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We study the properties of strange quark matter (SQM) and quark stars (QSs) in strong magnetic fields 
within the extended confined isospin-density-dependent mass (CIDDM) model including the temperature 
dependence of the equivalent mass for quarks. The quark symmetry energy, quark symmetry free energy, 
and the equation of state (EOS) of SQM in constant magnetic fields at finite temperature are investigated, 
and it is found that including the temperature dependence in CIDDM model and considering strong 
magnetic fields can both significantly influence the properties of the SQM and the maximum mass 
of quark stars. Using the density-dependent magnetic field and assuming two extreme cases for the 
magnetic field orientation in QSs (the radial orientation in which the local magnetic fields are along the 
radial direction and the transverse orientation in which the local magnetic fields are randomly oriented 
but perpendicular to the radial orientation), we analyze the mass-radius relations for different stages of 
the protoquark stars (PQSs) along the star evolution. Our results indicate that the maximum mass of 
magnetized PQSs may depend on not only the strength distribution and the orientation of the magnetic 
fields inside the PQSs, but also the heating process and the cooling process in the star evolution.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The investigation of the properties of strong interaction matter 
is one of the fundamental issues in nuclear physics and astro-
physics. In terrestrial laboratories, the experiments of high energy 
heavy ion collisions (HICs) can provide the unique tool to explore 
the properties of strong interaction matter. The hot and dense 
quark matter might be created in HICs from the Nuclotron-based 
Ion Collider Facility (NICA) at JINR and the Facility for Antiproton 
and Ion Research (FAIR) at GSI, while the hot quark-gluon plasma 
(QGP) is expected to be created in HICs at the Large Hadron Col-
lider (LHC) at CERN and the Relativistic Heavy Ion Collider (RHIC) 
at BNL. In nature, neutron stars (NSs) provide a unique astrophys-
ical testing grounds of our knowledge to explore the properties of 
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strong interaction matter, especially the equation of state (EOS) of 
neutron-rich matter, at low temperature and high baryon density 
[1,2].

Theoretically, NSs may be converted to strange quark stars 
(QSs), which are made of deconfined absolutely stable u, d and s
quark matter in β-equilibrium condition, i.e., strange quark matter 
(SQM). The possible existence of QSs is one of the most intriguing 
aspects of modern astrophysics and cannot be conclusively ruled 
out [3–9]. In QSs, there exists large u −d quark asymmetry (isospin 
asymmetry) in the star matter, which indicates the importance 
of the isovector properties in SQM, and the numbers of u and d
(ū and d̄) quarks can be generally found unequal in high energy 
HICs at RHIC/LHC, which is also isospin asymmetric. Therefore it 
is of great interests and critical importance to study the isovector 
properties of quark star matter (one can describe these properties 
by studying the quark matter symmetry energy and quark matter 
symmetry free energy), the isospin-dependence of the QCD phase 
diagram, and the isospin effects of partonic dynamics in high en-
ergy HICs.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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When massive stars exhaust the fuel supply, the type II su-
pernova explosion is triggered, which will cause the core to be 
crushed by gravity and may form a newly-born compact star (pro-
toneutron star (PNS) or protoquark star (PQS)) [10–13] or a black 
hole. At the beginning stage of the birth of a PQS, the lepton num-
ber per baryon with the trapped neutrinos is approximately 0.4 
and the entropy per baryon is about one [13]. During the follow-
ing 10–20 seconds, the star matter will be heated by the diffusing 
neutrinos, and the entropy per baryon will increase to two, while 
the neutrino fraction is almost zero. Then the PQSs begins cool-
ing down at the third stage and finally forms into the cold QSs 
[14–16].

In recent decades, the properties of SQM at finite temperature 
under strong magnetic fields have attracted lots of interests, and 
the presence of external magnetic field may harden the EOS of 
SQM when considering that the NSs can be endowed with strong 
magnetic fields [17], i.e., magnetars. At the surface of the com-
pact star, the magnetic field strength is estimated as B ∼ 1014 G 
[18–20], and the magnetic field strength may reach as large as 
B ∼ 1020 G in the core of the self-bound QSs [21,22]. Under 
such strong magnetic fields, the spatial rotational symmetry will 
break and one should introduce the pressure anisotropy of this 
system [22–25]. In [26], the authors use a density-dependent mag-
netic field profile [27,28] and investigate the properties of mag-
netars by assuming two extreme cases for the orientation inside 
the quark stars (one is that the local magnetic fields are along the 
radial direction in QSs, which is denoted as “radial orientation”, 
while the other one is that the magnetic fields are perpendicular 
to the radial direction but randomly oriented in the plane per-
pendicular to the radial direction, which is denoted as “transverse 
orientation”) at zero temperature.

In the present work, we extend the confined isospin-density-
dependent mass (CIDDM) model to include temperature depen-
dence of the equilibrium mass of quarks to investigate the quark 
matter symmetry free energy/ symmetry free energy and the equa-
tion of state (EOS) for SQM in constant magnetic fields at finite 
temperature. The properties of PQSs under strong magnetic fields 
are also studied, and we find that the maximum mass of magne-
tized PQSs may depend on not only the strength distribution and 
the orientation of the magnetic fields inside the stars, but also the 
heating and cooling process in the star evolution.

2. Models and methods

2.1. The confined isospin-density-dependent mass model

The CIDDM model [26,29,30] extends the confined density-
dependent mass model (i.e., the CDDM) model [31–39] by includ-
ing the isospin dependence for the equivalent quark mass. With 
baryon number density nB and isospin asymmetry δ, the quark 
mass can be expressed as

mq = mq0 + mI + miso

= mq0 + D

nB
z

− τqδD In
α
B e−βnB , (1)

where mq0 is the quark current mass, mI = D
nB

z represents the 
flavor-independent quark interactions, while miso = −τqδD Inα

B e−βnB

is the isospin dependent part. For mI = D
nB

z , z is the equivalent 
mass scaling parameter and D can be determined by the stability 
arguments of SQM. For miso = −τqδD Inα

B e−βnB , the parameters D I , 
α and β can determine the isospin-density dependence of the ef-
fective interactions in quark matter, τq means the isospin quantum 
number of quarks, and we set τq = 1 for q = u (u quarks), τq = −1
for q = d (d quarks), and τq = 0 for q = s (s quarks). The isospin 
asymmetry is defined from the works [29,40–43] as

δ = 3
nd − nu

nd + nu
. (2)

In Eq. (1), the quark confinement condition limnB→0 mq = ∞
will be guaranteed if the scaling parameter z > 0 and α ≥ 0. 
In addition, if β > 0, then limnB→∞ miso = 0, which satisfies the 
asymptotic freedom limnB→∞ mq = mq0. The readers are referred 
to Ref. [29] for more details about the CIDDM model.

Using the similar way as in Ref. [44] and Ref. [45], we intro-
duce the temperature dependence of equivalent mass for quarks in 
the CIDDM model by considering the linear confinement and string 
tension σ(T ), and the equivalent quark mass is modified as

mq = mq0 +
(

D

nB
z

− τqδD In
α
B e−βnB

)
σ(T ), (3)

with

σ(T ) = 1 − 8T

λTc
exp

(
−λ

Tc

T

)
, (4)

where q = u, d, s, σ(T ) is the temperature dependent string ten-
sion [46], Tc = 170 MeV is the critical temperature calculated from 
LQCD [47], and λ = 1.605812 is determined as the solution of the 
equation 1 − 8T

λTc
exp(−λ Tc

T ) = 0 when T = Tc . One can find that 
mq decreases as temperature increases, and the equivalent mass 
will reach the quark current mass mq0 when temperature hits the 
critical value Tc , which shows the chiral symmetry restoration fea-
ture.

2.2. Properties of SQM

The weak beta-equilibrium condition for SQM (we assume it is 
composed of u, d, and s quarks and e, μ, νe and νμ leptons with 
electric charge neutrality in beta-equilibrium) can be expressed as

μd = μs = μu + μe − μνe , (5)

μμ = μe and μνμ = μνe . (6)

And the electric charge neutrality condition can be written as

2

3
nu = 1

3
nd + 1

3
ns + ne + nμ. (7)

In an external constant magnetic field with strength B , the en-
ergy spectrum for quarks and leptons with electric charge qi can 
be expressed as [48]

E p,i =
√

p2
z + 2ν|qi |B + m2

i , (8)

where mi is the quark mass, pz is the momentum in the z di-
rection (the magnetic field is assumed to be along the z axis), 
ν = n + 1

2 − qi|qi |
s
2 is the Landau levels with n = 0, 1, 2, 3, ... be-

ing the principal quantum number, and s = +1 for spin-up while 
s = −1 for spin-down. In this paper, we do not consider the con-
tributions from the anomalous magnetic moments because the 
anomalous magnetic moments are not well understood in for 
quark matter in the deconfined condition and are not important 
for leptons [25,27,28,49–52].

The total thermodynamic potential density for SQM at finite 
temperature under strong magnetic fields can be written as

	 =
∑

	i, (9)

i
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where i in the sum is for all flavors of quarks (u, d, and s) and 
leptons (e, μ, νe , and νμ). Then the contribution of the particle 
with flavor i to the thermodynamic potential density is

	i = −
∑
ν

gi(|qi |B)T

2π2 αν

∞∫
0

{ln[1 + e−(E p,i−μ∗
i )/T ]

+ ln[1 + e−(E p,i+μ∗
i )/T ]}dpz, (10)

where αν = 2 − δν,0, μ∗
i is the effective chemical potential (the 

form of the effective chemical potential for leptons is identical to 
the form of their chemical potential), and gi is the value of the 
degeneracy factor for quarks (gi = 3) and leptons (gi = 1).

For the particle with flavor i, the number density can be ob-
tained as

ni =
∑
ν

gi(|qi |B)

2π2
αν

∞∫
0

[ 1

1 + e(E p,i−μ∗
i )/T

− 1

1 + e(E p,i+μ∗
i )/T

]dpz.

(11)

And for the massless neutrinos, the thermodynamic potential 
density and number density are

	i = − gi T

2π2

∞∫
0

{ln[1 + e−(p−μ∗
i )/T ]

+ ln[1 + e−(p+μ∗
i )/T ]}p2dp, (12)

and

ni = gi

2π2

∞∫
0

[ 1

1 + e(p−μ∗
i )/T

− 1

1 + e(p+μ∗
i )/T

]p2dp.

(13)

The total free-energy density F is

F =
∑

i

Fi =
∑

i

(	i + μ∗
i ni) + B2

2
, (14)

where the term B2/2 comes from the magnetic field contribution.
For SQM under strong magnetic field, the O(3) rotational sym-

metry is broken and the pressure for SQM becomes anisotropic. 
The anisotropic pressure may be split into the longitudinal pres-
sure P‖ which is parallel to the magnetic field and the transverse 
pressure P⊥ which is perpendicular to the magnetic field, and for 
a magnetized fermion system the expressions of P‖ and P⊥ can be 
written as [22]

P‖ = −
∑

i=u,d,s,l

	i +
∑

i, j=u,d,s

∂	 j

∂m j

∂m j

∂ni
ni − B2

2
, (15)

P⊥ = −
∑

i=u,d,s,l

	i +
∑

i, j=u,d,s

∂	 j

∂m j

∂m j

∂ni
ni + B2

2
− M B, (16)

where the system magnetization M is given by

M = −∂	/∂ B =
∑

i=u,d,s,l

Mi . (17)

One can find that the magnetic energy density term B2/2 con-
tributes oppositely to the longitudinal and transverse pressures 
under a constant magnetic field, which will lead to a tremen-
dous difference between the longitudinal and transverse pressure 
(P‖ < P⊥) when the magnetic field becomes strong.

Using μi = dF/dni , the effective chemical potential for u, d, 
and s quarks at finite temperature under magnetic field can be 
expressed as

μ∗
u =μu −

{1

3

∑
j=u,d,s

∂	 j

∂m j

×
[
− zD

n(1+z)
B

− τ j D Iδ(αnα−1
B − βnα

B )e−βnB

]

+ D In
α
B e−βnB

(
∂	u

∂mu
− ∂	d

∂md

)

× 6nd

(nu + nd)
2

}
×

[
1 − 8T

λTc
exp(−λ

Tc

T
)

]
, (18)

μ∗
d =μd −

{1

3

∑
j=u,d,s

∂	 j

∂m j

×
[
− zD

n(1+z)
B

− τ j D Iδ(αnα−1
B − βnα

B )e−βnB

]

+ D In
α
B e−βnB

(
∂	d

∂md
− ∂	u

∂mu

)

× 6nu

(nu + nd)
2

}
×

[
1 − 8T

λTc
exp(−λ

Tc

T
)

]
, (19)

and

μ∗
s =μs − 1

3

∑
j=u,d,s

∂	 j

∂m j

×
[
− zD

n(1+z)
B

− τ j D Iδ(αnα−1
B − βnα

B )e−βnB

]

×
[

1 − 8T

λTc
exp(−λ

Tc

T
)

]
. (20)

The energy density is E = ∑
i Ei with

Ei = −
∑
ν

gi(|qi |B)

2π2
αν

∞∫
0

[ E p,i

1 + e(E p,i−μ∗
i )/T

+ E p,i

1 + e(E p,i+μ∗
i )/T

]
dpz − T

∂	i

∂mi

∂mi

∂T
+ B2

2
. (21)

And the entropy density can be calculated as

S =
∑

i

Si =
∑

i

(−∂	i

∂T
− ∂	i

∂mi

∂mi

∂T
), (22)

where

∂	i

∂mi
=

∑
ν

αν
gi |qi|B

2π2

∞∫
0

[ 1

1 + e(E p,i−μ∗
i )/T

+ 1

1 + e(E p,i+μ∗
i )/T

] 1

E p,i
dpz, (23)

and
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∂	i

∂T
= −

∑
ν

αν
gi |qi|B

2π2

∞∫
0

{
ln

[
1 + e−(E p,i−μ∗

i )/T
]

+ (E p,i − μ∗
i )/T

1 + e(E p,i−μ∗
i )/T

+ ln
[

1 + e−(E p,i+μ∗
i )/T

]

+ (E p,i + μ∗
i )/T

1 + e(E p,i+μ∗
i )/T

}
dpz. (24)

From the equation F = E − T S , one can find that the value 
of energy density is identical to the value of free energy density 
when T = 0.

2.3. Density-dependent magnetic fields in quark stars

As it is accepted, the magnetic field strength in the inner core 
of compact stars should be much larger than that at the sur-
face, and people usually propose a density-dependent magnetic 
field distribution to describe the spatial distribution of the mag-
netic field strength [17,26,27]. In this work, we use the follow-
ing density-dependent magnetic field profile inside the PQSs as in 
Ref. [17,27,28,53,54]

B = Bsur f + B0[1 − exp (−β0(nB/n0)
γ )], (25)

where Bsur f is the magnetic field strength at the surface of com-
pact stars and its value is fixed conventionally at Bsur f = 1015 G 
in the present work, B0 is a parameter with dimension of B , 
n0 = 0.16 fm−3 is the normal nuclear matter density, β0 and γ
are two dimensionless parameters that control the density depen-
dence of the magnetic field strength from the center to the surface. 
In Ref. [26], the authors assume two extremely special cases for the 
orientation distribution inside QSs: one is that the local magnetic 
fields are along the radial direction in QSs, which is denoted as 
“radial orientation”, and the other is that the magnetic fields are 
perpendicular to the radial direction but randomly oriented in the 
plane perpendicular to the radial direction, which is denoted as 
“transverse orientation”. By using the EOS for SQM at finite tem-
perature and considering the density-dependent magnetic fields, 
people can obtain the properties of the PQSs under strong mag-
netic fields by solving Tolman–Oppenheimer–Volkoff (TOV) equa-
tions [55].

At the very beginning stage of the birth for the PQSs, the 
number of leptons per baryon with trapped neutrinos is about 
0.4(Yl = Ye +Yμ+Yνl = Ye +Yμ+Yνe +Yνμ = 0.4) and the entropy 
per baryon is about one, which is considered as the first snapshot 
of PQS evolution [15,56]. During the following 10–20 seconds, neu-
trinos can escape from the star and the diffusing neutrinos will 
heat the star matter [10], which increase the corresponding en-
tropy per baryon to 2. In this stage, the neutrino fraction is almost 
zero, and this is the second snapshot of PQS evolution. Following 
the heating stage, the star begins cooling down, then finally a cold 
quark star forms [15,56]. In this work, we describe the star evolu-
tion for PQSs by using three snapshots:

(I) S/nB = 1 , Yl = 0.4, (26)

(II) S/nB = 2 , Yνl = 0, (27)

(III) S/nB = 0 , Yνl = 0. (28)

3. Results and discussions

Following the Ref. [29], the set of parameters we used is: 
mu0 = md0 = 5.5 MeV, ms0 = 80 MeV, me = 0.511 MeV, and mμ =
105.7 MeV. We also choose a typical set of parameters from [29]: 
DI-85 with D I = 85, D = 22.922 MeV fm−3z , α = 0.7, β = 0.1 fm3, 
and z = 1.8. This parameter set can be used to describe the re-
cently discovered large-mass pulsar PSR J0348+ 0432 with the 
mass of 2.01 ± 0.04 M	 [57] as a QS at zero temperature within 
CIDDM model, and by using DI-85 the two-flavor u −d quark mat-
ter symmetry energy is larger than about twice that of a free quark 
gas or normal quark matter within the conventional NJL model. 
Following Farhi and Jaffe [7], the absolute stability of SQM requires 
that the minimum energy per baryon of SQM should be less than 
the minimum energy per baryon of observed stable nuclei, i.e., 
M(56 F e)c2/56 = 930 MeV, and the minimum energy per baryon of 
the β-equilibrium two-flavor u − d quark matter should be larger 
than 930 MeV to be consistent with standard nuclear physics. In 
[58] and [59], the authors calculate the absolute window for SQM 
within different phenomenonlogical models, and in this work the 
EoS for SQM can also satisfy the absolutely stable condition by us-
ing DI-85.

3.1. The quark matter symmetry energy and symmetry free energy

The energy per baryon of quark matter can be expanded in 
isospin asymmetry δ under zero magnetic fields as

E(nB , δ,ns) = E0(nB ,ns) + Esym(nB ,ns)δ
2 +O(δ4), (29)

where E0(nB , ns) = E(nB , δ = 0, ns) is the binding energy per 
baryon number with an equal fraction of u and d quarks. This def-
inition is similar to the case of nuclear matter [60] and the quark 
matter symmetry energy is expressed as

Esym(nB ,ns) = 1

2!
∂2 E(nB , δ,ns)

∂δ2

∣∣∣∣
δ=0

. (30)

The quark matter symmetry free energy Fsym can also be ex-
pressed as

Fsym = 1

2!
∂2 F

∂δ2

∣∣∣∣
δ=0

, (31)

where F is the free energy per baryon for quark matter. One can 
find that there should be a temperature dependent difference be-
tween symmetry free energy and symmetry energy once finite 
temperature condition is considered, while the symmetry free en-
ergy and symmetry energy will have the same value at zero tem-
perature when the entropy density is zero. In Eq. (29), the absence 
of odd-order terms in δ is due to the exchange symmetry between 
u and d quarks in quark matter when one neglects the Coulomb 
interaction among quarks. For quark matter under strong magnetic 
fields, the exchange symmetry will be violated because the elec-
tric charge for u and d quarks are different (this will cause u and 
d quarks to act differently in quark matter under strong magnetic 
fields), and then there might exist a linear term Evio δ in Eq. (29). 
In this work, we still use the conventional definitions of the sym-
metry energy and symmetry free energy (which is the coefficient 
of the δ2 term in Eq. (29)) for simplicity in order to show a direct 
comparison for Esym and Fsym between zero magnetic field case 
and strong magnetic field case.

In Fig. 1, we calculate the two-flavor u − d quark matter sym-
metry free energy and symmetry energy as functions of temper-
ature in constant magnetic fields with strengthes of B = 0, B =
2 × 1018 G and B = 3 × 1018 G within CIDDM model with DI-85, 
when the baryon density is 1.5 fm−3. In DI-85, we set α = 0.7, 
β = 0.1 fm3 to follow the density dependence of the quark mat-
ter symmetry energy of a free Fermi gas or the conventional NJL 
model [29]. In [29], the authors can describe a two solar mass 
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Fig. 1. (Color online) Two-flavor u − d quark matter symmetry free energy (solid 
lines) and symmetry energy (dashed lines) as functions of temperature in constant 
magnetic fields with strengthes of B = 0, B = 2 ×1018 G and B = 3 ×1018 G within 
CIDDM model with DI-85, when the baryon density is set as 1.5 fm−3.

Fig. 2. (Color online) Energy per baryon and free energy per baryon as functions 
of the baryon density for SQM in constant magnetic fields with strengthes of B = 0, 
B = 2 ×1018 G and B = 3 ×1018 G within the CIDDM model with DI-85 at different 
temperature.

quark star by using DI-85 within CIDDM model with zero tem-
perature and zero magnetic field at nB = 1.5 fm−3, and the quark 
matter symmetry energy is larger than about twice that of a free 
quark gas or normal quark matter within the conventional NJL 
model. In order to show a direct comparison, we fix the baryon 
density for quark matter at 1.5 fm−3.

One can find from the B = 0 case in Fig. 1 that the value of 
two-flavor u − d quark matter symmetry free energy decreases 
with temperature, while the value of symmetry energy increases. 
As demonstrated in B = 2 × 1018 G and B = 3 × 1018 G cases, 
the values of the symmetry energy and the symmetry free energy 
are both enhanced by the magnetic field at a certain temperature, 
which indicates an obvious magnetic catalysis phenomenon for the 
symmetry energy and symmetry free energy within the CIDDM 
model with DI-85.

3.2. EOS of SQM in a constant magnetic field

As shown in Fig. 2 and Fig. 3, we calculate the energy per 
baryon, the free energy per baryon, and the corresponding longitu-
dinal and transverse pressures as functions of the baryon density 
for SQM within CIDDM model with DI-85 in constant magnetic 
Fig. 3. (Color online) The corresponding longitudinal and transverse pressure as 
functions of the baryon density for SQM in constant magnetic fields with strengthes 
of B = 0, B = 2 × 1018 G, B = 3 × 1018 G within the CIDDM model with DI-85 at 
different temperature.

fields (B = 0, B = 2 × 1018 G and B = 3 × 1018 G) at different 
temperatures. We can obtain the following information from this 
two figures: (1) The density at the minimum values of the en-
ergy per baryon and the free energy per baryon are both equal to 
the zero-point density of the pressure for T = 0 and B = 0 case, 
which is consistent with the thermodynamic self-consistency and 
the Hugenholtz–Van Hove (HVH) theorem, while the zero-pressure 
point is exactly located at the minimum value on every free en-
ergy per baryon line in T = 30 MeV, B = 0 and T = 50 MeV, B = 0
cases. Due to the relation Fi = Ei − T Si , the minimum value of the 
energy per baryon for SQM and the zero-pressure point will not 
coincide at finite temperature. (2) One can find that the minimum 
of free energy per baryon decreases with the increment of the 
temperature, while the minimum of energy per baryon increases. 
(3) For the constant magnetic field cases B = 2 × 1018 G and B =
3 × 1018 G, the pressure of the system becomes anisotropic, and 
one can find that the density at the minimum of free energy per 
baryon is exactly equal to the zero longitudinal pressure point, 
which is also consistent with the HVH theorem. (4) In addition, 
the minimum of free energy per baryon and the minimum energy 
per baryon both increase with the magnetic fields at a fixed tem-
perature, which is consistent with the magnetic catalysis for quark 
matter symmetry free energy and symmetry energy. And the trans-
verse pressure P⊥ increases with magnetic fields at a fixed baryon 
density, while the longitudinal pressure P || decreases with mag-
netic fields, which leads to a clear splitting between P⊥ and P ||
in constant magnetic fields. Furthermore, the values of P⊥ and P ||
both increase with temperature when magnetic field is fixed.

In order to clarify the difference for the entropy per baryon 
in SQM between the magnetized case and the non-polarized state 
case (B = 0), we set δS/nB = [S(T , B) − S(T , B = 0)]/nB and cal-
culate δS/nB at different temperature and magnetic field cases 
in SQM within CIDDM. For T = 30 MeV, we can obtain δS/nB =
0.024 > 0 at 3n0 when considering B = 2 ×1018 G and B = 0 cases, 
while we can obtain δS/nB = 0.041 > 0 at 3n0 when considering 
B = 2 × 1018 G and B = 0 cases for T = 50 MeV. This result in-
dicates that the entropy of strongly magnetized quark matter can 
be larger than the entropy of the non-polarized matter in CIDDM, 
which is consistent with the result in nuclear matter from the 
work [23].

3.3. Quark stars at finite temperature under strong magnetic fields

Before we calculate the three snapshots in time evolution of 
PQSs within the CIDDM model, we first study the properties of 
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Fig. 4. (Color online) Maximum mass of static QSs using the transverse and radial 
orientations of the magnetic fields as a function of B0 within the CIDDM model 
with DI-85 at different temperature.

quark stars in finite temperature and strong magnetic field cases. 
Shown in Fig. 4 is the maximum mass of static QSs using the trans-
verse and radial orientations of the magnetic fields as a function of 
B0 within the CIDDM model. We use the fast B-profile (this profile 
can give a stronger density dependence for magnetic field strength 
by setting γ = 3 and β0 = 0.001, which indicates obvious effects 
of density-dependent magnetic fields) from the Ref. [26]. One can 
find in Fig. 4 that the maximum mass of static QSs increases with 
B0 for the transverse orientation at a fixed temperature, while the 
maximum mass of static QSs decreases with B0 for the radial ori-
entation, which implies a mass asymmetry for static QSs in strong 
magnetic fields. In order to observe the effects of the magnetic 
field orientation on the maximum mass of QSs, the normalized 
mass asymmetry δm is defined as

δm = M⊥ − M||
(M⊥ + M||)/2

, (32)

where M⊥ (M||) represents the maximum mass of QSs by consid-
ering the transverse (radial) orientation. In T = 0 case in Fig. 4, 
δm increases with B0, and the largest mass asymmetry is δm =
22% at B0 = 1 × 1019 G with M⊥ (M||) reaching about 2.10 M	
(1.69 M	). As temperature increases, the maximum mass of static 
QSs for transverse (radial) orientation increases, and the largest 
mass asymmetry is δm = 28% at B0 = 1 × 1019 G with M⊥ (M||)
reaching about 2.685 M	 (2.023 M	). Our results indicate that 
the maximum mass of the magnetized QSs may depend on the 
strength distribution, the orientation of the magnetic fields inside 
the magnetars, and the temperature of the QSs.

Shown in Fig. 5 is the mass-radius relations of PQSs at three 
snapshots along the evolution of PQS within CIDDM model with 
DI-85 by using transverse and radial orientations of the magnetic 
fields. For the first stage of the evolution of PQSs with B0 = 0 in 
the left panel, where the lepton fraction is 0.4 and the entropy per 
baryon is 1, the maximum mass of the PQSs is 2.03 M	 . At the 
second stage of the evolution, the neutrinos diffuse and the en-
tropy per baryon reaches 2, and then the maximum mass of PQSs 
increases to 2.05 M	 , which is the largest maximum mass case 
from all the three stages along the evolution. At the third stage, 
the star begins cooling down to zero temperature case (S = 0) 
and the maximum mass of PQS is 2.01 M	 . When the density 
dependent magnetic field is considered, one can obtain the maxi-
mum mass of the magnetars from the right panel, where we use 
the fast B-profile and set B0 = 4 × 1018 G within CIDDM model 
with DI-85. It is seen that the maximum mass of PQS with the 
transverse (radial) orientation can reach about 2.07 M	 (2.01 M	) 
with B0 = 4 × 1018 G at the first stage, and the mass asymme-
try for PQS in strong magnetic field is δm = 3%. For the second 
Fig. 5. (Color online) Mass-radius relations of PQSs at three snapshots along the 
evolution of PQS within CIDDM model with DI-85. The shaded band is the pulsar 
mass of 2.01 ± 0.04M	 from PSR J0438+0432 [57].

stage, M⊥ (M||) increases to 2.10 M	 (2.04 M	) with δm = 2.9%, 
while M⊥ = 2.03 M	 , M|| = 1.96 M	 , and δm = 3.5% for the third 
stage with B0 = 4 × 1018 G. Therefore, our results indicate that the 
maximum mass of magnetized PQSs may depend on the strength 
distribution and the orientation of the magnetic fields inside the 
PQSs, and the heating process in the evolution can also increase 
the maximum mass of PQSs.

4. Conclusion and discussion

In this work, we have studied the properties of SQM and QSs 
in strong magnetic fields within the extended CIDDM model in-
cluding the temperature dependence of the equivalent mass for 
quarks. The quark matter symmetry free energy and quark mat-
ter symmetry energy for asymmetric u − d quark matter at finite 
temperature under constant magnetic fields have been calculated, 
and we have found that both the values of the quark matter sym-
metry free energy and the quark matter symmetry energy increase 
with the constant magnetic field, which indicates an obvious mag-
netic catalysis phenomenon. The EOS of SQM has been calculated 
with self-consistency, and the pressure of the system is anisotropic 
along or perpendicular to the magnetic field.

We have furthered studied the maximum mass of magnetars 
within the CIDDM model at finite temperatures by using a density-
dependent magnetic field inside the star. We have found that the 
maximum mass of static QSs increases with B0 for the transverse 
orientation case (the local magnetic fields are perpendicular to the 
radial direction but oriented randomly in the plane perpendicular 
to the radial direction) at a fixed temperature, while the maximum 
of static QSs decreases with B0 for the radial orientation (the lo-
cal magnetic fields are along the radial direction inside the star), 
which shows an obvious mass asymmetry for QSs in strong mag-
netic fields. Under a fixed magnetic field, the maximum mass of 
static QSs for transverse (radial) orientation increases with the in-
crement of the temperature.

We have also studied the maximum mass of PQSs under 
density-dependent magnetic fields by considering three different 
snapshots along the evolution line of stars. We have demonstrated 
that the maximum mass of PQS increases in the heating stages at 
a certain B0, and then the mass asymmetry occurs and increases 
with B0 at a fixed stage.

Therefore, our results have shown that considering strong mag-
netic fields and finite temperature in quark matter within CIDDM 
model can significantly influence the values of quark matter sym-
metry free energy, quark matter symmetry energy, properties of 
the equation of state in SQM, and the maximum mass of static 
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QSs. The maximum mass of magnetized PQSs may depend on not 
only the strength distribution and the orientation of the magnetic 
fields inside the PQSs, but also the heating process and the cooling 
process in the star evolution.
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