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In this paper, we have studied the FRW metric for variable G and Λ in f(R,T )
gravity with the modified Chaplygin gas equation of state i.e. p = Aρ− B

ρn . We have
used the hybrid exponential law (HEL) for scale factor to obtain the solution of the field
equations. Here also we have discussed some physical behaviour of the model.
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1. INTRODUCTION

The observation of supernovae type Ia and Wilkinson Microwave Anisotropy
Probe (WMAP) ([1]-[2]) provides the evidence mass density of our universe is low
(Ω ∼ 0.3) ([3] and see references there in). The literatures of modern cosmology
suggests that a point of universe is filled up with dark energy. The dark energy has
been addressed by various slow rolling scalar field, one of the prominent candidates
of them is cosmological constant.

Cosmological constant Λ and gravitational constant G are the two important
parameters of Einstein’s field equation. The Newtonian constant of gravitation G
plays the role of a coupling constant between geometry and matter in the Einstein’s
field equation. In a evolving universe, it appears to look at this constant as a func-
tion of time. There are significant observational evidence that the expansion of the
universe is undergoing a late time acceleration. In other words in the context of ge-
neral relativity some kind of dark energy varies slowly with time and space, which
dominates the current composition of the cosmos. The origin and nature of such field
poses a completely open question. Riess et al. [4] have presented an analysis of
156SNe including a few at z > 1.3 from the Hubble Space Telescope (HST) “GOOD
ACS” Treasury survey. Type Ia supernove observation [5], leads to a conclusion that
expansion of the universe is accelerating. Observations strongly favour a small and
positive value of the effective cosmological constant at the present epoch.

Dirac [6] was first suggested that gravitational constant is not independent of
time and this has been studied by several authors [7]-[10]. Numerous modifications

RJP 60(Nos. 1-2), 32–43 (2015) (c) 2015 - v.1.3a*2015.2.12Rom. Journ. Phys., Vol. 60, Nos. 1-2, P. 32–43, Bucharest, 2015



2 FRW universe with variable G and Λ term in f(R,T ) gravity 33

of general relativity to allow for a variable G based on different arguments have been
proposed [11]. The Large Number Hypothesis (LNH) proposed by Dirac leads to
a cosmology when G varies with time. Variation of G has many interesting conse-
quences in astrophysics. Canuto and Narlikar [12] have shown that G-varying cos-
mology is consistent with whatsoever cosmological observations available at present.
In modern cosmology study of G and Λ play a important role because it may respon-
sible for the acceleration of the universe. Among all the possiable alternatives the
simplest and most theoretically appealing possibility for dark energy is the energy
density stored on the vaccum state of all existing fields in the universe i.e. ρv = Λ

8πG ,
where Λ is the cosmological constant. However a constant Λ can not explain the
huge difference between the cosmological constant inferred from observation and
the vaccum energy density resulting from quantum field theories. In an attempt to
solve this problem, variable Λ was introduced such that Λ was large in the early uni-
verse and then decayed with evolution [13]. The Λ term has also been interpreted
in terms of Higg’s scalar field [14] as well as function of temperature and related it
to the process of broken symmetries [15]. The cosmological constant Λ as a func-
tion of time has been extensively discussed by several authors in various variable G
theories in different contexts. A number of authors, e.g., Kalligas et al. [16], Arbab
[17], Abdussattar and Vishwakarma [18] proposed linking of variations of G and Λ
within the framework of general relativity. This approach is appealing as it leaves
the form of Einstein equations formally unchanged by allowing a variation of G to
be accompanied by change in Λ. Pradhan and Yadav [19] investigated bulk viscous
anisotropic cosmological models with variable G and Λ. Pradhan et al. [20] derived
FRW universe with verying G and Λ. Since Bianchi type I spaces are subsequent ge-
neralization of zero curvature FRW models, Singh et al. [21] obtained some Bianchi
type I models with variable G and Λ. Singh et al. [22] obtained early viscous uni-
verse with variable G and Λ. Bianchi type I models in the presence of a perfect fluid
with time varying G and Λ in general relativity has been discussed by Singh and
Tiwari [23]. Cosmological models with variable G and Λ in space-times of higher
dimensions has been explained by Singh and Kotambkar [24]. Singh and Kale [25]
dealt with Bianchi type I, Kantowski-Sachs and Bianchi type III anisotropic models
of the universe filled with a bulk viscous cosmic fluid in the presence of variable G
and Λ. Bali and Tinker [26] investigated Bianchi type III bulk viscous barotropic
fluid cosmological model with variable G and Λ which leads to inflationary phase
of the universe. Verma and Shriram [27] obtained Bianchi type III bulk viscous
barotropic fluid cosmological model with variable G and Λ in simple and systematic
way. Dark energy models with time-dependent G has been investigated by Ray et al.
[28]. Mukhopadhyay et al. [29] studied higher dimensional dark energy with time
variable G and Λ. Recently, two-fluid anisotropic cosmological model with Variable
G and Λ has been studied by Samanta [30]. Tiwari et al. [31] studied the Polytropic
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bulk viscous cosmological model with variable G and Λ in general relativity and
higher order corrections of the extended Chaplygin gas cosmology with varying G
and Λ has been studied by Khurshudyan et al. [32]

The idea of an accelerated expansion of the universe and led to the search for
a new type of matter which violates the strong energy condition i.e., ρ+ 3p < 0.
The matter considered to be responsible for such a condition to be satisfied at a
certain stages of evolution of the universe is referred to as dark energy. There are
several different candidates for dark energy. The type of dark energy represented by a
scalar field is often called quintessence. The simplest candidate for dark energy is the
cosmological constant Λ. In particular, one can try another type of dark energy, the
so-called Chaplygin gas which obeys an equation of state like p= −B

ρ (B > 0) [33]-
[34], where p and ρ are the pressure and energy density respectively. Subsequently,
the above equation was generalized to the form p = −B

ρn , 0 ≤ n ≤ 1 (see [35]-[37]).
There are some works on modified Chaplygin gas obeying the equation of state as
follows (see [38] -[40]):

p=Aρ− B

ρn
, for A> 0. (1)

The aforesaid survey of literature clearly indicates that there has been interest
in studying variable G and Λ in different theory with different space-time geometry.
Motivated by the above observations we have studied the homogeneous and isotropic
FRW metric with variable G and Λ in f(R,T ) modified gravity. Modify gravity is
obtain by modifying the geometrical part of Einstein-Hilbert action of general rela-
tivity. Modify gravity is of great importance because it can successfully explain the
rotation curve of galaxies and the motion of galaxy clusters in the universe. There are
various modify gravity namely f(R), f(G), f(R,G) and f(R,T ) theory of gravity.

In this paper we deal with f(R,T ) gravity, which has recently developed by
Herko et al. [41] where the gravitational Lagrangian is given by an arbitrary function
of the Ricci scalar R and the trace T of the stress energy tensor. They have obtained
the gravitational field equations in the metric formalism, as well as the equations of
motion for test particles, which follow from the covariant divergence of the stress
energy tensor. The f(R,T ) gravity model depends on a source term, representing
the variation of the matter stress energy tensor with respect to the metric. General
expression of source term is obtained as a function of the matter Lagrangian Lm and
for specific choice ofLm would generates a specific set of field equations. Depending
upon the choice of f(R,T ), we have different particular models. In literature Harko
et al. [41] (see also for details on f(R,T ) modify gravity), we have found three class
of f(R,T ) as follow
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f(R,T ) =


R+ 2f(T )

f1(R) +f2(T )

f1(R) +f2(R)f3(T )

(2)

In this paper we have concentrated on the first class as f(R,T ) = R+ 2f(T ). Re-
cently several authors [42]-[45] have studied the f(R,T ) modify gravity in different
contexts. For finding the solution of the field equations in f(R,T ) modify gravity,
we have used the following ansatz for the scale factor of the universe [46] :

a(t) = Ctαeβt (3)

where C > 0, α ≥ 0, and β ≥ 0 are constant. In literature, this generalized form of
the scale factor is called Hybrid Expansion Law (HEL). HEL is a mixture of power-
law and exponential-law cosmologies. Power-law and exponential-law is obtain as
a special cases of HEL, when α = 0 and β = 0 in (3) respectively. The assumption
α > 0 and β > 0 leads to a new cosmology.

2. BASIC FIELD EQUATIONS

In this section we have consider the homogeneous and isotropic space-time
given by Friedmann-Robertson-Walker (FRW) metric

ds2 = dt2−a2(t)

[
dr2

1−kr2
+ r2

(
dθ2 + sin2 θdφ2

)]
(4)

where k(= 0,±1) is the curvature parameter.
The energy momentum tensor for a perfect fluid is given by

T ji = (p+ρ)uiu
j−pδji (5)

Here ui is the flow vector satisfying gijuiuj = 1. Where ρ is the energy density and
p is the isotropic pressure and we take c= 1. Using equation (5) we have obtain

T 0
0 = ρ, T 1

1 = T 2
2 = T 3

3 =−p (6)

The field equations for f(R,T ) gravity model with variable G and Λ is given as

fR(R,T )Rij−
1

2
f(R,T )gij + (gij �−∇i∇j)fR(R,T )−Λ(t)gij

= [8π−fT (R,T )]G(t)Tij−fT (R,T )Θij

(7)

where

Tij =
−2√
−g

δ
√
−g

δgij
Lm ,Θij =−2G(t)Tij−pgij ,

fR(R,T ) =
∂f(R,T )

∂R
and fT (R,T ) =

∂f(R,T )

∂T
.

(8)
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Here f(R,T ) is an arbitrary function of Ricci scalar (R) and trace (T ) of the
stress energy momentum tensor Tij . Lm is the matter Lagrangian density.
Now we take the function f(R,T ) as (Harko et al. [41])

f(R,T ) =R+ 2f(T ) (9)

Using (5), (9) in (7) the field equations takes the form

Gij−Λ(t)gij =
[
8π+ 2f ′(T )

]
G(t)Tij + [2pf ′(T ) +f(T )]gij (10)

where the overhead prime indicates differentiation with respect to the argument. We
consider

f(T ) = λT (11)

where λ is a constant(Harko et al. [41]).
Using equation (11), we obtain the field equations as

Gij−Λ(t)gij = [8π+ 2λ]G(t)Tij + (ρ−p)λgij (12)

For the metric (4), the field equations (10) take the form

3

(
ȧ

a

)2

+
3k

a2
−Λ(t) = [(8π+ 2λ)G(t) +λ]ρ−pλ (13)

2
ä

a
+

(
ȧ

a

)2

+
k

a2
−Λ(t) =− [(8π+ 2λ)G(t) +λ]p+λρ (14)

3. SOLUTION OF THE FIELD EQUATIONS

The field equations contain two equation and five unknown namely: p,ρ,G,Λ,a.
Therefore for finding the exact solution we need three more plausible conditions. For
which we have used equation (1), (3) and with out loss of generality we considered
the ρ in the form

ρ=
1

aγ
, (15)

where γ > 0 is a constant.
Using (1), (3) and (15) in (13), we obtain

Λ(t)+
8π+ 2λ

Cγtαγeγβt
G(t) = 3

(α
t

+β
)2

+
3k

C2t2αe2βt
+
λ
[
A−BC(1−n)γt(1−n)αγe(1−n)γβt−1

]
Cγtαγeγβt

(16)

RJP 60(Nos. 1-2), 32–43 (2015) (c) 2015 - v.1.3a*2015.2.12



6 FRW universe with variable G and Λ term in f(R,T ) gravity 37

Substituting (1), (3) and (15) in (14), we get

−Λ(t)+
(8π+ 2λ)(A−BC(1−n)γt(1−n)αγe(1−n)γβt)

Cγtαγeγβt
G(t) =

=
λ
[
1−A+BC(1−n)γt(1−n)αγe(1−n)γβt

]
Cγtαγeγβt

−
[

3α2−2α

t2
+

6αβ

t
+ 3β2 +

k

C2t2αe2βt

]
.

(17)

Adding (16) and (17) we obtain

G(t) =
Cγtαγeγβt

[
2α
t2

+ 2k
C2t2αe2βt

]
(8π+ 2λ)(1 +A−BC(1−n)γt(1−n)αγe(1−n)γβt)

(18)

With the help of (18), from (16) we obtain

Λ(t) = 3
(α
t

+β
)2

+
3k

C2t2αe2βt

− λ

Cγtαγeγβt

[
1−A+BC(1−n)γt(1−n)γαe(1−n)γβt

]
− 1

1 +A−BC(1−n)γt(1−n)γαe(1−n)γβt

[
2α

t2
+

2k

C2t2αe2βt

]
. (19)

The deceleration parameter of the model is

q =− aä

(ȧ)2
=

α

(α+βt)2
−1 (20)

From this we observe that the HEL universe evolves with a variable deceleration
parameter, and a transition from deceleration to acceleration takes place at

t=

√
α−α
β

(21)

which restrict α in the range 0< α < 1.
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38 G. P. Singh, Binaya K. Bishi 7

Fig. 1 – Density ρ versus time t for α= 0.2, β = 0.2, γ = 0.5 and C = 1.

Fig. 2 – Pressure P versus time t for α= 0.2, β = 0.2, γ = 0.5, A= 1
3 , B = 1, n= 0.5 and C = 1.
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8 FRW universe with variable G and Λ term in f(R,T ) gravity 39

Fig. 3 – Λ(t) versus time t with α= β = 0.2, C = 1, γ = n= 0.5, A= 1
3 and B = 1 for k = 0,±1.
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40 G. P. Singh, Binaya K. Bishi 9

Fig. 4 – Gravitational constant G(t) versus time t with α= β = 0.2, C = 1, γ = n= 0.5, A= 1
3 and

B = 1 for k = 0,±1.
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10 FRW universe with variable G and Λ term in f(R,T ) gravity 41

Fig. 5 – Deceleration parameter q versus time t for α= β = 0.5.

4. CONCLUDING REMARKS

We have studied the FRW universe with variable G and Λ filled with perfect
fluid in f(R,T ) modify gravity. We have assumed the HEL for the average scale
factor, which yields power-law and exponential-law in its special cases. We find that
the HEL universe exhibits a transition from deceleration to acceleration, which is an
essential feature of the dynamics of the evolution of the universe. From Figure 1 it is
noticed that, the energy density ρ decreases with increase in time i.e. ρ→ 0 as t→∞.
In Figure 2 it is observed that, the pressure decreases from positive to negative with
the evolution of time. Figure 3, we have plotted the cosmological constant Λ(t)
against time. It is noticed that Λ(t) approaches towards zero from negative values
with the evolution of time. In other world we can say Λ < 0. It is also noticed that
cosmological constant Λ(t) show similar behaviour for k =−1,k = 0 and k = 1.

Gravitational constantG(t), which also decreases with increase in time and
it approaches to zero i.e. G(t)→ 0 as t→∞ (see Figure 4). The behaviour of
G(t) is similar for k = 0,±1. Finally, Figure 5 shows the behaviour of deceleration
parameter against time. It represents that with the evolution of time, deceleration
parameter approaches towards -1. Three different ranges for deceleration parameter:
−0.715± 0.045, −0.658+0.061

−0.057, −0.461+0.031
−0.033 has been discussed by Xu et al.[47].

Here the deceleration parameter agreed with the result of Xu et al. [47].
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