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Resumo

A Teoria de Cordas — a uma das teorias candidatas à unificação da gravita-

ção com as restantes forças fundamentais —é geralmente formulada em 9 di-

mensões espaciais. Segundo o modelo mundo-brana, o universo é uma brana

de Dirichlet com 3 dimensões espaciais, que se pode mover num espaço-tempo

9+1-dimensional. Neste contexto, se existisse um par de branas adicional no

espaço-tempo, as interacções entre estas poderiam provocar uma aceleração da

expansão do universo. Esta concretização natural do paradigma da inflação em

teoria de cordas — a Inflação de Branas [1] — tem a interessante propriedade de

terminar tipicamente com uma transição de fase, levando à produção de p-branas

de menor dimensionalidade [2, 3]. Assim, espera-se que a inflação de branas leve

à formação de redes de p-branas evoluindo em universos com dimensões extra.

Nesta tese, estudamos a evolução cosmológica de redes de p-branas em uni-

versos de Friedmann-Robertson-Walker (FRW) com N � 1 dimensões. Neste

contexto, começamos por deduzir a equação do movimento para p-branas in-

finitamente finas em espaços-tempo homogéneos e isotrópicos. Este resultado

serve-nos de ponto de partida para derivar as equações que descrevem a evolução

cosmológica do comprimento caracteŕıstico e da velocidade quadrática média

de uma rede de p-branas. Estas equações permitem-nos generalizar o modelo

VOS para cordas [4] para o caso de p-branas de dimensionalidade arbitrária em

espaços-tempo N�1-dimensionais. Este modelo VOS generalizado permite-nos,

então, descrever quantitativamente a evolução de redes de p-branas e estudar

os diferentes regimes que emergem durante a sua evolução em universos em ex-

pansão ou em colapso. Em particular, estudos da dinâmica de p-branas fechadas

maximamente simétricas permitem-nos limitar os valores posśıveis para a ve-

locidade quadrática média de redes de p-branas e determinar as condições que

devem ser satisfeitas para estas possam atingir um regime invariante de escala.

Estudamos ainda as conexões posśıveis entre redes de paredes de domı́nio e
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iv Resumo

a energia escura. As redes de paredes, se congeladas em coordenadas comóveis

ou frustradas, podem provocar a aceleração da expansão do universo. Por esta

razão, este tipo de redes foram sugeridas como candidatas a energia escura [5].

Estudos anteriores [6, 7, 8], baseados em modelos anaĺıticos e simulações de teo-

ria de campo de alta resolução, revelaram que a frustração de redes de paredes

de domı́nio não resulta naturalmente da sua evolução cosmológica. Nesta tese,

consideramos o efeito de junções massivas tipo-corda e tipo-monopólo em redes

de paredes de domı́nio, desenvolvendo para isso um modelo VOS semi-anaĺıtico

que incorpora esses efeitos. Chegamos à conclusão que, apesar de a presença

de junções massivas poder levar à frustração de redes de paredes, a sua con-

tribuição para a densidade de energia do universo não pode ser reconciliada

com os resultados observacionais. Analisamos ainda o efeito de um mecanismo

alternativo genérico para a frustração de redes de p-branas e verificamos que só

poderá frustrar efectivamente a rede de branas se for a componente dominate da

densidade de energia. Por esta razão, as redes frustradas de paredes de domı́nio

não poderão contribuir para a energia escura: se a frustração ocorresse efecti-

vamente, a sua contribuição para a densidade de energia seria subdominante.

A constante cosmológica seria a explicação mais simples para a aceleração

actual do universo. Contudo, as previsões teóricas e o valor observado da con-

stante cosmológica são dramaticamente discrepantes. Em [9], os autores propõe

uma solução dinâmica para este problema — que denominam Devaluação —,

que tem como base a dinâmica de redes de paredes de domı́nio viciadas. Este

tipo de rede é originado, na sua concretização mais simples, se existir uma ligeira

diferença de energia de vácuo nos domı́nios. Esta diferença de energia provoca

o aparecimento de um pressão de volume que “empurra” a parede em direcção

ao domı́nio com maior densidade de energia, provocando o seu colapso. Para

estudar o efeito desta diferença de energia entre domı́nios na dinâmica de pare-

des, desenvolvemos um modelo anaĺıtico que o incorpora. Este modelo é, então,

usado para analisar o mecanismo da devaluação: se o universo for composto por

vários domı́nios com densidades de energia de vácuo ligeiramente diferentes,

separados por paredes de domı́nio, as regiões com maior densidade de energia

seriam progressivamente suprimidas. Consequentemente, o universo evoluiria

naturalmente para valores baixos da densidade de energia de vácuo. A nossa

análise, contudo, revela que este mecanismo necessitaria de um ajuste preciso

dos parâmetros do potencial para reproduzir o valor observacional da constante

cosmológica e, por essa razão, não pode ser considerado uma solução satisfatória

para o problema da constante cosmológica.



Abstract

String Theory — one of the candidates for the unification of gravitation

with the other fundamental forces — is generally formulated in ten spacetime

dimensions, instead of the usual four. In the brane-world realization, the visible

universe is a Dirichlet brane with 3 spatial dimensions, moving within the higher

dimensional space. In this context, if the spacetime contains an additional pair

of branes, their interactions could accelerate the expansion of the universe and,

thus, drive an inflationary epoch. This natural realization of inflation in the

framework of string theory — know as brane inflation [1] — has the compelling

property that it ends with a phase transition, in which the production of p-

branes of lower dimensionality is expected to occurs [2, 3]. Therefore, brane

inflation is expected to lead to the formation of p-brane networks, that appear

as topological defects, evolving in higher dimensional cosmologies.

In this thesis, we study the cosmological evolution of p-brane networks inN�
1-dimensional Friedmann-Robertson-Walker (FRW) universes. In order to do

so, we derive the equations of motion for infinitely thin and featureless p-branes

in higher dimensional homogeneous and isotropic backgrounds. These results

are, then, used as a stepping-stone to derive the cosmological evolution equations

for the characteristic lengthscale and root-mean-square (RMS) velocity of a p-

brane network. These equations constitute a generalized version of the Velocity-

Dependent One-Scale (VOS) Model for cosmic strings [4] to branes of arbitrary

dimensionality in N � 1-dimensional backgrounds. This VOS model then allow

us to describe quantitatively the evolution of p-brane networks, and to study

the different scaling regimes that arise in expanding and collapsing universes.

In particular, studies of the dynamics of maximally symmetric closed p-branes

solutions allow us to obtain constraints on the RMS velocity of brane networks,

that are then used find the conditions that the networks need to satisfy in order

to attain linear scaling regimes.
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We also study the possible connections between domain wall networks and

dark energy. Domain wall networks, if frozen in comoving coordinates or frus-

trated, can drive a phase of accelerated expansion. For that reason, they were

proposed as dark energy candidates [5]. Previous studies [6, 7, 8], resorting

to analytical tools and high-resolution field-theory simulations, revealed that

frustration does not arise naturally as the result of cosmological evolution. In

this thesis, we consider the effect of massive string and monopole-type junc-

tions on domain wall networks, by developing a semi-analytical VOS model

that incorporates their dynamical effects. We find that, although the presence

of massive junctions can lead to the frustration of domain wall networks, their

contribution to the energy density of the universe cannot be reconciled with

the observational results. We also analyse the effect of an alternative mecha-

nism for the frustration of p-brane networks and verify that it cannot decelerate

the branes effectively unless it is the dominant energy component. For this

reason, frustrated domain wall networks cannot contribute to dark energy: if

frustration occurred effectively, their contribution to the energy density would

be subdominant.

The cosmological constant would be the simplest explanation for the current

acceleration of the universe. However, there is a dramatic difference between

the theoretical predictions and the observed values of the cosmological constant

that is yet to be explained. In Ref. [9], the authors proposed a dynamical

solution — dubbed Devaluation — to this cosmological constant problem, that

relies on the dynamics of biased domain wall networks. These domain wall

networks originate, in the simplest realization, if there is a slight energy differ-

ence between the vacuum energy density of the domains. This energy difference

causes a volume pressure that pushes the wall towards the higher vacuum den-

sity domain, leading to its collapse. We develop a analytic model for the effect

of bias on domain wall dynamics, and use the results to analyse the devaluation

scenario. According to this scenario, if the universe was composed of several

domains with slightly different vacuum energy densities, separated by biased

domain walls, the regions with higher energy densities would be progressively

suppressed. Consequently, the universe would naturally evolve towards low val-

ues of vacuum energy density. Our analysis, however, reveals that, in order

to obtain the observed value of the cosmological constant, this scenario would

require a fine-tuning of the parameters of the potential, and, for that reason,

cannot be considered a satisfactory solution to the cosmological constant prob-

lem.
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Notation and Units

Throughout this work natural units are used, and a p�,�,�,�q metric

signature is employed. Unmarked greek and latin indices run over spacetime

and space coordinates, respectively; while, greek and latin indices marked with

a tilde take the values 0, � � � , p and 1, � � � , p, respectively (except in Subsec.

2.2.1). Italic type is used to represent N � 1-vectors, while bold type denotes

N -vectors — so that xµ � px0,xq. We also use Einstein summation convention

whereby when indices appear twice in a single term, once in an upper and once

in a lower position, they are implicitly summed over. Moreover, commas denote,

in general, partial derivatives — so that A,B � BA{BB and A,µ � BA{Bxµ —

and dots represent derivatives with respect to the conformal time, η.
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1

Introduction

There is overwhelming evidence that the universe has been expanding through-

out its evolution, ever since its extremely dense and hot outset. The early uni-

verse was much denser and hotter than in the present, and therefore cosmology

and particle physics should merge in any rigorous attempt to study this period.

Some important recent developments in cosmology stem particularly from

the application of particle physics theoretical frameworks to the early universe.

For instance, the quantum theoretical description of the contents of the universe

lead to the suggestion that the universe should have underwent, in its early

history, a series of phase transitions and that, and as a consequence, networks

of topological defects might have been formed. These defect networks, although

formed in the early universe, might have important cosmological consequences

for the late-time evolution of the universe. In particular, it has been suggested

that domain wall networks might be related to the puzzling recent acceleration

of expansion: they could contribute to the dark energy budget or, if the network

is rendered unstable, help to explain the small observed value of the vacuum

energy density.

String theory emerged in the endeavour to construct a quantum theory of

gravity, in order to provide a unified description of the fundamental particles and

the four fundamental interactions. Such a theory would be necessary to describe

the very early universe (until 10�43 s after the big bang). Recent developments

in string theory suggest that its fundamental objects — p-dimensional Dirichlet

branes and fundamental strings — might play a cosmological role, and even be

1



2 Introduction

detectable in upcoming observational probes.

In this chapter, we start by reviewing the Standard Cosmological Model —

that successfully describes the evolution of the universe since, at least, 10�2 s

after the big bang — and by discussing its successes and shortcomings. We

also discuss the observational evidence for the existence of an exotic energy

component that accounts for more than two thirds of the total energy density

of the universe which is causing the expansion of the universe to accelerate.

We discuss the properties of this component and review briefly the dark energy

candidates suggested in the literature. Moreover, we review the concept of spon-

taneous symmetry breaking in the early universe and the consequent formation

of topological defects. Finally, we briefly discuss superstring theory and brane

inflationary scenarios, and the recent studies that indicate that brane inflation

might lead to the formation of cosmic superstring and p-brane networks that

might play important cosmological roles.

1.1 STANDARD COSMOLOGICAL MODEL

The Standard Cosmological Model is the prevailing physical description of

the evolution of the universe. This model rests upon the Cosmological Principle,

whereby the properties of the universe are identical everywhere in space — the

universe is homogeneous — and in every direction — it is also isotropic. Under

this assumption, there are no preferred points or directions in the universe, and

thus the same laws of physics apply throughout space. Clearly, the universe

is not homogeneous nor isotropic on small scales, since matter clusters to form

stars, galaxies, and other cosmic structures. However, in cosmology, homogene-

ity and isotropy are defined in a statistical sense and on sufficiently large scales

(larger than the size of the large-scale structure of the universe).

Another cornerstone of this model is the realization that the universe is ex-

panding over time. In 1929, Edwin Hubble published the measurements of the

shifts of spectral lines of 18 nearby galaxies (at a fairly known distance), and

found that all these galaxies were receding from Earth in all directions. More-

over, he found that the recessional velocities appear to increase proportionally

with the distance. If the universe was not expanding (or collapsing), one would

expect the galaxies to move in random directions, with no clear correlation be-

tween velocity and distance. Although the expanding-universe solution to Ein-

steins’s equations was found in 1922 by Alexander Friedmann, the expanding

universe paradigm only gained general acceptance when Hubble’s observational
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evidence for expansion was published.

In the framework of General Relativity, cosmological expansion is regarded

as an intrinsic expansion: it is the spacetime itself that expands, leading to

an increase of the (proper) physical distance between any two well-separated

comoving observers. The physical distance between these observers scales as:

dphptq � aptqdphpt0q , (1.1)

where we took apt0q � 1. Note that, if the observers do not have any peculiar

dynamics (id est, if they are comoving with the Hubble expansion), the varia-

tions of dphptq consist merely of changes on the scale of physical distances due to

cosmological expansion, aptq. aptq, then, encodes the dynamics of the universe’s

expansion, and, for this reason, it is generally denominated cosmic scale factor.

The Hubble velocity is, then, given by

v � dpdphptqq
dt

� Hptqdph , (1.2)

where the rate of change of the scale factor, usually denominated Hubble Pa-

rameter, defined as

H � 1

a

da

dt
, (1.3)

was introduced. Eq. (1.2) is known as the Hubble law, and it is the empirical

relation found by Hubble between the recessional velocity of galaxies and their

distance from Earth

v 9 dph. (1.4)

The assumption that the universe is homogeneous and isotropic is sufficient

to determine the spacetime metric of an expanding universe: the Friedmann-

Robertson-Walker (FRW) metric, whose line element is

ds2 � dt2 � a2ptq
�

dr2

1�Kr2
� r2

�
dθ2 � sin2 θdφ2

��
(1.5)

where r, θ and φ are comoving coordinates (since a particle at rest in these

coordinates will remain at rest). Here, K is the spatial curvature of the 3-

dimensional space. An homogeneous and isotropic spacetime has three possible

geometries: if K   0, the universe is open with an hyperbolic topology; if

K � 0 the spacetime is flat; and, if K ¡ 0, the universe is closed, with a

spherical topology.
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1.1.1 Friedmann Equations

The dynamics of the expansion of the universe is generally assumed to be

governed by General Relativity. According to Einstein’s equation

Gµν � Rµν � 1

2
gµνR � 8πGTµν � Λgµν , (1.6)

where

Rµν � Γα
µν;α � Γα

µα;ν � Γα
βαΓ

β
µν � Γα

βνΓ
β
µα (1.7)

is the Ricci tensor, R � Rµ
µ the is Ricci Scalar, and

Γµ
αβ �

gµν

2
pgαν,β � gβν,α � gαβ,νq (1.8)

are the Christoffel symbols. Λ is a constant, dubbed, for historical reasons,

Cosmological Constant, that accounts for the intrinsic energy of vacuum, de-

scribing the energy of empty space. Tµν is the Stress-Energy tensor, describing

the energy and pressure of the background universe. Note that if the universe

is assumed to be homogeneous and isotropic, the energy density and pressure of

the universe only depend on t. Moreover, isotropy implies the absence of heat

conduction (so that any changes occurring in the fluid are adiabatic), and the

absence of viscosity or shear forces. Therefore, we assume that the background

behaves as a perfect fluid, and thus it can be described by a stress-energy tensor

of the form

Tµν � pPb � ρbqUµUν � Pbgµν , (1.9)

where ρb and Pb are, respectively, the energy density and the pressure of the

background fluid, Uµ represents its 4-velocity defined as Uµ � dXµ{dτ , and
τ represents the proper time. In the comoving frame, the fluid is at rest with

respect to expansion, so that Uµ is such that form U0 � 1 and U i � 0.

Assuming an energy-momentum tensor of this form, Eq. (1.6) allows us to

write two independent equations:

H2 � 8

3
πGρb � K

a2
� Λ

3
, (1.10)

dH

dt
� �4πG pρb � Pbq � K

a2
, (1.11)

generally called Friedmann equations. These two equations may be equated to

eliminate K{a2, in order to obtain the Raychaudhuri equation:
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1

a

d2a

dt2
� �4

3
πG pρb � 3Pbq � Λ

3
. (1.12)

Moreover, energy-momentum conservation,

Tµν
;ν � 0 , (1.13)

allows us to obtain a continuity equation for the energy density

dρ

dt
� 3H pρb � Pbq � 0 . (1.14)

Note that in many situations of interest, the pressure of a fluid is a linear

function of its energy density:

P � wρ , (1.15)

where w is the equation-of-state parameter. By introducing Eq. (1.15) in Eq.

(1.14), it is easy to see that in this case the energy density of the fluid should

scale as

ρ 9 a�3p1�wq , (1.16)

for a constant equation-of-state parameter. Eqs (1.10), (1.12), and (1.14) then

allow us to describe the dynamics of expansion, as a function of its contents or

vice-versa1.

1.1.2 Cosmological horizons

In this subsection, we will present some concepts which are important in

a cosmological model. Let us start by defining more precisely the (proper)

physical distance, at a time t, from an arbitrary origin to a comoving object at

a radial coordinate r:

dphpr, tq � aptq
» r

0

dr?
1�Kr2

� aptqfprq , (1.17)

where

|K|1{2 fprq �

$'&
'%

sinh�1p|K|1{2 rq , for K   0

|K|1{2 r , for K � 0

sin�1p|K|1{2 rq , for K ¡ 0

. (1.18)

1Note that only two of these equations are independent
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Since the time dependence stems only from the scale factor, it is easy to see

that the rate of change of dphpr, tq satisfies the Hubble law (Eq. (1.2)).

Consider now a photon propagating throughout the universe. Photons travel

along null geodesics, with ds2 � 0. For simplicity, let us choose a coordinate

system such that φ and θ remain constant. Therefore, along the photon path,

we have that

ds2 � dt2 � a2ptq dr2

1�Kr2
� a2pηq

�
dη2 � dr2

1�Kr2



� 0 . (1.19)

Here, we introduced the conformal time,

η �
» t

0

dt

aptq , (1.20)

that measures the comoving distance travelled by a photon since the big-bang

(which we assumed to take place at t � η � 0). Since the universe has a finite

age, photons could only have travelled a finite physical distance until the present

time. This distance is commonly named particle horizon, and it is given by:

dppηq � apηqfprq � apηq
» t

0

dt

a
� apηqη . (1.21)

An observer is, then, unable to receive signals from a distance larger than the

particle horizon2.

The event horizon measures the distance a photon can travel, since a time

t, until a maximum time in the future, tmax

deptq � aptq
» tmax

t

dt

a
, (1.23)

where tmax is either the time of the big-crunch, for closed models, or tmax Ñ �8,

for flat and open models. This distance defines the boundary of the region for

which observers in the future are able to receive signals emitted at time t. This

boundary is only relevant for models for which Eq. (1.23) is finite. Otherwise,

if de Ñ8, the event horizon does not exist.

2In practise, since before recombination photons were tightly coupled with the baryons,
the observable universe is delimited by a smaller horizon

dopt � apηqpη � ηrq , (1.22)

where ηr is the conformal time at recombination, and dopt is denominated optical horizon.
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The Hubble radius, RH , is defined as the distance at which the Hubble

velocity equals the velocity of the light,

RH � H�1 . (1.24)

This distance delimits a region, denominated Hubble sphere or volume, for which

the recessional velocities are smaller than the velocity of light. Although outside

the Hubble sphere the velocities are superluminal, and seem, at first glance, to

violate special relativity, that is not the case. Hubble velocities are not physical

velocities: they measure the rate of expansion of spacetime itself. In fact, the

physical velocity of any object outside the Hubble sphere, if measured in its local

inertial frame, is smaller than the speed of light and is, thus, in agreement with

special relativity. The Hubble radius is, roughly, the physical distance travelled

by a photon in the characteristic expansion time (or Hubble Time), tH � H�1.

As a consequence of the expansion of spacetime, the wavelength of radiation

is stretched, increasing proportionally to the scale factor — the light suffers

a redshift. In a collapsing universe the radiation would be blueshifted as it

traveled through spacetime. If λe and λ0 are, respectively, the wavelength of

the emitted radiation and the wavelength measured by a distant observer, then

λ0

λe
� apη0q

apηeq . (1.25)

The cosmological redshift, z, is defined as

z � λ0

λe
� 1 � apη0q

apηeq � 1 . (1.26)

1.1.3 The contents of the Universe and Universe Evolution

In order to describe the dynamics of the universe, it is necessary to know its

ernegetic contents. Frequently, one assumes that there are three main contri-

butions to the energy density of the background: matter (ρm), radiation (ρr),

and the vacuum energy density3 (ρΛ � Λ
8π ). Therefore, we can write

ρb � ρm � ρr � ρΛ . (1.27)

Each of these components, if minimimally coupled to the others, satisfies

the continuity equation in Eq. (1.14). However, each has a different equation

3Note that, from now on, we include the effects of the Cosmological Constant in the
background energy density, so that the Λ

3
term in Eqs. (1.10) is absorbed by the definition of

the background density.
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of state. For a fluid of relativistic particles (radiation), w � 1{3, so that

ρr 9 a�4 . (1.28)

The pressure of matter (constituted by non-relativistic particles) is negligible

compared to its energy density. Thus, in this case, w � 0 and

ρm 9 a�3 . (1.29)

By definition, Λ remains constant, and, consequently, so does the vacuum energy

density.

The critical density, ρc, is defined as the energy density of a flat universe

(with K � 0). Using Eq. (1.10), we find that

ρc � 3H2

8πG
. (1.30)

The energy density of the universe determines the geometry of spacetime: if

ρb ¡ ρc, the universe is closed (K ¡ 0), while for ρb   ρc one has that K   0

and thus the universe is open.

One may define a (dimensionless) density parameter,

Ωi � ρi
ρc

, (1.31)

for each of the species that contribute to the total energy density. It is also

common to define a curvature parameter

ΩK � � K

a2H2
, (1.32)

so that

Ωm � Ωr � ΩΛ � ΩK � 1 . (1.33)

In this case, the geometry of the universe is determined by the value of ΩK :

ΩK   0 ñ K ¡ 0 ,

ΩK � 0 ñ K � 0 , (1.34)

ΩK ¡ 0 ñ K   0 .

Introducing these density parameters into Eq. (1.10), we obtain

H2 � H2
0

�
Ωm0a

�3 � Ωr0a
�4 � ΩΛ0 � ΩK0a

�2
�
, (1.35)
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where parameters with the subscript 0 correspond to their values at the present

time.

1.1.4 Observational Results: Successes and Shortcomings of the Stan-

dard Cosmological Model

The standard cosmological model describes the evolution of an expanding

universe from a state of extreme density and temperature until the final stages

of its evolution. As we travel backwards in time, towards higher and higher

temperatures, the amount of energy available for particle interaction increases:

as a consequence, first the atoms are ionized (at T � 0.3 eV); at even earlier

times, the nuclei decompose into nucleons (for T � 0.1 � 1MeV); and these

baryons in turn eventually decompose into quarks (for T � 102 MeV). There-

fore, as we travel backwards in time, the universe enters the realm of particle

physics. The perfect relativistic fluid description of the universe may not remain

valid for arbitrarily high temperature: its validity before t � 10�10s depends

on the assumed framework of particle physics [17, 18]. Note however that this

description could hold up from times as early as tpl � 10�43s, if the quantum

field theoretical description of particle physics remains valid up to such high

energy scales (1018 GeV)4.

Nevertheless, there is a steady observational basis that supports the validity

of the Standard Cosmological Model from about 10�2s after the big bang. In

this section, we present some significant observational results, highlighting the

successes of the Standard Cosmological Model, and pointing out some of its

shortcomings.

One of the turning points in the Standard Model’s history was the discovery

of the Cosmic Microwave Background radiation (CMB). This relic radiation,

was predicted in 1946 by Gamow [19]. At high temperatures, the universe was

opaque (optically thick) to photons, because they were in kinetic equilibrium

with the electrons of the plasma via Thompson Scattering. However, as the

temperature dropped to T � 0.3 eV, the formation of neutral hydrogen and he-

lium atoms from the ions of the plasma became energetically favourable, and the

nuclei captured the free electrons (in a process known as Recombination). Con-

sequently Thompson scattering ceased and the photons decoupled from matter.

After decoupling, most of these photons have been propagating freely through

4This energy scale is far beyond the reach of the present day particle accelerators.
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spacetime ever since, permeating the whole sky. Given the fact that, before de-

coupling, the photons were in thermal equilibrium with the surrounding plasma,

this radiation is expected to have a blackbody spectrum.

In 1965, Penzias and Wilson [20] discovered a background radiation, which

appeared to fill the sky uniformly, in the microwave frequency range, and that

could not be explained by any astronomical source or by experimental noise.

This radiation was later identified as the Cosmic Microwave Background [21],

thus confirming Gamow’s prediction, and gaining general acceptance for the

standard cosmological model. Several years later, in 1992, the Far Infrared Ab-

solute Spectrophotometer (FIRAS) of the Cosmic Background Explorer (COBE)

satellite demonstrated that the CMB has the most perfect blackbody spectrum

ever observed in nature [22], characterized by a temperature of T � 2.725K.

Moreover, there is direct evidence that the CMB temperature was hotter in the

past, scaling as: T 9 a�1 (e.g. from the study of absorption lines in the spectra

of distant quasars [23]).

The CMB also offers the best evidence for the isotropy of the observed

universe: aside from dipole fluctuations that result from the motion of the Earth

relative to the CMB’s rest frame, temperature fluctuations are very small:

∆T

T
À 10�5 . (1.36)

The remarkable uniformity of the CMB temperature indicates that the uni-

verse was fairly isotropic and homogeneous at the time of Decoupling. This

extreme homogeneity and isotropy, however, also highlights one of the short-

comings of the Standard Cosmological Model: the Horizon Problem. According

to Standard Cosmology, the Last Scattering Surface spans a large number of

regions that were causally disconnected at recombination, and therefore it is

unable to explain the observed homogeneity and isotropy of the universe.

The Standard Cosmological Model also withstood another important obser-

vational test: the primordial abundances of light elements (inferred from obser-

vations) seem to be in agreement with the predictions from Big Bang Nucleosyn-

thesis (BBN). BBN theory provides a detailed description of the production of

light elements ( 4He, D, 3He and 7Li), through nuclear fusion, when the uni-

verse was between T � 10 MeV and T � 0.1 MeV. This theory predicts precise

values for the primordial abundances of these light elements (for a given number
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of relativistic particle species), as a function of the baryon-to-photon ratio, ηB .

These predictions are consistent with the measured primordial abundances if

the a baryon-to-photon ration is within the range [24]5

ηB � 6.1�0.67
�0.52 , (1.37)

or equivalently,

ΩB0h
2 � 0.022�0.003

�0.002 , (1.38)

where ΩB is the density parameter of baryonic matter. The measurement of

CMB anisotropies also allows us to constrain the values of ΩB and ηB . The

7 year results of the Wilkinson Microwave Anisotropy Prove (WMAP7) [26],

combined with the Baryon Acoustic Oscillations (BAO) data from the Sloan

Digital Sky Survey (SDSS) [27], and the estimates of the Hubble constant with

the Hubble Space Telescope [28], indicate that

100ΩB0h
2 � 2.255� 0.054 , (1.39)

which is in good agreement with the range of values that are consistent with

the BBN theory (in Eq. (1.38)).

Remarkably, classical astronomical observations, as well as the measurement

of CMB’s anisotropies, agree as to the geometry, composition and present day

expansion rate of the universe (see Fig. 1.1). According to the combined results

of WMAP7, BAO, and the Type Ia Supernova data from Union2 [29], we have

that

ΩK0 � �0.006�0.008
�0.007 . (1.40)

Therefore, observations indicate that, currently, the universe is extraordi-

narilly flat. Recall that,

|ΩK | 9
�
da

dt


�2

. (1.41)

Hence, in an universe undergoing decelerated expansion (for which 9a is expected

to decrease over time), if |ΩK | is non-zero, it is expected to grow over time. This

means that the universe should have been even flatter in the past. If we assume

5There seems to be a significant discrepancy in the abundance of 7Li that is yet to be
explained [25].
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that the initial conditions were set at Planck time, we should have that

ΩK0   0.02 ñ ΩKptplq   10�61 (1.42)

Therefore, the observed geometry of the universe in the present requires fine

tuning of the initial conditions. This is known as the Flatness Problem.

The baryonic matter can only account for a small fraction of the present

energy density. As a matter of fact, most of the matter contained in the universe

is non-ordinary matter: the cold dark matter. The nature of dark matter is still

unknown, however its existence has been inferred several years ago from galaxy

rotation curves. According to Refs. [26, 29], one has

Ωm0 � 0.281�0.018
�0.016 and ΩB0 � 0.0450� 0.0016 . (1.43)

The main contribution to the energy density of the universe seems to come

from a Cosmological Constant. In fact, according to [26]:

ΩΛ0 � 0.7250� 0.0036 . (1.44)

Note, however, that although observations indicate that this dominant en-

ergy component behaves similarly to Λ, observational results allow for other

exotic energy component with a time dependent equation of state. In Ref. [30]

the observational results from Union2, WMAP, BAO and from the measurement

of distances to Cepheids [31] are used to constrain various cosmological models.

The results indicate that the energy density of the dominant component of the

energy density, if not constant, should be, at the present time, slowly varying.

The nature of this energy component is still a matter of speculation, and for

that reason it is commonly referred to as Dark Energy.

1.1.5 Dark Energy

The first evidence for the existence of dark energy came from observations

of Type Ia Supernovae (SNIa). SNIa are ephemeral events that result from the

nuclear explosion of certain white dwarfs in binary systems. The luminosity

curve of SNIa has a characteristic shape and its peak is well correlated to the

duration of the event. Moreover, these supernovae seem to occur both in young

and old stellar populations, and they may be observed at high redshift since

they are very bright. For these reasons, SNIa can be used as Standard Candles

to measure the distance to the galaxies that host them [32].
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Figure 1.1: 68, 3%, 95, 4% and 99, 7% confidence regions of the pΩΛ,Ωmq plane
for Union2 SNIa data, combined with WMAP7 and BAO results. This picture
was taken from Ref. [30]
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Let L be the absolute luminosity of a light source and f the light flux received

from it. Assuming that this source emits photons isotropically, the Luminosity

Distance to this object is defined as

d2L �
L

4πf
. (1.45)

This luminosity distance is by no means the physical distance to that object:

the universe expansion not only redshifts the photons, but also reduces their

arrival rate. Therefore,

dLpzq � p1� zqrs � p1� zqf�1

�» z

0

dz

Hpzq



, (1.46)

where rs is the comoving distance to the source and f�1 is defined in Eq. (1.18).

For small z, we can write the luminosity distance as

dL � H�1
0

�
z � 1

2
p1� q0qz2

�
�Opz3q , (1.47)

where q0 is the value of the deceleration parameter, defined as

q � �a
d2a
dt2�
da
dt

�2 , (1.48)

in the present. Therefore, the measurement of the luminosity distance to Type

Ia Supernovae (or any other standard candles) allows us to characterize the

expansion of the universe in the present, by determining H0 and q0. In 1998,

the use of SNIa as standard candles by two independent groups [33, 34, 35] led

to the startling discovery that, contrary to what was expected, q0 is negative,

and that the expansion of the universe is then accelerating.

Using Eq. (1.12), we may write the deceleration parameter as

q � 1

2
p1� 3wDEΩDEq , (1.49)

where we have assumed that ΩK � 0 (which is motivated by the observational

results presented in the previous section), and that the universe contains only

matter and an unknown component which is responsible for the acceleration.

This component is commonly denominated Dark Energy and we use ΩDE �
1 � Ωm and wDE to denote, respectively, its density parameter and equation-

of-state parameter. The expansion of the universe is accelerated if q   0, or

equivalently,
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wDE   � 1

3p1� Ωmq . (1.50)

Therefore, in order to accelerate the universe, dark energy should be such that

wDE   �1{3, if Ωm � 0. This limit is somewhat lowered if we consider the

existence of matter: wDE   �1{2, for Ωm � 1{3.

The cosmological constant, Λ, was the first dark energy candidate. It is

characterized by a constant energy density, and hence Eq. (1.14) yields

PΛ � �ρΛ, so that w � �1 . (1.51)

This value of w seems to be in remarkable agreement with combined observa-

tional results from WMAP7, BAO and UNION2 [29]:

w � �1.035�0.093
�0.097 . (1.52)

However, there are serious problems concerning the physical interpretation

of Λ. The zero-point vacuum fluctuations must respect Lorentz invariance, and

therefore the vacuum energy would behave like a cosmological constant [36].

This interpretation of Λ as vacuum energy comes with a serious flaw: the energy

density generated by vacuum fluctuations is ultraviolet divergent. It is natural,

however, to impose a cut-off at the Planck scale (because General Relativity is

expected to break down above this scale), and in this case the vacuum energy

density would be expected to be of the order of m4
pl. The observed cosmological

constant energy density,

ρΛ �
�
10�3 eV

�4
, (1.53)

is more than 120 orders of magnitude smaller than the theoretical predictions

[37]. This catastrophic discrepancy is still unexplained, and it is known as

Cosmological Constant Problem.

The Cosmological Constant is even more problematic if we realize that the

universe as we know it can only exist for a small range of values of Λ. A larger

value of Λ would make the universe accelerate earlier, while large negative values

would cause the universe to recollapse in its early history. This is a severe fine-

tuning problem: in order to ensure that, in the present, ρΛ and ρm are of the

same order — so that the acceleration of the universe is a recent phenomenon

(as the observational results indicate [38]) —, the initial energy density should

be very precisely tuned at Planck time: ρΛ{ρr � 10�123 [18]. Recall that, as
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the universe expands, the matter energy density decreases with a�3, while the

vacuum energy density remains constant. Therefore, we are living in a very spe-

cial epoch in the history of the universe: a transitional period between matter-

and cosmological-constant-domination, which is expected to be brief. This ap-

proximate coincidence of the values of ρm and ρΛ at the present time is another

puzzling feature of Λ, know as the Coincidence Problem.

These difficulties lead to the search of alternative origins for Dark Energy.

As previously mentioned, dark energy resembles a cosmological constant, but it

is not necessarily so. Observational results allow for a dynamical form of dark

energy with a slowly varying equation of state. In this context, scalar field mod-

els are natural candidates: they seem to be ubiquitous in particle physics and,

consequently, in cosmology. These models — generally dubbed Quintessence —

may be realised with a variety of different potentials [39, 40, 41]. Some of these

models even alleviate a little the fine-tuning problem by having a cosmological

scaling solution [42] or by tracking the background matter field [43]. In any

case, fine-tuning of the parameters of the potential is necessary to obtain the

adequate acceleration (that fits the observations). Moreover, most of the po-

tentials used in the literature lack a strong theoretical inspiration and are, thus,

mainly designed to obtain the correct evolution for aptq. A plethora of alterna-

tives has also been proposed in the literature: scalar fields with non-canonical

kinetic terms (the k-essence models) [44]; models based on the Chaplygin gas

[45, 46], a fluid which behaves like Λ at late-times; phantom (or ghost) fields

[47] — just to name a few. Another class of models, based on modified gravity,

does not require the existence of this mysterious energy component. There are

several realisations of such models (F pRq gravity, scalar-tensor theories, brane

world models, ...6) that introduce large-distance corrections to general relativ-

ity, which are undetectable at small scales. These modifications would alter the

late-time evolution of the universe, and therefore might be designed to cause

the cosmic acceleration.

None of the aforementioned models can be considered fully satisfactory.

Note, however, that even if an exotic time-dependent form for dark energy is

found, the cosmological constant problem will still plague modern physics: we

would still need to explain why the vacuum energy vanishes.

In the context of this thesis, we will explore another possible origin for dark

energy: frustrated domain wall networks. It has been suggested in Refs. [5, 49]

6For a recent review, see [48]
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that a domain wall network frozen in comoving coordinates could provide a

negative pressure, and, consequently contribute to dark energy. However, it

has been shown in Refs. [6, 7, 8], using both analytical models and field the-

ory simulations, that frustrated domain wall networks do not arise in realistic

cosmological scenarios. In chapter 4, we study the role of massive string and

monopole-like junctions in the frustration of domain wall networks, and investi-

gate if these networks could be suitable dark energy candidates. Moreover, we

study the Devaluation Mechanism [9], a dynamical solution to the cosmologi-

cal constant problem, based on the idea that, after inflation, a biased domain

network separating regions with different vacuum energy densities could have

been formed. When a domain wall separates two regions with different energy

densities, it feels a pressure towards the region with the highest vacuum en-

ergy. The regions with higher energy density are suppressed, and therefore this

mechanism is expected to lead to lower and lower vacuum energy.

1.2 COSMOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL

DEFECTS

The early stages of the universe are sensitive to the framework of particle

physics. The standard model of particle physics describes three of the fundamen-

tal interactions between particles — electromagnetic, weak and strong forces—

in a quantum theoretical approach. This model is based on the premise of

symmetry restoration at high temperatures, according to which the observed

symmetries of elementary particles resulted from the breaking of a larger sym-

metry group.

In this context, spontaneous symmetry breaking is described in terms of a

scalar Higgs field. The early universe was, to a good approximation, in thermo-

dynamic equilibrium, so that the equilibrium value of the scalar field is deter-

mined by the minimization of the thermodynamic free energy, F

F � E � TS , (1.54)

where E is the internal energy, T is the absolute temperature and S is the

entropy. At low enough temperatures, the entropy term in Eq. (1.54) is unim-

portant, and hence the energy is minimized by one of the vacuum states of the

potential. This vacuum state might not be invariant under all the elements of

the symmetry group of the lagrangian density, and, in that case, the symmetry

is said to be broken. However, at larger temperatures, high-entropy states are

energetically favorable. As a matter of fact, the expectation value of φ is ex-
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pected to vanish above a critical temperature, Tc. At that point, the universe

undergoes a phase transition. Typically, this high-temperature phase exhibits

the full symmetry of the lagrangian density.

According to the Electroweak Theory, developed by Glashow, Salam and

Weinberg in the 70’s, the electromagnetic and weak interactions, may be re-

garded as different aspects of the same force — the electroweak force. In the

early universe, at high temperatures, this force was described by a lagrangian

density which is invariant under gauge SUp2q � Up1q transformations. This

symmetry, however, was broken as the universe cooled down and, thus, electro-

magnetic and weak interactions seem independent in the present. This unifica-

tion of electromagnetic and weak interactions lead to the development of Grand

Unified Theories (GUT’s) that attempt to unify the electroweak and strong in-

teractions. These theories are based on the same premise as electroweak theory:

the lagrangian that describes this single interaction was invariant under a gauge

symmetry group but this symmetry is now broken.

The universe is, then, expected to have experienced a series of phase transi-

tions in its early stages:

• At TGUT � 1015 GeV, there is a spontaneous breaking of GUT symmetry.

In the simplest version of GUT,

SUp5q Ñ SUp3q � SUp2q � Up1q . (1.55)

After this phase transition, the strong interaction and electroweak inter-

action become independent.

• At TEW � 102 GeV, the breaking of electroweak symmetry,

SUp3q � SUp2q � Up1q Ñ SUp3q � Up1q , (1.56)

occurs and, therefore, electromagnetic and weak interactions separate.

• At TQH � 200 � 300 MeV, another phase transition is expected to oc-

cur (or, perhaps several): the quark-hadron phase transition. During this

transition, quark confinement into hadrons takes place. This phase tran-

sition is characterized by the symmetry breaking:

SUp3q � Up1q Ñ Up1q . (1.57)

These cosmological phase transitions may have important cosmological con-
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sequences. Recall that, Spontaneous Symmetry Breaking occurs as, at a tem-

perature Tc, the scalar field acquires a vacuum expectation value (VEV). Since

the universe is composed, at a given time, of several causally disconnected re-

gions, the VEV of φ cannot be expected to be correlated on scales larger than

the particle horizon. Therefore, given that all the vacua are equivalent, differ-

ent patches of the universe — characterized by a correlation length ζ   dp —

are expected to have different vacuum expectation values. In order for φ to be

continuous, there must be regions where the underlying field cannot relax into

any vacuum state, giving rise to topological defects. This mechanism for the

formation of topological defects in cosmological phase transitions is known as

Kibble mechanism [50, 51].

1.2.1 The φ4-kink

To illustrate the process of symmetry breaking and the formation of topo-

logical defects, let us consider the simplest model that admits a topological

defect: the Goldstone model [52] with a single scalar field, φ. For this model,

the lagrangian density is given by

L � 1

2
φ,µφ

,µ � V pφq (1.58)

with a potential of the form

V pφq � λ

4

�
φ2 � η2

�2
, (1.59)

where λ is a coupling constant. The equations of motion for the scalar field, φ,

may be obtained by varying the action,

S �
»
dN�1x

?�gL , (1.60)

with respect to φ:

1?�g
�?�gφ,µ

�
,µ
� �dV

dφ
, (1.61)

where N is the number of spatial dimensions, gµν is the metric tensor and

g � detpgµνq.
In a 1 � 1 dimensional Minkowski spacetime, for which g � �1, the static

solutions should satisfy the following equation of motion

B2φ
Bx2

� dV pφq
dφ

. (1.62)
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The lagrangian density in Eq. (1.58), with the potential in Eq. (1.59), is

invariant under transformations φ Ñ �φ, and thus has a Z2 symmetry. More-

over, V pφq has two degenerate minima at φ � �η and φ � η. Now suppose that

φ acquires an expectation value

φ� � 〈0|φ |0〉 � �η , (1.63)

where |0〉 is the ground state of the model. Although all transformations of, say,

φ� by elements of Z2 yield legitimate VEVs of φ, not all elements of Z2 have a

non-trivial effect on φ�. As matter of fact, only the identity of the group does

so. Therefore, once the scalar field acquires a VEV, the Z2 symmetry is broken.

Eq. (1.62) has the following static solution [53]

φpxq � η tanh
�
ηλ1{22�1{2 px� x0q

�
, (1.64)

that corresponds to a kink centered at x � x0 which takes φ from �η as xÑ �8
to η as x Ñ �8. Since φpxq passes through φ � 0 at x � x0 (that does not

correspond to a minima of the potential), this configuration has non-vanishing

energy. Moreover, this solution is stable: one would need an infinite amount of

energy in order to relax the field configuration to only one of the vacua. As a

matter of fact, this is a consequence of the presence of a conserved topological

current,

jµ � εµνφ,ν , (1.65)

where εµν is the two-dimensional antisymmetric symbol. This configuration,

then, has a non-vanishing conserved charge

Q �
»
dxj0 � φp�8q � φp�8q . (1.66)

Since the vacuum state would have Q � 0, the kink configuration is unable to

relax into the vacuum while conserving the topological charge.

Note that, far from x � x0, the potential lies on one of the minima in one side

of the kink and on the opposite minimum on the other. So the kink is, actually,

a boundary where the field interpolates between �η and η. The energy of this

configuration is localized in the region were φ is not in the vacuum. This region

is centered at x0 and its thickness is proportional to the mass scale of the model

δ � m�1
φ � 1

η

c
2

λ
. (1.67)

According to Derrick’s Theorem [54], scalar field theories of the form of Eq.
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(1.58) do not admit stable time-independent solitons with a finite energy in

more than one spatial dimensions. There is however the possibility of evading

this difficulty by not being to selective about the solitons: for instance, by

allowing for time-dependence, or by admitting static solutions with an infinite

energy. The kink solution may be trivially embedded in higher dimensional

backgrounds. In a 3� 1 (or N � 1) dimensional theory, the static solution Eq.

(1.64) remains valid and it represents a 2 (or N �1) dimensional planar surface,

that depends only on one of the spatial coordinates. This surface separates

two domains with different vacuum expectation values and, for that reason, it

is commonly denominated a Domain Wall. These domain wall solutions have

infinite energy (because they have an infinite extension), however their energy

per unit area is finite.

1.2.2 The Topology of the Vacuum Manifold and the Production of

Topological Defects

Let us now consider a general field theory model, whose action is invariant

under a symmetry group G. If the field acquires a VEV, φ0 (and, thus, the

symmetry breaks), some of the elements of G will have non-trivial effects on φ0,

transforming it into another vacuum state φ1. However, there exists a subgroup

of G, the unbroken group H, whose elements will leave φ0 unchanged. The coset

space, G{H — the space of all non-trivial transformations of φ0 — contains all

the vacuum states. This space is the vacuum manifold of the theory, M, and

its topological properties signal the possible existence of defects and the type of

defects that might appear.

Topological defects appear if the vacuum has a non-trivial topology. Let us

now return to the case of a Z2-domain wall. In this case, G � Z2 and H � 1
(where 1 is the identity), and therefore the vacuum manifold consists merely

of two points. These points cannot be continuously deformed into one another.

This fact signals the possible occurence of domain walls: these defects can only

arise if the vacuum manifold is disconnected, due to the breaking of a discrete

symmetry.

Other types of defects may arise if M has different topological properties.

Let us consider the Goldstone model with a complex scalar field:

L � 1

2
φ,µφ̄

,µ � λ

4

�
φφ̄� η2

�2
. (1.68)
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In this case, the potential has a continuous (global) Up1q symmetry and it is

invariant under transformations of the form

φÑ eiαφ . (1.69)

The minima of the potential lie in the circle |φ| � η. Now let us suppose that

φ acquires a VEV

φ0 � 〈0|φ |0〉 � ηeiθ . (1.70)

A transformation of the form of Eq. (1.69) will transform φ0 into φ1 � ηeipθ�αq,

which, in general, does not correspond to the same vacuum state — the sym-

metry is broken.

Points in physical space are mapped non-trivially into the circle of minima,

so φmight span the whole manifold as we travel around a circle in physical space.

Along one such path, φ has a non-trivial winding: the phase of φ varies by 2π.

By continuity, φ must vanish in a point inside this closed circle, and therefore

there must be a non-vanishing energy density at this point. This indicates the

presence of a line-like topological defect, usually named Cosmic String. The

number of times φ winds around M as a circle is spun around the string — the

winding number — is a topological conserved charge. The energy of these global

Up1q strings is, unfortunately, not localized to a small region around the core

of the defect. Consequently, the energy per unit length of this configuration is

divergent. However, string originated in the spontaneous symmetry breaking of

gauge symmetries do not suffer from the same problem.

Cosmic strings can arise whenever the vacuum manifold is not simply con-

nected, or equivalently, if it contains unshrinkable loops. This type of manifolds

result, in general, from the breaking of an axial symmetry.

Moreover, if the vacuum manifold contains unshrinkable surfaces, the field

might develop non-trivial configurations corresponding to point-like defects, gen-

erally dubbed monopoles. The breaking of GUT symmetry is expected to lead

to the copious production of magnetic monopoles, which would overclose the

universe. However objects of this kind were never observed. This discrep-

ancy between theory and observation is known as Monopole Problem. In 3� 1-

dimensions, another type of defect may also arise if the vacuum manifold has

unshrinkable 3-spheres. These defects, usually denominated textures, are space-

time defects and are, in general, unstable to collapse.

These results may be summarized in terms of homotopy theory (which is
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used to characterize the topological properties of a topological space). Roughly

speaking, the nth homotopy group of a topological space, X, is the set of all the

mappings from the n-dimensional sphere into X, and it is denoted by πnpXq.
The types of defects that can be formed in a symmetry breaking are deter-

mined by the non-trivial homotopy groups of M [50]: in 3 � 1-dimensions, a

p-dimensional defect can be formed if

π3�pp�1qpMq � 1 . (1.71)

This condition is necessary for the formation of defects, but it is not sufficient:

the topology of M only indicates which type of defects can be formed.

1.2.3 The inflationary paradigm

As we pointed out in Sec. 1.1, the extreme flatness and homogeneity of

the observed universe cannot be explained by the Standard Cosmology model.

However, Guth [55] realised that both these problems may be resolved if the

universe underwent a period of accelerated expansion. The essential feature of

inflation is that the scale factor, aptq, grows faster than the Hubble radius, so

that the comoving Hubble radius decreases with time

d

dt

�
H�1

a



  0 . (1.72)

Therefore, if the expansion is fast enough, the size of the comoving Hubble

radius decreases drastically during inflation. In this case, the observed universe

— which appears to be composed of several causally disconnected regions —

might have been within a causal horizon in the early stages of inflation and the

observed homogeneity might be justifiable on physical grounds. Moreover, since

the final stages of the inflationary epoch are expected to occur after the GUT

phase transition, the density of magnetic monopoles — which are expected to

be copiously produced during this phase transition — is expected to decrease

steeply during this period. This solves the magnetic monopole problem: mag-

netic monopoles are expected to have been diluted by inflation to undetectable

levels. This phase of accelerated expansion would also lead to the flattening of

the universe. One sees that, during an inflationary period, ΩK will gradually

decrease towards zero, and, consequently, the universe becomes locally flat.

Inflation also seems to explain the origin of the large-scale structure in the

universe. During an inflationary epoch, small-scale inhomogeneities (due to

quantum fluctuations of scalar or gravitational fields) are stretched to large
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scales. Therefore, these quantum fluctuations might have been the source of the

primordial fluctuation spectrum that seeded structure formation.

The original implementation of inflation, suggested by Guth, was abandoned

due to some inherent flaws. However, the basic idea remained due to the poten-

tial to solve some of the most pressing problems of Standard Cosmology. It has

been replaced by a new inflationary scenario [56, 57], in which inflation is driven

by a very weakly coupled scalar field (the inflaton). In this scenario, accelerated

expansion occurs as the inflaton, which is initially displaced from the minimum

of the inflaton potential, slowly rolls towards it. As in the case of dark energy,

several models of inflation have been suggested in the literature, but none of

them is particularly compelling or considered definitive. However, the graceful

solutions provided for the shortcomings of the Standard Cosmological Model,

make inflation a generally accepted paradigm.

1.3 DEFECT PRODUCTION IN BRANE INFLATION

Fundamental string theory originated in the search for the unification of

gravity with the other fundamental forces. In quantum field theory, when treat-

ing spacetime as a continuum, several infinite results appear in measurable

quantities. As a consequence, a set of techniques was developed, known as renor-

malization, to deal with these divergences by absorbing them into the definition

of measurable quantities. However, many efforts to construct a renormalizable

quantum theory of gravity have been thwarted. Most of the infinities in these

theories appear when treating the elementary particles as point-particles. This

realization lead to the development of String Theory, in which elementary par-

ticles are represented by extended 1+1-dimensional objects: the particles are

regarded as different modes of oscillation of a Fundamental String. Although

by incorporating supersymmetry, it is possible to construct a theory — Super-

string Theory— that appears to be free of the undesirable infinities, this theory

is only consistent in 10 (9+1) dimensions. As a consequence, the suggestion

emerged that our universe is in fact 9+1-dimensional, but 6 of the spatial di-

mensions are compactified, so that they are very small and undetectable from

our macroscopic perspective.

Initially, cosmic strings and fundamental superstrings were thought to be

unrelated. In Ref. [58], Witten investigated whether or not superstrings could

grow to macroscopic scales and play the role of cosmic strings. However, in his

work several incompatibilities were brought to light. First of all, the tension of

superstrings appeared to be too high: superstring energy scale is close to the
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Planck scale, so that

Gµ Á 10�3 . (1.73)

If superstrings were to play the role of cosmic strings, they should be such that

[59, 60]

Gµ À 10�6.5 , (1.74)

in order to agree with the observed power spectrum of CMB7. Witten also

noted, in the same article, that macroscopic superstrings would be unstable,

due to fragmentation into microscopic strings (corresponding to light particle

excitations), and to confinement by axion domain walls. Moreover, the produc-

tion of superstrings after inflation seemed unlikely, due to the string’s energy

scale. As a consequence, any existing superstring would have been diluted to

undetectable values during the inflationary epoch.

This article seemed to settle the matters for a decade, however the pic-

ture has changed due to the introduction of the brane-world scenario. This

scenario was proposed as an alternative way to recover the observed 3+1 di-

mensions, in a 9+1-dimensional universe. In this scenario there are two types of

objects: Dirichlet Branes (or Dp-branes), which are p-dimensional surfaces em-

bedded in the larger space, and Fundamental strings (or F-strings), that may

be open-ended or form closed loops. Open F -strings can end on Dp-branes,

with Dirichlet boundary conditions. In this scenario, the visible universe is, in

fact, a very large D3-brane, that can move within the 9+1-dimensional space.

The constituents of the universe consist of segments of fundamental strings with

their ends attached to our brane and are, thus, bound to it. Gravitons, on the

other hand, correspond to vibrational states of closed F-string loops that are

not bound to our brane. Consequently, gravitational effects may depend upon

the extra-dimensions.

1.3.1 Brane Inflation and Defect Production

In the braneworld context, a natural model for inflation, based on the in-

teraction between branes, emerged: the brane inflation scenario. Although this

scenario may be realized in a variety of other different ways (see for example

[61, 62, 63]), brane-antibrane (D-D) inflation [1, 64, 65] is particularly interest-

ing in what regards to cosmic superstrings. Suppose the universe has an extra

7At the time, before COBE and WMAP probes, the constraint was looser, but nonetheless
incompatible with superstring tension.
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Figure 1.2: Schematic representation of theKLMT geometry: a warped Calabi-
Yau Manifold with throats. This picture was taken from Ref. [70].

D-D pair separated in the compact dimensions. In this case, inflation occurs as

the branes move towards each other, and it ceases as they collide and annihilate.

The role of the inflaton is played by the inter-brane distance and the inflaton

potential is originated by the interactions between branes. An interesting fea-

ture of this model is that the annihilation of the branes is expected to provide a

mechanism for converting the energy of the relative brane motion into reheating

the universe. Even more compelling is the fact that, during a D-D collision, a

significant portion of this energy may be trapped and lead to the production of

daughter branes.

As a matter of fact, there is a tachyon field living on the worldvolume of

the D-D pair (an open string mode stretching between the two branes). As

the inter-brane distance falls bellow a critical value, the tachyon develops an

instability and triggers a spontaneous symmetry breaking. This, not only leads

to the decay of the original branes, but also leads to the formation of defects via

Kibble Mechanism [66, 67]. In Refs. [2, 68, 69, 3], it has been shown that the

production of branes with lower dimensionality is expected in a large variety of

brane inflation models, and that these defects appear as topological defects to

the 4-dimensional observer. The production of 1+1-dimensional D-branes (or

D-strings) is favoured over the production of branes with higher dimensional-

ity. Note however that other defects may be produced at a detectable level.

Brane inflation may, therefore, provide a natural mechanism for the formation

of cosmic strings and p-brane networks evolving in a higher dimensional space.

Note also that, since this production occurs in the final stages of inflation, this

defects are not expected to be dispersed by the accelerated expansion.

Brane inflation also found ways off tackling the superstring tension problem,

by recurring to different compactifications of the extra-dimensions. For instance,
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a particularly interesting way of realising brane inflation is the KLMT model

[71]. In this model, spacetime is compactified on a Calabi-Yau manifold (see

Fig. 1.2):

ds2 � e2ApxKqηµνdx
µdxν � ds2K , (1.75)

where xK denotes the coordinates in the compact space. The metric of the

physical 4-dimensional spacetime is scaled by a factor eApxKq— a gravitational

redshift— that varies strongly as function of the compact dimensions. In most of

the compact space, eApxKq is approximately 1, however it may be much smaller

in some regions, the so-called ’throats’. In the KLMT model, inflation occurs

as a D3-D3 pair moves towards each other down one of this throats, and the

consequent string formation occurs in the bottom of the throat. In this case,

the effective string tension measured by a 4-dimensional physicist is, then, sup-

pressed by gravitational redshift

µ � eAp2xKqµ0 , with eApxKq ! 1, (1.76)

while a 10-dimensional observer measures a string tension µ0 (which corresponds

to a string energy scale similar to the 4-dimensional Planck scale). Another

possibility would be the existence of large compact dimensions. In this case the

4-dimensional Planck length can be much smaller than the string length, and,

consequently, the strings appear to the 4-dimensional observer to have smaller

tensions.

Finally, F- and D-strings can only play the a cosmological role of cosmic

strings if there is a way to suppress their natural decay mechanisms (the detais

depend on the particular model considered [70, 72]). However, in Refs. [73,

68, 2], the authors found that D-D inflation naturally leads to the formation of

stable cosmic superstrings with tensions within the range

10�12 ¤ Gµ ¤ 10�6, (1.77)

but mainly concentrated along Gµ � 10�7. This range is compatible with the

bound set by the observational CMB data (in Eq. (1.74)).

1.3.2 Cosmic Superstring Properties

Cosmic superstrings have distinct properties that demarcate them from or-

dinary cosmic strings. First of all, there are two types of cosmic superstrings,

F- and D-strings, that have similar properties but have different tensions
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µD � µF

gs
, (1.78)

where µD and µF are, respectively, the tensions of D- and F-strings and gs

is the dimensionless string coupling. Also, superstrings might have a smaller

reconnection probability. It has been shown in Ref. [74] that in the case of

F-strings, the reconnection probability is of the order of g2s , and, consequently,

it can be significantly smaller than unity. More recently, it was shown in Ref.

[75] that the reconnection probability, P , is within the range 0.1 À P À 1 for

D-D collisions, and 10�3 À P À 1 for the case of F-F string crossings.

These distinctive features of cosmic superstrings are expected to have some

influence on the evolution of cosmic superstring networks. Ordinary cosmic

string networks evolve towards a linear scaling regime, during which its en-

ergy density remains constant relative to the (matter) background density. The

attainment of this regime guarantees that cosmic strings do not become patho-

logical: their energy density never overcomes the background density and, thus,

they cannot dominate the universe. Note that, as a result of cosmic string in-

teractions, the network loses energy due to the formation of cosmic string loops,

and this energy loss is beneficial for the attainment of the linear scaling regime.

In the case of cosmic superstring networks, given that the reconnection proba-

bility might be smaller than unity, this energy loss mechanism is expected to be

less efficient. Consequently, the density of (long) strings is expected to increase.

As a matter of fact, it has been shown in Ref. [76], using numerical simulations

of Nambu-Goto string networks, that if P ¤ 0.1, then ρst 9 P�α, with α � 0.6

(whereas for P ¥ 0.1 little enhancement of cosmic string density was observed).

The most significant difference between superstrings and ordinary strings,

however, is a consequence of the crossings of superstrings of different types.

In this case, strings are unable to intercommute or pass through each other.

Instead, if a pF-string and a qD-string collide, they bind together, giving rise to

a new type of string, usually denoted as (p, q)-string. The tension of this bound

state is different, in general, from that of the colliding strings, and it is given by

µpp, qq � µF

d
p2 � q2

g2s
. (1.79)

Cosmic superstring crossings may result then in the formation of a trilinear

vertices (or Y-type junctions) where 3 different types of strings meet. This

process, occurring recursively, may lead to the formation of several types of

cosmic superstrings with different tensions. As a matter of fact, when a (p, q)-

string meets a (p1, q1) string, there are two possible outcomes: either a (p�p1, q�
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q1)-string or a (p�p1, q� q)-string is formed. The outcome of the intersection is

determined by the angle between the strings at the moment of collision [70, 75].

Another important point is that these bound states are only stable if q and p

are co-prime. If they have a common factor, so that p � np2 and q � nq2

(for any natural number n), the resulting (p, q)-string will rapidly decay into n

(p2, q2)-strings8.

Therefore, the creation of (p, q) bound states is expected to lead to the for-

mation of entangled networks with multi-tension spectra, where different types

of strings meets at Y-type junctions. Whether or not the presence of junctions

prevents string networks from attaining a scaling regime is still an open ques-

tion. However, both analytical models [77, 78, 79], and numerical simulations

of non-abelian field-theory networks [80, 81, 82, 83] seem to indicate that F-, D-

and (p, q)-strings reach a linear scaling regime.

The realization that inflation might lead to the formation of cosmic string

and p-brane networks evolving in higher dimensional spacetime, triggered a

revival of the interest in topological defects in cosmology. This interest was

enhanced due to the possibility of detecting the signatures of cosmic strings

and/or cosmic superstrings on the B-mode polarization [84, 85] and on the

small scale anisotropies [86, 87, 88] of the Cosmic Microwave background with

the Planck mission, and the possibility of detecting their gravitational waves in

LIGO2 and LISA missions (depending on their tension) [89].

In this thesis we study the cosmological evolution of p-brane networks in

N � 1-dimensional FRW universes. In order to so, we start by deriving, in

Chapter 2, a equation of motion for thin curved domain walls in higher dimen-

sional backgrounds, which is independent of the underlying field theory model.

This result is then generalized to the case of infinitely-thin p-branes of arbitrary

dimensionality. We also study in detail maximally symmetric p-brane solutions

in collapsing and expanding backgrounds, by determining the microscopic evo-

lution equations for their velocity and physical radius.

In Chapter 3, we develop an analytical model that describes the cosmological

evolution of the root-mean-square velocity and the characteristic length of a

p-brane network. This model describes the whole cosmological evolution of p-

brane networks in expanding and collapsing models, and allows us to study

the different scaling regimes that arise in their evolution. In particular, we

will study the conditions under which p-brane networks evolve towards a linear

scaling regime, with or without energy-loss mechanisms.

8The reconnection probability for collisions of two (p, q)-strings of the same kind might
also be significantly smaller than unity [75].
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2

p-brane Equation of Motion

The inflationary paradigm [55, 56], based on the idea that the universe un-

derwent a period of accelerated expansion in its early history, provides the most

plausible solution to the main shortcomings of the Standard Cosmological Model

— the flatness, horizon and magnetic monopole problems — and explains the

origin of the large-scale structure of the universe. In the context of the brane-

world realization of string theory, cosmological inflation could be driven by the

interaction between p-dimensional D-branes, which are (along with superstrings)

the fundamental objects of this theory [61]-[65]. These brane inflationary scenar-

ios typically end with a symmetry breaking phase transition, triggering the pro-

duction of daughter branes with lower dimensionality, that appear as topological

defects to the 4-dimensional observer. Despite the fact that, in this process, the

production of 1-branes (cosmic strings) is strongly favoured, higher-dimensional

p-branes may also be generated at a detectable level [69, 2]. Therefore, inflation

may offer a natural mechanism for the formation of p-brane networks evolving

in a higher-dimensional spacetime.

In this chapter, we will study the dynamics of p-branes of arbitrary dimen-

sionality in N � 1-dimensional FRW universes. We will start by deriving, in

Sec. 2.1, the equations of motion for N � 1-branes (or domain walls) in N � 1-

dimensional backgrounds. In Sec. 2.2, we will generalize this result for p-branes

with p � N � 1. Finally, in Sec. 2.3, we will study in detail the evolution

of maximally symmetric closed p-branes, in N � 1-dimensional expanding and

31
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collapsing FRW universes.

2.1 DOMAIN WALL DYNAMICS

In this section, we will derive the evolution equation for the velocity of do-

main walls in homogeneous and isotropic universes of arbitrary dimensionality,

and we will demonstrate that this equation is independent of the underlying

field theory model. This work was published in Ref. [13].

Consider the Goldstone model with a single real scalar field, φ, described by

the lagrangian density

L � 1

2
φ,µφ

,µ � V pφq , (2.1)

where V pφq is the potential. Domain walls are expected to arise in models with

spontaneously broken discrete symmetries. Therefore, in order for this theory to

admit domain wall solutions, the potential must have a discrete set of degenerate

minima. The dynamics of these domain walls is determined by the underlying

field theory. By varying the action,

S �
»
dNx

?�gL , (2.2)

with respect to the scalar field φ, we obtain the following equation of motion:

1?�g
�?�g φ,µ

�
,µ
� �dV

dφ
, (2.3)

where g � detpgµνq and gµν is the metric tensor. In a N � 1-dimensional flat

Friedmann-Robertson-Walker universe (FRW), whose line element is

ds2 � �dt2 � a2ptq dx � dx , (2.4)

we find that

B2φ
Bt2 �NH

Bφ
Bt �∇2

cφ � �dV

dφ
, (2.5)

where ∇2
cφ � a�2∇2φ is the comoving laplacian.

In a 3+1-dimensional Minkowski spacetime (with a � 1), a planar domain

wall static solution oriented along the x-direction is described by φ � φsplq,
with
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d2φs

dl2
� dV

dφ
, (2.6)

where l � x and we took x � px1, x2, x3q and x � x1. By Lorentz invariance,

this static solution may be boosted up to arbitrary velocities along the (positive)

x-direction. In this case, the planar domain wall solution to Eq. (2.5) is still

given by φsplq and satisfies Eq.(2.6), but now

l � γ px� vtq , (2.7)

where v is the domain wall velocity and γ � p1� v2q�1{2 is the Lorentz factor.

In this case, Bl{Bt � �γv and Bl{Bx � γ.

Consider the more general case of a curved domain wall in a flat FRW

Universe. Let us assume that the curvature radii of the domain wall are much

larger than its thickness. As a consequence, we expect the scalar field φ to vary

quickly in directions orthogonal to the wall and to vary slowly in the tangential

directions [90]. It is convenient to choose a coordinate system pu1, u2, u3q such
that the wall is, at a given point, a coordinate surface satisfying the condition

u1 � constant. The coordinate u1 is then chosen to be a length parameter along

the unit (geodesic) normal to the surface at that particular point, û1 (which

is then normal to all u1 coordinate surfaces). The domain wall is then locally

parametrized by the coordinates u2 and u3, and it moves along the u1-direction.

Moreover, it is also useful to choose an orthogonal coordinate system in which

the coordinate lines u2 � constant and u3 � constant are lines of curvature.

In this case, the principal directions of curvature — along which the normal

curvature of the surface takes its extremal values — coincide with the u2 and

u3-directions and the normal curvatures along these directions are the principal

curvatures of the surface. It is always possible to construct such a coordinate

system in the vicinity of any non-umbilic point — in which the two principal

curvatures exist and are not equal — of a coordinate surface embedded in a flat

space (see e. g. [91, 92]). Note that this set of coordinates is defined locally

in the vicinity of the core of the domain wall. According to Refs. [93, 94], the

range of validity of u1 is, roughly speaking, constrained by the smaller curvature

radius of the domain wall in its local rest frame.

Let v be the velocity of the domain wall segment at the chosen point. The

domain wall solution is still given by φsplq, but in this case l is such that

Bl
Bt � �γv, Bl

Bs1 � γ , and
Bl
Bs2 �

Bl
Bs3 � 0 , (2.8)
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where dsi � |dxi| is the arc length along direction ui, dxi � hiduiûi, ûi is

the unit vector along the direction ui, and hi are the scale factor (or Lamé

coefficients) of the coordinate system. We shall use the gauge freedom to choose

the coordinate u1 in such a way that measures the arclength along the direction

perpendicular to the domain wall, so that h1 � 1 and ds1 � du1.

Therefore, we have that

Bφ
Bt � �dφs

dl
γv,

Bφ
Bs1 �

dφs

dl
γ ,

B2φ
Bs21

� γ2 d
2φs

dl2
(2.9)

B2φ
Bt2 � pγvq2 d

2φs

dl2
� B
Bt pγvq

dφs

dl
(2.10)

Taking into account that, in the thin-wall approximation, φ � φpt, u1q, the
laplacian is given by

∇2φ � 1

h1h2h3

� B
Bu1

�
h2h3

h1

Bφ
Bu1


�
�
��

1

h2

Bh2

Bu1
� 1

h3

Bh3

Bu1


 Bφ
Bu1

� B2φ
Bu2

1

�
.

(2.11)

The first term in the Laplacian is a curvature term. The curvature vector of

a curve parameterized by p is given by:

kp � dêp
dsp

, (2.12)

where êp is the unitary vector tangent to the curve and dsp is the arclength.

The principal curvatures of the surface are, at any point, given by the normal

curvature along its lines of curvature. The principal curvatures are then given

by

k2 � k2 � û1 , and k3 � k3 � û1 , (2.13)

where

k2 � 1

h2

�Bû2

Bu2

�
u3�u0

3

, (2.14)

k3 � 1

h3

�Bû3

Bu3

�
u2�u0

2

, (2.15)

and u0
3 and u0

2 are constants.

The vectors û1, û2 and û3 form an orthonormal but, in general, a non-

coordinate basis. Their derivatives can be calculated using the relation
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Bûi

Buj
� 1

hi

Bhj

Bui
ûj �

¸
k

1

hk

Bhi

Buk
ûk , (2.16)

and, hence

k2 � � 1

h2

Bh2

Bu1
, k3 � � 1

h3

Bh3

Bu1
. (2.17)

The relevant curvature for domain wall dynamics is the extrinsic curvature:

the “bending” of the wall in relation to the flat embedding universe. Mathe-

matically this is measured the curvature parameter

κ � k2 � û1 � k3 � û1 � �
�

1

h2

Bh2

Bu1
� 1

h3

Bh3

Bu1



. (2.18)

Therefore, Eq. (2.11) can be written as1

∇2φ � �κ BφBu1
� B2φ
Bu2

1

, (2.19)

which inserted into Eq. (2.5) (and taking into account Eqs. (2.9-2.10)) yields

�d2φs

dl2
� F dφs

dl
� � dV

dφs
, (2.20)

where

F � � BBt pγvq � 3Hγv � κγ . (2.21)

However, given that φs is a solution to Eq. (2.6), we should have that F � 0.

Therefore, we find that the evolution equation for the velocity of a domain wall

in a p3� 1q-dimensional background is given by

Bv
Bt � p1� v2q r3Hv � κs � 0 . (2.22)

It is straightforward to generalize this procedure to the case of N � 1-

dimensional FRW Universes. In this case, domain walls are defects with N � 1

spatial dimensions whose dynamics is described by

Bv
Bt � p1� v2q rNHv � κs � 0 , (2.23)

where

1In Refs. [95, 90, 96, 93, 94], higher order thickness and curvature corrections to this
expression are obtained.
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κ � û1 �
Ņ

i�2

ki , (2.24)

and

ki � �
¸
j�i

1

hi

Bhi

Buj
ûj , (2.25)

are, respectively, the curvature parameter and the curvature vectors associated

with the N � 1 coordinate curves of the domain. Here, we chose an auxiliary

coordinate system pu1, � � � , uN q such that the brane moves in the u1 direction

and u2, � � � , uN are parameters whose coordinate curves coincide with the lines

of curvature. Note that, in general, the extrinsic curvature and velocity vary

along the domain wall, and, therefore, Eq. (2.23) is valid at each point on the

surface.

2.1.1 Generic Domain Wall Models

In this subsection, we show that Eq. (2.23) describes the dynamics of

generic thin domain walls independently of the lagrangian density, L pφ,Xq,
of the model (where X represents the kinetic term). We will follow closely

the derivation presented in Ref. [8], where the validity of Eq. (2.23) has been

demonstrated for planar domain walls. Varying the action in Eq. (2.2) with

respect to φ, one obtains

1?�g
�?�gL,X φ,µ

�
,µ
� L,φ , (2.26)

where L,X � BL
BX and L,φ � BL

Bφ .

Assuming a N � 1-dimensional FRW metric, this equation yields

B
Bt
�
L,X

Bφ
Bt


�NHL,X

Bφ
Bt �∇L,X �∇φ� L,X∇2φ � L,φ . (2.27)

In Minkowski spacetime, a planar static domain wall solution oriented along

the x direction will be given by φ � φsplq with

� d

dl

�
L,X

dφs

dl



� L,φ . (2.28)

with l � x.

Now, consider the coordinate system pu1, � � � , uN q (as described in Sec. 2.1)
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and suppose that the domain wall is moving along the direction u1 with velocity

v. Taking into account that

∇L,X �∇φ � BL
Bu1

Bφ
Bu1

, (2.29)

as well as Eqs. (2.8)-(2.10) and (2.19), the equation of motion yields

� d

dl

�
L,X

dφs

dl



� FL,X

dφs

dl
� L,φ . (2.30)

Again, since φsplq must be a solution Eq. (2.28), we should have F � 0 and,

consequently, Eq. (2.23) remains valid, independently of the form of the kinetic

term. Furthermore, although we only considered models with a single real scalar

field, it is straightforward to verify that Eq. (2.23) describes the correct thin

domain wall dynamics in the context of generic models with various scalar fields.

In this case, we would have an expression of the same for as Eq. (2.27) for each

of the scalar fields and, consequently, we would still recover the same equation

of motion for the domain walls.

2.1.2 Application: The PRS algorithm

By changing the time coordinate in Eq. (2.5) to the conformal time we find

:φ� pN � 1qH 9φ�∇2φ � �a2 dV
dφ

, (2.31)

where dots represent partial derivatives with respect to conformal time, η.

Domain walls have a constant physical thickness, and consequently their

comoving thickness decreases as a�1. In cosmological numerical studies of do-

main walls, this rapid decrease poses a serious problem: the comoving thickness

becomes rapidly smaller than the grid-size resolution of the simulations, and

therefore it is only possible to resolve the walls during a small fraction of the

dynamical range.

In Ref. [97], it is argued that the dynamics of domain walls is unaffected

by its thickness, in 3� 1-dimensional universes. The authors then proposed the

following modification to Eq. (2.31):

:φ� αH 9φ�∇2φ � �aβ dV
dφ

, (2.32)

where α and β are constant parameters. They also argue that this modification

preserves the dynamics of domain walls as long as the parameters satisfy
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α� β

2
� 3 . (2.33)

If one sets β � 0 (and thus α � 3), the comoving thickness is set to a con-

stant by fiat, and therefore the difficulty in resolving the domain walls through-

out the full dynamical range is overcome. This modification, implemented in

most field-theory simulations of cosmological domain wall evolution, is known

as Press-Ryden-Spergel (PRS) algorithm. Although the claim that the dynam-

ics of domain walls is unaffected if the parameters of the algorithm satisfy Eq.

(2.33) is strongly supported by numerical tests, it has never been demonstrated

that the same dynamics is recovered from both Eq. (2.31) and Eq. (2.32). The

procedure described in Sec. 2.1 can be used to prove the validity of the PRS

algorithm. Changing the spacetime coordinates in Eq. (2.32) to a new set of

coordinates pξ,yq, defined as

B
Bξ � 1

aβ{2
B
Bη , (2.34)

y � aβ{2x , (2.35)

one obtains

B2φ
Bξ2 �

�
α� β

2



H
Bφ
Bξ �∇2

yφ �
dV

dφ
, (2.36)

where ∇2
y � a�β∇2

x and H � a�β{2H.

In Minkowski space, a static domain wall solutiondescribed by Eq. (2.36)

is given by φ � φsplq and satisfies Eq. (2.6), but in this case l � y (we take

y � py1, ..., yN q and y1 � y). If we now consider the case of a curved domain wall

in a N�1-dimensional Universe, it is useful to choose a set of spatial coordinates

pu1, � � � , uN q as described in Sec. 2.1: the wall is given by u1 � constant, and the

coordinate lines on the surface coincide with the principal directions of curvature

(note that, in this case, the coordinates are scaled by a factor of aβ{2). In this

case, the domain wall solution will still be of the form φ � φsplq, but now

l � γpu1 � vξq.
If we proceed as described in Sec. 2.1, Eq. (2.36) may be written in the

form of Eq. (2.20), but in this case we have that

F � � B
Bξ pγvq �

�
α� β

2



Hγv � κcγ , (2.37)

where κc is the comoving extrinsic curvature of the domain wall, defined as
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κc � aβ{2û1 �
Ņ

i�2

ki , (2.38)

and ki is given by Eq. (2.25). The factor aβ{2 in this definition stems from the

fact that, in this case, dsi is not comoving length along the direction ui since

the space coordinates have been scaled by a factor of a�β{2.

Again, taking into account Eq. (2.6), we should have that F � 0. If we

change back to the physical coordinates, we finally find that

Bv
Bt � p1� v2q

��
α� β

2



Hv � κ

�
� 0 . (2.39)

Hence, if the modified equations are to yield the correct domain wall dynamics,

Eqs. (2.23) and (2.39) should be identical, or equivalently, we should have that

α� β

2
� N , (2.40)

which proves the claim (2.33), and generalizes it to FRW backgrounds with

an arbitrary number of spatial dimensions. One may then conclude that the

dynamics of thin domain walls is unaffected by the implementation of the PRS

algorithm.

2.2 P -BRANE DYNAMICS

The equation of a p-brane may be derived from the underlying field theory,

and it is then determined by an action of the form of Eq. (2.2). However, in most

situations of interest in cosmology, the thickness of p-branes is negligible when

compared to its curvature radii. Assuming that the p-branes are featureless,

their properties do not change along their surface. In this case, the velocity of

the brane is purely orthogonal to it. A infinitely thin and featureless p-brane

sweeps, while moving in spacetime, an effectively p�1-dimensional surface (the

worldsheet). The world history of the p-brane may then be represent by

xµ � xµpuν̃q , (2.41)

where uν̃ with ν̃ � 0, 1, � � � , p are the parameters of the surface, u0 is a timelike

parameter, and uĩ are spacelike parameters. These parameters may be regarded,

at least locally, as coordinates on the worldsheet. The spacetime interval be-

tween two events on the worldsheet is

ds2 � gαβx
α
,µ̃x

β
,ν̃du

µ̃duν̃ , (2.42)
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and, therefore, the induced metric of the p� 1-dimensional worldsheet (or pull-

back metric) is given by

g̃µ̃ν̃ � gαβx
α
,µ̃x

β
,ν̃ . (2.43)

In analogy to the case of a point-particle, the action of an infinitely thin

and featureless p-brane should be a functional of the worldvolume. In the case

of a particle, which sweeps a 2-dimensional worldline in spacetime, the action

is proportional to the proper length along the worldline. It is then natural to

expect the action of an infinitely thin and featureless p-brane to be proportional

to the “proper” p-dimensional area of the worldvolume:

S � �σp

»
dp�1u

a
�g̃ , (2.44)

where σp is the p-brane mass per unit p-dimensional area. This action is invari-

ant under reparametrizations of the worldsheet and it is a generalization of the

Nambu-Goto action for cosmic strings to p-branes of arbitrary dimensionality.

As a matter of fact, in the vicinity of an infinitely thin p-brane, the line

element can be written as [98]

ds2 � g̃µ̃ν̃dx
µ̃dxν̃ � dr � dr , (2.45)

where pdr � drq1{2 is the infinitesimal distance to the brane’s (p-dimensional)

core. Therefore, the volume element is given by

dN�1x �
a
|g̃|dp�1udN�px . (2.46)

Since we are assuming that the p-brane is thin and featureless, the lagrangian

density may only vary along the perpendicular directions and, as consequence,

it depends only on the xp�1, � � � , xN coordinates. Integrating the action in Eq.

(2.2) with respect to these coordinates, one obtains the Nambu-Goto action for

infinitely thin p-branes in Eq. (2.44), with

σp � �
»
dN�pxL . (2.47)

2.2.1 Equation of motion p-Branes

In this section, we will use the procedure described in Sec. 2.1 to derive the

equations of motion for p-branes of arbitrary dimensionality inN�1-dimensional

FRW universes. This work has been published in [15]. If we have prior knowl-
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edge of the motion described by the brane during its evolution — or equivalently

if the shape of the worldsheet is known — we can, in principle, define a real

scalar field multiplet, φe, in the worldvolume. These fields have some interesting

properties:

• The initial conditions may be set up in such a way that these scalar fields

define a new p-brane whose velocity coincides with the velocity of the

original brane. The dynamics of this new p-brane is then described by the

same equation of motion.

• Since the fields φe were defined on the world-volume of the original p-

brane, the energy of the new p-brane is localized.

• This p-brane might be treated as a n � 1 brane (a domain wall) in the

n�1 dimensional space swept by the p-brane throughout its motion (with

n � p� 1), since the brane divides this space in two domains.

The dynamics of the scalar field multiplet, φe, is defined by the lagrangian

density

L � X � V pφeq , (2.48)

where X � �φe
,µ̃ φ

e,µ̃{2, and V pφeq is the potential (on the remainder of this

subsection we shall omit the index e). The potential, V , needs to have, at least,

two degenerate minima in order to admit p-brane solutions, and they can be

made arbitrarily thin by appropriate tuning. Note that the dynamics of the p-

brane is independent of the specific model we choose to describe it, as discussed

in Sec. 2.1.1.

By varying the action

S �
»
L
a
�g̃dn�1u, (2.49)

with respect to φ, one finds the equation of motion

1?�g̃
�a

|g̃|φ,µ̃
	
,µ̃
� �V,φ . (2.50)

Notice that in Eqs. (2.49) and (2.50) (and on the remainder of this section), g̃

refers to the induced metric of the n� 1 dimensional space in which the brane

lives. In this case, it is still given by Eq. (2.43) but now µ̃ � 0, � � � , p� 12.

2In this subsection, greek and latin indices marked with a tilde take the values 0, � � � , p� 1
and 1, � � � , p� 1 respectively
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Note that this new p-brane is a planar wall in an intrinsically curved n� 1

dimensional space. So, in order to write down the equation of motion for φ, we

need to start by determining the metric induced by the N�1 dimensional FRW

background on this n � 1-dimensional space. One may identify the timelike

coordinate with the conformal time (u0 � η), so that g̃00 � �a2pηq. Moreover,

the velocity of the brane may be taken to be orthogonal to the brane itself and,

therefore, perpendicular to all spatial directions along the brane:

g̃0ĩ � g̃ĩ0 � 0, with ĩ � 1, ..., p� 1 . (2.51)

Consider a set of local spatial coordinates pu1, ..., up, up�1q such that the

brane is locally a coordinate surface for which up�1 is constant and it moves

along this direction. The spatial coordinates pu1, ..., upq may be chosen in such

a way that they form an orthogonal set which parametrizes the brane locally

and, for simplicity, whose coordinate lines coincide with the principal directions

of curvature of the surface.

In this coordinate system, the metric elements may be written as

g̃ĩj̃ �
$&
%
°n

k�1 a
2
�
xk
,̃i

	2
� a2h2

ĩ
, if ĩ � j̃ ,

0 , if j̃ � ĩ ,
(2.52)

so that

g̃ � �a2pp�2qh2
1...h

2
p�1 , (2.53)

where the scale factors of the coordinate system, hĩ �
���x,̃i

��� were introduced.

Eq. (2.50) then becomes

:φ� pH 9φ�∇2
uφ � �a2 dV

dφ
, (2.54)

with H � 9a{a and where

∇2
uφ �

�
p¹

j�1

hj

��1� B
Bup�1

�
Bφ

Bup�1

p¹
j�1

hj

��
, (2.55)

is the laplacian for this set of coordinates. Here, we considered the zero-thickness

limit, neglecting the variation of the scalar field φ on the directions tangent to

the brane [90] (Bφ{Bui � 0, for i � 1, ..., p). We have also taken hp�1 � 1, so

that dup�1 is the infinitesimal arc-length along the up�1 direction.

It is now possible to follow closely the procedure described in Sec. 2.1. The

only point that needs special attention is the laplacian. Note that there are
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N � p directions perpendicular to the brane, and there is no reason why the

velocity’s direction should coincide with the curvature normals. Therefore, when

we defined φe, we necessarily lost information about the normal acceleration of

the p-brane. Nevertheless, in order to write the equation of motion for the

evolution of v, one only needs the tangential acceleration of the p-brane.

If we apply directly the procedure in Sec. 2.1, we find

∇2φ � B2φ
Bu2

p�1

� Bφ
Bup�1

�
p̧

i�1

ki � v̂
�

, (2.56)

where ki is the curvature vector of the curve ui (defined as uj � constant,

for i � j and i, j � 1, � � � , p), and v̂ is the unitary vector along the velocity

direction. Since ki and v̂ are not necessarily parallel, we find that

ki‖ � ki � v̂ (2.57)

is the tangential component of the principal curvature along the direction ui,

and we can define the total tangential curvature as

κ‖ �
p̧

i�1

ki‖ , (2.58)

Given Eqs. (2.54) and (2.56-2.58), and using the method described in detail

in Sec. 2.1, one obtains the equation of motion for the velocity of a p-brane in

N � 1-dimensional FRW universes

9v � �1� v2
� �pp� 1qHv � κ‖

� � 0 . (2.59)

2.2.2 A simple test: Cosmic Strings

The world-history of an infinitely thin cosmic string in a flat FRW universe

can be represent by a two dimensional worldsheet, xµpu0, u1q, obeying the usual

Nambu-Goto action

S � �µ
» a

�g̃ d2u . (2.60)

By varying the action in Eq. (2.60) with respect to xµ, and using the Jacobi

identity,

dg̃ � g̃g̃µ̃ν̃dg̃µ̃ν̃ , (2.61)

we obtain the following equation of motion
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xµ
,ν̃

;ν̃ � Γµ
βλg̃

µ̃ν̃xβ
,ν̃x

λ
,ν̃ � 0 , (2.62)

with

xµ
,ν̃

;ν̃ � 1?�g̃
�a

�g̃g̃µ̃ν̃xµ
,ν̃

	
,µ̃

. (2.63)

Since the action in Eq. (2.60) is invariant under worldsheet reparametriza-

tions, we have gauge freedom to impose some gauge conditions. In a flat FRW

background, it is common to choose the temporal-transverse gauge conditions

u0 � η and 9x � x1 � 0 , (2.64)

where xpη, uq is the 3-vector representing the string trajectory, u � u1 and

where dots and primes are the derivatives with respect to η and u, respectively.

In this gauge, 9x is perpendicular to the string’s tangent, and it represents the

observable velocity. We can thus, define, at any given point,

9x � vv̂ , and x1 � ��x1�� û , (2.65)

where | 9x| � vpη, uq is the velocity of the string and v̂ and û are local unitary

vectors with the direction of the velocity and the string tangent at that partic-

ular point, respectively.

In this gauge, the equations of motion in Eq. (2.62) may be written as [99]:

:x� 2H
�
1� 9x2

�
9x � ε�1

�
ε�1 x1

�1
(2.66)

9ε � �2Hε 9x2 , (2.67)

with

ε �
�

x12

1� 9x2


 1
2

. (2.68)

Using the definitions in Eq. (2.65), the left-hand side of Eq. (2.66) yields

:x� 2H
�
1� 9x2

�
9x � 9vv̂ � v 9v̂ � 2H

�
1� v2

�
vv̂ . (2.69)

Notice that 9v̂ must necessarily be perpendicular to v̂. Moreover, the right-hand

side yields of Eq. (2.66)
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ε�1
�
ε�1x1

�1 � 1

γ

B
Bl
�
û

γ



�
�

1

γ2
k� v

Bv
Bl û



, (2.70)

where we have taken into account that ε � γ |x1|, with γ � p1� v2q�1{2. More-

over, we have used the definition of curvature vector,

k � Bû
Bs , (2.71)

where ds � |dx| � |x1| du is the physical length along the string. Note that k

is perpendicular to û, and that v̂ does not necessarily coincide with the prin-

cipal curvature normal. Consequently, one may define the tangential curvature

component as

κ‖ � k � v̂ . (2.72)

The component of Eq. (2.66) parallel to v̂, then yields

9v � p1� v2q �2Hv � κ‖
� � 0 , (2.73)

which is equivalent to Eq. (2.23) in the particular case p � 1.

2.2.3 Tangential and Normal Acceleration of Nambu-Goto p-Branes

In this section, we derive the evolution equation for the velocity of featureless

infinitely-thin p-branes directly from the Nambu-Goto action. This computation

fully validates the results obtained using field theory equations in the thin-brane

limit (Subsec. 2.2.1), and allows us to obtain the normal acceleration of the p-

brane. This work was published in Ref. [16].

By varying the Nambu-goto action in Eq. (2.44) with respect to xµ, one

obtains an equation of motion of the same form of Eq. (2.62). Let us choose a

local set of orthogonal coordinate system pu1, � � � , uN q, at a given point on the

brane’s surface, such that uĩ parameterize the p-brane locally and up�1, � � � , uN

are perpendicular to it. For simplicity, we shall also assume the uĩ coordinate

lines are lines of curvature. As in the case of cosmic strings, in a flat N � 1-

dimensional FRW universe, it is convenient to impose temporal-tranverse gauge

conditions

u0 � η , and 9x � x,̃i � 0 , (2.74)

where x represents the spatial profile of the p-branes in cartesian coordinates,

and we defined ,̃i � B{Buĩ.
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Given this choice of gauge, 9x represents the physical velocity, which is per-

pendicular to the p-brane itself. In a FRW background, Eq. (2.62) then yields

:x � pp� 1qHp1� 9x2q 9x � εp
�1

p̧

i�1

�
x,̃i

εp
Πj̃�ĩpx,j̃q2

�
,̃i

, (2.75)

9εp � �pp� 1qHεp 9x2 , (2.76)

where

εp �
� px,1q2 � � � px,pq2

1� 9x2


 1
2

. (2.77)

Let êi be a set of unitary vectors with the directions of the axis of the

pu1, � � � , uN q coordinate system. These vectors form an orthonormal basis, and

their derivatives satisfy Eq. (2.16). Note that, for i � 1, � � � , p:

êĩ �
x,̃i���x,̃i

��� . (2.78)

Note also that,
���x,̃i

��� coincide with the scale factors of the coordinate system, hĩ.

Moreover, given the choice of gauge, we can define a unitary vector with the

direction of the p-brane’s velocity:

v̂ � 9x

v
. (2.79)

This vector is perpendicular to all êĩ, however it is a linear combination of the

êp�1, � � � , êN vector.

By differentiating Eq. (2.75) with respect to conformal time, we find

aĩ � p:x � êĩq êĩ � � v���x,̃i

���v,̃iêĩ , (2.80)

and, consequently, there is a component of the acceleration parallel to the p-

brane given by

:x� �
p̧

i�1

aĩ . (2.81)

The right-hand side of Eq. (2.75) yields
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εp
�1

p̧

ĩ�1

�
x,̃i

εp
Πj̃�j̃px,j̃q2

�
,̃i

� 1

γ2

p̧

ĩ�1

�
��¸

j̃�ĩ

���x,j̃

���
,̃i���x,̃i

��� ���x,j̃

��� êĩ �
Bêĩ
Bsĩ

� γ
B
Bsĩ

�
1

γ



êĩ

�
�� ,

(2.82)

where we introduced the physical length along the ĩ direction, dsĩ �
���x,̃i

��� duĩ.

Note the curvature vector along the direction ĩ,

kĩ �
Bêĩ
Bsĩ

, (2.83)

may be written as

Bêĩ
Bsĩ

� �
¸
j̃�ĩ

���x,̃i

���
,j̃���x,̃i

��� ���x,j̃

��� êj̃ � kN
ĩ
, (2.84)

where we have separated the geodesic curvature (the components of the curva-

ture which are parallel to the brane) from the normal curvature along ĩ direction,

kN
ĩ
. Eq. (2.82) may then be written as

1

γ2

p̧

ĩ�1

�
��¸

j̃�ĩ

�
��

���x,j̃

���
,̃i���x,̃i

��� ���x,j̃

��� êĩ �
¸
j̃�ĩ

���x,̃i

���
,j̃���x,̃i

��� ���x,j̃

��� êj̃
�
�
� kN

ĩ
� γ

B
Bsĩ

�
1

γ



êĩ

�
�� . (2.85)

Note that the first term in Eq. (2.85) is anti-symmetric with respect to

changes of the form ĩ Ø j̃. Therefore, when considering all possible values of

these indices, this sum cancels out.

Therefore, using Eq. (2.75) one finds that

:x� :x� � �pp� 1qHp1� v2qvv̂ � 1

γ2

p̧

ĩ�1

kN
ĩ
, (2.86)

where we used the fact that

1

γ2

B
Bsĩ

�
1

γ



êĩ � aĩ . (2.87)

Using Eq. (2.86), taking into account that :x � 9vv̂ � v 9v̂ and that 9v̂ is perpen-

dicular to v̂, one finds that the tangential acceleration (parallel to the velocity)

is given by
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aT � :x‖ � p:x � v̂q v̂ � v̂p1� v2q
�

p̧

ĩ�1

kĩ‖ � pp� 1qHv

�
, (2.88)

where we defined the tangential curvature as the projection of the comoving

curvature vectors along the velocity direction

k ĩ‖ � kN
ĩ
� v̂ . (2.89)

This tangential acceleration allows us to obtain an evolution equation for the

velocity of the p-brane:

9v � �1� v2
� �pp� 1qHv � κ‖

� � 0 , (2.90)

where the total tangential curvature,

κ‖ �
p̧

ĩ�1

kĩ‖ , (2.91)

was introduced. This equation is identical to that obtained from field theory

equations in Sec. 2.2.1 .

The acceleration along the perpendicular direction êl is given by

al � p:x � êlq êl � êlp1� v2q
p̧

ĩ�1

kN
ĩ
� êl � êlp1� v2qκKl , (2.92)

for l � p � 1, � � � , N . Here we have introduced the total comoving curvature

along the perpendicular direction l,

κKl �
¸
ĩ

kN
ĩ
� êl . (2.93)

Therefore, the total perpendicular acceleration —which is simultaneously per-

pendicular to the velocity of the brane and the brane itself — is given by

:xK � p1� v2q
Ņ

l�p�2

êlκKl � :x‖ , (2.94)

with :x � :x� � :x‖ � :xK. The total normal acceleration of the brane is, then,

given by

aN � :xK � :x� . (2.95)
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2.3 P -BRANE LOOP SOLUTIONS

In this section we study the dynamics of closed maximally symmetric p-brane

solutions — which, for simplicity, we will denominate p-brane loops (in analogy

to the case of cosmic strings). The formation of p-brane loops may, as in the case

of cosmic strings, result from brane interaction during the cosmological evolution

of a p-brane network. The evolution of circular cosmic string loops and spherical

domain walls in a flat FRW universe has previously been studied in [100] (see

also [101]), where the existence of periodic solutions in a de Sitter universe has

been demonstrated. Cosmic strings and other defects can be formed during an

inflationary era or, if various stages of inflation occur, they may be formed in

between. It is thus crucial to understand their evolution in these regimes in

order to quantify their ability to survive any inflationary period which might

occur after they are formed [102, 103]. We will, then, generalize the results in

Ref. [100] by explicitly computing the phase space trajectories and determining

the critical radius for spherical p-branes in space-times with an arbitrary number

of dimensions. We also study in detail the more general evolution of maximally

symmetric p-branes with a Sp�ibRi topology in expanding and collapsing FRW

universes. This work was published in [11].

2.3.1 Equations of Motion for Maximally Symmetric p-Branes

In a N � 1-dimensional Minkowski spacetime, the trajectory of a p-brane

with spherical symmetry may be written, in hyperspherical coordinates, as

xpt, θ1, � � � , θp�1q � qptq pcos θ1, sin θ1 cos θ2, sin θ1 sin θ2 cos θ3, � � �
� � � , sin θ1... sin θp�2 cos θp�1, sin θ1... sin θp�1, 0, � � � , 0q , (2.96)

where θ1, � � � , θp�2 P r0, πr and θp�1 P r0, 2πr and, for simplicity, the coordi-

nate system was chosen in order for the defect to be aligned with the first

p-dimensions.

The area of a p-dimensional spherically symmetric p-brane is given by

Sp � pp� 1qCp�1 |q|p , (2.97)

where |q| is the physical radius and

Cj � πj{2

Γ
�
j
2 � 1

� . (2.98)
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The energy of the p-brane is, proportional to Spγ. It then follows from

energy conservation that

dv

dt
� p1� v2q

�
pγ1{ps

R



, (2.99)

where s � signp�qq, and the invariant radius, proportional to the energy of the

p-brane,

R � |q| γ1{p , (2.100)

was introduced. Note that, it follows from energy conservation that

dR

dt
� 0 . (2.101)

This is no longer the case in FRW Universes, since in this case the energy of

the p-brane is no longer conserved: the expansion (or collapse) of the universe

decelerates (accelerates) the p-branes. Therefore, we need to include the usual

Hubble damping term in the equation of motion for v. Recall that the momen-

tum per comoving p-dimensional area is proportional to a�1, and therefore, in

a FRW universe, the velocity of a (planar) p-brane satisfies

vγ 9 ap�1 . (2.102)

The complete equation of motion for v is, then

dv

dt
� p1� v2q

�
pγ1{ps

R
� pp� 1qHv

�
, (2.103)

so that

dR

dt
� HR

�
1� p� 1

p
v2
�
, (2.104)

where the invariant radius is now defined as

R � γ1{p |r| , with r � aq . (2.105)

Now let us consider the case p-branes with a Sp�i b Ri topology (where

0 ¤ i ¤ p). In this case, the p-brane has a number i of dimensions with no

curvature and p � i directions with spherical symmetry. The area per unit of

i-dimensional area of the non curved dimensions of the defect is

Si
p � pp� i� 1qCp�i�1γ |q|p�i

, (2.106)
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and energy-momentum conservation leads to the following equations of motion

(which generalize Eqs. (2.103) and (2.104) ):

dv

dt
� p1� v2q

� pp� iqγ1{pp�iqs

R
� pp� 1qvH

�
, (2.107)

dR

dt
� HR

�
1� p� 1

p� i
v2
�
, (2.108)

where the invariant radius is now given by

R � |q| γ1{p�ia . (2.109)

Note that these equations are invariant with respect to the transformation

q Ñ �q and tÑ �t. This implies that the phase space trajectories in expanding

and collapsing universes related by the transformation H Ñ �H are identical.

However, the transformation t Ñ �t implies that the direction in which the

trajectory is travelled is reversed.

2.3.2 p-Brane Dynamics with H �constant

Eq. (2.108) may be rewritten as

dv

dt
� v �Hr . (2.110)

Let us consider the case of the de Sitter universe, whose Hubble parameter is

time independent. For the case of spherically symmetric p-branes (i � 0), it

is possible to determine the pr, vq trajectories in phase space. Integrating Eqs.

(2.107) and (2.110) we find that the orbits of these p-branes are of the form

γrpp1� vHrq � C , (2.111)

where C is constant.

The stationary solution of Eqs. (2.107) and (2.110), characterized by fixed

critical velocity, vc, (dv{dt � 0), and fixed physical radius, rc, (dr{dt � 0), is

given by

v2c � H2r2c �
p� i

p� 1
. (2.112)

This solution describes a p-brane standing still against Hubble expansion or

collapse. We are then able to find the value of C corresponding to this stationary

solution (denoted by Cc)
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Cc � 1

|H|p
pp{2

pp� 1qpp�1q{2
. (2.113)

Trajectories with C ¡ Cc will asymptote the line defined by

v � �pHrq�1 , when |r| Ñ 8 , (2.114)

and, therefore, in this limit, the p-brane loop freezes in comoving coordinates

(v Ñ 0). On the other hand, if C   Cc, we may have two types of trajectories:

if |r| ¡ rc, the trajectories would be of the same form as that with C ¡ Cc;
otherwise, if |r|   rc, the p-branes describe periodic trajectories in phase space.

This is clearly illustrated in Fig. 2.1, where the trajectories of a spherically

symmetric domain wall in a 3� 1-dimensional universe (with p � 2 and i � 0)

are represented. Trajectories with C   Cc are represented by solid lines and the

dashed lines represent trajectories with C ¡ Cc. Note that all the non-periodic

trajectories start at a critical point (represented by a yellow dot) defined by the

condition

v � �Hr � �1 , (2.115)

and end at (r � 8, v � 0). In a collapsing universe, the trajectories are travelled

in the inverse direction.

Notice also that the periodic trajectories are asymmetric. From Eq. (2.109),

we have that

v � �
c
1�

� r

R

	2pp�iq

. (2.116)

This expression, combined with Eq. (2.110), shows clearly why this asymmetry

between the collapse and the expansion of the p-brane loop occurs. If the uni-

verse is expanding then there is a damping term that contributes to decrease

|v|. On the other hand, the curvature term differentiates expansion and collapse

of the loop: curvature accelerates or decelerates the p-brane depending whether

it is collapsing or expanding. In the case of a collapsing universe, this asymme-

try is also verified: although, in this case, the Hubble term contributes to the

increase of |v|, the curvature also differentiates expansion, and collapse of the

loop.

We may compute a critical (initial) radius, r0c , corresponding to an initially

static p-brane solution (v0 � 0) with C � Cc (in an expanding universe, it will
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Figure 2.1: Representation of the trajectories in phase space of spherical domain
walls in a 3� 1-dimensional universe (p � 2, i � 0). The critical points marked
with a red dot represent the critical stationary solution defined in Eq. (2.112)
and the yellow dots correspond to the critical points defined by v � �Hr �
�1. The solid lines correspond to trajectories of spherical domain walls with
C   Cc. Those with |r|   rc, which correspond to domain walls with periodic
trajectories in phase space, are represented by the purple lines. The blue solid
lines correspond to trajectories with C   Cc and |r| ¡ rc. The dashed lines
correspond to trajectories with C ¡ Cc which start at the critical point defined
by Eq. (2.115) and end at (r � 8, v � 0)

asymptote to the stationary solution when tÑ8). This critical radius is given

by

r0c �
1

|H|
p1{2

pp� 1qpp�1q{p2pq
. (2.117)

In the case of circular cosmic string loops (p � 1) and spherical domain

walls (p � 2), we find that the initial critical radii are r0c � |H|�1 {2 and

r0c � 21{23�3{4 |H|�1
respectively. We recover the initial critical radius for a

cosmic string loop found in Ref. [100], however for a spherical domain wall it

is slightly smaller (by about 10%) than the approximate solution given therein.

For larger initially static spherically symmetric p-branes with an initial physical

radius, r0, such that
��r0�� ¡ r0c , the motion is not periodic and, if H ¡ 0, the

brane eventually freezes in comoving coordinates. Specifically, the p-brane will

asymptotically behave as
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q � constant , so that R 9 a, , and v 9 a�1 . (2.118)

If H   0, all solutions with
��r0�� ¡ r0c will asymptote the critical point defined

in Eq. (2.115) when tÑ8.

The periodic solutions, with
��r0��   r0c , satisfy〈
dplnRq

dt

〉
� 0 , (2.119)

and, consequently, it follows from Eq. (2.107) (with i � 0) that the velocity is

such that

〈
v2
〉 � p

p� 1
, (2.120)

where the brackets denote a time average over one period.

If i � 0, these periodic solutions no longer exist. This can easily be seen in

the R |H| ! 1 limit. In this limit, the Hubble damping term has a very small

impact on the dynamics of the p-brane on timescales of approximately R, and,

consequently, the dynamics of the p-brane is quasi periodic. Hence, from Eq.

(2.107), we see that the evolution of the velocity is essentially the same for all

branes with the same value of p� i. As a matter of fact, we find that

〈
v2
〉 � p� i

p� i� 1
, (2.121)

which depends only on the number of dimensions with spherical symmetry. We

may write Eq. (2.108) as

dR

dt
� HR

�
1� p� i� 1

p� i
v2 � i

p� i
v2
�
. (2.122)

Averaging this equation over one quasi period one obtains

d 〈R〉
dt

� H 〈R〉
�
1� p� i� 1

p� i

〈
v2
〉� i

p� i

〈
v2
〉� � �H 〈R〉 i

p� i� 1
,

(2.123)

so that

〈R〉 9 expα1Ht , with α1 � � i

p� i� 1
. (2.124)
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Hence, if i � 0 and the universe is expanding, the invariant radius of the

p-brane shrinks over cosmological timescales (the opposite occurs if H   0). In

Fig. 2.2 we compare the evolution of the invariant radius, computed numerically

using Eqs. (2.107) and (2.108), against the analytical macroscopic solution given

by Eq. (2.124), and the results seem to confirm the above results.

2.3.3 p-Brane Dynamics with H � Constant

Let us now consider the case of an expanding or collapsing universe, with

a time dependent expansion rate. For simplicity we shall assume that the dy-

namics of the universe is driven by a fluid with w � constant � �1, so that

a 9 |t|β , with β � 2{pNpw � 1qq. We identify t � 0 with either the big-bang

(for w ¡ �1) or with the big-rip (for w   �1).
For �1   w   wc, with wc � p2 � Nq{N , (or equivalently for β ¡ 1), the

comoving Hubble radius, H�1{a, decreases with time. Consequently, it is still

possible to find a critical radius associated with a solution characterized by

v Ñ vc � 0 , when tÑ8 . (2.125)

By requiring that the first and second time derivatives of v vanish asymptotically

at late times, and using Eq. (2.107), we find that

prcHq2 � p� i

p� 1

β

β � 1
, (2.126)

v2c �
β � 1

β

p� i

p� 1
. (2.127)

In the β Ñ 1 limit, vc Ñ 0 and, therefore,

rcH 9 pβ � 1qγc 9 pwc � wqγc Ñ8 . (2.128)

Here, the value of the critical exponent, γc, is equal to �1{2 and is independent

of i, p and N .

The critical radius in Eq. (2.126) no longer exists for w   �1 or w ¡ wc. If

w ¡ wc, the comoving Hubble radius increases throughout the evolution. This

means that all p-branes (even those that are initially very large), will eventually

come inside the Hubble sphere. Consequently, at late times the physical radius

will be such that r ! H�1, and the p-branes will oscillate quasi-periodically. If

w   �1, however, the Hubble radius decreases with increasing physical time.
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Therefore, any p-brane that initially describes a quasi-periodic trajectory (with

r ! H�1) will eventually freeze in comoving coordinates.

The analysis of the collapsing case is trivial and follows directly from the

q Ñ �q and t Ñ �t duality described in Section 2.3.1. In this case, if w  
wc, the comoving Hubble radius, |H|�1 {a, increases with time. Hence, all

p-branes will eventually come inside the horizon, and they will oscillate quasi-

periodically when R |H| becomes much smaller than unity. On the other hand,

if w ¡ wc, the comoving Hubble radius decreases with time. Therefore, all

p-branes will eventually have a physical radius much larger than |H|�1
, and

asymptotically the physical radius behaves as |r| 9 a so that γv 9 a�pp�1q.

Consequently, as the universe collapses (a Ñ 0), the p-branes become ultra-

relativistic while staying effectively frozen in comoving coordinates. This result

has been demonstrated in refs. [104, 105] for defect networks in 3�1 dimensions,

and we will discuss this regime in more detail in Sec. 3.82.

2.3.4 The impact of Cosmology on small Cosmic String Loops

In Sec. 2.3.2, we have shown that a spherically symmetric (i � 0) p-brane

loops with an initial physical radius smaller than the critical radius in Eq.

(2.112) oscillate periodically. Therefore, their macroscopic dynamics never be-

come dominated by the background cosmology: its effects average to zero on

each period of brane motion. As a matter of fact, if we consider the evolution of

p-branes with R |H| ! 1 in a flat FRW universe, Eqs. (2.107) and (2.108) imply

that the impact of background cosmology should be very small on timescales

À R. In this section we investigate whether or not there are cosmological mod-

els, in which the large-scale of the universe can affect the macroscopic dynamics

of small spherically symmetric p-brane. Let us assume that H is no now time

dependent, but instead it is of the form

Hptq � H0 �∆Hptq , (2.129)

where H0 ¡ 0 is a constant and |∆H|   H0. For simplicity, in this section,

we consider the case of a circular cosmic string loop in 3� 1 dimensions (N �
3, p � 1, i � 0). The generalization of our analysis for arbitrary N and p is

straightforward. If we take

∆H � H1

�
1� 2v2pt� θq� , (2.130)
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where v is the microscopic velocity of the loop and θ is a constant phase, Eq.

(2.108) becomes

dR

dt
� R

�
1� 2v2ptq� �H0 �H1

�
1� 2v2pt� θq�� . (2.131)

The evolution of the loop during one quasi period is hardly affected by

the cosmological expansion and, consequently, the Minkowski space solution —

given by

r � r0 cos

�
t

r0



, (2.132)

v � � sin

�
t

r0



, (2.133)

— is still a very good approximation, in the RH ! 1 limit and on timescales

much smaller than H�1. Taking into account that 1 � 2v2ptq � cos p2tq, and
averaging the right-hand side of Eq. (2.131) over one time period, one obtains

the following equation for macroscopic evolution of circular loops

d 〈R〉
dt

� H1

2
cos p2θq 〈R〉 , (2.134)

and, hence, we should have that

〈R〉 9 exppα2H1tq , with α2 � 1

2
cos p2θq . (2.135)

We clearly see that the evolution of the universe may have an impact on

the macroscopic evolution of cosmic string loops over cosmological timescales,

even if they are very small. To illustrate this effect, we solved numerically

the equations of motion for a cosmic string loop. In Fig. 2.3, we plot the re-

sults for the time evolution of the invariant radius of a loop with initial radius

RptiqH0 � 0.002 and for a Hubble parameter given by H0 � 2H1 and θ � 0.

As expected, this particular cosmology has indeed an impact on the evolution

of the invariant radius making its mean value increase, after each period, by

the predicted amount. Note, however, that this case serves merely for illustra-

tive purposes, and that these kind of effect is only expected in special cases.

Nonetheless, this shows that there are situations in which the evolution of the

universe as a whole may affect the microscopic p-brane dynamics over cosmo-

logical timescales, even though this effect is expected to be very small.

It is interesting to realize that we may write the Hubble parameter as a

function of the loop parameters, R and v, using Eqs. (2.107) and (2.108):
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H � d lnR

dt

�
1� p� 1

p� i
v2

�1

. (2.136)

This equation clearly shows that the dynamics of a single p-brane might be used

to infer the dynamics of the underground cosmology.

2.4 CONCLUSIONS

In this Chapter, we derived the evolution equation for the velocity of curved

thin domain walls in N�1-dimensional Friedmann-Robertson-Walker universes.

We also demonstrated that this equation of motion is valid independently of the

underlying field theory model. Moreover, we used this result to obtain the

equation of motion for an infinitely-thin p-brane of aribitrary dimensionality in

FRW universes with an arbitrary number of spatial dimensions. Furthermore,

we derived the equation of motion for infinitely thin and featureless p-branes, by

computing the tangential and normal components of the acceleration directly

from the Nambu-Goto action.

We demonstrated explicitly that the Press-Ryden-Spergel algorithm pre-

serves the dynamics of thin domain walls in FRW universes with an arbitrary

dimensionality, if its parameters satisfy α�β{2 � N . This result then validates

the use of the PRS algorithm in field theory simulations of domain wall network

evolution, independently of the lagrangian density of the model. Notice, how-

ever, that the implementation of the PRS algorithm may affect the small-scale

dynamics of the networks: an increasing physical thickness may lead to the de-

struction of its small scale structure, and it necessarily affects the dynamics of

small closed loops. The PRS algorithm also increases artificially the impact of

junctions on the overall network dynamics, however this effect is expected to be

negligible for light junctions.

We have also studied the dynamics of p-branes with a Sp�i b Ri topology

in expanding and collapsing homogeneous and isotropic universes, with N � 1-

dimensions. We have demonstrated that, in a FRW universe with a time in-

dependent Hubble parameter, the spherically symmetric p-branes may have a

periodic motion, provided that their initial radius is small enough compared to

the Hubble radius. We have obtained analytically the equations for these trajec-

tories in phase space for spherical branes and the corresponding critical points,

and we computed the root-mean-square velocity of the periodic solutions. We

have also found that spherically symmetric branes with an initial radius larger

than a critical value will eventually freeze in comoving coordinates. Therefore,

one would expect realistic small loops to decay, due to the emission of gravi-



2.4 Conclusions 59

tational radiation, while large loops are stretched if the universe is expanding

at a constant rate. Despite the fact that these loops are idealistic in the sense

that they are maximally symmetric and they do not contain small-scale struc-

ture, these results are expected to provide a good insight into the behaviour

of realistic loops produced during the evolution of string networks. These re-

sults may also be relevant to understand cosmic string network evolution during

inflationary stages, as discussed in Ref. [100].

We also studied the case of p-branes with i � 0, and shown that, in this case,

periodic solutions do not exist over cosmological timescales, even if R |H| ! 1.

Moreover, we investigated the case of collapsing and expanding universes with

a time dependent Hubble parameter and we found that, for β ¡ 1, a critical

radius may still be defined. We found that, as β Ñ 1, rcH 9 pwc � wqγc , with

γc � �1{2. Finally, we discussed the impact that the large scale dynamics of

the universe can have on the macroscopic evolution of very small loops, showing

that there are situations in which the evolution of the universe as a whole may

affect the macroscopic p-brane dynamics over cosmological timescales.
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Figure 2.2: Time evolution of the invariant radius, R, of a domain wall with
cylindrical symmetry with RptiqH � 0.002 (solid line) and the evolution of 〈R〉
as predicted in Eq. (2.124) (dashed line)
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Figure 2.3: Time evolution of the invariant radius, R, of a circular cosmic string
loop for Hptq � H0 �H1p1� 2v2ptqq (solid line) and the expected evolution of
〈R〉 (dashed line). We have taken H0 � 2H1 and RptiqH0 � 0.002.
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Velocity-Dependent One-Scale Model for p-Branes

In order to understand the cosmological consequences of p-brane networks,

it is necessary to understand their cosmological evolution. The main features

of the evolution of standard cosmic strings have been extensively studied in

the literature, using both analytical and numerical tools. The formation of

string networks is expected to occur as a result of symmetry breaking phase

transitions in the early universe, which is a very dense environment. Therefore,

cosmic string motion is expected to be, right after formation, heavily damped

due to interactions with the relativistic particles of the surrounding plasma. The

early evolution of string networks is then essentially determined by the frictional

forces caused by these interactions, and, for that reason, their dynamics are said

to be friction-dominated in this phase. The friction-dominated epoch, however,

is transient: as the universe expands and the radiation energy density decreases,

the effects of friction become progressively less important and eventually become

negligible.

Once friction becomes sub-dominant, the evolution of the network is es-

sentially determined by the interplay between the damping caused by Hubble

expansion, and the energy loss provoked by string interactions. This energy loss,

caused by the formation of closed loops and subsequent radiative decay, plays

a key role in the network’s evolution. In the absence of any energy loss mech-

anisms, the background energy density would decrease faster than the cosmic

string energy, and thus cosmic strings would eventually dominate the energy

density of the universe. If an energy-loss mechanism exists, however, the net-

61
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work may evolve towards a scale-invariant regime, in which the string energy

density remains a constant fraction of the background energy density. In this

case, the cosmic string networks do not have pathological cosmological conse-

quences.

The first attempts to describe the large-scale evolution of string networks

analytically were based on the assumption that a single lengthscale — the cor-

relation length — is sufficient to describe their dynamics [106, 107, 108]. Using

these One-scale models, the authors were able to demonstrate that the linear

scaling regime is stable and, therefore, if the networks attain this regime, it will

determine their late-time evolution. Moreover, subsequent numerical simula-

tions [109, 110, 111, 112, 113, 114] revealed that these models provide a fairly

good description of the large-scale dynamics of string networks, but they are

inadequate at small-scales. In particular, these studies revealed that string in-

teractions lead to the production of small cosmic string loops — much smaller

than the correlation length — and therefore one-scale models are inadequate

to describe the small-scale structure of the strings. On the positive side, in

these simulations, the string networks appeared to be evolving towards a linear

scaling regime, indeed. Several other analytical models, resorting to the use

of more than one lengthscale, were subsequently developed in an attempt to

account for the small-scale structure and to provide a more accurate description

of loop production and decay [115, 116, 117]. These models, however, have the

unattractive feature of having several phenomenological terms.

In Ref. [4], the one-scale model was ameliorated by treating the average root-

mean-square velocity of the network as a dynamical variable (in the original one-

scale model it was assumed to remain constant). This Velocity-dependent One-

scale model provides a quantitative description of the string network throughout

its evolution, describing the friction-dominated early-time evolution as well as

the natural attainment of a linear scaling regime. We will outline this model in

Sec. 3.1.

In Sec. 3.2, we will, then, generalize this model to describe the large-scale

evolution of p-brane networks of arbitrary dimensionality, in N � 1-dimensional

Friedmann-Robertson-Walker universes, using the results of the previous chap-

ter. As in the case of cosmic strings, the evolution of p-brane networks may

be separated in two different epochs: a friction-dominated era, in which the

motion of p-branes is damped due to particle scattering; and a frictionless era,

in which the evolution of the network is mainly determined by Hubble expan-

sion (or collapse) and by brane interactions. In Sec. 3.3, we study the different

scaling regimes that may arise during the frictionless era, in expanding and col-

lapsing universes. We will focus particularly on the conditions that a p-brane
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network must satisfy in order to attain a linear scaling regime. In Sec. 3.4,

we will study the scaling regimes that may arise while the p-brane motion is

friction-dominated, in collapsing and expanding universes.

3.1 VELOCITY-DEPENDENT ONE-SCALE MODEL FOR COSMIC

STRINGS

The Velocity-dependent One-scale (VOS) model, proposed in Ref. [4] and

later extended in [118], describes the evolution of the root-mean-square velocity

and characteristic lengthscale of cosmic string networks in 3 � 1-dimensional

FRW universes. This model provides a quantitative description of the large-scale

evolution of cosmic string network, both at early and late times. Interestingly,

the linear scaling regime is an attractor solution of the VOS equations, and,

therefore, in this framework, string domination is naturally avoided.

3.1.1 Lengthscale Evolution

The VOS equations for cosmic strings are obtained by averaging the Nambu-

Goto equations of motion in 3 � 1-dimensional FRW universes, in Eqs. (2.66)

and (2.67).

The total string energy is defined as

E � µapηq
w
εdu , (3.1)

where ε is the coordinate energy per unit length defined in Eq. (2.68), and µ is

string energy per unit length. The total string energy density should scale as

ρ 9 E

a3
, (3.2)

and, thus, by differentiating Eq. (3.1), and using Eq. (2.66), we find that

dρ

dt
� 2Hρp1� v̄2q � 0 , (3.3)

where the root-mean-square (RMS) string velocity,

v̄2 � 〈
9x2
〉 � r

9x2εdur
εdu

, (3.4)

was introduced.

The VOS model is based on the assumption that the large-scale evolution of a

long-string network may be described by a single lengthscale, the characteristic
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length L. This lengthscale can be interpreted both as the typical distance

between nearby strings, and the typical radius of curvature of the cosmic strings.

In each volume L3, there is, on average, a string segment of length L, therefore

we can define the characteristic length as

ρ � µL

L3
� µ

L2
. (3.5)

Using Eq. (3.3), we obtain

dL

dt
� HLp1� v̄2q , (3.6)

which describes the cosmological evolution of the characteristic length of the

string network.

3.1.2 Velocity Evolution

Another key feature of the VOS model is the fact that the RMS velocity is

a dynamical variable. Therefore, to complete the description of the network’s

evolution, we need an equation of motion for its RMS velocity. By differentiating

Eq. (3.4), and using Eqs. (2.66) and (2.67), we obtain the evolution equation

of motion for v̄

dv̄

dt
� p1� v̄2q

�
k

R̄
� 2Hv

�
, (3.7)

which is exact up to second order [4], and was derived under the assumption

that

〈
9x4
〉 � 〈

9x2
〉2

. (3.8)

Moreover, the average radius of curvature, R̄, defined by

apηq
R̄

û � d2x

ds2
, (3.9)

was introduced. In Eq. (3.9), û represents the unitary curvature vector and ds

is the physical length along the string,

ds � ��x1�� du � p1� 9x2q 1
2 εdu. (3.10)

In Eq. (3.7), a dimensionless curvature parameter k, defined by

〈p1� 9x2qp 9x � ûq〉 � kv̄p1� v̄2q , (3.11)
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was also introduced. This momentum parameter measures the angle between the

curvature vector and the velocity of the cosmic strings, and, thus, it evaluates the

existence of small scale structure on the strings. For string networks with small-

scale structure, k is a dynamical variable that depends on the RMS velocity of

the network. In Ref. [118], the following ansatz for k was proposed

kpvq � 2
?
2

π
p1� v̄2qp1� 2

?
2v̄3q1� 8v̄6

1� 8v̄6
. (3.12)

Therefore, although this model uses an unique scale to describe the network

evolution, the effects of small-scale structure on the dynamics may be included in

the evolution equation for the RMS velocity, by considering a velocity-dependent

curvature parameter.

3.1.3 Loop Production and Energy Loss

Eqs. (3.6) and (3.7) do not take into account string interactions. When two

cosmic strings meet they exchange partners and reconnect (see Fig 3.1), leading

to the creation of two kinky cosmic strings. This particular type of interaction

does not lead to any energy loss by the network, however the same process can

lead to the formation of cosmic string loops in two ways: if a cosmic string self-

intersects or when two kinky cosmic strings intersect at more than one point.

Most of these cosmic string loops are very small, and consequently they begin to

oscillate quasi-periodically and decay radiatively (in general via the emission of

gravitational radiation). The production and decay of cosmic string loops leads,

then, to energy losses, and it must be taken into consideration in Eq. (3.3).

The rate of loop production, as a result of string collision, has been estimated

by Kibble in Ref. [106]. Let us regard the string configurations as a collection

of independent segments of length L, each in a volume L3. The probability of

another segment of length ` (moving with velocity v̄) encountering one of the

other segments within a time δt is, approximatively,

`v̄
δt

L2
. (3.13)

The probability of creation of a loop with a length within ` to `� d` may, if we

maintain the one scale assumption, be described by a scale-invariant function of

the ratio `{L. The rate of energy loss caused by loop production is, then, given

by

dρ

dt

����
loops

� ρ
v̄

L

w
wp`{Lq `

L

d`

L
� c̃v̄

ρ

L
, (3.14)
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Figure 3.1: Possible out-
comes of String Interaction:
(a) The interaction of two
cosmic strings leads to
reconnection and the for-
mation of two kinky cosmic
strings;

(b) Cosmic String Self-
interaction leads to the
production of cosmic string
loops;

(c) The formation of
cosmic string loops can
also occur when two kinky
cosmic strings intersect at
more than one point.

(a)

(b)

(c)

where the energy-loss parameter, c̃, was introduced. According to [4], the energy

loss parameter is expected to be constant throughout the nertwork’s evolution.

Using Eq (3.5), we find that

dL

dt

����
loops

� �c̃v̄ . (3.15)

3.1.4 Frictional Forces

Throughout their evolution, cosmic strings scatter off the relativistic parti-

cles of the background plasma. This particle scattering results in a frictional

force per unit length that might be described by [119]:

F � � 1

`f

v?
1� v̄2

, (3.16)

where v is the string velocity vector and `f is the friction lengthscale, defined

as

`f � µ

βT 3
, (3.17)

where T is the background temperature and β is a numerical factor related to

the number of particle species interacting with the strings.

This frictional force can be included in Eqs. (2.66) and (2.67), by adding an
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extra-term of the form

�
Uα � xα

,µ̃x
λ,µ̃Uλ

� 1

`f
, (3.18)

where Uα is the four-velocity of the background fluid. In the case of a FRW

universe, the four-velocity of radiation is given by

Uα � �a�1, 0, 0, 0
�
. (3.19)

This extra effect may be included in Eqs (2.66) and (2.67) by replacing the

Hubble Damping term by [119]:

2
9a

a
� a

`f
. (3.20)

If we proceed as in Sec. 3.1.1 and 3.1.2, we find that

dρ

dt
�
�
2H � v̄2

`d



ρ � �c̃ v̄

L
ρ , (3.21)

2
dL

dt
�

�
2H � v̄2

`d



L� c̃v̄ , (3.22)

dv̄

dt
� p1� v̄2q

�
k

L
� v̄

`d

�
, (3.23)

where the damping lengthscale, that includes damping caused both by Hubble

expansion and by the frictional forces,

1

`d
� 2H � 1

`f
, (3.24)

was introduced. Eqs. (3.22) and (3.23) allow us to describe the cosmological

evolution of a cosmic string networks, and they form the basis of the VOS model

for cosmic strings.

3.2 VELOCITY-DEPENDENT ONE SCALE MODEL FOR P -BRANE

NETWORKS

In Ref. [120], the VOS model for cosmic strings was generalized to isotropic

and anisotropic N � 1-dimensional backgrounds. Furthermore, a phenomeno-

logical VOS model [121, 122] for domain wall networks in isotropic backgrounds

was shown to successfully describe the results of high-resolution field theory nu-

merical simulations [8]. In this section, we develop a more general VOS model



68 Velocity-Dependent One-Scale Model for p-Branes

that describes the dynamics of p-brane networks of arbitrary dimensionality in

N � 1-dimensional homogeneous and isotropic universes in a single framework.

The work presented in this section was published in [14, 15].

3.2.1 Equation-of-State Parameter of a p-brane Network

In order to derive the equation of state for a p-brane network, let us start

by computing the energy-momentum tensor of a p-brane. Consider a local

inertial frame in which a p-brane segment is instantaneously at rest. For a

locally flat p-brane, we may choose a local set of planar orthogonal coordinates�
t, x1, � � � , xN

�
, such that x1, � � � , xp parameterize the brane and xp�1, � � � , xN

are perpendicular to it. The properties of a featureless p-brane do not change

along the parallel directions, and, for that reason, the physical velocity is purely

perpendicular to the brane. Therefore, the energy-momentum tensor, Tµν , must

be invariant under Lorentz boosts along the tangential directions of the brane.

Consider a boost along one of the parallel directions xĩ, with ĩ � 1, � � � , p .

The energy-momentum tensor, transforms as

Tµ1ν1 � Λµ1

α Λν1

β Tαβ , (3.25)

where

Λ01

0 � Λĩ1

ĩ
� γ , Λ01

ĩ
� Λĩ1

0 � γv , Λl1

l � 1 , (3.26)

and all other components vanish. Here ĩ1 � 1, � � � , p, l � 1, � � � , N and l � ĩ.

Hence

T 01l1 � γT 0l � γvT ĩl � T 0l , (3.27)

T ĩ1l1 � γT ĩ � γvT 0l � T ĩl , (3.28)

(3.29)

which leads to

T 0l � T ĩl � 0 . (3.30)

Moreover,

T 01 ĩ1 � γ2v
�
T 00 � T ĩ̃i

	
� γ2

�
1� v2

�
T 0ĩ � T 0ĩ , (3.31)

from which we obtain

T 0ĩ � 0 . (3.32)
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Finally, we have that

T 0101 � γ2T 00 � γ2v2T ĩ̃i � T 00 , (3.33)

which yields

T ĩ̃i � �T 00 . (3.34)

If the p-brane is maximally symmetric with respect to the N � p perpendic-

ular directions and its energy is localized, then Derrick’s theorem [54] implies

that a necessary condition for stability is that [123]

»
dDxTmm � 0 , (3.35)

for m ¥ p � 1 (with D � N � p and dDx � dxp�1 � ... � dxN ). Furthermore,

spherical symmetry with respect to the D perpendicular directions implies that,

at the core, we should have that Tnm � 0, for n ¥ p� 1, m ¥ p� 1 and n � m.

In most situations of interest in cosmology, the thickness of the p-brane is very

small when compared to its curvature radii and may therefore be neglected.

If the p-brane is infinitely thin, the non-vanishing components of the energy-

momentum tensor are

T 00 � σp

»
dpxδN px� xpq , and T ĩ̃i � �σp

»
dpxδN px� xpq , (3.36)

where σp is the (constant) p-brane mass per unit p-dimensional area, x is a N-

vector whose components are cartesian coordinates, xp represents the p-brane

spatial profile, and δN pxq is the N -dimensional Dirac delta function.

Consider a perfect gas of planar p-branes, moving with an average velocity

v̄1 inside a large volume, and let us assume, for simplicity, that they are aligned

with the px1, � � � .xpq coordinates. Although this is a simplistic construct, we

shall see that it will allow us to derive an expression for the equation-of-state

parameter of a p-brane network. Following the approach in Ref. [17], in the

limit of many p-branes, the average energy-momentum tensor of the brane gas

will be

〈Tµν〉 � T̃µν

LD
, (3.37)

where we defined

1v̄ will be properly defined in the next section.
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T̃µν �
»
dDxTµν , (3.38)

whose non-vanishing components are T̃ 0
0 � σp, and T̃ ĩ

ĩ
� �σp, for ĩ � 1, � � � , p.

Furthermore, we made the assumption that, on average, there is approximately

a p-brane segment of p-dimensional area Lp in each volume LN . Under this

assumption, the average number of p-branes per D-dimensional (perpendicular)

area is given by L�D. As in the case of the VOS model for Cosmic strings

discussed in Sec. 3.1, this characteristic length, L, will be the unique scale used

to describe the network.

Let us now assume that the p-branes are moving with an average velocity v̄

in the positive xl direction, with l ¥ p � 1. By performing a Lorentz boost of

T̃µν along this direction, characterized by

Λ01

0 � Λl1

l � γ , Λl1

0 � Λ01

l � γv , and Λi1

i � 1 , for i � l , (3.39)

it is straightforward to show that

T̃ 01

01 � γ2σp , T̃ l1

l1 � γ2v̄σp , T̃ 01

l1 � T̃ l1

01 � γ2v̄σp , T̃ ĩ1

ĩ1
� �σp , (3.40)

and that the remaining components vanish. The average energy-momentum

tensor for the p-brane gas may, then, be obtained by averaging over all possible

orientations and boost directions. We then find that

〈Tµ
ν 〉 �

σp

N
diag

�
Nγ2, v2γ2 � p, � � � , v2γ2 � p

�
, (3.41)

and, consequently,

wp � P̄
ρ̄
� 1

N

�pp� 1q v̄2 � p
�
. (3.42)

Here, P̄ is the average brane pressure, defined as

P̄ � � 1

N

〈
T i
i

〉
, (3.43)

and ρ̄ is the average p-brane energy density

ρ̄ � 〈
T 0
0

〉
. (3.44)

Note that Eq. (3.42) has two important limits. In the relativistic limit, with
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v̄ Ñ 1, one has that w Ñ 1{N independently of the dimensionality of p-branes.

On the other hand, in the non-relativistic limit (v̄ Ñ 0), one has w � �p{N .

Note also that Eq. (3.42) is identical to that obtained in Ref. [124] directly

from the Dirac-born-Infeld action.

3.2.2 Lengthscale Evolution

Let ρ̄ be the average p-brane density of the universe, defined as

ρ̄ � V �1

»
ρdV , (3.45)

where ρ is the p-brane energy density and V is the physical volume. Let us

assume that the p-brane network is statistically homogeneous and isotropic on

large enough scales, so that it behaves effectively as a brane gas. Energy-

momentum conservation in a FRW universe implies that

dρ̄

dt
�NH

�
ρ̄� P̄

� � 0 , (3.46)

where

P̄ � V �1

»
PdV (3.47)

is the average brane pressure.

It is straightforward to show that, in the case of a p-brane network, the

energy-loss due to interface collapse may be described by a term of the same

form as in Eq. (3.14). However, some remarks are necessary. For simplicity, we

shall consider the most trivial case of flat p-branes. A moving p-brane sweeps

a q-dimensional surface (with q � p � 1), with N � q degrees of freedom. If

N ¤ 2pN � qq, two flat q-dimensional surfaces intersect in general. However,

that is no longer true if N ¡ 2pN � qq (or equivalently p   pN � 1q{2), and a p-

brane cannot be expected to necessarily encounter another one after travelling a

distance L. In fact, due to the higher dimensionality of the background space, p-

branes can miss each other. Therefore, in this case, any energy-loss mechanisms

are expected to be less efficient. Moreover, in expanding backgrounds, the

probability of interaction, for p   pN � 1q{2, is expected to decrease over time,

insomuch that — even if c̃ is initially considerable — it is expected to decrease

to very small values throughout the evolution. Nonetheless, we shall include a

term of the form of Eq. (3.14) in the evolution equation for the energy density

of p-branes, bearing in mind these differences for p   pN � 1q{2.
By introducing Eqs. (3.42) and (3.14) into Eq. (3.46), one finds that:
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dρ̄

dt
�
�
DH � v̄2

`d



ρ̄ � � c̃v̄

L
, (3.48)

where the effects of friction were included in the damping length,

1

`d
� pp� 1qH � 1

`f
, (3.49)

and D � N �p. The scaling behaviour of `f will be discussed in Sec. 3.4. Here,

we have also introduced the RMS velocity of the network that, in this case, is

defined by

v̄2 � 〈
v2
〉 � r

v2ρdVr
ρdV

. (3.50)

In this section, 〈� � �〉 denotes the volume weighted average. An equivalent defi-

nition for 1-branes would be

v̄2 �
r
v2γdlr
γdl

. (3.51)

As in the case of cosmic strings, we assume that the p-brane network may

be characterized by a single lengthscale, the characteristic length L. This scale

may be defined as

ρ̄ � σpL
p

LN
� σp

LN�p
. (3.52)

Alternatively, one may use the physical length, defined as

〈ρ{γ〉 � σp

LN�p
ph

. (3.53)

This definition is not as useful as that in Eq. (3.52), since a direct relation

between Lph, ρ̄ and v̄ does not exist. Albeit, Lph has the advantage that it

is only sensitive to the spatial profile of the network, and that it measures the

physical distance between nearby branes. In any case, L and Lph are, in general,

very similar, except if the p-branes are ultra-relativistic, as we will discuss in

Sec. 3.82.

Using (3.52), we then find that

dL

dt
� HL� L

D`d
v̄2 � c̃

D
v̄ (3.54)

describes the evolution of L during the evolution of the p-brane network.
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3.2.3 Velocity Evolution

In order to obtain the evolution equation for the RMS velocity, we average

the equation of motion for the velocity of the p-branes, obtained in Sec 2.2.3.

Multiplying Eq. (2.90) by v, making the weighted volume average, and then

dividing by v̄, one obtains

dv̄

dt
� 1

v̄

〈
vp1� v2q �pp� 1qHv � κ‖

�〉 � 0 . (3.55)

If we assume that

〈
v4
〉 � pv̄2q2 , (3.56)

this further simplifies to

dv̄

dt
� p1� v̄2q

�
v̄

`d
� k

L

�
� 0 , (3.57)

where k � κ̄L, and

κ̄ �
〈
v
�
1� v2

�
κ‖

〉
v̄ p1� v̄2q �

r
v
�
1� v2

�
κ‖ρdV

v̄ p1� v̄2q r ρdV
. (3.58)

The assumption in Eq. (3.56) is valid in the relativistic limit up to first

order in p1� vq, and it has negligible impact in the non-relativistic limit. This

assumption is equivalent to that of the original VOS model for cosmic strings, in

Eq. (3.8). Note that k is a dimensionless curvature, and it is also related to the

existence of small scale structure: it measures the deviation of velocity direction

from the curvature vectors, and, thus it is a measure of brane’s smoothness

(recall Eqs. (2.89) and (2.91)). It can, therefore, be easily identified with the

momentum parameter in Eq. (3.11). Note also that although it is possible

to construct network configurations with the same v̄ but different k̄, in most

realistic situations it is sufficient to consider that κ̄ � κ̄pv̄q.
Eqs. (3.54) and (3.57) constitute a unified VOS model for the dynamics

of p-brane networks in N � 1- dimensional FRW universes. Notice that this

equations reduce, for p � 1, to the VOS equations of motion for cosmic strings

in FRW universes of arbitrary dimensionality [4, 120], and that they were derived

under the same assumptions. Note also that, for p � N � 1 and N � 3, these

equations reduce to the VOS equations of motion for domain wall networks in

3 � 1-dimensional FRW universes derived using phenomenological arguments

in Ref. [121]. As a matter of fact, the VOS equations for cosmic strings and

domain wall differ mainly on the coefficient of the cosmological damping term,
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that assumes the value 2 for cosmic strings, and N for domain walls. Therefore,

the differences between the macroscopic evolution of cosmic string and domain

wall networks are expected to increase as the dimensionality of space increases.

3.3 FRICTIONLESS SCALING REGIMES

In this section, we will use the generalized VOS model to study the scaling

laws of p-brane networks in expanding and collapsing homogeneous and isotropic

backgrounds, during the frictionless epoch. For simplicity, we shall assume that

the dynamics of the universe is driven by a fluid with w � constant � �1, so
that

a 9 tβ� , with β � 2

Npw � 1q . (3.59)

Here t� ¥ 0 represents the time elapsed since the initial singularity (if dt� � dt)

or the time remaining up to the final singularity (if dt� � �dt) at t� � 0. We

shall consider six different models labelled by Ms
i , where s � � depending on

whether dt � �dt� and i � 1, 2 or 3 for β   0, 0   β   1 or β ¡ 1, respectively.

The models M�
2 , M�

3 and M�
1 represent expanding solutions with t� � 0 either

at the the big-bang (M�
2 and M�

3 ) or at the big rip (for M�
1 ). The models M�

1 ,

M�
2 and M�

3 represent collapsing universes with t� � 0 either at the the big-

crunch (M�
2 and M�

3 ) or at the initial infinite density singularity with a� � 8
(for M�

1 ). The Hubble radius,
��H�1

��, increases with time if w ¡ �1. On the

other hand, if �1   w   wc, with wc � p2�Nq{N (so that β ¡ 1) the comoving

Hubble radius,
��H�1

�� {a, decreases with time. Note that the comoving Hubble

radius will monotonously increase or decrease with time depending on whether :a

is negative or positive, respectively. In this section, we shall assume that c̃ ¥ 0.

3.3.1 Linear Scaling Regime

If the friction lengthscale becomes negligible when compared to the Hubble

radius, p-brane evolution is mainly determined by the competition between the

Hubble expansion (or collapse) — which tends to stretch (or contract) the branes

— and the energy loss due to brane interactions. As a result of both effects,

the network evolves towards a linear scaling regime, which is a general attractor

solution of the VOS equation (in models that admit this solution). During

this regime the characteristic length L remains constant relative to the horizon

dH � t.

If we write
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9a :a 9H C/E Main Characteristic

M�
1 � � � C Linear Scaling

M�
2 � � � E Linear Scaling

M�
3 � � � E Inflation

M�
1 � � � E SuperInflation

M�
2 � � � C Ultrarelativistic

M�
3 � � � C Linear Scaling

Table 3.1: Summary of the main properties of the different Ms
i models. The

label i takes the value i � 1, 2 or 3 for β   0, 0   β   1 or β ¡ 1, respectively.
On the other hand, s � � depending on whether dt � �dt� and t� is the
time elapsed since the initial singularity (s � �) or the time remaining until
the final singularity (s � �). The remaining � and � indicate the sign of
the cosmological parameters represented in the table and the letters C and
E indicate whether the model corresponds to a collapsing or to an expanding
universe, respectively.

L � ξpt�qt� , (3.60)

Eq. (3.54) then yields:

9ξ

ξ
� 1

t�
�
β

�
1� p� 1

D
v̄2


� 1� c̃

D

v̄

ξ

�
. (3.61)

So, the linear scaling regime should be characterized by

9ξ � 0 and v � constant , (3.62)

with

ξ �
d���� kpk � c̃q

βp1� βqDpp� 1q
���� and v̄ �

d
p1� βqkD

βpk � c̃qpp� 1q . (3.63)

Note that we should have that

0   v̄   1 and ξ ¡ 0 (3.64)

in order for v̄ and ξ to have physical significance. These conditions are sufficient
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to show that models M�
3 and M�

1 do not admit linear scaling solutions (for

c̃ ¥ 0). In the case of the M�
2 model, this scale-invariant regime would not

persist, and for that reason we will not consider this model in this section: it

will be treated in Sec. 3.82.

There are several complementary constraints which reduce significantly the

possible range of parameters consistent with a linear scaling solution. The

RMS velocity, v̄, of maximally symmetric p-branes with a Sp�i bRi topology

oscillating periodically in a Minkowski spacetime is given by Eq. (2.121). The

minimum velocity of these branes, v2min � 1{2, corresponds to the case when

one of the principal curvatures is non-zero (i � p� 1). The maximum velocity,

v2max � p{pp � 1q, corresponds to the case of fully spherically symmetric p-

branes, for which all the principal curvatures of the surface are equal and non-

zero (i � 0). Note that causality constraints do not allow for flat p-branes

and, consequently, we do not consider the case of branes for whose principal

curvatures are vanishing. For β � 0, the curvature parameter k must be equal

to zero in order for a linear scaling solution with v̄ ¤ 1 to be possible. In an

expanding universe, the expansion of the universe hinders the velocity of the

branes, leading to a smaller RMS velocity and a positive curvature parameter,

k. Therefore, one expects that

0   v̄   vmax, for M�
2 . (3.65)

On the other hand, if the universe is collapsing, the resulting brane acceleration

leads to larger v̄ and a to negative curvature parameter. In this case,

vmin   v̄   1, for M�
1 and M�

3 . (3.66)

Moreover, the characteristic lengthscale of the network is necessarily con-

strained by causality and, as a consequence, L is required to be smaller than

the particle horizon at any given time2. In the case of models M�
1 , M�

2 and

M�
3 , this implies that

L   dH �
» t

ti

dt1

apt1q �
t�

|1� β| , (3.67)

with ti � 0 or ti � �8, depending on whether s � � or �, respectively. This

constraint results in another restriction to the RMS velocity:

2This constraint is only relevant in the case of models that admit linear scaling solutions:
in the case of the M�

3 and M�

1 , the particle horizon is infinite.
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v̄2   pk � c̃q�2 . (3.68)

The constraints on the RMS velocity of p-brane networks for the M�
1 , M�

2

and M�
3 models determine the range of values of the curvature parameter, k,

for which linear scaling solutions are allowed, for any given β and N . Figs.

3.2 and 3.3 illustrate this range in the case of contracting (M�
1 and M�

3 ) and

expanding (M�
2 ) models, respectively, for N � 1-branes (domain walls). The

first thing to notice is that, in contracting models, linear scaling regimes are

strictly forbidden if c̃ � 0 (since v̄2   0 is not allowed). On the other hand,

if c̃ � 0, the consequent energy loss decelerates the branes, and the network

may attain the linear scaling regime with a RMS velocity within the physically

significant range in Eq. (3.66), for negative curvature parameters. The left and

right panels of Fig. 3.2 show the range of the curvature parameter for which the

linear scaling solutions are permitted, as a function of the expansion exponent,

in the case of the models M�
3 and M�

1 , respectively (for c̃ � 0.5). In both

cases, scaling solutions are allowed for every value of β but the allowed range

of k is strongly restricted. Also, in both models, for c̃ � 0.5, the causality

constraint, given by Eq. (3.68), does not introduce further restrictions on the

pk2{N, β{p1 � βqq plane. However, as c̃ increases so does the scaling value of ξ

and, therefore, the region for which causality is violated widens and inhibiting

the attainment of this scale-invariant solution for some values of β. As a matter

of fact, if the value c̃ is big enough, all linear scaling solutions may be forbidden.

In the case of model M�
2 , the network is able to reach a linear scaling

regime for β ¤ 1 � p{N (or equivalently v   vmax ), even if c̃ � 0, as the

left panel of Fig. 3.3 illustrates. For larger values of β, the allowed range of

the curvature parameter is only limited by causality. The presence of energy-

loss mechanisms is also advantageous for the attainment of the linear scaling

solutions in expanding universes: they decelerate the branes in such a way that

it is possible to attain these solutions with v̄   vmax, for 0 ¤ β   1� p{N and

c̃ � 0 (as shown in the right panel of Fig. 3.3).

Note, however, that the linear scaling solution in Eq. (3.63) is attainable for

β ¥ 1� p{N in M�
2 models, even for non-interacting (c̃ � 0) p-brane networks.

In this case, the linear scaling solution would be characterized by

ξ �
d���� k2

βp1� βqDpp� 1q
���� and v̄ �

d
p1� βqD
βpp� 1q . (3.69)
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Figure 3.3: Range of values of the curvature parameter, k, for which domain
wall networks are able to attain the linear scaling solution, as a function of β
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values of k2{N , for c̃ � 0 and c̃ � 0.5, respectively. The dash-dotted (blue) lines
correspond to L � dH and the dashed (red) lines correspond to v2 � 1� 1
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In the case of cosmic string networks (with p � 1) in N � 1-dimensional

backgrounds, linear scaling regimes are attainable in the absence of an energy-

loss mechanism if

β ¥ 1� 1

N
. (3.70)

This indicates that, if N ¡ 3, these solutions are not attainable in radiation

or matter-dominated eras. Despite the fact that, for N ¡ 3, the probability

of string interactions is expected to decrease over time (since, in this case,

p   pN � 1q{2), it is not clear that this process would lead to a vanishing

energy-loss parameter: although the formation of cosmic string loops as a result

of the collision of two strings is expected to be suppressed, it is not clear that

the same would occur to loop formation due to string self-intersection. Note

however that, if c̃ � 0, even if it is very small, linear scaling solutions may be

attainable for small values of the curvature parameter k (which correspond to

networks with small-scale structure). These remarks are also valid to any branes

with p   pN � 1q{2: even though in this case c̃ is expected to be quite small,

scale-invariant solutions might be possible for all values of β in the M�
2 model

(0   β   1).

3.3.2 Inflation and Superinflation

In the M�
3 and M�

1 models, the expansion of the universe is accelerated with

:a ¡ 0. The acceleration of the expansion hampers the velocity of the branes,

and it is efficient enough to make these velocities arbitrarily small. In this case,

Eq. (3.54) yields

dL

dt
� HL , so that L 9 a . (3.71)

Therefore, in these models, the network is conformally stretched. As a matter

of fact, during this regime one has that

v 9 1

Ha
9 a�1�1{β Ñ 0 . (3.72)

The velocity then remains arbitrarily small, and consequently the stretching

regime is able to persist in inflationary and superinflationary models.

Other question one might pose is whether or not a p-brane network is able

to drive the acceleration of the universe. The Einstein equations for a N � 1-
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dimensional FRW, in which the branes are the dominant component of the

energy density, yield

:a

a
� � 8πGN�1

NpN � 1q
�pN � 2qρ̄�N P̄

�
, (3.73)

�
9a

a


2

� 16πGN�1

NpN � 1q ρ̄ , (3.74)

where GN�1 is the N � 1 dimensional Newton constant. These equations are a

generalization of Eqs (1.10) and (1.12) for N � 1-dimensional universes. Using

this equations and Eqs. (3.46) and (3.42) one obtains

β � 2

Np1� wpq �
2

D � pp� 1qv̄2 . (3.75)

In order to accelerate the universe one needs β ¡ 1 (or equivalently wp   wc)

and, consequently

v̄2   2�D

p� 1
. (3.76)

We may then conclude that only domain walls (D � N � p � 1) are able to

drive an inflationary phase. In the case of the domain wall dominated universe,

the RMS velocity should then be such that

v̄2   1

N
, (3.77)

if the universe is to accelerate.

3.3.3 Ultra-Relativistic Collapsing Solution

Consider the case of the M�
2 model which represents a collapsing universe

with 0   β   1. This model would admit linear scaling solutions, for k  
�c̃. However, in this model, the comoving Hubble radius decreases with time.

As a consequence, the curvature scale of the p-branes will necessarily become

smaller than
��H�1

��, and they will eventually freeze in comoving coordinates

whilst travelling at the speed of light. The linear scaling regime would therefore

never persist in the M�
2 model.

Though, in general, in the context of VOS models, the correlation length,

L, may be identified with the physical distance travelled by a brane segment

before encountering another segment of the same size, this identification breaks

down in the ultrarelativistic limit [104, 105]. It follows from Eq. (3.53), that
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Lph � γ̄1{D L , (3.78)

where γ̄ � p1 � v̄2q�1{2. The fraction of the energy lost by the network due to

interface collapse in a timescale dt may be estimated as

�dρ̄

ρ̄
� dL

L
� v

Lph
dt � v

γ̄1{DL
dt . (3.79)

In the ultrarelativistic limit, as v Ñ 1, we have that

γ̄ 9 a�pp�1q . (3.80)

Therefore, the efficiency of the energy-loss parameter is quickly driven towards

zero, as the universe collapses:

c̃ 9 γ̄�1{D 9 app�1q{D Ñ 0 . (3.81)

Eq. (3.54) then yields

9L �
�
N � 1

N � p



HL , (3.82)

and, consequently,

L 9 apN�1q{D , (3.83)

so that the physical lengthscale of the network freezes in comoving coordinates

Lph 9 a . (3.84)

The network will then be conformally contracted, while moving at ultrarela-

tivistic speeds. Notice that, since ρ 9 L�D, we find that during this regime the

brane density scales as

ρ 9 a�pN�1q , (3.85)

and thus, in this model, the p-brane network will asymptotically behave as a

radiation component.

3.4 FRICTION DOMINATED REGIMES

The frictional force per unit of p-dimensional area exerted on a p-brane as a

result particle scattering can be estimated as [98]:
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F � nσtvT∆p (3.86)

where n 9 a�N is the particle density, vT � 1 is the thermal velocity of the

interacting particles, σt is the transport cross-section for the particle scattering

and ∆p 9 a�1v is the average momentum transferred per collision. Note that,

we have assumed that the interacting particles are massless, and that brane

motion is non-relativistic. As in the case of cosmic strings [125], the scattering

cross-section of p-branes should depend only on the typical wavelength of the

scattered particles, λ. On dimensional grounds, we may write:

σt 9 λD�1, (3.87)

and, given the fact that λ 9 a, we have that

F 9 a�pp�2qv . (3.88)

Using Eq. (3.16), we find that the friction lengthscale scales as

`f 9 ap�2 , (3.89)

throughout the evolution of the network.

In Secs. 3.4.1 and 3.4.2, we will discuss the scaling regimes that arise during

the friction dominated phase of the evolution of an expanding universe. The

existence of the stretching and Kibble regimes for cosmic string networks was

established in Ref. [4], using the VOS model for cosmic strings — although the

existence of the latter was previously suggested by Kibble in Ref. [126]. The

scaling laws for these regimes were derived for the case of domain walls in 3

spatial dimensions in Ref. [121], using a VOS model for domain walls derived

using phenomenological arguments. In Sec. 3.4.3, we will then briefly discuss

these regimes in the collapsing models.

3.4.1 Stretching Regime

If the density of p-branes is initially low, the characteristic lengthscale of the

network will be close to the horizon, and, consequently, it will be much larger

than the friction lengthscale. In this limit,
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dv̄

dt
! v̄

`f
, so that v � k

`f
L

. (3.90)

Given the fact that `f ! L, we expect the p-branes to have very small

velocities. In this limit,

dL

dt
� HL , so that L 9 a , (3.91)

and the p-branes are conformally stretched.

Note, however, that, during this regime, the velocity scales as

v̄ � `f
L
9 ap�1 . (3.92)

Therefore, during thus regime, the velocity increases quickly, and consequently

this regime is necessarily transient.

3.4.2 Kibble Regime

The Kibble regime emerges as the friction lengthscale approaches the char-

acteristic lengthscale of the network (`f {L � HL). Given the fact that, during

this regime, the RMS velocity is higher than it has hitherto been, a considerable

amount of energy will be lost due to brane interaction (in this case HL � c̃v̄).

As a result, even though the dynamics is still dominated by friction, the scaling

laws are different from those of the stretching regimes:

L 9
d

`f
|H| 9 a

1
2β rβpp�2q�1s (3.93)

v̄ 9
b
`f |H| 9 a

1
2β rβpp�2q�1s (3.94)

This regime is also transient: as the universe expands, the friction lengthscale

grows faster then L, and it will eventually overcome it (as a matter of fact,

for β   1{pp � 2q, L decreases with time). At this point, friction becomes

subdominant, thus bringing the Kibble regime to an end.

This regime is unavoidable. If the initial density of the network is high

enough, the Kibble regime will occur right after the formation of the p-branes,

and the network will not experience the stretching regime. If, on the other

hand, the initial brane density is sufficiently low for the network to experience

the stretching regime, the Kibble regime will follow it.
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3.4.3 Friction-Dominated Regimes in Collapsing Universes

The scaling solutions given by Eqs. (3.91-3.94) also account for the dynam-

ics of a p-brane network in collapsing universes during the friction dominated

era. Note however that, in this case, the friction lengthscale decreases with

time, and friction domination is the endpoint of the network’s evolution: as `f

decreases, the network comes to a standstill in comoving coordinates and, then,

it is conformally contracted. In this regime, the average density of the network

is given by ρ 9 a�1.

As the universe contracts, the background temperature and density increase

and approach those of the original brane-forming phase transition. At that

point, the branes dissolve back into the high radiation background.

3.5 CONCLUSIONS

In this chapter, we have studied the evolution of p-brane networks, in flat

expanding and collapsing homogeneous and isotropic backgrounds with an ar-

bitrary number of spatial dimensions, using a Velocity-Dependent One-Scale

Model. This model allows us to characterize the evolution of the network by

following the cosmological evolution of its characteristic lengthscale and aver-

age root-mean-square velocity. We used this model to study the different scaling

regimes that arise in collapsing and expanding universes, both on friction dom-

inated and frictionless epochs. We particularly focused on the conditions that a

p-brane network must satisfy in order for linear scaling regimes to be attainable.

This work is a significant improvement over previous analytical studies of do-

main wall dynamics (with p � N �1), unifying in a common framework the dy-

namics of domain wall networks in expanding/collapsing and frictionless/friction-

dominated regimes. Notice also that, for N � 3 and p � N � 1, this model

reproduces the VOS model for domain walls derived phenomenologically in Ref.

[121], and thus confirms its validity. Moreover, this analytically-derived gener-

alization provides an important tool to describe the evolution of domain wall

networks in more than 3 spatial dimensions which, up to now, was restricted to

very special configurations.

Our model provides a unified semi-analytic description of p-brane network

dynamics, highlighting the common and distinctive features characterizing the

evolution of p-brane networks of different dimensionality. In particular, it high-

lights the similarities between cosmic string and domain wall network evolution

in 3�1 dimensions, which may be of particular relevance for the study of cosmic

superstrings.
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Domain Walls and Dark Energy

Domain walls are often regarded as malignant objects in cosmology. As

the universe expands, the background energy density decreases faster than the

domain wall energy density, and consequently domain walls will eventually be-

come the dominant energy component. In the case of cosmic strings, domination

may be avoided due to the attainment of the linear scaling regime, which has

the fortunate property that the string density remains constant relative to the

background density. Domain wall networks also appear to evolve towards a

scale-invariant solution, however, in this case

ρ̄σ
ρb

9 t , (4.1)

where ρ̄σ is the domain wall energy density. Therefore, domain wall domination

seems unavoidable, even in the linear scaling regime.

Moreover, it has been pointed out in Ref. [127] that the gravitational effects

of domain walls would introduce excessively large anisotropies in the cosmic

microwave background, if they are originated at high-energy scales. However, if

the walls are light enough (i.e., if they have a small surface tension), they may

not dominate the energy density until the present time. In this case, the wall-

forming phase transition should occur at an energy scale smaller than about

1MeV (σ � η3 À p1MeVq3) — This is known as the Zel’dovich bound1.

1Note however, the classical derivation of this bound involves the assumption that there is,
roughly, one defect per Hubble volume. In many scenarios of interest, the number of defects
per Hubble volume might be significantly larger and, in that case, domain wall tension should

85
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Although domain walls are subject to this tight constraint, they may still

play interesting cosmological roles. In particular, it has been suggested in Ref.

[5] that a domain wall network could be a candidate for dark energy, provided

that it is frozen by cosmological expansion. In this case the observed acceler-

ation of the expansion of the universe would be a consequence of domain wall

domination of the energy density of the universe. The conditions under which

these frozen, or frustrated, networks might arise have been studied in detail in

[6, 7, 128], and the results seem to rule out that scenario. Moreover, it has been

argued in [129, 130] that if a bias is introduced — for example, if there exists

a slight asymmetry between the minima of the potential of the model or if one

of the vacua is, for some reason, favoured over the others — the domain wall

network may be destabilized, and they may eventually decay. Biased domain

wall networks may not only provide a way to evade the Zel’dovich bound, but

are also behind the devaluation scenario [131], proposed as a possible solution

to the Cosmological Constant Problem.

In this chapter, we will explore these possible connections between domain

wall networks and dark energy. In order to analyse these paradigms, one needs

to understand the dynamics of domain wall networks. We will, therefore, start

by using the results of the previous chapters to outline the main features of their

dynamics, in Sec. 4.1. We will then adapt the equations of motion for domain

walls to these dark energy scenarios. In the case of frustrated networks, we will

incorporate the dynamical effect of massive junctions in the Velocity-dependent

One-scale model to study their potential role in frustration. Moreover, we will

develop an analytical model for biased domain walls, in order to analyse the

devaluation scenario.

4.1 DOMAIN WALL DYNAMICS

In this section, we will briefly discuss domain wall dynamics, using the results

of the previous chapters. Let us start by considering the case of a thin domain

wall in a 3� 1 dimensional FRW universe. Using Eq. (2.107), we find that the

evolution equation for its velocityis given by

dv

dt
� p1� v2q

�
fpvq
Ri

� 3Hv

�
, (4.2)

where fpvq � 2γ1{2s, for spherically symmetric domain walls (p � 2 and i � 0),

or fpvq � γs, for a domain wall with cylindrical symmetry (p � 2 and i � 1).

For a spherically symmetric domain wall, the invariant radius is defined as

be subjected to even more stringent bounds.



4.1 Domain Wall Dynamics 87

R0 � |q| γ1{2a, and its evolution is described by an evolution equation of the

form (see Eq. (2.108))

dR0

dt
�
�
1� 3

2
v2


HR0 . (4.3)

As to the case of domain walls with cylindrical symmetry, the invariant radius

is defined as R1 � |q| γa, and satisfies the following equation of motion:

dR1

dt
� �1� 3v2

�
HR1 . (4.4)

Let us now move to the case of the (averaged) evolution equation for a

domain wall network in a 3�1 dimensional FRW universe. These equations are

written in terms of the characteristic length, which in this case is defined as

ρ̄σ � σ

L
, (4.5)

and in terms of the RMS velocity of the network, v̄. In this case, Eqs. (3.54)

and (3.57) yield, respectively

dL

dt
� HLp1� 3v̄2q � L

`f
v̄2 � c̃v̄ , (4.6)

dv̄

dt
� p1� v̄2q

�
k

L
� 3Hv̄ � v̄

`f



. (4.7)

These equations are in agreement with the phenomenological VOS model for

domain wall networks developed in Ref. [121].

Let us ignore the both network’s energy losses and the frictional forces due

to particle scattering. When comparing Eqs. (4.2) and (4.7), we find that, even

though v and v̄, are defined differently, the matching between their evolution

equation is closer than one might naively expect. As a matter of fact, they

differ only in the form of the phenomenological curvature term. However, when

contrasting Eqs. (4.3) and (4.4) with Eq. (4.7), the discrepancies appear signif-

icant. Note, however, that these differences arise from the fact that R0 (or R1)

and L are defined very differently.

Consider the case of a spherically symmetric domain wall. Its physical radius

is defined in such a way that the energy of the defect is proportional to R2
0.
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When considering a network, however, the characteristic length is such that

L � σV {E, and thus the evolution equations for these two variables are not

even comparable. Instead, in order to compare these two equations, we can

define an effective characteristic lengthscale proportional to the squared root of

the network’s energy:

E � ρ̄V � σL2
eff , (4.8)

so that

Leff 9 a3{2

L1{2
. (4.9)

Introducing Eq. (4.9) into Eq. (4.6), we find a sugestive

dLeff

dt
�
�
1� 3

2
v̄2


HLeff , (4.10)

which scales precisely as R1. This expression highlights the fact that the differ-

ences between Eqs. (4.3) and (4.7) are mainly apparent

Bearing in mind that, in the case of a domain wall with cylindrical symmetry,

R1 is proportional to the energy per unit length of the defect, an equivalent

definition would be

L 9 a2

Leff
. (4.11)

We then have that, in this case,

dLeff

dt
� p1� 3v̄2qHLeff , (4.12)

which is in agreement with Eq. (4.4), indeed.

4.2 DOMAINWALL NETWORKSWITHMASSIVE JUNCTIONS AND

DARK ENERGY

As discussed in the previous chapter, a domain wall dominated universe

could undergo accelerated expansion, provided that the RMS velocity of the

network is small enough. It is then natural to enquire if domain wall networks

could play the role of dark energy. Recall that the equation-of-state parameter

of a domain wall network is, on average, given by:

w2 � v̄2 � 2

3
. (4.13)
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It is evident, given the observational constraints in Eq. (1.52), that domain wall

networks cannot be the unique contributor to the dark energy budget. However,

if the RMS velocity is very small — so that the network is frozen in comoving

coordinates — it is able to provide a negative pressure: at most w � �2{3 In

this case, the domain wall network is said to be frustrated and it may, in prin-

ciple, give a significant contribution to dark energy. These frustrated domain

wall networks were suggested as a candidate for dark energy in Refs. [5, 49].

The conditions under which a domain wall network is able to frustrate were

extensively studied in Refs. [6, 132, 7, 8]. If frustrated domain wall networks

are to provide a significant contribution to the dark energy budget, they have

to satisfy two main requirements:

1. The energy density must be of the same order as the critical density in

the present:

ρ̄σ � σ

L
� ρc . (4.14)

2. Fluctuations generated by domain walls have to be smaller than 10�5 on

scales of the order of the Hubble radius, H�1
0 , or otherwise they would

generate strong (unobserved) signatures on the cosmic microwave back-

ground2.

These two conditions are sufficient to exclude standard domain wall networks

as a potential dark energy source. It has been shown in Ref. [6], using a VOS

model for domain walls, that these conditions can only be satisfied by frustrated

domain wall networks if the curvature parameter is very small (k ! 1). Stan-

dard domain wall networks without junctions have a curvature parameter that

is, in general, close to unity, k � 1, and therefore they can ruled out as a dark

energy candidates.

The inclusion of junctions in domain wall networks severely increases the

complexity of the problem. In this case, the possible lattice configurations de-

pend on energetic, geometrical and topological considerations, and their stability

depends both on local and global considerations. The conditions under which 2-

dimensional domain wall networks with junctions are able to frustrate have been

studied in detail in Ref. [6], and several stability factors have been identified.

First of all, it has been shown that domain with less than 6 edges are unstable if

only Y-type junctions — where 3 domain walls meet — exist. The authors have

2This is a conservative estimate: according to [8], the CMB observational data limits these
fluctuations to 10�5 down to smaller scales of approximately H�1

0 {100.
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further shown that if the average dimensionality of the junctions is increased,

the average number of edges per domain decreases, also leading to the formation

of unstable domains. Another factor of instability would be the presence of an

hierarchy of tensions: domain walls with higher tension tend to collapse, leading

to the increase of the dimensionality of the junctions. On the other hand, the

authors found that the probability of annihilation of two nearby triple junctions

decreases as the number of vacua increases. In fact, in models with more than

two vacua connected by domain walls of the same tension, only stable Y-type

junctions would form. Note that the only possible equilibrium configuration

with triple wall junctions is an hexagonal “honeycomb” lattice. Although this

lattice configuration seems to be stable, it is not expected to arise in realistic

wall-forming phase transitions nor to be the result of the evolution of a realistic

network. As matter of fact, very small curvature parameters (k ! 1) are only

expected in very special configurations — such as the hexagonal lattice, square

lattices with X-type junctions and triangular lattices with *-type junctions —

corresponding to very specific initial conditions which would violate causality if

they were to extend over scales larger than the particle horizon. This realization

lead the authors to conjecture that frustrated domain walls networks are not

expected to arise naturally from realistic phase transitions.

These results were tested numerically, using 2 and 3-dimensional high-re-

solution field theory simulations [7, 132, 8]. In order to do so, the authors not

only used some pre-existing domain wall models, but have also developed an

”ideal model”, which has maximal probability of evolving towards frustration.

This ideal model has a large number of vacua connected by domain walls of equal

tension, so that the major sources of instability are removed (for a specific real-

ization see [7]). The use of this model then allowed the authors to avoid testing

the large variety of domain walls field-theory models existent in the literature.

The results of these simulation seem to confirm the no-frustration conjecture,

even in the case of the ideal model: the dynamical behaviour of the networks

did not show any evidence of evolving towards frustration, but instead it was

consistent with the attainment of a scaling solution. These results seem then to

conclusively rule out frustrated domain wall networks as dark energy candidates.

In these studies, the contributions of the domain wall junctions to the en-

ergy density were assumed to be very small. However, massive monopole-type

junctions can effectively freeze a domain wall network, provided that they are

heavy enough. In that case, their contribution to the energy budget could not

be neglected, and it has been argued in Refs. [6, 8] that it would lead to an
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equation-of-state parameter even greater than �2{3, which is incompatible with

the observational bounds. In this section, we investigate the impact of string

and monopole-type junctions on the dynamics of domain wall networks. How-

ever, accounting for the detailed contribution of the junctions on domain wall

networks is not a trivial task. The VOS model for domain wall networks does not

take into account the dynamical contributions of junctions. Moreover, the stan-

dard PRS algorithm — implemented in all field theory numerical simulations

in order to ensure fixed comoving resolution — increases artificially the impact

of junctions on the overall dynamics during the course of the simulations. This

effect is not very important for the light junctions which are usually considered

in such simulations, but it could be relevant in the case of heavy junctions. In

order to overcome these problems, we develop a semi-analytical non-relativistic

VOS model for the evolution of the characteristic length and velocity of domain

wall networks that incorporates the contribution of string and monopole-type

junctions in the overall dynamics. We, then, analyse the conditions under which

massive monopole-type junctions are able to frustrate the domain wall network

and determine whether or not such a frustrated network could account for a sig-

nificant fraction of the Dark Energy of the Universe. In order to do so, we will

consider the best possible scenario as far as frustration is concerned, assuming

that the junctions are massive enough to render the network non-relativistic.

This work was published in [12].

4.2.1 Non-relativistic VOS model with massive junctions

Consider the configuration represented in figure 4.1 where four junctions of

energy per unit length µ are connected by four planar domain walls of energy per

unit length σ, defining a square domain of characteristic size l. Three domain

walls meet at each (Y-type) string junction. Here we assume that nothing varies

along the direction perpendicular to the square domain, so that the infinite

string junctions have no curvature. In this case, the domain wall dynamics is

effectively two-dimensional. The energy per unit length of this configuration is

given by the sum of the contributions from the four domain walls, moving with

velocity v, the four cosmic string, moving with velocity vµ �
?
2v, and from the

four static domain walls:

E � 4σγl � 4µγµ � 2σ
?
2pl0 � lq , (4.15)

where we defined γ � p1� v2q�1{2, γµ � p1� v2µq�1{2, and v � �pdl{dtq{2.
For simplicity, we shall make the approximation that the shape is maintained
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l
0 l

Figure 4.1: The left panel represents the 2-dimensional domain wall configura-
tion prior to collapse. Solid lines represent domain walls of superficial tension σ
and the dots represent string junctions of tension µ. The right panel represents
the configuration after some time has elapsed.

during the collapse of the square domain. In this case, the domain walls do not

acquire curvature, and it remains concentrated in the vertices. Although we

expect the domain walls to acquire curvature in the course of collapse, this

approximation will capture the relevant physics, and does not affect our main

results. It then follows from energy conservation that, in Minkowski spacetime,

the equation of motion for v is given by

dv

dt
� p1� v2qspvq

l

�
1

1� µ
σlgpvq



� 0 , (4.16)

where

spvq � 2�
?
2

γ
, (4.17)

and

gpvq �
�
γµ
γ


3

. (4.18)

The physical meaning of Eq. (4.16), can be summarized very briefly:

1. DomainWalls are accelerated due to the curvature which, in this particular

configuration, remains concentrated at the vertices;

2. The acceleration of the domain walls can be reduced due to the inertia of

the cosmic string junctions, which are connected to the domain walls.

Note that Eq. (4.16) does not apply directly to the case of the domain wall

network with string junctions, since it has been obtained for a very particular
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configuration. Albeit, we shall use it as a guide into the fundamental aspects of

the networks’ dynamics.

The characteristic lengths of the two-dimensional domain wall network and

of the string-type junctions, Lσ and Lµ, are defined as

ρ̄σ � σ

Lσ
and ρ̄µ � µ

L2
µ

, (4.19)

where ρ̄σ and ρ̄µ represent the average density of domain walls and the average

density of cosmic string junctions, respectively. The relation between Lµ and

Lσ depends on the geometrical properties of the domain wall network. For a

regular hexagonal lattice with Y-type junctions, each string junction is shared

by three hexagons, and thus Lµ{Lσ � 31{4{21{2. Similar arguments can be used

to show that, for a regular square lattice with X-type junctions, Lµ{Lσ � 2,

while Lµ{Lσ � 33{4 for a regular triangular lattice with �-type junctions. We

see that, in general the characteristic lengths are similar (Lµ{Lσ � 1) and,

consequently, we shall assume that Lµ � Lσ � L.

Identifying l with L{2 in Eq. (4.16), we find that, in the non-relativistic

limit,

dv̄

dt
� k

L

�
1

1� µ
σL



� 0. (4.20)

with k � 2sp0q � 1 � ?2{2. This equation preserves the generic form of the

acceleration term contained in Eq. (4.16). If we include the accurate damping

term caused by Hubble expansion, it should provide an approximate description

(up to numerical factors of order unity) of the evolution of the characteristic

velocity of a non-relativistic domain wall network with junctions in 2 spatial

dimensions. Note, however, that in the case of the network, the curvature pa-

rameter represents an average over the whole network rather than the specific

configuration represented in Figure 4.1, as in Eq. (3.58). Also, maintaining

the notation of the previous chapter, we use bars to represent RMS averaged

quantities, so that v̄ represents the RMS velocity of the domain wall network,

and so on.

Note that

1

1� µ
σL

�
σ
L

σ
L � µ

L2

� ρ̄σ
ρ̄
� fσ , (4.21)

where ρ̄ � ρ̄σ � ρ̄µ is the total energy density and fσ � ρ̄σ

ρ̄ is the fraction of

energy density which is due to domain walls. This allows us to rewrite eq (4.20)
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l
0

l

Figure 4.2: The left panel represents the 3-dimensional domain wall config-
uration prior to collapse. The planes represent domain walls with a superfi-
cial tension σ, solid lines represent string junction of tension µ, and the dots
represent monopole-type junctions of mass m. The right panel represents the
configuration after some time has elapsed.

as:

dv̄

dt
� k

L
fσ � 0 . (4.22)

Given this equation, the generalization to the 3 dimensional case is trivial. In

three spatial dimensions, domain walls meet at string junctions, which may, in

turn, intersect at monopole junction (see [8] and references therein for details on

specific field theory models and network realizations). In this case, we need to

consider the impact of monopole-type junctions, of mass m and energy density

ρ̄m � m

L3
m

(4.23)

on the network dynamics. One may suspect that, in this case, both domain walls

and cosmic strings contribute to the acceleration of the network, and that this

acceleration is damped by the monopoles. So, we may infer that the evolution

equation for the velocity should be of the same form as Eq. (4.22) but with

fσ Ø fσ � fµ. To verify that this is indeed the case, let us consider a cubic

configuration as represented in Fig. 4.2, and assume that, as in the case of the

2-dimensional network, the curvature is concentrated at the vertices, so that the

domain walls and string junctions do not acquire curvature during collapse.

The energy of this configuration is given by
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E � 6σl2γ � 12µγµl � 8γmm� 3
?
2σpl20 � l2q � 4

?
3pl0 � lq , (4.24)

where vµ �
?
2v is the velocity of the cosmic string junctions, vm � ?

3v is the

velocity of the monopole junctions, γµ � p1 � v2µq�1{2, γm � p1 � v2mq�1{2 and

dl{dt � �2vµ � �2?2v.

Energy conservation, in this case, yields

dv

dt

�
σl2 � 4µl

�
γµ
γ


3

� 4m

�
γm
γ


3
�
� p1� v2q r4sσpvqσl � 8sµpvqµs � 0 .

(4.25)

As in the case of the 2-dimensional network, we will use this equation to infer

the general form of the curvature term. In the non-relativistic limit, we may

identify l with L{4 to obtain

dv̄

dt
� k

L

1

1� m
σL�µL2

, (4.26)

up to coefficients of order unity. It is straightforward to show that this equation

is equivalent to:

dv̄

dt
� k

L
pfσ � fµq � 0 , (4.27)

with L � Lm � Lµ � Lσ. Here we introduced the energy density fractions of

the various components, defined as

fσ � ρ̄σ
ρ̄
� 1

1� m
σL2 � µ

σL

, (4.28)

fµ � ρ̄µ
ρ̄
� 1

1� m
µL � σL

µ

, (4.29)

fm � ρ̄m
ρ̄
� 1

1� µL
m � σL2

m

, (4.30)

where ρ̄ � ρ̄σ � ρ̄µ � ρ̄m.

We have implicitly assumed that the energy of the domain walls, as well as

that of string and monopole junctions, is localized. This is not always a good

approximation. For example, in the case of global monopoles, there is a nearly

constant long-range force between monopoles and anti-monopoles, which is rele-
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vant to the dynamics3. In Ref. [134], local and global hybrid networks of cosmic

strings and monopoles were studied. The author has shown that the forces be-

tween monopoles and anti-monopoles lead to the annihilation of the network

shortly after creation (though in some particular cases the network can, in fact,

be relatively long-lived). It is reasonable to expect that, in the case of a do-

main wall network with string-type and monopole-type junctions, the long-range

forces between monopole and anti-monopole would also lead to the annihilation

of the network. Note, however, that this particular model is developed with the

specific purpose of investigating whether the inertia caused by the presence of

massive junctions is sufficient to frustrate a domain wall network, and if such a

network could contribute to the acceleration of the universe. Since such long-

range forces would constitute an additional obstacle to the frustration of the

domain wall network, and maintaining the best case scenario premise, we will

not consider them. Nevertheless, by considering non-standard kinetic terms, it

is possible to localize the energy of the monopoles inside their core [123]. These

localized k-monopoles interact very little, if they are sufficiently distant from

one another, and hence they are not expected to lead to the rapid annihilation

of the network.

Given the fact that we intend to describe these networks in a cosmologi-

cal context, we also need to account for the deceleration caused by the Hub-

ble expansion. Recall that (planar) domain walls, (planar) cosmic strings and

monopoles behave differently under Hubble expansion:

γ v 9 a�3 ô dv

dt
� 3vHp1� v2q � 0 , (4.31)

γµvµ 9 a�2 ô dvµ
dt

� 2vµHp1� v2µq � 0 , (4.32)

γmvm 9 a�1 ô dvm
dt

� vmHp1� v2mq � 0 , (4.33)

for domain walls, cosmic strings and point masses respectively. The behaviour

of the domain wall network with massive junctions under expansion will be de-

termined at any time by the current dominant component of the energy density.

Therefore, we use the energy density fractions as weight factors in the estimate

of the Hubble damping term to be added to Eq. (4.27). The equation describing

the evolution of the characteristic velocity of the network then becomes, in the

non-relativistic limit,

3See, for example, [133] and references therein
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dv̄

dt
�Hv̄p1� fµ � 2fσq � k

L

�
1

1� m
µL�σL2

�
� 0 , (4.34)

where 1� fµ � 2fσ � fm � 2fµ � 3fσ, and we have assumed that v̄ � v̄µ � v̄m

(we will justify this assumption later in this section).

Let us now derive a evolution equation for the characteristic lengthscale,

L. Cosmological expansion also has different impacts on the energy density of

domain walls, string and monopole-type junctions. In the absence of energy-loss

mechanisms,

ρ̄σ 9 γ̄a�1 ô dρ̄σ
dt

�Hp1� 3v̄2qρ̄σ � 0 , (4.35)

ρ̄µ 9 γ̄µa
�2 ô dρ̄µ

dt
� 2p1� v̄2µqHρ̄µ � 0 , (4.36)

ρ̄m 9 γ̄ma�3 ô dρ̄m
dt

� 3

�
1� v̄2m

3



Hρ̄m � 0 , (4.37)

for domain walls, cosmic strings and point masses, respectively. In the course of

network evolution, energy will be exchanged between the different components,

leading to similar characteristic velocities: v̄m � v̄µ � v̄. Let QX be the

energy transferred per unit of time and volume from the component X to the

other two components. To account for the energy transfer between the different

components, one needs to include extra terms Qσ, Qµ and Qm on the right-hand

side of Eqs. (4.35-4.37), respectively.

Taking into account that

Qσ �Qµ �Qm � 0 , (4.38)

and that

dρ̄

dt
� dρ̄σ

dt
� dρ̄µ

dt
� dρ̄m

dt
, (4.39)

the energy transfer terms cancel out when considering the evolution of the total

energy density:

dρ̄

dt
� �p3� fµ � 2fσq � v̄2 p1� fµ � 2fσq

�
Hρ̄ � 0 . (4.40)

We could add a term proportional to vρ̄{L to right-hand side of Eq. (4.40), in

order to account for any energy losses by the network. Note, however, that in
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the non-relativistic limit, this term can be neglected. In any case, it is easy to

verify that this term leads to a larger L and, consequently, it is prejudicial to

frustration. Again, we will be considering the best case scenario for frustration:

the absence of any energy loss mechanisms.

Using Eqs (4.19) and (4.23), we then obtain the evolution equation for the

lengthscale of the network

dL

dt
�
�
1� v̄2

2fσ � fµ � 1

3� fµ � 2fσ

�
HL . (4.41)

In the non-relativistic regime, with v̄ ! 1, one has that

dL

dt
� HL , so that L 9 a , (4.42)

and

ρ̄m 9 a�3 , ρ̄µ 9 a�2 and ρ̄σ 9 a�1 . (4.43)

Note that the energy density of domain walls decays more slowly than that

of cosmic strings and of monopoles. Therefore, even if at early times the energy

density of monopoles is dominant, the domain walls will eventually overcome

their domination and become the most significant part of the energy density.

They will, then, necessarily determine the late time evolution of the network.

Note that Eqs (4.34) and (4.41) reduce to the standard non-relativistic VOS

equations of motion (Eqs. (3.6) and (3.7)), if we set ρ̄σ � ρ̄m � 0, assuming

there are no energy losses. On the other hand, if we set ρ̄µ � ρ̄m � 0, we also

recover the standard non-relativistic VOS equations form domain wall networks.

4.2.2 Implications for dark energy

The main aim of this subsection is to investigate the conditions under which

massive monopole-type junctions are able to frustrate a domain wall network

and to determine whether or not such a frustrated domain network could account

for a significant fraction of the energy density of the universe. We shall work

with the best possible scenario and assume that the domain wall network is

effectively frustrated (v ! 1) and, consequently, it will be sufficient to consider

the non-relativistic regime. We shall also assume that ρ̄m is always much greater

than either ρ̄σ or ρ̄µ up to the present day, in order to maximize the impact of

the massive junctions on the dynamics of the domain wall network. Relaxing

these assumptions, would make this mechanism less efficient from the point of

view of frustration.
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Solving Eq. (4.34) in the matter dominated era, assuming that ρ̄µ � 0 and

ρ̄m " ρ̄σ and neglecting the decaying mode, one obtains

Hv̄ � 2

5

dv̄

dt
� 2

7

k0
L

ρ̄σ
ρ̄m

. (4.44)

A similar analysis for ρ̄σ � 0 and ρ̄m " ρ̄µ would give

Hv̄ � 2

3

dv̄

dt
� 2

5

k0
L

ρ̄µ
ρ̄m

. (4.45)

In both limits one has

v̄2 À HLv̄ � k0
ρ̄σ � ρ̄µ

ρ̄m
, (4.46)

where we have taken into account that v̄ À LH due to the fact that the char-

acteristic velocity, v̄, does not change abruptly. The result given in Eq. (4.46)

is rather robust and has a simple physical interpretation. For non-relativistic

domain wall or string networks with junctions one has v̄2 À k. In the case

of a network with a dominant component of monopole-type junctions, only a

fraction of the kinetic energy (approximately pρ̄σ � ρ̄µq{ρ̄m) generated due to

the curvature is transferred to the domain walls and strings, due to the large

inertia of the monopole-type junctions.

The amplitude of the fractional energy density fluctuations, δ, associated

with domain walls on a physical scale, LV , much larger than the characteristic

scale, L, of a domain wall network is given approximately by

δ � δρ̄σ
ρc

� Ωσ?
N

, (4.47)

where N � pLV {Lq3 is the number of domain walls on a volume V � L3
V , Ωσ �

ρ̄σ{ρc, and δρ̄σ is the root mean square fluctuation in the domain wall energy

density on a given scale LV . Recall that the amplitude of CMB temperature

fluctuations generated by domain walls, around the present time is contrained

to be smaller than 10�5 down to scales of the order of LV � H�1
0 . This implies

that

δ � Ωσ0pH0L0q3{2 À 10�5 . (4.48)

Consequently, we should have that

H0L0 À 10�3Ω
�2{3
σ0 , (4.49)

which results in the constraint L0 À Ω
�2{3
σ0 Mpc. If there are no abrupt changes

on the domain wall velocity, this also translates into a stringent limit on the
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characteristic velocity of the domain walls at the present time:

v̄0 À H0L0 À Ω
�2{3
σ0 10�3 . (4.50)

Hence, using Eq. (4.46) with k0 � 1 one obtains

k
ρ̄σ0 � ρ̄µ0

ρ̄m0
� pH0L0q2 À Ω

�4{3
σ0 10�6 . (4.51)

The value of the curvature parameter has been estimated using high-resolution

numerical simulations of domain wall evolution [8]. As previously pointed out,

these simulations indicate that standard domain wall networks without junctions

k � 1, while for networks with junctions smaller values have been observed, but

still of order unity. A value of k ! 1 is only expected in the case of unnatural

configurations which cannot be expected from realistic phase transition (e.g.

the previously discussed 2-dimensional “honeycomb” lattice). Consequently, we

shall assume that k � 1.

Note that domain walls would need to have an average energy density of

the order of the critical density to provide a significant contribution to the dark

energy, so we shall assume that Ωσ0 � 1. Therefore, a sucessful domain wall

scenario for dark energy would require that

L0 À 1Mpc , and v̄0 À 10�3 . (4.52)

Using Eq. (4.51), we see that these values can only be achieved if

ρ̄σ0
ρ̄m0

À 10�6 , (4.53)

and, therefore, the energy density of the junctions would have to be 6 orders

of magnitude larger than the critical density4. Such high value is clearly in

complete disagreement with all cosmological evidence. Clearly, if Ωσ0 is very

small, frustration may effectively occur but in that case domain walls would not

play a relevant role as a dark energy component.

4.2.3 General Considerations on the Frustration of p-Brane Networks

In this section, we will consider the effect of a generic interaction mechanism

between p-branes and other cosmological component on the dynamics of p-brane

networks, in order to study their potential role in frustration. This work was

published in [16].

4If one was to limit the CMB fluctuations generated by domain walls to be smaller than
10�5 down to smaller scales of H�1

0 {100, a stronger result would be obtained.
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As discussed previously, analytical and numerical studies indicate that do-

main wall evolution does not result naturally in the frustration of the network.

Frustration would, then, require the presence of an additional mechanism to

decelerate the domain walls. Note however that the relevant question is not

whether or not there are mechanisms that can frustrate the network — for in-

stance, massive junctions or the mechanism described in [135, 136] clearly do

the job — but whether or not this frustrated network could contribute to the

dark energy budget. In order to address this question, let us consider the case

of a p-brane network and let us assume an interaction mechanism between the

p-branes and a component average density ρint exists. A very conservative upper

limit to the total momentum per unit volume transferred from that component

to the p-branes in one Hubble time,

���� dpdV
���� � ρ̄

H

����dv̄dt
����
int

, (4.54)

would be ρint. In this case, we should have that

����dv̄dt
����
int

À χH , (4.55)

with χ � ρint{ρ. The effects of this interaction mechanism on the network

dynamics may then be included in Eqs. (3.57) and (3.54) by redefining the

damping length:

1

`d
� pp� χ� 1qH � 1

`f
, (4.56)

where we have assume that the efficiency of interaction mechanism is the max-

imum possible: |dv̄{dt|int � χH.

In homogeneous and isotropic universes with a decelerating power-law ex-

pansion, in the frictionless regime (`f ! H�1), a p-brane network may admit

linear scaling solution of the form of Eq. (3.62) if χ is constant. In this case,

ξ �
d���� kpk � c̃q

βp1� βqDpp� χ� 1q
���� and v̄ �

d
p1� βqkD

βpk � c̃qpp� χ� 1q . (4.57)

Therefore, this interaction mechanism may decelerate the branes slightly.

However, if the interacting component of the energy density is subdominant

(that is, if χ À 1), its potential role on the frustration of the networks —

characterized by L ! H�1 and v ! 1 — is very limited. Relaxing the assumption
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that the p-brane network is the dominant energy component may clearly help

frustration: if ρint " ρ (χ " 1), the interaction mechanism may decelerate the

branes effectively, and freeze the network in comoving coordinates. However, in

this case, ρint would be the main contributor to the energy budget.

Clearly, assuming that χ is time independent is unrealistic: one would expect

the expansion of the background to affect the efficiency of any realistic interac-

tion mechanism (for instance, the ratio χ � ρint{ρ is expected to be a function

of the scale factor). Nonetheless, Eqs. (3.57) and (3.54) (with a damping length

as in Eq. (4.56)) show that considering a time varying χ does not help much

if its present value is χ0 À 1. As matter of fact, frustration might only occur,

under these circumstances, for networks which have k ! 1 for v ! 1. This

generalizes the previously mentioned result that the frustration of domain wall

networks can only occur for k ! 1 to p-branes of arbitrary dimensionality. In

the particular case of domain walls, there is very strong analytical and numer-

ical evidence that networks (with or without junctions) are unlikely to attain

k ! 1 in the non-relativistic limit, if they are the dominant energy component

[6]. This result effectively rules out domain wall networks as a cosmologically

relevant dark energy candidate: frustration can either occur if the network is

design to have k ! 1 in the non-relativistic limit — which appears to be un-

realistic — or if χ is much larger than unity — in which case the domain wall

energy density would be subdominant and would not contribute significantly to

the dark energy budget.

For p   N � 1, the Hubble damping is less efficient and, thus, frustration is

even less likely to result from the natural evolution of the network. Therefore,

unless there is a natural mechanism that drives k towards zero in the non rel-

ativistic limit — which seems unlikely — the no frustration conjecture is also

expected to apply to any realistic and cosmologically relevant p-brane network.

The mechanism for the frustration of domain wall network in Refs. [135, 136]

is expected to face similar problems. The authors perform field theory simula-

tions of a model with Z2 � Up1q symmetry in (2+1)-dimensions. Their model

has two discrete vacua, allowing for domain walls and a conserved Noether

charge. The authors argue that the Noether charge and currents become local-

ized on the walls, forming kinky vortons, providing a possible mechanism for

the frustration of domain wall networks. However, the authors do not calculate

the overall equation of state of the network. Had they done that, they would

have found significant deviations with respect to that of a frustrated featureless

domain wall gas (w � �2{3).
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4.3 BIASED DOMAIN WALLS AND THE DEVALUATION MECHA-

NISM

The cosmological constant is the simplest explanation for the current ac-

celeration of the universe. It fits remarkably well the observational constraints

from several cosmological probes and it has a natural physical interpretation as

the vacuum energy density. However, the observed value of the cosmological

constant is extraordinarily low, more than 120 order of magnitude smaller than

the particle physics predictions. The theoretical value for vacuum density is

sometimes humorously dubbed “the worst theoretical prediction in the history

of physics”, but this discrepancy is indeed a fundamental problem in modern

physics.

In Ref. [9], the authors proposed a dynamical solution to the cosmological

constant problem, involving the evolution of a biased domain wall network. In

the simplest model of biased domain walls, the vacuum states separated by a wall

have a slight energy difference, so that one of these vacua has a smaller energy

density [137, 129, 130]. As a result of this energy difference, the domain wall

feels a dynamically relevant pressure that pushes it towards the domain with

the highest energy density [130, 138]. Depending on its importance relative to

other processes— most notably the surface tension— the walls may be long-lived

(as in the standard case) or disappear almost immediately. Biased domain walls

were originally envisioned as a way to evade the Zel’dovich bound, however they

are also behind the devaluation scenario proposed in [9].

This scenario requires a model with a potential which has a large number of

nearly degenerate minima, spanning a large number of values of vacuum energy.

After inflation, different patches of the universe are expected to fall into different

minima, leading to the formation of a biased domain wall network. The domain

walls would then feel a pressure that would drive them towards the regions of

higher energy density. As a result, these regions would be suppressed and the

universe would be driven towards lower and lower values of the cosmological

constant.

In this section, we will make a detailed analysis of the Devaluation scenario.

We will start by analyzing the dynamics of biased domain walls, both by study-

ing a simple field theory realization and by developing an analytical model that

incorporates the effect of bias on the evolution equations for domain walls. We

will then use the results to carry out a thorough analysis of the devaluation

scenario. This work was published in [10].
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4.3.1 Qualitative analysis of Biased Domain Walls

Let us then consider the simplest field theory model

L � 1

2
φ,µφ

,µ � V pφq , (4.58)

with a tilted potential

V pφq � λ

4
η4

��
φ2

η2
� 1


2

� κ
φ

η

�
. (4.59)

It then follows [98] that the height of the potential barrier and surface tension

are respectively

V0 � λ

4
η4 , (4.60)

σ �
?
λη3 , (4.61)

while the wall thickness and the asymmetry parameter (energy difference be-

tween the two vacua) are respectively

δ � η?
V0

� p
?
ληq�1 (4.62)

ε � 2κV0 . (4.63)

The dynamics of biased domain walls are determined by the competition

between the surface pressure,

pT � σ

R
, (4.64)

(caused by the superficial tension), and the volume pressure,

pV � ε , (4.65)

originated by the energy difference between vacua. At early times, the dynamics

of the domain walls is dominated by the surface tension, which acts to increase

the radius of curvature of the wall. However, when the domains become large

enough, the volume pressure becomes comparable to the surface pressure, lead-

ing to the decay of the domain walls [130, 139]. In flat space-time this happens

when
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R � σ

ε
. (4.66)

For instance, we phenomenologically expect that at the Ginzburg temperature

(when the network first becomes well-defined) the correlation length should

approximately be given by L � pληq�1 and, in this case, we have that

�
pV
pT



TG

� κ

2
?
λ
. (4.67)

Typically one might expect this to be smaller than unity but not much less.

However, there is, in principle, enough parameter freedom to make it much

larger or much smaller than that. When the volume pressure dominates, one

expects that the walls will move with an acceleration

ε

σ
� λ1{2κη . (4.68)

On the other hand, if the surface pressure dominates initially the walls may

survive long enough to reach a linear scaling regime, L � t. Understanding,

how fast the volume pressure becomes important — or equivalently how long

the walls will survive and how fast they will decay — is a key issue in several

cosmological scenarios, including devaluation. Moreover, the Zel’dovich bound

[127] provides an additional and often limiting observational constraint.

4.3.2 Analytic Model for Biased Domain Walls

Modelling the effect of this bias is fairly straightforward in the context of

the microscopic model we introduced in Sec 4.1. Suppose that the two vacua

on either side of a domain wall have different energy densities Vin and Vout and

let ε � Vin � Vout be their energy difference. The resulting effect on domain

wall dynamics is very easy to understand if we consider a planar domain wall

in Minkowski space. In this case the inner and outer regions of the domain wall

are not well defined but we shall assume that the domain wall is moving in the

direction outÑ in. Energy conservation implies that

dpσγq � vdtε , (4.69)

from which we get

dv

dt
� ε

σγ3
; (4.70)
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we can immediately note that this is coincides with Eq. (4.68) apart from the

relativistic gamma factors. With our conventions, if the wall is moving towards

the region with higher energy density (ε ¡ 0), this region becomes smaller, and,

consequently, the wall gains momentum to compensate the energy loss. This

confirms the expectation that the domain wall will feel a pressure which will

tend to drive it into the region of higher energy density. We can alternatively

write this as

dv

dt
� p1� v2q3{2 κλ

1{2

2
η � p1� v2q3{2

Rv
, (4.71)

which highlights the fact that ε acts like an effective curvature, and therefore

accelerates the wall. Its distinguishing feature is that the scale is set by the

micro-physics of the model in question (ultimately by the form of the potential),

rather than the macroscopic dynamics (as is the case for the usual curvature

radius of the walls). Moreover, this lengthscale is constant, whereas the usual

curvature radius increases as the walls evolve. This implies that the volume

pressure term will gradually become more dynamically relevant. Having said

that, note that the extra γ factor can switch this term off if the walls become

ultra-relativistic (v Ñ 1). It is then clear that we can now add this volume

pressure correction to our domain wall evolution equation (4.2), yielding

dv

dt
� p1� v2q

�
fpvq
Ri

� ε

σγ
� 3Hv



, (4.72)

or equivalently
dv

dt
� p1� v2q

�
fpvq
Ri

� γ�1

Rv
� 3Hv



. (4.73)

The effect of the bias can also be added to Eqs. (4.3) and (4.4), in order

to incorporate in the evolution of the wall invariant radius, R. In the case of

spherically symmetric domain wall, the equation of motion takes the form

dR0

dt
�
�
1� 3

2
v2


HR0 � εvR0

2σγ
, (4.74)

or, using the definition of Rv in Eq. (4.71), it can be written in the more

suggestive form

dR0

dt
�
�
1� 3

2
v2


HR0 � p1� v2q1{2 v

2

R0

Rv
. (4.75)

Similarly, for domain walls with cylindrical symmetric, we find that:

dR1

dt
� �1� 3v2

�
HR1 � εvR1

σγ
, (4.76)
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or equivalently

dR1

dt
� �1� 3v2

�
HR1 � p1� v2q1{2vR1

Rv
. (4.77)

Recall that, when extrapolating to a biased domain wall network, Eqs. (4.74)

and (4.76) should be compared to Eqs. (4.10) and (4.12). Notice that this

additional term due to the bias may be regarded as an additional energy loss by

the network. As discussed previously, the importance of this term is expected to

grow as the walls evolve, although it switches off in the ultra-relativistic limit.

It obviously follows from the above discussion that this model reproduces

the result [130] that domains with a larger energy density will decay when their

typical size R �¡ σ{ε, and indeed it provides a more quantitative estimate—

since the relativistic gamma factor may be significant. We may also compare

the importance of the pressure term with that of the Hubble damping term in

Eq. (4.2). For non-relativistic domain walls the pressure term dominates over

the Hubble damping term slightly earlier than over the curvature term (assum-

ing that R �  H�1). However, for R � H�1 and v not too small, the two criteria

are very similar. If R �  H�1 and the above criteria are satisfied, then the do-

mains with a larger energy density disappear exponentially fast. This result is

the basis of the devaluation mechanism.

As an illustrative example of the effect of bias on the dynamics of biased

domain walls, we have solved Eqs (4.72) and (4.74) numerically for a spherical

domain wall, initially at rest, with a higher vacuum energy in its inner domain.

This allowed us to determine the evolution of the domain wall’s physical ra-

dius, q0 � R0γ
�1{2, until collapse (which was defined as the moment when q0

vanishes).

Fig. 4.3 shows the time of collapse of a spherical domain wall, with or without

bias, and the relative difference between these collapse times as a function of

the ratio between its initial wall invariant radius, R0, and the initial Hubble

radius. The bias term acts as a further mechanism to accelerate the domain

walls, allowing them to overcome the Hubble damping term faster and thus

making them collapse in a shorter period of time. The relative importance of

this effect grows as the initial radius increases. However, the curvature term

becomes negligible for large R and, therefore, in this limit, the dynamics of

the wall is essentially determined by the bias term. As a result, the relative

difference tends to a constant, in this limit.

Fig. 4.4 shows the relative difference between the collapse time, with and
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without an energy difference between minima, for ε{σ ranging from 0 to 100

(for a spherical domain wall with Rptiq � H�1
i ). Notice that as the bias term’s

importance grows, this relative difference tends to a constant. Given the bias

term makes the velocity become ultra-relativistic faster, the time of collapse

with bias has an obvious lower bound, given by the time a photon takes to

travel a distance equal to the initial physical radius of the domain wall, in a flat

FRW universe. This minimum collapse time is given by:

tmin
c �

�
aptiqp1� βqqi � ti

tβi

�1{p1�βq

, (4.78)

where β is the expansion exponent and qi is the initial physical radius. In this

particular case of the collapse of a spherical domain wall with qi � 1 during

the radiation dominated era, this lower bound yields tmin
c � 4, and the relative

difference tends to ∆ � 0.33 as ε{σ increases5. This simple example clearly

shows that the effect of bias, as a source of instability, is limited.

4.3.3 The devaluation mechanism

The devaluation mechanism [9] aims to explain the observed small non-

vanishing value of the cosmological constant using the dynamics of biased do-

main walls. The key physical idea is that, under plausible circumstances, a

network of unstable domain walls might form at a certain critical temperature,

dividing the universe in many different regions with different values of the vac-

uum energy density. Domain walls separating different vacuum domains will

then feel a pressure which will tend to suppress those with higher energy thus

driving the universe towards lower and lower values of the cosmological constant.

A simple potential that has the relevant features is

V pφq � V0 cos pπφq � ε
φ

2
� C , (4.79)

where V0 is effectively the barrier height and ε is the energy difference between

minima. From the original paper [9], the expectation is that

η � V
1{4
0 ¡ 10MeV , (4.80)

and obviously

5We took ti � 1 and aptiq � 1.
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Figure 4.3: In the top panel it is represented the collapse time of a spherical
domain wall (in units of initial time), with (tbc) and without (tc) an energy differ-
ence between domains, as function of the ratio between the initial wall invariant
radius and the initial Hubble radius. On the lower panel, it is represented the
relative difference between the time of collapse with and without bias. We took
ε{σ � 1.



110 Domain Walls and Dark Energy

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(t
c
−
t cb

)/
t c

ε / σ

Figure 4.4: The relative difference between time of collapse with and without
bias for ε{σ ranging from 0 to 100 and for a spherical domain wall with Rptiq �
H�1

i

ε1{4 � ρ1{4c � 10�3eV . (4.81)

It is important to realize that, in this particular model, all the domain walls

interpolating between successive pairs of minima in the above potential have

similar tensions. The model also requires a large number of minima, but the

exact number is actually not relevant for the analysis that follows. Moreover,

it was argued that domains with negative energy vacua would be suppressed so

that the domain wall dynamics would lower the cosmological constant to the

lowest non-negative value possible (ρvac � ε � ρc). We will question the validity

of this assumption later on.

The initial conditions are expected to be such that Li � T�1
G � V

�1{4
0 � η�1,

which is significantly smaller than the Hubble radius:

RH

Li
� mPl

V
1{4
0

�  1020 . (4.82)

Clearly, with Li � η�1, the surface pressure pT � η4 � V0 will initially dominate

the volume pressure pV � ε and the walls will initially be very stable. So for

this choice of parameters, devaluation is not very efficient.

On the other hand, the largest correlation length we can have (which corre-

sponds to the largest instability) is L � t. Recalling that
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t � mPl

T 2
(4.83)

in the radiation era, and

t � mPl

T 3{2T
1{2
eq

(4.84)

in the matter era, we find that, in this maximal instability case, the domain

walls become unstable and disappear for

�
T

mPl


2

� ε

V0

η

mPl
, (4.85)

�
T

mPl


3{2

� ε

V0

η

mPl

�
mPl

Teq


1{2

, (4.86)

respectively. In order for the decay to happen in the radiation era we need

T ¡ Teq � 1eV, and using Eq. (4.81) we find

ηrad �  100 keV , (4.87)

which is clearly incompatible with the assumed bound in Eq. (4.80). It then

follows that if this mechanism (at least as originally envisioned) is to explain

the observed value of the cosmological constant, the domain walls must survive

through the radiation era, and decay only in the matter era. In other words, in

the original scenario, devaluation must occur late in the history of the universe,

and not early. This is due to the energy scale required to match the observed

value of the cosmological constant, and is another manifestation of the under-

lying fine-tuning. Repeating the calculation for a decay during the matter era

(and ignoring the effect of the recent acceleration phase on the expansion rate,

which is negligible in this context), we now find

ηmat �  10MeV , (4.88)

which saturates the bound given by Eq. (4.80).

Therefore the best we can do is to have a network that disappears around to-

day. If so, and again neglecting the effect of the recent dark energy domination,

we would expect the cosmological constant to be

ρ
1{4
vac

mPl
�
�

η

mPl


3{4�
T0

mPl


3{8�
Teq

mPl


1{8

, (4.89)

and since Teq � 1eV and T0 � 2� 10�4eV we get
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ρ1{4vac �
�

η

mPl


3{4

1013eV (4.90)

from which we would get ρ
1{4
vac � 10�3 eV for η � 10MeV as previously stated.

There is, however, an obvious problem with such a scenario: 10MeV do-

main walls decaying today are observationally ruled out. For the rather classic

Zel’dovich bound [127], η � 1MeV, we only get ρ
1{4
vac � 10�4eV. This is op-

timistic not only because the observational bound is somewhat lower, but also

because we really want the network to decay a bit before today to be clear of

observational problems.

Indeed, for late devaluation there are several extra requirements (absent in

the case of early devaluation) which need to be satisfied. If devaluation is not

complete and there are some walls still around, their average contribution to the

energy density of the universe needs to be ρσ �  10�5ρc. Otherwise, assuming

that the characteristic size of the domains is �¡ H�1, there would be a detectable

contribution of domain walls to the cosmic microwave background anisotropies.

This means that the wall tensions are strongly constrained. We know from Eq.

(4.66) that if we have two contiguous domains with a vacuum energy difference of

ε then the domain with larger vacuum density will be exponentially suppressed

when ε �¡ σ{L. Recall that σ{L is the average energy density of the domain

wall network and that, as we saw, ρσ must be at least five orders of magnitude

smaller than the critical density. So in this case,

ρ1{4vac �  10�4 eV , (4.91)

and devaluation would lead to a vacuum energy density significantly smaller

than the critical density at the present time. In fact this number might even be

smaller than that, depending on the domain wall tensions.

Beyond particular realizations of the devaluation mechanism, several general

comments can be made about the underlying physical scenario. Before touching

upon some of these, let us note that this simple model may allow for positive and

negative values of the vacuum energy density. It is argued [9] that gravitation

itself may prevent the vacuum energy density from attaining negative values.

However, here we will be mainly concerned with the evolution of domain wall

networks during the matter and radiation eras in which the contribution of the

domain wall and the vacuum energy densities can be neglected. In this context,

there is no cut-off that prevents the vacuum energy densities from attaining
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negative values. Such a mechanism can only operate when the vacuum energy

densities are the dominant contribution for the dynamics of the universe. Hence,

a low-energy cut-off of the order of the critical density at the present time needs

to be introduced by hand in the devaluation model, which is clearly not an

attractive feature of the model.

In this scenario a domain wall network forms at a critical temperature Tc �
V

1{4
0 . It is straightforward to put a lower bound on the number, N , of domains

that are initially present in a region with a comoving size of the order of the

Hubble radius at the present day,

N �¡
�
Teq

T0


3{2�
Tc

Teq


3

. (4.92)

Assuming a fixed energy difference beween successive minima and that the bar-

rier height and tuning of the potential are roughly comparable (as in the simple

devaluation toy model introduced above), we see that the difference in energy

densities between successive minima is bounded from below,

ε � 
T 4
c

N
� TcpT0 Teqq3{2 , (4.93)

if all the minima are populated at the time when the network forms. In fact, if

we assume that close to Tc the domains rapidly attain a typical size of the order

of the Hubble radius then

ε � TcpT0 Teqq3{2 , (4.94)

which is much larger that the energy density at the present time. Of course,

not all the minima need to be populated and, in this case, ε can be smaller.

However,the domain wall tension would no longer be the same for all domain

walls, since domain walls would in general interpolate between distant minima.

We also note that a single domain with the lowest possible energy density does

not necessarily survive domain wall evolution since, even in the absence of the

devaluation mechanism (which will only operate for ε Á σ{L), domain wall

dynamics in the scaling regime naturally leads to the suppression of most of the

available domains during each Hubble time.

The above analysis also confirms the naive expectation that the devaluation

mechanism can only be effective if L �  H�1. If this is not the case (either be-

cause the walls are somehow pushed outside the horizon, or in the opposite limit,

L ! H�1), the dynamics of the domain walls is even less efficient in suppressing

domains with larger values of the vacuum density. In the absence of friction,

and assuming that L �  H�1, a domain wall network will in fact approach the
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scaling regime, with L 9 H�1, which is quite generically an attractor solution.

Friction may slow down the domain walls, and if they are sufficiently light, the

evolution may be friction dominated up to the present time, but this will not

help.

Therefore the devaluation scenario does not naturally lead to the required

value of the vacuum energy density. A simple and physically intuitive way of

expressing this is in terms of fine-tuning. A cosmological constant is considered

unappealing because its observational value is many orders of magnitude below

what one would naturally expect from particle physics considerations. From

this perspective, the motivation of the devaluation scenario is that it would lead

to a small value in a natural way. However, this is not so because the same

fine-tuning problem is still there, since we still need a low energy cut-off.

Many of the features of this simplest implementation of devaluation can be

relaxed. We may have complex domain wall networks with junction, domain

walls with tensions that may be correlated with the differences between the

vacuum energy densities. In fact the domain walls may not all be formed at

the same time, with additional domains with smaller energy densities separated

by low tension domain walls being formed only at smaller critical temperatures.

Still, it is clear that the devaluation mechanism is too efficient and consequently

it will always be necessary to introduce by a hand a low energy cut-off of the

order of the critical density at the present day.

In more realistic particle physics scenarios there will typically be many cou-

pled scalar fields that can lead to domain walls. From a phenomenological point

of view, there are several reasons why this more general case may differ from

the simplest implementation of the devaluation mechanism. The potential may

be significantly more complicated, as in landscape-type scenarios. This by itself

need not be a great advantage, since in any case energy minimization criteria will

always favour evolution down the potential, regardless of the number of fields.

In particular, any number of uncoupled fields will lead to a scenario very similar

to the single-field case. More important, though, is the existence of coupled

fields, since this generically leads to domain wall networks with junctions, and

also to more complicated spectra of wall tensions, which need not necessarily

be of comparable magnitude.

The presence of walls with significantly different tensions may be important

to the network dynamics. Recall that biased walls will decay when their char-

acteristic size grows to L �¡ σ{ε. Since in this model ε is effectively fixed to the

observed vacuum energy density, we see that higher-tension walls are actually
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more stable than lower-tension walls (since a larger characteristic size is needed

to make them decay). Notice that this is contrary to standard energy minimiza-

tion arguments, whereby higher-tension walls tend to decay into lower-tension

walls. If we now consider a network of walls with junctions and a non-trivial

hierarchy of tensions, and temporarily assume that the various types of walls

with different tensions have comparable characteristic sizes (which may be too

naive an assumption), then one may reach a threshold where the lowest-tension

walls present become unstable and decay. This may render the whole network

unstable and make it disappear well below what one would expect from a stabil-

ity analysis for the higher-tension walls. Therefore this mechanism may increase

the efficiency of devaluation. However, given that the devaluation mechanism

is already too efficient in its simplest implementation this extra efficiency will

not help. Hence, it seems that a low energy cut-off of the order of the critical

density at the present day would still be necessary in order for devaluation to

stop at the observed value of the dark energy density.

4.4 CONCLUSIONS

In this chapter, we have discussed the potential role of frustrated domain

wall networks as a dark energy component. We have imposed strong constraints

on the characteristic length and velocity of domain wall networks with string

and monopole-type junctions using a semi-analytical VOS model. We have

shown that a successful domain wall scenario for dark energy would require

that L0 À 1Mpc and v0 À 10�3. We have demonstrated that such small values

of L0 and v0 could only be achieved if the contribution of the monopole-type

junctions to the total density of the universe was several orders of magnitude

larger than that of domain walls and strings (assuming Ωσ0 � 1), in complete

disagreement with observations. These results highlight the main difficulty with

alternative mechanisms for the frustration of domain wall networks. The inclu-

sion of additional degrees of freedom such as heavy junctions and friction may

slightly reduce the characteristic length and velocity of domain walls; however

it is insufficient to lead to frustration, due to the limited amount of matter with

which domain walls can interact while conserving energy and momentum at

present time.

Moreover, we studied the effect that a generic interaction mechanism be-

tween p-branes and another cosmological component may have on the dynam-

ics of p-brane networks. We demonstrated that, if p-branes are the dominant
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component of the universe, then frustration is not possible unless the curva-

ture parameter is driven towards very small values for non-relativistic networks

or if the expansion is accelerated. In the case of domain walls there is very

strong analytical and numerical evidence (both in two (N � 2 , p � 1) and

3 (N � 3 , p � 2) spatial dimensions) that k never becomes much smaller

than unity (except deep into inflationary or friction dominated regimes), thus

preventing frustration from being attained for realistic domain wall networks

playing a dark energy role. We conjectured that this may be a general result,

valid for any realistic p-brane network independently of the values of N and p

with 1 ¤ p ¤ N � 1.

We have also studied the evolution of biased domain walls in the early uni-

verse by including the dynamical effects of bias in the microscopic equations of

motion for domain walls. We discussed the roles played by the superficial ten-

sion and the volume pressure (caused by the energy difference between nearby

vacua) in the evolution of the domain walls, and quantified their effects by look-

ing at the collapse of spherical domain walls. These results were then applied

to the devaluation scenario, suggested as a possible solution to the cosmological

constant problem. Our results indicate that devaluation will, in general, lead to

values of the cosmological constant that differ by several orders of magnitude

from the observationally inferred value. We also argued that, beyond any par-

ticular realizations, this scenario is expected to be too efficient and, therefore,

it does not naturally lead to the required energy density. In order to do so,

the devaluation scenario requires a low-energy cut-off of the order of the critical

density at the present on the spectra of the vacuum energy density. As a conse-

quence, the devaluation scenario cannot be regarded as a satisfactory solution

to the cosmological constant problem.
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Conclusions

This thesis focused mainly on the dynamics of p-brane networks in higher di-

mensional Friedmann-Robertson-Walker universes, and their cosmological con-

sequences. In order to study the cosmological consequences of p-brane net-

works, it is necessary to understand the dynamics of p-branes. For that reason,

we started by studying the dynamics of N � 1-branes, or domain walls, and

computed analytically the equation of motion for the velocity of a curved thin

domain wall — whose curvature radii are much larger than its thickness — in

N � 1-dimensional homogeneous and isotropic backgrounds. We demonstrated

specifically that the dynamics of domain walls is independent of the form of

the potential — which is only required to support stable domain wall solution

— and it does not depend on the form of the kinetic term of the lagrangian

density. We have also demonstrated that the modification to the scalar field

equation of motion, implemented in many cosmological field theory simulation

of domain wall networks in order to ensure fixed comoving thickness (known as

PRS algorithm), does not affect the dynamics of thin domain walls.

Furthermore, we derived the equation of motion for the velocity of a infinitely

thin and featureless p-brane of arbitrary dimensionality, and obtained its normal

acceleration. We have also studied in detail the dynamics of closed p-brane

solutions with a Sp�ibRi topology, and obtained equations of motion for their

velocity and invariant radius, in FRW universes. The dynamics of these p-brane

loops were studied in several cosmological backgrounds, with constant and time-

dependent expansion rates, experiencing expansion and collapse. This study
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allowed us to obtain constraints on the root-mean-square velocity of p-brane

loops in expanding and collapsing universes, and to understand the evolution of

p-brane loops under expansion.

We moved on to consider the case of p-brane networks in higher dimensional

FRW background. By averaging the equation of motion for a p-brane, we were

able to obtain a evolution equation for the RMS velocity of a p-brane network.

We also assumed that the p-brane network is statistically homogeneous and

isotropic at large scales, so that it can be treated as brane gas. This allowed

us to obtain an evolution equation for the p-brane energy density and for the

characteristic length of the network. The equations of motion for RMS velocity

and for characteristic length of the network constitute a generalization of the

Velocity-Dependent One-Scale Network for cosmic strings, to the case of p-brane

networks in FRW universes with an arbitrary number of spatial dimensions.

This generalized VOS model allowed us to study the scaling regimes that

arise in different expanding and collapsing cosmological models, both in the

friction-dominated and frictionless epochs. We studied, in particular, the con-

ditions under which p-brane networks are able to reach linear scaling solutions.

We used the previously derived constraints on the RMS velocity to determine

the allowed range of the curvature parameter, for which these solution are at-

tainable. We have also discussed the particular case of cosmic string networks

in N � 1-dimensions, and constrained the values of the expansion exponent, β,

for which these linear scaling solutions might arise in the absence of the energy-

loss mechanism. We have shown that, for non-vanishing energy-loss parameter,

these linear scaling solutions are attainable for all 0   β   1, provided that the

curvature parameter has an adequate value.

We gave special attention to the cosmological consequences of domain wall

networks and their relations to dark energy. We adapted the VOS model for

domain walls to account for the dynamical effects of string and monopole-type

junctions on the evolution of domain wall networks. We found that the presence

of massive junctions is able to effectively “freeze”, or frustrate, the domain wall

networks, provided that their energy density is several orders of magnitude larger

than that of the domain walls. Domain wall networks are able to provide a phase

of accelerated expansion, provided that their velocity is small enough. For this

reason, frustrated domain wall networks have been suggested as dark energy

candidates. However, frustration does not seem to arise naturally as a result of

the evolution of domain wall networks without the existence of an alternative

mechanism to decelerate the walls. Our results indicate that, although the

presence of heavy junctions can effectively frustrate the network, this would

require a very large junction energy density, that is not in agreement with
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observational results. Therefore, our results seem to rule out frustrated domain

wall networks with massive junctions as dark energy candidates. Moreover, we

demonstrated that considering alternative frictional mechanisms does not help

much: in order to decelerate the branes, we should either have that k ! 1 in

the non-relativistic limit, or the contribution of the branes to the energy density

should be subdominant. Therefore, any frustrated domain wall network would

be unable to contribute significantly to the dark energy density.

We have also studied the dynamics of biased domain walls, that (in the

simplest realization) arise when the minima of the potential of the model are

nearly-degenerate. In this case, there is another dynamical effect to take into

consideration in the motion of the domain walls: the pressure that results from

the energy difference between minima. This pressure drives the domain walls

towards the region of higher vacuum energy density. We have adapted the

equation of motion for domain walls to account for this dynamical effect, and

found that it may be interpreted as an effective curvature term, that aids do-

main collapse. We used these results to study the devaluation scenario, that

was proposed as a dynamical solution to the cosmological constant problem.

According to this scenario, after inflation, different patches of the universe fall

into different minima of a potential with a large number of nearly degenerate

minima, spanning a wide range of vacuum density values, and, therefore, a bi-

ased domain wall network permeates the universe. These domain walls would,

then, feel a volume pressure towards the regions of higher energy density, that

would lead to the suppression of these regions. As a consequence, the natural

evolution of the biased domain wall network would lead to the disappearance of

regions with higher values of the cosmological constant, and the universe would

natural evolve towards small values of the vacuum energy density. However,

our results show that, beyond of specific realization of this scenario, devalua-

tion would require a low-energy cut-of in order to reproduce the observed value

of the cosmological constant. In other words, this scenario also suffers from

fine-tuning problems.
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