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Abstract: We investigate a non-parametric Bayesian method for reconstructing the pri-
mordial power spectrum (PPS) of scalar perturbations using temperature and polarisation
data from the Planck, ACT, and SPT CMB experiments. This reconstruction method is
based on linear splines for the PPS between nodes in k-space whose amplitudes and positions
are allowed to vary. All three data sets consistently show no significant deviations from
a power-law form in the range 0.005 ≲ k Mpc ≲ 0.16 independent of the number of knots
adopted to perform the reconstruction. The addition of high-resolution CMB measurements
from ACT and SPT slightly improves the range of scales of the scalar PPS which are well
constrained around a power law up to k ≃ 0.25 Mpc−1 and k ≃ 0.2 Mpc−1, respectively.
At large scales, a potential oscillatory feature in the primordial power spectrum appears
when we consider six or more nodes. We test the robustness of the methodology and our
results by varying the detailed number of knots from N = 2 to N = 10. We have used the
reconstructed scalar PPS to derive several quantities related to inflationary dynamics, such as
the effective scalar spectral index, which describes the dependence of the PPS on the scales
and parameters associated with the effective field theory of inflation, to provide information
on possible departures from the standard single-field canonical case. Finally, we investigate
whether the excess of smoothing in the region of the acoustic peaks of the CMB anisotropy
temperature power spectrum in the Planck PR3 data is degenerate with our reconstructions
of the PPS, but find no significant correlation between them.
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1 Introduction

Understanding the initial conditions of cosmic structure is a cornerstone of modern cosmology.
The primordial power spectrum (PPS) of density perturbations, PR(k), encodes critical
information about the physics of the early Universe, providing a direct link to inflationary
dynamics and the underlying microphysical processes. The cosmic microwave background
radiation (CMB) serves as a unique observational window into these initial conditions, as its
anisotropies are sensitive to the properties of the PPS over a wide range of scales.

The simplest inflation models predict an almost scale-invariant PPS, in agreement with
current observations from Planck [1–3] and other CMB experiments [4–6]. However, deviations
from exact scale invariance — such as primordial features or any scale dependence in the
PPS — could provide insights into the detailed mechanism of cosmic inflation, the particle
content during the inflationary epoch, or even alternative theories of the early universe;
see for reviews refs. [7, 8]. Reconstructing the PPS directly from the data is therefore of
fundamental importance.

Numerous approaches to the reconstruction of the PPS have been explored in the
literature, broadly classified into parametric and non-parametric methods. Parametric
methods are further subdivided into two main categories. In the first, the PPS is modelled
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using specific functional templates, such as power-law or broken power-law forms or more
convolved shapes, with a finite set of parameters constrained using cosmological data; see
for instance refs. [1–3, 9–33]. In the second category, methods such as principal component
analysis (PCA) [34, 35] or deconvolution techniques, such as the modified Richardson-Lucy
algorithm [36–38] and the Tikhonov regularisation [39], introduce a finite number of degrees
of freedom by selecting a reduced basis or regularised representation for the PPS. While these
approaches do not assume a specific functional form, the choice of basis or regularisation
introduces an implicit parameterisation, which places them within the parametric class. On
the other hand, non-parametric methods make minimal assumptions about the shape of
the PPS and reconstruct it directly from data without imposing strong prior constraints.
Techniques such as regularised deconvolution, Gaussian process regression, and moving knots
reconstruction fall within this category (e.g., refs. [1–3, 40–50]). These approaches have
revealed intriguing indications of primordial features in the PPS, although such findings
remain statistically marginal.

In this paper, we focus on a non-parametric reconstruction of the PPS of scalar fluctuations
using a moving node approach inspired by the method described in ref. [49]. This method
uses a flexible representation of the PPS by a set of adaptive basis functions (or knots) whose
positions and amplitudes are optimised to fit the data. By using a Bayesian framework,
we account for both statistical uncertainties and systematic effects, ensuring a robust and
unbiased reconstruction. Compared to other non-parametric methods, the moving knots
technique offers high fidelity in capturing potential features in the primordial fluctuations while
maintaining computational efficiency. In addition, methods that rely heavily on parametric
assumptions often risk overfitting the intrinsic noise or amplifying scattering present in
the data. The moving knots reconstruction approach, as adopted in this work, inherently
addresses these challenges by offering a flexible, yet robust, framework for fitting the data
without introducing spurious features. This method allows for a smooth interpolation between
data points, ensuring the reconstructed spectrum faithfully represents the underlying physics
rather than artefacts of the measurement process. Similar concerns have been discussed and
mitigated in related works as in refs. [1–3, 43, 49]. This technique, dubbed as flexknot after
ref. [51], has been successfully applied also in the reconstruction the evolution of the dark
energy equation of state [52–54], the history of cosmic reionization [51, 55], galaxy cluster
profiles [56], and the 21 cm signal [57, 58].

We apply this reconstruction to the most recent CMB data, focusing on its implications
for inflationary physics and possible deviations from the standard power-law initial condi-
tions assumed within the ΛCDM model. We analyse Planck data release PR3 and PR4,
Atacama Cosmology Telescope DR4 (ACTPol), and South Pole Telescope (SPT-3G). Our
results not only confirm the consistency of the PPS of scalar perturbations with near-scale
invariance, but also explore the presence of features that could be associated with specific
inflationary scenarios.

The paper is structured as follows. In section 2, we review the theoretical framework and
the main quantities that we will reconstruct from the reconstructed PPS. We describe the
moving knot reconstruction method in section 3. In section 4, we introduce the cosmological
data sets used in the analysis. We show and discuss the results of our analysis in section 5.
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Finally, we summarise our results and outline prospects for future work in section 6. In the
appendices we present further analyses performed to check the robustness of our analysis:
in appendix A we show the mean values of the cosmological parameters for each run, in
appendix B we compare the reconstruction done with Planck PR3 and Planck PR4 data sets,
and in appendix C we study the impact of the parameter AL on the reconstruction.

2 Inflationary basics

Cosmic inflation [59–64] is a theoretical framework that describes a phase of accelerated
expansion in the early universe. This paradigm not only addresses key problems in standard
Big Bang cosmology, such as the horizon, flatness, and monopole problems, but also provides
a natural mechanism for the generation of primordial perturbations. These perturbations,
which originate as quantum fluctuations in the inflaton field during the inflationary epoch,
are stretched to macroscopic scales by the rapid expansion of the universe. After the end of
inflation, these fluctuations serve as seeds for the formation of cosmic structure, manifesting as
anisotropies in the CMB and as the inhomogeneities observed in the large-scale structure (LSS)
of the Universe. By studying these cosmological observables, we can probe the physics of
the very early universe and gain insights into inflationary dynamics shaping the initial
conditions of the universe.

2.1 Background equations

In the simplest models of inflation, perturbations are seeded by density fluctuations of the
inflaton field at horizon crossing scales. In single field models of inflation the dynamics of
the inflaton ϕ with potential V (ϕ) is described by the action

S =
∫

d4x
√

−g

[
M2

PlR

2 − 1
2∂µϕ∂µϕ − V (ϕ)

]
, (2.1)

where M2
Pl ≡ 1/(8πG) with G the gravitational constant, and R is the Ricci scalar. The

background metric is the Friedmann-Lemaitre-Robertson-Walker (FLRW) one

ds2 = a2(t)
[
−dτ2 + dx2

]
, (2.2)

where τ is conformal time defined as dτ ≡ a(t)dt with t proper time. From the solution of
the Einstein equations one gets the Friedmann and the Klein-Gordon equations that describe
the evolution of the background dynamics. Assuming that the energy density of the Universe
is dominated by the inflaton, we obtain

H2 = 1
3M2

Pl

(
ϕ̇

2 + V

)
, (2.3a)

ϕ̈ + 3Hϕ̇ + Vϕ = 0 , (2.3b)

where H ≡ ȧ/a is the Hubble parameter, Vϕ is the derivative of the potential with respect
to ϕ and a dot ˙ denotes derivative with respect to proper time t.
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It is possible to parametrise the background dynamics of the inflationary universe through
different parameters [65–76]. For instance, we can use the Hubble-flow functions (HFFs)
defined as

ϵ1 ≡ ϵ = − Ḣ

H2 , ϵ2 ≡ η = ϵ̇

Hϵ
, ϵn = d ln |ϵn−1|

dN
, (2.4)

where N is the number of e-folds and it is defined as dN ≡ Hdt. The slow-roll inflationary
dynamics, i.e. the inflationary phase long enough to solve the flatness and horizon problems,
is guaranteed by ϵn ≪ 1. In general, in single-field slow-roll inflation it is also possible
to describe the primordial scalar and tensor fluctuations in terms of HFFs, resulting in a
unified framework for linking the predictions of hundreds of slow-roll inflationary models
to cosmological observations; see refs. [77–79].

2.2 Primordial power spectrum from quantum fluctuations

One can define quantum fluctuations of the inflaton field as small perturbations around
a mean field as

ϕ(t, x) = ϕ̄(t) + δϕ(t, x) . (2.5)

Information on the distribution of quantum fluctuations from inflation is encoded in
their power spectrum, that is the Fourier transform of the correlation function of the
fluctuations, namely

⟨δϕ(k, τ)δϕ(k′, τ)⟩ = (2π)3 δ(3)(k − k′)Pδϕ(k) , (2.6)

where δ(3) is the three-dimensional Dirac delta function. One can then move from the
fluctuations of the field to its density perturbations. For instance, in single-field slow-roll
inflationary models one can show that

δϕ

ϕ̇
≃ δρ

ρ̇
. (2.7)

At this point quantum fluctuations from inflation are related to the metric perturbations
by the gauge-invariant curvature perturbation R, since δϕ is not. In particular, if we define
the scalar perturbed metric as [80–85]

ds2 = a2(τ)
[
(1 + 2Φ) dτ2 + (1 − 2Ψ) dx2

]
, (2.8)

where
R ≡ Ψ − H (HΦ + Ψ′)

H′ − H2 , (2.9)

and a prime ′ denotes derivative with respect to conformal time τ . In Fourier space, the
equation of motion of the gauge-invariant curvature perturbation is given by the Mukhanov-
Sasaki equation [66, 86–89]

u′′
k +

(
c2

s k2 − z′′

z

)
uk = 0 , (2.10)
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where uk ≡ zR(k), z = a
√

2ϵ1/cs, and cs is the speed of sound during inflation. Vacuum
state solution is commonly chosen to be the Bunch-Davies vacuum [90] corresponding to

uk(τ) = e−ikτ

√
2k

(
1 − i

kτ

)
. (2.11)

Information on the distribution of curvature on different scales is contained at first order
in the primordial curvature power spectrum

⟨Rk(τ)Rk′(τ)⟩ = (2π)3δ(3) (k − k′)PR(k) , (2.12)

and in general it is useful to define the dimensionless power spectrum as

PR(k) ≡ k3

2π2 PR(k) . (2.13)

Solving the equation of motion of the primordial perturbations in quasi de-Sitter slow-roll
single-field inflation one can write the PPS on super-horizon scales as

PR(k) = As

(
k

k∗

)ns−1
, (2.14)

where As and ns are the amplitude and the spectral index for scalar perturbations and k∗
is a pivot scale. This is actually a first-order approximation of the super-horizon solution
of eq. (2.10). The most general solution allows for deviations from this power-law spectrum
parametrised by the runnings of the scalar spectral index, namely non-zero higher derivatives
of the primordial power spectrum [91]

PR(k) = As

(
k

k∗

)ns−1+ αs
2 ln
(

k
k∗

)
+ βs

3! ln
(

k
k∗

)2
+...

(2.15)

where these phenomenological parameters can be perturbatively written in terms of HFFs.

2.3 Slow-roll parameters reconstruction from EFT of inflation

A more general approach to the primordial curvature perturbations starts with the definition
of the Effective Field Theory (EFT) of inflation [92–95]. In this framework one can write
the most general action starting from operators that depend on the metric perturbations.
In this context one can use the Arnowitt-Deser-Misner (ADM) formalism [96] to write the
inflation action in terms of the primordial curvature perturbation R.

In particular one gets the second order action as [93, 94, 97]

S2 = 1
2

∫
d3xdτ

[(
u′)2 − c2

s (∇u)2 + z′′

z
u2
]

. (2.16)

Writing c2
s = 1 − θ one can separate the free action from the action due to variations in

cs and other slow-roll parameters as

S0 = 1
2

∫
dx3dτ

[(
u′)− (∇u)2 + z′′

0
z0

u2
]

, (2.17)

S
(2)
int = 1

2

∫
dx3dτ

[
θ (∇u)2 + 1

τ2 δ(τ)u2
]

(2.18)
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where the definition of z0 and δ(τ) comes from the first order expansion of z′′/z

z′′

z
≃ 1

τ2

(
2 + 3ϵ + 3η

2 − 3s − τ
η′

2 + τs′
)

≡ z′′
0

z0

[
1 + 1

2δ(τ)
]

,
z′′

0
z0

= 2
τ2 . (2.19)

Here s is defined as s ≡ c′
s/(aHcs); we have expressed δ(t) = δH − τθ′ + τ2θ′′/2 where

δH = 3ϵ + 3η/2 − τη′/2 includes only variations of the slow roll parameters in such a way to
separate the part depending on the speed of sound during inflation. We recall that in the
context of the EFT of inflation, cs is an effective parameter that captures modifications to
the dynamics of scalar perturbations arising from non-canonical interactions or additional
degrees of freedom beyond a simple single-field slow-roll scenario.

In the context of in-in formalism one can write the two-point function as

⟨u(x, τ)u(y, τ)⟩ = ⟨0|uI(x, τ)uI(y, τ)|0⟩+

+ i

∫ −∞

τ
dτ ′ ⟨0|

[
H

(2)
I (τ ′), uI(x, τ)uI(y, τ)

]
|0⟩ ,

(2.20)

and in our case the interaction Hamiltonian in the interaction picture is

H
(2)
I (τ) = −1

2

∫
d3x

[
θ(τ) (∇uI)2 + δ(τ)

τ2 u2
I

]
. (2.21)

Defining deviations from eq. (2.14) as

PR(k) = P0(k) + ∆P(k) , (2.22)

where P0 is the zero-order contribution to the power-law PPS. One can finally write ∆P(k)
in terms of variations of θ and δH as

∆P
P0

(k) = k

∫ 0

−∞
dτ

[
−θ + δH

1
k2τ2 + 2δH

1
k4τ4 − 1

k4τ3
dδH

dτ

]
sin(2kτ) . (2.23)

Finally, writing the sine in its exponential form and imposing that both θ(τ) and δH are odd
functions of time it is possible to extend the integration domain such that [93]

k3 ∆P
P0

(k) = −1
4

∫ +∞

−∞
dτ

[1
8θ′′′′ + δ′′

H

2τ2 − δH

τ4

]
sin(2kτ) . (2.24)

At this point it is possible to Fourier invert this equation in order to derive θ or δH , as
functions of time, depending on ∆P/P0, as done in refs. [93–95].

2.3.1 Variations in the sound speed

First we set δH = 0 to study the effect of variations in θ(τ) alone. After some integration
by parts and Fourier inversion, the result for θ is

θ(τ) = − 4
π

∫ +∞

0

dk

k

∆P
P0

(k) sin(2kτ) . (2.25)

One should keep in mind that this results works in the assumption that θ alone inherits all the
features in the PPS [98, 99]. Eq. (2.25) matches the one previously obtained in refs. [93, 97].
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2.3.2 Variations of the background

We now consider the case where only the background quantities, namely δH , vary, fixing
cs to unity. After inversion we find

δ′′
H

2τ2 − δH

τ4 = 4
πi

∫
dk k3 ∆P

P0
(k)e−2ikτ . (2.26)

This differential equation can be solved through Green’s function method. In particular solving

g′′(k, τ)
2τ2 − g(k, τ)

τ4 = e−2ikτ (2.27)

one can obtain the following solution

δH(τ) = 4
πi

∫
dk k3 ∆P

P0
(k)g(k, τ) , (2.28)

where the Green’s function g(k, τ) is found solving eq. (2.27) and fixing the integration
constants by imposing that the slow-roll parameters are odd functions of time. One gets

g(k, τ) = − τ2

6k2 + i

2k5τ
+ e−2ikτ

(
− i

2k5τ
− τ2

2k2 + 1
k4 + iτ

k3

)
, (2.29)

and substituting in eq. (2.28) one obtains the final solution for slow-roll parameters as

δH(τ) = 4
π

∫ +∞

0

dk

k

∆P
P0

(k)
[ 1

kτ
+
(
k2τ2 − 2

)
sin(2kτ) +

(
2kτ − 1

kτ

)
cos(2kτ)

]
. (2.30)

2.3.3 Sudden variations of the background

Similarly to the previous subsection, we consider also here the component exclusively due to
variations in the background parameters. However, we are interested in sudden variations
associated with features in the PPS [9, 100–103], which means that time-derivative terms
will dominate, leading to δH ≃ −τη′/2. Under this assumption, and after Fourier inversion,
eq. (2.26) becomes

− 1
4τ

η′′′ = 4
πi

∫
dk k3 ∆P

P0
(k)e−2ikτ , (2.31)

and the corresponding Green’s function is

g(k, τ) = − 3
4k4 + i

k3 τ + 1
2k2 τ2 + e−2ikτ

2k3

( 3
4k

+ iτ

)
. (2.32)

Finally, one gets

η(τ) = 4
π

∫ +∞

0
dk

∆P
P0

(k)
[
2τ − 3

2k
sin(2kτ) + τ cos(2kτ)

]
. (2.33)
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Figure 1. Visualisation of the knot reconstruction. Points’ coordinates in the spectrum are sampled
and the spectrum results from linear interpolation of the points.

3 Primordial power spectrum reconstruction formalism

Knot reconstruction of the scalar PPS is a model-agnostic way of looking for features in the
initial conditions of the Universe and for this reason it has already been employed largely in
the literature [3, 44, 45, 49, 104]. Knots are points defined by the wavenumber k and the
amplitude of the PPS PR as shown in figure 1. Fixing the number of knots and varying
the position k and the amplitude PR for each knot allows to explore the whole parameter
space and look for non-trivial features.

Although this approach is model independent, the reconstruction in general depends on
the choice of the method used. The most immediate example is the freedom of choice among
the interpolating function of the knots. In this work we chose a linear interpolation, but in
the literature different choices have also been made, such as cubic interpolation [49, 105].
In addition, the number of knots is an arbitrary degree of freedom.

As our baseline, the PPS is computed as a linear interpolation of the knots. Specifically,
we implement the following algorithm

ln
(
1010PR(k)

)
=

N−1∑
i=0

[
yi+1 − yi

ki+1 − ki
(k − ki) + yi

]
[Θ(k − ki) − Θ(k − ki+1)] , (3.1)

where yi = ln
(
1010PR(ki)

)
≡ ln

(
1010Pi

)
and Θ(x) is the Heaviside function. One thing to

note is that the nodes must be sorted, i.e. ordered so that ki < ki+1 for any node i, otherwise
the reconstructed spectrum would be unphysical. This is done through the forced identifiability
prior already implemented in Polychord [106, 107],1 which allows parameters to be sorted
without spoiling the computation of the Bayesian evidence for the sampled parameters.

4 Cosmological data sets

In this section, we describe the data sets used for the analysis. In this work we have focused
on measurements from CMB experiments in order to reconstruct the scalar PPS at different

1https://github.com/PolyChord/PolyChordLite.
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scales. As mentioned in the previous section, we use PolyChord as a sampler, and for each
run we set the number of live points to 1000.

Together with PolyChord we use Cobaya [108].2 We split the analysis into two different
ways of sampling the positions k: in one case we sample k with a uniform prior between
[10−4, 10−0.3] Mpc−1, in the other we sample in the same range but with a log-uniform prior.
These different choices allow us to probe the whole range of scales: in the latter case, the
search for features focuses on large scales, while in the former case the different sampling
allows us to focus on the small scales.

The choice of the range k ∈ [10−4, 10−0.3] Mpc−1 is related to the projected scales probed
by the CMB experiments. It has been tailored to recover the results assuming a scalar
power-law PPS; in particular in the case with two knots. These assumptions on the range
are the same as those made in ref. [49].

We use a modified version of CAMB [109, 110].3 For each run we fix Neff = 3.044 [111–113]
and a massive neutrino with mν = 0.06 eV. For the calculation of the nonlinear matter
power spectrum affecting CMB lensing and lensed components, we use HMcode [114].4 We
fix the primordial 4He mass fraction Yp, taking into account the different values of the
baryon fraction ωb, tabulated in the public code PArthENoPE [115–117]. All priors for the
parameters are listed in table 1.

The data sets used in our analysis are the following:

• Planck 2018. We use the Planck PR3 data sets and likelihood codes [118]. At low
multipoles we use the Commander likelihood in temperature and the SimAll likelihood
for large-scale E-mode polarization. At high multipoles we use the plik_lite Planck
likelihood for TT , TE, EE covering the multipole range 30 ≤ ℓ ≤ 2508 where the
standard Plik likelihood foreground and nuisance parameters are marginalised. Finally,
we consider the Planck 2018 lensing likelihood [119] over the “conservative” multipole
range 8 ≤ L ≤ 400. We will refer to the combination of all these data sets as P18.

• Planck NPIPE + SRoll2. We consider the high-multipole likelihood based on Planck
PR4 maps (NPIPE) [120] using the CamSpec likelihood [121, 122]. At low multipoles
we consider the Commander likelihood in temperature and for polarisation the SimAll
likelihood based on SRoll2 products [123, 124]. We use the Planck PR4 lensing
likelihood based on NPIPE maps [125]. We will refer to the combination of these data
sets as NPIPE.

• ACTPol. We use the pyactlike likelihood for ACTPol DR4 data [4, 5].5 In combina-
tion with Planck we use the standard likelihood with TT data starting from ℓ = 1500
to avoid for unaccounted correlation between the two data sets while TE and EE data
always starts from ℓ = 350. The likelihood data range up to ℓmax = 4125. In the
following we will also examine the effect of removing the last data points, specifically

2https://github.com/CobayaSampler/cobaya.
3https://github.com/cmbant/CAMB.
4https://github.com/alexander-mead/HMcode.
5https://github.com/ACTCollaboration/pyactlike.
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Parameter Prior type Prior range
Ωch

2 Uniform [0.095, 0.145]
Ωbh2 Uniform [0.019, 0.025]
τreio Uniform [0.01, 0.4]
100 θMC Uniform [1.03, 1.05]
ki [Mpc−1] Sorted Log-Uniform [10−4, 10−0.3]
ln
(
1010 Pi

)
Uniform [2, 4]

ln
(
1010As

)7 Uniform [1.61, 3.91]
ns Uniform [0.8, 1.2]

Table 1. Priors on the cosmological parameters.

using data up to ℓmax ≤ 2800. We will refer to these data as ACTPol when there is no
cut in the data points and ACTPol-cut when the last data points are removed.

• SPT-3G. We use the SPT-3G likelihood described in ref. [6].6 This data set covers the
multipole range 750 < ℓ < 3000 for TT and 300 < ℓ < 3000 for TE and EE. For the
nuisance parameters we used the standard prior ranges, see ref. [6]. We will refer to
these data as SPT-3G.

5 Results

In this section, we present the results of our analysis using different combinations of the
data sets described in the previous section: P18, P18 + ACTPol, and P18 + SPT-3G. We
reconstruct the scalar PPS using the moving knot approach, varying the number of knots
N between 2, 4, 6, 8, and 10. The positions of the knots are sampled both uniformly and
logarithmically to explore different resolution schemes. This allows us to assess the impact of
data set selection and knot placement on reconstruction accuracy and stability.

5.1 Reconstrunction from CMB data

Figure 2 shows the results obtained sampling the positions of the knots with a uniform
prior for different numbers of knots, considering the Planck data set alone as well as its
combination with ACTPol and SPT-3G, separately. Figure 3 shows the results obtained
sampling the positions of the knots with a log-uniform prior for each data sets. The posterior
distributions of the reconstructed functions are visualised using the fgivenx package [126],8
which provides a clear representation of the uncertainty in the reconstruction.

A first observation concerns the effect of the different sampling strategies on the recon-
struction. Linear sampling places a greater emphasis on small scales, whereas logarithmic
sampling provides better sensitivity to potential features at larger scales. This difference

6https://github.com/xgarrido/spt_likelihoods.
7As and ns are only used when considering a power-law PPS within the ΛCDM model.
8https://github.com/handley-lab/fgivenx.
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Figure 2. Reconstruction of the scalar PPS plotted using iso-probability credibility intervals with
their masses converted to σ-values via an inverse error function transformation, obtained for each
data set. We consider N knots with positions ki (except for the outermost ones) uniformly sampled
in the range [10−4, 10−0.3] Mpc−1.

is crucial in identifying deviations from a simple power-law power spectrum over a wide
range of wavenumbers k.

Focusing on the logarithmic sampling case, we observe that increasing the number of
knots leads to the emergence of oscillatory features at k ∼ 10−2.75 Mpc−1 corresponding to the
known trough on the CMB temperature angular power spectrum at ℓ ∼ 25. However, these
oscillations remain consistent with a power-law spectrum within 68% confidence level (CL).
In contrast, the corresponding feature in the CMB angular power spectrum is much more
pronounced and reaches a higher statistical significance. We conclude that P18 provides
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Figure 3. Same as figure 2, but with positions ki (except for the outermost ones) logarithmically
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max = 4125 (upper panels) with those obtained with
the combination P18 + ACTPol using the ACTPol data cut above ℓACTPol

max = 2800 (lower panels).

strong constraints on the scalar PPS, keeping it close to a power-law form in the range
0.005 ≲ k Mpc ≲ 0.16 where these numbers correspond to the vertical dashed lines plotted
in figures 2–4, 10 and 11.

On small scales, the addition of high-resolution CMB data sets, such as ACTPol or SPT-
3G, does not significantly alter the reconstruction obtained using Planck data alone, aside
from a minor reduction in noise; in particular we observe that P18+ACTPol reconstruction
shows power law behaviour up to k ∼ 0.25 Mpc−1 and for P18+SPT-3G reconstruction up
to k ∼ 0.2 Mpc−1. This suggests that, at these scales, Planck data already provide most
of the constraining power on the scalar PPS, and the addition of current high-resolution
measurements do not introduce qualitatively new features.

However, a notable exception is found when ACTPol data are included. The recon-
struction with ACTPol shows a clear suppression of the power spectrum amplitude on small
scales. This effect is even more pronounced in the case of linear sampling; see figure 2. In
particular, for large k the scalar PPS shows two best-fit regions, one of which deviates from
the standard power-law solution. We interpret this as a consequence of the fact that some of
the high-multipoles of the ACTPol data points take on negative mean values, albeit with
large error bars [4, 5]. This highlights the sensitivity of the knot-based reconstruction method
in capturing and reflecting specific features in the data. To investigate this effect further, we
repeat the analysis for the combination of Planck and ACTPol data, removing the last four
data points from ACTPol in TT , TE, and EE, effectively lowering the maximum multipole
used in the analysis to ℓmax = 2800; the results are shown in figure 4. This cut eliminates
the feature at small scales, confirming its dependence on the high-ℓ ACTPol measurements.
Interestingly, suppressing this feature also seems to allow for a more pronounced trough
at large scales in the reconstructed PPS.
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Figure 5. Bayes factors for logarithmic sampling reconstruction for the different data sets varying
the number of knots.

In appendix B, we compare the results obtained using Planck PR3 with those based
on PR4 NPIPE maps and SRoll2 low-ℓ polarization. The reconstructed power spectra are
fully consistent, as shown in figure 10.

In figure 5, we show the Bayes factor expressed with respect to the power-law case for
each of the data sets defined as

ln (BN ) = ln
( ZN

ZPL

)
. (5.1)

Results are shown varying the number of nodes N for the logarithmic sampling reconstruction.
We observe no statistical preference over the power law or the two nodes case.

5.2 Reconstruction of the scalar spectral index

From the reconstructed scalar PPS, one can extract information about the effective scalar
spectral index ns. This follows directly from the definition

ns(k) − 1 = d ln PR
d ln k

, (5.2)

which allows us to estimate the scalar spectral index in a given range of scales by computing the
local logarithmic slope of the reconstructed PPS. Specifically, within each interval [ki, ki+1],
the spectral index can be obtained numerically, providing a scale-dependent measure of
deviations from a simple power-law behavior.

In principle, this approach could also be extended to infer the running of the spectral
index, αs, or even higher-order runnings. However, in our case, the use of a piecewise
linear interpolation makes higher derivatives trivially zero within each segment. Even if a
higher-order interpolation, such as a cubic spline, were used, one should interpret higher
derivatives with caution. The smoothness imposed by interpolation methods can introduce
artificial features, potentially biasing the inferred values of the running of the scalar spectral
index and beyond.

In figure 6, we present the reconstructed scalar spectral index obtained using 10 knots
logarithmic sampling reconstruction, illustrating how its scale dependence emerges from
the reconstructed PPS. The reconstructed ns is in perfect agreement with the constant
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Figure 6. Reconstruction of the scalar spectral index ns for N = 10 obtained from the reconstructed
scalar PPS analysed with log-uniform priors for the knots’ positions. The green dashed line correspond
to the Planck PR3 mean value ns = 0.9649 [127].

mean found using the ΛCDM model, assuming a power-law scalar PPS, corresponding to
ns = 0.9649 ± 0.0041 at 68% CL for Planck data [127]; see figure 6. In the region where the
CMB has more constraining power, namely k ∈ [10−2, 10−0.8] Mpc−1, we find no deviation
from a constant scalar spectral index from the 10-knot reconstruction results.

5.3 Slow roll parameters

In figure 7, we show the reconstruction obtained from the reconstructed PPS with N = 10
adopting logarithmic sampling for the positions of the nodes of θ = 1 − c2

s , of the parameters
δH , defined as δH ≃ 3ϵ + 3η/2, for a slow time-variation of the slow-roll parameters, and η

in case of sudden variations using eqs. (2.25), (2.30) and (2.33) respectively. These plots
can be interpreted as the behaviour of the parameters of the EFT of inflation at the time of
horizon crossing. Perturbations in the PPS at different scales inherit the properties of these
parameters at different times during inflation, giving a clear way of reading the results. We
plot the parameters as function of the number of e-folds N . The relation between conformal
time and the number of e-folds is

N = ln
(

τin
τ

)
, (5.3)

where τ∗ is the value of the conformal time during inflation at which a given scale k∗ crosses
the horizon. We choose the reference scale k∗ = 10−4 Mpc−1 corresponding to τ∗ = −104.
This fixes N = 0 when k∗ crosses the horizon.

We observe that the reconstructed parameters are particularly sensible to the features in
the reconstructed PPS at large angular scales. Also we observe that in the regions where the
reconstructed PPS is tightly constraint around a power-law form, no deviations compared
to the single-field slow-roll results appear in the parameters.

6 Conclusions

This study has focused on the reconstruction of the primordial power spectrum (PPS) of scalar
fluctuations using a knot-spline approach, which provides a flexible and robust framework for
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Figure 7. Reconstruction of slow roll parameters and θ from 10 knots logarithmic reconstruction.
δH takes into account all the effect from slow-roll parameters excluding θ, and η is computed in the
assumption of sudden variations of the background during inflation; θ is computed switching off effects
from slow-roll and describes the evolution of the effective speed of sound cs.

exploring potential deviations from the standard power-law form assumed in a spatially-flat
ΛCDM model. Similar methodologies have been employed in previous studies; see refs. [3, 49].

While no strong evidence for significant deviations from the power-law PPS was found, the
method effectively identified regions of the spectrum where cosmic variance and instrumental
noise reduce the ability to constrain features. This highlights the importance of using flexible
models that account for these limitations in the data. In addition, our results show that
the inclusion of more general PPS forms does not significantly affect the derived late-time
cosmological parameters (see appendix A), indicating the robustness of these parameters
to changes in the primordial cosmology.

The knot-spline reconstruction approach also partially recovers oscillatory features in
certain multipole regions, which could potentially be associated with a breakdown of slow-roll
inflation. However, these features do not survive marginalization, suggesting that their
significance is not strong enough to warrant a departure from the power-law baseline based
on current data sets. Future observations, particularly with improved CMB polarization

– 16 –



J
C
A
P
0
7
(
2
0
2
5
)
0
7
7

measurements and tighter constraints on reionisation, may provide the discriminatory power
needed to validate or reject these potential features and further refine our understanding
of the primordial universe.

By reconstructing the PPS, we extracted constraints on the scalar spectral index and
the parameters governing the EFT of inflation derived in section 2 for different regimes.
In particular, we demonstrated that, at the scales where the analysed CMB experiments
are most sensitive, these parameters remain consistent with the expected values within the
ΛCDM model for ns and with single-field slow-roll inflation for the effective inflationary
parameters under consideration.

In principle, one could apply reconstruction methods to the tensor PPS, as done in [128],
but as discussed in [49], with the state of the art measurements of the tensor to scalar ratio,
the reconstruction of the tensor primordial power spectrum does not add any information
to the scalar one, and we do not do that here.

On the other hand, large-scale structure (LSS) can be used to search for deviations from
a scale-invariant PPS as primordial features [129–131] and to further refine the reconstruction
of the scalar PSS as shown in refs. [104, 132]. With the advent of LSS missions such
as Euclid [133] and DESI [134], it is crucial to ensure an accurate description of the LSS
observables in the quasi nonlinear regime. In particular, when dealing with non-standard scalar
PPS, special care must be taken to model scale-dependent effects and properly incorporate
non-linear corrections, which can significantly affect the interpretation of the data; see
refs. [129, 135–140].

This work demonstrates the utility of non-parametric reconstructions in testing inflation-
ary models, and paves the way for future investigations into the origin of primordial features
and their implications for the physics of the early universe.
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A Cosmological parameter stability

We present the mean values and the 68% CL of the marginalised posterior distributions for
the standard cosmological parameters varied during the reconstruction of the scalar PPS
with logarithmic sampling in figure 9 and with linear sampling in figure 8.

For logarithmic sampling, we find that the derived cosmological parameters remain stable
as the number of nodes N increases, with no significant shift. In particular, all parameters
are consistent at 68% CL compared to the results obtained assuming a spatially flat ΛCDM
model (green dashed lines and bands), indicating that introducing additional flexibility in the
PPS does not significantly affect the constraints on the standard cosmological parameters.
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Figure 8. Mean values and 68% CL of the posterior distribution for the standard cosmological
parameters obtained from the reconstruction with knot’s positions ki linearly sampled in the range
[10−4, 10−0.3] Mpc−1 compared to the results obtained assuming the ΛCDM model with power-law
PPS (green dashed linears and bands).

For linear sampling, the parameters are still consistent with the ΛCDM model 68% CL
results. However, we observe a slight shift in Ωch

2 and Ωbh2 as the number of knots N

increases, suggesting a slight degeneracy between the reconstructed features at small scales
in the PSS and the matter content. This behaviour is probably a consequence of the greater
sensitivity of linear sampling to small-scale variations, which can induce small parameter
shifts to compensate for local deviations in the reconstructed spectrum.

Overall, these results confirm the robustness of the cosmological parameter estimation and
show that modifications to the PPS do not require significant deviations from the standard
ΛCDM values to remain compatible with current CMB data.

B Comparison between Planck PR3 and Planck PR4

We present here a comparison of the reconstructed scalar PPS obtained using the Planck
PR3 data, as already presented in section 5, and the results obtained using the updated
reanalysis based on PR4 NPIPE maps and SRroll2 low-ℓ polarisation data. The results
in figure 10 show no significant deviations in the reconstructed power spectrum. The results
remain fully consistent within the expected uncertainties, reinforcing the robustness of the
reconstruction across different data processing pipelines.
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Figure 9. Same as figure 8, but with knot’s positions ki logarithmically sampled in the range
[10−4, 10−0.3] Mpc−1.
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the one obtained with NPIPE data sets and likelihoods (lower panels).
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Figure 11. Same as figure 3, we compare the reconstructions obtained with the parameter AL fixed
to unity (upper panels) with those obtained varying AL (lower panels) for P18 without using CMB
lensing data.

C Reconstruction results with AL

The Planck PR3 data have consistently shown an anomalous smoothing of CMB acoustic peaks
in temperature, milder using Planck PR4 data [121], often quantified by the phenomenological
lensing amplitude AL [141], which exceeds the standard ΛCDM prediction of AL = 1 at
a significance of 2 − 3σ. This anomaly produces oscillatory residuals in the CMB power
spectrum, potentially mimicking oscillatory features in the PPS in coherent phase with the
acoustic oscillations as discussed in refs. [3, 37, 142–144].

To test for possible degeneracies, we repeat our PPS reconstruction varying AL over
a uniform prior with range [0, 2]. The results marginalising over AL remain stable, with
no significant changes in the extracted features, and continue to show a small deviation
from unity. This confirms that the reconstruction does not absorb the effects of lensing
anomalies, since our method naturally suppresses high-frequency oscillations. Thus, any
observed deviations from a power-law PPS are unlikely to be artefacts of the lensing anomaly,
reinforcing the robustness of our approach.

The reconstructed spectra for 6, 8 and 10 knots are shown in figure 11, where we use
the Planck PR3 likelihoods without the lensing one, which would reconcile AL with the
standard prediction.

In figure 12 we show the means and 68% CL of the marginalised posterior distribution of
the standard cosmological parameters plus AL obtained from the reconstruction analysis and
from the analysis assuming the ΛCDM model. All the parameters are compatible with the
ΛCDM results within the 68% CL showing that the reconstruction has no influence on the
excess of smoothing in the Planck PR3 temperature power spectrum.

– 20 –



J
C
A
P
0
7
(
2
0
2
5
)
0
7
7

0.115 0.119 0.122
10 knots

8 knots

6 knots
ch2

0.0221 0.0224 0.0228

bh2

0.035 0.053 0.07

reio

1.0404 1.041 1.0416

100 MC

1.05 1.16 1.28

AL

Figure 12. Marginalised means and 68% CL of the posterior distributions of the cosmological
parameters for reconstructions with free AL (purple line) and with AL = 1 (red line) for P18 without
using CMB lensing data. The green dashed line corresponds to the means for the ΛCDM model with
AL ∈ [0, 2] and the shaded area to their 68% CL.

References

[1] Planck collaboration, Planck 2013 results. XXII. Constraints on inflation, Astron. Astrophys.
571 (2014) A22 [arXiv:1303.5082] [INSPIRE].

[2] Planck collaboration, Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys.
594 (2016) A20 [arXiv:1502.02114] [INSPIRE].

[3] Planck collaboration, Planck 2018 results. X. Constraints on inflation, Astron. Astrophys. 641
(2020) A10 [arXiv:1807.06211] [INSPIRE].

[4] ACT collaboration, The Atacama Cosmology Telescope: DR4 Maps and Cosmological
Parameters, JCAP 12 (2020) 047 [arXiv:2007.07288] [INSPIRE].

[5] ACT collaboration, The Atacama Cosmology Telescope: a measurement of the Cosmic
Microwave Background power spectra at 98 and 150 GHz, JCAP 12 (2020) 045
[arXiv:2007.07289] [INSPIRE].

[6] SPT-3G collaboration, Measurement of the CMB temperature power spectrum and constraints
on cosmology from the SPT-3G 2018 TT, TE, and EE dataset, Phys. Rev. D 108 (2023) 023510
[arXiv:2212.05642] [INSPIRE].

[7] J. Chluba, J. Hamann and S.P. Patil, Features and New Physical Scales in Primordial
Observables: Theory and Observation, Int. J. Mod. Phys. D 24 (2015) 1530023
[arXiv:1505.01834] [INSPIRE].

[8] A. Achúcarro et al., Inflation: Theory and Observations, arXiv:2203.08128 [INSPIRE].

[9] J.A. Adams, B. Cresswell and R. Easther, Inflationary perturbations from a potential with a
step, Phys. Rev. D 64 (2001) 123514 [astro-ph/0102236] [INSPIRE].

[10] WMAP collaboration, First year Wilkinson Microwave Anisotropy Probe (WMAP)
observations: Implications for inflation, Astrophys. J. Suppl. 148 (2003) 213
[astro-ph/0302225] [INSPIRE].

[11] L. Covi et al., Inflation and WMAP three year data: Features are still present, Phys. Rev. D 74
(2006) 083509 [astro-ph/0606452] [INSPIRE].

[12] J. Hamann, L. Covi, A. Melchiorri and A. Slosar, New Constraints on Oscillations in the
Primordial Spectrum of Inflationary Perturbations, Phys. Rev. D 76 (2007) 023503
[astro-ph/0701380] [INSPIRE].

[13] P.D. Meerburg, R. Wijers and J.P. van der Schaar, WMAP 7 Constraints on Oscillations in the
Primordial Power Spectrum, Mon. Not. Roy. Astron. Soc. 421 (2012) 369 [arXiv:1109.5264]
[INSPIRE].

– 21 –

https://doi.org/10.1051/0004-6361/201321569
https://doi.org/10.1051/0004-6361/201321569
https://doi.org/10.48550/arXiv.1303.5082
https://inspirehep.net/literature/1224747
https://doi.org/10.1051/0004-6361/201525898
https://doi.org/10.1051/0004-6361/201525898
https://doi.org/10.48550/arXiv.1502.02114
https://inspirehep.net/literature/1343460
https://doi.org/10.1051/0004-6361/201833887
https://doi.org/10.1051/0004-6361/201833887
https://doi.org/10.48550/arXiv.1807.06211
https://inspirehep.net/literature/1682899
https://doi.org/10.1088/1475-7516/2020/12/047
https://doi.org/10.48550/arXiv.2007.07288
https://inspirehep.net/literature/1806985
https://doi.org/10.1088/1475-7516/2020/12/045
https://doi.org/10.48550/arXiv.2007.07289
https://inspirehep.net/literature/1806987
https://doi.org/10.1103/PhysRevD.108.023510
https://doi.org/10.48550/arXiv.2212.05642
https://inspirehep.net/literature/2613468
https://doi.org/10.1142/S0218271815300232
https://doi.org/10.48550/arXiv.1505.01834
https://inspirehep.net/literature/1367289
https://doi.org/10.48550/arXiv.2203.08128
https://inspirehep.net/literature/2052552
https://doi.org/10.1103/PhysRevD.64.123514
https://doi.org/10.48550/arXiv.astro-ph/0102236
https://inspirehep.net/literature/553052
https://doi.org/10.1086/377228
https://doi.org/10.48550/arXiv.astro-ph/0302225
https://inspirehep.net/literature/613197
https://doi.org/10.1103/PhysRevD.74.083509
https://doi.org/10.1103/PhysRevD.74.083509
https://doi.org/10.48550/arXiv.astro-ph/0606452
https://inspirehep.net/literature/719563
https://doi.org/10.1103/PhysRevD.76.023503
https://doi.org/10.48550/arXiv.astro-ph/0701380
https://inspirehep.net/literature/742265
https://doi.org/10.1111/j.1365-2966.2011.20311.x
https://doi.org/10.48550/arXiv.1109.5264
https://inspirehep.net/literature/929579


J
C
A
P
0
7
(
2
0
2
5
)
0
7
7

[14] P.D. Meerburg and D.N. Spergel, Searching for oscillations in the primordial power spectrum.
II. Constraints from Planck data, Phys. Rev. D 89 (2014) 063537 [arXiv:1308.3705] [INSPIRE].

[15] M. Benetti, Updating constraints on inflationary features in the primordial power spectrum with
the Planck data, Phys. Rev. D 88 (2013) 087302 [arXiv:1308.6406] [INSPIRE].

[16] V. Miranda and W. Hu, Inflationary Steps in the Planck Data, Phys. Rev. D 89 (2014) 083529
[arXiv:1312.0946] [INSPIRE].

[17] R. Easther and R. Flauger, Planck Constraints on Monodromy Inflation, JCAP 02 (2014) 037
[arXiv:1308.3736] [INSPIRE].

[18] X. Chen and M.H. Namjoo, Standard Clock in Primordial Density Perturbations and Cosmic
Microwave Background, Phys. Lett. B 739 (2014) 285 [arXiv:1404.1536] [INSPIRE].

[19] A. Achúcarro et al., Inflation with moderately sharp features in the speed of sound: Generalized
slow roll and in-in formalism for power spectrum and bispectrum, Phys. Rev. D 90 (2014)
023511 [arXiv:1404.7522] [INSPIRE].

[20] D.K. Hazra, A. Shafieloo, G.F. Smoot and A.A. Starobinsky, Wiggly Whipped Inflation, JCAP
08 (2014) 048 [arXiv:1405.2012] [INSPIRE].

[21] B. Hu and J. Torrado, Searching for primordial localized features with CMB and LSS spectra,
Phys. Rev. D 91 (2015) 064039 [arXiv:1410.4804] [INSPIRE].

[22] A. Gruppuso and A. Sagnotti, Observational Hints of a Pre-Inflationary Scale?, Int. J. Mod.
Phys. D 24 (2015) 1544008 [arXiv:1506.08093] [INSPIRE].

[23] A. Gruppuso et al., Pre-Inflationary Relics in the CMB?, Phys. Dark Univ. 11 (2016) 68
[arXiv:1508.00411] [INSPIRE].

[24] D.K. Hazra, A. Shafieloo, G.F. Smoot and A.A. Starobinsky, Primordial features and Planck
polarization, JCAP 09 (2016) 009 [arXiv:1605.02106] [INSPIRE].

[25] J. Torrado, B. Hu and A. Achúcarro, Robust predictions for an oscillatory bispectrum in Planck
2015 data from transient reductions in the speed of sound of the inflaton, Phys. Rev. D 96
(2017) 083515 [arXiv:1611.10350] [INSPIRE].

[26] C. Zeng et al., Searching for Oscillations in the Primordial Power Spectrum with CMB and LSS
Data, Phys. Rev. D 99 (2019) 043517 [arXiv:1812.05105] [INSPIRE].

[27] G. Cañas-Herrera, J. Torrado and A. Achúcarro, Bayesian reconstruction of the inflaton’s speed
of sound using CMB data, Phys. Rev. D 103 (2021) 123531 [arXiv:2012.04640] [INSPIRE].

[28] M. Braglia, X. Chen and D.K. Hazra, Comparing multi-field primordial feature models with the
Planck data, JCAP 06 (2021) 005 [arXiv:2103.03025] [INSPIRE].

[29] M. Braglia, X. Chen and D.K. Hazra, Uncovering the history of cosmic inflation from
anomalies in cosmic microwave background spectra, Eur. Phys. J. C 82 (2022) 498
[arXiv:2106.07546] [INSPIRE].

[30] M. Braglia, X. Chen and D.K. Hazra, Primordial standard clock models and CMB residual
anomalies, Phys. Rev. D 105 (2022) 103523 [arXiv:2108.10110] [INSPIRE].

[31] S.S. Naik, K. Furuuchi and P. Chingangbam, Particle production during inflation: a Bayesian
analysis with CMB data from Planck 2018, JCAP 07 (2022) 016 [arXiv:2202.05862]
[INSPIRE].

[32] J. Hamann and J. Wons, Optimising inflationary features the Bayesian way, JCAP 03 (2022)
036 [arXiv:2112.08571] [INSPIRE].

– 22 –

https://doi.org/10.1103/PhysRevD.89.063537
https://doi.org/10.48550/arXiv.1308.3705
https://inspirehep.net/literature/1249537
https://doi.org/10.1103/PhysRevD.88.087302
https://doi.org/10.48550/arXiv.1308.6406
https://inspirehep.net/literature/1251512
https://doi.org/10.1103/PhysRevD.89.083529
https://doi.org/10.48550/arXiv.1312.0946
https://inspirehep.net/literature/1267444
https://doi.org/10.1088/1475-7516/2014/02/037
https://doi.org/10.48550/arXiv.1308.3736
https://inspirehep.net/literature/1249544
https://doi.org/10.1016/j.physletb.2014.11.002
https://doi.org/10.48550/arXiv.1404.1536
https://inspirehep.net/literature/1288829
https://doi.org/10.1103/PhysRevD.90.023511
https://doi.org/10.1103/PhysRevD.90.023511
https://doi.org/10.48550/arXiv.1404.7522
https://inspirehep.net/literature/1293668
https://doi.org/10.1088/1475-7516/2014/08/048
https://doi.org/10.1088/1475-7516/2014/08/048
https://doi.org/10.48550/arXiv.1405.2012
https://inspirehep.net/literature/1294910
https://doi.org/10.1103/PhysRevD.91.064039
https://doi.org/10.48550/arXiv.1410.4804
https://inspirehep.net/literature/1322705
https://doi.org/10.1142/S0218271815440083
https://doi.org/10.1142/S0218271815440083
https://doi.org/10.48550/arXiv.1506.08093
https://inspirehep.net/literature/1379949
https://doi.org/10.1016/j.dark.2015.12.001
https://doi.org/10.48550/arXiv.1508.00411
https://inspirehep.net/literature/1386239
https://doi.org/10.1088/1475-7516/2016/09/009
https://doi.org/10.48550/arXiv.1605.02106
https://inspirehep.net/literature/1456742
https://doi.org/10.1103/PhysRevD.96.083515
https://doi.org/10.1103/PhysRevD.96.083515
https://doi.org/10.48550/arXiv.1611.10350
https://inspirehep.net/literature/1500972
https://doi.org/10.1103/PhysRevD.99.043517
https://doi.org/10.48550/arXiv.1812.05105
https://inspirehep.net/literature/1708932
https://doi.org/10.1103/PhysRevD.103.123531
https://doi.org/10.48550/arXiv.2012.04640
https://inspirehep.net/literature/1835461
https://doi.org/10.1088/1475-7516/2021/06/005
https://doi.org/10.48550/arXiv.2103.03025
https://inspirehep.net/literature/1849998
https://doi.org/10.1140/epjc/s10052-022-10461-3
https://doi.org/10.48550/arXiv.2106.07546
https://inspirehep.net/literature/1868415
https://doi.org/10.1103/PhysRevD.105.103523
https://doi.org/10.48550/arXiv.2108.10110
https://inspirehep.net/literature/1909246
https://doi.org/10.1088/1475-7516/2022/07/016
https://doi.org/10.48550/arXiv.2202.05862
https://inspirehep.net/literature/2032253
https://doi.org/10.1088/1475-7516/2022/03/036
https://doi.org/10.1088/1475-7516/2022/03/036
https://doi.org/10.48550/arXiv.2112.08571
https://inspirehep.net/literature/1991987


J
C
A
P
0
7
(
2
0
2
5
)
0
7
7

[33] A. Antony et al., A search for super-imposed oscillations to the primordial power spectrum in
Planck and SPT-3G 2018 data, arXiv:2403.19575 [INSPIRE].

[34] S.M. Leach, Measuring the primordial power spectrum: Principal component analysis of the
cosmic microwave background, Mon. Not. Roy. Astron. Soc. 372 (2006) 646
[astro-ph/0506390] [INSPIRE].

[35] C. Dvorkin and W. Hu, CMB Constraints on Principal Components of the Inflaton Potential,
Phys. Rev. D 82 (2010) 043513 [arXiv:1007.0215] [INSPIRE].

[36] D.K. Hazra, A. Shafieloo and T. Souradeep, Cosmological parameter estimation with free-form
primordial power spectrum, Phys. Rev. D 87 (2013) 123528 [arXiv:1303.5336] [INSPIRE].

[37] D.K. Hazra, A. Shafieloo and T. Souradeep, Primordial power spectrum from Planck, JCAP 11
(2014) 011 [arXiv:1406.4827] [INSPIRE].

[38] W. Sohn, A. Shafieloo and D.K. Hazra, Deblurring the early Universe: reconstruction of
primordial power spectrum from Planck CMB using image analysis techniques, JCAP 03 (2024)
056 [arXiv:2211.15139] [INSPIRE].

[39] P. Hunt and S. Sarkar, Reconstruction of the primordial power spectrum of curvature
perturbations using multiple data sets, JCAP 01 (2014) 025 [arXiv:1308.2317] [INSPIRE].

[40] Y. Wang and G. Mathews, Model-independent Primordial Power Spectrum from MAXIMA,
BOOMERANG, and DASI Data, Astrophys. J. 573 (2002) 1 [astro-ph/0011351] [INSPIRE].

[41] S.L. Bridle, A.M. Lewis, J. Weller and G. Efstathiou, Reconstructing the primordial power
spectrum, Mon. Not. Roy. Astron. Soc. 342 (2003) L72 [astro-ph/0302306] [INSPIRE].

[42] P. Mukherjee and Y. Wang, Model-independent Reconstruction of the Primordial Power
Spectrum from Wilkinson Microwave Anistropy Probe Data, Astrophys. J. 599 (2003) 1
[astro-ph/0303211] [INSPIRE].

[43] C. Gauthier and M. Bucher, Reconstructing the primordial power spectrum from the CMB,
JCAP 10 (2012) 050 [arXiv:1209.2147] [INSPIRE].

[44] J.A. Vázquez, M. Bridges, M.P. Hobson and A.N. Lasenby, Model selection applied to
reconstruction of the Primordial Power Spectrum, JCAP 06 (2012) 006 [arXiv:1203.1252]
[INSPIRE].

[45] G. Aslanyan, L.C. Price, K.N. Abazajian and R. Easther, The Knotted Sky I: Planck constraints
on the primordial power spectrum, JCAP 08 (2014) 052 [arXiv:1403.5849] [INSPIRE].

[46] K.N. Abazajian, G. Aslanyan, R. Easther and L.C. Price, The Knotted Sky II: Does BICEP2
require a nontrivial primordial power spectrum?, JCAP 08 (2014) 053 [arXiv:1403.5922]
[INSPIRE].

[47] CORE collaboration, Exploring cosmic origins with CORE: Inflation, JCAP 04 (2018) 016
[arXiv:1612.08270] [INSPIRE].

[48] G. Obied et al., Inflationary Features and Shifts in Cosmological Parameters from Planck 2015
Data, Phys. Rev. D 96 (2017) 083526 [arXiv:1706.09412] [INSPIRE].

[49] W.J. Handley, A.N. Lasenby, H.V. Peiris and M.P. Hobson, Bayesian inflationary
reconstructions from Planck 2018 data, Phys. Rev. D 100 (2019) 103511 [arXiv:1908.00906]
[INSPIRE].

[50] S. Chaki et al., Constraining the primordial power spectrum using a differentiable likelihood,
arXiv:2503.00108 [INSPIRE].

– 23 –

https://doi.org/10.48550/arXiv.2403.19575
https://inspirehep.net/literature/2772385
https://doi.org/10.1111/j.1365-2966.2006.10842.x
https://doi.org/10.48550/arXiv.astro-ph/0506390
https://inspirehep.net/literature/685245
https://doi.org/10.1103/PhysRevD.82.043513
https://doi.org/10.48550/arXiv.1007.0215
https://inspirehep.net/literature/859999
https://doi.org/10.1103/PhysRevD.87.123528
https://doi.org/10.48550/arXiv.1303.5336
https://inspirehep.net/literature/1224786
https://doi.org/10.1088/1475-7516/2014/11/011
https://doi.org/10.1088/1475-7516/2014/11/011
https://doi.org/10.48550/arXiv.1406.4827
https://inspirehep.net/literature/1301205
https://doi.org/10.1088/1475-7516/2024/03/056
https://doi.org/10.1088/1475-7516/2024/03/056
https://doi.org/10.48550/arXiv.2211.15139
https://inspirehep.net/literature/2601462
https://doi.org/10.1088/1475-7516/2014/01/025
https://doi.org/10.48550/arXiv.1308.2317
https://inspirehep.net/literature/1247403
https://doi.org/10.1086/340492
https://doi.org/10.48550/arXiv.astro-ph/0011351
https://inspirehep.net/literature/537223
https://doi.org/10.1046/j.1365-8711.2003.06807.x
https://doi.org/10.48550/arXiv.astro-ph/0302306
https://inspirehep.net/literature/613404
https://doi.org/10.1086/379161
https://doi.org/10.48550/arXiv.astro-ph/0303211
https://inspirehep.net/literature/614771
https://doi.org/10.1088/1475-7516/2012/10/050
https://doi.org/10.48550/arXiv.1209.2147
https://inspirehep.net/literature/1185041
https://doi.org/10.1088/1475-7516/2012/06/006
https://doi.org/10.48550/arXiv.1203.1252
https://inspirehep.net/literature/1093024
https://doi.org/10.1088/1475-7516/2014/08/052
https://doi.org/10.48550/arXiv.1403.5849
https://inspirehep.net/literature/1286856
https://doi.org/10.1088/1475-7516/2014/08/053
https://doi.org/10.48550/arXiv.1403.5922
https://inspirehep.net/literature/1286863
https://doi.org/10.1088/1475-7516/2018/04/016
https://doi.org/10.48550/arXiv.1612.08270
https://inspirehep.net/literature/1506359
https://doi.org/10.1103/PhysRevD.96.083526
https://doi.org/10.48550/arXiv.1706.09412
https://inspirehep.net/literature/1607978
https://doi.org/10.1103/PhysRevD.100.103511
https://doi.org/10.48550/arXiv.1908.00906
https://inspirehep.net/literature/1747792
https://doi.org/10.48550/arXiv.2503.00108
https://inspirehep.net/literature/2896531


J
C
A
P
0
7
(
2
0
2
5
)
0
7
7

[51] M. Millea and F. Bouchet, Cosmic Microwave Background Constraints in Light of Priors Over
Reionization Histories, Astron. Astrophys. 617 (2018) A96 [arXiv:1804.08476] [INSPIRE].

[52] J.A. Vázquez, M. Bridges, M.P. Hobson and A.N. Lasenby, Reconstruction of the Dark Energy
equation of state, JCAP 09 (2012) 020 [arXiv:1205.0847] [INSPIRE].

[53] S. Hee, W. Handley, M.P. Hobson and A.N. Lasenby, Bayesian model selection without
evidences: application to the dark energy equation-of-state, Mon. Not. Roy. Astron. Soc. 455
(2016) 2461 [arXiv:1506.09024] [INSPIRE].

[54] A.N. Ormondroyd, W.J. Handley, M.P. Hobson and A.N. Lasenby, Nonparametric
reconstructions of dynamical dark energy via flexknots, arXiv:2503.08658 [INSPIRE].

[55] S. Heimersheim, N.S. Sartorio, A. Fialkov and D.R. Lorimer, What It Takes to Measure
Reionization with Fast Radio Bursts, Astrophys. J. 933 (2022) 57 [arXiv:2107.14242]
[INSPIRE].

[56] M. Olamaie et al., Free-form modelling of galaxy clusters: a Bayesian and data-driven approach,
Mon. Not. Roy. Astron. Soc. 481 (2018) 3853 [arXiv:1705.10712] [INSPIRE].

[57] S. Heimersheim et al., FlexKnot and Gaussian Process for 21 cm global signal analysis and
foreground separation, Mon. Not. Roy. Astron. Soc. 527 (2023) 11404 [arXiv:2310.05608]
[INSPIRE].

[58] E. Shen, D. Anstey, E. de Lera Acedo and A. Fialkov, FlexKnot as a generalized model of the
sky-averaged 21-cm signal at z ∼ 6–30 in the presence of systematics, Mon. Not. Roy. Astron.
Soc. 529 (2024) 1642 [arXiv:2311.14537].

[59] A.A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Phys.
Lett. B 91 (1980) 99 [INSPIRE].

[60] A.H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness
Problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].

[61] A.D. Linde, A New Inflationary Universe Scenario: A Possible Solution of the Horizon,
Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Phys. Lett. B 108 (1982)
389 [INSPIRE].

[62] A. Albrecht and P.J. Steinhardt, Cosmology for Grand Unified Theories with Radiatively
Induced Symmetry Breaking, Phys. Rev. Lett. 48 (1982) 1220 [INSPIRE].

[63] S.W. Hawking, I.G. Moss and J.M. Stewart, Bubble Collisions in the Very Early Universe,
Phys. Rev. D 26 (1982) 2681 [INSPIRE].

[64] A.D. Linde, Chaotic Inflation, Phys. Lett. B 129 (1983) 177 [INSPIRE].

[65] A.A. Starobinsky, Spectrum of relict gravitational radiation and the early state of the universe,
JETP Lett. 30 (1979) 682 [INSPIRE].

[66] V.F. Mukhanov, Gravitational Instability of the Universe Filled with a Scalar Field, JETP Lett.
41 (1985) 493 [INSPIRE].

[67] V.F. Mukhanov, Quantum Theory of Gauge Invariant Cosmological Perturbations, Sov. Phys.
JETP 67 (1988) 1297 [INSPIRE].

[68] E.D. Stewart and D.H. Lyth, A more accurate analytic calculation of the spectrum of
cosmological perturbations produced during inflation, Phys. Lett. B 302 (1993) 171
[gr-qc/9302019] [INSPIRE].

[69] A.R. Liddle, P. Parsons and J.D. Barrow, Formalizing the slow roll approximation in inflation,
Phys. Rev. D 50 (1994) 7222 [astro-ph/9408015] [INSPIRE].

– 24 –

https://doi.org/10.1051/0004-6361/201833288
https://doi.org/10.48550/arXiv.1804.08476
https://inspirehep.net/literature/1669671
https://doi.org/10.1088/1475-7516/2012/09/020
https://doi.org/10.48550/arXiv.1205.0847
https://inspirehep.net/literature/1113551
https://doi.org/10.1093/mnras/stv2217
https://doi.org/10.1093/mnras/stv2217
https://doi.org/10.48550/arXiv.1506.09024
https://inspirehep.net/literature/1380422
https://doi.org/10.48550/arXiv.2503.08658
https://inspirehep.net/literature/2899000
https://doi.org/10.3847/1538-4357/ac70c9
https://doi.org/10.48550/arXiv.2107.14242
https://inspirehep.net/literature/1896600
https://doi.org/10.1093/mnras/sty2495
https://doi.org/10.48550/arXiv.1705.10712
https://inspirehep.net/literature/1601624
https://doi.org/10.1093/mnras/stad3936
https://doi.org/10.48550/arXiv.2310.05608
https://inspirehep.net/literature/2709505
https://doi.org/10.1093/mnras/stae614
https://doi.org/10.1093/mnras/stae614
https://doi.org/10.48550/arXiv.2311.14537
https://doi.org/10.1016/0370-2693(80)90670-X
https://doi.org/10.1016/0370-2693(80)90670-X
https://inspirehep.net/literature/157549
https://doi.org/10.1103/PhysRevD.23.347
https://inspirehep.net/literature/154280
https://doi.org/10.1016/0370-2693(82)91219-9
https://doi.org/10.1016/0370-2693(82)91219-9
https://inspirehep.net/literature/168781
https://doi.org/10.1103/PhysRevLett.48.1220
https://inspirehep.net/literature/176612
https://doi.org/10.1103/PhysRevD.26.2681
https://inspirehep.net/literature/11749
https://doi.org/10.1016/0370-2693(83)90837-7
https://inspirehep.net/literature/196244
https://inspirehep.net/literature/147727
https://inspirehep.net/literature/222017
https://inspirehep.net/literature/271968
https://doi.org/10.1016/0370-2693(93)90379-V
https://doi.org/10.48550/arXiv.gr-qc/9302019
https://inspirehep.net/literature/352726
https://doi.org/10.1103/PhysRevD.50.7222
https://doi.org/10.48550/arXiv.astro-ph/9408015
https://inspirehep.net/literature/375405


J
C
A
P
0
7
(
2
0
2
5
)
0
7
7

[70] J.-O. Gong and E.D. Stewart, The density perturbation power spectrum to second order
corrections in the slow roll expansion, Phys. Lett. B 510 (2001) 1 [astro-ph/0101225]
[INSPIRE].

[71] D.J. Schwarz, C.A. Terrero-Escalante and A.A. García, Higher order corrections to primordial
spectra from cosmological inflation, Phys. Lett. B 517 (2001) 243 [astro-ph/0106020]
[INSPIRE].

[72] S.M. Leach, A.R. Liddle, J. Martin and D.J. Schwarz, Cosmological parameter estimation and
the inflationary cosmology, Phys. Rev. D 66 (2002) 023515 [astro-ph/0202094] [INSPIRE].

[73] V. Vennin, Horizon-Flow off-track for Inflation, Phys. Rev. D 89 (2014) 083526
[arXiv:1401.2926] [INSPIRE].

[74] P. Auclair and C. Ringeval, Slow-roll inflation at N3LO, Phys. Rev. D 106 (2022) 063512
[arXiv:2205.12608] [INSPIRE].

[75] E. Bianchi and M. Gamonal, Primordial power spectrum at N3LO in effective theories of
inflation, Phys. Rev. D 110 (2024) 104032 [arXiv:2405.03157] [INSPIRE].

[76] M. Ballardini, A. Davoli and S.S. Sirletti, Third-order corrections to the slow-roll expansion:
Calculation and constraints with Planck, ACT, SPT, and BICEP/Keck, Phys. Dark Univ. 47
(2025) 101813 [arXiv:2408.05210] [INSPIRE].

[77] J. Martin, C. Ringeval and V. Vennin, Encyclopædia Inflationaris, Phys. Dark Univ. 5-6 (2014)
75 [arXiv:1303.3787] [INSPIRE].

[78] J. Martin, C. Ringeval and V. Vennin, Cosmic Inflation at the crossroads, JCAP 07 (2024) 087
[arXiv:2404.10647] [INSPIRE].

[79] M. Ballardini, Chasing cosmic inflation: constraints for inflationary models and reheating
insights, JCAP 01 (2025) 116 [arXiv:2408.03321] [INSPIRE].

[80] J.M. Bardeen, Gauge Invariant Cosmological Perturbations, Phys. Rev. D 22 (1980) 1882
[INSPIRE].

[81] J.M. Bardeen, P.J. Steinhardt and M.S. Turner, Spontaneous creation of almost scale-free
density perturbations in an inflationary universe, Phys. Rev. D 28 (1983) 679 [INSPIRE].

[82] D.H. Lyth, Large Scale Energy Density Perturbations and Inflation, Phys. Rev. D 31 (1985)
1792 [INSPIRE].

[83] N. Deruelle and V.F. Mukhanov, Matching conditions for cosmological perturbations, Phys. Rev.
D 52 (1995) 5549 [gr-qc/9503050] [INSPIRE].

[84] J. Martin and D.J. Schwarz, Influence of cosmological transitions on the evolution of density
perturbations, Phys. Rev. D 57 (1998) 3302 [gr-qc/9704049] [INSPIRE].

[85] K.A. Malik and D. Wands, Cosmological perturbations, Phys. Rept. 475 (2009) 1
[arXiv:0809.4944] [INSPIRE].

[86] V.F. Mukhanov and G.V. Chibisov, Quantum Fluctuations and a Nonsingular Universe, JETP
Lett. 33 (1981) 532 [INSPIRE].

[87] M. Sasaki, Large Scale Quantum Fluctuations in the Inflationary Universe, Prog. Theor. Phys.
76 (1986) 1036 [INSPIRE].

[88] V.F. Mukhanov, H.A. Feldman and R.H. Brandenberger, Theory of cosmological perturbations,
Phys. Rept. 215 (1992) 203 [INSPIRE].

– 25 –

https://doi.org/10.1016/S0370-2693(01)00616-5
https://doi.org/10.48550/arXiv.astro-ph/0101225
https://inspirehep.net/literature/552095
https://doi.org/10.1016/S0370-2693(01)01036-X
https://doi.org/10.48550/arXiv.astro-ph/0106020
https://inspirehep.net/literature/557701
https://doi.org/10.1103/PhysRevD.66.023515
https://doi.org/10.48550/arXiv.astro-ph/0202094
https://inspirehep.net/literature/582616
https://doi.org/10.1103/PhysRevD.89.083526
https://doi.org/10.48550/arXiv.1401.2926
https://inspirehep.net/literature/1276805
https://doi.org/10.1103/PhysRevD.106.063512
https://doi.org/10.48550/arXiv.2205.12608
https://inspirehep.net/literature/2087682
https://doi.org/10.1103/PhysRevD.110.104032
https://doi.org/10.48550/arXiv.2405.03157
https://inspirehep.net/literature/2783574
https://doi.org/10.1016/j.dark.2025.101813
https://doi.org/10.1016/j.dark.2025.101813
https://doi.org/10.48550/arXiv.2408.05210
https://inspirehep.net/literature/2816984
https://doi.org/10.1016/j.dark.2024.101653
https://doi.org/10.1016/j.dark.2024.101653
https://doi.org/10.48550/arXiv.1303.3787
https://inspirehep.net/literature/1223966
https://doi.org/10.1088/1475-7516/2024/07/087
https://doi.org/10.48550/arXiv.2404.10647
https://inspirehep.net/literature/2777961
https://doi.org/10.1088/1475-7516/2025/01/116
https://doi.org/10.48550/arXiv.2408.03321
https://inspirehep.net/literature/2815457
https://doi.org/10.1103/PhysRevD.22.1882
https://inspirehep.net/literature/159548
https://doi.org/10.1103/PhysRevD.28.679
https://inspirehep.net/literature/13328
https://doi.org/10.1103/PhysRevD.31.1792
https://doi.org/10.1103/PhysRevD.31.1792
https://inspirehep.net/literature/199990
https://doi.org/10.1103/PhysRevD.52.5549
https://doi.org/10.1103/PhysRevD.52.5549
https://doi.org/10.48550/arXiv.gr-qc/9503050
https://inspirehep.net/literature/393779
https://doi.org/10.1103/PhysRevD.57.3302
https://doi.org/10.48550/arXiv.gr-qc/9704049
https://inspirehep.net/literature/442290
https://doi.org/10.1016/j.physrep.2009.03.001
https://doi.org/10.48550/arXiv.0809.4944
https://inspirehep.net/literature/797883
https://inspirehep.net/literature/170051
https://doi.org/10.1143/PTP.76.1036
https://doi.org/10.1143/PTP.76.1036
https://inspirehep.net/literature/230212
https://doi.org/10.1016/0370-1573(92)90044-Z
https://inspirehep.net/literature/303063


J
C
A
P
0
7
(
2
0
2
5
)
0
7
7

[89] H. Kodama and M. Sasaki, Cosmological Perturbation Theory, Prog. Theor. Phys. Suppl. 78
(1984) 1 [INSPIRE].

[90] T.S. Bunch and P.C.W. Davies, Quantum Field Theory in de Sitter Space: Renormalization by
Point Splitting, Proc. Roy. Soc. Lond. A 360 (1978) 117 [INSPIRE].

[91] A. Kosowsky and M.S. Turner, CBR anisotropy and the running of the scalar spectral index,
Phys. Rev. D 52 (1995) R1739 [astro-ph/9504071] [INSPIRE].

[92] C. Cheung et al., The Effective Field Theory of Inflation, JHEP 03 (2008) 014
[arXiv:0709.0293] [INSPIRE].

[93] G.A. Palma, Untangling features in the primordial spectra, JCAP 04 (2015) 035
[arXiv:1412.5615] [INSPIRE].

[94] G.A. Palma, B. Pradenas, W. Riquelme and S. Sypsas, Scale invariance of the primordial
tensor power spectrum, Phys. Rev. D 95 (2017) 083519 [arXiv:1612.09253] [INSPIRE].

[95] A. Durakovic, P. Hunt, S.P. Patil and S. Sarkar, Reconstructing the EFT of Inflation from
Cosmological Data, SciPost Phys. 7 (2019) 049 [arXiv:1904.00991] [INSPIRE].

[96] R.L. Arnowitt, S. Deser and C.W. Misner, Republication of: The dynamics of general relativity,
Gen. Rel. Grav. 40 (2008) 1997 [gr-qc/0405109] [INSPIRE].

[97] A. Achúcarro, J.-O. Gong, G.A. Palma and S.P. Patil, Correlating features in the primordial
spectra, Phys. Rev. D 87 (2013) 121301 [arXiv:1211.5619] [INSPIRE].

[98] A. Achúcarro et al., Features of heavy physics in the CMB power spectrum, JCAP 01 (2011)
030 [arXiv:1010.3693] [INSPIRE].

[99] X. Chen, Primordial Features as Evidence for Inflation, JCAP 01 (2012) 038
[arXiv:1104.1323] [INSPIRE].

[100] A.A. Starobinsky, Spectrum of adiabatic perturbations in the universe when there are
singularities in the inflation potential, JETP Lett. 55 (1992) 489 [INSPIRE].

[101] X. Chen, R. Easther and E.A. Lim, Large Non-Gaussianities in Single Field Inflation, JCAP
06 (2007) 023 [astro-ph/0611645] [INSPIRE].

[102] X. Chen, R. Easther and E.A. Lim, Generation and Characterization of Large
Non-Gaussianities in Single Field Inflation, JCAP 04 (2008) 010 [arXiv:0801.3295] [INSPIRE].

[103] M. Cielo, G. Mangano, O. Pisanti and D. Wands, Steepest growth in the primordial power
spectrum from excited states at a sudden transition, JCAP 04 (2025) 007 [arXiv:2410.22154]
[INSPIRE].

[104] A. Ravenni, L. Verde and A.J. Cuesta, Red, Straight, no bends: primordial power spectrum
reconstruction from CMB and large-scale structure, JCAP 08 (2016) 028 [arXiv:1605.06637]
[INSPIRE].

[105] B. Hu, J.-W. Hu, Z.-K. Guo and R.-G. Cai, Reconstruction of the primordial power spectra with
Planck and BICEP2 data, Phys. Rev. D 90 (2014) 023544 [arXiv:1404.3690] [INSPIRE].

[106] W.J. Handley, M.P. Hobson and A.N. Lasenby, PolyChord: nested sampling for cosmology, Mon.
Not. Roy. Astron. Soc. 450 (2015) L61 [arXiv:1502.01856] [INSPIRE].

[107] W.J. Handley, M.P. Hobson and A.N. Lasenby, POLYCHORD: next-generation nested sampling,
Mon. Not. Roy. Astron. Soc. 453 (2015) 4385 [arXiv:1506.00171] [INSPIRE].

[108] J. Torrado and A. Lewis, Cobaya: Code for Bayesian Analysis of hierarchical physical models,
JCAP 05 (2021) 057 [arXiv:2005.05290] [INSPIRE].

– 26 –

https://doi.org/10.1143/PTPS.78.1
https://doi.org/10.1143/PTPS.78.1
https://inspirehep.net/literature/216359
https://doi.org/10.1098/rspa.1978.0060
https://inspirehep.net/literature/134659
https://doi.org/10.1103/PhysRevD.52.R1739
https://doi.org/10.48550/arXiv.astro-ph/9504071
https://inspirehep.net/literature/395988
https://doi.org/10.1088/1126-6708/2008/03/014
https://doi.org/10.48550/arXiv.0709.0293
https://inspirehep.net/literature/759730
https://doi.org/10.1088/1475-7516/2015/04/035
https://doi.org/10.48550/arXiv.1412.5615
https://inspirehep.net/literature/1334873
https://doi.org/10.1103/PhysRevD.95.083519
https://doi.org/10.48550/arXiv.1612.09253
https://inspirehep.net/literature/1507074
https://doi.org/10.21468/SciPostPhys.7.4.049
https://doi.org/10.48550/arXiv.1904.00991
https://inspirehep.net/literature/1727643
https://doi.org/10.1007/s10714-008-0661-1
https://doi.org/10.48550/arXiv.gr-qc/0405109
https://inspirehep.net/literature/43103
https://doi.org/10.1103/PhysRevD.87.121301
https://doi.org/10.48550/arXiv.1211.5619
https://inspirehep.net/literature/1203769
https://doi.org/10.1088/1475-7516/2011/01/030
https://doi.org/10.1088/1475-7516/2011/01/030
https://doi.org/10.48550/arXiv.1010.3693
https://inspirehep.net/literature/873436
https://doi.org/10.1088/1475-7516/2012/01/038
https://doi.org/10.48550/arXiv.1104.1323
https://inspirehep.net/literature/895200
https://inspirehep.net/literature/343958
https://doi.org/10.1088/1475-7516/2007/06/023
https://doi.org/10.1088/1475-7516/2007/06/023
https://doi.org/10.48550/arXiv.astro-ph/0611645
https://inspirehep.net/literature/732315
https://doi.org/10.1088/1475-7516/2008/04/010
https://doi.org/10.48550/arXiv.0801.3295
https://inspirehep.net/literature/777874
https://doi.org/10.1088/1475-7516/2025/04/007
https://doi.org/10.48550/arXiv.2410.22154
https://inspirehep.net/literature/2843539
https://doi.org/10.1088/1475-7516/2016/08/028
https://doi.org/10.48550/arXiv.1605.06637
https://inspirehep.net/literature/1464797
https://doi.org/10.1103/PhysRevD.90.023544
https://doi.org/10.48550/arXiv.1404.3690
https://inspirehep.net/literature/1290328
https://doi.org/10.1093/mnrasl/slv047
https://doi.org/10.1093/mnrasl/slv047
https://doi.org/10.48550/arXiv.1502.01856
https://inspirehep.net/literature/1343295
https://doi.org/10.1093/mnras/stv1911
https://doi.org/10.48550/arXiv.1506.00171
https://inspirehep.net/literature/1818639
https://doi.org/10.1088/1475-7516/2021/05/057
https://doi.org/10.48550/arXiv.2005.05290
https://inspirehep.net/literature/1795170


J
C
A
P
0
7
(
2
0
2
5
)
0
7
7

[109] A. Lewis, A. Challinor and A. Lasenby, Efficient Computation of Cosmic Microwave
Background Anisotropies in Closed Friedmann-Robertson-Walker Models, Astrophys. J. 538
(2000) 473 [astro-ph/9911177] [INSPIRE].

[110] C. Howlett, A. Lewis, A. Hall and A. Challinor, CMB power spectrum parameter degeneracies
in the era of precision cosmology, JCAP 04 (2012) 027 [arXiv:1201.3654] [INSPIRE].

[111] K. Akita and M. Yamaguchi, A precision calculation of relic neutrino decoupling, JCAP 08
(2020) 012 [arXiv:2005.07047] [INSPIRE].

[112] J. Froustey, C. Pitrou and M.C. Volpe, Neutrino decoupling including flavour oscillations and
primordial nucleosynthesis, JCAP 12 (2020) 015 [arXiv:2008.01074] [INSPIRE].

[113] J.J. Bennett et al., Towards a precision calculation of the effective number of neutrinos Neff in
the Standard Model. Part II. Neutrino decoupling in the presence of flavour oscillations and
finite-temperature QED, JCAP 04 (2021) 073 [arXiv:2012.02726] [INSPIRE].

[114] A. Mead, S. Brieden, T. Tröster and C. Heymans, hmcode-2020: improved modelling of
non-linear cosmological power spectra with baryonic feedback, Mon. Not. Roy. Astron. Soc. 502
(2021) 1401 [arXiv:2009.01858] [INSPIRE].

[115] O. Pisanti et al., PArthENoPE: Public Algorithm Evaluating the Nucleosynthesis of Primordial
Elements, Comput. Phys. Commun. 178 (2008) 956 [arXiv:0705.0290] [INSPIRE].

[116] R. Consiglio et al., PArthENoPE reloaded, Comput. Phys. Commun. 233 (2018) 237
[arXiv:1712.04378] [INSPIRE].

[117] S. Gariazzo, P. F. de Salas, O. Pisanti and R. Consiglio, PArthENoPE revolutions, Comput.
Phys. Commun. 271 (2022) 108205 [arXiv:2103.05027] [INSPIRE].

[118] Planck collaboration, Planck 2018 results. V. CMB power spectra and likelihoods, Astron.
Astrophys. 641 (2020) A5 [arXiv:1907.12875] [INSPIRE].

[119] Planck collaboration, Planck 2018 results. VIII. Gravitational lensing, Astron. Astrophys. 641
(2020) A8 [arXiv:1807.06210] [INSPIRE].

[120] Planck collaboration, Planck intermediate results. LVII. Joint Planck LFI and HFI data
processing, Astron. Astrophys. 643 (2020) A42 [arXiv:2007.04997] [INSPIRE].

[121] E. Rosenberg, S. Gratton and G. Efstathiou, CMB power spectra and cosmological parameters
from Planck PR4 with CamSpec, Mon. Not. Roy. Astron. Soc. 517 (2022) 4620
[arXiv:2205.10869] [INSPIRE].

[122] G. Efstathiou and S. Gratton, A Detailed Description of the CamSpec Likelihood Pipeline and a
Reanalysis of the Planck High Frequency Maps, arXiv:1910.00483
[DOI:10.21105/astro.1910.00483] [INSPIRE].

[123] J.-M. Delouis et al., SRoll2: an improved mapmaking approach to reduce large-scale systematic
effects in the Planck High Frequency Instrument legacy maps, Astron. Astrophys. 629 (2019)
A38 [arXiv:1901.11386] [INSPIRE].

[124] L. Pagano et al., Reionization optical depth determination from Planck HFI data with ten
percent accuracy, Astron. Astrophys. 635 (2020) A99 [arXiv:1908.09856] [INSPIRE].

[125] J. Carron, M. Mirmelstein and A. Lewis, CMB lensing from Planck PR4 maps, JCAP 09
(2022) 039 [arXiv:2206.07773] [INSPIRE].

[126] W. Handley, fgivenx: A Python package for functional posterior plotting, J. Open Source Softw.
3 (2018) 849.

– 27 –

https://doi.org/10.1086/309179
https://doi.org/10.1086/309179
https://doi.org/10.48550/arXiv.astro-ph/9911177
https://inspirehep.net/literature/517329
https://doi.org/10.1088/1475-7516/2012/04/027
https://doi.org/10.48550/arXiv.1201.3654
https://inspirehep.net/literature/1084947
https://doi.org/10.1088/1475-7516/2020/08/012
https://doi.org/10.1088/1475-7516/2020/08/012
https://doi.org/10.48550/arXiv.2005.07047
https://inspirehep.net/literature/1796385
https://doi.org/10.1088/1475-7516/2020/12/015
https://doi.org/10.48550/arXiv.2008.01074
https://inspirehep.net/literature/1810032
https://doi.org/10.1088/1475-7516/2021/04/073
https://doi.org/10.48550/arXiv.2012.02726
https://inspirehep.net/literature/1835091
https://doi.org/10.1093/mnras/stab082
https://doi.org/10.1093/mnras/stab082
https://doi.org/10.48550/arXiv.2009.01858
https://inspirehep.net/literature/1815266
https://doi.org/10.1016/j.cpc.2008.02.015
https://doi.org/10.48550/arXiv.0705.0290
https://inspirehep.net/literature/749755
https://doi.org/10.1016/j.cpc.2018.06.022
https://doi.org/10.48550/arXiv.1712.04378
https://inspirehep.net/literature/1642709
https://doi.org/10.1016/j.cpc.2021.108205
https://doi.org/10.1016/j.cpc.2021.108205
https://doi.org/10.48550/arXiv.2103.05027
https://inspirehep.net/literature/1850861
https://doi.org/10.1051/0004-6361/201936386
https://doi.org/10.1051/0004-6361/201936386
https://doi.org/10.48550/arXiv.1907.12875
https://inspirehep.net/literature/1747094
https://doi.org/10.1051/0004-6361/201833886
https://doi.org/10.1051/0004-6361/201833886
https://doi.org/10.48550/arXiv.1807.06210
https://inspirehep.net/literature/1682895
https://doi.org/10.1051/0004-6361/202038073
https://doi.org/10.48550/arXiv.2007.04997
https://inspirehep.net/literature/1806508
https://doi.org/10.1093/mnras/stac2744
https://doi.org/10.48550/arXiv.2205.10869
https://inspirehep.net/literature/2086618
https://doi.org/10.48550/arXiv.1910.00483
https://doi.org/10.21105/astro.1910.00483
https://inspirehep.net/literature/1757074
https://doi.org/10.1051/0004-6361/201834882
https://doi.org/10.1051/0004-6361/201834882
https://doi.org/10.48550/arXiv.1901.11386
https://inspirehep.net/literature/1717928
https://doi.org/10.1051/0004-6361/201936630
https://doi.org/10.48550/arXiv.1908.09856
https://inspirehep.net/literature/1751347
https://doi.org/10.1088/1475-7516/2022/09/039
https://doi.org/10.1088/1475-7516/2022/09/039
https://doi.org/10.48550/arXiv.2206.07773
https://inspirehep.net/literature/2097160
https://doi.org/10.21105/joss.00849
https://doi.org/10.21105/joss.00849


J
C
A
P
0
7
(
2
0
2
5
)
0
7
7

[127] Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys.
641 (2020) A6 [Erratum ibid. 652 (2021) C4] [arXiv:1807.06209] [INSPIRE].

[128] T. Hiramatsu, E. Komatsu, M. Hazumi and M. Sasaki, Reconstruction of primordial tensor
power spectra from B-mode polarization of the cosmic microwave background, Phys. Rev. D 97
(2018) 123511 [arXiv:1803.00176] [INSPIRE].

[129] F. Beutler et al., Primordial Features from Linear to Nonlinear Scales, Phys. Rev. Res. 1 (2019)
033209 [arXiv:1906.08758] [INSPIRE].

[130] M. Ballardini et al., New constraints on primordial features from the galaxy two-point
correlation function, Phys. Rev. D 107 (2023) 043532 [arXiv:2202.08819] [INSPIRE].

[131] T. Mergulhão, F. Beutler and J.A. Peacock, Primordial feature constraints from BOSS +
eBOSS, JCAP 08 (2023) 012 [arXiv:2303.13946] [INSPIRE].

[132] G. Martínez-Somonte, A. Marcos-Caballero, E. Martínez-González and G. Cañas-Herrera,
Bayesian inference methodology for primordial power spectrum reconstructions from Large Scale
Structure, JCAP 06 (2024) 072 [arXiv:2306.16866] [INSPIRE].

[133] Euclid collaboration, Euclid. I. Overview of the Euclid mission, Astron. Astrophys. 697 (2025)
A1 [arXiv:2405.13491] [INSPIRE].

[134] DESI collaboration, DESI 2024 VI: cosmological constraints from the measurements of baryon
acoustic oscillations, JCAP 02 (2025) 021 [arXiv:2404.03002] [INSPIRE].

[135] Z. Vlah, U. Seljak, M.Y. Chu and Y. Feng, Perturbation theory, effective field theory, and
oscillations in the power spectrum, JCAP 03 (2016) 057 [arXiv:1509.02120] [INSPIRE].

[136] A. Vasudevan, M.M. Ivanov, S. Sibiryakov and J. Lesgourgues, Time-sliced perturbation theory
with primordial non-Gaussianity and effects of large bulk flows on inflationary oscillating
features, JCAP 09 (2019) 037 [arXiv:1906.08697] [INSPIRE].

[137] M. Ballardini et al., Non-linear damping of superimposed primordial oscillations on the matter
power spectrum in galaxy surveys, JCAP 04 (2020) 030 [arXiv:1912.12499] [INSPIRE].

[138] Y. Li, H.-M. Zhu and B. Li, Non-linear reconstruction of features in the primordial power
spectrum from large-scale structure, Mon. Not. Roy. Astron. Soc. 514 (2022) 4363
[arXiv:2102.09007] [INSPIRE].

[139] Euclid collaboration, Euclid: The search for primordial features, Astron. Astrophys. 683
(2024) A220 [arXiv:2309.17287] [INSPIRE].

[140] M. Ballardini and N. Barbieri, Refining the nonlinear modelling of primordial oscillatory
features, JCAP 05 (2025) 059 [arXiv:2411.02261] [INSPIRE].

[141] E. Calabrese et al., Cosmic Microwave Weak lensing data as a test for the dark universe, Phys.
Rev. D 77 (2008) 123531 [arXiv:0803.2309] [INSPIRE].

[142] G. Domènech and M. Kamionkowski, Lensing anomaly and oscillations in the primordial power
spectrum, JCAP 11 (2019) 040 [arXiv:1905.04323] [INSPIRE].

[143] G. Domènech, X. Chen, M. Kamionkowski and A. Loeb, Planck residuals anomaly as a
fingerprint of alternative scenarios to inflation, JCAP 10 (2020) 005 [arXiv:2005.08998]
[INSPIRE].

[144] M. Ballardini and F. Finelli, On the primordial origin of the smoothing excess in the Planck
temperature power spectrum in light of LSS data, JCAP 10 (2022) 083 [arXiv:2207.14410]
[INSPIRE].

– 28 –

https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.48550/arXiv.1807.06209
https://inspirehep.net/literature/1682902
https://doi.org/10.1103/PhysRevD.97.123511
https://doi.org/10.1103/PhysRevD.97.123511
https://doi.org/10.48550/arXiv.1803.00176
https://inspirehep.net/literature/1658066
https://doi.org/10.1103/PhysRevResearch.1.033209
https://doi.org/10.1103/PhysRevResearch.1.033209
https://doi.org/10.48550/arXiv.1906.08758
https://inspirehep.net/literature/1740714
https://doi.org/10.1103/PhysRevD.107.043532
https://doi.org/10.48550/arXiv.2202.08819
https://inspirehep.net/literature/2034489
https://doi.org/10.1088/1475-7516/2023/08/012
https://doi.org/10.48550/arXiv.2303.13946
https://inspirehep.net/literature/2645724
https://doi.org/10.1088/1475-7516/2024/06/072
https://doi.org/10.48550/arXiv.2306.16866
https://inspirehep.net/literature/2673053
https://doi.org/10.1051/0004-6361/202450810
https://doi.org/10.1051/0004-6361/202450810
https://doi.org/10.48550/arXiv.2405.13491
https://inspirehep.net/literature/2789425
https://doi.org/10.1088/1475-7516/2025/02/021
https://doi.org/10.48550/arXiv.2404.03002
https://inspirehep.net/literature/2774167
https://doi.org/10.1088/1475-7516/2016/03/057
https://doi.org/10.48550/arXiv.1509.02120
https://inspirehep.net/literature/1391987
https://doi.org/10.1088/1475-7516/2019/09/037
https://doi.org/10.48550/arXiv.1906.08697
https://inspirehep.net/literature/1740710
https://doi.org/10.1088/1475-7516/2020/04/030
https://doi.org/10.48550/arXiv.1912.12499
https://inspirehep.net/literature/1773563
https://doi.org/10.1093/mnras/stac1544
https://doi.org/10.48550/arXiv.2102.09007
https://inspirehep.net/literature/1847344
https://doi.org/10.1051/0004-6361/202348162
https://doi.org/10.1051/0004-6361/202348162
https://doi.org/10.48550/arXiv.2309.17287
https://inspirehep.net/literature/2704993
https://doi.org/10.1088/1475-7516/2025/05/059
https://doi.org/10.48550/arXiv.2411.02261
https://inspirehep.net/literature/2845674
https://doi.org/10.1103/PhysRevD.77.123531
https://doi.org/10.1103/PhysRevD.77.123531
https://doi.org/10.48550/arXiv.0803.2309
https://inspirehep.net/literature/781462
https://doi.org/10.1088/1475-7516/2019/11/040
https://doi.org/10.48550/arXiv.1905.04323
https://inspirehep.net/literature/1734494
https://doi.org/10.1088/1475-7516/2020/10/005
https://doi.org/10.48550/arXiv.2005.08998
https://inspirehep.net/literature/1797002
https://doi.org/10.1088/1475-7516/2022/10/083
https://doi.org/10.48550/arXiv.2207.14410
https://inspirehep.net/literature/2128170

	Introduction
	Inflationary basics
	Background equations
	Primordial power spectrum from quantum fluctuations
	Slow-roll parameters reconstruction from EFT of inflation

	Primordial power spectrum reconstruction formalism
	Cosmological data sets
	Results
	Reconstrunction from CMB data
	Reconstruction of the scalar spectral index
	Slow roll parameters

	Conclusions
	Cosmological parameter stability
	Comparison between Planck PR3 and Planck PR4
	Reconstruction results with A(L)

