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Measurements of the inclusive J/v yield as a function of charged-particle pseudorapidity density dN¢,/dn
in pp collisions at /s =13 TeV with ALICE at the LHC are reported. The ]/ meson yield is measured
at midrapidity (]y| < 0.9) in the dielectron channel, for events selected based on the charged-particle
multiplicity at midrapidity (|n| < 1) and at forward rapidity (—3.7 <n < —1.7 and 2.8 <7 < 5.1); both
observables are normalized to their corresponding averages in minimum bias events. The increase of the

normalized ]/ yield with normalized dN.,/dn is significantly stronger than linear and dependent on the
transverse momentum. The data are compared to theoretical predictions, which describe the observed

trends well, albeit not always quantitatively.
© 2020 European Organization for Nuclear Research. Published by Elsevier B.V. This is an open access
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Hadronic charmonium production at collider energies is a com-
plex and not yet fully understood process, involving hard-scale
processes, i.e. the initial heavy-quark pair production, which can
be described by means of perturbative quantum chromodynamics
(pQCD), as well as soft-scale processes, i.e. the subsequent bind-
ing into a color-neutral charmonium state. The latter stage is ad-
dressed via models which assume that it factorizes with respect to
the perturbative early stage. The widely used non-relativistic QCD
(NRQCD) effective theory incorporates contributions from several
hadronization mechanisms, like color-singlet or color-octet mod-
els (see Ref. [1] for a recent review on models and Ref. [2] for a
comparison with data of Run 1 at the LHC). The NRQCD formal-
ism combined with a Color Glass Condensate (CGC) description of
the incoming protons [3] is a recent example of a comprehensive
treatment of the transverse momentum pr and rapidity dependent
production, in particular extended down to zero transverse mo-
mentum.

The event-multiplicity dependent production of charmonium
and open charm hadrons in pp and p-Pb collisions are observ-
ables having the potential to give new insights on processes at the
parton level and on the interplay between the hard and soft mech-
anisms in particle production and is widely studied at the LHC.
ALICE has studied the multiplicity dependence in pp collisions at
/s =7 TeV of inclusive J/y production at mid- and forward ra-
pidity [4], and prompt J/v (including feed down from (2S) and
Xc), non-prompt J/v (originating from bottom-meson decays) and
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D-meson production at midrapidity [5]. The general observation is
an increase of open and hidden charm production with charged-
particle multiplicity measured at midrapidity. For the J/¢r produc-
tion, multiplicities of about 4 times the mean value were reached.
The results are consistent with an approximately linear increase of
the normalized yield as a function of the normalized multiplicity
(both observables are normalized to their corresponding averages
in minimum bias events). For the D-meson production, normal-
ized event multiplicities of about 6 were reached; a stronger than
linear increase of D-meson production was observed at the high-
est multiplicities. Observations made by the CMS Collaboration for
Y(nS) production at midrapidity at /s = 2.76 TeV indicate a lin-
ear increase with the event activity, when measuring it at forward
rapidity, and a stronger than linear increase with the event activity
measured at midrapidity [6]. At RHIC, a measurement of J/v pro-
duction as a function of multiplicity was recently performed by the
STAR Collaboration [7] for /s = 0.2 TeV, showing similar trends
as observed in the LHC data. The J/v production as a function of
charged-particle multiplicity was studied also in p-Pb collisions,
exhibiting significant differences for different ranges of rapidity of
the J/v» meson [8,9]. A clear correlation with the event multiplicity
(and event shape) was experimentally established for the inclusive
charged-particle production [10] as well as for identified particles,
including multi-strange hyperons [11].

Several theoretical models, described briefly in Section 4, pre-
dict a correlation of the normalized J/v production with the nor-
malized event multiplicity which is stronger than linear. These
include a coherent particle production model [12], the percolation
model [13], the EPOS3 event generator [14], a CGC-complemented
NRQCD model [15], the PYTHIA 8.2 event generator [16,17], and
the 3-Pomeron CGC model [18]. While for instance multiparton in-
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Table 1

Number of selected events and corresponding integrated luminosities for the different triggers used in this anal-

ysis.

MB and HM triggers

EMCal triggers

MB HM EG1 EG2
Number of events 1.25 x 10° 0.64 x 10° 82.4 x 10° 120 x 108
Integrated luminosity 21.6+1.1 nb™! 5.4+0.1pb~! 7.2+0.1 pb~! 0.8240.02 pb~!

teractions (as implemented in PYTHIA) play an important role in
charm(onium) production, it is important to notice that the pre-
dicted correlation is, in all the models to first order, the result of
a (N-dependent) reduction of the charged-particle multiplicity.
Well known is the color string reconnection mechanism imple-
mented in PYTHIA, but initial-state effects as in CGC models lead,
with very different physics, similarly to a reduction in particle mul-
tiplicity.

In this Letter, the measurements of the inclusive J/v yield as a
function of charged-particle pseudorapidity density in pp collisions
at /s =13 TeV are presented. The measurements are performed
in the dielectron channel at midrapidity with the ALICE detector at
the LHC. The pr-integrated and differential results are presented
for minimum bias events as well as for events triggered on high
multiplicity, which extend the multiplicity range up to 7 times the
average multiplicity, and on the electromagnetic calorimeter sig-
nals, which allow to access pr values up to 15-40 GeV/c. Section 2
outlines the experimental setup and the data sample; Section 3
describes the analysis, while Section 4 presents the results; a brief
summary and outlook are given in Section 5.

2. Experiment and data sample

The reconstruction of J/y in the ete™ decay channel at midra-
pidity is performed using the ALICE central barrel detectors,
described in detail in Refs. [19,20]. The setup is located in a
solenoidal magnet providing a field of 0.5 T oriented along the
beam direction.

For this analysis, a minimum bias (MB) trigger, a high mul-
tiplicity (HM) trigger, and two triggers based on the deposited
energy in the combined Electromagnetic Calorimeter (EMCal) and
the Di-jet Calorimeter (DCal) [21-23] are employed. Both the MB
and HM triggers are provided by the VO detector, that consists of
two forward scintillator arrays [24] covering the pseudorapidity
ranges —3.7 < n < —1.7 and 2.8 < n < 5.1. The MB trigger sig-
nal consists of a coincident signal in both arrays, while the HM
trigger requires a signal amplitude in the VO arrays above a thresh-
old which corresponds to the 0.1% highest multiplicity events. The
EMCal and DCal are located back-to-back in azimuth and form a
two-arm electromagnetic calorimeter. While the EMCal detector
covers |n| < 0.7 over an azimuthal angle of 80° < ¢ < 187°, the
DCal covers 0.22 < || < 0.7 for 260° < ¢ < 320° and |n| < 0.7 for
320° < ¢ < 327°. As a consequence of identical construction, both
have identical granularity and intrinsic energy resolution. In this
paper, EMCal and DCal will be referred to together as EMCal. The
EMCal trigger consists of the sum of energy in a sliding window of
4 x 4 towers above a given threshold (a tower is the smallest seg-
mentation of the EMCal). In this data set, the trigger requires the
presence of a cluster with a minimum energy of 9 GeV (EG1) or 4
GeV (EG2) in coincidence with the MB trigger condition.

Tracks are reconstructed in the pseudorapidity range |n| < 0.9
using the Inner Tracking System (ITS) [25], which consists of six
layers of silicon detectors around the beam pipe, and the Time
Projection Chamber (TPC) [26], a large cylindrical gas detector
providing tracking and particle identification via specific ioniza-
tion energy loss dE/dx. The first two layers of the ITS (covering
In| < 2.0 and || < 1.4), the Silicon Pixel Detector (SPD), are used

for the charged-particle multiplicity measurement at midrapidity
by counting tracklets, reconstructed from pairs of hits in the two
SPD layers pointing to the collision vertex.

The results presented in this Letter are obtained using data
recorded by ALICE during the LHC Run 2 data taking period for pp
collisions at +/s =13 TeV. The number of selected events and the
corresponding integrated luminosities [27] are listed in Table 1 for
the different triggers used in this analysis. For the analyzed data
set, the maximum interaction rate was 260 kHz, and the maxi-
mum pileup probability was about 5 x 1073,

3. Analysis

In this work the inclusive production of J// mesons is studied
as a function of the pseudorapidity density of charged particles at
midrapidity, dNg,/dn. The J/¢ yield in a given multiplicity inter-
val and in a given rapidity (y) range dNj /dy is normalized to
the J/y yield in the INEL>0 event class, {(dNj, /dy). The INEL>0
event class contains all events with at least 1 charged particle in
[n] < 1. In this ratio, most of the systematic uncertainties related
to tracking and particle identification cancel.

3.1. Event selection

All events selected in this analysis are required to have a recon-
structed collision vertex within the longitudinal interval |zyi| <
10 cm in order to ensure uniform detector performance and one
SPD tracklet in || < 1. Beam-gas events are rejected using tim-
ing cuts with the VO detector. Pileup events are rejected using
a vertex finding algorithm based on SPD tracklets [20], allowing
the removal of events with 2 vertices. Because of the relatively
small in-bunch pileup probability and the further event selection
performed in the analysis, the fraction of remaining pileup is neg-
ligible in the minimum bias events sample and at most 2% in the
high multiplicity triggered sample.

Events are binned in multiplicity classes based on either the
SPD or the VO detector signals, as shown in Fig. 1. Events cor-
responding to the onset of the VO HM trigger are excluded; that
onset is rather sharp. The smearing seen in the distribution in the
right panel of Fig. 1 is due to the different thresholds used dur-
ing operation. To illustrate this, the VO-amplitude distribution for
a single data taking period is included in Fig. 1 (right panel, open
squares).

For the measurement of the charged-particle pseudorapidity
density dN¢,/dn at midrapidity, || < 1, the SPD tracklets are
used [28]. Given the close proximity of the SPD detector to the
interaction point (the two layers are at radial distances of 3.9 and
7.6 cm), its geometrical acceptance changes by up to 50% in the
zyx interval selected for analysis. In addition, the mean number
of SPD tracklets also varied during the 3-year Run 2 data taking
period due to changes in the number of active SPD detector el-
ements. In order to compensate for these detector effects, a zy
and time-dependent correction factor is applied such that the mea-
sured average multiplicity is equalized to a reference value. This
reference was chosen to be the largest mean SPD tracklet mul-
tiplicity observed over time and zy. This procedure is similar to
what was done previously in Ref. [4]. The correction factor for each
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Fig. 1. Distribution of the corrected SPD tracklets Ng3™ (left) and VO amplitude (right) for the MB events as well as the HM- and EMCal-triggered events used in the analysis.
The vertical lines indicate the used multiplicity intervals (see Table 2; the first bin spans from 0 to the position of the first line). For the HM-triggered events, the VO
amplitude distribution for a single data taking period is included for illustration (open squares).

event is randomly smeared using a Poisson distribution to take into
account event-by-event fluctuations. In the case of the event selec-
tion based on the forward multiplicity measurement with the VO
detector, the signal amplitudes are equalized to compensate for de-
tector aging and for the small acceptance variation with the event
vertex position.

The overall inefficiency, the production of secondary particles
due to interactions with the detector material and particle decays
lead to a difference between the number of reconstructed track-
lets and the true primary charged-particle multiplicity N., (see
details in Ref. [28]). Using events simulated with the PYTHIA 8.2
event generator [29] (Monash 2013 tune, Ref. [30]), the correla-
tion between the tracklet multiplicity (after the zy-correction),
NgS', and the generated primary charged particles N, is de-
termined. The propagation of the simulated particles is done by
GEANT 3 [31] with a full simulation of the detector response,
followed by the same reconstruction procedure as for real data.
The correction factor B(NSS™) = Ney/NT to obtain the average

trk trk
dN¢,/dn value corresponding to a given N bin is computed

from the N{{"-N¢, correlation, shown in ng( 2 for events sim-
ulated with PYTHIA 8.2 and particle transport through GEANT 3.
As the generated charged-particle multiplicity in Monte Carlo dif-
fers from data, a corrected N, distribution is constructed from
the measured N{}" distribution using Bayesian unfolding. From it,
the corrected B factors are obtained. A Monte Carlo closure test in
PYTHIA 8.2 with unfolding based on EPOS-LHC events is used to
validate the procedure.

The normalized charged-particle pseudorapidity density in each
event class is calculated as:
dNew/dn B X (NSM) "

(dNen/dn)ine=o AN x (dNen/dn)iNeLs0

where (N3") is the averaged value of N{y" in each multiplic-

ity class, corrected for the trigger and vertex finding efficiencies.
The former is estimated from Monte Carlo simulations and the
latter with a data driven approach. They are below unity only
for the low-multiplicity events. The value corresponding to INEL
> 0 events, (dN¢/dn)iNeL~0, Was cross-checked with the pub-
lished ALICE measurement [28], and is found to be in very good
agreement. A similar procedure is also used for the event se-
lection based on the VO amplitude, measured as a sum of sig-
nals from charged particles in the intervals —3.7 < < —1.7 and
2.8 < n < 5.1. The resulting values of the normalized multiplicity
for the event classes considered in the analysis are summarized in

£ 140 — T
= ALICE simulation pp Vs = 13 TeV

10°
10°
10*
10°
10?

10

P
100

corr
N trk

Fig. 2. Correlation between the number of generated primary charged particles, N¢y,
and the number of reconstructed SPD tracklets, Ny, in 5| < 1, from PYTHIA 8.2
simulated collisions with detector transport through GEANT 3. The black points rep-
resent the mean values of N.

Table 2

Average normalized charged-particle pseudorapidity density in || < 1 for each
event class selected in N;y" measured in SPD (|n| < 1; left part) and in VO am-
plitude (—3.7 <n < —1.7 and 2.8 < n < 5.1; right part). The values correspond to
the data sample used for the pr-integrated analysis. Only systematic uncertainties
are shown since the statistical ones are negligible. The corresponding fraction of the
INEL>0 cross section for each event class is also indicated.

SPD selection VO selection

<ng1h/,:ihn/>?r:7u>o 0 /OiNEL=0 <dN—i%hn/)?:EL>D 0 /OINEL>0
0.23£0.01 32% 0.40 +£0.01 37%
0.60£0.01 25% 0.76 +£0.01 26%
1.23+0.02 25% 1.41+0.02 25%
2.11+£0.03 11% 2.26+0.03 9.0%
2.98 £0.05 4.7% 3.03£0.04 2.5%
3.78 £0.06 1.8% 3.92+£0.06 0.5%
4.58 £0.08 0.6% 4.33+£0.07 0.08%
5.37+0.09 0.2% 4.96 £0.08 0.01%
6.17+£0.11 0.05%

7.13+0.12 0.02%

Table 2 alongside the respective fractions of the INEL > 0 cross
section.
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Fig. 3. Top: Invariant mass distribution of electron-positron pairs for MB (left), HM (middle) and EMCal (right) triggers, together with combinatorial background estimation
from the track-rotation method (blue lines in the left and middle panels) and the full background estimation (black squares). In the lower panels, the J/y signal obtained
after background subtraction is shown together with the ]/ signal shape from Monte Carlo simulations. The entries contain a correction for the relative efficiency (see text).

3.2. J/v signal extraction

The ]J/v meson is measured in the dielectron decay channel
at midrapidity. Electrons and positrons are reconstructed in the
central barrel detectors by requiring a minimum of 70 out of max-
imally 159 track points in the TPC and a value of the track fit x2
over the number of track points smaller than 4 [26]. Only tracks
with at least two associated hits in the ITS, and one of them in
the two innermost layers, are accepted. This requirement ensures
both a good tracking resolution and the rejection of electrons and
positrons produced from photons converting in the detector mate-
rial. In the MB and HM trigger analysis, a further veto on the tracks
belonging to identified photon conversion topologies is applied.
The electron identification is achieved by the measurement of the
specific energy loss of the track in the TPC, which is required to
be compatible with that expected for electrons within 3 standard
deviations. Tracks with a specific energy loss being consistent with
that of the pion or proton hypothesis within 3.5 standard devia-
tions are rejected. For the analysis of the EMCal-triggered events,
the energy deposition of the track in the TPC is required to be
in a range between —2.25 to +3 standard deviations around the
mean expected value for the electrons. In addition, at least one
of the J/v decay electrons is required to be matched to a clus-
ter in the EMCal, with a cluster energy above the trigger threshold
and an energy-to-momentum ratio in the range 0.8 < E/p < 1.3.
Electrons and positrons are selected in the pseudorapidity range
In] < 0.9 and in the transverse momentum range pt > 1 GeV/c.

The number of reconstructed J/v is obtained from the invari-
ant mass distribution of all the opposite-sign (OS) pairs, which
contains eTe~pairs from ]/v decays as well as combinatorics and
other sources. In the MB and HM trigger analysis, the combina-
torial background is estimated using a track rotation procedure in
which one of the tracks is rotated by a random azimuthal angle
multiple times to obtain a high statistics invariant mass distri-
bution. This distribution is then normalized such that its integral
over a range of the invariant mass well above the J/v/ mass peak
matches the one of real OS pairs, and is subtracted from the latter
distribution. The remaining residual background, which can be at-
tributed to physical sources, e.g. correlated semileptonic decays of
heavy-quark pairs, is estimated using a second-order polynomial
function. For the analysis of the EMCal-triggered events, a fit to

the OS invariant mass distribution is performed using a MC shape
for the signal added to a polynomial to describe the background.
A second- or third-order polynomial function is used, depending
on the pr range. The number of J/i is extracted by summing the
dielectron yield in the background-subtracted invariant mass dis-
tribution in the mass interval 2.92 < mee < 3.16 GeV/c2, which
contains approximately 2/3 of the total reconstructed yield. The
yield falling outside of the counting window at low invariant mass
is due to the electron bremsstrahlung in the detector material and
to the radiative ]J/vy decay, and is corrected for using Monte Carlo
simulations. Also, a correction for the yield loss due to the lim-
ited trigger and vertex finding efficiencies at low multiplicities is
applied.

Due to the trigger enhancement, the yields obtained using the
EMCal-triggered events were corrected by the trigger scaling factor,
which is observed to be identical for all event classes. This correc-
tion is necessary to convert the yield per EMCal-triggered events
into a yield per MB-triggered event and is accomplished by a data-
driven method using the ratio of the cluster energy distribution in
triggered data divided by the cluster energy distribution in mini-
mum bias data. The ratio flattens above the trigger threshold and
the scaling factor is then obtained by fitting a constant to the flat
interval.

In the top panels of Fig. 3 are shown the OS invariant mass dis-
tribution for MB events (left), a high multiplicity interval from the
HM- (middle) and EMCal-triggered events (right), together with
the estimated background distribution. The combinatorial back-
ground distribution from the track rotation method is shown in
the left and middle panels with the blue lines, while the total
background is shown as black squares in all the panels. The sig-
nal obtained after background subtraction is described well by the
signal shape obtained from Monte Carlo simulations (discussed be-
low); these MC templates have been scaled and overlaid on the
data points in the bottom panels of Fig. 3.

The ]/ measurement is performed integrated in transverse
momentum and in the pr intervals 0 < pr <4 GeV/c and 4 <
pr < 8 GeV/c, using the MB and HM triggers. At higher pr, the
]/ mesons are reconstructed using the EMCal triggered events
in the transverse momentum intervals 8 < ptr < 15 GeV/c and
15 < pt < 40 GeV/c. It was checked that the acceptance and ef-
ficiency for J/4 reconstruction are not dependent on the event
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multiplicity. This was performed using pp collisions simulated with
the PYTHIA 8.2 event generator with an injected ][y signal. The
dielectron decay is simulated with the EvtGen package [32] using
PHOTOS [33] to describe the final-state radiation. The J// mesons
are assumed to be unpolarized consistent with measurements in
pp collisions at the LHC [34].

To account for the multiplicity dependence of the pt spectrum
of the J/v» mesons, a correction for the relative efficiency, namely
the efficiency for a given pr value relative to the pr-integrated
value, is applied to each dielectron pair. This is contained in the
invariant mass distributions shown in Fig. 3.

3.3. Systematic uncertainties

Normalized multiplicity: The systematic uncertainty on the nor-
malized multiplicity contains contributions from the trigger, vertex
finding, and SPD efficiencies. The first two contributions are esti-
mated using alternative approaches: the trigger efficiency is cal-
culated in a data-driven way, and for the vertex finding efficiency
Monte Carlo simulations are used. The differences to the values
obtained with the default methods are taken as the systematic un-
certainties. The contribution from the vertex finding efficiency is
below 1% (relative uncertainty) in all event classes, the one from
the trigger efficiency reaches a maximum value of 1.3% for the low-
est multiplicity class.

In order to estimate uncertainties due to the SPD tracklet re-
construction efficiency, the number of corrected tracklets is scaled
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up and down by 3%, which is the maximum observed discrepancy
of the average number of SPD tracklets between data and Monte
Carlo simulations. This uncertainty amounts to 3.6% in the lowest
multiplicity class, and to less than 1.5% in all other classes. The
uncertainty from the unfolding of the charged-particle multiplic-
ity distribution is estimated by varying the number of iterations
used in the Bayesian unfolding, as well as by using an alternative
unfolding method [35]. The uncertainty is found to be negligible.
All the aforementioned uncertainty sources are added in quadra-
ture, leading to a total uncertainty on the normalized multiplicity
of 3.7% for the lowest multiplicity class, and to less than 2% for all
other classes.

Normalized J/v yield: The systematic uncertainties of the normal-
ized ][y yield are due to the signal extraction, bin-flow caused by
the Poissonian smearing applied for the zy-dependent correction
of the SPD acceptance and vertex finding, trigger and SPD effi-
ciencies. For the analysis of the EMCal-triggered events, there is
an additional component due to the matching of tracks to EMCal
clusters and the electron identification via the E/p measurement,
which has a non-negligible multiplicity dependence. The E/p in-
terval and the value of E used to select only electrons above the
EMCal trigger threshold are varied to determine the systematic un-
certainty of the electron identification with the EMCal, leading to
values from 1% to 12%, depending on the multiplicity bin.

The uncertainty of the J/v signal extraction is determined by
varying the functions used to fit the background (first- or second-
degree polynomials or exponential) and the fitting ranges, with the
RMS of the distribution of normalized yields obtained from these
variations being taken as a systematic uncertainty (the normalized
yield corresponds to the default selection). The bin-flow effect is
estimated from the RMS of the results obtained by repeating the
analysis several times with different seeds for the random num-
ber generator. The uncertainties from the signal extraction and the
bin-flow effect are the dominant ones. They are of comparable size,
with values between 1% and 8% depending on the multiplicity and
pr interval. The uncertainties of the vertex finding, trigger and
SPD tracklet efficiencies affect the estimated number of INEL>0
collisions, and hence the event-averaged minimum bias ]/ yield

Fig. 4. Normalized inclusive pr-integrated J/y yield at midrapidity as a function
of normalized charged-particle pseudorapidity density at midrapidity (|| < 1) with
the event selection based on SPD tracklets at midrapidity and on VO amplitude at
forward rapidity in pp collisions at /s =13 TeV. Top: normalized J/y yield (diag-
onal drawn for reference). Bottom: double ratio of the normalized ]/y yield and
multiplicity. The error bars show statistical uncertainties and the boxes systematic
uncertainties.

(dNjpy /dy), as well as the ]/ yield in the low multiplicity classes.
The uncertainties of the vertex finding and SPD efficiencies are be-
low 1% in most classes, while the uncertainty due to the trigger
efficiency reaches up to 4%, depending on the multiplicity class.

All the mentioned sources are added in quadrature to obtain
the total systematic uncertainty, which, for the pr-integrated re-
sults, varies between 3% and 7% with the multiplicity class. For
the selected pr intervals, the uncertainties are larger, varying be-
tween 3% and 10% with multiplicity and pr interval, mainly due
to the signal extraction, which is affected by statistical fluctuations
of the background. The results at high pr, employing the EMCal,
have uncertainties up to 13%, which are larger because of the ad-
ditional selection requirements on the track-cluster matching and
the EMCal electron identification selections.

4. Results and discussion

The top panel of Fig. 4 shows the normalized J/v yield as a
function of the normalized charged-particle pseudorapidity density
at midrapidity, dN¢,/dn/(dN¢,/dn). The dashed line also shown in
the figure is a linear function with the slope of unity.

These results include both the MB and HM triggered events,
which allow for a coverage of up to 7 times the average charged-
particle multiplicity, when events are selected based on the mea-
sured midrapidity multiplicity. This is a significant extension with
respect to our previous results in pp collisions at /s =7 TeV [4],
where only the range up to 4 was covered and with larger un-
certainties. Using the event selection based on the VO forward
multiplicity (green squares), which should largely remove a pos-
sible auto-correlation bias, the measurement extends only up to 5
times the (dN¢,/dn). The results for the two event selection meth-
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Fig. 5. Normalized inclusive ]/v yield at midrapidity as a function of normalized charged-particle multiplicity in pp collisions at /s =13 TeV, for different ranges of pr of
the J/y meson. Left: event selection based on multiplicity at midrapidity. Right: event selection based on multiplicity at forward rapidity. The error bars show statistical

uncertainties and the boxes systematic uncertainties.

ods are in very good agreement. In both cases, the normalized
J/¥ yield grows significantly faster than linear with the normal-
ized multiplicity.

Included in Fig. 4 is also the double ratio of the normalized ][y
yield to the normalized multiplicity (bottom panel). Two regimes
could be identified, with a stronger increase of the double ra-
tio for events with small multiplicity and a weaker increase for
high-multiplicity events. It is noted that the “energy cost” for the
production of a J/3» meson, characterized by a transverse mass

mr = /my,,, + py/c? =5 GeV/c?, is similar to the one for particle

production per unit rapidity of the underlying MB event, estimated
as (dNg/dn) -(p1). A linear (diagonal) correlation with multiplic-
ity is then expected to first order and observed in PYTHIA 8.2
simulations [17]. As seen in Fig. 4, the data exhibit richer features
than this baseline expectation.

The data in intervals of pt of the J/¢» meson are shown in Fig. 5.
The data exhibit a significant increase of the normalized ]/¢ yield
with the normalized multiplicity between the J/v pr intervals 0-4
and 4-8 GeV/c. This effect could be attributed to various contribu-
tions [17], like associated ][y production with other hadrons in jet
fragmentation or from beauty-quark fragmentation, as the fraction
of J/4 from b-hadron decays increases with pr [36].

Measurements of the correlation with the event multiplicity
for inclusive charged-particle production have identified similar
trends [10] as for the ]/ pt dependence. The strength of this cor-
relation is similar for J/¢ and for inclusive charged particles (dom-
inated by pions) for pr values giving a comparable mt value. The
production of strange hyperons at midrapidity was also observed
to exhibit a correlation with event multiplicity in proportion to
their mass [37]; a strong correlation was also measured for the Y
mesons [6].

The theoretical models currently available attribute the ob-
served behavior to different underlying processes. In the PYTHIA
8.2 event generator [16], multiparton interactions (MPI) are an im-
portant factor in charm-quark production. Indeed, from MPIs alone
a stronger than linear scaling is expected for open-charm produc-
tion, as was demonstrated in Ref. [5] with PYTHIA 8.157. Taking

into account all sources of heavy-quark production, however, a
close to linear increase is predicted [17]. PYTHIA 8.2 reproduces
well the observation in data with a very similar correlation with
multiplicity for the two different rapidity intervals used for multi-
plicity measurement, as seen in the left panel of Fig. 6, although
the overall slope of the trend is underestimated. To illustrate the
effect of non-prompt J/v in the inclusive production, in Fig. 6 the
case of prompt ]/ meson production as predicted by PYTHIA 8.2
is shown in addition. A significant reduction of the correlation is
observed, which appears to be stronger for the SPD event selection
case.

In the EPOS3 event generator [14,38], initial conditions are gen-
erated according to the parton-based Gribov-Regge formalism [39].
Sources of particle production in this framework are parton lad-
ders, each composed of a pQCD hard process with initial- and
final-state radiation. This model already predicted the stronger
than linear increase with multiplicity observed for open-charm
mesons [5], originating from a collective (hydrodynamical) evo-
lution of the system. The predictions from EPOS3, here without
the hydrodynamic component, are similar in magnitude to those
from PYTHIA 8. In the percolation model [13], spatially extended
color strings are the sources of particle production in high-energy
hadronic collisions. In a high-density environment they overlap;
such a decrease in the effective number of strings leads to a
reduction in particle production. Since the transverse size of a
string is determined by its transverse mass, lighter particles are
affected in a stronger way than heavier ones. This results in a
linear increase of heavy-particle production at low multiplicities,
gradually changing to a quadratic one at high multiplicities. The
coherent particle production (CPP) model [12,40] employs phe-
nomenological parametrizations for light hadrons and ]/ derived
from p-Pb collisions, and predicts a stronger than linear relative
increase of J/¢ production with the normalized event multiplic-
ity. In the Color Glass Condensate (CGC) approach, the NRQCD
framework is employed for ]/ production. This effective field
theory predicts, both for J/# and D mesons, a relative increase
with the normalized multiplicity that is faster than linear, both
for pp and p-Pb collisions [15]. In a CGC saturation model, a
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Fig. 7. Normalized inclusive J/y yield at midrapidity as a function of normalized charged-particle pseudorapidity density at midrapidity for different pr intervals; the data
are compared to theoretical model predictions from PYTHIA 8.2, EPOS3, and the coherent particle production model (CPP).

faster than linear trend generically arises from the Bjorken-x de-
pendent saturation scale which would suppress more the soft-
particle multiplicity, produced at low-x, compared to ]J/v produc-
tion which is sensitive to larger values of x. In the 3-Pomeron
fusion model [18], the correlation arises as J/y production via 3-
gluon fusion processes from various Pomeron configurations are
considered. The larger configuration space for the particular case
of the overlapping rapidity interval for ]/ and charged parti-
cles leads to a significantly stronger correlation. Gluon satura-
tion is implemented in this model; its effect, interestingly a re-
duced correlation, becomes significant for normalized multiplici-
ties above 7.

All models predict an increase which is faster than linear, as
shown in the right panel of Fig. 6. In all models this is effectively
the result of a (N.y-dependent) reduction of the charged-particle
multiplicity, realized through rather different physics mechanisms
in the various approaches (color string reconnection or percola-
tion, gluon saturation, coherent particle production, 3-gluon fusion
in gluon ladders/Pomerons). The PYTHIA 8.2 and EPOS3 models

underpredict the data, while the percolation model slightly over-
predicts them at high multiplicity; good agreement is seen for the
CGC, the coherent particle production, and the 3-Pomeron mod-
els.

The trend of stronger increase in the pt intervals above 4 GeV/c
seen in the data is qualitatively reproduced by PYTHIA 8.2, EPOS3
and the coherent particle production model, as shown in Fig. 7.
The EPOS3 model, without the hydrodynamic component, under-
estimates the data, as does PYTHIA 8.2. It is worth noting that in
all models except PYTHIA 8.2 only the prompt ]/ production is
included, while the data contain the contribution from decays of
beauty hadrons, which is pr-dependent and might also have a dif-
ferent dependency on multiplicity; the existing measurement of
charm and beauty production [5] is not precise enough to be con-
clusive, but a study in PYTHIA 8.2 [17] showed that the feed-down
from beauty hadrons significantly influences the result. This is il-
lustrated in Fig. 6, where for PYTHIA 8.2, the case of prompt J/vr
meson production is included.
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5. Summary and conclusions

We have presented a comprehensive measurement of inclusive
production of J/¢» mesons as a function of the event multiplicity
in pp collisions at /s =13 TeV performed with the ALICE appa-
ratus. The J/y» production at midrapidity is studied using a data
sample including minimum bias, high event activity, and EMCal
triggered events. The event selection is performed based on the
charged-particle measurement at midrapidity and in the forward
region. The ]/ yield in a given multiplicity interval normalized
to the J/v yield in INEL > 0 collisions is presented as a func-
tion of the charged-particle multiplicity similarly normalized. The
advantage of such a representation is that most of the experimen-
tal systematic uncertainties cancel; also, some of the theoretical
model uncertainties are mitigated for such normalized yields.

A stronger than linear increase of the relative production of J/y
as a function of multiplicity is observed for pr-integrated yields;
this increase is stronger for high-pt J/v/ mesons. The trends are
qualitatively, and for some of the models quantitatively, repro-
duced by theoretical models, but a critical appraisal of the sim-
ilarity or difference between the physics mechanisms at play in
various models is yet to be performed. More stringent tests of the
models are needed too. Disentangling the feed-down from beauty
hadrons, not included in most of the current theoretical predic-
tions, will be an important step towards shedding light on the
mechanism of hadronization of charm (and beauty) quarks, in par-
ticular in the environment of a high density of color strings created
in high-multiplicity pp collisions. Data which will be collected in
Run 3 at the LHC will be a significant addition for such studies.
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