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Abstract. The recently proposed renormalization group improved optimized perturbation
theory is employed to evaluate the pressure of the two dimensional non linear sigma model at
finite temperatures. We explicitly show how this powerful resummation method can turn the
lowest (one loop) perturbative contribution to the pressure, which is not RG invariant, into a
non perturbative quantity exhibiting scale invariance .

1. Introduction

The development of reliable approximation techniques to solve the equations of motion describing
a physical system has always been considered a problem of fundamental importance in all
branches of physics since most realistic situations are described by non linear interactions.
In practice this means that an exact solution may not be easily attainable and theoretical
predictions require that the evaluation of a physical quantity be performed within an appropriate
approximation framework. Sometimes, when a problem cannot be exactly solved one can
attempt to separate it into two parts with one of them representing an exactly solvable case.
Then, if the underlying dynamics allows, one can treat the other piece as a “perturbation” and
recur to the well established perturbation theory (PT) to approximately solve the problem by
successively evaluating the terms which appear in a series written in powers of a (small enough)
parameter which characterizes the perturbative interaction. Being relatively easy to implement,
PT has been successfully employed to treat various widely different problems. However, the
same approximation does not have the same capability in the case of quantum chromodynamics
(QCD), which is the fundamental theory of strong interactions, since in this case the interaction
parameter (4mas) is not small at the energy scales relevant for nuclear physics. Today, the
development of powerful computers offers the possibility to solve these non perturbative problems
by employing the numerical methods of the so-called lattice field theory (LFT), which has been
very successful in the description of the QCD phase transitions at finite temperatures and
near vanishing baryonic densities [1]. However, the numerical sign problem, which arises at
finite chemical potentials, has not yet been completely solved, preventing that the method be
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successfully used to describe the complete QCD phase diagram. A possible analytical alternative
is to employ a variational approximation where the result of a related solvable case is rewritten in
terms of a variational parameter. This strategy is adopted in the optimized perturbation theory
(OPT) [2, 3] where, for scalar theories, a harmonic term (1 — §)m? is added to the potential
energy density while the anharmonic coupling, A, is rescaled as A — 0\ with § being formally
treated as a (small) interaction parameter. Having evaluated a physical quantity to the desired
order in § one sets 6 = 1, and fixing the mass parameter, m, in a variational fashion. The OPT
has been successfully used in physical situations relevant for hadronic [4] and condensed matter
physics [5, 6, 7], while a similar technique, known as screened perturbation theory (SPT) [§],
has been extended in order to cope with gauge theories. The resulting approximation, which
provides a resummation of hard thermal loop perturbation theory (HTLpt) [9], has already been
applied to QCD. Unfortunately, all these variational methods predict that scale invariance is not
observed by thermodynamical physical observables such as the pressure, as many applications
to scalar theories show [8, 10]. In the case of QCD the results obtained in Ref. [9] show a good
agreement between HTLpt and LFT simulations at the “central” arbitrary renormalization
scale value, M = 27T, but the agreement is lost when the scale is varied even by a moderate
amount. An alternative, combining OPT with renormalization group (RG) invariance, has been
recently proposed [11]. This technique, known as renormalization group optimized perturbation
theory (RGOPT), was originally used within the framework of the Gross-Neveu model and
QCD at vanishing temperatures. More recently, the RGOPT has been extended to the finite
temperature domain in an application to the scalar A¢* theory producing encouraging results
[12]. Here, we illustrate how the method works by evaluating the pressure of the non linear
sigma model (NLSM) in 141 dimensions which, despite of being a simple model, shares some
common features with QCD such as asymptotic freedom, trace anomaly and the generation of
a mass gap. At finite temperatures this model has been first analyzed in Ref. [13] and more
recently in Refs. [14, 15]. For our present purpose we only need to compute the lowest order
(one loop) contribution to the pressure. A more complete discussion (up to the two-loop level)
will be given elsewhere [16]. The work is organized as follows. In the next section we recall the
two dimensional NLSM, presenting the one loop perturbative result in Sec. 3, while the RGOPT
is applied in Sec. 4 and some numerical results illustrated in Sec. 5. Our conclusions are given
in Sec. 6.

2. The NLSM in 1+1-dimensions
The two-dimensional NLSM Lagrangian density, for m; fields with N — 1 components, can be
written as [17]

_ Lom)? go(mw_m%{ _ 21/2_}
Lo= 5 0m" + 53 = oy~ o (L 07) T 1) (1

where the last parcel represents a constant and mg represents a mass parameter whose physical
role will be specified later. Expanding he above theory to zeroth-order yields

1
Lo=3 [(0m)” + min?] + & + Olgo), (2)

where we have introduced a field independent term, &y, which corresponds to an infinite
renormalization of the “zero-point” energy [3].

Within the imaginary time formalism the propagator is 1/(w? + p? +m?) where w,, = 2mnT
represent the bosonic Matsubara frequencies (n = 0,4+1,£2---) and T is the temperature. In
this work, the divergent integrals are regularized using dimensional regularization (within the
minimal subtraction scheme MS) which, at finite temperature, and d = 2 — ¢ dimensions can be
easily implemented by using [18]
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/ p2—>T§sz< y ) Z/ > (3)
(27) D T ) (2m)
where 7 is the Euler-Mascheroni constant and M is the MS arbitrary regularization energy
scale. Before performing the finite temperature evaluations we recall that in two-dimensions no

spontaneous symmetry breaking of the global O(N) symmetry can take place (at any coupling
value) [19].

3. Perturbative pressure and scale invariance
If one considers the (one-loop) zeroth-order contribution to the pressure only the free gas type
of term contributes yielding [13]

() + o, 8

P=-

where
Iy(T) = Ti In (wi + w%) , (5)
P

with the dispersion wg =p?+m?
Then, performing the sum over the Matsubara’s frequencies within the MS scheme one obtains

Io(m,T) = 2{1+ B ~In (E)}}+T272r,]0(m/T). (6)

€

In the above expression the thermal integral, Jo(T), reads

Jo(m/T) = /OOO dzln (1 —e %), (7)

where we have defined the dimensionless quantity w? = 22 + y* with z = |p|/T and y = m/T.
Then, to this lowest perturbative order the renormalized pressure can be obtained by setting
mo = m, go = g, where m is renormalized mass and g is the renormalized coupling. The only
divergence can be eliminated by the zero point subtraction term, & = (N — 1)m?/(4we), so that
the finite pressure is simply

(N_ 1) T
p=- "), (®)
where )
m- [1 m 2 m
Iy(m,T)= — |= —In{ — 2= —).
som ) = 5 |5~ (37)] + 722 )
Next, let us consider the complete renormalization group (RG) operator defined by
d 0 d n 0
M—=M— — == —. 1
ot = Manr TP, 3¢ tmmg, (10)
Since the pressure is represented by a zero point Green’s function (n = 0) we only need to
consider the 3 and ~,, functions at the one-loop level [20] 8 = —byg? and 7, = —70g Where we

have defined the RG coefficients in our normalization: by = (N —2)/(27) and 9 = (N —3)/(8n).
Let us now apply the RG operator to the zeroth-order pressure. Since § and 7, are at least
of order-g and Jy(T') is scale independent, one gets
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dP m?

M— =—(N—-1)— 11

which explicitly shows that the one loop pressure is not scale-invariant. Following Refs. [11, 12]
one can fix this problem by adding a finite field independent term m?/g 3" sg*, where the
coefficient s; is fixed so that the pressure becomes RG invariant as we now demonstrate.

Employing this RGOPT prescription one can then write the zeroth-order pressure as

_ m2
p- —(N21)I5(T) s, (12)

Then, the RG equation, MdP/dM = 0, leads to

2 2
m 0 0 \ m<sg
N1+(+ m) =0 13

( ) 47 ﬁ@g T em g ’ (13)
fixing sy = 1. In the next section we show how this RG invariant perturbative pressure can be
interpolated in order to generate non perturbative results.

4. RG improved optimized perturbation theory

The next step is to perform the replacements [11, 12] m — (1 — 0)*m and g — dg, into the
renormalized and RG invariant perturbative pressure that was obtained in the previous section
and then fix the RGOPT exponent, a. It is important to note that within the standard OPT
this parameter is fixed in an ad hoc way (for example, a = 1/2 in the case of scalar theories
[2, 3, 10]). Note also that in the case of massless theory, such as the case studied here, m can
also be interpreted as an infra red regulator. To fix the arbitrary mass parameter the RGOPT
adopts the same variational criterion used within the standard OPT. Namely [21],

9 PRGOPT
——lm=m =0, (14)
om
which implies that the RG operator is reduced to
0 0
(MaM - 589) PREOFT _ (15)

Performing the replacements, re-expanding to the zeroth order and using sy = 1, one can finally
write

PRGOPT _ —%Ié(T) + ”;2(1 — 2a). (16)

Next,to fix the RGOPT exponent a one requires that the pressure given by Eq. (16) satisfies
the reduced RG relation, Eq. (15), obtaining

Y (N -3)
bo 4(N —-2)

a

(17)

which is also the value found in the context of the scalar A¢* theory [12]. Using a = vo/by and
the definitions for by and ~y one can finally write

N1, m’
PRGOPT _ — B (T) + (N - 1)m. (18)



8th International Workshop DICE2016: Spacetime - Matter - Quantum Mechanics IOP Publishing
IOP Conlf. Series: Journal of Physics: Conf. Series 880 (2017) 012049 doi:10.1088/1742-6596/880/1/012049

where, at the one loop level, the running coupling is given by

M —1
9(M) = g(0o) |1+ 90 )tun (31)] - (19)
Before presenting some numerical results let us quickly illustrate how the RGOPT is able
to produce non perturbative results already at this lowest order. Applying the optimization
criterion, Eq. (14), to the RGOPT pressure, Eq. (18), yields a non trivial gap equation for m
which, at T' = 0, leads to following the result for m,

1
m(0 :Mexp(—> . 20
©) g(M)bo (20)
Moreover, as usual [22] the large-N result can be exactly reproduced when the N — oo limit is
appropriately taken within our formalism.

5. Numerical results

In order to make contact with the usual SPT/HTLpt results [8, 9] let us first define a temperature
dependent scale, M = 27T «, where the case o = 1 determines the “central” value. To obtain
the pressure at high temperatures one can consider the high-T" expansion for Jy(T) [18]

2

Jo(m/T) = == 4 T (m)2 {m (T;f) _ ﬂ +OmATY (21)

Then, using the Stefan-Boltzmann result for the NLSM [14], Psg = (N — 1)712/6, one obtains

P 1 i) — () [Lr(a) [+ o0m) )
=1—-6m(a) — 6m*(a a) — ———— m'),
Psp g b()g(Oé,T)
where, again in accordance with Refs. [8, 9], we have defined m = m/(2nT), Lr(a) =

In(M(a)e’®/2), and M(a) = M/(2rT) = a. Setting My = 27Ty, where Tj is a reference
temperature one easily obtains g(«,T') from Eq. (19). Next, the optimized mass can be easily
obtained by applying Eq. (14) to Eq. (22) which gives

. 1 1 -1
o) = (W _ LT(a)) . (23)

Note that using the previous optimized mass gap solution, Eq. (23), within Eq. (22), the latter
takes a much simpler expression (in the high-T" limit here considered):

PREOPH@) _ 1 _ 3o + 00 (24)

Psp

In order to compare the RGOPT and ordinary PT results, one can obtain the latter directly
from Eq. (8) in the massless limit, which after straightforward algebra gives

PYT(a) 3
=1-° :
Psn 5 09(T) (25)

On the other hand, the purely perturbative thermal “screening” mass at one-loop order can be
obtained starting from the self-energy [17]:

(N —
2

1
T3 (p) = p*(1 + gol1) +md |1+ %M1+@f% (26)
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where I; is the basic (Euclidean) one-loop integral, in MS renormalization scheme,

1 1 /1 m

with the thermal part Ji(m/T") having the high-T expansion (compare Eq. (21))

T2 0Jo(2) T 1 meVE
T)=-—— {ARAY e | 2/T?). 2
J(m/T) m  Om 2m 2n(4ﬂT>+O(m/ ) (28)
Taking thus the pole mass p? = —m? in Eq. (26) after mass renormalization, gives, in the

massless limit m — 0 relevant for the pure thermal one-loop mass:

_N-3

3 g, T) T =mvyg(a,T)T, (29)

mp(a)

which may be compared with the RGOPT nonperturbative one-loop result (23).

2.0
_7 1.0 <z o
L.57 /// ] 0.8 \\\
i ,”” \\\\
o -7 2 0.6 \\\
1.0p -7 ) So
b ,a” & \\‘x
S e 04 Sl
0.5¢ tad P \‘\\
- i 0.2F ‘x\\\ ]
0.0== — :
0.0 0.5 1.0 1.5 2.0 0.0 ' : :
(To) 0.0 0.5 1.0 1.5 2.0
8o
8(To)

Figure 1. The thermal mass m(7T)/T for
fixed T' = T as a function of the reference
coupling, ¢g(Tp) for « = 0.5,1, and 2. Dashed
line (RGOPT), upper continuous line (PT
at @ = 0.5), middle continuous line (PT at
a = 1) and lower continuous line (PT at
a=2).

Figure 2. Normalized pressure P/Psp as a
function of g(7p) at T = Tj for a = 0.5, 1, and
2. Dashed line (RGOPT), upper continuous
line (PT at o = 2), middle continuos line (PT
at o = 1) and lower continuous line (PT at
a=0.5).

Choosing N = 4, a = 0.5,1,and 2 we can now investigate different thermal quantities. Fig.
1 shows the PT and RGOPT (thermal) masses m(7")/T for fixed T' = Tj as a function of the
reference coupling, g(7p). The RGOPT mass displays exact scale invariance, in contrast to the
PT mass (29). Next, Fig. 2 shows P/Psp as a function of g(7p), also illustrating the exact scale
invariance of the RGOPT pressure, and exhibiting a behavior similar to the one found for the
A¢* model [12]. In particular, one should not be surprised by the different behavior (slope) as
function of the coupling, with respect to PT one-loop results, of the RGOPT mass and pressure
in Figs. 1 and 2 respectively. First, in contrast with the physical one-loop Debye (pole) mass,
the optimized mass (23) is only an intermediate unphysical quantity in the pressure optimization
procedure. Second, while comparing the different pressures as function of the running coupling
Eq. (19) is sensible as concerns the scale dependence, at this stage the coupling value is not a
physical quantity, being not fixed at some well-defined input scale and therefore essentially arbi-
trary in both PT and RGOPT cases. However, the overall physical consistency of our RGOPT
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pressure result can be checked by noting that, when the arbitrary mass in Eq. (24) is replaced
with the physical thermal mass mp Eq. (29), one consistently recovers the standard perturbative
PT pressure as function of the coupling Eq. (25) (see Ref. [12] for a detailed discussion of similar
results for the scalar ¢* model).

Finally Fig. 3 shows P/Pgp as a function of 7'/} for the fixed reference coupling, g(Tp) = 1,
clearly displaying again the exact scale invariance of the nonperturbative RGOPT result.
Although it is not obvious from the figure, note that the RGOPT pressure tends consistently
towards the Stefan-Boltzmann limit for 7/Ty — oo, while the PT pressure reaches this limit
more rapidly. This difference for a given reference coupling, and in particular the fact that the
RGOPT pressure is substantially smaller than PT for moderate and small T'/Tp, indicates that
the RGOPT captures (resums) more essentially nonperturbative content.

- 06735 ’________-—-—---""""f Figure 3. P/Psp as a function
& T of T/Ty for the fixed reference
< 04} /" ] coupling, g(Ty) =1, « = 0.5, 1, and
027,,’ 2. Dashed line (RGOPT), upper
T continuous line (PT at a = 0.5),

0.0 . : : . middle continuous line (PT at a =

0 ! 2 3 4 > 1) and lower continuous line (PT at

T/To a=2)

6. Conclusions

Using a simple model which shares common features with QCD, such as asymptotic freedom, we
have briefly described how the RGOPT technique can generate scale invariant non perturbative
results from the lowest order contribution to the pressure. As we have shown, within this
framework one starts by requiring that the ordinary “free gas” type of contribution be RG
invariant, which implies that an extra (field independent) term should be added to the action.
Next, the Lagrangian density is deformed by the interpolating term, (1—3J)%m, and the arbitrary
parameters, a and m, fixed by combining the RG equations with an optimization variational
criterion. Circumventing the severe scale dependence issues observed within related variational
methods (such as OPT, SPT, and HTLpt) the RGOPT method described here stands as a
new potential alternative to LF'T concerning the description of compressed strongly interacting
matter.
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