15) in order to derive an alterna-
tive expression for the DV. If we define pOTE(s) = %ImHOPE(s), i.e. the prediction
for the spectral function obtained assuming local duality, we have that (3.15) takes
the form

/050(p(8) — p°"F(s)) w(s)ds — Res (I"" (2)w(2)) + DV([w(2), o] = 0. (3.40)

s=0

If we evaluate the expression for sy and Sy > sg, and compare the l.h.s. we find

DV]w(z), so] — DV]w(s), S| = /So(p(s) — p°FE(s)) w(s)ds . (3.41)

S0

Setting §9 — oo and taking into account that DV]w(z), § =oc] = 0 one can write
the DV in the following form [17,19,21,22]

DV]w(z), so] = /Oo(p(s) — p°F(s)) w(s)ds | (3.42)

S0

that is the expression that we wanted to find. This result gives us a very differ-
ent perspective of the meaning of the quark-hadron duality violation, expressing it

8The DV has been studied from this more mathematical perspective related to the stability of
the analytic continuation in some works. We refer the interested reader to Ref. [18].

9We are discussing here QCD Sum Rules were the Cauchy’s radius sq is finite. In the Borel sum
rules, the exponential weight suppressed strongly the high-energy region and consequently one can
take in practice an infinite Cuchy’s radius. One is only moving the error from one place to another,
since the exponential weights generate an infinite series of condensates that will be neglected.
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in terms of the difference between the real spectral function and the OPE predic-
tion for it beyond the upper integration limit. Let us emphasize again the explicit
dependence of the DV on the weight function w(s) and the Cauchy’s radius sy.

This expression is much simpler in the case of the LR correlator, where the
perturbative contribution vanishes. If we neglect the logarithmic dependence of the
Wilson coefficient the condensate contribution to the spectral function also vanishes
and we have

DV r[w(2), so] = /OO ds prr(s)w(s) , (3.43)

S0

that expresses the DV as the part of the integral of the spectral function that we
have not included in the sum rule. Therefore while the expression (3.39) relates the
DV to the break-down of TI?EE(2) (a quark-gluon quantity) near z = sg, this last
expression relates it to the hadronic spectral function prr(s > so).

3.5.2 WSRs: measuring the DV

In 1967 Weinberg [27| conjectured that the LR spectral function satisfy the following
relations

| s et = 22 (3.44)
0
T s oW (s)s —
prr(s)s = 0, (3.45)
0

known as first and second Weiberg Sum Rules (WSRs) respectively. Later they
were proven to hold within QCD in the chiral limit [28], as can be deduced from
the fact that the operator-product expansion of the LR correlator starts with the
dimension-six condensate in the absence of quark masses (see Section 3.4.3). Indeed
the first WSR holds also for massive quarks, whereas for the second WSR we have

S0
1
/ ds p(L})%(S)S =2 f2m? + O(mzagso), (3.46)
0

where we see that for an infinite upper limit the integral diverges, although if we do
not work with large values of sg this divergence can be neglected. These sum rules
are extremely interesting because we can take a finite upper integration limit sy and
then we can measure the DV

s0

DV[L s = = [ ds pfhs) +2 2 (3.47)
0
S0

DVis,so] = —/ ds p(Ll})%(s) s+2 f2m?, (3.48)
0

neglecting again the corrections of the form mgozs. The results of these measurements
are shown in Figs. 3.6, where we can see that the DV can be very important even
at energies like sy ~ 3 GeVZ.
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Of course, we cannot use these relations to estimate directly the DV of any other
sum rule, since it depends crucially on the weight function. However, this does not
mean that they cannot be useful. In the Fig. 3.6 we can see that the DV vanishes
at some finite points

so ~ 1.5 GeV? | So ~ 2.5 GeV? | (3.49)

known as duality points, that coincide approximately for both sum rules. This
fact has been used to suggest that these points are optimal to evaluate other sum
rules and minimize their DV. It is reasonable to think that the duality points of
two sum rules with similar weight functions will not be very different, but once
we change substantially the weight function there is no sense in assuming that the
duality points will still be close to each other. Therefore this strategy based on the
use of duality points must be taken with great care, something that has not been
done sometimes in the literature. We can safely believe the duality-point-based
prediction if it does not depend on which duality point (3.49) is taken. Otherwise
one must assign an error such that covers the prediction of both duality points.

These points are nothing but values of sy such that there is a numerical cancel-
lation of the contributions that are ahead of them

s oitits) wio =0, (3.50)
S0

and so it is clear that the highest duality point of (3.49) must be more stable under
the change of the weight function than the smallest one, since the cancellation needed
is smaller. Anyway, as we have emphasized, the use of the duality points must be
taken with care and the systematic error of the method will be probably quite large.
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Figure 3.6: The first and second WSRs as a function of the upper integration variable
s. The central curve corresponds to the central values of [3] while the upper and
lower curve are the one sigma errors.

3.5.3 Pinched weights

During decades it has been assumed that the use of the so-called pinched weights
(polynomial weights that vanish at s = s¢) minimizes the DV [29-35], since they
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suppress the contribution from the most problematic region in the contour integral
(3.39)

DV]w(z), se] = L ds w(s) (II(s) — 7" (s)) . (3.51)

21 |s|=s0
But the alternative definition of the DV that expresses it in terms of the spectral
function (3.43)

DV[w(z), so] = /OO ds w(s) p(s) , (3.52)

S0

shows that things are not that simple and the assumption is not necessarily true,
since a pinched-weight (PW) function will indeed suppressed the first part of this
hadronic integral but at the same time may enhance the high-energy tail that can
become important. If the final balance is positive and the weight function does its
job minimizing the DV contribution with respect to the normal weight is something
that depends on the particular weight used and on how fast the spectral function
goes to zero, something that is not known theoretically.

This question about the convenience of the use of these PW is very entangled
with the more general question of how to estimate the duality violation of a given
sum rule. The observation of a more stable plateau in the final part of the data
is the standard requirement to check if the weight improves the situation, and the
deviations from the plateau the standard way of estimating the remaining DV. But
it is important to notice that the existence of the plateau is a necessary but not
sufficient condition, because it could be temporary. This is particularly plausible
because the PWs produce curves that have derivative zero in the second duality
point (s9 ~ 2.6 GeV?), that is very near of the end of the data. That is, they
produce a fake plateau, that can induce to the wrong conclusion that the DV is
negligible for that weight and that value of s.

In principle one can know if the plateau is false or real performing a fit to a
straight line. The correlations of the experimental points take into account if the
plateau is real or it has been artificially created by the weight function. But in
practice this fit is not always possible. The available window for the fit allows only
a small range and if the correlations between points in that range are very large!”,
then the standard x?-fit cannot be used, as explained in [36].

It must be emphasized that the PW functions are also useful because they are
expected to minimize the experimental errors, since they suppress the region near
the kinematical end point.

We will use these weights in the next Chapter, will give explicit examples of how
they can fail in the Appendix B and will re-analyze them with the framework that
we will explain in Chapter 5 to answer the question of their convenience in certain
sum rules.

10This situation was found e.g. in the determination of the V-A condensates in Refs. [30,31].
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3.6 Conclusions

In this Chapter we have derived from very general first principles like analyticity
and unitarity the expression of a generic QCD Sum Rule

/Osop(s)w(s)ds = Res (I""(2)w(z)) —fc QHOPE(z)w(z) — DV[w(z), s0](3.53)

s=0 27
ut

This is a very important result, since it connects the hadronic observables with
the quark-gluon calculations without making any assumption or working with any
model. We have introduced and thoroughly explained the different elements that
appear in this relation: the Wilson operator-product expansion that allows a QCD
calculation of the correlator in the deep euclidean region, the spectral functions that
are directly related with the experiment and the often disregarded duality violation,
that will be carefully analyzed in Section 3.5. We postpone the discussion of the
XPT contribution to the next Chapter, where it will be carefully studied.

To finish this Chapter with a more specific result and see the power of the sum
rules, we particularize the general expression to the Hfg 1)(qz) correlator with the
weight function w(s) = s?. From expressions (3.36) and (3.23) we have

80
/ p(LlI)%(s) s? ds = 2f7fmfr + O — DV[2?, 50] . (3.54)
0

It can be seen that we can use this sum rule to extract from the hadronic tau data the
value of Og, a purely non-perturbative QCD quantity. As we will see in Chapter 5
this is indeed the most precise source of information about the value of this quantity.

In the literature, given a certain correlator one can found a lot of different choices
for the weight functions and the value of sy. The Borel or Laplace Sum Rules employ
weights of the form e~ (e.g. [7,37,38]) that suppress strongly the high-energy region
and therefore the DV, but at the same time they entail the appearance of an infinite
number of condensates. The gaussian sum rules [39], with weight functions of the
form e~ (=9/7" have been used to study the violation of local duality. The Finite
Energy Sum Rules [29-31,40,41] (FESRs) take a polynomial weight and a finite value
of sg and have the advantage of involving just a small number of condensates. The
finite value of sy generates potential problems with the DV, and there are different
strategies available in the literature to minimize this problem (WSRs duality points,
pinched weights, etc.). The sum rules that employ weights of the form 1/s™ being
m a positive integer are sometimes called inverse finite energy sum rules and they
are specially good behaved because the high-energy region contribution is small and
the condensates do not appear.

In the next Chapters we are going to focus on the FESR and inverse FESR, but
conceptually the others are very similar and our arguments and conclusions can be
extended easily to those cases.



Chapter 4

Extracting Chiral LECs from tau
decays

I was just guessing

at numbers and figures,

pulling the puzzles apart.
Coldplay

Thanks to the theoretical framework developed in the previous chapter, the precise
hadronic 7-decay data provided in Refs. [3,42-46] are a very important source of
information, both on perturbative and non-perturbative QCD parameters.

The theoretical analysis of the inclusive 7 decay width into hadrons (QCD Sum
Rule with the II;; correlator) allows to perform an accurate determination of the
QCD coupling a, (M) [4,29, 34,47-50],which becomes the most precise determi-
nation of ag(My) after QCD running. In this case, non-perturbative QCD effects
parameterized by power corrections are strongly suppressed.

Another example of the use of hadronic 7-decay data is the study of SU(3)-
breaking corrections to the strangeness-changing two-point functions [5,6,35,51]. The
separate measurement of the |AS| = 0 and |AS| = 1 tau decay widths (associated
to the correlators Il,q/ys 1) provides accurate determinations of fundamental pa-
rameters of the Standard Model, such as the strange quark mass and the Cabibbo-
Kobayashi-Maskawa quark-mixing |V,|.

Very important phenomenological hadronic matrix elements and non-perturbative
QCD quantities can also be obtained from 7-decay data. Of special interest is the
difference of the vector and axial-vector spectral functions, because in the chiral limit
the corresponding V' — A correlator (or LR correlator) is exactly zero in perturbation
theory. The 7-decay measurement of the V' — A spectral function has been used to
perform phenomenological tests of the Weinberg Sum Rules [52-54], to compute the
electromagnetic mass difference between the charged and neutral pions [53], and
to determine several QCD vacuum condensates (see Chapter 5). From the same
spectral function one can also determine the AI = 3/2 contribution of the AS =1
four-quark operators Q7 and Qs to €’ /ek, in the chiral limit [30,41,54-57].
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In this Chapter we will see how using Chiral Perturbation Theory (xPT) [58-60],
the effective field theory of QCD at very low energies, the hadronic 7-decay data can
also be related to order parameters of the spontaneous chiral symmetry breaking
(SxSB) of QCD [61]. xPT describes the SySB Nambu-Goldstone boson physics
through an expansion in external momenta and quark masses and the coefficients of
that expansion are related to order parameters of SySB.

There has been a lot of recent activity to determine the value of these low-energy
constant (LECs) from theory, using as much as possible QCD information [62-77].
This strong effort is motivated by the precision required in present phenomenological
applications, which makes necessary to include corrections of O(p%), where the huge
number of unknown couplings is the major source of theoretical uncertainty.

In this Chapter we present an accurate determination of the yPT couplings Lj,
and Cg,, using the most recent experimental data on hadronic 7 decays [78,79].
Previous work on LY, using 7-decay data can be found in Refs. [32, 33,53, 54, 80].
Our analysis is the first one which includes the known two-loop xPT contributions
and, therefore, provides also the O(p®) coupling Cj..

4.1 Chiral Perturbation Theory

Chiral Perturbation Theory [58-60] (see e.g. [81] for a pedagogical introduction)
is the effective field theory (EFT) of the strong interactions at low energies. The
central idea of the EFT approach was formulated by Weinberg as follows [58]: “... if
one writes down the most general possible Lagrangian, including all terms consistent
with assumed symmetry principles, and then calculates matrix elements with this
Lagrangian to any given order of perturbation theory, the result will simply be the
most general possible S-matrix consistent with analyticity, perturbative unitarity,
cluster decomposition and the assumed symmetry principles.”?

In the context of QCD these ideas have been applied to the interactions among
the Goldstone bosons associated with the spontaneous chiral symmetry breaking. In
this case, the effective theory is formulated in terms of the asymptotically observed
states instead of the degrees of freedom of the underlying QCD Lagrangian (quarks
and gluons).

A successful EFT program requires both the knowledge of the most general
Lagrangian up to a given order as well as an expansion scheme for observables. Due
to the small Goldstone boson masses and their vanishing interactions in the zero-
energy limit, a derivative and quark-mass expansion is a natural scenario for the
corresponding EFT. At present, in the mesonic sector the Lagrangian is known up
to and including O(p®), where p denotes a small quantity such as a four momentum
or a pion mass.

IThis procedure will be applied in the construction of the effective Lagrangian of Chapter 6
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4.1.1 The effective Lagrangian

The starting point of mesonic Chiral Perturbation Theory is the QCD Lagrangian
for N; massless (light) quarks:

N

. L 1 v
Locp = Z(QR,JZLD qri+ qriil) qr) — Zguy,agﬁf ; (4.1)

=1

where qr/p; denote the left/right-handed components of the light quark fields,
D,qr/r, is the covariant derivative and G, , are the corresponding gluonic field
strengths. Here, we will be concerned with the cases N; = 2,3 referring to (u,d)
or (u,d, s) quarks, respectively. This Lagrangian is invariant under separate global
SU(N;)r/r transformations of the left- and right-handed fields and, in addition, it
has an overall U(1) symmetry. Different empirical facts give rise to the assumption
that this chiral symmetry is spontaneously broken down to its vectorial subgroup
SU(N,)v x U(1)y. For example, the low-energy hadron spectrum seems to fol-
low multiplicities of the irreducible representations of the group SU(J,) instead of
SU(N;), x SU(N,)g, as indicated by the absence of degenerate multiplets of opposite
parity. Besides, the lightest mesons form a pseudoscalar octet with masses much
smaller than those of the corresponding vector mesons. According to Coleman’s
theorem [82], the symmetry pattern of the spectrum reflects the invariance of the
vacuum state. Therefore, as a result of Goldstone’s theorem [83|, one would expect
3 (8) massless Goldstone bosons for N; = 2 (3) with vanishing interactions as their
energies tend to zero. The explicit symmetry breaking due to small but finite u, d
and s quark masses, that will be treated perturbatively, generates also small masses
for these Goldstone bosons.

The QCD symmetries and its symmetry breaking pattern —due to the quark
masses— are mapped onto the most general effective Lagrangian for the interaction
of the Goldstone bosons. This Lagrangian is organized in the number of derivatives
and quark mass terms [58-60,84-87]

Lopr(z)=Ly+Ly+ L+ -+, (4.2)

where the lowest-order Lagrangian is given by?

2
Ly = fZTr [D,JJ(DMU)T +xUT +UXT. (4.3)
Here,
Lﬂ-o _'_ Ln 7T+ K+
\/é ¢ V2 — Ve i 1.0 1 0
Ulx) = exp | i A ¢= m —5nT e K ;
K~ K° —%7)8

is a matrix containing the Goldstone boson fields and f denotes the pion decay
constant in the chiral limit: f; = f[1 + O(myq)] = 92.4 MeV. Under a chiral

2In the following, we will give equations for the three-flavor case.
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transformation qr  — 9grr qr.L, Where (g1, gr) € SU(3)r x SU(3)g, the matrix U
transforms as U — gr U gE.

When including external sources in the QCD Lagrangian, the covariant derivative
is defined as®

DU = 0,U—1ir,U~+1iU¢,, (4.5)
DU = 9, U +iU'r, —it,U". (4.6)
The small quark masses are contained in x = 2By M, where M = diag(m,, mq, my)
is the quark mass matrix and By is related to the quark condensate (gq)o in the

chiral limit.
The next-to-leading-order Lagrangian contains 10 low-energy constants L; [60]

Lyz) = L (D,UD'U) + Ly (D, U'D,U) (D'U'D"U)
L3 (D,U'D*UD,U'D"U) + Ly (D, U'D"U) (U'x + x'U)
Ls (D, U'D"U (U'x + X'U)) + L (UTx + x'U)?
L (U = X'U)? + Ls (x'Ux'U + UTxU'x)
— iLg (FE'D,UD,U" + FI*D,U'D,U) + Lio (U FE'UFy,,)
+ H, <FRuuFEV + FLMVF£V> + Hy <XTX> ) (4.7)

+ o+

where the field strength tensors are defined by

FIY = oMy — o"er —q[er, 077, (4.8)
FRy = oMY = o'rt —alrt,r"] . (4.9)

The terms proportional to H; and Hy do not contain the pseudoscalar fields and are
therefore not directly measurable

At O(p?), 90 (23) additional low-energy constant Cj—; .. oo appear in the even
(odd) intrinsic parity sector [84-86]. We show here just one of the terms

Eﬁ(l’) = Cg7<fo,WV”f‘_“’) + ... (410)

for illustration and because we will determine in this chapter the value of this Cg;
parameter.

The low-energy constants fr, B, Li=i.. 10 and C;=,... oo are not fixed by sym-
metry requirements alone and have to be determined phenomenologically or using
non-perturbative techniques. The O(p?) and O(p*) couplings have been determined
in the past to an acceptable accuracy (a recent compilation can be found in Ref. [88])
but the O(p®) couplings C; are much less well determined.

3 Here r, = v, +a, and {,, = v, —a, are defined as the external sources added to the symmetric
Lagrangian (4.1)

Locp = Loep + " (v +750,)q — 4(s — ivsp)g - (4.4)

This formalism is used to incorporate the explicit breaking of chiral symmetry through the quark
masses (making s = M) and also to incorporate the electromagnetic and weak interactions.
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4.1.2 Weinberg’s power counting scheme

In addition to the most general Lagrangian, one needs a method to assess the im-
portance of the various diagrams calculated from the effective Lagrangian. Using
Weinberg’s power counting scheme [58], one may analyze the behavior of a given
diagram calculated in the framework of Eq. (4.2) under a linear re-scaling of all
external momenta, p; — tp;, and a quadratic re-scaling of the light quark masses,
M +— t?m. The chiral dimension D of a given diagram with amplitude M (p;, ) is

defined by
M((tp;, ) = tP M(p;, ), (4.11)

where, in n dimensions,

D = 24 (n—2)N+ > 2(k—1)Nj, >2in 4 dimensions ,  (4.12)
k=1

where Ny is the number of independent loop momenta and NJ, the number of
vertices originating from Lo (). A diagram with chiral dimension D is said to be of
order O(p?). Clearly, for small enough momenta and masses diagrams with small
D, such as D = 2 or D = 4, should dominate*. Note that, for n = 4, loop diagrams
are always suppressed due to the term 2Ny, in Eq. (4.12) and therefore we have
a perturbative scheme in terms of external momenta and masses which are small
compared to some scale (here 47 f ~ 1 GeV).

It can be shown that, when calculating one-loop graphs, using vertices from Lo
of Eq. (4.3), one generates ultraviolet divergences that can be absorbed into the
redefinition of the fields and the parameters of the most general Lagrangian. Since
Lo of Eq. (4.3) is not renormalizable in the traditional sense, the infinities cannot be
absorbed by a renormalization of the coefficients f and B. According to Weinberg’s
power counting of Eq. (4.12), one-loop graphs with vertices from £, are of O(p*) and
therefore one needs to renormalize the parameters of L4 to cancel one-loop infinities.
So we see that the theory is renormalizable order by order.

4.2 Theoretical Framework

During this chapter we will work with the LR correlator 11(¢?) = Hgﬂ%(q% defined

in (3.6) that we repeat here

HZZ,LR(S) = i/d455 el o/ (LZd@f) Zd(O)T) 0)

= ("¢ +¢"¢") W @) + ¢ 1) (@) . (4.13)

4The re-scaling of Eq. (4.11) must be viewed as a mathematical tool. While external three-
momenta can, to a certain extent, be made arbitrarily small, the re-scaling of the quark masses is
a theoretical instrument only.
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where L! (x) = uy*(1 — v5)d and R’ ,(z) = uy*(1 + ~5)d. It is convenient to make
explicit the contribution of the pion pole to the correlator

II(s) = 2 +1(s) . (4.14)

—m2
5 —m2

We will work in the isospin limit m, = my where HSB’V(QZ) = 0. In particular we

will concentrate in this chapter in the QCD Sum Rules that are obtained for this
correlator and the weights w(s) = s72, 571, so that we only have to take our general
formula (3.15) derived in the previous chapter and particularize it to this situation.
In this way we have the exact relation

“ods 1 ds N 2f2 I1(s)
— — — [IOFE DV[s™™, s9] = —-& + R; . (415
[+ g f S DV ] = 2 e (a1

For positive values of m the OPE does not give any contribution to the integration
along the circle |s| = sq if we neglect the logarithmic corrections to the Wilson
coefficients. In order to calculate the residue at the origin of II(s)/s™ we expand
the V-A correlator in his Taylor series®

— ],———U

TI(s) = TI(0) + TT(0) - 5 + SI(0) 57+ (4.16)
and one gets then:
0 ds . of2  mmvoy T (0
Lhwp@+ V] = o et = e ()

where ﬁ(m_l)(O) denotes the (m — 1)th derivative of TI(s) at s = 0. Therefore we
have the following two sum rules for the m = 1,2 cases

/so ds 3_12 p(s) +DVI[1/s% s0] = II(0), (4.18)

Sth

S0 1 I
/ ds — p(s) + DV[1/s,s0] = TI(0) . (4.19)
Sth S

The interest of this relation stems from the fact that at low values of s the correlator
can be rigourously calculated within yPT. At present I1(s) is known up to O(p°) [89],
in terms of the LECs that we want to determine®. The choices m = 1 and m = 2

allow us then to relate the spectral function measured in 7 decays with the theoretical
expressions of I1(0) and I17(0)

IM(0) = —8 L,(p) + corrections , (4.20)

— 1 1 2
II'(0) = 16 Cg(u) + 1802 <— + —) + corrections , (4.21)

2 2
mK mz

°In principle one should perform the Laurent expansion of the V-A correlator, but we have
taken into account its analytic properties near the origin.
6See Appendix C for the complete expression of II(s) at order O(p®).
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where the corrections will be calculated in Section 4.4. Here Li,(x) and Cg,(u)
are the renormalized low-energy constants at the scale p and, as any p-dependent
quantity, they are not directly observable. We define now the effective parameters

1

L = _§ﬁ<0) = L{,(n) + corrections , (4.22)
ca = iﬁ’(()) = Cg(p) + L + 2 + corrections , (4.23)
= 16 T 768002 \m2 | m2 o

that are p-independent and directly observable as the sum rules (4.19) and (4.18)
show clearly. In the next section we will extract their value from the hadronic 7-
decay measurements, whereas in Section 4.4 we will calculate their exact relation
with the corresponding yPT parameters and derive numerical values for those LECs.

4.3 Determination of Effective Couplings

We will use the 2005 ALEPH data on semileptonic 7 decays [3|, shown in Fig.
3.3, which provide the most recent and precise measurement of the V' — A spectral
function. As we have seen the effective chiral couplings can be directly extracted
from the following integrals over the hadronic spectrum:

_ 1 [*d
s o= T = - [T, (4.24)
™ Sen S
— 1 [% ds
eff __ o
16C87 = H/<0> = ;/S;h ? p(S) (425)

These relations are exactly satisfied at sg — oo, whereas at finite values of sy we
will have a contribution from the quark-hadron duality violation, that we have not
explicitly written. Therefore (4.24) and (4.25) assume that the OPE approximates
well the correlator TI(s) over the entire complex circle |s| = sg, or equivalently, that
that the integrals on the real axis from s to infinite are negligible (compared with
the experimental errors), what is expected to be true only for high enough values of
so and for accidental “duality points”. The kinematics of 7 decay restrict the upper
limit of integration to the range 0 < sy < mf and therefore we are forced to work
with a finite value of sq.

If the cutoff sy = m? is high enough to neglect the DV error is something that we
have to conclude a posteriori, from the study of the sensitivity to sy of the integrals
(4.24) and (4.25), although the particular weights of these sum rules are likely to
generate a small DV, since they suppress the high-energy region.

In Fig. 4.1, we plot the value of LT and CSI obtained from Eq. (4.24) and
Eq. (4.25) for different values of sy using the ALEPH data. The band between the
continuous lines shows the corresponding experimental uncertainties (at one sigma).
As expected, the result is far from an horizontal line at low values of sq, where the
applicability of the OPE is suspect. The oscillatory behavior stabilizes quite fast
reaching a rather stable and flat result at values of sy between 2 and 3 GeV?. The
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Figure 4.1: Results obtained for the effective parameter using the relations (4.24)
and (4.25) with the tau decay data and taking different values for s.

weight factor 1/s™ decreases the impact of the high-energy region, minimizing the
size of quark-hadron duality violations, and the integrals appear then to be much
better behaved than the corresponding FESRs with s™ (n > 0) weights, as we will
explicitly check in the next chapter.

In the case of LT if we look close enough (see Fig. 4.2) we find that the current
experimental data are sufficiently accurate to appreciate that the plateau is only
approximate, that is, the small DV is still larger than the experimental error. In the
case of CX the DV is smaller and the experimental error band is compatible with
a perfect plateau, that is to say, the DV is smaller than the experimental errors (or
at most it is of the same order).

eff .
L10 C§'7r(GcV’2)
=0.0055¢ 0.0092 -
-0.0060 | 00090}
00088 F
~0.0065 0.0086 F
00084 F
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Figure 4.2: Enlargements of the curves shown in the Fig. 4.1.

Consequently the choice of a specific value of sy will not be relevant for Cg‘;,
but it will be for Li’g, where different values of sg will produce incompatible values
of L’ifof. Of course, one can just assign an overestimated error compatible with any
value sg of the plateau, let’s say

LS = —(6.64+03)-107%, (4.26)
C — 4(8.1540.20)-103GeV? (4.27)

but as we have said this is an overestimated error (especially in the case of L)
and we have theoretical information (the WSRs) that can be used to improve this
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determination. In order to exploit this theoretical information about the behavior
of the DV and estimate the central value for LSh and its error, there are different
strategies available in the literature. We review them here with a critical analysis:

e Maximum value of sy.- The naive choice is to take sy as large as possible
[42,44, 53], that is sy = m?2, in order to minimize the DV error. Although in
principle one expects that the larger is sg the smaller is the DV, the WSRs
teach us that this reasoning can be too naive due to the oscillatory behavior of
the spectral function. Assuming than the lessons learned from the WSRs can
be applied to these sum rules (that is, that the weights are not dramatically
different), we know that the cancellations make sy ~ 2.5 GeV* a much better
choice. Besides, the maximum s, entails a big experimental error. Because of

these reasons we will not take this point.

e Representative-plateau point.- In order to minimize the DV (that de-
creases with sg) and the experimental error (that grows with s¢) one can take
a point approximately in the middle of the plateau, that will be large but not
the maximum 33|

LT (59 = 2.7 GeV?) —(6.51 +£0.08) - 1073 (4.28)
Cl(sy=2.7GeV?) = 4(8.1840.12)- 1072 GeV 2, (4.29)

where the errors are purely experimental and do not contain any estimation
of the DV contribution, that as we have seen in the figures is not negligible,
at least in the case of LS.

e Duality points.- Another possibility is to give the predictions fixing s, at
the so-called duality points, where the first and second WSRs happen to be
satisfied (see Section 3.5.2). At the highest “duality point”, which is more
reliable, we obtain LT = —(6.45 4 0.09) - 103, where the quoted error only
includes the experimental uncertainty. Being conservative, one could also take
into account the first “duality point”; performing a weighted average of both
results, we get LST = —(6.50 4 0.13) - 1073, where the uncertainty covers the
values obtained at the two duality points.

e Oscillations.- We know that the V-A spectral function should go to zero
as sp increases and the expected behavior is oscillatory. Therefore assuming
that the integral (4.24) oscillates around his asymptotic value with decreasing
oscillations, one can get another estimate performing an average between the
maxima and minima of the successive oscillations. This procedure gives a
value LT = —(6.540.2) - 1073, that is perfectly compatible with the previous
results based on the duality points.

e Continuing the spectral function.- Using appropriate oscillating functions
defined in [22] which mimic the real quark-hadron oscillations above the data”

"We will develop this idea with great detail in the next Chapter.
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we can get another estimate. These functions are defined such that they match
the data at ~ 3 GeV?, go to zero with decreasing oscillations and satisfy the
first and second WSRs. We find in this way LI = —(6.5040.12) - 1073, where
the error spans the range generated by the different functions used. This result
agrees well with our previous estimates.

e Pinched weights®.- We can take advantage of the WSRs to construct mod-
ified sum rules with weight factors proportional to (1 — s/sg), in order to
suppress numerically the role of the suspect region around s ~ sg:

1 [%° ds S
—suf = L[S (1——) p(s) + Aa(so) (4.30)
Sth

™ S So

_ l/ ds (1 _ 3)2 o(s) + 20 (s0) — A(so). (431

s s So

The factors A;(sg) = <2f73 + C’QLR> /s0 and As(sg) = (2]""7%77172T — C~'4LR> /st are
small corrections dominated by the f2 term, since C’zL’f vanish in the chiral limit

(see the OPE in Eq. (3.34) to see the definition of CX%) . The sum rule (4.31)
has been previously used in Refs. [32,33|. The dashed and dot-dashed lines in
Fig. 4.3 show the results obtained from Eqs. (4.30) and (4.31), respectively. As
already found in Refs. [32,33], these PW minimize the theoretical uncertainties
in a sizable way, giving rise to very stable results over a quite wide range of
so values. One gets then LSS = —(6.51 4 0.06) - 10~ using Eq. (4.30), and
LT = —(6.45 4 0.06) - 1072 from Eq. (4.31).

Taking into account all the previous discussion, we quote as our final result:

LT — —(6.48 £0.06) - 1072, (4.32)

We have made a completely analogous analysis to determine the effective cou-
pling Cglc?f. The results are shown in Fig. 4.4. The continuous lines, obtained from
Eq. (4.25), are much more stable than the corresponding results for Lﬁg, owing to
the 1/s? factor in the integrand. The dashed and dot-dashed lines correspond to the
results obtained from the modified sum rules:

. 1 [* ds s Aq(s0)
16Cy = ;/ = (1— 5—3) p(s) + —1800 : (4.33)
Sth
1 S0 2 A —2A
= [T (1m0 (1422 ptey IR (g
T Js,, S S0 So S0

8 As was explained in Section 3.5.3 the use of the PW is not always beneficial and they can
generate an underestimation of the errors. Due to this we have not based our analysis entirely on
them, but we have used other methods to check the compatibility of their results. In Appendix B
we analyze the use of the PW in these sum rules and in the next chapter we will prove (within our
parameterization) that they indeed minimize the experimental and DV error.
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Figure 4.3: Determinations of LT at different values of sq, using the modified ex-

pressions of Eqs. (4.30) (dashed line) and (4.31) (dot-dashed line). For clarity, we
do not include their corresponding error bands. We left the result obtained with the
standard weight Eq. (4.24) (solid line) for comparison.

The agreement among the different estimates is quite remarkable. We quote as our
final conservative result,

CT — (8.1840.13) - 1073 GeV 2. (4.35)
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Figure 4.4: Determinations of CSI at different values of so. The continuous lines
show the results obtained from Eq. (4.25). The modified expressions in Egs. (4.33)
and (4.34) give rise to the dashed and dot-dashed lines, respectively. For clarity, we
do not include their corresponding error bands.

4.4 xPT results

In this section we will calculate the behavior near the origin of the V-A correlator
with yPT and therefore we will relate the effective parameters to the LECs of the
theory (at a certain renormalization scale). In particular we need to calculate the
value of TI(s) and his derivative in the origin.
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4.4.1 Calculation at order p*
Before going on to the O(p®) calculation it is interesting to present the more simple

O(p*) calculation, that it is equivalent conceptually but does not involve so long
expressions. Therefore we start from the well-known result [60]

2/7

I(s) = i 8L}, — 8B (s) — 4BEE (s) (4.36)
where
y 1 o—1 1 m?
By = 2(o] 2) — log— + 1)+ —— 4.37
Vi) = g (olos Tmy ) — oty D o o (487)
4m?
o = (J1- 4 (4.38)
s
From this expression we have
-1 = : L. KK
5 IT1(0) = L+ 111% By (s) + B 111% By (s)

2 2
1+log%s 1+ log—k
Lgo _'_ H’2 _'_ M2
19272 38472
2
m2  1+log %

o8 T2 T s

(4.39)

1
= L
10+ 38472

and we can see that the effective parameter LS (Lh.s.) correspond to the low-
energy constant Li,(u) but for a correction that cancels the xPT renormalization
scale dependence of L7,(u) (and hence the name of LST). We extend this notation
and define in the same way CSI. although in this case Cj, may not be the largest
contribution, since there is another contribution at order p*

(T S d e
11 12

Of course at this order we cannot extract Cg, from Cii because we do not have
still Cg, in the YPT Lagrangian, but we can just see how important is the O(p*)
contribution to Cgo.
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4.4.2 Calculation at order p°

In this section we will start from the following result for the V-A correlator 89|

2f72 T ™
Ms) = 25 815, — 8By (s) — 4BEN(5)
+ 16 Cg; s
— 32 m?r (Cgl — Oy — Cgo)

— 32 (mZ + 2m¥%) (Cg, — Cfs — C§y)
16 ( (2 + )L + 2L10) — (2B57(6) + BECo) L 7 ) (45

-8 GQL([% 5) )

where the functions B{(s) were defined in (4.37), Gar(s) represents the 2-loop con-
tributions (the explicit expression can be found in Appendix C , but we will work
with this notation in order to avoid endless expressions) and

mi_oom
i = o] logﬁ . (4.47)

It is convenient to analyze the different terms of this expression, looking not only to
their importance in the chiral expansion but also in the expansion in the number of
quark colors N, [90]:

e (4.41) is the contribution of order p? and p*. Notice that the one-loop correc-
tions given by the Bi(s) functions are suppressed by one power of 1/N¢ with
respect to the Li,(u) contact term;

e (4.42) is the s-dependent part of the O(p®) counterterms;
e (4.43) is a counterterm contribution suppressed by the factor m?;

e (4.44) is a counterterm contribution that is enhanced by m% /m? with respect
to (4.43), but has a 1/N.. suppression factor because these LECs are associated
to operators with two traces [63,85];

e (4.45) is the one-loop contribution of the order p* YPT Lagrangian and there-
fore is also suppressed by a factor 1/N, with respect to (4.43). It contains
LECs of order p*;

e (4.46) is the two-loop contribution, does not depend on any LEC, and it is
suppressed by a factor (1/N,)? with respect to (4.43).
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From this expression we can calculate the value of the correlator and his derivative
in the origin, finding

1 —
Li§ = —-TI(0)
8
I 1 w 1 mi
+ 4AmZ (Cf — Ch, — Cy)(p)
+ 4 (Zm%( + m?r) (Cg2 — O3 — Cgl)(ﬂ)
— 2 (2pr + pre) (Lo +2L75) (1)
+  Garlp, s=0) + O(p%), (4.48)
et = Ly
87 - 16

1 12
_ LR
w1+ Zo50 72 <m§< * m2)

s

1 I 1 mi\ | ¢
GTE ll ~log <m—a) g los (m—a Lo ()

L,
- §G2L(M78:0) + O(pg)v (449>

where G, (11, 5) = LG (1, s).

The derivative operation, when acting over the one-loop contribution to II(s),
generates the terms proportional to inverse powers of the pion and kaon masses in
the second line. For simplicity, we relegate the explicit analytic forms of Gy (1) and
G4, (), which are very lengthy and not too enlightening to Appendix C.

4.5 Determination of L)}, and Cg,

In this section we want to use the relations (4.48) and (4.49) and the values of
the effective parameters LS and CEE obtained in Section 4.3 to determine the yPT
couplings L}, and Cg; at a certain value of the scale .

At O(p*) the determination of L7, is straightforward, since one only needs to
subtract from LT the term [1—log (1?/m2) + 3 log (m3; /m2)] /(1287?). Taking
i = M, as the reference value for the yPT renormalization scale, one gets

L7y (M,) = —(5.224£0.06) - 107, (4.50)

At order p®, the numerical relation is more subtle because it gets small corrections
from other LECs. As we have seen, it is useful to classify the O(p®) contributions
through their ordering within the 1/N¢ expansion. The tree-level term 4m?2(C%, —
C7y — C%y), which is the only O(p®) correction in the large—N¢ limit, is numerically
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small because it appears suppressed by a factor m2. The three relevant couplings
have been determined phenomenologically with a moderate accuracy:

Cy(M,) = (1.240.44)- 107° GeV~2 (from T1{), 1 (0) — TI25 (0)) (66,67,
Ciy(M,) = (0.4+6.3)-107° GeV~? (from the K scalar form factor) [71] ,
Cio(M,) = (2.1 £0.5)-107° GeV~?  (from a;/K; mass and

width differences) [72] .

These determinations agree reasonably well with published meson-exchange esti-
mates [65,89] and lead to a total contribution

Am2(Chy — Cfy — Ch) (M) = —(6.7+5.2) - 107° . (4.51)

The scale dependence of this combination of O(p°®) couplings [84-86] between 1 = 0.6
GeV and p = 1.1 GeV is within its quoted uncertainty:.

At NLO in 1/N¢g we need to consider the tree-level contribution proportional to
the combination of LECs (Cf, — C73; — C§;). We are not aware of any published
estimate of these 1/N¢g suppressed couplings, beyond the trivial statement that
they do not get any tree-level contribution from resonance exchange [63,65]. We
will adopt the conservative range

Coo — Clz — G| (M) < |Gy — Oy — T (M) /3 (4.52)
which gives a contribution
42m3 +m2)(Chy — Cry — C3)(M,) = (0.0 £5.8) - 107+ . (4.53)

The scale dependence between = 0.6 GeV and p = 1.1 GeV of this combination
of O(p®) couplings [84-86| is within its quoted uncertainty. The uncertainty on this
term will dominate our final error on the L}, (}M,) determination. At the same NLO
in 1/N¢, there is also a one-loop correction proportional to L(M,); using the O(p°)
determination L§(M,) = (5.93 £ 0.43) - 1072 [74], this contribution gives

224y + pg) L (M) = —(1.56 £ 0.11) - 1072 . 4.54
9\4Hp

Finally, the 1/NZ suppressed two-loop function which collects the non-analytic con-
tributions takes the value Gar(M,) = —0.52 - 107?, one order of magnitude smaller
than LT but still eight times larger than the uncertainty quoted for LS in (4.32).
Taking all these contributions into account, we finally get the wanted O(p°®) result:

Lig(M,) = —(4.06 = 0.04per £ 0.39 ) - 107°
= —(4.06 +0.39) - 1072, (4.55)

where the uncertainty has been split into its two main components. The final error
is completely dominated by our ignorance on the 1/N¢ suppressed LECs of O(p%).
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The determination of Cg, from ng at this order in the chiral expansion does
not involve any unknown LEC (like the determination of L}, at order p?). The
contribution of order p* in the relation (4.49) is

—1 12 oy
W (m—%( + m—%) =—141-107° GeV = | (4.56)

whereas the one-loop correction from £,4(z), which depends on Lg(M,), gives —(1.75+
0.13) - 1073 GeV~? and the two-loop contributions G, (M,) = —0.28 - 1073 GeV 2.
In spite of the chiral and 1/N¢ suppression, the different contributions go in the
same direction and the final correction is very sizable, decreasing the final value of

the O(p®) LEC:

Cir(M,) = (4894 0.13¢er +0.1350s) - 1072 GeV ™2
= (4.894+0.18)-107 GeV %, (4.57)

where we see that in this case the error is equally shared by the experimental and
LECs uncertainties.

4.6 From Lj, to Lj

A recent reanalysis of the decay 77 — etvy [72], using new experimental data, has
provided quite accurate values for the combination of LECs Lg + L1,

Lo(M,) + Lyg(M,) = (4.58)

(1.3240.14)-107%,  O(pY),
(1.4440.08)- 1073,  O@(5),

that can be used in combination with our results for Li;(M,) to extract the value
of Lg(M,):

Lo(M,

) = { E6.54i0.15)-10‘3, O(p*), (459)

550 +0.40)- 1073,  O@°),

in perfect agreement with the O(p*) result L§(M,) = (6.9 +0.7) - 1072 of Ref. [8§]
and the O(p°®) result Lg(M,) = (5.93+£0.43) - 1072 of Ref. [74]. This last comparison
represents an indirect check (in fact the only possible one for the moment) of our
O(p®) result for L],.

4.7 SU(2) yPT

Up to now, we have discussed the low-energy constants of SU(3) xyPT. It is useful to
consider also the effective low-energy theory with only two flavors of light quarks to
perform high-accuracy phenomenological determinations of the corresponding LECs
at NLO. Moreover, recent lattice calculations with two dynamical quarks are already
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able to obtain the SU(2) LECs with high precision and this is an important check
for them.

In SU(2) xPT, there are ten LECs, l,—; 7 and hia3, at O(p*) [59]. Using the
O(p®) relation between [%(u) and LY, (1), recently obtained in Ref. [91] we get

Is = —19272L + 1 +1og <@)
mg
768w m2(Chy + Chy — Cfy — Cry — Cho — Ci1) (1)
+ 1536 7% (mj — 1) (Cy — C1y — Cgy) (1)
— 3847 (2pur + pxc — fixc) (L + 2L70) ()
[ ss(5) e () < e ()

+ 19272 Gor () + O(®), (4.60)

where 1% = m3. —m?2 /2 is the kaon mass squared in the limit m, = mg =0, 25 =
mi/(167° f2), fix = i log(mg /p)/ (167> f2) and p; ~ 1.41602. The invariant
coupling [5 is defined by [59]

- M?

5 = —1927°l; —log — (4.61)
o

_ M2

lg = —967°l; —log —= | (4.62)
ol

where we have defined also I for future convenience.

The first line in (4.60) contains the O(p*) contributions; the determination of
I5 at this order is then straightforward. The full O(p®) result, with the different
tree-level, one-loop and two-loop corrections, is given in the other lines. Following

the same procedure as in the SU(3) case, we get the results
i 13.30+£0.11,  O(ph),
12.244+0.21, O(pY).

From a phenomenological analysis of the radiative decay m — [y within SU(2)
XPT, the authors of Ref. [73] obtained

o 2.57+0.35, O(pY),
l6 - l5 -

(4.64)
2.98+0.33, O

Using these results and our determinations for /5 one gets’

1580 £0.29,  O(ph),
_ (4.65)
15224039,  O1%).

9Actually, at order p*, the most precise value of the combination lg — I5 is obtained if we
calculate it from the SU(3) combination Lg + Lio of Ref. [72], that is Eq. (4.58). In this way we
have obtained a prediction for ls that supersedes that of Ref. [7§].
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Making use of the recent results obtained in Ref. [92] we can also rewrite our
result for Cg, in the SU(2) yPT language, getting the first determination of ¢f

cto(M,) = (4.954+0.18) - 107 GeV 2 . (4.66)

4.8 Summary and comparisons

Using the most recent hadronic 7-decay data [3| on the V' — A spectral function,
and general properties of QCD such as analyticity, the OPE and xPT, we have
determined very accurately the chiral low-energy constants Liy(M,), I5, Cg;(M,)
and c%,(M,), working both at O(p*) and O(p°) in the chiral expansion. Taking into
account the results of Refs. |72, 73] we have also extracted the values of Lg(),) and
ls. The results are summarized in Tables 4.1 and 4.2.

xPTs xPT;
I5=13.30+0.11 Liy(M,) = —(5.22 £ 0.06) - 1073
le =15.80+0.29 | L§(M,) = (6.54+£0.15) - 1073

Table 4.1: Results for the yPT LECs obtained at O(p?).

xPTy xPTs
I5 =1224+0.21 Lyy(M,) = —(4.06 £ 0.39) - 1073
lg = 15.22 £ 0.39 Ly(M,) = (5.50 £ 0.40) - 1073
cty = (4.95+£0.18) - 1073 GeV~* | C5;(M,) = (4.89 £ 0.18) - 103 GeV

Table 4.2: Results for the yPT LECs obtained at O(p°).

Our error estimate includes a careful analysis of the theoretical uncertainties
associated with the use of the OPE in the dangerous region close to the physical
cut. Moreover, in (4.55) and (4.57) we have explicitly separated the error into its two
main components, showing that our present ignorance on the 1/N¢ suppressed LECs
dominates the final uncertainty of the Lj;(M,) determination at O(p®), whereas in
the Cg, case the error is equally shared by the experimental and LECs uncertainties.

We can find different determinations of these LECs in the literature, that we can
divide in phenomenological, theoretical and lattice determinations.

Phenomenological determinations.- Before the existence of 7-data Lj, was
extracted from the form factors of radiative pion decay (where the combination
L}, + Ly appears) together with the knowledge of Lg. Once 7-data was available
from DORIS at DESY [93] and PEP at SLAC [94] it was possible to perform the
first sum rule determination of LY, [80]. This determination used data-interpolated
functions extracted from [1] and did not assign any error to the result.

With the good quality 7-data coming from LEP at CERN several authors re-
peated this analysis, although in most of the cases they just got the effective pa-
rameter and did not extract the Lj, value. Due to this, we show in Table 4.3 the
different values obtained for the effective parameter.
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L. 10° Ref. Data
—6.0 [80] Argus Coll. (1986) [93]
~6.36 £ 0.19 53] ALEPH Coll. (1098) [42, 43]
—5.80 £ 0.20 [54] ALEPH Coll. (1998) [42,43)
~6.43 £ 0.08 32| ALEPH Coll. (1998) [42,43]
~6.45 £ 0.06 133] ALEPH Coll. (2005) [3]
—6.48 £ 0.06 | This work [78] | ALEPH Coll. (2005) [3]

Table 4.3: Different determinations of L‘ig.

The determination of Ref. [53] was done through a simultaneous fit of this pa-
rameter and the OPE corrections of dimensions six and eight to several spectral
moments of the hadronic distribution with the older 1998 ALEPH data [42,43], in
good agreement with us, although obviously less precise.

The value of Ref. [54] is the only one that disagrees with ours, being 3.2 o
smaller. It was extracted from 7 data using the first “duality point” of the WSRs
and the older ALEPH 7-data. The difference comes from underestimated theoretical
uncertainties in this reference, as can be easily seen by choosing instead the second
duality point or varying slightly the value of the first duality point. In fact the same
Ref. [54] (see Eq. (10) therein) presents also a different estimate of LT that is in
very good agreement with our result.

In Ref. [32] LT was determined using the older ALEPH 7-data and an updated
re-analysis with the new data was given in [33]. We see that they are in good
agreement with our result, but their analysis relies completely on the use of the
pinched weights whereas ours includes a more detailed assessment of the theoretical
uncertainties, that discards a possible failure of the PW (see Appendix B).

Only in Ref. [53] the value of the chiral parameter L], was extracted (at order
p?), finding

Liy(M,) = —(5.13£0.19) - 1073, O(p*) , (4.67)

obviously also in good agreement with our O(p*) result. We can perform an indirect
check through the comparison of our O(p*) result for Lj with the value Lj(M,) =
(6.940.7) - 1072 obtained from the charge radius of the pion [88]. We see a very
good agreement and a clear improvement in the precision'®.

Our determination of L, (I5) is the first one at O(p%), although again we can
make an indirect and interesting check comparing our O(p®) result for Lj (Is) with
the value L5(M,) = (5.93 £0.43) - 1073 (Ig = 16.0 £ 0.5 £ 0.7) obtained from the
charge radius of the pion [74] ( [75]). The agreement is once more very good and
the improvement in the numerical value of Iy is remarkable.

Our determination of Cg; (cf,) is the first one performed phenomenologically,

although in Ref. [32] the value of II'(0) was extracted using the same QCD Sum

19This is equivalent to use the old extraction of L, based on the use of the relation L'ig =
=1 r2/.2 1p
12 2(ra) + 1HA-



56 Extracting Chiral LECs from tau decays

Rule that we have used (with the old ALEPH) data, and from there we can extract
the value CS = (8.12 4 0.13) - 1072 GeV 2 that is in good agreement with ours.
Theoretical determinations.- Our determinations of Lj,(x) and Cg,(u) at

i = M, agree within errors with the large-N¢ estimates based on lowest-meson
dominance [62-64,76,89]:
F2 F2 2
- 4 4 ~ S ~ —5.4-107°,
4MZE  AM3 8MZ
o F T

Cyr = — ~ ~ 53-1072GeV 2.
87 8ME — 8M1 T 32Mp ©

Lo

They are also in good agreement with the result of Refs. [68,69] for Cs; based
on Padé Approximants. These predictions, however, are unable to fix the scale
dependence which is of higher-order in 1/Ng. More recently, the resonance chiral
theory Lagrangian [63,64, 95| has been used to analyze the LR correlator at NLO
order in the 1/Ng expansion [70]. Matching the effective field theory description
with the short-distance QCD behavior, the two LECs are determined, keeping full
control of their 1 dependence. The theoretically predicted values [70]

Liy(M,) = —(44+09)-107%, (4.68)
Cir(M,)) = (3.64+1.3)-107% GeV 2, (4.69)

are in perfect agreement with our determinations, although less precise.
Lattice determinations.- The most recent lattice calculations find the follow-
ing results (order pt):

LM, — { —(5.240.5)-1073 196],

—(5.7+11+07)-10%  [97],

. { 14.9+12+07 ]98],

6 = L 11.9+07+10 99]. (4.70)

They are in good agreement with our determinations (although still far from the
phenomenological precision), but for the last one that is slightly smaller. As dis-
cussed in Ref. [99], this is partly due to the deviation of the lattice determination
of the pion decay constant from the yPT one.

Therefore we can conclude that the different analytical approaches and the var-
ious lattice calculations agree very well with our precise phenomenological values.

As a final remark let us say that the L;q parameter has a conceptual importance
that goes beyond the framework of yPT, since the analogous parameter in strongly
coupled extensions of the Standard Model (e.g. technicolor theories) is equal to the S
Peskin-Takeuchi parameter [100] but for a minus sign and some factors. It has been
suggested that a QCD-like theory will generate a positive value of S, what makes very
interesting its determination. Some works [101] indicated that the electroweak data
entailed S < 0, what led to the assertion that the electroweak symmetry breaking
does not mimic QCD, but more recent works showed that a positive S is still allowed
by the current experimental data [102].



Chapter 5

Estimating the Duality Violation

There is no such thing as a

theoretical uncertainty.

All there is is theoretical stupidity.
Guido Altarelli

The basic assumption behind the QCD Sum Rules is that the quark and hadron
degrees of freedom provide two dual descriptions of the same strong interaction dy-
namics. This quark-hadron duality is a consequence of the assumed confinement
of QCD. In more technical terms, a sum rule is a dispersion relation relating the
value of a given two-point correlation function at some Euclidean value of Q? with
an integral over the corresponding spectral function in the Minkowskian domain.
Quark-hadron duality allows us to calculate this Minkowskian integral in terms of
hadrons, using the available experimental data. Ideally, the resulting QCD Sum
Rule is an exact mathematical relation arising from analyticity and confinement
(duality). In practice, however, as we have explained in Chapter 3 a series of approx-
imations need unavoidably to be adopted in its specific numerical implementation
(OPE truncation, cutoff in the hadronic integral, etc.).

The associated violation of quark-hadron duality is difficult to estimate, because
of our inability to make reliable QCD calculations at low and intermediate energies.
The normal way to assess the theoretical uncertainties of QCD Sum Rules consists
in estimating the OPE truncation error and testing the stability of the results with
variations of so. However, this method is too naive (see Appendix B) and can
underestimate the DV.

Violations of QCD quark-hadron duality [17] have been poorly studied and often
disregarded. Its importance in Finite Energy Sum Rules (FESRs) has attracted
some attention recently [21-24], owing to the phenomenological need for higher
accuracies. To estimate the size of these effects is of course of maximal importance,
if we want to master the strong interaction at all energies and be able to perform
precision QCD calculations. This importance extends to all particle physics when
one realizes that those calculations are often necessary to disentangle New Physics
from the Standard Model. Moreover, duality violations will also be present in NP
scenarios characterized by a strongly-interacting dynamics. A better knowledge
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of duality violations in QCD would help to understand their role in more exotic
theories.

In the following, we present a detailed analysis of the possible numerical impact
of duality violations in the description of the LR correlator [25,26]. Let us repeat
that this is a very good laboratory to test the problem because this correlator is
an order parameter of chiral-symmetry breaking: in the massless quark limit it
vanishes to all orders in perturbation theory, i.e. its operator product expansion
only contains power-suppressed contributions, starting with dimension six. In the
absence of any theory of duality violations, we will use a generic, but theoretically
motivated, model [17,20] to assess the phenomenological relevance of these effects.

The theoretical ingredients of our analysis are presented in the next section.
Section 5.2 contains a detailed discussion of the behavior of the physical spectral
function at high energies. Using the most recent experimental data, we generate
a large number of “acceptable” spectral functions which satisfy all known QCD
constraints. Our numerical results, obtained through a careful statistical analysis
of the whole set of possible spectral functions, are given in section 5.3. Section 5.6
summarizes our findings.

5.1 Theoretical Framework

In this chapter we will work again with the LR correlator T1(¢2) = I (¢2). As
we have explained carefully in the previous chapter, its analytic properties allow us
to derive the exact relation (3.15), that we show now for a weight function of the
form w(s) = s", being n an integer number that can be positive or negative

S0 1
/ ds s" p(s) + — ds s"TI(s) = 2f>m>" + Reos [s" TI(s)], (5.1)
Sth 5=

211 |s|=s0

Integrals of the chiral spectral function p(s) times the weight function s™ from the
continuum threshold sy, up to sg are usually called spectral chiral moments M,,(sg);
when sy — oo we will denote them M, for brevity.

As was extensively explained in Chapter 3, in order to evaluate the contour
integral of (5.1), one approximates II(s) with its OPE expression

MOPE(s) = 3 Cor(v) {Oar) (V) _ 3 O (5.2)

k=3 (=s)* = () ’

where Oy, are the so-called V-A condensates. So we can rewrite Eq. (5.1) as

S0 1
/ ds s"p(s) + — ds s" TI°PE(s) + DV[s", s
Sth 2 Is|=s0

= 2f;m" + Res[s"II(s)], (5.3)
where

DVIs", so] = i 7{: ds s™ (II(s) — II°P%(s)) (5.4)

271
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parameterizes the violation of quark-hadron duality that we are interested in. The
relation (5.3) contains all the elements of a standard QCD Sum Rule, with the
hadronic contribution (integral of the V — A non-strange spectral function), the
OPE contour integral at |s| = sy and the possible residue at the origin calculable
with Chiral Perturbation Theory.

In order to analyse duality violation effects in different sum rules, we will use the
weights w(s) = s", with n = —2, —1,2,3, that generate the following four FESRs:!

S0 1

M a(s0) = / ds 5 pls) = 160 — D1/, s0], (5.5)
Sth

M 1(sy) = / ds —pls) = ~8L§§ — DV[1/s,50], (5.6)
Sth
S0

My(sg) = / ds s*p(s) = 2f*m: + O — DV[s?, 0], (5.7)
Sth
S0

Maso) = [ dsspls) = 22t - O - DVISsl. (58)
Sth

where the effective parameters L§§ = —£TI(0) and C&F = & ﬁ/(O) were introduced

in the previous chapter, while Ogs are defined in Eq. (5.2). These four sum rules
have been used in the past [30-33,41,42,53,61,78,104] to extract the values of
either the yPT couplings L, and Cg;, or the vacuum expectation values of the
dimension six and eight operators appearing in the OPE. In those works the DV
effects were just inferred from the sg-stability (if not just neglected), that as we will
see can be a misleading method. Here we want to analyze the effect of DV on these
four observables using a different approach that will be explained in the following
sections.

For the computation of the hadronic integral representation of the moments
M, (so) we will use the 2005 ALEPH data on semileptonic 7 decays [3], shown in
Fig. 3.3, which provide the most recent and precise measurement of the V — A
spectral function p(s).

5.1.1 Theoretically known spectral moments

In the four sum rules introduced in the previous section, we use the experimen-
tal data to extract theoretical information, namely the value of the corresponding
parameters or, equivalently, the value of the spectral moments for sy — oo, M,.
There exist a few additional sum rules where we know theoretically the value of the
spectral moments when sy — oo. These sum rules will play a special role in our
analysis because they give us very valuable information on the spectral function p(s)

'Here we neglect the logarithmic corrections to the Wilson coefficients in the OPE. The error
associated to this approximation is expected to be smaller than the other errors involved in the
analysis, as was found e.g. in Refs. [31,103].
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for s > sg. The three sum rules that we will use are:

My = [ dspls) = 212 (5.9)
Sth
M, = / ds sp(s) = 2f2m?, (5.10)
Sth
o s 8w
/sth ds s log (ﬁ) P(S)] =0 = (m2o — m2: )em 3—af§. (5.11)

The relations (5.9) and (5.10) are the first and second Weinberg sum rules that were
already introduced in Section 3.5.2, while the third identity is the pion sum rule
(mSR) that gives the electromagnetic pion mass splitting in the chiral limit [105].
In the second WSR there are contributions of the form O(m2agso) [28], where sq is
the upper limit of the integral, but they are negligible for the values of sy that we
are considering.

5.1.2 Duality violation

To get vanishing DV in sum rules like (5.3) and (5.5-5.8) one could think working
with an infinite Cauchy radius sg, but this is clearly not an option because the
spectral function p(s) is only known up to syax = m2. We can predict the value of
p(s) at high-enough energies using perturbative QQCD, but there is an intermediate
region above s,,., where perturbation theory is still not reliable. Therefore we have
to deal with this DV unavoidably, and it is important to keep in mind that at
so~3 GeV? it can represent a sizable contribution to the sum rules, as the WSRs
show clearly (see Section 3.5.2).

Since the solution to QCD is not known yet, DV is almost by definition a non-
calculable quantity and that is the reason why it has been taken to be negligible
very often. But in order to make precise and reliable predictions one must worry
about the size of this effect.

In our analysis we will study the DV from the perspective that gives us the
expression (3.43)

DV]w(s), so] = /OO ds w(s) p(s) , (5.12)

S0

that shows the DV effect as a hadronic integral that can be analyzed phenomeno-
logically.

We know from QCD that the spectral function p(s) has to vanish at high values
of s and, consequently, we expect the region right above sy to be the most relevant
in (5.12). This makes the “pinched weights” (polynomial weight functions with a
zero at s =Sg) an interesting tool to minimize the DV. However, in (5.12) we can
see something that is hidden in (5.4), namely that one has to worry also about the
possible enhancement of the contribution from the high-energy part of the integral
(s > s¢) produced by the “pinched weights”. And thus, we see that the use of these
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weights can worsen the situation. Another direct consequence from (5.12), unless
accidental cancelations occur, is that by weighting less the high-energy part of the
spectral integral one can get smaller DV. In particular, for our spectral moments
M, (s0), one expects the DV effects to increase with increasing values of n. Thus, the
size of the DV will be smaller in the determination of L§ than in the determination
of the chiral moment M.

To quantify the DV uncertainties of a given sum rule we must then estimate the
possible behavior of the spectral function beyond sy. The DV is an estimate of the
freedom in the behavior of the spectral function above sg, once all the theoretical and
phenomenological knowledge on that spectral function and on its moments has been
taken into account. For instance, QCD tells us that p(s) must go quickly enough to
zero when s — oo. This is a valuable information, but one can still imagine infinite
possible shapes for the spectral function and, therefore, the limits imposed on DV
effects are poor and not good enough for most phenomenological analyses.

Some theoretically motivated models for the DV were advocated in Refs. [17,
19,20]. We will adopt a simple parameterization of the spectral function at high
energies, based in the resonance model proposed and studied in Refs. [17, 20, 21].
Following the discussion above, we add more physical constraints to the behaviour of
p(s) and require that it satisfies the WSRs and the 7SR [22]|. Our goal is to generate
a bunch of physically acceptable spectral functions and translate this information
into DV limits.

A similar work has been done in [23] to estimate the DV uncertainties associated
with the determination of « from hadronic 7 decay data. An important difference
of our present study with those works is that they make separate analyses for the
vector and axial-vector channels, without imposing the constraints from the WSRs
and wSR. In fact, one can easily check that those sum rules are not satisfied for the
vast majority of the generated spectral functions used in [23| (as can be seen in Fig.
2 of Ref. |24]). So the results found there cannot be applied to the V' — A channel
that we want to study here.

5.2 Acceptable V — A Spectral Functions

5.2.1 Spectral-function parameterization

We split the integral of the spectral function p(s) in two parts. For the low-energy
part of the integral we will use the ALEPH data, whereas in the rest of the integration
range we will work under the assumption that the spectral function is well described
by the following parameterization

p(s >s,) = ke Psin(B(s—s.)), (5.13)

that has k,, 8 and s, as free parameters. From the ALEPH data we know that the
V — A spectral function p(s) has a second zero around 2 GeV? (see Fig. 3.3), which
is represented in our parameterization through the s, parameter. We will take this
zero as the separation point between the use of the data and the use of the model.
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At high values of s this parameterization appears naturally in the equidistant
resonance-based model with finite widths introduced in Refs. [17,20] and has also
been used in Refs. [21,23] to study the DV of sum rules with different correlators.

In the region 2.0 GeV? < s < 3.3 GeV? the proposed parameterization is com-
patible with the ALEPH data; the corresponding x? fit gives the result

Xoin (5,7, B, 5.) = x*(1.00,1.05,0.40,2.03) = 4.4 < d.of. =41. (5.14)

In fact the compatibility appears to be too good, in the sense that the minimum y?
is much smaller than the number of degrees of freedom (d.o.f.): 41 = 45 points - 4
parameters. This low value of x2. was also found in Refs. [23,50].

5.2.2 Imposing constraints

As we have already said, the WSRs and the 7SR in (5.9), (5.10) and (5.11) are
an important source of information on p(s), for s values beyond the range of the
7 data. In the literature, the use of this information has been mostly limited to
define the so-called “duality points”, values of sy for which the WSRs are satisfied,
i.e. DV[s", s =0 (n = 0,1). These duality points are frequently used to evaluate
the other FESRs, but this introduces an unknown systematic error and several
ambiguities, like which duality point is the best option.

We will fully use that information by imposing that the spectral function p(s),
given by the latest ALEPH data below s, ~2 GeV? and Eq. (5.13) for s>s., fulfils
the two WSRs and the 7SR within uncertainties. This requirement constrains the
regions in the parameter space of model (5.13) that are compatible with both QCD
and the data. We will find all possible tuples? (k,, 3, s.) which are compatible with
such constraints by fitting the model. In this way, we analyse how much freedom is
left for the shape of the spectral function after imposing all we know on p(s) from
data plus QCD. We will also require the compatibility between model and data in
the region® 1.7 GeV? < s < 3.15 GeV2.

2We will talk about “tuple” referring to a set of values (k,~, 3, s.).

3Although we are assuming that the model describes correctly the spectral function beyond
s.~2 GeV?, we impose the compatibility with the data from 1.7 GeV? to ensure the continuity of
the spectral function in the matching region between the data and the model.



5.2 Acceptable V' — A Spectral Functions 63

The four imposed conditions can be written quantitatively in the following form:*

/p(s)ALEPHdS + / p(s;k,7, B3, s,)ds = 2f* = (17.14£0.4)-107% GeV?, (5.15)
0 s

z

/p(s)ALEPHs ds —|—/ p(s;k,7, 3, 8,) sds = 2f*m?% = (0.3+0.8)-107 GeV*, (5.16)
0 s

z

/Szp(S)ALEPHS log( S ) ds + /Oop(s; I{’%B’ Sz) < log( S ) s
0 s,

1 GeV? 1 GeV?
8
= (m2 —m>)em 3—” 2 = —(10.9+1.5)-1073 GeV4, (5.17)
[0
X2 (K, 7, B,5.) < Xy = d.of. =54, (5.18)

5.2.3 Selection process of acceptable models

After defining the minimal conditions that a tuple has to satisfy in order to be
accepted, we perform a scanning over the 4-dimensional parameter space, looking
for physically acceptable tuples. We emphasize the importance of taking properly
into account the data correlations. For instance, if one analyses the compatibility
of a null spectral function with the ALEPH data in the region (2, 3.15) GeV?, the
resulting minimum y? is very sensitive to these correlations:

x*(0.0,7,8,s.)/d.of. = 0.99 (correlations included), (5.19)
x?(0.0,v,8,s.)/d.of. = 4.58 (correlations excluded). (5.20)

To perform the parameter-space scanning process, we adopt the following proce-
dure. First, we define a rectangular region such that it contains the four-dimensional
ellipsoid defined by x%(k, 7, 3,s.) = d.o.f., and we create a lattice with 20* = 16-10%
points, that is, 16 - 10* tuples (or functions). We find that 1789 of them satisfy our
set of minimal conditions; i.e., 1789 of them represent possible shapes of the phys-
ical spectral function beyond 2 GeV? Fig. 5.1 shows the statistical distribution
of the parameters of our model after the selection process. In Fig. 5.2 we show
the distribution of the quantity x?*(x,, 3, s.) for those tuples that have passed the
selection process. We find that all accepted tuples generate values of x? larger than
10.0; i.e., tuples following the central values of the experimental points do not pass

4 The quoted errors in Egs. (5.15) and (5.16) are just data errors, whereas in (5.17) the main
uncertainty comes from the fact that quark masses do not vanish in nature and we are using real
data (not chiral-limit data). We estimate this uncertainty taking for the pion decay constant the
value fo = 87 &5 MeV, that covers a range that includes the physical value and the different
estimates of the chiral limit value [106,107]. We also include a small uncertainty coming from the
residual scale dependence of the logarithm, which is proportional to the second WSR. We consider
A ~ 1 GeV a good choice of scale because higher values would suppress the high-energy part of the
integral (the information that we want to use), while smaller values would generate larger T-data
errors in (5.17), losing also information about the high-energy region.
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Figure 5.1: Statistical distribution of acceptable models in the parameter space x
(upper-left), v (upper-right), 3 (lower-left) and s, (lower-right).

the selection process; neither do the tuples that go above the central values. Thus
our model indicates clearly that the third bump of the spectral function should be
smaller than what the ALEPH data suggest (see Fig. 3.3). The size of this third
bump is an important issue that future high-quality 7 decay data could clarify. For
illustrative purposes, Fig. 5.3 shows one of the hundreds of functions that satisfy
our set of conditions.

H tuples
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100 |
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20
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Figure 5.2: Distribution of x*(k, ", 3, s.) values for acceptable tuples between 0 and
2
Xoit = d.o.f. = 54.
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Figure 5.3: Spectral ~ function p(s) generated with (k,7v,[,s.,) =
(0.24,1.23,2.82,2.03), together with the experimental ALEPH data [3]. x? = 38.7
for this tuple.

5.3 Numerical Results

For each one of the hundreds of functions that have passed our selection process, we
can calculate the associated values of Cst, LST Og and Og, simply carrying out the
integrals of Eqgs. (5.5-5.8) with sg — oco. The results of this analysis are summarized
in Fig. 5.4, which shows the statistical distribution of the calculated parameters®.
From these distributions, one gets the final numbers:

Cal = (8.16710005 £0.12) <107 GeV ™ = (8.17 £0.12) -107* GeV 2, (5.21)
L = (—6467081+£007) 1077 = (=6467(%)-107°,  (5.22)
O = (—541341.2)-107° GeV® = (-54739).107% GeV®,  (5.23)
Os = (—89714"+21)-107° GeV® = (=8.971%%)-107° GeV®, (5.24)

where the first error is that associated to the high-energy region (integral from s, to
infinity), that we compute from the dispersion of the histograms of Fig. 5.4, and the
second error is that associated to the low-energy region (integral from zero to s,),
that we compute in a standard way from the ALEPH data. These results correspond
to the 68% probability region (one sigma). Since the first error is not gaussian we
show also now the 95% probability results (95% of the acceptable spectral functions
give a result within the quoted interval):

Cgl = (81677000 £0.24) - 107 GeV ™2 = (8.17 £0.24) - 10° GeV > (5.25)
LSy = (—6.46700; £0.14) - 107° = (—6.46753) 1077, (5.26)
Os = (—547324£24)-107° GeVo = (-54735)-107° GeV®,  (5.27)

Os = (—891107+42)-107% GeV® = (-897117)-107% GeV®.  (5.28)

5We can see in Fig. 5.4 that Og is negative for all the spectral functions, as expected from the
condition ¢%I1(¢?) > 0 for —oo > ¢* > 0, proven by Witten [108].
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Figure 5.4: Statistical distribution of values of Cs (upper-left), L% (upper-right),
Os (lower-left) and Og (lower-right) for acceptable models. The parameters are
expressed in GeV elevated to the corresponding power.

Our calculations have been done with a very simple, but physically motivated,
parameterization of DV [17]. Most likely this parameterization does not represent
the actual shape of the V' — A spectral function, but it accounts for the possible
freedom of the function p(s) beyond 2 GeV? and its consequences on the observ-
ables. Our statistical analysis translates the present ignorance on the high-energy
behaviour of p(s) into a clear quantitative assessment on the uncertainties of the
phenomenologically extracted parameters.

As expected, the DV effects have very little impact on the values of C$I and LS,
because the corresponding FESRs (5.5) and (5.6) are dominated by the low-energy
region where the available data sits. Our results are in excellent agreement with
the most recent determination of these parameters, using the same ALEPH 7 data,
performed in Ref. [78] and explained in the previous chapter: C$i = (8.18 £ 0.14) -
1073 GeV™? and L$T = —(6.48 £ 0.06) - 1072. The smaller uncertainties quoted
in [78] are due to the use of the pinched weights (as we will see in the next section).

The situation is not so good for the moments My and Mj (or equivalently Og
and Og), which are sensitive to the high-energy behaviour of the spectral function.
The present ALEPH data, together with the constraints from the WSRs and the
mSR, are not good enough to determine the sign of Og using the sum rule (5.8); the
DV uncertainties turn out to be too large in this case. Our results are slightly better
for Og, where there is no doubt in the sign, but again the effects of DV imply larger
uncertainties than what was estimated in previous works based on the relation (5.7).
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5.4 Using pinched weights

The above-explained approach to the calculation of the quark-hadron duality vio-
lation through the study of the freedom of the spectral function in the high-energy
region allows us to address the question of the convenience of the use of the pinched
weights (see Section 3.5.3 and Appendix B) and how to estimate the associated
DV [26]. We are interested in PW functions that do not generate new unknown
quantities (condensates of higher dimension), since in that case a clean analysis is
not possible anymore.

As we have explained in the Appendix B, in the case of the condensates the
pinched weights with a double zero at s = sy are expected to minimize the DV
with respect to the standard weights s™, although the question of how large is the
remaining DV is still not clear®. In the case of the chiral parameters, the pinched
weights will be better or worse than the standard weights depending essentially on
how fast the spectral function goes to zero, in order to suppress the enhancement
that the pinched weights produce in the high-energy region (see Eq. (5.12)). In other
words, the key point is thfe value of the v parameter, that as we have seen is around
one. Our simple calculations of the Appendix B indicate that this is high enough
to suppress the high-energy tail and so to benefit from the use of the PW. Now we
want to check it explicitly with our hundreds of spectral functions.

Let us remind that in addition to the DV error (estimated from the dispersion
of the histograms) we have the experimental ALEPH error, and both depend on the
used weight. In principle one expects the PW to minimize also the experimental
uncertainties, since they suppress the region near the kinematical end point.

We have repeated all our analysis with pinched weights w(s) that have a double
Zero in s = sy, that is

0 p(s) s\’ s
P y(sg) = / ds —5~ <1 - —) (1 + 2—)
. s Spw Spw

2 f2m2
= 16 O — 67 + 4= — DV[w(z), so] , (5.29)
pw pw
S0 2
P,1<80) = ds @ 1— i
S S
Sth pw
2 2m2
= —8L§j — 4" 42T — DV[w(z), so] , (5.30)
Spw Spw

Pylso) = / " ds pls) (s — sp)?

Sth
= 2fzs§w—4f§mispw + Qﬁmfr + Os — DV[w(z),s0], (5.31)

Ps(so) = /80 ds p(s) (s — Spw)2 (s + 28pw)

Sth

= —6f>m2s>, +4f2s3, +2f2mé — Og — DV]w(z),s0) . (5.32)

T2 pw T2 pw

6This was also analyzed in Ref. [21] in the particular context of a resonance-based model.
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Figure 5.5: Statistical distribution of values of Cg (upper-left), L% (upper-right),
Os (lower-left) and Og (lower-right) for the accepted spectral functions, using the
pinched-weight sum rules (5.29) - (5.32) with s,,, = s, ~ 2.1 GeV?. The parameters
are expressed in GeV elevated to the corresponding power.

The results depend on the point where the weight is pinched, i.e. on the value of
Spw- In order to suppress the experimental error it is convenient to pinch the weight
at the left of the matching point s,, whereas in order to suppress the DV-error
(dispersion of the histograms) it is convenient to pinch it at the right of s,. We
have scanned the region finding that the optimal choice of s,,, that is, where the
errors are minimized”, is s,, ~ s, ~ 2.1 GeV2. In the Fig. 5.5 we show the results
obtained in this case. As we see the histograms are much more peaked around their
central values and so we have better predictions (because as we said the data error
is also minimized by the new weights®). The associated numerical results are

Cdl = (816870001 £0.12) <1073 GeV ™2 = (8.17 £ 0.12) -10~% GeV~2,(5.33)
Ly = (—6.44435907 £0.05) - 1073 = (=6.44 + 0.05) - 107 (5.34)
O5 = (—4.331088 4 0.65) 107 GeVO = (—4.3709) - 1078 GeV® | (5.35)
Os (72731 £2.9) - 107% GeV® = (—=7.2733) - 107° GeV*® | (5.36)

where we have followed the same convention about the errors. The 95% probability

"Obviously the optimal point is different for every sum rule (5.29) - (5.32), but the differences
are negligible within errors.

8Notice that in the case of Og this is not true. This is because the pinched weight enhances the
low-energy region errors sizably.
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results are:

Cell = (8.16870005 £0.24) -107° GeV ™2 = (8.17 £0.24) -10~° GeV2,(5.37)
Ly = (—6.4443591 £0.1) - 107° = (6.4 +£0.1) - 1073 | (5.38)
O = (—4.337010+1.3)-107 GeVO = (—4.3721) - 107 Gev® ,  (5.39)
Oz = (=7270%,£58) 107 GeV® = (=7.2%35,) - 107> GeV® . (5.40)

As theoretically expected, the use of the pinched weights is less beneficial to the
determination of the low-energy constants LT and CEI than to the determination of
the condensates. Our final results for the former are in excellent agreement with the
most recent determination of them [78], that we explained in the previous chapter:
Ceff = (8.1840.14) - 1072 GeV 2 and L$T = —(6.48 £ 0.06) - 1073. Notice that our
estimation of the error, obtained through a completely different method, is based on
more solid grounds than the error estimates of the previous chapter and represents
a confirmation of them.

We have obtained quite precise measurements for the condensates Og and Og
using the pinched-weights FESRs (5.31) and (5.32). In this way we have checked
that the PW successes in minimizing the errors and we have that the most recent
experimental information provided by ALEPH, together with the theoretical con-
straints (WSRs and wSR), fix with accuracy the value of Og and almost determine’
the sign of Og. Our results are compared in Fig. 5.6 with previous determinations
of Og and Og. One recognizes in the figure the existence of two groups of results
that disagree between them. For Oy there is a small tension between a bigger or
smaller value, whereas in the case of Og the disagreement affects to the sign and is
more sizable.

Our results agree with those of Refs. [30-33] since they also use pinched weights,
but it is based on much more solid grounds, due to the completely different approach
followed. We see in fact that the DV-error was slightly underestimated in Refs. |30,
31]. We also agree with the results of Ref. [41] based on the use of the second
duality point, although that technique has a much larger error. It is remarkable the
agreement with Ref. [104] that is the only one that follows a technique similar to
ours, trying to analyze the possible behavior of the spectral function but through a
neural network approach. Their result has a bigger uncertainty, maybe only due to
the fact they used the old ALEPH data. There is a reasonable agreement also with
the results of Refs. [109-111].

Our analysis indicates that the DV error associated to the use of the first duality
point is very large and was grossly underestimated in Refs. [37,38|, where also higher-
dimensional condensates were neglected. In Refs. [68,112-114] the numerical values
obtained at this first duality point are supported through theoretical analyses based
on the so-called “minimal hadronic ansatz’ (a large- No-inspired 3-pole model) or
Padé approximants. Our results show however that the first duality point is very

%One can see in our final result (5.40) that at 20 a positive value of Og is already allowed,
but it must not be forgotten that the distribution is highly non-gaussian and we can see in the
corresponding histogram of Fig. 5.5 that the possibility of being positive is negligible.
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Figure 5.6: Comparison of our results for Og (left) and Og (right) with previous
determinations [3,30-33,37,38,41,42,44,53,68,104,109,111,113| (we show for every
method the most recent determination). The blue bands show our results at 65%
C.L., while the 95% probability regions are indicated by the dotted lines.

unstable when we change from the WSRs to the Og g sum rules, indicating that the
systematic error of these approaches is non-negligible. Essentially the same can be
said about Refs. [42,53] where the last available point sy = m? was used.
Summarizing, our results agree within two-sigmas with the other estimates of
Og, but in the case of Og show that its sign is negative, in disagreement with

Refs. [37,38,42,53,68,113|.

5.5 Beyond the dimension eight condensate

We can play the same game with higher dimensional condensates, where using again
pinched weights w(s) that have a double zero in s = s, we have

s0
Py(sg) = / ds p(s) (s — sp)’ (5* + 25pus + 3s2,)
Sth
= —8fimis), +6f2sy, +2f2m) + O — DV|wy, s , (5.41)
s0
Ps(so) = / ds p(s) (s — spw)’ (5° + 25pu0s” + 355,58 + 4s),)
Sth
= —10f2mis,, +8f2sh, + 2f2m’ — O — DV[ws, so] , (5.42)
S0
Ps(sg) = / ds p(s) (s — spw)’ (s* + 28p8” + 3512)11}52 + 4s]?;ws + 5s§w)
Sth
= —12f2mls), +10f2s0, +2f2m2* + Oy — DV[ws, so] , (5.43)
S0
Pr(sg) = / ds p(s) (s — spw)’ (5" + 2spps + 35;2;11;53 + 432w52 + 53;‘;ws + 6515)10)
Sth
= —14f2m2sd, +12f2s], 4+ 2f2mit — O — DV]wr, so] . (5.44)
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Figure 5.7: Statistical distribution of values of Oy 12,1416 for the accepted spectral
functions, using the PW sum rules (5.41) - (5.44) with s,, = s, ~ 2.1 GeV?. The
parameters are expressed in GeV elevated to the corresponding power.

Working again with s,, ~ s. ~ 2.1 GeV? we find the results that are shown in the
Fig. 5.7. The associated numerical results are

O = (+4.1775) - 1072 GeV'? | (5.45)
O = (—0.12100%) GeV'? | (5.46)
O = (+0.2773) GeV'* (5.47)
O = (-0.2703) GeV'e, (5.48)
where all the errors come from the dispersion of our histograms since the experi-

mental error is very much smaller for these higher dimensional condensates. The
95% probability results are:

O = (+4.1739) - 107 GeV'" (5.49)
On = (- 012+8}g) GeV'? | (5.50)
Ou = (+02£0.5) GeV* | (5.51)
O = (—0.2717) GeV'. (5.52)

It is really impressive that the sign of the condensates can be established for Oy
and ;5 since the importance of the high-energy region in their determination is
huge. One could have expected that the differences between our possible spectral
functions would generate a huge error in these higher dimensional condensates, but
our conditions (WSRs+mSR+data) have turned out to be very restrictive about the
possible spectral functions allowing quite precise extractions.
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010 x 10° 012 x 10° 014 x 10° 016 x 10°
This work +417T8 —120700 +2007 50 —20075%9
Masjuan & Peris [68] | —14 £ 12
Narison [37] —1714+44 | +14.7+£3.7| —9.6 £3.1 +4.3+1.9
Friot et al. [113] —132+36 | +13.3+39 | —128+3.9 | +11.9+£3.8
Zyablyuk [38] —45+3.4
Almasy et al. [111] +6671)
Bordes et al. [33] +72+£28 | —240 £50
Latorre & Rojo [104] | +78 £24 | —260 480
Cirigliano et al. [31] +48 £10 —160 £ 30 | +430£60 | —1030 £ 140

Table 5.1: Comparison of our determination of Ojg 214,16 With other works. The
condensates are expressed in GeV to the corresponding power. The results shown
for Ref. [31] are those obtained with the old ALEPH data (with the OPAL data
the numbers are not very different), and the results shown for Ref. [113] are those
obtained with the minimal hadronic ansatz, that is, without the addition of the p/
resonance, that in any case modifies just slightly the results.

In Table 5.1 we show the different results available in the literature and we can
again observe the existence of two groups of results. As in the case of Ogg, our
results agree with Refs. [30-33,41, 104 but not with Refs. [37,38,42,53,68,113|.

Looking at the results of Ref. [31], obtained working with pinched weights and
the old ALEPH data, we can see what we have said several times through this work:
even in the case when the pinched weights generate less DV than the standard
weights s”, the observed plateau is in part artificially created and hides the DV.
That is why the errors of Ref. [31] are underestimated.

5.6 Summary

The phenomenological requirement for increasing precisions in the determinations
of hadronic parameters makes necessary to assess the size of small effects which
previously could be considered negligible. In particular, a substantial improvement
of QCD Sum Rules results, needed to determine many hadronic observables both in
the Standard Model and in models beyond it, could only be possible with a better
control of DV.

Violations of quark-hadron duality are difficult to estimate because those effects
are unknown by definition. They originate in the uncertainties associated with the
use of the OPE to approximate the exact physical correlator. As defined in Eq. (5.4),
DV effects correspond to an OPE approximation performed in the complex plane,
outside the Minkowskian region, which deteriorates in the vicinity of the real axis.
Using analyticity, the size of DV can be related with an integral of the hadronic
spectral function from sy up to oo, given in Eq. (5.12), which allows us to perform
a phenomenological analysis.
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We have studied the possible role of DV in the two-point correlation function
I[1(s). This V — A non-strange correlator is very well suited for this analysis because:
i) it is a purely non-perturbative quantity in the chiral limit, ii) there are well-
known theoretical constraints, and iii) there exist good available data from 7 decays.
Moreover, different moments of its spectral function provide hadronic parameters of
high phenomenological relevance.

We have assumed a generic, but theoretically motivated, behaviour of the spec-
tral function at high energies, where data are not available, with four free parame-
ters. This allows us to study how much freedom in p(s) could be tolerated, beyond
the requirement that all known QCD constraints are satisfied. Performing a nu-
merical scanning over the four-dimensional parameter space, we have generated a
large number of “acceptable” spectral functions, satisfying all conditions, and have
used them to extract the wanted hadronic parameters through a careful statistical
analysis. The dispersion of the numerical results provides then a good quantitative
assessment of the actual uncertainties.

This machinery has allowed us to address the question of the convenience of the
pinched weights and how to estimate the size of the still present DV. We have found
that it is worthwhile to use these weights and we have determined four hadronic
parameters of special interest: Cgi, L$T Og and Oy

Cell = (8.17+0.12)-1073 GeV 2,
L = (—6.4440.05)-1073

Os = (—4.3709)-107° GeV®,
Os (=7.2733) - 107° GeV® .

From the first two parameters one can extract the values of the yPT couplings
Ci;(M,) and L7 (M,). The vacuum condensate Og is an important input for the
calculation of the CP-violating kaon parameter ¢, it dominates the Al = 3/2
contribution to €} [30,41,54-57]. The determination of this contribution is an
important goal of lattice QCD calculations and independent information is required
to test the reliability of those results. We will study the consequences of our results
for ¢’ in a forthcoming publication [115].

There is a small tension among the different determinations of Og available in the
literature, and the discrepancy is higher for the condensate Og. Our results agree
with those of Refs. [30-33,41,104] and indicate that the other determinations [37,38,
42,53,68,113] (most of them associated to the first duality point) underestimated the
DV contribution, what was generating the different results. Our values show that
the analyses based on the use of pinched-weight FESRs have assigned a reasonable
uncertainty for the lowest dimensional condensates Ogg but have underestimated
the error in the determination of higher dimensional condensates.

Our method indicates that the current experimental values for the V' — A spectral
function in the region between s ~ 2 GeV? and s ~ 3 GeV? are somehow affected by
a systematic error that shifts the points towards higher values. It is worth noting
that this result is also suggested by the work of Ref. [104]. A significant improvement
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in the experimental knowledge of the spectral functions in this intermediate region
is expected with the future high-statistics 7-decay data samples. It will be very
interesting to check the presence of this systematic error and validate our approach.

It is worth noting that in particular our method shows that Oz and Og are
both negative, whereas it suggests that the sign alternates for higher-dimensional
condensates.



Chapter 6

Going beyond the SM

The show must go on.
Queen

The impressive precision achieved by the low-energy experiments in combination
with improved theoretical control of hadronic matrix elements and radiative correc-
tions make semileptonic decays of light quarks (kaons, pions, nuclear beta decays,
hadronic tau decays, etc.) and purely leptonic decays (muon and tau physics) a
deep probe of the nature of weak interactions. As we will see this low-energy ex-
periments are sensitive to energy scales A on the order of the TeV, which will be
directly probed at the LHC.

While the consequences of these low-energy tests of the Standard Model have
been considered in a number of explicit New Physics scenarios, a model-independent
analysis of leptonic and semileptonic processes beyond the SM is missing. The goal
of this investigation is to analyze in a model-independent effective theory setup new
physics contributions to low energy charged-current (CC) processes. The resulting
framework allows us to assess in a fairly general way the impact of (semi)leptonic
processes in constraining and discriminating SM extensions.

Assuming the existence of a mass gap between the SM and its extension, we
parametrize the effect of new degrees of freedom and interactions beyond the SM via
a series of higher dimensional operators constructed with the low-energy SM fields.
If the SM extension is weakly coupled, the resulting TeV-scale effective Lagrangian
linearly realizes the electro-weak (EW) symmetry SU(2);, x U(1)y and contains a
SM-like Higgs doublet [116,117]. This method is quite general and allows us to
study the implications of low-energy precision measurements on a large class of
models. For example, it will allow us to understand in a model-independent way
the significance of these low-energy tests compared to collider measurements.

The interplay of these kind of model-independent approaches and the studies
in particular scenarios stimulated by the model-builders efforts is very important
since the former can point to unexplored directions and trigger new ideas among
model-builders, whereas the later are completely necessary to reduce the enormous
number of parameters of any effective field theory based approach.
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This chapter is organized as follows. In Section 6.1 we review the form of the
most general weak scale effective Lagrangian including operators up to dimension
six, contributing to precision electroweak measurements and (semi)leptonic decays.
In Section 6.2 we derive the low-energy (~ 1 GeV) effective Lagrangian describing
purely leptonic and semileptonic CC interaction. We discuss the flavor structure
of the relevant effective couplings in Section 6.3 and section 6.4 contains our con-
clusions. In the next chapter we will apply this framework to the study of the
CKM-unitarity tests and its significance constraining New Physics.

6.1 Weak scale effective Lagrangian

As discussed in the introduction, our aim is to analyze in a model-independent
framework new physics contributions to both precision electroweak observables and
muon and beta decays. Given the successes of the SM at energies up to the elec-
troweak scale v ~ 100 GeV, we adopt here the point of view that the SM is the
low-energy limit of a more fundamental theory. Specifically, we adopt the following
assumptions:

e There is a gap between the weak scale v and the scale A where new degrees of
freedom appear;

e The SM extension at the weak scale is weakly coupled, so the EW symme-
try SU(2), x U(1)y is linearly realized and the low-energy theory contains
a SM-like Higgs doublet [117]. Analyses of EW precision data in nonlinear
realizations of EW symmetry can be found in the literature [101,102,118,119];

e The particle content of our Lagrangian will be then that of the Standard
Model, including the SM-Higgs field and without considering the right-handed
neutrinos as low-energy degrees of freedom,;

e We will not consider operators that violate total lepton and baryon number
(we assume they are suppressed by a scale much higher than A ~ TeV [120]).

In the spirit of the effective field theory approach, we integrate out all the heavy
fields and describe physics at the weak scale (and below) by means of an effective
non-renormalizable Lagrangian of the form:

1 1 1
eff o
£ = Lov+ L5+ 15Le+ 15Lr + - (6.1)
L, =Y oo, (6.2)

where A is the characteristic scale of the new physics and (’)gn) are local gauge-
invariant operators of dimension n built out of SM fields.
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6.1.1 The fields and the SM Lagrangian

The building blocks to construct local operators are the gauge fields Gﬁ, Wi, By,
corresponding to SU(3) x SU(2), x U(1)y, the five fermionic gauge multiplets,

e=(4) . dmd d=() = d-d (63)

=) (6.4

)\A
2

the Higgs doublet

and the covariant derivative

Dy=10, — ig5-Gl — g5 Wy — igVB, . (6.5)

In the above expression A are the SU(3) Gell-Mann matrices, o are the SU(2)
Pauli matrices, g,, g, ¢ are the gauge couplings and Y is the hypercharge of a given
multiplet (Y(¢) = —1/2,Y(e) = —1,Y(q) =1/6,Y(u) =2/3,Y(d) = —=1/3,Y(p) =
1/2).

With this notation, the SM Lagrangian takes the form
L _ EGA GAMV lwf GIMV lB BV
SM('I) - _4 uv _4 iy _4 uv
1
+ (D) (D) +mPplp — SA(¢)?
+ LIP0 + elPe + qlPq + ulpu + dipd
+({UTeep+ qlyup+ qlygdp+he.) (6.6)

where the I'. , 4 are the Yukawa matrices (in flavor space).

6.1.2 The new physics corrections

Under the above-stated assumptions, it can be shown that the first corrections to
the SM Lagrangian are of dimension six. The list of dimension-six operators was
given by Leung et al. [116], Buchmiiller and Wyler (BW) [117] and Burgess and
Robinson [121]. Only the later list is complete and none of them is minimal. We
will follow the BW-notation, with the following modifications in order to have a
complete and minimal basis

e The four-fermion operator Of = (40" e)e™ (G0, u) must be added to the list
(the € tensor is used to contract weak SU(2) indices)'.

IThis operator and its scalar version must be added to the list of Leung et al. [116] to make the
list complete.
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e The operators 01(13 ),O,(Jz’l),O,ng),ngB and Oc(lfl) can be eliminated using the

Fierz transformation and the completeness relation of the Pauli (Gell-Mann)
matrices®: Y, 7Ll = —0i;0m + 20403

e The dagger in the operator (3.55) of Ref. [117] should be replaced by a T
(transpose symbol);

e The names O, and O have been used twice in BW: operators (3.34, 3.36)
and operators (3.61, 3.63) of Ref. [117].

As a result of these observations, the eighty operators of BW are reduced to
seventy-six, and therefore truncating the expansion (6.1) at this order we have

76
e 2 :Oéi
=1

For operators involving quarks and leptons, both the coefficients «; and the operators
O, carry flavor indices. When needed, we will make the flavor indices explicit, using
the notation [a;]speq for four-fermion operators.

The above effective Lagrangian allows one to parameterize non-standard correc-
tions to any observable involving SM particles. The contribution from the dimension
six operators involve terms proportional to v?/A? and E?/A% where v = (©°) ~
174 GeV is the vacuum expectation value (VEV) of the Higgs field and E is the
characteristic energy scale of a given process. In order to be consistent with the
truncation of (6.1) we will work at linear order in the above ratios®.

We are interested in the minimal subset of the BW basis that contribute at tree
level to CP-conserving electroweak precision observables and beta decays.

Once the CP-assumption is taken into account, we have seventy operators in
our effective Lagrangian®. Moreover, we will not take into account the thirteen
operators that involve only quark and gluon fields®, because they will not appear in
our observables (precision EW measurements and semileptonic decays) at the level
we are working. Further operators that do not contribute to our observables are
Oan OuGa OdG-

Since we are not considering processes involving the Higgs boson as an external
particle, we can remove more operators from our list: O, Oy, (they only involve

2T would like to thank Alberto Filipuzzi for calling my attention about this fact.

31t is worth noting that in the (as far as we know) first work [122] where a complete list of
four-lepton operators was written the authors realized about this redundancy and their basis was
minimal. Somehow this was forgotten in the subsequent publications [116,117,121,123].

4“When the SM amplitude vanishes the first contribution is quadratic in the ratios v?/A? and
E?/A% but in this case one can consistently work at this order and neglect the eight-dimension
operators, since their lowest contributions would be the interference with the dimension-six ampli-
tude, that is, of third order in the above ratios.

5The six operators removed are Ox with X = G‘, W, <pé, @W, @B, W B.

50x with X = G, ¢¢V, g¢®, uu™, ddD, gq¢*Y, gq¢*3), ud™®, ud® , quV, qu®, gd™, qd®.
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scalar fields), and seven more operators’ whose effect can be absorbed in a redef-
inition of the SM parameters g, ¢’, gs, v and the Yukawa couplings. In this way
we end up with forty-five operators that can produce a linear correction to the SM-
prediction of our observables. But a more detailed analysis of this list [124] shows
that twenty-one of them either do not produce linear corrections (because the inter-
ference with the SM vanishes) or produce effects suppressed by an additional factor
(for example, low energy four-quark operators of dimension seven).

So finally we end up with a basis involving twenty-four operators. In selecting
the operators, flavor symmetries played no role (in fact at this level the coefficients
a; can carry any flavor structure). However, in order to organize the subsequent
phenomenological analysis, it is useful to classify the operators according to their
behavior under the U(3)° flavor symmetry of the SM gauge Lagrangian (the freedom
to perform U(3) transformations in family space for each of the five fermionic gauge
multiplets, listed in Eq. 6.3).

6.1.3 U(3)° invariant operators

The operators that contain only vectors and scalars are
Owp = (plo@)W5,B*,  OP = |p'D,ol . (6.8)

There are eleven four-fermion operators:
15 7 15 ar\ (7 a
Oy = 5 D(Id),  OF = 5 (1o 1) (o). (6.9

O = (V') @vg), O = (In"o1)(@y.0q),
O = (W'D@we);  Ope = @ a)(@yae),
O, = (") (ury,u), O = (Iv"1)(dy,d),

1 _
Oce=5 (@ e)(@1e),  Ocu=(@y"e) (@), Oca=(@r"e)(d,d).

Some comments are in order. In principle, in order to avoid redundancy (see dis-

cussion above) one must discard either 01(13 ) or Ol(ll), but here we have followed the
common practice to work with both operators®. Moreover, we use the structure
I_/yuL - Ry*R in operators (6.11), instead of their Fierz transformed LR - RL, that
BW use. They are related by a factor (—2).

There are seven operators containing two fermions that alter the couplings of

fermions to the gauge bosons:

Og(ol) i('DFe )(Z%l) +h.c., OSZ) :i(tpTD"O“go)(Z%cr“l) +h.c., (6.14
O&q) —i(p' D) .q) +h.c., 0(3) = '(goTD“cr“go)@'yMcr“q) +h.c., (6.15

6.16

)
)
)
6.17)

o~~~ —

(@
O =i(p" D* )(u7 u) +h.c., Ouq =i(¢' D p)(dv,d) +h.c.,
Oye =i(p!D"p)(Ey,e) +hc. .
"Ox with X = oW, 0B, oM, oG, e, up, dp

8In the general case this redundancy is absurd, but in some particular frameworks, as MFV, it
will allow us to consider only flavor structures factorized according to fermion bilinears.
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Finally, there is one operator that modifies the triple gauge boson interactions
Ow = ™ W WIAWH, (6.18)

These twenty-one U(3)° invariant operators contribute to precision EW mea-
surements (see Ref. [124]), whereas only five of them contribute to the semileptonic
decays, as we will see.

6.1.4 Non U(3)° invariant operators

Three are three four-fermion operators

Oyae = (le)(dq) + h.c., (6.19)
Oig = (la€)e®(qu) + hc.,  Of, = (l,o"e)e” (Goymu) + hc.,  (6.20)

and one operator with two fermions
Oy, = i(¢"eD,p)(uy"d) + h.c. (6.21)

which gives rise to a right handed charged current coupling.
These four operators contribute both to precision EW measurements and to the
semileptonic decays.

We conclude this section with some remarks on our convention for the coefficients
of the “flavored” operators: (i) in those operators that include the h.c. in their
definition, the flavor matrix « will appear in the h.c.-part with a dagger; (ii) for

the operators 01(11’3) and O.., because of the symmetry between the two bilinears,

we impose [a] ;= [aly,;; (iii) in order to ensure the hermiticity of the operators
(6.9)-(6.13) we impose [a],;,; = [a]};;,- None of these conditions entails any loss of
generality.

6.2 Effective Lagrangian for 1 and quark 3 decays

Our task is to identify new physics contributions to low-energy CC processes. In
order to achieve this goal, we need to derive from the effective Lagrangian at the
weak scale (in which heavy gauge bosons and heavy fermions are still active degrees
of freedom) a low-energy effective Lagrangian describing muon and quark CC decays
[125]. The analysis involves several steps which we discuss in some detail, since a
complete derivation is missing in the literature, as far as we know.

6.2.1 Choice of weak basis for fermions

At the level of weak scale effective Lagrangian, we can use the U(3)® invariance to
pick a particular basis for the fermionic fields. In general, a U(3)° transformation
leaves the gauge part of the Lagrangian invariant while affecting both the Yukawa
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couplings and the coefficients «; of dimension six operators involving fermions.
We perform a specific U(3)° transformation that diagonalizes the down-quark and
charged lepton Yukawa matrices Yp and Yz and puts the up-type Yukawa matrix
in the form Yy = V71 Ygiag, where V' is the CKM matrix. The flavored coefficients
«; correspond to this specific choice of weak basis for the fermion fields.

6.2.2 Electroweak symmetry breaking: transformation to prop-
agating eigenstates

Once the Higgs acquires a VEV the quadratic part of the Lagrangian for gauge
bosons and fermions becomes non-diagonal, receiving contributions from both SM
interactions and dimension six operators. In particular, the NP contributions induce
kinetic mixing of the weak gauge bosons, in addition to the usual mass mixing.
Therefore the next step is to perform a change of basis so that the new fields have
a canonically normalized kinetic term and definite masses.

Let us first discuss the gauge boson sector. We agree with the BW results on
the definition of gauge field mass eigenstates and on the expressions for the physical

massesg

09,
Wj’ = A, sin 6y, (1—2sin 6, cos 0, awp) + 2, cos 0 (1+2i1;1s9 awp),(6.22)
W
3
B, = A, cos 0, (1—2sin 0, cos 0 awg) — 27, sin O (1+2S 0 awg), (6.23)
W
1
mW fd ‘O/V = §g2’U2 s (624)
my = mYy(1+ 2sin6Y cosd)y aws + oz(?’))
1
= §(g + g0 (1 + 2sin 0 cos O awp + dg’)) , (6.25)
where 69, denotes the tree-level standard model weak angle
0 _ g
cos by, = el (6.26)
and where we have introduced the notation
. v
(XX_FO[X . (627)

However, we find small differences from their results in the couplings of the W

9Notice that we have less operators than BW due to the reduced set of observables that we are
interested in.
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and Z to fermion pairs, which can be written as:

g Crrr+ g N
L; = —=(J"W™+ h.c. JN K 6.28
! \/5(“ * C)+0059%,“ ’ (6.28)
Ji = vym(ve)er + aryun(ur)dr + gy (ur)ds (6.29)
J,iv = vryue(vn)vn + epyue(ern)er + ﬂL’YEG(UL)uL + dpye(dy)dr,
+erVue(er)er + uryue(ur)ur + dryue(dr)dr - (6.30)

Here the €’'s and n’s are 3 x 3 matrices in flavor space. In the case of the charged
current we find (BW do not have the t in a'® and ag’q))

pl
n(vy) = T+2689)", (6.31)
n(uy) = I+2a8)", (6.32)
n(ur) = —Qpp - (6.33)

In the case of the neutral current (e coefficients) we obtain the same results as
BW except for the following replacement:

Gix — iy + @l | (6.34)
for ax = ag’l), af;l), affq), afol,}, e, oy Q-

Finally, we need to diagonalize the fermion mass matrices. With our choice of
weak basis for the fermions, the only step that is left is the diagonalization of the
up-quark mass matrix, proportional to the Yukawa matrix Yy = VTYl}ﬁag, where V
is the CKM matrix. This can be accomplished by a U(3) transformation of the uy,
fields:

up, — Viug . (6.35)

As a consequence, the charged current and neutral current couplings involving up
quarks change as follows:

n(uz) — Vnlug)
e(ug) — Velug) VT, (6.36)

Similarly, appropriate insertions of the CKM matrix will appear in every operator
that contains the uy field.

6.2.3 Effective Lagrangian for muon decay

The muon decay amplitude receives contributions from gauge boson exchange di-
agrams (with modified couplings) and from contact operators such as Ol(ll), Ol(l3 ),
Os. Since we work to first order in v?/A%, we do not need to consider diagrams

contributing to yu — ev,vg with the “wrong neutrino flavor”, because they would
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correct the muon decay rate to O(v?/A?). After integrating out the W and Z, the
muon decay effective Lagrangian reads:

2
ﬁuﬂeﬂeu# - 27512/1/ (1 + @L) 'éLfY;LVeL DHL’V“ML + §R “€rlep D;LL,UR + h.c. ) (637>

where m¥, = (¢°v?)/2 is the W mass and

- (3 (1 ~(3
i, = 2 [&c(pl)]11+22* - [al(l )]1221 - 2[041(1 )]112275(1221) 5 (6.38)
Sp = +2[Qelane (6.39)

represent the correction to the standard (V —A)®(V — A) structure and the coupling
associated with the new (S — P) ® (S + P) structure, respectively.

6.2.4 Effective Lagrangian for beta decays: d; — u; (™ 1y

The low-energy effective Lagrangian for semileptonic transitions receives contribu-
tions from both W exchange diagrams (with modified W-fermion couplings) and the
four-fermion operators Ol((‘;’), Oygde, Oy, qu. As in the muon case, we neglect lep-
ton flavor violating contributions (wrong neutrino flavor). The resulting low-energy
effective Lagrangian governing semileptonic transitions d; — w; ¢~ v, (for a given

lepton flavor /) reads:

J— 2 — . - — - .
Lajoruitmry = ﬁvﬁ (1 + [UL]MU> Coyuver, Wpy'dy, + [VRleij Covever upy"dy
w

+ [sL)esij (rvir, ﬂ%d]i + [sRew; (rver, ﬂiLd;z

+ [tolews; CrOwver, Unotdl, | + hec. (6.40)
where
(3 ~(3)7* (3

‘/;_7 [UL]ffij = 2 ‘/z_] |:o{£0l)i| + 2 ‘/;m [O[gq)]jm —2 ‘/;m |:O{l(q)i|zémj y (641)
Vi [UR]Mij = = [@w],j g (6.42)
Vij [SL]Mij - [&lq]ZZji ) (6.43)
Vig - [srlwi; = —Vim [Qqaeligm - (6.44)
‘/U [tL]%ij - = [dfq] Zﬁ]z (645)

In Egs. (6.41-6.45) the repeated indices i, j, ¢ are not summed over, while the index
m is.
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6.3 Flavor structure of the effective couplings

So far we have presented our results for the effective Lagrangian keeping generic fla-
vor structures in the couplings [Gx|apea (see Egs. (6.38), (6.39), and (6.41) through
(6.45)). However, some of the operators considered in the analysis contribute to fla-
vor changing neutral current (FCNC) processes, so that their flavor structure cannot
be generic if the effective scale is around A ~ TeV: the off-diagonal coefficients are
experimentally constrained to be very small. While it is certainly possible that some
operators (weakly constrained by FCNC) have generic structures, we would like to
understand the FCNC suppression needed for many operators in terms of a sym-
metry principle. Therefore, we organize the discussion in terms of perturbations
around the U(3)° flavor symmetry limit.

If the underlying new physics respects the U(3)® flavor symmetry of the SM gauge
Lagrangian, no problem arises from FCNC constraints. The largest contributions to
the coefficients are flavor conserving and universal. Flavor breaking contributions
arise through SM radiative corrections, due to insertions of Yukawa matrices that
break the U(3)° symmetry. As a consequence, imposing exact U(3)° symmetry on
the underlying model does not seem realistic. A weaker assumption, the Minimal
Flavor Violation (MFV) hypothesis, requires that U(3)° is broken in the underlying
model only by structures proportional to the SM Yukawa couplings [126], and by
the structures generating neutrino masses [127]. We will therefore organize our
discussion in several stages:

1. First, assume dominance of U(3)® invariant operators;
2. Consider the effect of U(3)° breaking induced within MFV;

3. Consider the effect of generic non-MFV flavor structures.

6.3.1 MFV allowed structures

In order to proceed with this program, we show in this section the flavor structures
allowed within MF'V for the relevant operators. We use Greek letters «, 3, p, o for
the lepton flavor indices, while 7, j for the quark flavor indices, and we neglect terms
with more than two Yukawa insertions. Moreover, we denote by ay, BX, and “x
the numerical coefficients of O(1) x v?/A? that multiply the appropriate matrices in
flavor space. For the operators that have a non-vanishing contribution in the U(3)°
limit, we find:

a1 = a8 + 5y (Aﬁi)“ﬁ (6.46)
Vima@)™ = a@ v+ B (VAR + L (6.47)

afmj .. ~ ..
Vzm|: 3)] J _ d(3) §oB 1/ +ﬁl; (Aﬁ)aﬁ Vi
+ A 8 (VAT (6.48)



6.4 Conclusions 85

afipo ~
6] = Gl 0 7 B 8P ALDT + (A ., (6.49)
[ue] %7 = G4 6967 + B (M) P 50 (6.50)

where A(Lqéz) are the leading “left-left” flavor structures in the quark and lepton
sector, that read:

AW = vy (6.51)
A2
AN = %UmiUT. (6.52)

The notation here is as follows: we denote by de’e the diagonal Yukawa matrices;
m,, represents the diagonal light neutrino mass matrix; V' denotes the CKM matrix,
while U is the PMNS [128] neutrino mixing matrix; v is the Higgs VEV and Apy is
the scale of lepton number violation, that appears in the definition of MF'V in the
lepton sector (we follow here the “minimal” scenario of Ref. [127]).

For the operators that vanish in the limit of exact U(3)° symmetry, we find:

Gp]? = o MV AT + .o (6.53)
VI (g ™ = Gigae A7 (VAT + Brge (Me ALY (VAg)Y
A NP (VAON)T (6.54)
(g™ = Gy A AV + By (VAT))? (A V)Y
A AT (VAW (6.55)

The coefficient of the tensor operator, [O‘l(;)] has an expansion similar to the one of
[oug].

Except for the top quark, the Yukawa insertions typically involve a large sup-
pression factor, as \; = m;/v. In the case of SM extensions containing two Higgs
doublets, this scaling can be modified if there is a hierarchy between the vacuum
expectation values v,, vy of the Higgs fields giving mass to the up- or down-type
quarks, respectively. In this case, for large tan 3 = v, /v, the Yukawa insertions
scale as:

— mu

m

Ay = - —, 6.56
v sin 8 T ( )

Lo e

g = -~ - tan (3 , (6.57)

S, = M L ome

AN = -~ - tan 3 . (6.58)

6.4 Conclusions

From the most general effective Lagrangian with the SM particle content that re-
spects the baryon and lepton number symmetries, we have identified a minimal set of
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twenty-four weak scale effective operators describing corrections beyond the SM to
precision electroweak measurements and leptonic and semileptonic decays. In terms
of these new physics corrections at the TeV scale, we have derived the low-energy
effective Lagrangians describing muon and beta decays, specifying both the most
general flavor structure of the operators as well as the form allowed within Minimal
Flavor Violation.

In the next chapter we will analyze the phenomenology of this Lagrangian in the
simple flavor-blind case, that represents a good approximation to the MFV case.
We will see that the expressions simplify substantially and one can make a clean
phenomenological analysis of the NP constraints and their significance.



Chapter 7

NP constraints from CKM unitarity

Physics is like sex:
sure, it may give some practical results,
but that’s not why we do it.

R. P. Feynman

In the introduction of the previous chapter we said that the precise lifetime and
branching ratio measurements [129] combined with improvements also on the the-
oretical calculations make semileptonic decays of light quarks and purely leptonic
decays a deep probe of the nature of weak interactions. We want to show it in this
chapter explicitly, taking advantage of the theoretical framework developed previ-
ously.

In particular, the determination of the elements V,4; and V,, of the Cabibbo-
Kobayashi-Maskawa (CKM) [130] quark mixing matrix is approaching the 0.025%
and 0.5% level, respectively. Such precise knowledge of V,4 and V,, enables tests of
Cabibbo universality, equivalent to the CKM unitarity condition® |V,4|* + |Vis|? +
|Vas|? = 1, at the level of 0.001 or better. Assuming that new physics contributions
scale as a/m(M3,/A?), the unitarity test probes energy scales A on the order of the
TeV, which will be directly probed at the LHC.

The implications of the Cabibbo universality tests have bee analyzed in some
particular (mostly supersymmetric) scenarios [131,132|, but a model-independent
analysis is missing and we will tackle it here [125].

The use of an effective Lagrangian allows us to understand in a model-independent
way (i) the significance of Cabibbo universality constraints compared to other pre-
cision measurements (for example, could we expect sizable deviations from univer-
sality in light of no deviation from the SM in precision tests at the Z pole?); (ii)
the correlations between possible deviations from universality and other precision
observables, not always simple to identify in a specific model analysis.

W ~ 1073 contributes negligibly to this relation.
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7.1 Phenomenology of V,; and V,,: overview

Using the general effective Lagrangians of Egs. (6.37) and (6.40) for charged current
transitions, one can calculate the deviations from SM predictions in various semilep-
tonic decays. In principle a rich phenomenology is possible. Helicity suppressed
leptonic decays of mesons have recently been analyzed in Ref. [133]. Concerning
semileptonic transitions, several reviews treat in some detail 3 decay differential
distributions [134, 135]. Here we focus on the integrated decay rates, which give
access to the CKM matrix elements V4 and V,,,: since both the SM prediction and
the experimental measurements are reaching the sub-percent level, we expect these
observables to provide strong constraints on NP operators.

V,.a and V,, can be determined with high precision in a number of channels. The
degree of needed theoretical input varies, depending on which component of the
weak current contributes to the hadronic matrix element. Roughly speaking, one
can group the channels leading to V4, into three classes:

e Semileptonic decays in which the axial-vector component of the weak cur-
rent does not contribute. These are theoretically favorable in the Standard
Model because the matrix elements of the vector current at zero momentum
transfer are known in the SU(2) (SU(3)) limit of equal light quark masses:
m,, = mgq (= ms). Moreover, corrections to the symmetry limit are quadratic
in mg g — my [136]. Super-allowed nuclear beta decays (07 — 07), pion beta
decay (7t — mY%*1,), and K — 7l decays belong to this class. The de-
termination of V,4,s from these modes requires theoretical input on radia-
tive corrections [137,138] and hadronic matrix elements via analytic meth-
ods [65,71,139-141] or lattice QCD [142, 143].

e Semileptonic transitions in which both the vector and axial-vector components
of the weak current contribute. Neutron decay (n — per) and hyperon decays
(A — per, ....) belong to this class. In this case the matrix elements of the
axial current have to be determined experimentally [144].

Inclusive 7 lepton decays 7 — hu, belong to this class (both V and A current
contribute), and in this case the relevant matrix elements can be calculated
theoretically with the sum rule framework derived in Chapter 3 [5].

e Leptonic transitions in which the vector component of the weak current does
not contribute. In this class one finds meson decays such as 7(K) — pv
but also exclusive 7 decays such as 7 — v, 7m(K). Experimentally one can
determine the products |V, F;| and |V,sFk|. With the advent of precision
calculations of Fx/F; in lattice QCD [145,146], this class of decays provides
a useful constraint on the ratio V,s/V,q [147].

Currently, the determination of V4 is dominated by 07 — 0" super-allowed nu-
clear beta decays [139], while the best determination of V,, arises from K — wlv
decays [132]. Experimental improvements in neutron decay and 7 decays, as well
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as in lattice calculations of the decay constants will allow in the future competi-
tive determinations from other channels. In light of this, we set out to perform a
comprehensive analysis of possible new physics effects in the extraction of V4, and

Vis-

7.2 New physics effects on the Vj; extraction

As outlined in the previous chapter, we start our analysis by assuming dominance
of the U(3)® invariant operators. These are not constrained by FONC and can have
a relatively low effective scale A. In the U(3)® limit the phenomenology of CC
processes greatly simplifies: all Vj; receive the same universal shift (coming from
the same short distance structure) and as a consequence, extractions of Vg, from
different channels (vector transitions, axial transitions, etc.) should agree within
errors. Therefore, in this limit the new physics effects are entirely captured by the
quantity

Ackur = [V [P 4 VSR 2 4 VP2 — 1 (7.1)

constructed from the Vigpheno) elements extracted from semileptonic transitions using

the standard procedure outlined below. We now make these points more explicit.

7.2.1 U(3)° limit

If we assume U(3)” invariance, only the SM structure survives in the muon decay
Lagrangian of Eq. (6.37), with 2

oy =4al) - 24y . (7.2)

Therefore, in this case the effect of new physics can be encoded into the following
definition of the leptonic Fermi constant:

Gt = (Gp)? (14 10;) , (7.3)

where Gg}) = ¢%/(4v/2m?%,). Similarly, in the U(3)° symmetry limit, only the
SM operator survives in the effective langrangian for semileptonic quark decays
of Eq. (6.40), with coupling:

oy — v =2 (a8 +a8) - af)) . (7.4)

As in the muon decay, the new physics can be encoded in a (different) shift to the
effective semileptonic (SL) Fermi constant:

G = (GO 1+uy) . (7.5)

2Notice that we disagree with the result of BW on the sign of dl(?). This error propagates for
example to the work of Barbieri and Strumia [148] where the BW expression was used, although
in this case the sign of the operator is irrelevant (one must only exchange the columns of Table 3
in that reference).
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The value of Vj; extracted from semileptonic decays is affected by this redefinition
of the semileptonic Fermi constant and by the shift in the muon Fermi constant G*.,
to which one usually normalizes semileptonic transitions. In fact one has

pobeno) _ o GE_ .
ij = Vi g =V (14—
F
= Vy[t+2 (o) —al) -6l +al)] . (7.6)

So in the U(3)° limit a common shift affects all the V;; (from all channels). The
only way to expose new physics contributions is to construct universality tests, in
which the absolute normalization of V;; matters. For light quark transitions this
involves checking that the first row of the CKM matrix is a vector of unit length
(see definition of Acky in Eq. (7.1)). The new physics contributions to Acky involve
four operators of our basis and read:

Ackm = 4 (ozl(l dl(g’) ( ) + A(?’)) : (7.7)

In specific SM extensions, the @; are functions of the underlying parameters. There-
fore, through the above relation one can work out the constraints of quark-lepton
universality tests on any weakly coupled SM extension.

7.2.2 Beyond U(3)°

Corrections to the U(3)® limit can be introduced both within MFV and via generic
flavor structures. In MFV, as evident from the results of Section 6.3, the coefficients
parameterizing deviations from U(3)® are highly suppressed. This is true even when
one considers the flavor diagonal elements of the effective couplings, due to the small-
ness of the Yukawa eigenvalues and the hierarchy of the CKM matrix elements. As a
consequence, in MF'V we expect the conclusions of the previous subsections to hold.
The various CKM elements V;; receive a common dominant shift plus suppressed
channel-dependent corrections, so that Eq. (7.7) remains valid to a good approxi-
mation. In other words, both in the exact U(3)° limit and in MFV, Ackm probes
the leading coefficients ax of the four operators Ocxn = {Ou , l(‘j), ij , 52}.

In a generic non-MFV framework, the channel-dependent shifts to V;; could be
appreciable, so that Ackxy would depend on the channels used to extract Vigus.
Therefore, comparing the values of V,; and V,4 (or their ratios) extracted from
different channels gives us a handle on U(3) breaking structures beyond MFV.
We will discuss this in the next chapter, where we will analyze the new physics
contributions to the ratios V. =" VP Y Konty [07 =07y Ko J)7 2R and
(Vius/Vua)™~" " from both inclusive and exclusive channels. In summary, we orgamze
our analysis in two somewhat orthogonal parts, as follows:

e In the rest of this chapter we focus on the phenomenology of Acky and its
relation to other precision measurements. This analysis applies to models of
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TeV scale physics with approximate U(3)% invariance, in which flavor break-
ing is suppressed by a symmetry principle (as in MFV) or by the hierarchy
Aﬂavor > 1 TeV

e In the next chapter we will explore the constraints arising by comparing the
values of Vs (V,4) extracted from different channels. These constraints probe
the U(3)° breaking structures, to which other precision measurements (espe-
cially at high energy) are essentially insensitive.

Classification | Standard Measurement Ref.
Notation
Atomic parity | Qw(Cs) Weak charge in Cs [149]
violation (Qw) | Qw(T1) Weak charge in T1 [150]
DIS 97, 9% v,-nucleon scattering (NuTeV) [151]
RY v,-nucleon scattering [152]
(CDHS, CHARM)
K v,-nucleon scattering (CCFR) [153]
gt g% v-e scattering (CHARM II) [154]
Zline I'y Total Z width [155]
(lepton and o e™e™ hadronic cross section [155]
light quark) at Z pole
R?f:& ) Ratios of lepton decay rates [155]
AYlf=en) Forward-backward [155]
lepton asymmetries
pol Alfme ) Polarized lepton asymmetries [155]
be R?f:b,c) Ratios of hadronic decay rates [155]
(heavy quark) A%’g:b’c) Forward-backward [155]
hadronic asymmetries
Alr=be) Polarized hadronic asymmetries [155]
LEPII Fermion | o(j—4,- | Total cross sections for efe™ — ff [155]
production AY=HT) Forward-backward asymmetries [155]
for ete™ — ff
eOPAL do, Differential cross section [156]
dcosf for ete™ — ete”
WL3 dow Differential cross section [157]
dcost for ete™ — WHW~
MW My W mass [155, 158]
Qrp sin? QZI’; Hadronic charge asymmetry [155]

Table 7.1: Measurements included in this analysis. This summary table was taken
directly from Table I of [124] and repeated here for convenience. We added some
details in the classification column as well as additional experimental references.
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7.3  Acky versus precision electroweak measurements

In the limit of approximate U(3)® invariance, we have shown in Eq. (7.7) that Ackum
constraints a specific combination of the coefficients dl(l?’ ),dl(j),@gz),d%) . Each of
these coefficients also contributes to other low- and high-energy precision electroweak
measurements [124], together with the remaining seventeen operators that make up
the U(3)° invariant sector of our TeV scale effective Lagrangian (see Sect. 6.1.3).
Therefore, we can now address concrete questions such as: what is the maximal
deviation |Acku| allowed once all the precision electroweak constraints have been
taken into account? Which observables provide the strongest constraints on the
operators contributing to Acky? How does the inclusion of Acky affect the fit
to precision electroweak measurements? Should a deviation Acgy # 0 be estab-
lished, in what other precision observables should we expect a tension with the SM
prediction? At what level?

Our task greatly benefits from the work of Han and Skiba (HS) [124], who studied
the constraints on the same set of twenty-one U(3)® invariant operators via a global
fit to precision electroweak data. We employ a modified version of their publicly
available fitting code in what follows. The analysis utilizes the experimental data
summarized in Table 7.1. The procedure involves constructing the x? function for
the observables listed in Table 7.1, which contains 237 generally correlated terms.
Indicating with X7, (d4,) the theoretical prediction for observable X* (including SM
plus radiative correction plus first order shift in &, = axv*/A?), and with X the
experimental value, the y? reads

e =3 (X - xi,) () (Yhian - X2,) . (78)

7/7]

where afj = 0; pij 0; is expressed in terms of the combined theoretical and exper-
imental standard deviation o; and the correlation matrix p;;. For more details, we
refer to Ref. [124]. In our numerical analysis we essentially use the code of HS®* and
minimally extend it by including the Ackyy constraint in the y? function. Given the
phenomenological input V,; = 0.97425(22) [139], V,s = 0.2252(9) [159], we obtain
the constraint [159]

Ackm = (=146) x 107, (7.9)

that has essentially no correlation with the other precision measurements, due to
the small fractional uncertainty in the Fermi constant.

We perform two different analyses, one in which all operators Ox are allowed
to contribute, and one in which only a single operator at a time has non vanishing
coefficient. These two regimes represent extreme model scenarios and possess differ-
ent characteristics. In the global analysis, due to the large number of parameters,
cancellations can dilute the impact of specific observables: the burden of satisfying

3 We prefer to quote final results in terms of the dimensionless ratios &y = axv?/A? (v ~ 174
GeV) instead of ar, = 1/A% as in HS.
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a tight constraint from a given observable can be “shared” by several operators. On
the other hand, within the single-operator analysis one may easily find correlations
between different sets of measurements. We think of the single operator analysis
as a survey of a simplified class of models, in which only one dominant effective
operator is generated.

7.3.1 Global analysis

In order to quantify the significance of the experimental CKM unitarity constraint,
we first calculate the range of Acky(ayx) allowed by existing bounds from all the
precision electroweak measurements included in Table 7.1. In terms of the best fit
values and the covariance matrix of the ; [124] obtained from the fit to electroweak
precision data, we find

Ackm = — (4.8 +£4.7)- 102~ - (5£5)-107°  (90% C.L.) , (7.10)

to be compared with the direct 90% C.L. bound |Acxy| < 1. x 1073 (see Eq. (7.9)).
The first lesson from this exercise is that electroweak precision data leave ample
room for a sizable non-zero Acky: the direct constraint is five times stronger than
the indirect one! Therefore, one should include the Acky constraint in global fits
to the effective theory parameters.

The next question we address is: what is the impact of adding the Acky con-

straint to the global electroweak fit? The chi-squared per degrees of freedom changes
only marginally, from x?/d.o.f. = 180.12/215 to x*/d.o.f. = 173.74/216. We find
that essentially the only impact is to modify the allowed regions for 5‘1(13 ), ézl(;’), @Sl), afﬁ’q’.
To illustrate this, in Figure 7.1, we display the projection of the twenty-one dimen-
sional 90% confidence ellipsoid onto the relevant planes involving dl(l?’ ), dl(j), @fj), dS} .
The black curves represent bounds before the inclusion of the Acky constraint. The
dashed blue lines outline the allowed regions found by considering only the effect
of current Acky bounds (Eq. 7.7): the regions are unbounded because large values
of any of the &; may be canceled by a correspondingly large contribution of other
operators. The situation changes when high-energy observables are taken into ac-
count, as can be seen from the combined fit solid blue curve. Despite the relatively
weak indirect Acgy constraints from high-energy data, the unbounded parameter
directions are cut off at the edge of the allowed black contour. In the orthogonal
direction, the combined ellipse is shrunk significantly by the strong Acky bound.
Thus, the solid blue contour is rotated and contracted with respect to its parent
black region. As evident from the figure, the main effect of including Acky is to
strengthen the constraints on the four-fermion operator Ol(s’).

At this stage we may also ask how would this picture change if a significant
deviation from Cabibbo universality were to be observed. To answer this question,
we show in Fig. 7.1, the 90% C.L. allowed regions (red solid curve) obtained
by assuming a ~ 40 deviation, namely Acxy = —0.0025 & 0.0006%. One can see

4This value has been chosen for illustrative purposes and could be realized if the central value of
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Figure 7.1: 90% allowed regions for the coefficients 641(13 %a}j’,af},&fﬁ}. These are

projections from the 21 dimensional ellipsoid, obtained from the fitting code. We
include the results for high-energy observables alone (HEP, black unbroken curves),
high-energy data plus the current Acgy constraint (blue unbroken curve), high-
energy data plus the alternative value of Acxy = —0.0025 4 0.0006 (red unbroken
curve) and the bounds from the current Acky alone (blue dashed curve).

that changing the central value of Acky has only a minor effect on the allowed
regions: the fit is driven by the comparatively small Acky uncertainty, rather than
its central value. While the fitting procedure tends to minimize the y? contribution
from Ackn, this does not generate much tension with the remaining observables, as
other operators can compensate the effect of potentially non-vanishint &; C ackm.

7.3.2 Single operator analysis

To gain a better understanding of the interplay between the Acky constraint and
other precision measurements, we embark on a single operator analysis. We as-
sume that a single operator at a time dominates the new physics contribution and
set all others to zero. A similar analysis (not including the CKM constraints)
has been performed in [148]. We will only consider the operator set Ocky =

Vus from K3 decays shifted down to V,,s = 0.2200, which is preferred by current analytic estimates
of the vector form factor (see Refs. [65,71,141]).
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{01(13 ),Ol(j),OS}),OSZ)} that contributes to Ackm, because for the other operators
the analysis would coincide with that of Ref. [148|. In this simplified context we can

ask questions about

(i) The relative strength of Acky versus other precision electroweak measure-
ments in constraining the non-zero &;;

(ii) The size of correlations among SM deviations in various observables.

In order to address the first question above, for each coefficient &; C acxm we
derive the 90 % C.L. allowed intervals implied by: (a) the global fit to all precision
electroweak measurements except Acky (first column in Fig. 7.2, also denoted by
horizontal gray bands); (b) the Acky constraint via Eq. (7.7) (second column in
Fig. 7.2); (c) each subset of measurements listed in Table 7.1 (remaining columns
in Fig. 7.2). Missing entries in Fig. (7.2) signify that the measurement sets
are independent of the selected operator. The plot nicely illustrates that, for the
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Figure 7.2: 90 % C.L. allowed regions for the coefficients &; within the single operator
analysis. The first column displays the constraint from all precision observables
except Ackwm, the second those constraint coming exclusively from Acgy, and the
rest the constraint derived from each subset of measurements listed in Table 7.1.



96 NP constraints from CKM unitarity

operators O; C Ockwm, the direct Agkv measurement provides constraints at the
same level (for dffl)) or better then the Z pole observables. Looking at the size of

the constraints, we can immediately conclude that the operators 01(13 ), OS;), ng,),
are quite tightly constrained by Z lineshape observables (fourth column in Figure
7.2), so that very little room is left for CKM unitarity violations. On the other
hand, the operator Ol(f;’) is relatively poorly constrained by electroweak precision
data (LEP2 eTe™ — g cross section provides the best constraint) and could account
for significant deviations of Acky from zero (first column of the second panel from

top in Fig. 7.2). In this case, the direct constraint is by far the tightest.

Should a non-zero Acky be observed, in the single-operator framework it would
be correlated to deviations from the SM expectation in other observables as well,
since there is only one parameter in the problem (the coefficient ¢y of the dominant
operator considered). We have studied quantitatively the expected correlation be-
tween Acky and the most sensitive electroweak measurements. In Figs. 7.3 and 7.4
we report the correlation between Acky and Z pole observables. In these figures,
each black line (solid or broken) corresponds to a given single-operator model, in
which only one &, # 0. Each point on the black line correspond to a particular
value of @;. A flat black line indicate that no correlation exists between the two
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Figure 7.3: Correlation of various Z pole observables with Acx . Operator Ol(s) is

not constrained by these measurements. The Ol(s) and O;?:} lines are degenerate in
the Arp panel. The 1o bands for Acky and Z pole measurements are shown in red
and blue, respectively. The right panel bands are shaded differently to indicate e, p
and 7 measurements separately. In the lower left panel g = (127 .[haq)/(M21'%)
parameterizes the maximum Z-pole cross-section for ete™ — had.
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observables considered. The red shaded bands indicate the current 1-o0 A s direct
constraint, while the blue bands correspond to the 1-o Z-pole observables. We use
different blue shading to indicate various measurements included in the analysis.
For example, the forward backward asymmetries (Arp) and decay branching ratios
(R) are shown in different color for each charged lepton flavor.

Figs. 7.3 and 7.4 clearly illustrate how much we can move Acky from zero before
getting into some tension with Z pole precision measurements. Moreover, should a
given Ackm # 0 be measured, we can immediately read off in which direction other
precision measurement should move, and by how much, within this class of models.

The model in which Ol(f;’) is the dominant operator is somewhat special, as Z-pole
observables do not put any constraint. In this model, correlations arise among the
following four observables: Ackn, the LEP2 ete™ — ¢q cross section, neutrino DIS
(in particular the NuTeV measurements of the ratios of NC to CC in v, — N DIS),
and Atomic Parity Violation, which has only a very weak dependence on 5‘1(3)- The
two tightest constraints arise from Acky and LEP2. From the correlation plot in
Fig. 7.5 (upper panel, solid line) one can see how LEP2 data in principle leave room
for substantial quark-lepton universality violations, up to |Ackm| ~ 0.005 at the
1-0 level. In the lower panel of Fig. 7.5. we report the correlation plot between
Ackm and the effective neutrino-nucleon coupling g7 extracted from NuTeV data.
The striking feature of this plot is that an explanation of the deviation between the

-0.015 -0.01 -0.005 0 0.005 0.01 0.015

A(.'2KM

Figure 7.4: Correlation of Z-pole polarized lepton asymmetries with Acxy. Oper-
ators Og’) and Ogﬁ} are not constrained by these measurements. The 1o bands for
Acky and lepton asymmetries are shown in red and blue, respectively. Different
blue shading correspond to different measurements.
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Figure 7.5: Upper panel: correlation between Acgy and o(ete” — ¢q)(V/s =
207 GeV). Lower panel: correlation between Acky and the effective neutrino-
nucleon couplings g7 measured by NuTeV. The 1o bands for Acgy and the other
observable are shown in red and blue, respectively.

SM prediction and the NuTeV measured range of g7 in terms Ol(s’) (solid line) would
require a Acky at least 160 below its current value.

7.4 Conclusions

We have performed the phenomenological analysis assuming nearly flavor blind
(U(3)° invariant) new physics interactions. In this framework flavor breaking is
suppressed by a symmetry principle, such as the Minimal Flavor Violation hypoth-
esis, or by the hierarchy Ag.,or > TeV. We have shown that in this limit, the
extraction of V,4 and Vs from any channel should give the same result and the
only significant probe of physics beyond the SM involves the quantity Acxy =
|Vaal? + [Vaus|? + [Vip|? — 1. In the next chapter we will explore the constraints arising
by comparing the values of V,, (V,q4) extracted from different channels. These con-
straints probe those U(3)®-breaking structures to which FCNC and other precision
measurements are quite insensitive.

We have shown that in the U(3)® limit Acxy receives contributions from four

short distance operators, namely Ocixy = {01(13 ), Ol(g) ,OS;), Ogﬁ}}, which also shift
SM predictions in other precision observables. Using the result of Eq. (7.7), one can
work out the constraints imposed by Cabibbo universality on any weakly coupled

extension of the SM. Here we have focused on the model-independent interplay of
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Acky with other precision measurements. The main conclusions of our analysis are:

e The Acky constraint bounds the effective scale of all four operators O; C

Ockm to be A > 11 TeV (90 % C.L.). For the operators Ol(;’),OS;), Og;) this
constraint is at the same level as the Z-pole measurements. For the four-
fermion operator Ol(g), Acky improves existing bounds from LEP2 by one

order of magnitude.

e Another way to state this result is as follows: should the central values of V4
and Vs move from the current values [132], precision electroweak data would
leave room for sizable deviations from quark-lepton universality (roughly one
order of magnitude above the current direct constraint). In a global analysis,
the burden of driving a deviation from CKM unitarity could be shared by the
four operators O; C Ocky. In a single operator analysis, essentially only the
four-fermion operator Ol(j) could be responsible for Acky # 0, as the others
are tightly bound from Z-pole observables.

Our conclusions imply that the study of semileptonic processes and Cabibbo univer-
sality tests provide constraints on new physics beyond the SM that currently cannot
be obtained from other electroweak precision tests and collider measurements.
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Chapter 8

Beyond MFV

The important thing is
not to stop questioning.
A. FEinstein

As we said in the previous chapter, once we go beyond the flavor-blind case the
new physics corrections received by the V;; elements of the CKM matrix are channel
dependent and consequently the phenomenology is very rich. In this chapter we
will study which is exactly the form of these corrections in the main channels: K3,
Ko/, nuclear beta decays and tau decays.

It is important to study these corrections because with the expectable improve-
ments on the experimental and theoretical side these effects will appear sooner or
later. In fact in the recent past there have been some tensions between the results
obtained using different channels. It is important to know if these tensions, at the
precision level that we are nowadays can be due to new physics effects, or if this
possibility is ruled out by other precision measurements and the discrepancy comes
probably from the underestimation of errors or just statistical fluctuations.

Moreover, once we are working with a general flavor structure in our operators,
the new physics effects go beyond just the contamination of the V; extractions. One
can for example study the corrections to the parameters that describe the angular
decay of polarized muons and we will also take a look at this.

In this chapter we will derive the formal results for all these new physics correc-
tions and the phenomenological analysis will be made in a future publication [160],
where we will analyze the new physics bounds that can be extracted from these
processes and the allowed discrepancies taking into account other precision mea-
surements. This information is of an enormous practical interest since different ex-
periments have been proposed to improve the determination of all these low-energy
observables and therefore the analysis of their sensitivity to new physics effects is
crucial.

The starting point of this Chapter is the low-energy effective Lagrangians gov-
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erning the muon and beta decay, derived in Chapter 6 and that we remind here

2
_g ~ _ _ B B B
Euﬂeﬂeu# = 5 5 (1 -+ UL) . eLleu,VeL V;LLfY'u,UL + SR+ €xler V,uL,UR + h.C., (81)
myy
—g? _ S B -
Lijmut-ne= 55 Vij (1 + [UL]wj> Coyaver WA Ay + [orlee; Covaver Ugy"dy,
w

7 =i 7] / =i 7]
+ [sp)enij Crver URd], + [Srleij Crver Uy dy

+ [tL]Mij ZRU;WVZL ﬂ%duyd]i + h.C. s (82)

where the coefficients vy, g, vy, . .. were defined in Sections 6.2.3 and 6.2.4 in term of
the coefficients of the short-distance operators of the BW Lagrangian. For simplicity,
we will assume through this Chapter that our new physics coefficients are real, and
therefore they will not generate CP violation.

8.1 Muon decay

8.1.1 Muon lifetime

In the previous chapter (Section 7.2.1) we saw that the correction to the muon

lifetime in the U(3)%-limit was given by the combination o7, = 46450?}) —2(541(13) . Working

with the most general flavor structure we have an additional correction but it is
completely negligible compared with v ; namely we find

1 B -1
(rlexP) ™ = ZN“ — evarg) = (T (1 46,) (8.3)
af
where
6, = 2@L+2%§R%26L, (84)
w
_ GEim®  [(m? 3 m;
Spm —1 FYy, e K
— 1 C)l 1+ - — .
(75M) o (mi)( +RC)( +5m%v) : (8.5)

and f(z) =1 — 8z + 8x3 — 2* — 122%Inz . The expression for the R.C. (radiative
corrections!) can be found in [161] and the Fermi constant is defined in terms of
SU(2);, x U(1)y standard model parameters as G = g3/4v/2m3, (at tree level, i.c.,
lowest order in perturbation theory), where gy is the SU(2); gauge coupling and
my is the W* gauge boson mass.

! The R.C. expression is somewhat arbitrary. Most quantum loop corrections to muon decay are
absorbed into the renormalized parameter G,,. For historical reasons and in the spirit of effective
field theories, R.C. is defined to be the QED radiative corrections to muon decay in the local V-A
four fermion description of muon decay. That separation is natural and practical, since those QED
corrections are finite to all orders in perturbation theory.
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Traditionally, the muon lifetime, 7, has been used to define the Fermi constant
because of its very precise experimental value and theoretical simplicity, but we see
here that within our framework what we are really extracting is the value of the
combination

(@ = 610 (14 38,) = (@O (1 +50) (56)

The error in the muon lifetime measurement has been improved remarkably by
the MuLan and FAST Collaborations [162] and both of them expect to reach the
part-per-million precision in the future. We quote here the PDG value [129]

GE™) = 1.166367(5) x 107 °GeV 2 . (8.7)

8.1.2 Decay parameters of polarized muons

The most general derivative-free four-lepton interaction hamiltonian for describing
the process u= — v,e” v, consistent with locality, Lorentz invariance and lepton-
number conservation, can be written as [163|

n=5,V,T
G e

v, I N G R R (AT I (8.8)

e,w=R,L

where the label n refers to the type of interaction:

1 i

;o V=, 7= 5= 0" =, (89)
for the scalar, vector and tensor interactions, respectively. Once n and the charged-
lepton chiralities, ¢ and w, are chosen, the neutrino chiralities o and A are uniquely
determined. Taking into account also that there are only two non-zero tensor terms
and that one global phase may be taken away, we end up with 19 real constants.

In our case, without right-handed neutrinos, all the g’s are zero except gy, and
g%r, that correspond to the 9y, and sg coefficients of expression (8.1).

For an initial muon-polarization P, the final electron distribution in the muon
rest frame is usually parametrized in the form [164]

d*T(Py, z,cos0)  myw?

_ 2N 2 2
dx dcos0 273 (GEN)y2* =25 %

2
x{x(l —x)+ 97 (42° — 3z — x3) + nxo(l — z)

1 2
_57315 x? — z¢cosl ll—x+§5 <4x—4+\/1—x3)]}, (8.10)

where 6 is the angle between the ;= spin and the electron momentum, w = (m} +
m3)/2m; is the maximum e~ energy for massless neutrinos, = F,.-/w is the
reduced energy and zg = m,/w.
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For unpolarized p's, the distribution is characterized by the so-called Michel [165]
parameter p and the low-energy parameter 1. Two more parameters, £ and § can
be determined when the muon polarization is known.

To determine the constraints on physics beyond the SM, it is convenient to
express the Michel parameters in terms of their deviation from the SM values. One
obtains (taking into account that most of the ¢’s vanish in our framework) for the
four parameters and the overall normalization factor

3
_2 _ 0
P 1 )
1 *
n = Re(grrorr) -
1 2
-1 = Ll
3 3 2
€0 -2 = Dol
1 2 2
N = Z|gfm| +lgrLl” - (8.11)

Notice that even at this point, where we have not neglected the quadratic terms yet,
we see some consequences of not considering the right-handed neutrinos like the fact
that there is no NP correction in the p parameter and that the correction in £ and
(£0) is the same (up to a factor 3/4). It is known that 7 is the only parameter that
receives a linear correction from these new physics terms (see e.g. Ref. [166]) what
makes it the most sensitive to NP of these four parameters?.

3

4

9

n = Sp = [@le]zlu )

E—1 =
3

(€0) =7 =

N =

9

9

+27 . (8.12)

— O o~ O

The TWIST Collaboration has published the most precise values for the param-
eters p, § and (£0) [167|, and they expect to improve these measurements in the
next years. For the moment, the results are compatible with the SM predictions,
but if next measurements disagree in any of these parameters not only we would
have a sign of physics beyond the SM but at the same time we would have extracted
valuable information about the new physics structure. A discrepancy in ¢ and/or
(€0) could be a quadratic effect of our ¢'s, but a discrepancy in ¢ would be more
interesting since it could be explained only with the introduction of right-handed
neutrinos.

2Tt is worth mentioning that even in the most general framework with right-handed neutrinos,
that is with all the ¢’s finite, if we write gf; = 1+ ¢;7 and neglect the terms quadratic in the g's
we will find that all the differences with the SM vanish except 1 = % Y
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The situation is a bit different for the parameter 7, that has been measured
at the PSI [168], because as we have seen it is the only one where a difference
with the SM can be generated linearly, what makes it the most sensitive to new
physics. From its measurement and working within our framework one can extract
the value of [Gye|2112. Notice that is quite remarkable that this observable involves
only one of our coefficients. The current result working in this linear approximation
is compatible with zero [168], what can be translated into a bound on [dy.]a112:

A2 U2 )
— > (2 TeV)® (95% C.L.). (8.13)

In| <0.015 — (A2 = — _ —
|[cue]o11 | 7]

If the quadratic terms are kept then the extracted value for 7 is not so precise [129],
n = 0.001 & 0.024, what generates A“/f) > 1.1 TeV.

8.2 Kaon and pion physics

The new results on the semi-leptonic decays K;3 and K5 from BNL-E865, KTeV,
NA48, KLOE, and ISTRA+ allow to perform very stringent SM tests [132], being
some of them almost free from hadronic uncertainties, as the /e universality ratio in
Ky decays. Moreover, this experimental improvement have stimulated a significant
progress also on the theory side: most of the theory-dominated errors associated to
hadronic form factors have recently been reduced below the 1% level.

We will first briefly review how the Vs and the ratio V,,/V,q are extracted,
assuming that the Standard Model holds, and then we will analyze the effects of the
new terms in our low-energy effective Lagrangian on these extraction procedures.

8.2.1 K3 and Ky rates within the SM

The photon-inclusive Ky3 and Ky decay rates can be conveniently decomposed
within the SM in the following way

GZm3 2
P(KB(“{)) = 15271_2( Ck Sew |VUS|2f+(0)2 If((A-i-,O) (1 + 5§<U(2) + 5el<nf) (8'14)
T Ki v 2 £9 1— 2 2\ 2
U A, ( i ) < (14 b) (8.15)
1—‘(77'32(7)) Vud|  f2me \ (1 —mj/m2

where Cx = 1 (1/2) for the neutral (charged) kaon decays, Sey is the universal
short-distance electromagnetic correction and d, and 6%¢ are the channel-dependent
long-distance electromagnetic correction factors. I% (A4 o) is the phase space integral
that depends on the slopes of the form factors (generically denoted by Ay o)

e / my AN
Ik =z 0y /dt g (” 2t) < i )

X (ﬁ(tH ) Ifo(t)|2> , (8.16)

3771? (m%( —mz
(2t + m2) mi (1)
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M) = 1—=2r; +7r2—2t/m3 —2r t/m3 +1°/mj , (8.17)

where 77 ¢ = mZ ,/Mj. The hadronic K — 7 matrix element of the vector current
is described by two form factors, f.(¢) and fo(t), defined by

(m= (k) [59"ulK° (p)) = (p+&)"fo(t) + (p = B)"f_(1) (8.18)

= (R0 + (0= R TEE (1) — £ (1)

where t = (p — k)%

In order to compute the phase space integral (8.16) we need to know the form
factors fi o(t). In principle, Chiral Perturbation Theory and Lattice QCD are useful
tools to set theoretical constraints, but in practice the t-dependence is better deter-
mined by measurements and by combining measurements and dispersion relations.
With the recent experimental data the quantities |Vs| % f4(0) and |Vis|/|Vaal X frc/ fr
can be determined with very good accuracy [132]:

[Vis| X f1(0) = 0.2166(5), (8.19)
Vas| /|Vadl X [/ f= = 0.2760(6) . (8.20)

The main obstacle in transforming these precise determinations into a determi-
nation of |V,,| at the per-mil level are the theoretical uncertainties on the hadronic
parameters f,(0) and fx/ fr.

On one hand the parameter f,(0), although not calculable in perturbative QCD,
it is very constrained by SU(3) and chiral symmetry. In the SU(3) limit (m, = mgy =
ms) the conservation of the vector current implies f;(0)=1. The chiral corrections
are protected by the Ademollo-Gatto theorem that forbids corrections linear in the
quark masses. The O(p®) chiral corrections have been computed following different
analytical approaches [65,71,169| and the different results, although in agreement
with the original estimate by Leutwyler and Roos [140] f,(0) = 0.961(8), are sys-
tematically larger than it. In any case, the size of the error is still around or above
1%, which is not comparable to the 0.2% accuracy which has been reached for
|Vius| X f+(0). Recent progress in lattice QCD gives us more optimism in the reduc-
tion of the error on f, (0) below the 1% level [143,170]. We will follow the FlaviaNet
group and adopt the lattice value from the UKQCD-RBC collaboration [171] is
f+(0) = 0.964(5).

On the other hand the pseudoscalar decay constants are not protected by the
Ademollo-Gatto theorem and as a result, in the determination of fx/f, lattice
QCD has essentially no competition from purely analytical approaches. Again,
following the FlaviaNet group we adopt the lattice result from the HPQCD /UKQCD
Collaboration fx/fr = 1.189(7) [146]3.

Using these numbers it is found:

V| = 0.2246 + 0.0012 Vsl /| Viaa| = 0.2321 £ 0.0015 . (8.21)

3Tt is worth noting that this result is in good agreement with the recent determinations per-
formed by the MILC’09 [106] and BMW [172] Collaborations, using different lattice techniques.
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It is interesting to notice that this value of |V,|, based on the recent experi-
mental data on kaon decays, is about two sigma higher than the previous one,
|V.s| = 0.2200(26) (PDG2004), that was based essentially on twenty years old mea-

surements.

8.2.2 Ky and my beyond the SM

Working with our low-energy effective Lagrangian (8.2) we obtain

(0)2 12 2 m2 \ 2
MXaq) = Sl B (1- 75 +atw) . (822

e
M2
5(Xp) = 2 (64,— — X 5p,) 8.23
(Xa) = 2 (54, T ) (8.23
(SAjg = UL]]Z (824)
A (8.29

where X =7(j=1),K(j =2) and ¢ = 1(e), 2(u).

Extraction of |V,|/|V.d|

From this result we can calculate the following ratio?

- _m
R, = Hpy) _ Vol S ) (14 8(R.)) (8.27)
P(WZE(A/)) |‘/ud|2 fgmw — m_g

5(R@) = 5(K42) — 5(7‘(‘42)
M2 M2
=2 ((M% — 6Ay) — (mapﬂ - méﬂg» (8.28)

that is used to extract the value of the ratio |V,s|/|Vua|- If we take into account the
new terms what we are really measuring is the following quantity

| Vus | (pheno) | Vus | 1
— 1+ 26(R,) ) . 8.29
(|vud| Vo "\ T 20U (8.29)

4The correction found for R,, Eq. (8.28), agrees with the result of Ref. [132]. In order to
check it, it is necessary to take into account that, as we do not have right-handed neutrinos,
CYn = Chr = cg, = C’}%L = CT, = 0 in our approach. Notice also that they write the
Lagrangian for X Zg and add the h.c. whereas we have written the Lagrangian for X ,, and add the
h.c. This produces that C}%R is connected to sy and not to sp as one might have thought naively.
In the end we have

[CLL], = [elje/IVasl [CER]; = [srlje /Vasl [Chrl; = [tL]}e /IVisl
[Ckil; = [rlj/IVail [CRR]; = [se]je /Vasl - (8.26)
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i — e universality ratios

These i1 — e ratios are very clean observables and can be used to put strong bounds
to their NP-corrections. In our framework they take the form

2 2
(7 2 (1 — X
R, = ( 52”)) — m; ] (L+6(R) (8.30)
F(WMQ(“/)) M — oz

0(R:) = 6(me2) — (mu2)

2
- 2 ((51416 - 5141#) - Mﬂ <L5P16 - miéplﬂ)> y (831)

My +MmMg \ Me “w
(K -2\
T(K; 2 (11— 2%
_ e2(v) me My
Rg = =% | (1+0(Rk)) (8.32)
F<KM2(7)) mi - —mi

0(Rk) = 0(Ke) = 0(Kpo)

M? 1 1
= 2 ((Mze—(mzu)— K (—5P26—m—5p2ﬂ)> . (8.33)
i

My +Mg \ Me

8.2.3 K3 decay beyond the SM

In the general case we have, in addition to the vector-current matrix element, the
tensor and scalar ones, and therefore we will need new form factors. Actually we only
need to add the tensor one, since fy(t) allow us to parametrize also the scalar-current
matrix element. More specifically, we have

2 2

(w0 |GulK ) =~ B h @) (8:34)
() s K0 ) = T B 1) (8.35)

Following the scheme of the FlaviaNet Kaon Working Group [132] it is found
that the difference between the Ky3 rate obtained with our low-energy effective
Lagrangian (8.2) to the SM one can be summarized as follows:

e Overall rescaling factor produced by the vector and axial-vector couplings

D (Kesy)) — T(Kes) x [Cv [ (8.36)
Cy =1+ [vr +vRy, - (8.37)

e Scalar and pseudoscalar contributions can be encoded by substituting

msMW

M \
Cs=—Lsp+ sl - (8.39)
my
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e The tensor coupling modify the phase space integral I (A, o) of Eq. (8.14) by
Tic(s0) = TieOeo) = [t I (Oroo) (8.40)
where 1% is defined below.

In conclusion, the integrated rate including electromagnetic corrections can be writ-
ten as

T(K = G o6 VR (00 (146K 6K
( 53(’7)) = o253 K ew [Vius| " f+(0) ( +0sp(2) + em)
x |OvP? (I = [telse I7) (8.41)
where
1 m>2 m2\?
¢ _ 3/2 ¢ Y 4
= [0 <” 2t)( t)
3m? (m? —m2)2
2 ¢ (M . H |2
It = é/dt e 8me (1M g (g4)
T mif(0) my t ECaR '

where A(t) was defined in (8.17).

We see that we do not agree with the result of Ref. [132] for the I% integral.
Comparing with the results of Ref. [173] we find that we agree in the fact that there
is no interference between Bp(t) and fy(t), and also in the interference between
Br(t) and fo(t) but for a global sign®.

V... extraction

In most realistic new-physics scenarios the modification of the K3 scalar form factor
and the phase space integral is well below the present experimental and theoretical
errors. In this way we would have

T(Kisy) ~ T(Kee) ™ x|Cy > = T(Ke) ™™ (142 [vr + vgly), (843)
and therefore

Vsl = Vil (14 [vr, + vily — 52) - (8.44)

®We find a negative interference (notice the minus sign in the Eq. (8.40)). Altough there is also
a minus sign in the interference found in Ref. [173] one must take into account the fact that there
is an extra minus sign (and also some factors) that appears when we write their constant C% in
terms of our constant t7,. And therefore we have the discrepancy in the sign of the interference.
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8.3 Nuclear beta decay

The nuclear beta decay gives us the most precise measurement of V,,; through the
study of the 07 — 0T transitions, and also gives one of the most precise alternative
determinations through the study of the neutron decay. First we briefly review how
these determinations are made (considering only the SM physics) and later we will
analyze the new physics effects on these procedures.

8.3.1 Standard extraction of V,,; from nuclear beta decay
V.4 from 07 — 0T transitions

In order to find the appropriate formula needed for the extraction of V4, we start
with the general expression for the differential rate for unpolarized nucleus:
ar _ F(-Z,E.) G5
dE.dQ.dQ, (27r)5

2) E(Ey— E 14 qRePr el gy
|Vud| Pe e( 0 ) 5 +aEE + Ee 7(8 5)

where Ej is the electron endpoint energy and F(—Z, E.) is the Fermi function that
can be parametrized in the Primakoff-Rosen approximation [174] (good if the Q
value® is not too small) as

E. 2raZ
F(Z,B,) =~ T2

Pe 1 — e—2maZ :

(8.46)

The correlation coefficients a and b vanish in the SM, whereas ¢ = 4¢3 for the overall
normalization”. Therefore we see that nuclear beta decays between 01 states are
produced only via the vector component of the hadronic weak interaction. This is
important because the CVC hypothesis protects the vector coupling constant Gy
from renormalization by background strong interactions (gy = 1 up to second order
corrections in isospin breaking) and thus we have Gy = GV,4. Consequently, using
the G value extracted from muon decay and measuring Gy in nuclei we have the
value of the CKM matrix element V.

Performing the phase space integrations, the total decay rate reads:

G2

FO‘*HO‘*

\Vud\ ! (8.51)

6The Q value is the difference in the atomic masses of neutral atoms in ground-state configura-
tions and the quantity Ey in Eq. (8.45) is related to Q by the equation Ey = @ — me.
"The constants g; = ¢;(0) (i = V, A, S,T) are defined [134] as:

gv(a®) pyun = (p| avud|n) (8.47)
94(¢*) pyuysn = (pl wyuysd [ n) (8.48)
9s(¢*) pn = (p|ud|n) , (8.49)
97(q*) pown = (p|doy.d|n) . (8.50)
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where f is the phase space integral.

To date, precise measurements of the beta decay between isospin analog states
of spin, J™ = 0%, and isospin, T" = 1, provide the most precise value of V,4 [139].
A survey of the relevant experimental data has recently been completed by Hardy
and Towner [139]. For each transition, three experimental quantities have to be
determined: the decay energy Q (used to calculate the phase space integral f),
the half-life of the decaying state ¢,/ and the branching ratio R for the particular
transition under study. In Eq. (8.51) we see that, in the limit where isospin is an
exact symmetry, the product ft (the partial half-life is defined as ¢ = t;,5/R) is

K

ft = ——, (8.52)
2G2V2

where K = 2% In2/m5 = 8.1202787(11) x 1071 GeV~°. That is, according to CVC

the ft value is a constant independent of the nucleus under study. In practice,

however, isospin is a broken symmetry in nuclei, and so a ‘corrected’ ft value that

takes into account the radiative corrections is defined by

_ K .
2GZV2 (1 + AY)

Ft= ft1+6) (1 — (6c — oxs)) (8.53)

so it is this corrected Ft that is a constant. Here A} = (2.631 £ 0.038)% [138] is a
nucleus-independent part that includes the universal short-distance component Sgy,
affecting all semi-leptonic decays. The others corrections are transition dependent
that require shell-model calculation.

In the upper panel of Fig. 8.1 are shown the experimental ft values from the
survey of Hardy and Towner [139] for 13 transitions. This data represent an impor-
tant test of the CVC statement that the Ft values should be constant for all nuclear
super-allowed transitions of this type. The disagreement between the different points
is completely absent in the corrected Ft values shown in the lower panel of Fig. 8.1,
principally due to the nuclear-structure-dependent corrections, thus validating the
theoretical calculations at the level of current experimental precision. The weighted
average of the 13 data is

Ft =3071.83+0.85 s. (8.54)

The CKM matrix element V4 is then obtained from

K
VZ = —  — |Vl = 0.97425 + 0.00022. (8.55)
2G5 (1+ AY)Ft

The error is completely dominated by theoretical uncertainties, principally by the
nucleus-independent radiative correction AY, that was recently reduced by a fac-
tor of two [138] and where further improvements will need some theoretical break-
throughs. Second in order of significance are the nuclear-structure-dependent cor-
rections d¢c and dyg.
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Figure 8.1: In the top panel are plotted the uncorrected experimental ft values
as a function of the charge on the daughter nucleus. In the bottom panel, the
corresponding Ft values as defined in Eq. (8.53) are given. The horizontal grey
band in the bottom panel gives one standard deviation around the average Ft.
(Figure taken from Ref. [139])

V.4 from neutron decay

The extraction of V,4 from neutron [-decay cannot compete yet with the extrac-
tion from 0" — 07 transitions, but it is interesting because the most complicated
transition-dependent radiative corrections 0 and dyg do not appear in the analysis.
However, we still have %, and the nucleus-independent radiative correction A,.
Neutron -decay not only samples the weak vector interaction but also the axial-
vector. Because of this, three parameters are required for a description of neutron
fB-decay: Gr, A = ga/gy (the ratio of the weak axial-vector and vector coupling
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constants) and V4. Thus, considering G'r as an input parameter coming from muon
decay, measurements of at least two observables are required for a determination of
V-
A value for A can be extracted from measurements of correlation coefficients in
polarized neutron (-decay. The differential rate for polarized neutrons reads [175]:
dr 1 (G2

B Voa*p Eo(EYY — E.)? 8.56
I, — (@np oVl peEel(E ) x (8.56)
J

. 5{1+ape.py+b%+—' A&+B&+Dpexpy]} ,

where E. (E,) and p. (p,) denote, respectively, the electron (neutrino) energy and
momentum; B\ = A — (A2 — m2)/(2m,) (with A = m, — m,) is the electron
end-point energy, m, is electron mass and J is the neutron polarization.

Neglecting recoil-order corrections, the overall normalization £ and the correla-
tion coefficients can be expressed in terms of A as [176]

. _ G NHA N A
13N I S T4 3
£=2(1+3)%), b=0, D =0. (8.57)

At present, the neutron -asymmetry A yields the most precise result for A.
A second observable is the neutron lifetime, 7,,, which can be written in terms
of the above parameters as [138,177,178]
1 Giml

T_n - o3
Here, f = 1.6887 + 0.00015 is a phase space factor, and (1 + RC) = 1.03886 +
0.00039 denotes the total effect of all electroweak radiative corrections [138,177].
Summarizing we have that V4 can be determined from 7,, and A\ according to [138,

177]

Voa|?(1+ 3A2) f(1 + RO). (8.58)

4908.7 £ 1.9 s
(1 4+3X%)

The current status of a neutron-sector result for V4 is summarized in Fig. 8.2.
Using the PDG recommended value of 7,, = 885.7 & 0.8 s yields the result [129]

Vadl* = (8.59)

|Vl = 0.9746 £ 0.0004,,, £ 0.0018, £ 0.0002gc, (8.60)

where the subscripts denote the error sources, showing that the uncertainty in the
value of A is by far the largest contribution to the error. This value is in good
agreement with that from nuclear [§-decay, although with an error bar that is a
factor ~ 7-8 larger. The most recent result reported for 7,, of 878.5+0.7+0.3 s [179]
disagrees by 60 with the PDG average, and would suggest a considerably larger
value, |V,q| = 0.9786 £ 0.0004,, 4+ 0.0018, 4 0.0002gc.

An ongoing series of precision measurements of neutron (3-decay observables aims
to reduce the error on A and resolve the lifetime discrepancy.
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Figure 8.2: Current status of V,4 from neutron (3-decay, showing the current PDG
value of A (vertical error band) and the constraints between V,,; and A (angled error
bands) coming from two values of the neutron lifetime: the PDG recommended
value, and that from a recent 6o-discrepant result [179]. The horizontal error band
denotes the value of V,4 from 0" nuclear (-decays. (Figure taken from Ref. [159])

8.3.2 New physics effects on the standard extraction of V,,;

Once we go beyond the Standard Model and take into account the existence of new
terms in the low-energy Lagrangian (8.2) we will have that the extracted value of
V.a using the standard procedure described above contained some new physics con-
tamination that we want to estimate. The expression of the correlation coefficients
of the beta decay in terms of the coefficients of the most general derivative-free,
four-fermion interaction lagrangian describing the 3 decay process, consistent with
locality and Lorentz invariance, are known [135,175], and so we only have to apply
these expressions to our particular Lagrangian®. We find:

2

Cy,=Cv = gv &f\;—%/vud(l + [V )ua + [UR]ud) , (8.61)
g2

C;l = CA = —dga WVMl(l + [UL]ud — [UR]ud) s (862)
7

Cy=Cs = gs mvud([sL]ud + [SR]ud> ; (8.63)
2

/ g
CT = CT =Jdr SMI%V Vud 4 [tL]ud . (864)

Cp and C% can be neglected in calculations of experimental observables because,
in a nonrelativistic treatment of nucleons, the pseudoscalar hadronic current pvysn

8In making this step it is important to realize that there is a minus sign of difference between
our definition of 45 and that of Refs. [135,175].
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vanishes. To simplify the notation, we will use [vy].q — vr, ete.

0t — 0T transitions

The correlation coefficients &, a, b that parameterized the differential rate for unpo-
larized nucleus (8.45) take the following values within our framework

¢ = 4gi(1+2vp + 2vg) , (8.65)
a = 1, (8.66)
b = 2vgs(sp+ sgr), (8.67)

with v = /1 — o?Z. Taking into account the new physics effects in the extraction
of G from the muon decay and performing the phase space integrations, the total
decay rate reads:

G2 m (o)
Toror = —E—SVul>F(1+AY) |14 20, — 20, + 2 p-L0
0+—0+ 27T3 | d| JT( + R) + (s UL+ UR+ ]O(ZL‘O)
SM 7
= |Toror 14+ 201 — 205 + 2vp + bLT) | (8.68)
Io(o)

where F and AY were defined above (see Eq. (8.53)), and where I;.(z¢) are the
phase space integrals, defined by:

zo
Ix(zg) = / dr 27" (g — 2)* Va2 — 1, o = Ey/me . (8.69)
1

Therefore we infer that the standard procedure to extract |V,q|* determines the
combination:

‘Vud‘Q = |Vud‘2

0t—0+

N 11 (o)
14+ 2v, — 2 2 b ) 8.70
+ UL (5 + UR + ]0(1‘0) ( )

Neutron [ decay

In this case the presence of the weak axial-vector coupling constant g4 (or equiva-
lently \) makes the expression of the correlation coefficients a bit more involved:

e Overall normalization:

1—3)\2
2 2 .
& = 297 (1+3N) L4204 20755 | 5 (8.71)
e Beta-neutrino correlation coefficient:
1—\2 8\2
= —(1+2 : 8.72
13| RN | (8.72)
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e [ierz interference term:

2
b= m gs (3L+3R)_12)\thL] ; (873)
e Beta asymmetry parameter:
2A(1 =) 1—2)\—3)\2
— |1 - ; 8.74
1+ 32 [ IV FE I (8.74)
e Neutrino asymmetry parameter:
20(1+ \) 142X —3\2
— |1 —2v
1+3)2 A+ N1 +322)
Me 142X\
2— —_— — — 8.75
+ z. gS(SL+5R)1+3)\2 grie T3 (8.75)

Expressing GE,?) in terms of the Fermi constant determined in muon decay (G,,)
and performing the phase space integrations, the total decay rate reads:

1 Gim‘r’ )
— = - 1+3)\%) f(1
- S Val (1433 f(1+RC) x
1-3)2  I(x”
x |1+ 2u; — 20, + 2up 5 1) )]

+
L+3M (i)

1-3X2 (=)
1+ 2v;, — 20p, + 2up + p—2 , 8.76
1+ 3)2 [o(ﬂf(()n)) ( )

1 1SM
- [2]
(n

where 1z ) = Ey/m.. Evaluating numerically the phase space integrals defined in
(8.69) one has Il(:pé"))/_fo(:pé")) = 0.652.

So far we have considered A as a theoretical quantity free from NP contributions
(the matrix element of the axial current operator between a neutron and a proton
at zero momentum transfer, calculable within Lattice QQCD). But in practice, as
we have explained, since current lattice QCD calculation are not accurate at the
percent level, A is usually extracted from the experimental measurement of the beta
asymmetry A.

In presence of New Physics terms, the measurement of A determines A as a
function of the right-handed coupling vg. Explicitly, we may write Eq. (8.74) as

C2M1- )

A()\,’UR) = A0(>\) 1+ VR 5,4()\)] s AQ()\) = 11 32 (877)
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Working to linear order in vp , one then has:

Sa(
A=\ — vRAexpﬁ : (8.78)

where )\ is determined by ignoring the NP contributions, as a solution of the equa-
tion Ap(Ag) = Aexp (i-e. the standard procedure). This implies

6 Ay Mo 0.4(No)
(14 3A8) 45(Ao)

143\ — (14 3)\2) [1 — VR : (8.79)

Putting everything together, Eq. (8.76) tells us that the "standard" phenomenology
of neutron decay does not determine |V,4|? but rather the combination:

|Vud|2 - |Vud|2

n—pev

1+2UL —21~)L

2(1 = 3A2)  6Aexp Ao da(Ao) I (2™
b (8.
+un ( 11302 (1130 AN (8.80)

8.3.3 NP contributions to V,,; ratios

Using the previous results we find

0F—07T |2 2 (n)
V 12X Acxp A A I I
| ufmlﬂpez?—|2 = 1+UR ( . 2 0 — 20 5A4/( 0) ) b0+ 1(x0) _bn 1(x?n)) s (881>

where )y denotes the ratio g4/gy as extracted from the beta asymmetry measure-
ment (A) ignoring possible NP terms.

8.4 Inclusive 7 decay

Thanks to the very precise measurement of the hadronic spectral functions of the
7-decay (see Chapter 2) and making use of the theoretical framework explained in
Chapter 3, the 7-decay has been a very rich field to test the SM and determine
different parameters. In particular, the difference between the strange and non-
strange spectral functions have been used to determine Vs with good accuracy [5].
Another very important application of these decays is the most precise determination
of the strong coupling constant ag.

So we see that it is very interesting to analyze the new physics effects on the
hadronic tau decays and the possible contamination produced in the extraction of
the different parameters. In this section we will explain how to address the problem
and we will see the main features of the results, whereas a more complete analysis
including a phenomenological study will be made in a future publication [160].
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8.4.1 V,, determination from tau decays

As we carefully explained in Chapter 3 the inclusive character of the total 7 hadronic
width makes possible an accurate calculation of the ratio

R

I'[7~ — v; hadrons (v)] Rns+ Rrs (8.:82)

U= — vre ()

where R.,s and R, g are the Cabibbo-allowed and Cabibbo-suppressed contribu-
tions, respectively. In principle if we neglect the small SU(3)-breaking corrections
from the mg — my quark-mass difference, we can obtain the value of |V,,| directly
from experimental measurements, without any theoretical input:

RT,S
RT,nS

1/2
|Vus|SU(3) = |V < ) = 0.210 £ 0.003, (8.83)

where we have used |V,,q| = 0.97425 £ 0.00022, from Eq. (8.55), R, = 3.640 £0.010
and the value R, ¢ = 0.1617 £ 0.0040 [51], which comes from the recent BaBar
and Belle measurements [46]. It is worth noting that the previous value for the
strange contribution to the tau width was larger (R, s = 0.1686+0.0047 [48]), what
translated into a smaller value of the |V,,| element (|V,,|5V® = 0.215 & 0.003).

The shift in this determination of |V,,| due to the small SU(3)-breaking con-
tributions induced by the strange quark mass can be calculated through an OPE
analysis of the difference [5,6,35,51]

RT,nS - RT,S
|Vud|2 |VUS|2 ’

R, = (8.84)

The only non-zero contributions are proportional to the mass-squared difference
m? — m2 or to vacuum expectation values of SU(3)-breaking operators such as
(0|my5s — madd|0). The dimensions of these operators are compensated by the
appropriate powers of mf, what suppresses these contributions.

The value of the strange quark mass is obviously crucial for this analysis. Work-

ing with the range
ms(m,) = (100 £ 10) MeV  [ms(2 GeV) = (96 £+ 10) MeV] | (8.85)

which includes the most recent m -determinations from QQCD Sum Rules and lattice
[180], one gets 0 R, 4, = 0.216 =+ 0.016, which implies [51]

1/2
R,
Vil = [ % ) = 0.2165 % 0.0030 oxp = 0.0005 4, (8.86)
R‘r,nS’ 5R h p
- T,t

‘Vudl2
that is at 2.50”s from the value extracted from kaon decays (8.21) (and hence from
unitarity). Notice that if we use the old world average for R, g this tension disappears
|Vis] = 0.2212 £ 0.0031. In any case we see in (8.86) that experimental errors
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dominate over the theoretical ones, in contrast to the situation encountered in K3
decays, what makes this channel very interesting.

In the near future, the full analysis of the large BaBar and Belle data samples
could produce significant changes on the experimental determination of R, g, and
hence on the result (8.86), although in any case the final error of the Vs determina-
tion from 7 decay will probably remain dominated by the experimental uncertainties.
A 1% precision measurement of R, g would make the 7 decay a competitive source
of information about V.

In principle it is possible to perform a simultaneous determination of V,, and
the strange quark mass through a correlated analysis of several SU(3)-breaking ob-
servables constructed with weighted moments of the hadronic distribution [5, 6].
However, the extraction of m, suffers from theoretical uncertainties related to the
convergence of the associated perturbative QCD series, what limits the present de-
termination of my [5,6].

8.4.2 The effective lagrangian

The starting point for the study of the New Physics effects in the 7-decay is our
effective Lagrangian (8.2) (notice that in this case we need the h.c. part). For
notational convenience we define the following leptonic and quark currents

L,= Dﬁw& , R= DﬁER , R, = Dﬁauyﬁg
Vi=dya, Al =dyrysu’
Si; = du’ | Py=dysu', TS =d ot (1—s)u’ . (8.87)

and also the following combinations of effective couplings:

Ky L+ [vilij + [vRlij (8.88)
ka = 1+[vglij — vRlij , (8.89)
ks = [silij + [sklij » (8.90)
kp = [spliy — [sklij (8.91)
ke = [t ]eei (8.92)

8.4.3 The inclusive decay rate
The total rate for the 7 — v,er, decay reads:

2

Gy m?
Dirvren) = Topg [1 ) <m2 } . (8.93)
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The inclusive 7 decay rate reads:

1 dp3 1
Cirmvrm) = 5F. 2 den
zn: (rvem) 2m7/(27r)32Ey2§;/ ¢
2
< | el Mgy | 7) | (27)5%( = o)

G2 |V, |?
E 71?‘ ]| /ds 1——8
, 167mm., m2
j=d,s

T

. {Tr 1] o o 6) 4 a0
+Tr[L,R'] [2Re(kvks) pirg(q) + 2Re(kar}) PQP(Q)]
VTP LR ] Re(oy ) pw<q>} | 5.9)

where ¢ = p, — p, and p,, is the total momentum of the hadronic final state. The
spectral functions pap(q) were defined in Eq. (2.9). We write as an example the
VV case, with its Lorentz expansion:

Piivv(a) = /d¢n(2ﬂ)354(q—pn)z<0|‘/¢? [n) (n| ViT10)  (8.95)

n

(quqy - QWQZ)PS’,)VV(QQ) + quqyl)@('?,)vv(f) .

For the rest of the spectral functions the Lorentz-decomposition is the following (we
omit for simplicity the flavour indices 1, j)

(@) = [q“qV—g q ]p%(qz)w“q Pan(d) (8.96)
prs(@) = d"pvs(d®) (8.97)
(9) (8.98)
() (8.99)

v 2 v (0)

Pip(@) = ¢"par(d®), 8.98
pvr(q) = i[q”g“” — qu“”] ovr(q?) 8.99

where the factor ¢ in the last line was extracted in order to have a real spectral
function pyr(g?), as can be seen explicitly in the work of Ref. [13].
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Making use of these expressions and normalizing to the 7 decay rate we get?:

[ d ’
R, = Zal—vm 127r2|vud|2/ i <1—i) x

P(T—>V7—eﬂe) m_72— m?r i
2 25\ () 0)
xq |kv] 1+ — Py (8) + pyy(s)
2 25\ () 0)
Hial| (1425 os) + A0
+2Re(kykry) pvs(s) + 2Re(kakp) par(s)
T mr

16 x 2 Re(ky k) pVT(S)} X [1 - 26L] . (8.100)

T

As we know these spectral functions are equal to the imaginary part of the associated
correlators, applying to them the same Lorentz-decomposition. For example, in the
VV-case we have

@) = i [ daem o7 (V@) o
= [((J“Q”—g“”qz)ﬂﬁ},)w(f)+q“q”H§§}W(q2)]. (8.101)

As we have explained in previous chapters, this formal result for R, is not very useful
in this form, since we do not know how to calculate from pure QCD the spectral
functions for small value of ¢> (we need them here in the range 0 — 3.15 GeV?),
where perturbative techniques are not valid. But making use of the QCD Sum
Rules framework, we can apply Cauchy’s theorem and rewrite the expression in
terms of contour integrals of the associated correlators:

. 9 ds s \?
R. = 67|V — | 1-=—=) %
|s|=m2 mz mz
5 25 \ ) 0)
xq kv 1+ ) Iy (s) + Iy (s)

2
+|kal?

2s 1 0
(1 + ﬁ) M4 (s) + T (s)

T

Mys(s) + 2Re(kakp) Map(s)

T mer

+2Re(kyKY)

mr

+6 x 2 Re(ky k) HVT(S)} x [1 - 2174 : (8.102)

9n order to save space with indices, we quote only the non-strange result, proportional to
|Vaa |?-
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where the DV has been neglected. The value of the different correlators can be
calculated for |s| = m?2 using the Operator Product Expansion. The results for
the (0) and (1) components of the vector and axial-vector correlators are very well
known and can be found in Ref. [4]. The VS and AP correlators can be calculated
from the (0)-component of the VV and AA correlators using the Ward-identities

following from chiral symmetry and the QCD equations of motion

qzﬂgz?j(qz) = (m; —my) ysij(¢?),
qzl—[g)i)j@z) = (m; +my) HAPz'j<q2) . (8.103)

whereas at last the VT correlator to leading non-trivial order in the SU(3) breaking
(quark masses) can be found in Ref. [181].



Chapter 9

Conclusions

If I was young, 1'd flee this town,

I'd bury my dreams underground;

as did I, we drink to die, we drink tonight...
Beirut

In this work we have addressed two different aspects of the theoretical challenge
of discovering the new theory that rules the physics at high energies. First, we
have dealt with the non-perturbative character of the strong interactions, analyzing
critically and applying the QCD Sum Rules, a useful tool in the search of precise
predictions for the different observables in the Standard Model. Secondly, we have
studied the impact of the New Physics on (semi)leptonic low-energy processes, where
the experimental and theoretical accuracy is so high that very strong bounds can
be obtained. We develop now our conclusions associated with these two aspects.

9.1 QCD Sum Rules

In Chapter 2 we have introduced the spectral functions and we have explained
how they can be measured in the hadronic 7 decays. These observables represent
the experimental input of the subsequent analyses, and they encode very valuable
perturbative and non-perturbative information, as we have shown later.

In Chapter 3, we have performed a careful derivation from very general principles
like analyticity and unitarity of the expression of a generic QCD Sum Rule, a very
useful method that connects hadrons and quarks. Its different elements have been
introduced and thoroughly explained: (i) the Wilson operator-product expansion
that allows a QCD calculation of the correlator in the deep euclidean region, (ii)
Chiral Perturbation Theory that gives us the value of the correlator near the origin,
(ili) the spectral functions that are directly related with the experiment, and (iv)
the often disregarded duality violation.

In the subsequent phenomenological analysis, we have focused on the Finite En-
ergy Sum Rules and the non-strange left-right two-point correlation function I,z (s).
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This correlator is particularly well suited for the study of non-perturbative QCD for
different reasons:

The perturbative contribution to I g(s) vanishes in the chiral limit;

There is valuable theoretical information, like the Weinberg Sum Rules;

There is precise available data for its associated spectral function ppr(s) com-
ing from the hadronic 7 decays [3];

And last but not least, the different moments of prr(s) provide hadronic pa-
rameters of high phenomenological relevance.

First, in Chapter 4, we have applied this theoretical framework to determine
very accurately, from the most recent hadronic 7-decay data, the chiral low-energy
constants Lj(M,), I5, Cg,(M,) and cky(M,), working both at O(p*) and O(p®) in
the chiral expansion. Taking into account the results of Refs. [72,73] we have also
extracted the values of Lg(M,) and ls. The results are summarized in Tables 9.1 and
9.2 and they include a careful analysis of the theoretical and experimental uncer-
tainties. Our present ignorance on some LECs dominates the final uncertainty of the
L7, (M,) determination at O(p°), whereas in the Cg,(M,) case the error is equally
shared by the experimental and LECs errors. The different analytical approaches
and the various lattice calculations agree very well with our precise phenomenolog-
ical values, showing that the theoretical methods used in QCD are in good shape.

xPTs xPTs
l5 =13.30£0.11 | L},(M,) = —(5.22 £ 0.06) - 1072

ls = 1580+ 0.29 | Li(M,) = (6.54+0.15) - 103

Table 9.1: Results for the yPT LECs obtained at O(p?).

xPTs xPT;
I5=12.24+0.21 L1y(M,) = —(4.06 £0.39) - 1073
lg = 15.22 £ 0.39 Ly(M,) = (5.50 4+ 0.40) - 1072
cty = (4.95+£0.18) - 1073 GeV ? | C5;(M,) = (4.89 £ 0.18) - 1073 GeV

Table 9.2: Results for the yPT LECs obtained at O(p?).

In Chapter 5 we have performed a very careful study of the usually disregarded
quark-hadron duality violation, focusing on the FESRs generated by the weights
w(s) = 1/s%1/s, s> and s. The need of a determination of the DV effects is the
result of the advent of precise data and refined perturbative calculations, that make
relevant the contributions that before could be neglected.

Violations of quark-hadron duality are difficult to estimate and are originated in
the uncertainties associated with the use of the OPE to approximate the exact phys-
ical correlator. Using analyticity, the size of DV can be related with the following
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integral of the hadronic spectral function

o0

DV[uw(s), so] — / ds w(s) p(s) . (9.1)

S0

that has been the starting point of our analysis.

We have assumed a generic, but theoretically motivated, behavior of the spectral
function at high energies, where data are not available, with four free parameters.
This parameterization allows us to study how much freedom in p(s) could be tol-
erated, beyond the requirement that all known QCD constraints are satisfied. We
have performed a numerical scanning over the four-dimensional parameter space,
generating a large number of “acceptable” spectral functions that satisfy all condi-
tions, and we have used them to extract the wanted hadronic parameters through a
careful statistical analysis. The dispersion of the numerical results provides then a
good quantitative assessment of the actual DV uncertainties.

This machinery allows to address certain questions about the DV so far inacces-
sible, like the convenience of the pinched weights and how to estimate the size of
the still present DV. We have found that it is worthwhile to use these weights and
we have determined four hadronic parameters of special interest: Cf, L$ Og and

Os

Cdl = (817+0.12)-107° GeV2, (9.2)
LS = (—6.4440.05)-1073 (9.3)
Oy = (—4.3707)-107% GeV® (9.4)
Os (=7.2%23) - 107 GeV® . (9.5)

From the first two parameters one can extract the values of the xyPT couplings
4 (M,) and Li,(M,), and the results obtained with this method are in perfect

agreement with those presented in Chapter 4. The vacuum condensate Oy is an

important input for the calculation of the CP-violating kaon parameter £’.

There is a small tension among the different determinations of Og available in the
literature, and the discrepancy is higher for the condensate Og. We conclude that
some of the previous determinations of Ogg underestimated the DV contribution,
what was generating the different results. Our values show that the analyses based
on the use of pinched-weight FESRs have assigned a reasonable uncertainty for
the lowest dimensional condensates Ogg but have underestimated the error in the
determination of higher dimensional condensates.

Our method indicates that the current experimental values for the V' — A spectral
function in the region between s ~ 2 GeV? and s ~ 3 GeV? are somehow affected by
a systematic error that shifts the points towards higher values. It is worth noting
that this result is also suggested by the work of Ref. [104]. A significant improvement
in the experimental knowledge of the spectral functions in this intermediate region
is expected with the future high-statistics 7-decay data samples. It will be very
interesting to check the presence of this systematic error and validate our approach.
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9.2 (Semi)leptonic decays beyond the SM

From the most general effective Lagrangian with the SM particle content that re-
spects the baryon and lepton number symmetries [116,117|, we have identified a
minimal set of twenty-four weak scale effective operators describing corrections be-
yond the SM to precision electroweak measurements and leptonic and semileptonic
decays. In terms of these new physics corrections at the TeV scale, we have derived
the low-energy effective Lagrangians describing muon and beta decays, specifying
both the most general flavor structure of the operators as well as the form allowed
within Minimal Flavor Violation.

We have performed the phenomenological analysis assuming nearly flavor blind
(U(3)° invariant) new physics interactions. In this framework flavor breaking is
suppressed by a symmetry principle, such as the Minimal Flavor Violation hypoth-
esis, or by the hierarchy Ag.,or > TeV. We have shown that in this limit, the
extraction of V,4 and Vs from any channel should give the same result and the
only significant probe of physics beyond the SM involves the quantity Ackm =
|Vaa|* + |Vus|* + | Vin|* — 1, that parameterizes the deviation from CKM-unitarity or
equivalently from quark-lepton universality. We have shown that in the U(3)% limit
Ackum receives contributions from four short distance operators, namely

1- §
o)) = 5o D) (In,0tl) (9.6)
05 = ("o 1)(@v.0%q) , (9.7)
05 = i(h'D"a%)(I7,0°1) +h.c. , (9.8)
0%) = i(¢'D o) (@yu0g) +hec. (9.9)

which also shift SM predictions in other precision observables. More specifically we
have found
Aciy = 4 (dl(f) —a® -4l 4 A<3>) , (9.10)

lq pl Fopg

that can be used to work out the constraints imposed by Cabibbo universality on
any weakly coupled extension of the SM. We have focused on the model-independent
interplay of Acky with other precision measurements. The main conclusion of our
analysis is that the direct constraint [159]

Ackm = (=1 46) x 107, (9.11)

bounds the effective scale of all four operators to be A > 11 TeV (90 % C.L.). For

the operators 01(13 ),Og),Og}, this is at the same level as the constraints coming

from Z-pole measurements , whereas for the four-fermion operator Ol(s’) it improves
existing bounds from LEP2 by almost an order of magnitude.

This result can be restated as follows: should the central values of V,,; and V,
move from the current values [132], precision electroweak data would leave room for
sizable deviations from quark-lepton universality (roughly one order of magnitude
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above the current direct constraint). In a global analysis, the burden of driving
a deviation from CKM unitarity could be shared by the four operators, but in a
single operator analysis, essentially only the four-fermion operator Ol(j’) could be
responsible for Acky # 0, as the others are tightly bound from Z-pole observables.

In this way our conclusions imply that the study of semileptonic processes and
Cabibbo universality tests provide constraints on new physics that currently cannot
be obtained from other electroweak precision tests and collider measurements.

We have also explored the scenario where the flavor structure is not flavor blind.
In this case the new physics corrections received by the V;; elements of the CKM
matrix are channel dependent and the phenomenology is very rich. We have studied
how the SM results are modified in semileptonic kaon and pion decays, muon and
tau physics and nuclear processes, and which bounds can be obtained by comparing
the values of V4 (V,s) extracted from different channels. These constraints probe
those U(3)*-breaking structures to which FCNC and other precision measurements
are quite insensitive.

It is worth stressing that there have already been some contradictory results in
the recent past between values obtained from different channels. It is important to
know if these tensions, at the precision level that we are nowadays, can be due to New
Physics effects, or if on the contrary this possibility is ruled out by other precision
measurements and the discrepancy comes probably from the underestimation of
errors or just statistical fluctuations.

The study of these analyses of low-energy processes and their relevance in the
search of New Physics is very opportune, since in the next years several experiments
will achieve unprecedented precision and the theoretical predictions are also expected
to improve. So we expect New Physics effects to appear in the near future in these
low-energy observables, what makes necessary the theoretical analyses of the possible
discrepancies with the SM.
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Conclusiones

En este trabajo hemos abordado dos aspectos diferentes del reto tedrico que supone
descubrir la nueva teoria que gobierna la Naturaleza a energias altas. Primero,
hemos estudiado el caracter no-perturbativo de las interacciones fuertes, utilizando
y analizando con mirada critica las Reglas de Suma de QCD, una herramienta muy
util en la busqueda de predicciones precisas para los distintos observables en el
Modelo Estandar. En segundo lugar hemos estudiado el impacto de Nueva Fisica
en los procesos leptonicos y semileptonicos de energias bajas, donde la precision
experimental y tedrica es tan alta que pueden obtenerse cotas muy fuertes. A
continuacion desarrollamos nuestras conclusiones en relaciéon con estos dos puntos.

Reglas de Suma de QCD

En el Capitulo 2 hemos introducido las funciones espectrales, explicando cémo
pueden medirse en las desintegraciones hadrénicas del lepton 7. Estos observ-
ables representan el input experimental de los subsiguientes anélisis, y contienen
informacion de gran valor, tanto perturbativa como no-perturbativa, como hemos
demostrado posteriormente.

En el Capitulo 3, hemos realizado una cuidadosa derivacion desde principios
muy generales, como analiticidad y unitariedad, de una Regla de Suma genérica,
un método muy tutil que conecta hadrones y quarks. Sus diferentes elementos han
sido introducidos y minuciosamente explicados: (i) la expansion de Wilson de un
producto de operadores que permite calcular desde QCD el correlador en la region
lejana euclidea, (ii) la Teoria de Perturbaciones Quirales que nos da el valor del
correlador en las cercanias del origen, (iii) las funciones espectrales que estéan direc-
tamente relacionadas con el experimento, y (iv) la frecuentemente ignorada violacion
de la dualidad quark-hadron.

En el anélisis fenomenolégico posterior, nos hemos centrado en las Reglas de
Suma de Energia Finita y la funcién de correlacion de dos puntos V-A sin extraneza
[T r(s). Este correlador es particularmente apropiado para el andlisis de los efectos
no-perturbativos de QCD por diversas razones:

e La contribucion perturbativa a I g(s) es nula en el limite quiral,

e Disponemos de valiosa informacién teodrica, como las reglas de suma de Wein-
berg;
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e Existen medidas experimentales de gran precision de la correspondiente fun-
cion espectral prg(s), obtenidas de las desintegraciones hadrénicas del lepton

7 [3];

e Y por ultimo, aunque no por ello menos importante, se da la circunstancia de
que los diferentes momentos de ppr(s) proporcionan parametros hadronicos
de gran relevancia fenomenologica.

En primer lugar, en el Capitulo 4, hemos hecho uso de este marco tedrico para
determinar con precision, a partir de los datos més recientes de las desintegraciones
del 7, las constantes quirales de energias bajas Lj,(M,), I5, Cg;(M,) v cky(M,),
trabajando tanto a orden O(p?*) como O(p°) en la expansion quiral. Teniendo en
cuenta los resultados de las referencias [72,73] hemos extraido también los valores de
Lo(M,)y ls. Los resultados, que aparecen resumidos en las Tablas 9.3 v 9.4, incluyen
un cuidadoso anélisis de las incertidumbres tedricas y experimentales. Nuestra igno-
rancia actual en algunas LECs domina el error final en la determinacion de Li,(M,)
a orden p°, mientras que en el caso de Ci;(M,) el error esta compartido equitativa-
mente por la contribuciéon experimental y la de las LECs. Los diferentes métodos
analiticos y los distintos calculos en el reticulo estan en buen acuerdo con nuestros
precisos valores fenomenologicos, certificando que los métodos tedricos usados en
QCD estan en buena forma.

XPTQ XPTg
I5 = 1330 £ 0.11 | Liy(M,) = —(5.22 £ 0.06) - 103
Is = 1580 £0.29 | Lj(M,) = (6.54 + 0.15) - 103

Table 9.3: Resultados para las constantes de energias bajas de yPT obtenidas a
order p*.

xPTy xPTs
I5=12.24 +0.21 L7y(M,) = —(4.06 £0.39) - 1073
lg = 15.22 £ 0.39 Ly(M,) = (5.50 +0.40) - 1072
ko= (4.95+0.18) - 1073 GeV ? | C5;(M,) = (4.89 £0.18) - 1073 GeV ?

Table 9.4: Resultados para las constantes de energias bajas de yPT obtenidas a
orden pS.

En el Capitulo 5 hemos llevado a cabo un estudio muy cuidadoso de la violacion
de la dualidad quark-hadrén, tantas veces ignorada, centrandonos en las Reglas de
Suma de Energia Finita generadas por los pesos w(s) = 1/s%1/s, s* y s*. La
necesidad de una determinacion de los efectos de DV surge como resultado de la
llegada de datos de precision y de refinados calculos perturbativos, que convierten
en relevantes las contribuciones que antes podian ser ignoradas.

Las violaciones de la dualidad quark-hadréon son dificiles de estimar y estén
originadas en las incertidumbres asociadas con el uso de la OPE para aproximar



Conclusiones 131

el valor del correlador. Haciendo uso de las propiedades analiticas de la funciéon de
correlacion, la DV puede relacionarse con la siguiente integral de la funcion espectral
hadroénica

[e.e]
DVi]w(s), so] = / ds w(s) p(s) (9.12)
S0
que ha sido el punto de partida de nuestro analisis.

Hemos trabajado con un determinado modelo, motivado tedricamente y con cu-
atro parametros libres, para el comportamiento de la funcién espectral a energias
intermedias, donde no tenemos datos disponibles ni predicciones teodricas. Esta
parametrizaciéon nos permite estudiar cual es la libertad en el comportamiento de
p(s), méas alla del requisito de que todas las restricciones conocidas de QCD sean sat-
isfechas. Hemos escaneado numéricamente el espacio de parametros 4-dimensional,
generando un gran namero de funciones espectrales aceptables que satisfacen todas
las condiciones, y las hemos usado para extraer los parametros hadronicos desea-
dos por medio de un cuidadoso anélisis estadistico. La dispersion de los resultados
numéricos representa un método conveniente para la evaluacion cuantitativa de las
incertidumbres asociadas a la DV.

Esta maquinaria nos permite abordar ciertas cuestiones sobre la DV que hasta
ahora eran inaccesibles, como la conveniencia de los pesos conocidos como pinched
weights o como estimar el valor de la DV en ese caso. Hemos concluido que el uso
de estos pesos es efectivamente beneficioso y hemos determinado cuatro parametros
hadroénicos de especial interés:

Cdf = (817+0.12)-107° GeV2, (9.13)
LS = (—6.4440.05)-1073 (9.14)
Os = (—4.3703)-107% GeV® (9.15)
Os = (—7.2753) 107" GeV® . (9.16)

De los dos primeros pardametros es posible extraer los valores de los acoplamientos
quirales Cg,(M,) y Liy(M,), y los resultados obtenidos con este método estan en
perfecto acuerdo con los presentados en el Capitulo 4. El condensado en el vacio
Og es un importante input para el célculo del parametro £, que mide la violacion
directa de la simetria CP en kaones.

Existe una cierta tension entre las diferentes determinaciones de Og disponibles
en la literatura, y la discrepancia es atin mayor para el condensado Og. De nuestro
trabajo se concluye que muchas de las determinaciones previas de Og g subestiman
la contribucién de DV, lo que explica los diferentes valores obtenidos. Nuestros
resultados muestran que los analisis previos basados en el uso de Reglas de Suma de
Energia Finita con pinched weights han asignado una incertidumbre razonable para
los condensados de dimensiones mas bajas Ogs pero que han subestimado el error
en la determinacion de los condensados de dimensiéon mas alta.

Nuestro método indica que las medidas experimentales actuales para la funcion
espectral V — A en la region entre s ~ 2 GeV? y s ~ 3 GeV? (dominadas por la deter-
minacion de ALEPH [3]) estan de alguna forma afectadas por un error sistematico
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que mueve los puntos hacia valores mayores. Es interesante destacar que el trabajo
de la Ref. [104] sugiere también la presencia de este efecto. Podemos esperar una
mejora significativa en el conocimiento experimental de estas funciones espectrales
en esta region intermedia gracias a la llegada en el futuro cercano de nuevos datos
sobre las desintegraciones del leptén 7 con una estadistica mejorada. Serd muy in-
teresante poder comprobar la presencia de este error sisteméatico y validar nuestro
método.

Desintegraciones (semi)leptonicas mas alla del SM

Partiendo del Lagrangiano efectivo mas general con el contenido de particulas del
Modelo Estandar y compatible con la conservacién del nimero leptéonico y bar-
i6nico [116,117], hemos identificado un conjunto minimo de veinticuatro operadores
efectivos a la escala electrodébil que describen las correcciones debidas a la Nueva
Fisica sobre las medidas de precision electrodébiles y las desintegraciones leptonicas
y semileptonicas. En términos de estas correcciones asociadas a la fisica del tera-
electronvoltio (TeV), hemos derivado el Lagrangiano efectivo de energias bajas que
gobierna la desintegracion del muén y de los quarks ligeros, especificando tanto la
estructura de sabor mas general de los operadores como la forma permitida en el
contexto de Violacion Minima de Sabor.

Hemos llevado a cabo un analisis fenomenolégico, suponiendo unas interacciones
de Nueva Fisica practicamente independientes de sabor (invariantes bajo la simetria
U(3)%). En este caso, la rotura de esta simetria de sabor estd suprimida por un
principio de simetria, como la Violaciéon Minima de Sabor, o por la jerarquia Agayor >
TeV. Hemos demostrado que en este limite la extraccion de V,,4 y Vs desde cualquier
canal da el mismo resultado y que el tnico observable sensible a la fisica mas alla
del Modelo Estandar viene dado por

Ackm = [Vaal? + Vs + Vs> — 1, (9.17)

que parametriza la desviacion de la unitariedad en la matriz CKM, o equivalente-
mente de la universalidad entre quarks y leptones. Hemos mostrado como en el
limite en el que el Lagrangiano respeta la simetria de sabor U(3)®, esta cantidad
Ackum recibe contribuciones de los siguientes cuatro operadores de corta distancia

1. §
o)) = 5 oD (o) (9.18)
Oy = ("o )(@r.0q) | (9.19)
0% = i(h'D*o%) (Iy,0°l) +hec. | (9.20)
OF) = i(¢'D"a%)(q7,0%) +hec. (9.21)

que también modifican las predicciones del Modelo Estandar en otros observables
de precision. Méas concretamente hemos encontrado el siguiente resultado

Ackm = 4 (dl(lg) - dl(;)’) — dfl) + dé’?’q)) : (9.22)
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que puede usarse para extraer las cotas impuestas por la universalidad de Cabibbo
sobre cualquier extension débilmente acoplada del Modelo Estdndar. Sin embargo,
en este trabajo hemos optado por un analisis independiente del modelo y nos hemos
centrado en estudio de la sinergia de Acky con otros observables de precision. La
principal conclusion de nuestro analisis es que la medida directa [159]

Ackm = (=1 46) x 107, (9.23)

pone un limite inferior la escala efectiva A; de los cuatro operadores igual a 11 TeV
(con un intervalo de confianza del 90%). Para los operadores 01(13 ), Ofol), O&?;), esta
cota esta al mismo nivel que las que se derivan de las medidas en el polo del Z
(LEP1), mientras que para el operador de dos quarks y dos leptones Ol(s’ esta cota
mejora casi en un orden de magnitud el limite existente, que se obtenia basicamente
de LEP2.

Este resultado puede reformularse de la siguiente manera: en el caso en que los
valores centrales de los elementos V.4 y Vs se movieran de sus valores actuales [132]
(como ha sido sugerido en el pasado reciente por algunas determinaciones), no se
tendria ninguna contradiccién con las medidas de precision electrodébiles, ya que
éstas dejan lugar para una considerable desviacion de universalidad quark-leptéon
(aproximadamente un orden de magnitud sobre el actual limite directo). En un
analisis global, el peso de esta desviacion de unitariedad podria ser distribuido entre
los cuatro operadores, mientras que en el caso en el que s6lo un operador esta
presente solo el operador de cuatro fermiones Oz(j) podria ser responsable de Ackn #
0, ya que los otros tres estan fuertemente acotados por las medidas en el polo del Z.

De esta forma, nuestras conclusiones implican que el estudio de procesos semilep-
tonicos y de los test de la universalidad de Cabibbo generan limites sobre la Nueva
Fisica que no pueden ser obtenidos actualmente por otros test de precision electrodé-
biles ni por medidas realizadas en potentes aceleradores, como LEP o Tevatron.

También hemos explorado el escenario donde la estructura de los operadores no
es independiente del sabor. En este caso las correcciones debidas a la Nueva Fisica
que reciben los elementos V;; de la matriz CKM dependen fuertemente del canal
y la fenomenologia es muy rica. Hemos estudiado la forma en que los resultados
del Modelo Estdndar se ven modificados en las desintegraciones semileptonicas de
kaones y piones, en la fisica del muén y el tau y en los procesos nucleares, y qué
cotas pueden obtenerse comparando los valores de V4 (V,5) extraidos de diferentes
canales. Estos limites exploran las estructuras que rompen la simetria U(3)°, a las
que las medidas de FCNC y otras medidas de precisién son esencialmente insensibles.

Cabe destacar que en los tltimos anos ha habido algunos resultados contradic-
torios entre los valores obtenidos usando distintos canales. Es importante saber si
estas tensiones, al nivel de precisiéon que nos encontramos hoy en dia, pueden ser de-
bidas a efectos de Nueva Fisica o si por el contrario esta posibilidad esta descartada
por otras medidas electrodébiles o de colisionadores y por tanto la discrepancia viene
probablemente de la subestimacion de errores o de simples fluctuaciones estadisticas.

Estos anélisis de procesos de energias bajas y su relevancia en la bisqueda de
Nueva Fisica es muy pertinente, ya que en los proximos anos diversos experimentos
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alcanzaran precisiones sin precedentes, a lo que se sumara una considerable mejora
en las predicciones teéricas gracias a los avances en lattice QCD y en los enfoques
analiticos. Es por lo tanto de esperar que los efectos de Nueva Fisica sean detectables
en el futuro cercano en estos experimentos de energias bajas, lo que hace necesario
este analisis tedrico de las posibles discrepancias con el Modelo Estandar.
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Demonstration of dispersion relations

It is interesting to notice that in the Standard Model, given its (V-A)® (V-A) struc-
ture, we will find only the VV and AA correlators in the calculation of observables.
Due to this, the usual derivation of the dispersion relations [8,11] assumes that the
two currents of the correlator coincide, i.e. A(x) = B(z). But once we go beyond the
SM, correlators with two different currents appear in the calculation of observables,
and therefore we will make the demonstration for the general case when the two
currents A(z) and B(z) are different and not necessary hermitian. We will follow
the scheme of the proof given in Ref. [8], but extending it to this more general case.

From the definition of the two-point correlation function of two scalar operators
A(z) and B(x) (the generalization to vector and tensor cases is straightforward) and
inserting a complete set of states Y . |I')(I'| we have

Maine) = i [ dloe™™ OTIA@)BO)]0) (A1)
= / 1y 7 (0]0(2°) A(2) B(0)T + 0(—2°) B(0) A(2)|0)  (A.2)
= i [t 3 (08 AT BO)0)

{018 BOY )T A)]0) (A.3)
= i [t 3 (T OlO) A NTB(O)0)

+€’pr'x (010(=a)B(0)[L)(T]A(0)[0)) ,  (A4)

where in the last step we have made use of translation invariance, that tells us that
(0[J(2)|T) = e~ (0]J (0)|T) (A.5)

where pr denotes the sum of the energy—momenta of all the particles which define

the state |I'). All the particles in the state |I') are on-shell. This constrains the
total energy-momentum pr to be a time-like vector: pZ =t with ¢ > 0. With these
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constrains on pr we can insert the identity

/0 e / ') 5% — 1) 6D (p— pr) = 1 (A.6)

inside the sum ). over the complete set of states

Wanle) = i [ dwer= S [“at [ 9069562~ 0590~ pr)

(e (0]6(2")A(0 )IT><F|B( )'10)
+e(0]0(=2") B(0)'|T) (T A(0)[0)) (A7)

= /d4xe / dt/d4p9 5(p* —t)

(lprg 25< (p — pr) {0} A(0)|T) (T B(0)1[0)

+emT0(— 25(4 p—pr) (0[B(0 )T\F><F\A(0)\0>> (A-8)

= /d4xe S(p* —t)

(e7P*0(2")pas(p”® +€“”““9( )/)BTAT<p2>)7 (A.9)

where we have exchanged the order of the sum over I' and the integration over ¢
and p, finding the AB spectral function defined by (3.17), that is a scalar function
of the Lorentz invariant p* and the masses of the particles in the states |I') only.

In general, unless A = B or AT = A and B' = B, it is not trivial to prove that
pap(s) = pprat(s), which we need in order to derive the spectral representation.
The proof can be achieved invoking micro-causality, which in turn implies that for
space-like distances the commutator of any two operators must vanish:

A@,BO)|, =0 —  (0][A@),BO)]0)

dt

=0. (A.10)

z2<0 z2<0

The equality pap(s) = pgiai(s) follows from

o[t BOJ0)] ,_= [ dt| Asta0pan(0) = A hpmn ()] (11
- [ s [pAB@) —pmwt)] L (A1)

in which we have used that
Aulait) = s [ dpe™ =00 507 ) (A13)
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is an even function of = for z? < 0 (one can choose x = (0, Z) to evaluate the above
integral). So we have

Map(q) = i/d4xeiq-x/ooodtpAB(t)/ (;lﬂ];?) 0(p°) 6(p* —t)
e PrO(2") + e 350(—90 )) (A.14)
= /d4xe / dtpap(t) (0(z°)AT (z;t) + 6(—2") A~ (z;1)) .(A.15)

The combination that appears is nothing but the Feynman propagator function

d4p e—ip-x

2m)4t — p? —ie

Ap(z;t) = i0(2°) AT (2;t) +i0(—2")A™ (x3t) = / ( (A.16)
The two—point function IT45(¢?) appears then to be the Fourier transform of a scalar
free field propagating with an arbitrary mass squared t weighted by the spectral
function density pap(t) and integrated over all possible values of ¢,

Map(q?) = /d4x eiq‘”/ dt pap(t) Ap(x;t). (A.17)
0
Integrating over x and p results finally the wanted representation
o 1
I1 % = dt t)—————. A18
anle) = [ dtpan(—— (A15)

We would like to make some comments:

e The spectral function of two different currents is not positive definite in general
(we can see in Fig. 3.3 for the LR case);

e The spectral function is not real in general, but if the associated correlator
satisfies the Schwarz reflection property Iap((¢%)*) = [[lap(¢?)]* (see Section
3.1.2), and using the identity (3.18), then we have

1 .
pan(¢’) = —TmILip(q* +ic) , (A.19)

and pag(q®) is obviously real.

e There is a subtlety that we have ignored when going from (A.7) to (A.8). The
exchange of sum over I' and integrations implicitly assumes good convergence
properties for the integrand. But in general the product of the distributions
0(z°) and [ dt pap(t) At(z;t) may not be a well-defined distribution. The
ambiguity manifests by the presence of an arbitrary polynomial in ¢? in the
r.h.s. of the PP—integral

Rell(¢*) = PP/
0

bg® + ... . A.20
= ) +abe 4 (A.20)
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Demonstration of dispersion relations

Notice that the ambiguity of the short—distance behavior reflects only in the
evaluation of the real part of the correlator, not in the imaginary part. The
physical meaning of these coefficients depends of course on the choice of A(z)
and B(z). In general it is always possible to get rid of the polynomial terms
by taking an appropriate number of derivatives with respect to ¢2.
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Convenience (or not) of the use of
the pinched-weights FESR

B.1 Definition and motivation

As we have explained in the main text (Section 3.5.3), the traditional definition of
DV is
@

o (T1(z) — O7%(2)) w(z)dz (B.1)

DV{w(z), so| :j{

|zl=50
where the main contribution to this integral comes from the region near the positive
real axis. Because of this, different authors have used polynomial weights that vanish
at s = sg (pinched weights). Although it seems clear from (B.1) that these weights
will decrease the size of the DV, the alternative expression for the DV shows that
this is not that obvious!

DV{w(z), so| :/ ds w(s)p(s) , (B.2)
S0
where we see that one does not have to care only about the point s = sy but also
about not enhancing the rest of the high-energy region.

We will say that the “duality region” has arrived when the DV is zero compared
with the experimental error. If we represent

I(s9) = /OSO ds w(s)p(s) , (B.3)

we will see the arrival of this region with the appearance of a plateau. Due to the
oscillatory behavior of the spectral function, there will be a set of points (before
the arrival of the plateau) where the duality violation will vanish (duality points).
Notice that these points will change in general from a sum rule to another.

!Hereafter in this appendix we will work with the V-A case, although the ideas explained here
about the usefulness of the weight functions are obviously true beyond this particular case.

2Tn light of this expression, modifications of the pinched weights shifting the zeros to slightly
higher values have been also suggested [22].



140 Convenience (or not) of the use of the pinched-weights FESR

B.2 Example: extraction of L‘fg

Let us assume that we are interested in the determination of LS. The basic sum
rule is then (see Chapter 4)

S

— 8Ll :/ gs 1) (B.4)
Sth

Taking advantage of the WSRs?, we can write new sum rules that do not involve
new unknown parameters
2

F o 1 1 s o o

—sif 4202 = [ ds ( fa—+t 6—2) pls) = I°0(s0) + DV (s0)  (B.5)
So Sin S So S0

where every sum rule will have a different set of duality points and a different value

of the plateau arrival.

B.2.1 Example with a toy function

For illustration let us assume we know the spectral function p(s) for any value of s
(see Fig. B.1).

p(s)
0.15

0.10

0.05

Figure B.1: Hypothetical shape of the spectral function.

Although the choice of weight function used in order to extract the parameter
Lﬁfof is irrelevant if we integrate our toy spectral function up to infinite, it becomes
very important given that we have access only to the value of the spectral function
between 0 and 3.15 GeV2. In other words, in order to estimate LS there are some
weights w,s(s) more convenient than others. A weight that enhance the region that
is beyond sg will produce large duality violations. Here we have an example of a

“bad” weight and a “good” one (see Fig. B.2)

1 s
wa(s,s0) = ;+5? (B.6)
0
1 1
wp(s,sy) = P (B.7)
0

respectively.

31t is worth emphasizing that without the existence of the WSRs all the weight functions would
be equivalent in the extraction of L‘ig or any other individual parameter. The PW would allow us
in that case to extract with more precision certain combination of parameters.
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Wap(s)

— o s(GeV?)
Figure B.2: Weight functions wx(s,ss = 3 GeV?) (upper curve) and wp(s, 5o =

3 GeV?) (lower curve). The dashed line at sy = 3 GeV? separates the DV-region
from the experimentally accesible region.

In the Fig. B.3 we can see the figure obtained for L‘ig using these two weight
functions. The difference is clear.

The oscillations are almost negligible for the
“good” weight and very big for the “bad” one.
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Figure B.3: Curves obtained for L (sy) using the expression (B.5) with the weights

(B.6) (blue dashed line) and (B.7) (red dotted line). The horizontal line represents
the true value of LI for our toy function.

Once we leave the toy function and go to the real case, we cannot answer the
question of which is the best weight because we do not know the spectral function
beyond sy ~ 3 GeV?. All we know is that it goes to zero in an oscillatory way,
but we do not know how fast it does. And that information, as we will see is very
relevant.

B.2.2 What about the pinched weights?

Here we want to show that the pinched weights may be more appropriate than the
ordinary weight 1/s or maybe not. It depends on how fast the spectral function
goes to zero?.

4Notice that even if we knew that the PW sum rules have smaller DV errors than the ordinary
FESRs, it would not mean that the arrival of the duality region is going to be before the end of
the data.
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We want to compare the following spectral functions:

1
wo(s,sg) = . (B.8)
1 1
wi (s, 80) = ST (B.9)
0
1 2 5
wa(s,s0) = ———+ =, (B.10)

<2

s S0 Sh
that are plotted in Fig. B.4. There we can see that the PW suppress more the region
between 3 and 4 GeVZ, but the 1 /s weight suppress more the region beyond 4 GeV2.

ol

Figure B.4: Curves corresponding to the weights (B.8) (solid black line), (B.9) (blue
dashed line) and (B.10) (red dotted line), setting so=3 GeV?. The gray dashed line
at so=3 GeV? separates the DV-region from the experimentally accesible region.

We can see that depending on how fast the spectral function goes to zero we
should take one weight or another:

o If p(s) decreases as e~® we can try to estimate the DV error associated to each
weight (see Fig. B.5)

o0 o 1
DViy(so) = / ds wo(s, so)p(s) N/ dsge_s ~ 0.0130

0 0

DVi(so) = / ds w(s, so)p(s) ~ / ds <— — —) e ¥~ —0.0035 ,

0

DVy(sg) = / ds ws(s, so)p(s) ~ / ds (— -+ %) e * ~ 0.0020 ,

o o S So 50

where we have taken sy = 3 GeV? for the numerical evaluation. So we can see
that ws(s, sg) is the best option and wy(s, sg) the worst.

e If p(s) decreases as e %! we have (see Fig. B.5)

o o0 1
DVy(sg) = / dswo(s,so)p(s)w/ ds—e "1 ~ 0.9,

S0 S0 §

DVi(sg) = / dswi(s, so)p(s) ~ / ds (g — 3_0) e 00 —1.6,
S0 S0

DVi(sg) = / dsws(s, s9)p(s) ~ / ds (g - 25—0 - %) e %1 6.7,
S0 S0 0
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wi(s,s0=3)-e"* Wi(s,59=3)¢ 1
03
0.008 -

02
0.006 -

0.004 0Ly

0.002 S s(GeV?)

s(GeV?) 0.1}

Figure B.5: Part of the integration that we “forget” and represents the DV, assuming
that p(s) decreases as e~* (left) and e~%1* (right).

where we have again taken sy = 3 GeV? for the numerical evaluation. So we
see that now the order is the opposite and the best choice to minimize the DV
is wo(s, So)-

B.2.3 What can we do?

The question then is what should we do taking into account that we do not know
how fast goes to zero the spectral function, and if we must use the PW or not.

As was explained in Section 3.5.3, the observation of a plateau in the final part
of the data is a necessary but not sufficient condition, because the plateau could
be temporary. Given that the high correlations generated by the PWs do not make
possible a normal fit [30,31,36], one can only perform indirect checks. A possibility is
to extend the available window beyond sy ~ 3.15 GeV? and demand the continuance
of the plateau®, until sy ~ 3.4 — 3.5 GeV?. Any separation of the curve from a
horizontal line can be used as an estimation of the DV error. Another check that
can be done is to use the modified PW [22] that are expected to produce smaller
DV.

We can see in Figs. B.6 that the plateau is very stable until that point for L?fof,
and the very small oscillations can be included in the error. So we do not expect
the curve to leave that region if one includes new data beyond sy ~ 3.15 GeV?.

In Chapter 5 we follow a more sophisticated analysis, where we study the pos-
sible behavior of the spectral function beyond the end of the data, according to a
physically motivated parameterization and the QCD-known sum rules. This repre-
sents a qualitatively different approach and allows us to answer the question of the
convenience of the pinched weights. As can be seen in the results of that chapter,
we conclude that in the extraction of the parameters LS CSI Oy, Oy the use of the
PWs minimizes the error with respect to the simple weights w(s) = s™. There we
take into account the presence of the experimental error, that can also be minimized
using the pinched weights.

°As was explained in [22] it does not matter if we do not know the value of the spectral function
between sg ~ 3.15 GeV? and sg ~ 3.5 GeV?, because the weight suppresses that part.
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Figure B.6: Curve obtained from the ALEPH data [3] for LI using the PW w (s, s¢)
(left) and wsy(s, s¢) (right).

The same analysis can be done for CSf with the same conclusions. The only
difference is that the the weight 1/s* suppresses more the high-energy region than
1/s and therefore, one needs a more decreasing spectral function for the PWSR to
be better than the simple FESR. In other words, the benefit of using PW will be
always smaller (and could even be negative) for Cgr than for LT, Our data confirm
perfectly this conclusion.

B.3 Condensates

In the case of the V-A condensates Og g (see Chapter 5) the discussion is specially
important since the DV effects are larger. If we restrict ourselves to pinched weights
that have a double zero at s = sy then it can be shown that the weights take the
form

wn(s,80) = H(s—50)° (8" 2+ 2508" "+ ... 4+ (n—2)s§ s+ (n—1)s57?)
= +(s"—nssy '+ (n—1)sp) , (B.11)
where the global sign is plus if n = 6,10, 14, ... and minus otherwise. It can be
easily shown that these particular pinched weights are such that
lwn (s, s0)| <s", (s> s0), (B.12)

or in other words these PW enhance less the high-energy region than the standard
weights s", and therefore produce less quark-hadron duality violation®.

Therefore the first question is answered in this case: the pinched weights entails
a smaller DV than the standard weights. But we still have to address the question
about how to estimate the remaining DV error of the PW sum rule.

Let us look to the particular case of the condensates of dimension six and eight,
where we have

we(s,80) = (s—50) (B.13)
ws(s,80) = —(s—50)%(s+ 2s0) . (B.14)

6Notice that this argument could be spoiled by accidental numerical cancellations due to the
oscillatory behavior of the spectral function.
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If we represent Ogs(so) we find an acceptable plateau in the final part (between
approximately 2.3 GeV? and 3 GeV?), and the usual conclusion is that the DV is
much smaller than the experimental error and can be neglected, but as we have
explained in the main text (see Section 3.5.3) this is not necessarily true because
the plateau could be temporary. A possible solution is to extend the working window
up to 3.5 GeV?. The results are shown in Figs. B.7. Apparently the nice plateau
disappears, but the experimental error grows up in such a way that we cannot be
conclusive.

PW
06"" Og

0.004
0.002 0.5 1 1.
so (Gev?) —0.02

-0.002 -0.04

-0.004

-0.06
-0.006
-0.008 -0.08

Figure B.7: Curve obtained from the ALEPH 2005 data [3] for Ogg using the PW
we (s, s0) = (s — s0)? and ws(s, so) = —(s — s0)*(s + 250).

If we work with modified PW the graphics are very similar. So the problem here
is the following: the experimental errors are quite big and they prevent us from
knowing if the plateau is temporary or not.

Our investigations (see Chapter 5) with possible (realistic) spectral functions
indicate that the plateau does not disappear”.

"When we say that the plateau is temporary or not we mean within the experimental error.
Therefore if the plateau is temporary one should add the DV error (very difficult to estimate) to
the final error.
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Appendix C

O(p°) xPT expression of the V-A
correlator II(s)

C.1  O(p®) xPT expression of the V-A correlator I1(s)

From the results of Ref. [89] we have!

M(s) = — 8 L, — 8By (s) — 4BE™(s)
+ 16 Cg; s
— 32 m72r (Cgl —Cly — Cgo) - 32 (m72r + 2111%() (ng — O3 — C§1>

16 ( (2 + 1) (L + 2Li) — (2B (s) + BES(s)) I i)

72
-8 GQL(S) s (Cl)
where
g 1 o, — 1 1 1 m? 1
B = — | —— o%(oy1 ’ 2)— ———(log—+1)+ ——
v(s) <1927r2 oiloilog Zmg +2) —gpmley T+ 2887r2) ’
4m?
o; = 1-— mz s
s
: m;
Mty = 32772f2 IOgF s (02)

and where Gy (s) refers to the two-loop contribution, that we can divide in four
parts just to organize the calculation:

Garls) = 575 (GH9) — G4.9) = (G¥L<s> CR(s) -

! In order to obtain this result it must be taken into account that there is a typo in the expression
(19) of [89]. In particular, the term with (L§+Lj,) does not have the right dimensions. The factor
q® must be removed.

Bls) _ Fls)

) ,(C.3)
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where

() = 4q2(2B$”<q2>+35K<q2>) , (C.4)

1 /1 1 1 5 3
F () — 2 L9 9 O o9 9 9
) = Aoy (6m T g T M T g i 354
f2

Jr16

(2pr + pxc) +4 f115 L i Vi (C.5)

7r K

Fy(q®) = +5/3m: HY(m2,m2, m2;m2) —2m2 HE (m2,m2, m2;m?)
+2mﬂHF(m7r,mﬂ,mﬂ,q ) —5/4mi HY (m2, m%, m2;m?)
—|—1/4m2 HF(m mK,mK, ) — 1/4m HF(m mé,m%;(f)
+1/9mt H (m? m%,mi,m ) +2m2m3 HY (m2,m?,
—QmKHF(mK,m mK, ) —|—2mKHF(mK,m mK;q2)

mi;m2)

_5/3md HP/ (%, ml, mim?) + (mi HP/ (i, i, s m2)

CHE (2w mis m2) 4 HE (2, i, i q2>) (—1/4m? +m2)

+2my H{'(m2, mi, miy;m2) +4my Hi' (mj., mi, m2;m?)
+2H ' (m2,m2,m2; ¢*ym2) — 1/AH" (m2, mi, mi; ¢°;m?2)

+2 HY (mie, mz, micq*smz) + 3/4 H (miy, mi, mi; g% m3) . (C.6)

Fy(q®) = +1/3HY(m2 m2,m2; q% me)my — 2 HY (m2,m3, m2; g% m3) m
+H(m2, mic, mic g% me) my + 1/4 HY (m2, mic, mic ¢*mz) my

L2 2 2 2 2\ 4 M{, 2 2 2.2 2\ 4 2
=1/9 H"(mz, my,my; qme) mg — 2 HY (Mg, mo, mie; ¢ me) my mi

3
+3HL(m§(,m§(,m ¢ m2)mi — ZHM(mfz,m%(,mi(;qZ;mZ)mf‘rmf7
—2HL(m mi,mK;q'm2)mi—4HL(mK,m%<,m ¢ mZ)mfr
—6 Hy; (m2, m2,m2; ¢*; m2) my + 3/4 Hyy (m2, mic, mic; ¢*;m2) my

9
—6 Hi (m3, m2, mi; g% m2)m? — 1 s (m2, mi, mic; % m2)ms . (C.7)

The different H functions are defined as follows

HT(m?,m3,m3;¢*m3;) = 3miHy (m3, m3, m3;m3i) — ¢*Hyy (m7, m3, m3; ¢%),(C.8)
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1
HM<m%7 m§7 m?’n q27 m?l) = m (HF<m%7 m§7 m?’n q2>
4
o ) (0 — ) ) ) L (C9)
1
H}(m3,m3,m3; ¢%m3) = —— | H (m3,m3,m3; ¢°)
(q* —mj)

—¢*H (m}, m3, m3;m7) — mj(¢* — mi)Hf'm?,mg,mi;mi)) , (C.10)

in terms of the functions H" = {H¥ HF' HZ}, which are given by?

0

op?
+ﬁi(m%,m§,m§;p2) ) (C.11)

Next we give the value of HI(m?, m3,m2;0) and %HiF(m%,mg,mg; 0)

1
(1672)*H (m?, m3, m3;0) = —5‘1’(”@%77”3’7"3)
72 3 1
+m] 3 + 3 —Iny +§( —ln21n3+ln11n4)
7 3 1
+m3 - + 5~ Iny +§( —Iny ln3+ln21n4)>
o[ ™3 1 1 In; 1 Ing 1 C.12
+mg3 E+§—H3+§(_n1 np + Ing Il4> ) ( ) )
5 2,2, 3
(167T2)26—1)2H(m%7m3>m§;0) = + m1$2m3\11(m%,m37m§) + -
2
miom
1
oo™
2
5 (g = m3) I
m?,, 2 2 2
+ K(m?, —mj — mg) 1n3 5 (Clg)

QHf’(m%,mg,mg;f) are just the derivatives with respect to ¢?, of the functions
HiF(m%amgvmg;q2)'
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(167‘(‘2)2]']1 (m%, m%, mg;

0)

3 1
+om g‘i““)
(T g — oy ng)
M2\9g Tg g 2Ty T s
2 9 1 1
+ m% By + 6 1 Ing +Z<ln3 Ing —1Iny 1ﬂ2)> ) (C.14)
) mim2m2é,, mid,,
(167" 55 Ha (i, m, mi 0) = +——5 =20 (m, mi, i) —
4 2,2
mi Iny mams
1+12
6 LT )
m2 11'12 6m2m2
A2 (o - - 2t - 585, 420
m2 11'13 6m2m2 7
(167?2)2H21(mf,m§,m§;0) =
+6W ( - )‘7271 + )\mmiém + lellmgnﬂé) \D(mi m%? m?’,)
17 1 m?1In; 6
2 1 1Ym
“L 017 Om
Tl Ty T e, )
™ 19 1 m3 1
+m32 % + v In, —ﬁ(ém + 2m§) In, +6(an Ing —In; ln3)>
(7 19 1 m? ) 1
+m3 % —+ ﬁ — § ln3 _W(ém + 2m2) ln3 +6(1D3 ln4 — ln1 lIlQ) ,(C16)
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0 17 m? Smim2m?
(167%)* ﬁHm(ml,m%,mg,O) togs 24)\1m (6 +2m3) — 7(;)\22 3
mSm2m? 5m2m? m8o,, m2m?2
+ 1)\32 3 (1+ )\2m 3 \Il(mf,mg,mg)—i— 1252, In, 1—1—30%
mimimi 5 m2
o e (md = mi —md) + 5 (m —md) Ing
m2m?
121)\23 Ing | — 3m} — 12mim3 + 5mim; + 3mj; — mam3 — 2ms
4,024 § 2
Ty 2 (m3 — mi — m3) + (3 — m3) Iny
m2m2
Sy (3t — 12mm + St + S — mmd — 2md | . (C.17)

In; = Inm?,

A = (M2 —m3—m3)* —4m5m3,

Iny, = In;+1ny+1Ing,

bm = mi—m5—m;. (C.18)

The expression for ¥ depends on the relation between the various masses. For
the case A\, <0

U(m?, m3,m3) = 21/ —Am {Cla(2arccos ;) + Cly(2 arccos z;) + Cly(2 arccos z3)}

(C.19)
with
—mi +mj +mj —mj +mj +mj —m3 +mf +mj
21 = , R9 = , R3 = . (CQO)
2mams 2msmy 2myme
The case m; + my < mg, with A,, > 0, is
2
U(m? mi,m3) = —vm {21nx1 Inze —In m; lnm—2
mz M3
2
+§ - 2L12(I‘1 - 2L12 1'2 (021)
with
2 2 _ 2 2 2 _ 2 _
x1:m3+m1 77;2 m, x2:m3+m2 - - (0-22)

2m? 2m?
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The cases my + mz < my and mo + m3 < m; can be obtained from the last one by
relabelling masses. Lis(x) is the dilogarithm defined by

Lis(x) = —/0 %ln(l —at), (C.23)

and Cly(z) is Clausen’s function defined by

T TEQ

Cly(z) = —/ dtIn |2 sin%| = —i (Lis(e") — Lix(1)) — 5+ (C.24)
0

Now we define H;(m?, m3, m3; p?)

[e%¢) 2 2
{ﬁ7ﬁluﬁ2l}(m%7m§7m§;p2> = / da)‘l/Q (17@7%)
(

m2+m3)2 ag o

1
x/ dz Ko(x, 0, p*){1,2,2*} , (C.25)
0

with
1 mi(l —z) + ox — z(1 — z)p? p?x(l — x)
2) — In —*
Koz, 0,p%) (1672)2 < mi(l —z) + ox +m%(1—x)—|—a:v )
Nz,y,2) = (x—y—2)°—4dyz. (C.26)

C.2 Calculation of Fy(0)+ F5(0)

We expect the quantity F»(0) + F3(0) to be zero because the correlator has to be
non-singular at the origin. Now we are going to check it.

If we use the definition of H?, HM HF and H!(mi,ma, m3;s) given in the
preceding section, we can write Fy(s) + F5(s) in terms of the masses my, mg, m,),
s and the functions ¢, H and H evaluated at different combinations of masses and
s. This expression is almost endless and therefore we will not show it here, but if
we evaluate it in s = 0 it takes the very simple form

1 —
Fa(0) + Fy(0) = 7 (4mi = 3m2 —m2) (H' (my, muc, mic, m2) m?
+H (my,, mg, mg, 0) —H(mn,mK,mK,mi)) . (C.27)

Using the Gell-Mann-Okubo relation?
Bmfz =4dm3 —m?2 | (C.28)

we have that F5(0) + F3(0) = 0.

3This relation holds for the ns, but the difference between m,, and m,, is of order p? in xPT,
and therefore is of order p® in (C.27) and hence we can omit it.
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C.3 Two-loop correction to Lij,: F3(0) + F}(0)

As we have seen the structure of this correction is

Gul0) = £z (G4I0) - Fi(0) ~ i (BB

8f2 s—0 S
= = f12 (GY,(0) — F1(0) — (F3(0) + F}(0))) (C.29)

where we have used F5(0) + F5(0) = 0 in the last step. For the first two terms we
have

2
GY.(0) = lim 4s(2BF"(s)+ BEE(s) | =0, C.30
2L 0 \%4 \%4
1 1 1 1 5
Ja - - 2 2.2 2 2
1(0) (1672)2 (Gm T gt T~ gy i
f2 un u
7r K
= 0.712-10m2 = 0.01356 - 10~° GeV? . (C.31)

If we calculate the derivative of Fy(s) 4+ F3(s) we obtain another endless expression
that in this case does not simplify too much when we do s = 0. In order to simplify

it a bit, we use then that the )i (and their first derivatives) are zero at s = 0 for
any combination of masses. After that we write

mg = 3.586 m, , m, =3.966 m,, pu=m,=5618m,, (C.32)

in order to have only one dimensional parameter: the pion mass. After this, we
found a not so long expression

F3(0) + F3(0) =
= —4.290-107*m?
+54.651 - 107° W(mg, mq, mg) + 6.479 - 107 W (m,, mg, mg)
—1.286 - 1075 W (my, mg, mg) + 14.852 - 107° W (my, my, my)

3 H (mK, MK, My, mfr) +51.435 H (mK, My, mK,mi)
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+23.597 H (mn, MK, MK, mfr) —15H (mw, e mK,mi)

+£1) F(mw,mn,mn, i) + % H (mﬂ,mﬂ,mw,mi)

+4 H,y (mK,mK,mn,mi) +2 H, (mﬂ,mK,mK,mi)
+6 Hoy (mK,mﬂ,mK, mfr) +2.25 Hyy (mn,mK, mK,mi)

—0.75 Hoy (mﬂ, M, Mk, mfr) +6 Hoy (mﬂ,mﬂ,mﬂ, mfr)
+mfr ( —4 ﬁll (mK, e mn,mi) —2 F/l (mw, mK,mK,mi)

—6 H21 (vamﬁamKa )_225 H21 (mn,mK,mK,mi)

+0.75 H21 (mw,mK,mK, ) —6 H21 (mﬂ,mﬂ,mﬂ,mi)
+§ " (mK,mK,mn, ) 25.718 H' (mK,mW,mK,mi)
—11.798 H' (mn,mK, mK,mi) + 1.25 " (m,r, My, MK, mfr)

bt

— H’ (mmmn,mn,mi) — = ﬁ/ (mmmmmmmi)>

= —4.290 - 107°m2 + Cy + Cx + Cprime , (C.33)

where we have split the result in four terms: the one that does not depend on any
not-defined (so far) function, the term that contains the ¢ functions, the term that
contains the H functions and the term that contain the H functions. We find*

Cy = +1.69-10"°m? = 0.032328 - 10% GeV?* | (C.34)
Cy = —4.79-107%m2 = —9.13-107® GeV? , (C.35)
Cprime = 5.20-107%m2 =9.92-107° GeV? . (C.36)

Therefore, we have
F3(0) + F5(0) = —2.60-107° m2 = —4.94-107° GeV? . (C.37)
And hence

GY,(0) — F1(0) — F5(0) — F}(0) = 0—0.712- 10 *m2 — (=2.60 - 10~ m?)

= +1.888-10°m?2 = 3.600-10"° GeV? , (C.38)
2

Gor(0) = —0.236 - 1073 =2 = —27.642- 107® GeV ?*m? = —0.527-107% . (C.39)

7r
2
0

4The big cancelation between Cy and Cprime is not very surprising since we can see in our

expression for F3(0) + F4(0) that the coefficients of the H and H' are always of opposite sign.
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C.4 Two-loop correction to Cg,: Fy(0) + F3(0)

Again we have the following structure

—]_ Vv . d FQ(S) + Fg(S)
40(0) = o5 (GH0) - F1(0) - iy 2 P20 S (Ca0)
and we have for each term that
d 2
GY1(0) = lir% o <4s (23‘7}”(3) + B‘IfK(s)) )
s—0 ds
(log (";—z() + 2log (7}—3) + 3) 2 Je G106 o
= 99167 = 25.684-107" , (C.41)
F{(0) = L3 _576.10 (C.42)
B (16m2)232 ’ '
. d FQ(S) + F3(3) o | p— "
lim ———————= = o (F;(0) + F5(0)) , (C.43)

where we have used F5(0) + F3(0) = 0 in the last step. If we calculate the second
derivative of Fy(s)+ F3(s) we obtain another endless expression that again does not
simplify too much when we do s = 0. In order to simplify it a bit, we use again that
the A" (and their first derivatives) are zero at s = 0 for any combination of masses.
This is not true for one second derivative of H' that appear in our expression, but
if we pay attention the exact form of that term is

7N
3
NS
|
NES
|
=~ w
3 N

m )HF”(m,,,mK,mK,O) , (C.44)

that again is zero if we use the Gell-Mann-Okubo relation. Now we use again (C.32)
in order to have only one dimensional parameter: the pion mass. After this, we
found a not so long expression

Fy(0) + F5(0) =
+214.278 - 107

1
+—5 (= 9.393- 107U (mg, mx, my) — 1.03- 107 "W (my), mg, m)
m

™

+3.98 - 107 "W (my, mg, mg) — 3.961 - 107U (my, my, my)
+16H, (mK,mK,mn,mi) +8H, (mw,mK,mK,mi)

+24ﬁ21 (mK7 My, Mk, mfr) + 9H21 (mn7 mg, Mg, mfr)



156

O(p°) xPT expression of the V-A correlator TI(s)

—3H (mw,mK,mK,mi) + 24Ho, (mw,mﬂ,mﬂ,mi)
—?F (mK, M, My, mfr) + 154.306 H (mK, My, M, mfr)

+70.79H (mn, My, Mk, mi) —55H (mw, Mi, Mk, m2)

s

+gﬁ (mw, My, My, mfr) + 3—32H (mmmﬂ,mﬂ,mi) )

—Sﬁll (mK,mK,mn,mi) — 4H,1 (mﬂ,mK,mK,mi)
—12?;1 (mK,mﬂ,mK,mi) — 4.5FI21 (mn,mK,mK,mi)

FL5Hy, (M, mue, mg, m2) — 12Hy, (g, Mg, Mg, m?)
FH (i me, m,m2) — SLABSH (mie,me, g, )
—23.59TH (my, muc, mg,m?) + 2.5H (mq, mg, m, m?)
ZH (e g m2) — H ()

s s

= +214.278 - 107° + Dy + Dy + Dprime

where we have again split the result in four terms. We obtain for them

D, = —200.346-107°,
Dy = —14.743-107°
Dprime = +10.410-107°.

(C.45)

(C.46)
(C.47)
(C.48)

We can see that there is a big cancelation between the first and second terms, that

finally gives

Then

FY(0) + F{(0) = +9.6-107°.

— 1
— G5, (0) = 1.07-10°— =0.13-107 GeV 2.

Ik

(C.49)

— 83 Gy.(0) = G31(0) — F{(0) — % (F3(0) + F5(0)) =17.1- 107", (C.50)

(C.51)
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