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In a four dimensional inflation theory, a persistent electric field can be established by making the inflaton
coupled to the gauge field like a dilaton. We investigate the pair production of scalar particles in the
inflaton-driven electric field. In particular, we evaluate the induced current due to the pair production. The
presence of the dilatonic coupling ensures the validity of the Wentzel-Kramers-Brillouin approximation at
the past and the future infinities, without tuning constant parameters. Thus, the semiclassical description is
applicable in evaluating the induced current. Solving the field equations with the induced current, we
evaluate the first-order backreaction to the electric field. It turns out that the electric field decreases with the
cosmic expansion. The result indicates that the no-anisotropic hair theorem for inflation holds true
regardless of whether the dilatonic coupling is present or not.
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I. INTRODUCTION

Concerning the primordial universe, we find no evidence
of statistical anisotropy from the current status of cosmic
microwave background observations [1,2]. From a theo-
retical viewpoint, an anisotropic inflation can be obtained if
a nonzero electromagnetic vector field exists. As a matter of
fact, there is a following no-anisotropic hair theorem for
inflation. In four dimensions, the gauge field respects the
conformal symmetry as long as its kinetic term is canonical.
The conformal symmetry ensures that the electromagnetic
field decays as the inverse square of the scale factor of the
Universe.
Kanno, Watanabe, and Soda showed that a persistent

electric field can be obtained by introducing a dilatonic
coupling between the inflaton and the gauge field in the
action [3]. We call it the inflaton-driven electric field. The
dilatonic coupling breaks the conformal symmetry and so
the no-anisotropic hair theorem discussed above is not
applicable to this model. As pointed out in [4], it is natural
to introduce such a noncanonical kinetic term of the
gauge field from a perspective of the general supergravity
action.
The derivation of a persistent electric field in [3] is based

on the classical field equations. On the other hand, if a
charged test field exists, a strong electric field leads to the

pair production of particles [5]. This is known as the
Schwinger effect. The pair production induces the Uð1Þ
current and the induced current screens the electric field, at
least in Minkowski space. Therefore, it is reasonable to
conjecture that if we take into account the Schwinger effect
in the inflaton-driven electric field, the no-anisotropic hair
theorem holds true also in the presence of the dilatonic
coupling. In this paper, we verify the conjecture quantita-
tively by solving the field equations with the induced
current.
As a specific example of test fields, we consider a

massive charged scalar field. We point out that the presence
of the dilatonic coupling ensures the validity of the
Wentzel-Kramers-Brillouin (WKB) approximation at the
past and the future infinities, without tuning constant
parameters. Based on this fact, we evaluate the induced
current by using the semiclassical description.
There are several studies which discussed the Schwinger

effects in four dimensional de Sitter (dS) space [6–10]. In
[6–9], the physical electric field is fixed at a constant value
in the absence of the dilatonic coupling. The definition of
the physical electric field depends on whether the dilatonic
coupling is present or not. That is, this paper investigates
the Schwinger effect on a different background gauge field
from [6–9].
In [10], the Schwinger effect has been investigated on the

same background gauge field as this paper. The previous
study discussed a weak electric field limit at the integrand
level, where a momentum dependence is included. In
evaluating integral quantities like the induced current,
the parameter region can be interpreted as an early time.
In contrast, this study discusses a late time behavior of the
Schwinger effect.
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The organization of this paper is as follows. In Sec. II, we
review the classical solution in the inflation theory with the
dilatonic coupling. A persistent electric field is given as an
attractor solution in this model. In Sec. III, we introduce a
massive charged scalar field as a test field. We show that the
WKB approximation is valid at the past and the future
infinities. In Sec. IV, we evaluate the induced current by
using the semiclassical description. The evaluation is
performed for a late time behavior. In Sec. V, we evaluate
the first-order backreaction to the electric field by solving
the field equations with the induced current. It turns out
that the electric field decreases with the cosmic expansion.
We conclude with discussions in Sec. VI.

II. BACKGROUND FIELDS

In order to obtain a nondecaying electromagnetic field
during inflation, the action should include a term which
breaks the conformal symmetry [3,4,11–14]. In this paper,
we consider the inflation model where the inflaton φ
couples to the gauge field Aμ as

Sbg ¼
Z ffiffiffiffiffiffi

−g
p

d4x

�
M2

pl

2
R −

1

2
gμν∂μφ∂νφ − VðφÞ

−
1

4
f2ðφÞgμρgνσFμνFρσ

�
; ð2:1Þ

Fμν ¼ ∂μAν − ∂νAμ: ð2:2Þ

Here V is the inflaton potential dominating the cosmic
energy density during the slow-roll inflation, and f is the
dilatonic coupling between the inflaton and the gauge
field [3,4].
The slow-roll condition for the inflaton potential approx-

imates the background spacetime by dS space

ds2 ¼ −dt2 þ a2ðtÞdx2; aðtÞ ¼ eHt; ð2:3Þ

where t is the cosmic time and H is the Hubble parameter.
The variation of H and the anisotropic elements of the
metric are suppressed by the slow-roll parameters.
In this paper, we adopt the temporal gauge:

A0 ¼ 0: ð2:4Þ

Furthermore, we may solve the classical field equations
along one spatial direction without loss of generality. The
homogeneous background fields are written as

Ai ¼ AðtÞδi1; ð2:5Þ

φ ¼ φðtÞ; ð2:6Þ

where i ¼ 1, 2, 3. Then the equation of motion for A is
given by

d
dt

�
f2a

d
dt

A

�
¼ 0: ð2:7Þ

As shown in [3], the time evolution of f is determined as
an attractor solution of the classical field equations.
Specifically, the following ansatz is adopted:

fðφÞ ¼ exp

�
2c
M2

pl

Z
dφ

V
∂φV

�
; ð2:8Þ

where c is a constant parameter. As far as c > 1, the
classical solution approaches to

f ¼ a−2: ð2:9Þ

Here the overall coefficient is normalized.
In the presence of the dilatonic coupling, the physical

electric field is given by

Ephys ¼ −fa−1
d
dt

A: ð2:10Þ

From (2.7) and (2.9), we can confirm that the physical
electric field approaches to a constant value

Ephys ¼ E; E∶ const: ð2:11Þ

Here the constant value is related to the free parameter in (2.8)
as E ¼ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ðc − 1ÞϵV
p

=cÞMplH, ϵV ≡ ðMpl∂φV=VÞ2=2.
Integrating the equation, the gauge field is given by

A ¼ −
E
3H

e3Ht; ð2:12Þ

where we kept the lowest order in ϵV , i.e., we treated the
background spacetime as dS space except that E is propor-
tional to

ffiffiffiffiffi
ϵV

p
. It should be noted that if the dilatonic coupling

is absent as f ¼ 1, we cannot obtain a persistent electric field
as a classical solution.
In the above, we discussed the classical field equations.

If a charged test field exists, a strong electric field leads to
the pair production of particles, and the pair production
induces the Uð1Þ current. Therefore, we need to consider
the backreaction from the induced current to the elec-
tric field.
The induced current has been evaluated in a different

setting [6–9]. In the previous studies, the dilatonic coupling
is absent and then the physical electric field is given by

Ēphys ¼ −a−1
d
dt

A: ð2:13Þ

They discussed the case that the physical electric field is
fixed at a constant value

Ēphys ¼ E; E∶ const: ð2:14Þ
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In terms of the gauge field, the setting is expressed as

A ¼ −
E
H
eHt: ð2:15Þ

We emphasize that in [6–9], a persistent electric field is
considered as a setting rather than a classical solution.
Considering the consistency with the background field
equations, we adopt (2.11) as a persistent electric field
rather than (2.14).1

In the next section, we investigate the Klein-Gordon
equation of a test field in the presence of the dilatonic
coupling. The same Klein-Gordon equation has been
investigated in [10]. As a new finding, we show that the
WKB approximation is valid not only at the past infinity
but also at the future infinity. The validity originates in the
presence of the dilatonic coupling and holds true for any
values of constant parameters.

III. TEST SCALAR FIELD

As a test field, we introduce a massive charged scalar
field ϕ:

Stest ¼
Z ffiffiffiffiffiffi

−g
p

d4x½−gμνð∂μ þ ieAμÞϕ�ð∂ν − ieAνÞϕ

−m2ϕ�ϕ�: ð3:1Þ

In this paper, we consider quantum fluctuations of the test
scalar field while we do not consider those of the other
fields. Furthermore, we discuss quantum dynamics after the
electric field becomes constant, i.e., we consider the case
that the charge is sufficiently small so that the classical
evolution of the electric field is much faster than the
quantum one.
In investigating the wave function, it is convenient to use

the conformal time:

τ ¼ −
1

H
e−Ht; −∞ < τ < 0; ð3:2Þ

and use the conformal transformation:

ϕ̃ðxÞ ¼ aðτÞϕðxÞ: ð3:3Þ

From (2.4)–(2.5) and (2.12), the Klein-Gordon equation is
given by

�
d2

dτ2
þ ω2

kðτÞ
�
ϕ̃kðxÞ ¼ 0; ð3:4Þ

ω2
kðτÞ¼

�
k1þ

eE
3Hð−HτÞ3

�
2

þk22þk23þ
m2−2H2

ð−HτÞ2 ; ð3:5Þ

where ϕ̃k is the wave function of ϕ̃ , and k ¼ ðk1; k2; k3Þ is
the comoving momentum. We set e > 0, E > 0 in the
subsequent discussion for simplicity, though parallel dis-
cussions can be applied to the other cases.
In the Klein-Gordon equation, the background spacetime

is approximated by dS space except that the electric field is
nonzero due to a finite value of the slow-roll parameter. One
purpose of this paper is to evaluate the time evolution of the
induced current. As shown later, the time evolution is
expressed as aα, α ¼ Oðϵ0VÞ. The approximation allows us
to evaluate such a scaling, whose exponent is not sup-
pressed by the slow-roll parameter.
Although the Klein-Gordon equation (3.4)–(3.5) is not

exactly solvable, as far as the following discriminants are
kept small

ω−4
k

�
dωk

dτ

�
2

≪ 1;

				ω−3
k

d2ωk

dτ2

				 ≪ 1; ð3:6Þ

we may adopt the WKB approximation:

ϕ̃kðxÞ ≃
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkðτÞ
p exp

�
−i

Z
τ
dτ0ωkðτ0Þ

�
eþik·x: ð3:7Þ

At the past infinity τ → −∞, ωk is constant

ωk ≃ jkj; ð3:8Þ

and then the validity of the WKB approximation is trivial

ω−4
k

�
dωk

dτ

�
2

≃ 0; ω−3
k

d2ωk

dτ2
≃ 0: ð3:9Þ

At the future infinity τ → 0, the electric field term of ωk
becomes dominant as

ωk ≃
eE

3Hð−HτÞ3 ; ð3:10Þ

and then the discriminants approach to zero as

ω−4
k

�
dωk

dτ

�
2

≃ 9

�
eE

3H2ð−HτÞ2
�

−2
;

ω−3
k

d2ωk

dτ2
≃ 12

�
eE

3H2ð−HτÞ2
�

−2
: ð3:11Þ

The decay of the discriminants shows that the WKB
approximation is valid at the future infinity for any values
of m2=H2 and eE=H2 (except for eE=H2 ¼ 0).
It should be noted that the decay of the discriminants

is due to the presence of the dilatonic coupling. For

1Note that the dimension of the spacetime is taken as D ¼ 4 in
[6–9] and this paper. The induced current has been investigated
also in the D ¼ 2 case [15], where a persistent electric field can
be obtained without the dilatonic coupling.
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comparison, let us consider the case that the physical
electric field is fixed in the absence of the dilatonic
coupling as in (2.14). From (2.4)–(2.5) and (2.15), the
Klein-Gordon equation is given by

�
d2

dτ2
þ ω̄2

kðτÞ
�
ϕ̃kðxÞ ¼ 0; ð3:12Þ

ω̄2
kðτÞ¼

�
k1þ

eE
Hð−HτÞ

�
2

þk22þk23þ
m2−2H2

ð−HτÞ2 : ð3:13Þ

The validity of the WKB approximation is trivial at the past
infinity as well as in (3.4)–(3.5).
At the future infinity, ω̄k behaves as

ω̄k ≃
1

−Hτ

��
eE
H2

�
2

þ m2

H2
− 2

�1
2

; ð3:14Þ

and then the discriminants approach to the constant values

ω̄−4
k

�
dω̄k

dτ

�
2

≃
��

eE
H2

�
2

þ m2

H2
− 2

�−1
;

ω̄−3
k

d2ω̄k

dτ2
≃ 2

��
eE
H2

�
2

þ m2

H2
− 2

�−1
: ð3:15Þ

It should be noted that there exists the following constant
parameter region where the WKB approximation is invalid:

�
eE
H2

�
2 ≲ 1;

m2

H2
≲ 1: ð3:16Þ

The induced current has been evaluated in the non-semi-
classical region [6–9,15]. In the D ¼ 4 case, it is claimed
that in a weak electric field limit of (3.16), the induced
current antiscreens the electric field [6–9].
Comparing (3.5) with (3.13), it turns out that the

dilatonic coupling gives an additional scaling to the electric
field term as

eE
H2

→
eE

H2ð−HτÞ2 : ð3:17Þ

The additional scaling causes the decay of the discriminants
in (3.11). We can conclude that if the dilatonic coupling is
present, the non-semiclassical region becomes extinct at the
future infinity without tuning the values of m2=H2 and
eE=H2. Thus, in the next section, we evaluate the induced
current by using the semiclassical description.

IV. INDUCED CURRENT DUE
TO PAIR PRODUCTION

As seen in (3.8) and (3.10), the frequency shows
different behaviors at the past and the future infinities.
This fact shows that the inflaton-driven electric field leads

to the pair production of particles. In this section, we
evaluate the induced current due to the pair production.
If the WKB approximation is valid at the past and the

future infinities, the produced particle number can be
evaluated by considering the turning point of the frequency
in the complex time plane. Specifically, the produced
particle number is expressed as

nk ¼ exp

�
4Im

Z
τ�
dτ0ωkðτ0Þ

�
; ð4:1Þ

where τ� is defined as the frequency vanishes at the
complex time

ωkðτ�Þ≡ 0: ð4:2Þ

Please refer to [16] for the derivation of the expression. The
evaluation method is also adopted to investigate the pair
production in global dS space [17].
The Uð1Þ current of the test scalar field is given by

jμ ¼ −ie½hϕ�ð∂μ − ieAμÞϕi − hϕð∂μ þ ieAμÞϕ�i�: ð4:3Þ

For convenience, we consider the rescaled current j̃μ of the
canonically normalized scalar field (3.3):

j̃μ ¼ a2jμ: ð4:4Þ

For the background field configuration (2.4)–(2.5), the
current is written as

j̃0 ¼ 0; j̃i ¼ j̃ðτÞδi1: ð4:5Þ

Using the semiclassical picture (4.1)–(4.2), we can
express the induced current as

j̃ðτÞ ¼ 2e
Z

d3k
ð2πÞ3 vkðτÞnk; ð4:6Þ

vkðτÞ ¼
�
k1 þ

eE
3Hð−HτÞ3

�
=ωkðτÞ: ð4:7Þ

Note that only the dominant term is shown in (4.6). The
general from of the current is

j̃ðτÞ ¼ 2e
Z

d3k
ð2πÞ3 vkðτÞ

×

�
1

2
þ Re

n
αkβ

�
ke

−2i
R

τ dτ0ωðτ0Þ
o
þ jβkj2

�
; ð4:8Þ

where αk; βk are the Bogoliubov coefficients and
jβkj2 ¼ nk. Due to the presence of the oscillating factor

e−2i
R

τ dτ0ωðτ0Þ, after the momentum integral, the second term
gives a relatively small contribution compared with the
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other two terms. The first term is the contribution from the
vacuum and the momentum integral of it is ultraviolet
divergent. After canceling the ultraviolet divergence by a
counter term [18], we obtain a finite contribution which is
proportional to

a2e2∇αFα
μ ∝ a3eH3

�
eE
H2

a2
�

1

; ð4:9Þ

where ∇a is the covariant derivative for spacetime. As
shown later, the contribution from the third term is propor-
tional to a3eH3ðeEH2 a2Þ2. So, the late time behavior of the
induced current is well described by (4.6).
In evaluating the produced particle number, we divide

(3.5) into the two parts as

ω2
kðτÞ ¼ A2

kðτÞ þ BkðτÞ; ð4:10Þ

AkðτÞ≡ k1 þ
eE

3Hð−HτÞ3 ;

BkðτÞ≡ k22 þ k23 þ
m2 − 2H2

ð−HτÞ2 : ð4:11Þ

We consider the long time scale where the Bk part can be
treated as a perturbation from the A2

k part. For the turning
point in the complex time plane, the A2

k part dominantly
determines Re τ�, while the Bk part determines Im τ�. That
is, τ� is approximated as

τ� ≃ −
1

H

�
−eE
3k1H

�1
3

− iϵ; ð4:12Þ

where ϵ is −Im τ� and is taken positive for a convergence.
The explicit form of ϵ is not necessary for the evaluation of
nk and so we do not show it here.
In evaluating the imaginary part of the integral in (4.1),

the first-order expansion of the frequency is crucial

ωkðτÞ ¼ AkðτÞ þ
1

2

BkðτÞ
AkðτÞ

þ � � � : ð4:13Þ

For the Bk=Ak term, we may approximate its denominator
and numerator as

AkðτÞ ≃ ðτ − Re τ�Þ ·
d
dτ

AkðτÞjτ¼Re τ� ; ð4:14Þ

BkðτÞ ≃ BkðRe τ�Þ: ð4:15Þ

From (4.12)–(4.15), the produced particle number is
evaluated as

nk ≃ exp

�
2Im

Z
τ�
dτ0

BkðRe τ�Þ
ðτ0 − Re τ�Þ · d

dτ0 Akðτ0Þjτ0¼Re τ�

�

¼ exp

�
−

πBkðRe τ�Þ
d
dτAkðτÞjτ¼Re τ�

�

¼ exp

"
−
π

3

(
k22 þ k23

k21ðk
2
1
eE

3H4 Þ−
1
3

þm2 − 2H2

H2ðk21eE
3H4 Þ

1
3

)#
: ð4:16Þ

In the second line, Im τ� gives a nonzero contribution
as logð−iϵÞ ¼ −iπ=2.
After evaluating the produced particle number, we may

neglect the Bk part of ωk and then the velocity is
approximately unity

vk ≃ 1: ð4:17Þ

Substituting (4.16) and (4.17) to (4.6), the induced current
is written as

j̃ðτÞ ≃ 2e
Z

d3k
ð2πÞ3 exp

"
−
π

3

(
k22 þ k23

k21ðk
2
1
eE

3H4 Þ−
1
3

þm2 − 2H2

H2ðk21eE
3H4 Þ

1
3

)#

¼ 2e
ð2πÞ3

Z
dk13k21

�
k21eE
3H4

�−1
3

exp

�
−
π

3

m2 − 2H2

H2ðk21eE
3H4 Þ

1
3

�
:

ð4:18Þ

In the second line, we performed the Gaussian integrals
with respect to k2 and k3.
For the remaining k1 integral, it should be recalled that

the pair production occurs after AkðτÞ exceeds zero2

AkðτÞ ¼ k1 þ
eE

3Hð−HτÞ3 > 0: ð4:19Þ

The time dependent cutoff is consistent with the conserva-
tion of the current:

gμν∇μjν ¼ 0 ⇔ ημν∂μj̃ν ¼ 0: ð4:20Þ

That is because ∂0 does not act on the cutoff inside j̃i. After
performing the k1 integral with (4.19), we obtain

j̃ðτÞ ≃ e3E2

4π3
a7ðτÞ
7H

exp

�
−π

m2 − 2H2

eEa2ðτÞ
�
: ð4:21Þ

2Strictly speaking, there is the additional condition for the
initial time τ0: Aðτ0Þ < 0. The initial condition adds a constant
term in the induced current. We consider the long timescale
aðτÞ ≫ aðτ0Þ, where the constant term is negligible.
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Here we focus on the behavior at the late time:

eE
H2

a2ðτÞ ≫ 1: ð4:22Þ

We clarify the difference between this study and the
previous study [10] which investigated the Schwinger
effect on the same background gauge field. The previous
study discussed the weak electric field limit: k21eE=H

4 ≪ 1

at the integrand level. In evaluating integral quantities like
the induced current, the parameter region can be interpreted
as the early time: eE

H2 a2ðτÞ ≪ 1. In contrast, this study
discussed the late time behavior of the induced current as
seen in (4.12)–(4.22).
Furthermore, after enough time has passed

jm2 − 2H2j
eEa2ðτÞ ≪ 1; ð4:23Þ

we may approximate the exponential factor in (4.21) by
unity as

j̃ðτÞ ≃ e3E2

4π3
a7ðτÞ
7H

: ð4:24Þ

It should be noted that the approximation at late time holds
true regardless of the sign of ðm2 − 2H2Þ. We also
emphasize that the decay of the exponent is due to the
presence of the dilatonic coupling. As seen in [6–9], the
exponent is time independent if the physical electric field is
fixed in the absence of the dilatonic coupling.
Since the dynamics of the electric field Ephys is not

independent with that of the dilatonic factor f, the presence
of the induced current does not always lead to the decay of
the electric field. For example, if the contribution from the
induced current were compensated completely by the
deformation of the dilatonic factor, the electric field should
be persistent. In the next section, we solve the simultaneous
field equations with the induced current (4.24) to verify the
no-anisotropic hair theorem.

V. BACKREACTION FROM INDUCED CURRENT

Including the induced current, the field equations are
given by

V ¼ 3M2
plH

2; ð5:1Þ

3H
d
dt

φþ ∂φV − f−1∂φf · E2
phys ¼ 0; ð5:2Þ

d
dt

ðfa2EphysÞ þ a−1j̃ ¼ 0; ð5:3Þ

where the slow-roll condition is imposed. By adopting the
ansatz (2.8), we can express the derivatives of f as

∂φf ¼ 2cffiffiffiffiffiffiffiffi
2ϵV

p
Mpl

f;
d
dt

f ¼ d
dt

φ · ∂φf: ð5:4Þ

We repeatedly make use of the relations in solving the field
equations.
Equation (5.3) is integrated as

Ephys ¼ f−1a−2
�
E −

Z
t

t0

dt0a−1ðt0Þj̃ðt0Þ
�
: ð5:5Þ

As discussed later, we normalize the overall coefficient of f
and so the integration constant is equal to the initial value of
the electric field E.
From (5.1), (5.2), and (5.5), we obtain

�
d
dt

φþ
ffiffiffiffiffiffiffiffi
2ϵV

p
MplH

�
f2a4

¼ 2c
3

ffiffiffiffiffiffiffiffi
2ϵV

p
MplH

�
E −

Z
t

t0

dt0a−1ðt0Þj̃ðt0Þ
�

2

≃
2c

3
ffiffiffiffiffiffiffiffi
2ϵV

p
MplH

�
E2 − 2E

Z
t

t0

dt0a−1ðt0Þj̃ðt0Þ
�
: ð5:6Þ

In the second line, we evaluated the right side in the first-
order approximation. That is because the induced current is
evaluated on the classical background in this paper.
Integrating (5.6), we obtain

f2a4 ¼ a−4ðc−1Þ
Z

dta4ðc−1Þ
4c2

3ϵVM2
plH

×

�
E2 − 2E

Z
t

t0

dt0a−1ðt0Þj̃ðt0Þ
�
; ð5:7Þ

where the first integral means an indefinite integral.
If any charged test field does not exist,

f2a4 ¼ a−4ðc−1Þ
Z

dta4ðc−1Þ
4c2

3ϵVM2
plH

E2

¼ c2E2

3ϵVðc − 1ÞM2
plH

2
þ qa−4ðc−1Þ; ð5:8Þ

where q is an integration constant. It should be recalled that
we keep the lowest order in ϵV . We consider the c > 1 case
where the contribution from the integration constant decays
to zero.3 Normalizing the overall coefficient of f, we can
identify the value of E as

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ϵVðc − 1Þp

c
MplH: ð5:9Þ

3In the c < 1 case, f ∝ a−2c and then Ephys ∝ a2ðc−1Þ. We
cannot obtain a persistent electric field.
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From (5.8) and (5.5), the dilatonic factor and the electric
field are given by

f ¼ a−2; Ephys ¼ E: ð5:10Þ

Let us go back to the case where a charged test field
exists. Substituting the explicit form (4.24), the contribu-
tion from the induced current is evaluated as

Z
t

t0

dt0a−1ðt0Þj̃ðt0Þ ≃ e3E2

4π3
a6

42H2
; ð5:11Þ

where we consider the long timescale aðtÞ ≫ aðt0Þ. From
(5.7) and (5.5) including (5.11), the dilatonic factor and the
electric field are given by

f ¼ a−2
�
1 −

1

1þ 3
2

1
c−1

·
e3E
4π3

a6

42H2

�
; ð5:12Þ

Ephys ¼ E

�
1 −

3
2

1
c−1

1þ 3
2

1
c−1

·
e3E
4π3

a6

42H2

�
: ð5:13Þ

The induced current provides additional scalings not only
to the dilatonic factor but also to the electric field.4

We emphasize that the coefficients of the additional terms
are negative in the discussed parameter region c > 1.
Therefore, we can conclude that the electric field decreases
with the cosmic expansion due to the induced current. The
result indicates that as far as a charged test scalar field
exists, the no-anisotropic hair theorem holds true also in the
inflation theory with the dilatonic coupling.
It should be recalled that in this paper, the backreaction

from the induced current is evaluated in the first-order
approximation. Specifically, the investigation is valid for
describing the dynamics at the initial stage:

e

�
E
H2

�1
3

a2ðtÞ ≪ 1: ð5:14Þ

From the observed scalar amplitude As ∼ 2 × 10−9, E=H2

is estimated as E=H2 ∼ 4 × 103 ×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðc − 1Þ=cp

. Thus, there
exists the parameter region satisfying (4.22) and (5.14)
simultaneously unless (c − 1) is fine-tuned to a tiny value.5

It is a future subject to investigate the whole time evolutions
of the dilatonic factor and the electric field. For the

investigation, we need to evaluate the induced current on
a general background.

VI. CONCLUSION

In the inflation theory with a dilatonic coupling between
the inflaton and the gauge field, a persistent electric field is
given as an attractor solution of the classical field equations
[3]. In other words, in this model, the no-anisotropic hair
theorem for inflation does not hold true at the classical
level. In order to verify the no-anisotropic hair theorem at
the quantum level, we investigated the pair production of
scalar particles in the inflaton-driven electric field.
Specifically, we evaluated the induced current due to the
pair production and evaluated the backreaction from the
induced current to the electric field.
We found that the presence of the dilatonic coupling

ensures the validity of the WKB approximation not only at
the past infinity but also at the future infinity, without tuning
the values of m2=H2 and eE=H2. Based on this fact, we
evaluated the produced particle number by considering the
turning point of the frequency in the complex time plane.
Furthermore, we evaluated the induced current by using the
semiclassical description. In contrast to the previous study
[10], this study evaluated the behavior of the induced current
at the late time: a2 ≫ H2=ðeEÞ; jm2 − 2H2j=ðeEÞ.
We evaluated the first-order backreaction to the back-

ground by solving the field equations with the induced
current. The investigation is valid for describing the
dynamics at the initial stage: a2 ≪ ðH2=EÞ13=e. Since the
contribution from the induced current evolves rapidly asR
t
t0
dt0a−1ðt0Þj̃ðt0Þ ∝ a6, the rapid evolution is not compen-

sated completely by the deformation of the dilatonic factor
and it screens the electric field with the cosmic expansion.
The result indicates that as far as a charged scalar field
exists, the no-anisotropic hair theorem holds true also in the
inflation theory with the dilatonic coupling.
It is a future subject to investigate the whole time

evolutions of the dilatonic factor and the electric field.
Such a nonperturbative investigation is necessary to prove
the no-anisotropic hair theorem completely. For the inves-
tigation, we need to evaluate the induced current on a
general background. We emphasize that as far as the
background satisfies the validity conditions of the WKB
approximation, the semiclassical description can simplify
the evaluation of the induced current as seen in this paper.
The fermionic pair production in the inflaton-driven

electric field is another open problem. In contrast to scalar
fields, Dirac fields do not have supercurvature modes for
any value of the mass. On the other hand, if the dilatonic
coupling is present, the electric field term in the Klein-
Gordon equation is dominant compared with the mass term
at late time. Thus, we conjecture that there is no significant
difference between the pair production of scalar particles
and that of fermions.

4If the contribution from the induced current were given asR
t
t0
dt0a−1ðt0Þj̃ðt0Þ ∝ log a, such a slow evolution should be

compensated completely by the deformation of the dilatonic
factor and so the electric field should be persistent.

5If we do not take into account the induced current, (c − 1) is
constrained by the observational limit of the statistical anisotropy
g� as c − 1 ≲ 10−7 × ðg�=10−2Þ × ðN=60Þ−2 where N is the
e-folding number [19]. Since the induced current screens the
electric field, we do not fine-tune the value of (c − 1) here.
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As an aside, we mention the studies of non-Abelian
gauge fields during inflation. By introducing a
ðϵμνρσFa

μνFa
ρσÞ2 term in the Yang-Mills action [20,21], or

an axion χ interacting with the gauge field through a
χðϵμνρσFa

μνFa
ρσÞ term [22], the classical field equations lead

to the gauge field which is linearly proportional to the
scale factor as Aa

i ∝ aδai . Here Fa
μν is the field strength of

the SUð2Þ gauge field Aa
μ, a ¼ 1, 2, 3 and ϵμνρσ is the

completely antisymmetric tensor. The scaling of the gauge
field is the same as that in [6–9], and different from that in
[10] and this paper. The Schwinger effect in the SUð2Þ
gauge field was investigated recently [23]. Unlike in the
Uð1Þ case, the nonzero gauge field and the induced current

respect the isotropy. Furthermore, it was claimed that the
SUð2Þ current screens the electromagnetic field for any
values of constant parameters.
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