
Mach. Learn.: Sci. Technol. 6 (2025) 025061 https://doi.org/10.1088/2632-2153/addbc1

OPEN ACCESS

RECEIVED

28 February 2025

REVISED

22 April 2025

ACCEPTED FOR PUBLICATION

21 May 2025

PUBLISHED

12 June 2025

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Flow annealed importance sampling bootstrap meets
differentiable particle physics
Annalena Kofler1,2,3, Vincent Stimper1,4,5, Mikhail Mikhasenko6,7, Michael Kagan8

and Lukas Heinrich3,∗
1 Max Planck Institute for Intelligent Systems Tübingen, Max-Planck-Ring 4, 72076 Tübingen, Germany
2 Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Potsdam Science Park, AmMühlenberg 1, 14476 Potsdam,
Germany

3 TUM School of Natural Sciences, Physics Department, Technical University of Munich, James-Frank-Str. 1, 85747 Garching, Germany
4 Isomorphic Labs, 280 Bishopsgate, EC2M 4RB, London United Kingdom
5 University of Cambridge, Department of Engineering, Trumpington Street, CB2 1PZ Cambridge, United Kingdom
6 Institute for Experimental Physics I, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
7 Excellence Cluster ORIGINS, Boltzmannstr. 2, 85748 Garching, Germany
8 SLAC National Accelerator Laboratory, 2575 Sand Hill Rd, Menlo Park, CA, 94025-7015, United States of America
∗ Author to whom any correspondence should be addressed.

E-mail: l.heinrich@tum.de

Keywords: normalizing flows, particle physics, differentiable programming, annealed importance sampling, generative modeling

Abstract
High-energy physics requires the generation of large numbers of simulated data samples from
complex but analytically tractable distributions called matrix elements. Surrogate models, such as
normalizing flows, are gaining popularity for this task due to their computational efficiency. We
adopt an approach based on flow annealed importance sampling bootstrap (FAB) that evaluates
the differentiable target density during training and helps avoid the costly generation of training
data in advance. We show that FAB reaches higher sampling efficiency with fewer target evaluations
in high dimensions in comparison to other methods.

1. Introduction

In the advent of the high-luminosity phase at the Large Hadron Collider (LHC), significant speed-ups in the
simulation software are required to analyze the increasing amount of data [1–3]. The simulated data are
compared to measured data from particle collisions to understand the underlying fundamental physics
processes in more detail. One important step in the LHC simulation chain is the generation of samples
(‘events’) based onmatrix elements (MEs). MEs describe the dynamical information contained in particle
interactions. The MEM= ⟨p1, . . .,pn|M|pa,pb⟩ quantifies the transition from an initial state with momenta
pa and pb to a final state with n outgoing particles described by their momenta p1,p2, . . .,pn. Using quantum
field theory, MEs can be constructed by summing the contributions of all possible Feynman diagrams
M=M1 +M2 +M3 + . . . (also called ‘channels’). Individual MEs can be calculated using the Feynman
rules [4], which can become computationally expensive to evaluate when higher-order terms are included.
The dimensionality of the ME depends on the number of outgoing particles n, each having three spatial
degrees of freedom. Taking mass and momentum constraints into account, the dimensionality of MEs
amounts to 3n− 4. From a machine learning perspective, one can interpret MEs as unnormalized
distributions p(x) over the outgoing 4-momenta {p1, . . .,pn} which we will denote as x in the following to
simplify notation. Via the Feynman rules, MEs can be evaluated analytically; however, sampling from them is
hard since they can be high-dimensional for large n and multi-modal due to contributions from different
channels. Additionally, they are defined on limited support originating from mass and momentum
constraints and can exhibit divergences. It is possible to simplify the complicated multi-modal structure of
MEs by decomposing the ME into its dominant channels, an approach referred to as multi-channeling [5].

Standard sampling algorithms such as MadGraph [6, 7], SHERPA [8], and PYTHIA [9, 10] rely on
multi-channeling to reduce the complexity of the ME and employ adaptive Monte Carlo methods similar to

© 2025 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-2153/addbc1
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/addbc1&domain=pdf&date_stamp=2025-6-12
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0008-5938-6215
https://orcid.org/0000-0002-4965-4297
https://orcid.org/0000-0002-6969-2063
https://orcid.org/0000-0002-3386-6869
https://orcid.org/0000-0002-4048-7584
mailto:l.heinrich@tum.de

Mach. Learn.: Sci. Technol. 6 (2025) 025061 A Kofler et al

VEGAS [11] to approximate the distribution of the individual channels. More recently, machine
learning-based surrogate models like normalizing flows have shown to improve the efficiency of the sampling
process compared to standard methods like VEGAS and multiple approaches have been proposed over the last
years. In general, normalizing flows can be trained using divergence measures as loss functions that quantify
the difference between the target and the flow distribution: information about the target is either included by
training with samples from the target or by evaluating the target distribution analytically. When training
normalizing flows with the maximum-likelihood loss based on target samples [12], we have to rely on the
costly generation of a large training data set. Therefore, approaches that evaluate the distribution of interest
directly during training with samples from the flow have been the focus in event generation: Most papers
employ neural importance sampling (NIS) [13] which has been adopted to phase space sampling and
combined with multi-channeling in the works of [14–16]. Building on these developments, the efficiency of
this approach can be improved by introducing a replay buffer and a VEGAS based initialization, as well as
adapting the coupling between dimensions in the normalizing flow [17, 18]. NIS without multi-channeling
has been employed in the work of [19] where they extend the target to include a background density and
develop a specific training scheme to boost the efficiency at the beginning of training. To make previous
results accessible to non-specialist users, a dedicated library has been developed recently [20].

In this work, we take into account that gradients need to be backpropagated through the ME distribution
to update the flow parameters when evaluating the target with samples from the flow. Therefore, this training
mode usually requires differentiable MEs, which have only recently been proposed [21] and employed [22]
for normalizing flow training. A similar method, called flow annealed importance sampling
bootstrap (FAB) [23], also relies on the evaluation of a differentiable target density and has been developed
to obtain samples from Boltzmann distributions of molecules. FAB uses annealed IS (AIS) with Hamiltonian
Monte Carlo (HMC) transition steps to improve the quality of the normalizing flow samples towards the
distribution of interest. The resulting AIS samples and their weights are used to train the normalizing flow.
Running HMC requires a differentiable target distribution, and we are the first to perform HMC-based
updates on MEs. To compare the general performance of different training methods, we do not include
domain-specific physics information via multi-channeling.

Contributions. In this work, (1) we adopt FAB [23] to event generation in the field of high-energy
physics (HEP). (2) We compare FAB with an alternative density evaluation-based method using the reverse
Kullback–Leibler divergence (rKLD) [24] as a loss function, as well as with sample-based
maximum-likelihood training with the forward KL divergence (fKLD) loss. Finally, (3) we provide a detailed
performance comparison between the methods based on the number of ME evaluations, as this step can be
expensive.

2. Method

A normalizing flow [24–26] is a density estimator that consists of a series of learnable, invertible
transformations that construct a differentiable bijection between a simple, chosen base distribution and an
expressive flow distribution qθ(x). To generate samples x∼ qθ(x), samples are obtained from the base
distribution and passed through the subsequent transformations. The density qθ(x) can be evaluated for a
given data point x by passing it through the inverse chain of transformations and evaluating the density of
the base distribution.

2.1. Training
To optimize the flow parameters θ such that qθ(x)matches the (unnormalized) target distribution p(x)more
closely, different forms of the KL divergence are utilized, resulting in two main approaches: normalizing
flows can either be trained with available samples from the target distribution x∼ p(x) (fKLD), or by
evaluating the density p(x) with samples from the flow x∼ qθ(x) (rKLD and FAB).

fKLD. If samples x∼ p(x) are cheaply available, the fKLD serves as a loss function:

DKL (p ∥ qθ) = Ex∼p(x)

[
log

p(x)

qθ (x)

]
.

It can be simplified to the negative log-likelihood loss

LfKLD =−Ex∼p(x) [logqθ (x)] =− 1

N

N∑
i=1

logqθ (xi)

2

Mach. Learn.: Sci. Technol. 6 (2025) 025061 A Kofler et al

Figure 1. Visualization of compared methods. The black arrows illustrate the forward pass, while the red arrows mark the
backpropagation of the gradient to update the flow parameters θ. For rKLD, the gradient propagation to the normalizing
flow qθ(x) (red) requires a differentiable target distribution p(x) (blue). For FAB, the HMC updates compute the gradient of the
distribution of interest, while the backpropagation of the gradient is stopped for the AIS samples x̄AIS and weights w̄AIS. The dotted
lines indicate that these steps do not occur when a gradient update is performed repeatedly with samples from the replay buffer.

over N data points where we drop terms independent of θ. It can be shown that this loss function results in a
density qθ with mass-covering properties [23]. The flow distribution qθ(x) is evaluated with samples
from p(x) and the gradient computation is straightforward:∇θLfKLD =− 1

N

∑N
i=1∇θ logqθ(xi) .

rKLD. Another way of quantifying the difference between two distributions is via the rKLD,

DKL (qθ ∥ p) = Ex∼qθ(x)

[
log

qθ (x)

p(x)

]
.

Compared to fKLD, we sample from the normalizing flow and evaluate the flow density qθ(x) as well as the
target distribution p(x) with the obtained samples. As a result, p(x) has to be analytically available which is
the case for MEs. This loss function has mode-seeking properties, meaning that it is not guaranteed that the
optimized distribution qθ(x) covers all modes of p(x) [23]. To obtain a gradient for this loss function

∇θLrKLD =∇θEx∼qθ(x)

[
log

qθ (x)

p(x)

]
,

the gradient has to be propagated through the evaluation of the target distribution p(x), since the
samples x∼ qθ(x) used for the estimation of the expectation value depend on the parameters θ themselves.
This is visualized in figure 1(b) for illustration. As a result, p(x) has to be differentiable9.

FAB. Both versions of the KL divergence are special cases of the α-divergence [27]

Dα (p ∥ qθ) =− 1

α(1−α)

ˆ
p(x)α qθ (x)

1−α dx , (1)

where fKLD corresponds to α→ 1 and rKLD to α→ 0 [27]. In FAB [23], Dα=2 is chosen as a loss function
since it minimizes the variance of the importance weights w= p(x)/qθ(x)—a desirable property of a
well-performing density estimator qθ(x)—and the resulting distribution qθ(x) has mass covering properties
with respect to p(x) [27]. Since samples from the flow might poorly fit the target distribution at the
beginning of training, AIS [28] is employed to pass the samples through a chain of intermediate
distributions q1, . . .,qM−1 with HMC as a transition operator. The intermediate distributions qi are chosen to
interpolate between the flow distribution q0 = qθ and the AIS target qM = p2/qθ. For all HMC steps between
two intermediate AIS distributions, the flow as well as the target distribution have to be evaluated and the
gradient of both distributions is required to perform momentum updates. As a result, we require a

9 One can prevent differentiating through the target distribution by mapping the flow samples (with stopped gradient) back through
the flow in the reverse direction and evaluating the loss function in latent space [17]. However, this approach requires two subsequent
applications of the flow transformations and is more costly.

3

Mach. Learn.: Sci. Technol. 6 (2025) 025061 A Kofler et al

Figure 2. The Λ+
c → pK−π+ decay (left-most diagram) consists of three decay channels characterized by their resonances Λ0

(center-left),∆++ (center-right), and K∗ (right), each visualized in Feynman-like diagrams.

differentiable target distribution for FAB with HMC. Importance weights wAIS can be computed for the AIS
samples xAIS which allow evaluating the surrogate loss function

S (θ) =−EAIS [w̄AIS logqθ (x̄AIS)] ,

where the bar over variables indicates that the gradient is not propagated through the AIS sequence in the
backward pass. To reduce the cost of evaluating the target distribution and its gradient for each intermediate
distribution and each HMC step in between, the AIS samples can be stored in a replay buffer. Pairs
{x̄AIS, w̄AIS} are sampled from the buffer based on the importance weights to perform multiple gradient
updates per iteration. Figure 1(c) shows a schematic illustration of FAB; for further details, see [23].

2.2. Differentiable MEs
The training approaches explored and compared in this work are not limited to one area of event generation
in particle physics. They only require a differentiable implementation of the ME, since training with rKLD
and FAB requires gradients of the target distribution. Recent developments in HEP provide us with
differentiable implementations of complex amplitudes [21, 22, 29]. We choose two examples of high interest
for the particle physics community, one from flavor physics and one from collider physics:

Λ+
c → pK−π+. In flavor physics, the resonances of baryons are studied to search for new states beyond the

constituent-quark model [30, 31]. One recently analyzed example is the Λ+
c baryon and its decay into a

proton, a kaon, and a pion [32–34]. This decay is particularly interesting since its resonance structure allows
searches of CP symmetry violations [33] and new physics [35, 36]. When the Λ+

c baryon decays, it can do so
via different decay channels, resulting in the K−π+, pK−, and pπ+ systems. These decays are shown in
figure 2 as Feynman-like diagrams. Each of these systems decays via an intermediate particle that can have
resonances which are shown in a Dalitz plot in figure 3. A Dalitz plot is a physics-specific visualization of 2D
amplitudes where the axes are chosen such that the histograms can be interpreted as an unnormalized
density [37]. The resonances appear in a Dalitz plot as vertical, horizontal, and diagonal structures. In
figure 3, the vertical bands with two prominent lines correspond to the decay of Λ→ pK− resulting from the
Λ(1520) and the Λ(1670) resonances. The significant horizontal band corresponds to the K∗(892)meson
based on K∗ → K−π+. Decays in∆++ → pπ+ are visible on the diagonal of the Dalitz plot where the
∆++(1232) resonance is notable. An example for interference effects among resonances of different decay
channels is the horizontal K∗(892) band that gets shifted when crossing the vertical line of the
Λ(1670) resonance. Destructive interference is visible at the upper corner of the Dalitz plot resulting from
reciprocal influences of Λ(1520) and higher-mass K∗ resonances [33]. The complex resonance structure of
this decay is ideally suited for our study as it provides a low-dimensional, but challenging setting to compare
the performance of different normalizing flow training methods. Additionally, the Λ+

c amplitude model is
implemented in a differentiable way and the code is publicly available via the ComPWA package [29].

For the implementation of the Λ+
c decays, ComPWA utilizes the SymPy engine [38] to formulate symbolic

amplitude models whose compute graph can be transformed to JAX [39] for efficient gradient computation.
Since ComPWA was developed as a general purpose tool for analytically formulating amplitudes, researchers
can implement new amplitude models. The specific shape of the Dalitz plot boundary originates from mass
and momentum constraints. It would be suboptimal to train a normalizing flow directly on the Dalitz plot
representation because the it could assign non-zero probability density outside the physically-plausible
regions. To prevent this, we map the support of the ME to the unit interval in each dimension via a
differentiable and invertible transformation which is explained in appendix A. Similar transformations are
applied in standard samplers [7, 8] and we employ rational-quadratic spline flows because they are explicitly
designed for distributions with limited support. It is not possible to map the distribution to infinite support

4

Mach. Learn.: Sci. Technol. 6 (2025) 025061 A Kofler et al

since kinematic divergences can occur at the phase space boundary [4], which would result in non-zero
probability mass at infinity.

e+e− → t̄t, t→W+b, t̄→W−b̄. In collider physics, the t̄t reaction producing aW boson and a bottom quark
is repeatedly investigated due to the coupling of non-standard model processes to heavy elementary particles
like the top quark [40–43]. We employ t̄t production with unstable final states containingW bosons from an
electron positron collider as a challenging, higher dimensional example. We selected an e+e− process since
ML methods in event generation are relevant for future circular or linear electron–positron colliders [44, 45].
The eight-dimensional t̄tME can be generated with MadJAX [21] which provides a differentiable
implementation of the scattering amplitudes of MadGraph [6, 7]. With MadJAX, we can generate any
leading-order amplitudes with spin 0,1/2 or 1 particles and the code can be extended to higher spin MEs. It
is also possible to generate MEs for proton–proton collisions by including a differentiable implementation of
the parton density [22, 46] which we leave for future work. To map the irregular phase space boundaries to
the unit hypercube, a differentiable non-linear transformation based on the RAMBO algorithm is applied to the
MadJAX ME [47]. The eight dimensions characterizing the final state of the selected ME can be interpreted as
two rescaled, intermediate masses M̃1 and M̃2, as well as two angular variables cos θ̃k and ϕ̃k with k ∈ [1,2,3].

To summarize, both selected examples are based on libraries which allow users to generate differentiable
implementations of arbitrary MEs. This means that the compared approaches of training normalizing flows
can easily be applied to different MEs.

3. Experimental setup

Training settings. For each of the aforementioned MEs and training methods, we train three models with
different random seeds and average their results to improve reliability. For details about the flow
hyperparameters and train settings, we refer to appendix B for details.

Baseline.We compare our results with a physics-agnostic integral estimation method called VEGAS+ [11, 48].
This grid-based optimization method divides the support into a regular, rectangular grid and estimates the
integral contribution of each subspace. With this information, the grid is iteratively updated to focus on
regions with large contributions and the value for the integral estimate is calculated as a weighted average
over multiple runs. Through a combination of stratified sampling and IS, VEGAS+ is fast and efficient and can
account for correlations between dimensions. We describe the VEGAS+ specific hyperparameters and tuning
procedure in detail in appendix B. It is not possible to use MadGraph as a baseline for both reactions since it
is tailored to collider physics and the complicated helicity structure of the Λ+

c decay is not implemented.

Performance metrics.We first provide qualitative performance comparisons for both MEs by showing
histograms and a corner plot of samples obtained from VEGAS+ as well as the normalizing flows. For the Λ+

c

ME, we compare the results to samples obtained by rejection sampling with a uniform proposal distribution.
For the t̄t reaction, we include the samples obtained from MadGraph as a reference. Both sets of samples
correspond to the training data sets employed for fKLD training. Secondly, we evaluate the quantitative
performance of the normalizing flows based on three metrics: (1) the fKLD evaluated on a test data set,
(2) the IS efficiency calculated from the importance weights, and (3) the integral estimate of p(x). The fKLD,
introduced in section 2, quantifies the difference between the learned distribution qθ(x) and the true target
distribution p(x) by evaluating the normalizing flow with the samples x∼ p(x). If both distributions match
almost everywhere, the KL divergence is zero.

The IS efficiency [49, 50] can be computed with samples from the normalizing flow xi ∼ qθ(xi) and their
importance weights wi = p(xi)/qθ(xi) as

ϵ=
1

N

[
N∑

i=1

wi

]2[N∑
i=1

w2
i

]−1

. (2)

We elaborate on its derivation and similarities to the unweighting efficiency—which is commonly employed
in HEP—in appendix C. The integral estimate Ī of the target distribution p(x) is defined as

Ī=

ˆ
p(x) dx=

ˆ
qθ (x)

p(x)

qθ (x)
dx≈ 1

N

N∑
i=1

wi . (3)

For the 2D example, the sampling efficiency ϵ and the integral estimate Ī are calculated for 104 flow samples,
while 106 flow samples are used for the 8D ME. We compare our results for Ī with VEGAS+. The performance
metrics are summarized in table 1 for both MEs. To make rKLD and FAB comparable, we report results

5

Mach. Learn.: Sci. Technol. 6 (2025) 025061 A Kofler et al

Figure 3. Comparison of the target density for the Λ+
c → pK−π+ matrix element with histograms based on samples from

VEGAS+ and the best normalizing flow for each method.

based on training runs with the same number of target evaluations. Since the target distribution can be costly
to evaluate, we additionally show the trend for the IS efficiency ϵ as a function of the number of target
evaluations. We do not include fKLD training in this consideration because it relies on a pre-computed
training data set on which the normalizing flow can potentially be trained for an arbitrary number of epochs.
For rKLD, the ME is calculated once for each batch of flow samples, while the target density and its gradient
need to be evaluated for every HMC step between intermediate AIS distributions for FAB. To reduce the
number of target evaluations, FAB allows multiple gradient updates per iteration with samples from the
replay buffer. However, depending on the buffer size, more target evaluations might be required at the
beginning of training to fill up the buffer.

4. Results and discussion

Λ+
c → pK−π+. To illustrate the complexity of the two-dimensional ME, we show the target density evaluated

on a grid as a Dalitz plot in figure 3. We provide histograms of 106 unweighted samples obtained from the
best performing normalizing flow for each investigated method to compare the sampling quality. This can
qualitatively be compared to∼ 2 · 104 samples and their weights obtained from a converged VEGAS+
integrator. For fKLD, we observe that the horizontal line corresponding to the K∗(892) resonance is not
clearly visible compared to the results of VEGAS+, rKLD, and FAB. Furthermore, the crossing of the
horizontal and diagonal lines appears as a blurred region for fKLD. This observation is consistent with
figure 4, where we provide marginal histograms of the invariant mass distribution form2

pK− andm2
K−π+ . We

average the results for three models trained with different random seeds and visualize the standard deviation
per histogram bin. Overall, the binned samples obtained from the normalizing flows trained with fKLD show
the largest standard deviations from samples obtained with rejection sampling. Flows trained with rKLD and
FAB produce histograms that exhibit all features of the ME structure and provide the best results.

When training with the same number of target evaluations, rKLD and FAB with the replay buffer provide
the best results with the highest IS efficiency and a distribution that is most similar to the test data set (see
table 1). Additionally, the integral estimate computed with samples from the flow has the lowest standard
deviations. The change in the sampling efficiency when increasing the number of target evaluations is shown
in figure 5(a). We can observe that ϵ improves for rKLD more rapidly than for FAB w/o buffer. All
normalizing flow models show the same IS efficiency of approximately 70% for a low number of target
evaluations. This corresponds to the efficiency obtained from rejection sampling with a uniform proposal
distribution (shown as a black, dashed line in figure 5(a)). This behavior can be explained by the fact that the
normalizing flows have a uniform base distribution and are initialized with an identity mapping, resulting in
a uniform distribution at the beginning of training. For FAB w/ buffer, samples have to be generated before

6

Mach. Learn.: Sci. Technol. 6 (2025) 025061 A Kofler et al

Figure 4. Normalized marginal histograms of the invariant masses for the Λ+
c → pK−π+ matrix element based on samples from

rejection sampling, VEGAS+, and the best normalizing flow for each method. The rejection sampling result serves as a baseline to
visualize the deviation.

Table 1. Overview of performance metrics for the different MEs and methods.

Λ+
c → pK−π+ e+e− → t̄t, t→W+b, t̄→W−b̄

Ep [log(p/qθ)] ↓ ϵ(%) ↑ Ī Ep [log(p/qθ)] ↓ ϵ(%) ↑ Ī

VEGAS+ — 67.52± 0.21 8926± 2 — 0.02± 0.01 1761± 309
fKLD 9.1581± 0.0011 87.02± 0.08 8925± 3 8.35± 0.16 1.75± 1.26 2116± 9
rKLD 9.0978± 0.0005 99.67± 0.01 8924± 4 7.74± 0.02 56.51± 40.14 2267± 88
FAB (w/o buffer) 9.1009± 0.0003 99.26± 0.08 8912± 7 7.79± 0.03 84.25± 4.51 2208± 1
FAB (w/ buffer) 9.0988± 0.0005 99.56± 0.05 8911± 2 7.747± 0.002 90.59± 0.01 2207.0± 0.1

Figure 5. Importance sampling efficiency depending on the number of target evaluations required during training.

the start of training to fill the replay buffer, which results in an offset in the number of target evaluations.
During training, the normalizing flow parameters are updated by sampling from the prioritized replay buffer
based on w̄AIS, which aids the model significantly and the IS efficiency improves at a faster rate compared to
the flows trained with rKLD. Since FAB evaluates the target several times in each iteration dependent on the
chosen number of HMC steps and intermediate AIS distributions, it can benefit from additional information
about the structure of the ME. Overall, flows trained with rKLD and both FAB approaches have no problem
in modeling the complex 2D distribution.

e+e− → t̄t, t→W+b, t̄→W−b̄.We compare the corner plots of 106 flow samples for each method to
samples from the training data set generated with MadGraph in figure 6. The latter serve as a ground truth
and illustrate challenging properties of MEs: peaks at the boundary and correlations between dimensions are
difficult for normalizing flows. Here, we visualize samples from the flow directly on the unit hypercube and

7

Mach. Learn.: Sci. Technol. 6 (2025) 025061 A Kofler et al

Figure 6. Corner plot with samples from MadGraph and from the best normalizing flows for each method.

one would need to apply the inverse RAMBO transformation [47] to obtain physical information for each
outgoing particle. We observe that the normalizing flows especially deviate from the MadGraph distribution
close to the phase space boundary which can be observed for all investigated methods. Correlations between
dimensions, for example between the angles ϕ̃1 − ϕ̃3 as well as ϕ̃2 − ϕ̃3, appear to be challenging. While we
report the performance metrics based on∼ 105 samples from an optimized VEGAS+ integrator in table 1, we
do not include the results in the corner plot since we observe large deviations explained by low efficiencies.
When considering the number of target evaluations in figure 5(b), the flow benefits from the AIS procedure
and the sampling of batches from the buffer dependent on the AIS importance weights. Samples from
regions where the flow is a poor approximation of the target have a high weight and are predominantly used
in gradient updates, resulting in a significantly higher IS efficiency with fewer target evaluations. Therefore,
FAB w/ buffer reaches an efficiency of approximately 40% with an order of magnitude fewer samples than
rKLD and FAB without the buffer. We observe that one of the three training runs of FAB w/ buffer diverged
and exclude it from figure 5(b) and the performance evaluation in table 1.

5. Summary and conclusion

We have transferred FAB [23], which utilizes AIS with HMC as a transition operator, from molecular
configuration modeling to HEP, building on recently introduced, differentiable implementations of MEs. We
have demonstrated that training FAB with a prioritized replay buffer is a promising approach for improving
the efficiency for event generation, since passing the flow samples through an AIS chain guides training at
early stages. In the future, we plan to scale this approach to more complex particle-interaction processes and

8

Mach. Learn.: Sci. Technol. 6 (2025) 025061 A Kofler et al

assess the performance improvement in greater detail. Including information about the individual ME
contributions via multi-channeling will likely lead to further performance improvements [14, 17, 18].
Additionally, we plan to extend this conceptual work with differentiable implementations of the parton
density [22, 46] to be applicable to proton–proton collisions. Overall, this work has the potential to improve
the quality and speed of sampling methods employed at the LHC and facilitate the efficient analysis of
high-luminosity events.

Data availability statement

The data required to reproduce findings of this study are openly available at the following URL/DOI: https://
doi.org/10.17617/3.UZ786R.

Code availability statement

The code is available on GitHub at the following URL: https://github.com/annalena-k/FAB-meets-diffME.

Acknowledgments

The authors thank the reviewers of MLST and the NeurIPS workshopMachine Learning and the Physical
Sciences, 2024 for their helpful suggestions and interesting questions which helped to improve the
manuscript. AK thanks Timothy Gebhard for extensive support in reviewing and formatting the draft as well
as Ludwig Burger and Nicole Hartman for proof-reading and correcting the manuscript. The authors thank
Matthew Feickert for help with running MadGraph. AK thanks Peter Lepage for answering questions about
running VEGAS+. The computational work described in this manuscript was performed on the RAVEN
cluster of the Max Planck Computing and Data Facility (MPCDF). We thank the International Max Planck
Research School for Intelligent Systems (IMPRS-IS) for supporting AK. MK is supported by the US
Department of Energy (DOE) under Grant DE-AC02-76SF00515. LH is supported by the Excellence Cluster
ORIGINS, which is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
under Germany’s Excellence Strategy—EXC-2094-390783311. We also thank the Munich Institute for Astro-,
Particle and BioPhysics (MIAPbP) which is funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy—EXC-2094 - 390783311, as this work was
partially performed at the MIAPbP workshop on Differentiable and Probabilistic Programming for
Fundamental Physics.

Used software: This work has made use of many open-source Python packages, including blackjax [51],
ComPWA [29], corner [52], distrax [53], haiku [54], JAX [39], FAB-JAX [23], MadJAX [21],
MadGraph [7], matplotlib [55], numpy [56], pylhe [57] SymPy [38], TensorWaves [58], and VEGAS+ [11,
48]. The accessible color schemes in our figures are based on [59].

Appendix A. Transformation of Dalitz plot to unit hypercube

While a Dalitz plot is the ideal visualization of the outgoing particles of a three-particle decay from a physics
perspective, it is not ideal for normalizing flow training since the flow has to learn the support of the
distribution. To prevent the normalizing flows from assigning non-zero probability density outside the phase
space boundary, we map the Dalitz plot coordinates (m2

pK− ,m2
K−π+) to the unit hypercube with a

differentiable and invertible transformation. First, we convert the Dalitz plot into the square Dalitz plot by
transforming one of the invariant masses, e.g.m2

K−π+ to the helicity polar angle cosθK−π+ [37]. The
mapping between the two variables is defined as

m2
K−π+ =m2

π+ +m2
K−

+
1

2m2
pK−

(
m2

Λ+
c
−m2

pK− −m2
π+

)(
m2

pK− +m2
K− −m2

p

)
− 1

2m2
pK−

cosθK−π+ ·λ 1
2

(
m2

Λ+
c
,m2

pK− ,m2
π+

)
·λ 1

2

(
m2

pK− ,m2
K− ,m2

p

)
,

where the massesmπ+ ,mK− , andmp are constants and the kinematic Källén function is defined as

λ(x,y,z) = x2 + y2 + z2 − 2xy− 2xz− 2yz .

9

https://doi.org/10.17617/3.UZ786R
https://doi.org/10.17617/3.UZ786R
https://github.com/annalena-k/FAB-meets-diffME
https://github.com/annalena-k/FAB-meets-diffME

Mach. Learn.: Sci. Technol. 6 (2025) 025061 A Kofler et al

Figure A1. Dalitz plot of Λ+
c → pK−π+ decay and transformation to square Dalitz plot.

After applying the non-linear transformation from (m2
pK− ,m2

K−π+) to (m2
pK− ,cosθK−π+), we can visualize

the resulting distribution in a square Dalitz plot in figure A1. We can observe that the previously horizontal
line gets mapped into an almost diagonal line.

Appendix B. Hyperparameters

Data generation and training. The training data for fKLD consists of 104 samples for Λ+
c → pK−π+ generated

with rejection sampling and of 106 samples for e+e− → t̄t, t→W+b, t̄→W−b̄ produced with MadGraph [7]
with a center of mass energy of 1 TeV. The test data sets are generated equivalently. The dimensionality of the
resulting ME is defined by the number of degrees of freedom as 3n− 4 which we explain for illustration for
the eight-dimensional case: each of the four outgoing particles is defined by its energy and three-dimensional
momentum vector, resulting in 16 overall degrees of freedom. Conservation of energy and momentum
reduces this number by four dimensions. Additionally, we know the masses of each stable outgoing particle,
resulting in a 12− 4= 8 dimensional phase space. For fKLD, the normalizing flows are trained with these
datasets for 20 epochs in 2D and for 200 epochs in 8D. For rKLD, we train for 3× 104 iterations (2D) and for
108 iterations (8D). The values for FAB were chosen based on the FAB hyperparameters such that we
perform the same number of target evaluations during training compared to rKLD, resulting in 3× 103

iterations (2D) and 107 iterations (8D). All compared models are trained on Nvidia A100 GPUs.

Normalizing flow.We use normalizing flows based on coupling layers and rational-quadratic spline
transformations [60] implemented in distrax [53] and haiku [54]. For the base distribution, we choose a
uniform distribution over the unit hypercube. Since changes in the normalizing flow hyperparameters affect
the expressivity of the density estimator equally for all investigated methods, we perform hyperparameter
tuning only for rKLD training because it has the shortest run time. We only tune the most important
hyperparameters related to the architecture of the normalizing flow since this is computationally costly. For
Λ+
c → pK−π+, we subsequently vary the number of spline bins nb ∈ [4,6,8,10,12,14,16], the number of

flow transformations nt ∈ [4,6,8,10,12,14,16], and the number of neurons per hidden layer
nn ∈ [10,50,100,150,200,250,300] for the fully connected conditioner network with two layers. For the 8D
ME, we compare loss values and efficiencies for nb,nt ∈ [6,8,10,12,14], and nn ∈ [200,250,300,350,400].
Considering the trade-off between expressivity and increase in optimization time, we select the following
values based on the final training loss, validation loss, and efficiency: For Λ+

c → pK−π+, the number of bins
and transformations is nt = nb = 10, and a conditioner network with two hidden layers and 100 neurons
each is used. For the 8D ME, we set nb = nt = 14, and use 400 neurons for each of the two hidden layers.

FAB. Additional hyperparameters have to be selected for FAB. We use two (linearly spaced) intermediate
distributionsM in the AIS sequence with a HMC transition operator containing a single iteration and three
leap frog steps. The initial HMC acceptance rate is set to pacc = 0.65 and is tuned dependent on the number
of actually accepted samples. Furthermore, we have to specify the number of gradient updates per
iteration L= 4 (2D) and L= 2 (8D) in the case of buffered training. The most important variable in
hyperparameter optimization is the HMC step size, since it depends on the support of the target distribution.
To obtain a suitable estimate, we start one FAB run with an arbitrary step size and observe how the value is
adjusted during training. We adopt the converged values of linit = 0.05 for the two-dimensional and

10

Mach. Learn.: Sci. Technol. 6 (2025) 025061 A Kofler et al

linit = 0.005 for the eight-dimensional ME for all subsequent runs. We do not optimize the size of the FAB
replay buffer since we do not expect a significant influence on the performance. We only take into account
that the replay buffer should be sufficiently large such that sampling data points from the buffer is
informative for normalizing flow training. Therefore, we set the minimal size of the buffer to 10 times the
batch size (i.e. 104) and the maximal buffer size to 100 times the batch size (i.e. 105).

Optimization.We use the Adam [61] optimizer with a learning rate of 3× 10−4 and train with a batch size of
103. We employ the gradient clipping scheme developed for FAB in all our runs, where we dynamically clip
the gradient norm to 20 times the median of the last 100 gradient values and ignore very large gradients that
are a factor 20 times larger than this median value [23]. While it is not necessary to use a scheduler in the 2D
case, we employ a warm-up and cosine decay learning rate schedule for the eight-dimensional ME. We train
with an initial and final learning rate of 10−5 as well as a peak learning rate of 3× 10−4 which is reached after
10 epochs (for fKLD) and after 103 iterations (for rKLD and FAB).

Baseline.We compare our results with the physics-agnostic integral estimation method VEGAS+ [11, 48]. This
grid-based optimization method subdivides the support into a regular, rectangular grid and estimates the
integral contribution of each subspace. With this information, the grid is iteratively updated to focus on
regions with large contributions and the value for the integral estimate is calculated as a weighted average
over multiple runs. Through a combination of stratified sampling and IS, VEGAS+ is fast and efficient and
can account for correlations between dimensions. For the 2D ME, we choose a VEGAS+ grid with 64 bins in
each dimension, a damping factor of α= 0.5, two warm-up iterations with 103 evaluations per iteration,
followed by 8 iterations with 2 · 105 evaluations per iteration for the integral estimates. For the 8D ME, we
double the grid to 128 bins per dimension, keep the damping factor, and increase the number of evaluations
to 104 for each of the two warm-up iterations. The integral estimate is obtained from 8 iterations with 105

evaluations. We optimized these hyperparameters to the best of our knowledge. To make sure that VEGAS+
converged, we perform checks like increasing the number of evaluations by a factor of 10 per iteration which
provide stable results and do not show significant deviations in the integral estimate for both examples.
However, the low IS efficiency and large deviation on the integral estimate for the 8D ME (cf, table 1)
indicate that VEGAS+ struggles to adapt to the distribution. It is important to note that the results are
obtained without multi-channeling since this physics information based on the contributing MEs is not
provided to the normalizing flows either. Multi-channeling would lead to a performance improvement for
both VEGAS+ as well as flow-based methods [17, 18]. Although the VEGAS+ optimization is significantly
faster than training a normalizing flow, the flexibility of the latter results in higher IS efficiencies. Since the
main goal of training ME surrogates is to provide an optimally pre-trained model [18], the training time is
amortized when generating a large number of events.

Appendix C. Relationship of sampling efficiency and unweighting efficiency

IS efficiency. The (importance) sampling efficiency ϵ (cf 2) can be derived from the effective sample size ESS
which allows the performance comparison of different Monte Carlo methods like Markov Chain Monte
Carlo (MCMC) or IS based on a set of weighted samples. If we drawN samples from a less-than-ideal MCMC
or IS proposal distribution q(x), the ESS indicates the number of independent samples that these would be
equivalent to if drawn directly from the target distribution p(x). Therefore, the effective sample size can be
defined proportional to the ratio of the variance of an ideal MC estimator (i.e. sampling from the target p)
and the variance of the less-than-ideal MCMC or IS estimator (i.e. sampling from the proposal q) [49].
Through derivations outlined in [50], the ESS can be related to the variance of the importance weights via

ESS=
N

1+Varq(x) [w]
,

and to the estimate

ÊSS= N

(
1
N

∑N
i=1wi

)2

1
N

∑N
i=1w

2
i

=
1∑N

i=1 w̄
2
i

, (C.1)

with the normalized importance weights

w̄i =
wi∑N
j=1wj

.

The IS efficiency ϵ as defined in equation 2 corresponds to the normalization of equation C.1.

11

Mach. Learn.: Sci. Technol. 6 (2025) 025061 A Kofler et al

Table C1. Comparison of importance sampling and unweighting efficiency for the different MEs and methods.

Λ+
c → pK−π+ e+e− → t̄t, t→W+b, t̄→W−b̄

ϵ(%) ↑ ϵuw(%) ↑ ϵ(%) ↑ ϵuw(%) ↑

VEGAS+ 67.52± 0.21 16.30± 0.42 0.02± 0.01 <0.01
fKLD 87.02± 0.08 22.50± 0.37 1.75± 1.26 0.02± 0.01
rKLD 99.67± 0.01 75.42± 1.87 56.52± 40.14 0.29± 0.20
FAB (w/o buffer) 99.26± 0.08 67.59± 1.38 84.25± 4.51 1.15± 0.27
FAB (w/ buffer) 99.56± 0.05 68.69± 0.89 90.59± 0.01 0.67± 0.07

Unweighting efficiency. The unweighting efficiency stems from the approach of refining samples obtained
from the less-than-ideal proposal distribution q(x) by keeping only a fraction of the samples in proportion to

the ratio of the target distribution p(x) and the proposal q(x) [62]. The so-called raw weight wi =
p(xi)
q(xi)

corresponds to the importance weight in the MCMC and IS setting. The definition of the unweighting
efficiency [14, 62, 63] as

ϵuw =
1
N

∑N
i=1wi

wmax
(C.2)

can be motivated in the following: in regions where the proposal distribution q overestimates the target
(i.e. wi < 1), only a fraction of the original samples proportional to wi should be retained. However, in
regions where the proposal underestimates the target, it is not possible to generate additional samples to
match the target’s density. Therefore, all available samples in those regions are kept which has to be
compensated by reducing the retained fraction in overestimated regions. Such an adjustment maintains the
correct relative shape of the distribution [62]. This explanation is equivalent to applying rejection sampling
where the probability to keep or reject a sample is defined as the raw weight normalized by the
(pre-computed) maximal weight in the integration volume wrel = wi /wmax. A sample is retained if a
uniformly sampled random number R is smaller than wrel [63, 64]. Finally, the unweighting efficiency can be
computed as the average raw weights rescaled by wmax [14, 63].

Relationship of efficiencies. In [49], different formulations of the generalized effective sample size are explored
based on a set of required and desirable conditions. They conclude that defining the ESS as 1/

∑N
i=1 w̄

2
i

(related to ϵ) and 1/max(w̄1, . . ., w̄N) (related to ϵuw) are proper and stable formulations. While both
efficiencies suffer from large outlier weights, the unweighting efficiency is directly affected through wmax in
the denominator as reported in [14, 16]. For this reason, we choose to report the performance based on the
IS efficiency in the main body of this work and provide additional estimates of the unweighting efficiency in
table C1. We do not apply bootstrap techniques that are designed to mitigate large outliers in the weight
distribution [16].

ORCID iDs

Annalena Kofler https://orcid.org/0009-0008-5938-6215
Vincent Stimper https://orcid.org/0000-0002-4965-4297
Mikhail Mikhasenko https://orcid.org/0000-0002-6969-2063
Michael Kagan https://orcid.org/0000-0002-3386-6869
Lukas Heinrich https://orcid.org/0000-0002-4048-7584

References

[1] Aberle O et al 2020 High-luminosity large hadron collider (HL-LHC): technical design report CERN Yellow Reports: Monographs
(CERN) (available at: https://cds.cern.ch/record/2749422)

[2] Software C O and Computing 2022 CMS phase-2 computing model: update document Technical Report (CERN Geneva)
(available at: https://cds.cern.ch/record/2815292)

[3] (Collaboration A (ATLAS)) 2022 ATLAS software and computing HL-LHC roadmap Technical Report (CERN Geneva)
(available at: https://cds.cern.ch/record/2802918)

[4] Griffiths D 1987 The Feynman Calculus (Wiley, Ltd) ch 6, pp 189–212
[5] Kleiss R and Pittau R 1994 Comput. Phys. Commun. 83 141–6
[6] Alwall J, Herquet M, Maltoni F, Mattelaer O and Stelzer T 2011 J. High Energy Phys. JHEP06(2011)128
[7] Alwall J, Frederix R, Frixione S, Hirschi V, Maltoni F, Mattelaer O, Shao H S, Stelzer T, Torrielli P and Zaro M 2014 J. High Energy

Phys. JHEP07(2014)079
[8] Bothmann E et al (Sherpa) 2019 SciPost Phys. 7 034
[9] Bierlich C et al 2022 SciPost Phys. Codebases 8

12

https://orcid.org/0009-0008-5938-6215
https://orcid.org/0009-0008-5938-6215
https://orcid.org/0000-0002-4965-4297
https://orcid.org/0000-0002-4965-4297
https://orcid.org/0000-0002-6969-2063
https://orcid.org/0000-0002-6969-2063
https://orcid.org/0000-0002-3386-6869
https://orcid.org/0000-0002-3386-6869
https://orcid.org/0000-0002-4048-7584
https://orcid.org/0000-0002-4048-7584
https://cds.cern.ch/record/2749422
https://cds.cern.ch/record/2815292
https://cds.cern.ch/record/2802918
https://doi.org/10.1016/0010-4655(94)90043-4
https://doi.org/10.1016/0010-4655(94)90043-4
https://doi.org/10.1007/JHEP06(2011)128
https://doi.org/10.1007/JHEP07(2014)079
https://doi.org/10.21468/SciPostPhys.7.3.034
https://doi.org/10.21468/SciPostPhys.7.3.034
https://doi.org/10.21468/SciPostPhysCodeb.8

Mach. Learn.: Sci. Technol. 6 (2025) 025061 A Kofler et al

[10] Bierlich C et al 2022 SciPost Phys. Codebases 8–r8.3
[11] Lepage P G 1978 J. Comput. Phys. 27 192–203
[12] Stienen B and Verheyen R 2021 SciPost Phys. 10 038
[13] Müller T, Mcwilliams B, Rousselle F, Gross M and Novák J 2019 ACM Trans. Graph. 38 1–9
[14] Bothmann E, Janßen T, Knobbe M, Schmale T and Schumann S 2020 SciPost Phys. 8 069
[15] Gao C, Isaacson J and Krause C 2020Mach. Learn.: Sci. Technol. 1 045023
[16] Gao C, Höche S, Isaacson J, Krause C and Schulz H 2020 Phys. Rev. D 101 076002
[17] Heimel T, Winterhalder R, Butter A, Isaacson J, Krause C, Maltoni F, Mattelaer O and Plehn T 2023 SciPost Phys. 15 141
[18] Heimel T, Huetsch N, Maltoni F, Mattelaer O, Plehn T and Winterhalder R 2024 SciPost Phys. 17 023
[19] Pina-Otey S, Sánchez F, Lux T and Gaitan V 2020 Phys. Rev. D 102 013003
[20] Deutschmann N and Götz N 2024 J. High Energy Phys. JHEP03(2024)083
[21] Heinrich L and Kagan M 2023 J. Phys.: Conf. Ser. 2438 012137
[22] Heimel T, Mattelaer O, Plehn T and Winterhalder R 2025 SciPost Phys. 18 017
[23] Midgley L I et al 2023 Flow annealed importance sampling bootstrap The 11th Int. Conf. on Learning Representations (https://

openreview.net/forum?id= XCTVFJwS9LJ)
[24] Papamakarios G et al 2021 J. Mach. Learn. Res. 22 1–64
[25] Tabak E G and Vanden-Eijnden E 2010 Commun. Math. Sci. 8 217–33
[26] Rezende D and Mohamed S 2015 Variational inference with normalizing flows Proc. 32nd Int. Conf. on Machine Learning (Proc.

Machine Learning Research) vol 37 (available at: https://proceedings.mlr.press/v37/rezende15.html) pp 1530–8
[27] Minka T 2005 Technical Report (Microsoft Research) (available at: www.microsoft.com/en-us/research/wp-content/uploads/2016/

02/tr-2005-173.pdf)
[28] Neal R M 2001 Stat. Comput. 11 125–39
[29] Michel M, de Boer R and Pflueger S 2023 ComPWA: common partial wave analysis - making amplitude analysis transparant,

understandable, and easy to start with (available at: https://github.com/ComPWA)
[30] Adolph C et al (COMPASS Collaboration) 2017 Phys. Rev. D 95 032004
[31] Kaspar F M and Gerassimov S (COMPASS Collaboration) 2022 Rev. Mex. Fis. Suppl. 3 0308020
[32] Marangotto D 2020 Adv. High Energy Phys. 7463073
[33] Aaij R et al (LHCb Collaboration) 2023 Phys. Rev. D 108 012023
[34] Aaij R et al (LHCb Collaboration) 2023 J. High Energy Phys. JHEP07(2023)228
[35] Penalva N, Hernández E and Nieves J 2019 Phys. Rev. D 100 113007
[36] Hu Q-Y, Li X-Q, Yang Y-D and Zheng D-H 2021 J. High Energy Phys. JHEP02(2021)183
[37] Byckling E and Kajantie K 1973 Particle Kinematics (Wiley)
[38] Meurer A et al 2017 PeerJ Comput. Sci. 3 e103
[39] Bradbury J et al 2018 JAX: composable transformations of Python+NumPy programs (available at: http://github.com/google/jax)
[40] Abazov V M et al (D0 Collaboration) 2010 Phys. Rev. D 82 071102
[41] Chatrchyan S et al (CMS Collaboration) 2011 Phys. Rev. D 84 092004
[42] Aad G et al (The ATLAS collaboration) 2023 J. High Energy Phys. JHEP06(2023)138
[43] Aad G et al (The ATLAS collaboration) 2023 J. High Energy Phys. JHEP07(2023)141
[44] André K D J, Benedikt M, Oide K and Zimmermann F (FCC-ee Collaboration) 2025 PoS ICHEP 2024 830
[45] Balazs C et al (Linear Collider Vision) 2025 (arXiv:2503.19983)
[46] Carrazza S, Cruz-Martinez J M and Rossi M 2021 Comput. Phys. Commun. 264 107995
[47] Plätzer S 2013 arXiv:1308.2922
[48] Lepage G P 2021 J. Comput. Phys. 439 110386
[49] Martino L, Elvira V and Louzada F 2017 Signal Process. 131 386–401
[50] Elvira V, Martino L and Robert C P 2022 Int. Stat. Rev. 90 525–50
[51] Cabezas A, Corenflos A, Lao J and Louf R 2024 BlackJAX: composable Bayesian inference in JAX (arXiv:2402.10797)
[52] Foreman-Mackey D 2016 J. Open Source Softw. 1 24
[53] Babuschkin I et al 2020 The DeepMind JAX Ecosystem (available at: http://github.com/deepmind)
[54] Hennigan T, Cai T, Norman T, Martens L and Babuschkin T 2020 (Sonnet for JAX) (available at: http://github.com/

deepmind/dm-haiku)
[55] Hunter J D 2007 Comput. Sci. Eng. 9 90–95
[56] Harris C R et al 2020 Nature 585 357–62
[57] Heinrich L, Feickert M, Rodrigues E and Neuwirth P A 2024 pylhe v0.9.0 (available at: https://github.com/scikit-hep/pylhe)
[58] Fritsch M, Pflüger S, de Boer R E, Gradl W and Peters K 2024 ComPWA/tensorwaves: python fitter package for multiple

computational back-ends (available at: https://github.com/ComPWA/tensorwaves)
[59] Petroff M A 2021 arXiv:2107.02270
[60] Durkan C, Bekasov A, Murray I and Papamakarios G 2019 Neural spline flows Advances in Neural Information Processing Systems

vol 32, ed HWallach, H Larochelle, A Beygelzimer, F d’ Alché-Buc, E Fox and R Garnett (Curran Associates, Inc.) (https://
proceedings.neurips.cc/paper/2019/file/7ac71d433f282034e088473244df8c02-paper.pdf)

[61] Kingma D and Ba J 2015 Adam: a method for stochastic optimization Int. Conf. on Learning Representations (ICLR), (San Diega,
CA, USA)

[62] Klimek M D and Perelstein M 2020 SciPost Phys. 9 053
[63] Danziger K, Janßen T, Schumann S and Siegert F 2022 SciPost Phys. 12 164
[64] Backes M, Butter A, Plehn T and Winterhalder R 2021 SciPost Phys. 10 089

13

https://doi.org/10.21468/SciPostPhysCodeb.8
https://doi.org/10.1016/0021-9991(78)90004-9
https://doi.org/10.1016/0021-9991(78)90004-9
https://doi.org/10.21468/SciPostPhys.10.2.038
https://doi.org/10.21468/SciPostPhys.10.2.038
https://doi.org/10.1145/3341156
https://doi.org/10.1145/3341156
https://doi.org/10.21468/SciPostPhys.8.4.069
https://doi.org/10.21468/SciPostPhys.8.4.069
https://doi.org/10.1088/2632-2153/abab62
https://doi.org/10.1088/2632-2153/abab62
https://doi.org/10.1103/PhysRevD.101.076002
https://doi.org/10.1103/PhysRevD.101.076002
https://doi.org/10.21468/SciPostPhys.15.4.141
https://doi.org/10.21468/SciPostPhys.15.4.141
https://doi.org/10.21468/SciPostPhys.17.1.023
https://doi.org/10.21468/SciPostPhys.17.1.023
https://doi.org/10.1103/PhysRevD.102.013003
https://doi.org/10.1103/PhysRevD.102.013003
https://doi.org/10.1007/JHEP03(2024)083
https://doi.org/10.1088/1742-6596/2438/1/012137
https://doi.org/10.1088/1742-6596/2438/1/012137
https://doi.org/10.21468/SciPostPhys.18.1.017
https://doi.org/10.21468/SciPostPhys.18.1.017
https://openreview.net/forum?id%20=%20XCTVFJwS9LJ
https://openreview.net/forum?id%20=%20XCTVFJwS9LJ
https://doi.org/10.4310/CMS.2010.v8.n1.a11
https://doi.org/10.4310/CMS.2010.v8.n1.a11
https://proceedings.mlr.press/v37/rezende15.html
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2005-173.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2005-173.pdf
https://doi.org/10.1023/A:1008923215028
https://doi.org/10.1023/A:1008923215028
https://github.com/ComPWA
https://doi.org/10.1103/PhysRevD.95.032004
https://doi.org/10.1103/PhysRevD.95.032004
https://doi.org/10.31349/SuplRevMexFis.3.0308020
https://doi.org/10.31349/SuplRevMexFis.3.0308020
https://doi.org/10.1155/2020/7463073
https://doi.org/10.1103/PhysRevD.108.012023
https://doi.org/10.1103/PhysRevD.108.012023
https://doi.org/10.1007/JHEP07(2023)228
https://doi.org/10.1103/PhysRevD.100.113007
https://doi.org/10.1103/PhysRevD.100.113007
https://doi.org/10.1007/JHEP02(2021)183
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
http://github.com/google/jax
https://doi.org/10.1103/PhysRevD.82.071102
https://doi.org/10.1103/PhysRevD.82.071102
https://doi.org/10.1103/PhysRevD.84.092004
https://doi.org/10.1103/PhysRevD.84.092004
https://doi.org/10.1007/JHEP06(2023)138
https://doi.org/10.1007/JHEP07(2023)141
https://doi.org/10.22323/1.476.0830
https://doi.org/10.22323/1.476.0830
https://arxiv.org/abs/2503.19983
https://doi.org/10.1016/j.cpc.2021.107995
https://doi.org/10.1016/j.cpc.2021.107995
https://arxiv.org/abs/1308.2922
https://doi.org/10.1016/j.jcp.2021.110386
https://doi.org/10.1016/j.jcp.2021.110386
https://doi.org/10.1016/j.sigpro.2016.08.025
https://doi.org/10.1016/j.sigpro.2016.08.025
https://doi.org/10.1111/insr.12500
https://doi.org/10.1111/insr.12500
https://arxiv.org/abs/2402.10797
https://doi.org/10.21105/joss.00024
https://doi.org/10.21105/joss.00024
http://github.com/deepmind
http://github.com/deepmind/dm-haiku
http://github.com/deepmind/dm-haiku
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://github.com/scikit-hep/pylhe
https://github.com/ComPWA/tensorwaves
https://arxiv.org/abs/2107.02270
https://proceedings.neurips.cc/paper/2019/file/7ac71d433f282034e088473244df8c02-paper.pdf
https://proceedings.neurips.cc/paper/2019/file/7ac71d433f282034e088473244df8c02-paper.pdf
https://doi.org/10.21468/SciPostPhys.9.4.053
https://doi.org/10.21468/SciPostPhys.9.4.053
https://doi.org/10.21468/SciPostPhys.12.5.164
https://doi.org/10.21468/SciPostPhys.12.5.164
https://doi.org/10.21468/SciPostPhys.10.4.089
https://doi.org/10.21468/SciPostPhys.10.4.089

	Flow annealed importance sampling bootstrap meets differentiable particle physics
	1. Introduction
	2. Method
	2.1. Training
	2.2. Differentiable MEs

	3. Experimental setup
	4. Results and discussion
	5. Summary and conclusion
	Appendix A. Transformation of Dalitz plot to unit hypercube
	Appendix B. Hyperparameters
	Appendix C. Relationship of sampling efficiency and unweighting efficiency
	References

