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Resumo

A Teoria de Cordas — a uma das teorias candidatas a unificacao da gravita-
¢ao com as restantes forcas fundamentais —¢é geralmente formulada em 9 di-
mensoes espaciais. Segundo o modelo mundo-brana, o universo é uma brana
de Dirichlet com 3 dimensoes espaciais, que se pode mover num espago-tempo
9+1-dimensional. Neste contexto, se existisse um par de branas adicional no
espago-tempo, as interacgoes entre estas poderiam provocar uma aceleracao da
expansao do universo. Esta concretizacao natural do paradigma da inflacao em
teoria de cordas — a Inflacao de Branas [1] — tem a interessante propriedade de
terminar tipicamente com uma transicao de fase, levando a producgao de p-branas
de menor dimensionalidade [2, 3]. Assim, espera-se que a inflagdo de branas leve
a formacao de redes de p-branas evoluindo em universos com dimensoes extra.

Nesta tese, estudamos a evolugao cosmologica de redes de p-branas em uni-
versos de Friedmann-Robertson-Walker (FRW) com N + 1 dimensdes. Neste
contexto, comecamos por deduzir a equagao do movimento para p-branas in-
finitamente finas em espagos-tempo homogéneos e isotropicos. Este resultado
serve-nos de ponto de partida para derivar as equacoes que descrevem a evolucao
cosmoldgica do comprimento caracteristico e da velocidade quadréatica média
de uma rede de p-branas. Estas equacoes permitem-nos generalizar o modelo
VOS para cordas [4] para o caso de p-branas de dimensionalidade arbitraria em
espacos-tempo N + 1-dimensionais. Este modelo VOS generalizado permite-nos,
entao, descrever quantitativamente a evolucao de redes de p-branas e estudar
os diferentes regimes que emergem durante a sua evolugao em universos em ex-
pansao ou em colapso. Em particular, estudos da dinamica de p-branas fechadas
maximamente simétricas permitem-nos limitar os valores possiveis para a ve-
locidade quadratica média de redes de p-branas e determinar as condicoes que
devem ser satisfeitas para estas possam atingir um regime invariante de escala.

Estudamos ainda as conexoes possiveis entre redes de paredes de dominio e

iii



v Resumo

a energia escura. As redes de paredes, se congeladas em coordenadas comédveis
ou frustradas, podem provocar a aceleragao da expansao do universo. Por esta
razdo, este tipo de redes foram sugeridas como candidatas a energia escura [5].
Estudos anteriores [6, 7, 8], baseados em modelos analiticos e simulagdes de teo-
ria de campo de alta resolugao, revelaram que a frustracao de redes de paredes
de dominio nao resulta naturalmente da sua evolucao cosmoldgica. Nesta tese,
consideramos o efeito de juncoes massivas tipo-corda e tipo-monopdlo em redes
de paredes de dominio, desenvolvendo para isso um modelo VOS semi-analitico
que incorpora esses efeitos. Chegamos a conclusao que, apesar de a presenca
de juncoes massivas poder levar a frustragao de redes de paredes, a sua con-
tribuicao para a densidade de energia do universo nao pode ser reconciliada
com os resultados observacionais. Analisamos ainda o efeito de um mecanismo
alternativo genérico para a frustragao de redes de p-branas e verificamos que s6
podera frustrar efectivamente a rede de branas se for a componente dominate da
densidade de energia. Por esta razao, as redes frustradas de paredes de dominio
nao poderao contribuir para a energia escura: se a frustracao ocorresse efecti-
vamente, a sua contribuicao para a densidade de energia seria subdominante.
A constante cosmoldgica seria a explicagao mais simples para a aceleracao
actual do universo. Contudo, as previsoes tedricas e o valor observado da con-
stante cosmoldgica sao dramaticamente discrepantes. Em [9], os autores propoe
uma solucao dinamica para este problema — que denominam Devaluacao —,
que tem como base a dinamica de redes de paredes de dominio viciadas. Este
tipo de rede é originado, na sua concretizagao mais simples, se existir uma ligeira
diferenca de energia de vacuo nos dominios. Esta diferenca de energia provoca
o aparecimento de um pressao de volume que “empurra” a parede em direccao
ao dominio com maior densidade de energia, provocando o seu colapso. Para
estudar o efeito desta diferenca de energia entre dominios na dinamica de pare-
des, desenvolvemos um modelo analitico que o incorpora. Este modelo é, entao,
usado para analisar o mecanismo da devaluacao: se o universo for composto por
varios dominios com densidades de energia de vacuo ligeiramente diferentes,
separados por paredes de dominio, as regides com maior densidade de energia
seriam progressivamente suprimidas. Consequentemente, o universo evoluiria
naturalmente para valores baixos da densidade de energia de vacuo. A nossa
analise, contudo, revela que este mecanismo necessitaria de um ajuste preciso
dos parametros do potencial para reproduzir o valor observacional da constante
cosmoldgica e, por essa razao, nao pode ser considerado uma solugao satisfatéria

para o problema da constante cosmolégica.



Abstract

String Theory — one of the candidates for the unification of gravitation
with the other fundamental forces — is generally formulated in ten spacetime
dimensions, instead of the usual four. In the brane-world realization, the visible
universe is a Dirichlet brane with 3 spatial dimensions, moving within the higher
dimensional space. In this context, if the spacetime contains an additional pair
of branes, their interactions could accelerate the expansion of the universe and,
thus, drive an inflationary epoch. This natural realization of inflation in the
framework of string theory — know as brane inflation [1] — has the compelling
property that it ends with a phase transition, in which the production of p-
branes of lower dimensionality is expected to occurs [2, 3|. Therefore, brane
inflation is expected to lead to the formation of p-brane networks, that appear
as topological defects, evolving in higher dimensional cosmologies.

In this thesis, we study the cosmological evolution of p-brane networks in N +
1-dimensional Friedmann-Robertson-Walker (FRW) universes. In order to do
so, we derive the equations of motion for infinitely thin and featureless p-branes
in higher dimensional homogeneous and isotropic backgrounds. These results
are, then, used as a stepping-stone to derive the cosmological evolution equations
for the characteristic lengthscale and root-mean-square (RMS) velocity of a p-
brane network. These equations constitute a generalized version of the Velocity-
Dependent One-Scale (VOS) Model for cosmic strings [4] to branes of arbitrary
dimensionality in N + 1-dimensional backgrounds. This VOS model then allow
us to describe quantitatively the evolution of p-brane networks, and to study
the different scaling regimes that arise in expanding and collapsing universes.
In particular, studies of the dynamics of maximally symmetric closed p-branes
solutions allow us to obtain constraints on the RMS velocity of brane networks,
that are then used find the conditions that the networks need to satisfy in order

to attain linear scaling regimes.
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We also study the possible connections between domain wall networks and
dark energy. Domain wall networks, if frozen in comoving coordinates or frus-
trated, can drive a phase of accelerated expansion. For that reason, they were
proposed as dark energy candidates [5]. Previous studies [6, 7, 8], resorting
to analytical tools and high-resolution field-theory simulations, revealed that
frustration does not arise naturally as the result of cosmological evolution. In
this thesis, we consider the effect of massive string and monopole-type junc-
tions on domain wall networks, by developing a semi-analytical VOS model
that incorporates their dynamical effects. We find that, although the presence
of massive junctions can lead to the frustration of domain wall networks, their
contribution to the energy density of the universe cannot be reconciled with
the observational results. We also analyse the effect of an alternative mecha-
nism for the frustration of p-brane networks and verify that it cannot decelerate
the branes effectively unless it is the dominant energy component. For this
reason, frustrated domain wall networks cannot contribute to dark energy: if
frustration occurred effectively, their contribution to the energy density would
be subdominant.

The cosmological constant would be the simplest explanation for the current
acceleration of the universe. However, there is a dramatic difference between
the theoretical predictions and the observed values of the cosmological constant
that is yet to be explained. In Ref. [9], the authors proposed a dynamical
solution — dubbed Devaluation — to this cosmological constant problem, that
relies on the dynamics of biased domain wall networks. These domain wall
networks originate, in the simplest realization, if there is a slight energy differ-
ence between the vacuum energy density of the domains. This energy difference
causes a volume pressure that pushes the wall towards the higher vacuum den-
sity domain, leading to its collapse. We develop a analytic model for the effect
of bias on domain wall dynamics, and use the results to analyse the devaluation
scenario. According to this scenario, if the universe was composed of several
domains with slightly different vacuum energy densities, separated by biased
domain walls, the regions with higher energy densities would be progressively
suppressed. Consequently, the universe would naturally evolve towards low val-
ues of vacuum energy density. Our analysis, however, reveals that, in order
to obtain the observed value of the cosmological constant, this scenario would
require a fine-tuning of the parameters of the potential, and, for that reason,
cannot be considered a satisfactory solution to the cosmological constant prob-

lem.
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Notation and Units

Throughout this work natural units are used, and a (4, —, —,—) metric
signature is employed. Unmarked greek and latin indices run over spacetime
and space coordinates, respectively; while, greek and latin indices marked with
a tilde take the values 0,---,p and 1,---,p, respectively (except in Subsec.
2.2.1). Italic type is used to represent N + l-vectors, while bold type denotes
N-vectors — so that z# = (2°,x). We also use Einstein summation convention
whereby when indices appear twice in a single term, once in an upper and once
in a lower position, they are implicitly summed over. Moreover, commas denote,
in general, partial derivatives — so that A p = 0A/0B and A, = 0A/0z" —

and dots represent derivatives with respect to the conformal time, 7.
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Introduction

There is overwhelming evidence that the universe has been expanding through-
out its evolution, ever since its extremely dense and hot outset. The early uni-
verse was much denser and hotter than in the present, and therefore cosmology
and particle physics should merge in any rigorous attempt to study this period.

Some important recent developments in cosmology stem particularly from
the application of particle physics theoretical frameworks to the early universe.
For instance, the quantum theoretical description of the contents of the universe
lead to the suggestion that the universe should have underwent, in its early
history, a series of phase transitions and that, and as a consequence, networks
of topological defects might have been formed. These defect networks, although
formed in the early universe, might have important cosmological consequences
for the late-time evolution of the universe. In particular, it has been suggested
that domain wall networks might be related to the puzzling recent acceleration
of expansion: they could contribute to the dark energy budget or, if the network
is rendered unstable, help to explain the small observed value of the vacuum
energy density.

String theory emerged in the endeavour to construct a quantum theory of
gravity, in order to provide a unified description of the fundamental particles and
the four fundamental interactions. Such a theory would be necessary to describe

0~43 5 after the big bang). Recent developments

the very early universe (until 1
in string theory suggest that its fundamental objects — p-dimensional Dirichlet

branes and fundamental strings — might play a cosmological role, and even be



2 Introduction

detectable in upcoming observational probes.

In this chapter, we start by reviewing the Standard Cosmological Model —
that successfully describes the evolution of the universe since, at least, 1072 s
after the big bang — and by discussing its successes and shortcomings. We
also discuss the observational evidence for the existence of an exotic energy
component that accounts for more than two thirds of the total energy density
of the universe which is causing the expansion of the universe to accelerate.
We discuss the properties of this component and review briefly the dark energy
candidates suggested in the literature. Moreover, we review the concept of spon-
taneous symmetry breaking in the early universe and the consequent formation
of topological defects. Finally, we briefly discuss superstring theory and brane
inflationary scenarios, and the recent studies that indicate that brane inflation
might lead to the formation of cosmic superstring and p-brane networks that

might play important cosmological roles.

1.1 STANDARD COSMOLOGICAL MODEL

The Standard Cosmological Model is the prevailing physical description of
the evolution of the universe. This model rests upon the Cosmological Principle,
whereby the properties of the universe are identical everywhere in space — the
universe is homogeneous — and in every direction — it is also isotropic. Under
this assumption, there are no preferred points or directions in the universe, and
thus the same laws of physics apply throughout space. Clearly, the universe
is not homogeneous nor isotropic on small scales, since matter clusters to form
stars, galaxies, and other cosmic structures. However, in cosmology, homogene-
ity and isotropy are defined in a statistical sense and on sufficiently large scales

(larger than the size of the large-scale structure of the universe).

Another cornerstone of this model is the realization that the universe is ex-
panding over time. In 1929, Edwin Hubble published the measurements of the
shifts of spectral lines of 18 nearby galaxies (at a fairly known distance), and
found that all these galaxies were receding from Earth in all directions. More-
over, he found that the recessional velocities appear to increase proportionally
with the distance. If the universe was not expanding (or collapsing), one would
expect the galaxies to move in random directions, with no clear correlation be-
tween velocity and distance. Although the expanding-universe solution to Ein-
steins’s equations was found in 1922 by Alexander Friedmann, the expanding

universe paradigm only gained general acceptance when Hubble’s observational
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evidence for expansion was published.

In the framework of General Relativity, cosmological expansion is regarded
as an intrinsic expansion: it is the spacetime itself that expands, leading to
an increase of the (proper) physical distance between any two well-separated

comoving observers. The physical distance between these observers scales as:

dpn(t) = a(t)dpn(to) (1.1)

where we took a(ty) = 1. Note that, if the observers do not have any peculiar
dynamics (id est, if they are comoving with the Hubble expansion), the varia-
tions of dpn(t) consist merely of changes on the scale of physical distances due to
cosmological expansion, a(t). a(t), then, encodes the dynamics of the universe’s
expansion, and, for this reason, it is generally denominated cosmic scale factor.

The Hubble velocity is, then, given by

d(dpn(t)) _
= d—i = H(t)dpy , (1.2)

where the rate of change of the scale factor, usually denominated Hubble Pa-
rameter, defined as
1da
H=—-—— 1.3
adt’ (13)
was introduced. Eq. (1.2) is known as the Hubble law, and it is the empirical
relation found by Hubble between the recessional velocity of galaxies and their

distance from Earth

v oC dph. (1.4)

The assumption that the universe is homogeneous and isotropic is sufficient
to determine the spacetime metric of an expanding universe: the Friedmann-

Robertson-Walker (FRW) metric, whose line element is

dr?

2 2 2

+r? (df? + sin® 9d¢2)] (1.5)
where r, § and ¢ are comoving coordinates (since a particle at rest in these
coordinates will remain at rest). Here, K is the spatial curvature of the 3-
dimensional space. An homogeneous and isotropic spacetime has three possible
geometries: if K < 0, the universe is open with an hyperbolic topology; if
K = 0 the spacetime is flat; and, if K > 0, the universe is closed, with a

spherical topology.
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1.1.1 Friedmann Equations

The dynamics of the expansion of the universe is generally assumed to be

governed by General Relativity. According to Einstein’s equation

1
G,uu = RIU/ — 59,“,73 = 87TGT/JJ/ + Aguua <16>
where
Rul/ = ng;a - an;u + Fgariﬁw - gVFEa <17>

is the Ricci tensor, R = R} the is Ricci Scalar, and

nv

g
Fgﬁ = 2 (ganB + 9pv,a — gaﬁ,z/) (1.8)

are the Christoffel symbols. A is a constant, dubbed, for historical reasons,

Cosmological Constant, that accounts for the intrinsic energy of vacuum, de-
scribing the energy of empty space. T#" is the Stress-Energy tensor, describing
the energy and pressure of the background universe. Note that if the universe
is assumed to be homogeneous and isotropic, the energy density and pressure of
the universe only depend on t. Moreover, isotropy implies the absence of heat
conduction (so that any changes occurring in the fluid are adiabatic), and the
absence of viscosity or shear forces. Therefore, we assume that the background
behaves as a perfect fluid, and thus it can be described by a stress-energy tensor

of the form

T;J,I/ = (Pb + pb)UuUu - Pbguu ; (19)

where p, and P, are, respectively, the energy density and the pressure of the
background fluid, U* represents its 4-velocity defined as U* = dX*/dr, and
T represents the proper time. In the comoving frame, the fluid is at rest with
respect to expansion, so that U* is such that form U° = 1 and U* = 0.
Assuming an energy-momentum tensor of this form, Eq. (1.6) allows us to

write two independent equations:

8 K A
o o= 2 242 1.1
S7TGm = — 5 (1.10)
dH K
— = —4 — 1.11
7 G (pp + Pp) + ol (1.11)

generally called Friedmann equations. These two equations may be equated to

eliminate K /a?, in order to obtain the Raychaudhuri equation:
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1 d%a 4 A
—_—— = —— —. 1.12
a di2 37TG (pb + 3Pb) + 3 ( )

Moreover, energy-momentum conservation,

., =0, (1.13)
allows us to obtain a continuity equation for the energy density

d
L+ 3H (py+Py) = 0. (1.14)

Note that in many situations of interest, the pressure of a fluid is a linear

function of its energy density:

P =wp, (1.15)

where w is the equation-of-state parameter. By introducing Eq. (1.15) in Eq.
(1.14), it is easy to see that in this case the energy density of the fluid should

scale as

p o a”30Fw) (1.16)

for a constant equation-of-state parameter. Eqgs (1.10), (1.12), and (1.14) then
allow us to describe the dynamics of expansion, as a function of its contents or

vice-versal.

1.1.2 Cosmological horizons

In this subsection, we will present some concepts which are important in
a cosmological model. Let us start by defining more precisely the (proper)
physical distance, at a time ¢, from an arbitrary origin to a comoving object at

a radial coordinate r:

don(r. 1) = at) j ). (1.17)

0 \/1—K7°2 -

where

sinh L (|K|Y?r) , for K <0

|12 _ 1/2

K[ f(r) = K|y , for K=0 . (1.18)
sin '(|K['?r) |, for K >0

INote that only two of these equations are independent
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Since the time dependence stems only from the scale factor, it is easy to see
that the rate of change of dpp(r,t) satisfies the Hubble law (Eq. (1.2)).

Consider now a photon propagating throughout the universe. Photons travel
along null geodesics, with ds?> = 0. For simplicity, let us choose a coordinate
system such that ¢ and 6 remain constant. Therefore, along the photon path,

we have that

dr? dr?
d82 = dtQ — G,Q(t)m = CL2(77) <d772 — m) =0. (119)

Here, we introduced the conformal time,

n = f . (1.20)

o at)’
that measures the comoving distance travelled by a photon since the big-bang
(which we assumed to take place at ¢ = 7 = 0). Since the universe has a finite
age, photons could only have travelled a finite physical distance until the present
time. This distance is commonly named particle horizon, and it is given by:
bt
dp(n) = a(n)f(r) = a(n) | — =a(n)n. (1.21)
0
An observer is, then, unable to receive signals from a distance larger than the

particle horizon?.

The event horizon measures the distance a photon can travel, since a time

t, until a maximum time in the future, ¢,

tmax dt

d.(t) = a(t) ft , (1.23)

a

where t,,,.y is either the time of the big-crunch, for closed models, or t,,,c — +00,
for flat and open models. This distance defines the boundary of the region for
which observers in the future are able to receive signals emitted at time ¢. This
boundary is only relevant for models for which Eq. (1.23) is finite. Otherwise,

if d. — oo, the event horizon does not exist.

2In practise, since before recombination photons were tightly coupled with the baryons,
the observable universe is delimited by a smaller horizon

dopt = a(n)(n —nr), (1.22)
where 7, is the conformal time at recombination, and dopt is denominated optical horizon.
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The Hubble radius, Ry, is defined as the distance at which the Hubble
velocity equals the velocity of the light,

Rg=H"'. (1.24)

This distance delimits a region, denominated Hubble sphere or volume, for which
the recessional velocities are smaller than the velocity of light. Although outside
the Hubble sphere the velocities are superluminal, and seem, at first glance, to
violate special relativity, that is not the case. Hubble velocities are not physical
velocities: they measure the rate of expansion of spacetime itself. In fact, the
physical velocity of any object outside the Hubble sphere, if measured in its local
inertial frame, is smaller than the speed of light and is, thus, in agreement with
special relativity. The Hubble radius is, roughly, the physical distance travelled

by a photon in the characteristic expansion time (or Hubble Time), ty = H 1.

As a consequence of the expansion of spacetime, the wavelength of radiation
is stretched, increasing proportionally to the scale factor — the light suffers
a redshift. In a collapsing universe the radiation would be blueshifted as it
traveled through spacetime. If A\, and A\g are, respectively, the wavelength of

the emitted radiation and the wavelength measured by a distant observer, then

Ao a(mo)
— = . (1.25)
Ae a(ne)
The cosmological redshift, z, is defined as
Ao a(no)
z2=——-1= —-1. 1.26
Ae a(ne) (1.26)

1.1.3 The contents of the Universe and Universe Evolution

In order to describe the dynamics of the universe, it is necessary to know its
ernegetic contents. Frequently, one assumes that there are three main contri-
butions to the energy density of the background: matter (p,,), radiation (p,.),

and the vacuum energy density® (pp = %) Therefore, we can write

Pb = Pm + Pr + PA - (1.27)

Each of these components, if minimimally coupled to the others, satisfies

the continuity equation in Eq. (1.14). However, each has a different equation

3Note that, from now on, we include the effects of the Cosmological Constant in the
background energy density, so that the % term in Egs. (1.10) is absorbed by the definition of
the background density.



8 Introduction

of state. For a fluid of relativistic particles (radiation), w = 1/3, so that

proca”t. (1.28)

The pressure of matter (constituted by non-relativistic particles) is negligible

compared to its energy density. Thus, in this case, w = 0 and

pm € a . (1.29)

By definition, A remains constant, and, consequently, so does the vacuum energy
density.

The critical density, p., is defined as the energy density of a flat universe
(with K = 0). Using Eq. (1.10), we find that

_ 3H?
- 871G

The energy density of the universe determines the geometry of spacetime: if

Pe (1.30)

Pb > pe, the universe is closed (K > 0), while for p, < p. one has that K < 0

and thus the universe is open.
One may define a (dimensionless) density parameter,

Q=2 (1.31)

Pe
for each of the species that contribute to the total energy density. It is also

common to define a curvature parameter

K
O = e (1.32)
so that
Qo + Q. + QA +Qr =1. (1.33)

In this case, the geometry of the universe is determined by the value of Q:

Qr < 0 = K>O,
Q = 0 = K=0, (1.34)
Qr > 0 = K<0.

Introducing these density parameters into Eq. (1.10), we obtain

H? = Hf [Qmoa™ + Qoa™ + Qpo + Qroa™?] , (1.35)
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where parameters with the subscript 0 correspond to their values at the present

time.

1.1.4 Observational Results: Successes and Shortcomings of the Stan-

dard Cosmological Model

The standard cosmological model describes the evolution of an expanding
universe from a state of extreme density and temperature until the final stages
of its evolution. As we travel backwards in time, towards higher and higher
temperatures, the amount of energy available for particle interaction increases:
as a consequence, first the atoms are ionized (at T' ~ 0.3eV); at even earlier
times, the nuclei decompose into nucleons (for 7" ~ 0.1 — 1 MeV); and these
baryons in turn eventually decompose into quarks (for T' ~ 102 MeV). There-
fore, as we travel backwards in time, the universe enters the realm of particle
physics. The perfect relativistic fluid description of the universe may not remain
valid for arbitrarily high temperature: its validity before t ~ 1075 depends
on the assumed framework of particle physics [17, 18]. Note however that this
description could hold up from times as early as t, = 107%3s, if the quantum
field theoretical description of particle physics remains valid up to such high
energy scales (1018 GeV)*.

Nevertheless, there is a steady observational basis that supports the validity
of the Standard Cosmological Model from about 10~2s after the big bang. In
this section, we present some significant observational results, highlighting the
successes of the Standard Cosmological Model, and pointing out some of its

shortcomings.

One of the turning points in the Standard Model’s history was the discovery
of the Cosmic Microwave Background radiation (CMB). This relic radiation,
was predicted in 1946 by Gamow [19]. At high temperatures, the universe was
opaque (optically thick) to photons, because they were in kinetic equilibrium
with the electrons of the plasma via Thompson Scattering. However, as the
temperature dropped to T' ~ 0.3 eV, the formation of neutral hydrogen and he-
lium atoms from the ions of the plasma became energetically favourable, and the
nuclei captured the free electrons (in a process known as Recombination). Con-
sequently Thompson scattering ceased and the photons decoupled from matter.

After decoupling, most of these photons have been propagating freely through

4This energy scale is far beyond the reach of the present day particle accelerators.
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spacetime ever since, permeating the whole sky. Given the fact that, before de-
coupling, the photons were in thermal equilibrium with the surrounding plasma,

this radiation is expected to have a blackbody spectrum.

In 1965, Penzias and Wilson [20] discovered a background radiation, which
appeared to fill the sky uniformly, in the microwave frequency range, and that
could not be explained by any astronomical source or by experimental noise.
This radiation was later identified as the Cosmic Microwave Background [21],
thus confirming Gamow’s prediction, and gaining general acceptance for the
standard cosmological model. Several years later, in 1992, the Far Infrared Ab-
solute Spectrophotometer (FIRAS) of the Cosmic Background Explorer (COBE)
satellite demonstrated that the CMB has the most perfect blackbody spectrum
ever observed in nature [22], characterized by a temperature of 7' = 2.725K.
Moreover, there is direct evidence that the CMB temperature was hotter in the
past, scaling as: T' oc a~! (e.g. from the study of absorption lines in the spectra

of distant quasars [23]).

The CMB also offers the best evidence for the isotropy of the observed
universe: aside from dipole fluctuations that result from the motion of the Earth

relative to the CMB'’s rest frame, temperature fluctuations are very small:

—— <10°°. 1.36
7 < (1.36)

The remarkable uniformity of the CMB temperature indicates that the uni-
verse was fairly isotropic and homogeneous at the time of Decoupling. This
extreme homogeneity and isotropy, however, also highlights one of the short-
comings of the Standard Cosmological Model: the Horizon Problem. According
to Standard Cosmology, the Last Scattering Surface spans a large number of
regions that were causally disconnected at recombination, and therefore it is

unable to explain the observed homogeneity and isotropy of the universe.

The Standard Cosmological Model also withstood another important obser-
vational test: the primordial abundances of light elements (inferred from obser-
vations) seem to be in agreement with the predictions from Big Bang Nucleosyn-
thesis (BBN). BBN theory provides a detailed description of the production of
light elements (*He, D, 3He and "Li), through nuclear fusion, when the uni-
verse was between T' ~ 10 MeV and T' ~ 0.1 MeV. This theory predicts precise

values for the primordial abundances of these light elements (for a given number
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of relativistic particle species), as a function of the baryon-to-photon ratio, np.
These predictions are consistent with the measured primordial abundances if

the a baryon-to-photon ration is within the range [24]°

np = 6.175:57 (1.37)

or equivalently,

Qpoh? = 0.02275-05 (1.38)

where () is the density parameter of baryonic matter. The measurement of
CMB anisotropies also allows us to constrain the values of Q2 and np. The
7 year results of the Wilkinson Microwave Anisotropy Prove (WMAPT) [26],
combined with the Baryon Acoustic Oscillations (BAO) data from the Sloan
Digital Sky Survey (SDSS) [27], and the estimates of the Hubble constant with
the Hubble Space Telescope [28], indicate that

100Q50h% = 2.255 + 0.054,, (1.39)

which is in good agreement with the range of values that are consistent with
the BBN theory (in Eq. (1.38)).

Remarkably, classical astronomical observations, as well as the measurement
of CMB'’s anisotropies, agree as to the geometry, composition and present day
expansion rate of the universe (see Fig. 1.1). According to the combined results
of WMAP7, BAO, and the Type Ia Supernova data from Union2 [29], we have
that

Qo = —0.00670 9% . (1.40)

Therefore, observations indicate that, currently, the universe is extraordi-
narilly flat. Recall that,

Q| o (%) - (1.41)

Hence, in an universe undergoing decelerated expansion (for which a is expected
to decrease over time), if |2k | is non-zero, it is expected to grow over time. This

means that the universe should have been even flatter in the past. If we assume

5There seems to be a significant discrepancy in the abundance of 7Li that is yet to be
explained [25].
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that the initial conditions were set at Planck time, we should have that

Qo <0.02 = Qg(ty) <107° (1.42)

Therefore, the observed geometry of the universe in the present requires fine

tuning of the initial conditions. This is known as the Flatness Problem.

The baryonic matter can only account for a small fraction of the present
energy density. As a matter of fact, most of the matter contained in the universe
is non-ordinary matter: the cold dark matter. The nature of dark matter is still
unknown, however its existence has been inferred several years ago from galaxy

rotation curves. According to Refs. [26, 29], one has

Qo = 0.28170518  and  Qpo = 0.0450 + 0.0016 . (1.43)

The main contribution to the energy density of the universe seems to come

from a Cosmological Constant. In fact, according to [26]:

Qpo = 0.7250 + 0.0036.. (1.44)

Note, however, that although observations indicate that this dominant en-
ergy component behaves similarly to A, observational results allow for other
exotic energy component with a time dependent equation of state. In Ref. [30]
the observational results from Union2, WMAP, BAO and from the measurement
of distances to Cepheids [31] are used to constrain various cosmological models.
The results indicate that the energy density of the dominant component of the
energy density, if not constant, should be, at the present time, slowly varying.
The nature of this energy component is still a matter of speculation, and for

that reason it is commonly referred to as Dark Energy.

1.1.5 Dark Energy

The first evidence for the existence of dark energy came from observations
of Type Ia Supernovae (SNIa). SNIa are ephemeral events that result from the
nuclear explosion of certain white dwarfs in binary systems. The luminosity
curve of SNIa has a characteristic shape and its peak is well correlated to the
duration of the event. Moreover, these supernovae seem to occur both in young
and old stellar populations, and they may be observed at high redshift since
they are very bright. For these reasons, SNIa can be used as Standard Candles

to measure the distance to the galaxies that host them [32].
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Figure 1.1: 68,3%, 95,4% and 99, 7% confidence regions of the (4, 2,,) plane
for Union2 SNIa data, combined with WMAP7 and BAO results. This picture
was taken from Ref. [30]
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Let L be the absolute luminosity of a light source and f the light flux received
from it. Assuming that this source emits photons isotropically, the Luminosity

Distance to this object is defined as

(1.45)

This luminosity distance is by no means the physical distance to that object:
the universe expansion not only redshifts the photons, but also reduces their

arrival rate. Therefore,

drp(z) =1+ 2)rs =1 +2)f! ( OZ };l(z)) , (1.46)

where 7 is the comoving distance to the source and f~! is defined in Eq. (1.18).

For small 2z, we can write the luminosity distance as

1
dp ~ Hy* [Z + 5(1 — qo)ZQ] +0(2*), (1.47)
where qq is the value of the deceleration parameter, defined as

= —q—9_ 1.48

q ( o )2 (1.48)

in the present. Therefore, the measurement of the luminosity distance to Type
Ia Supernovae (or any other standard candles) allows us to characterize the
expansion of the universe in the present, by determining Hy and qg. In 1998,
the use of SNIa as standard candles by two independent groups [33, 34, 35] led
to the startling discovery that, contrary to what was expected, qq is negative,

and that the expansion of the universe is then accelerating.

Using Eq. (1.12), we may write the deceleration parameter as

q= = (14 3wprflpk) , (1.49)

DN | —

where we have assumed that Qx = 0 (which is motivated by the observational
results presented in the previous section), and that the universe contains only
matter and an unknown component which is responsible for the acceleration.
This component is commonly denominated Dark Energy and we use Qpg =
1 — Q,, and wpg to denote, respectively, its density parameter and equation-
of-state parameter. The expansion of the universe is accelerated if ¢ < 0, or

equivalently,
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1

ST (1.50)

WDE < —

Therefore, in order to accelerate the universe, dark energy should be such that
wpg < —1/3, if Q,, = 0. This limit is somewhat lowered if we consider the

existence of matter: wpg < —1/2, for Q,, ~ 1/3.

The cosmological constant, A, was the first dark energy candidate. It is

characterized by a constant energy density, and hence Eq. (1.14) yields

Pr = —pa, so that w=—1. (1.51)

This value of w seems to be in remarkable agreement with combined observa-
tional results from WMAP7, BAO and UNION2 [29]:

w=—1.03570 605 (1.52)

However, there are serious problems concerning the physical interpretation
of A. The zero-point vacuum fluctuations must respect Lorentz invariance, and
therefore the vacuum energy would behave like a cosmological constant [36].
This interpretation of A as vacuum energy comes with a serious flaw: the energy
density generated by vacuum fluctuations is ultraviolet divergent. It is natural,
however, to impose a cut-off at the Planck scale (because General Relativity is
expected to break down above this scale), and in this case the vacuum energy
density would be expected to be of the order of mf;l. The observed cosmological

constant energy density,

pa~ (1072 eV)" (1.53)

is more than 120 orders of magnitude smaller than the theoretical predictions
[37]. This catastrophic discrepancy is still unexplained, and it is known as

Cosmological Constant Problem.

The Cosmological Constant is even more problematic if we realize that the
universe as we know it can only exist for a small range of values of A. A larger
value of A would make the universe accelerate earlier, while large negative values
would cause the universe to recollapse in its early history. This is a severe fine-
tuning problem: in order to ensure that, in the present, pp and p,, are of the
same order — so that the acceleration of the universe is a recent phenomenon
(as the observational results indicate [38]) —, the initial energy density should
be very precisely tuned at Planck time: pa/p, ~ 107123 [18]. Recall that, as
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the universe expands, the matter energy density decreases with a=3, while the
vacuum energy density remains constant. Therefore, we are living in a very spe-
cial epoch in the history of the universe: a transitional period between matter-
and cosmological-constant-domination, which is expected to be brief. This ap-
proximate coincidence of the values of p,, and pp at the present time is another

puzzling feature of A, know as the Coincidence Problem.

These difficulties lead to the search of alternative origins for Dark Energy.
As previously mentioned, dark energy resembles a cosmological constant, but it
is not necessarily so. Observational results allow for a dynamical form of dark
energy with a slowly varying equation of state. In this context, scalar field mod-
els are natural candidates: they seem to be ubiquitous in particle physics and,
consequently, in cosmology. These models — generally dubbed Quintessence —
may be realised with a variety of different potentials [39, 40, 41]. Some of these
models even alleviate a little the fine-tuning problem by having a cosmological
scaling solution [42] or by tracking the background matter field [43]. In any
case, fine-tuning of the parameters of the potential is necessary to obtain the
adequate acceleration (that fits the observations). Moreover, most of the po-
tentials used in the literature lack a strong theoretical inspiration and are, thus,
mainly designed to obtain the correct evolution for a(t). A plethora of alterna-
tives has also been proposed in the literature: scalar fields with non-canonical
kinetic terms (the k-essence models) [44]; models based on the Chaplygin gas
[45, 46], a fluid which behaves like A at late-times; phantom (or ghost) fields
[47] — just to name a few. Another class of models, based on modified gravity,
does not require the existence of this mysterious energy component. There are
several realisations of such models (F'(R) gravity, scalar-tensor theories, brane
world models, ...%) that introduce large-distance corrections to general relativ-
ity, which are undetectable at small scales. These modifications would alter the
late-time evolution of the universe, and therefore might be designed to cause
the cosmic acceleration.

None of the aforementioned models can be considered fully satisfactory.
Note, however, that even if an exotic time-dependent form for dark energy is
found, the cosmological constant problem will still plague modern physics: we

would still need to explain why the vacuum energy vanishes.

In the context of this thesis, we will explore another possible origin for dark

energy: frustrated domain wall networks. It has been suggested in Refs. [5, 49]

SFor a recent review, see [48]
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that a domain wall network frozen in comoving coordinates could provide a
negative pressure, and, consequently contribute to dark energy. However, it
has been shown in Refs. [6, 7, 8], using both analytical models and field the-
ory simulations, that frustrated domain wall networks do not arise in realistic
cosmological scenarios. In chapter 4, we study the role of massive string and
monopole-like junctions in the frustration of domain wall networks, and investi-
gate if these networks could be suitable dark energy candidates. Moreover, we
study the Devaluation Mechanism [9], a dynamical solution to the cosmologi-
cal constant problem, based on the idea that, after inflation, a biased domain
network separating regions with different vacuum energy densities could have
been formed. When a domain wall separates two regions with different energy
densities, it feels a pressure towards the region with the highest vacuum en-
ergy. The regions with higher energy density are suppressed, and therefore this

mechanism is expected to lead to lower and lower vacuum energy.

1.2 COSMOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL
DEFECTS

The early stages of the universe are sensitive to the framework of particle
physics. The standard model of particle physics describes three of the fundamen-
tal interactions between particles — electromagnetic, weak and strong forces—
in a quantum theoretical approach. This model is based on the premise of
symmetry restoration at high temperatures, according to which the observed
symmetries of elementary particles resulted from the breaking of a larger sym-
metry group.

In this context, spontaneous symmetry breaking is described in terms of a
scalar Higgs field. The early universe was, to a good approximation, in thermo-
dynamic equilibrium, so that the equilibrium value of the scalar field is deter-

mined by the minimization of the thermodynamic free energy, F'

F=E-TS, (1.54)

where E is the internal energy, T is the absolute temperature and S is the
entropy. At low enough temperatures, the entropy term in Eq. (1.54) is unim-
portant, and hence the energy is minimized by one of the vacuum states of the
potential. This vacuum state might not be invariant under all the elements of
the symmetry group of the lagrangian density, and, in that case, the symmetry
is said to be broken. However, at larger temperatures, high-entropy states are

energetically favorable. As a matter of fact, the expectation value of ¢ is ex-
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pected to vanish above a critical temperature, T,.. At that point, the universe
undergoes a phase transition. Typically, this high-temperature phase exhibits
the full symmetry of the lagrangian density.

According to the Electroweak Theory, developed by Glashow, Salam and
Weinberg in the 70’s, the electromagnetic and weak interactions, may be re-
garded as different aspects of the same force — the electroweak force. In the
early universe, at high temperatures, this force was described by a lagrangian
density which is invariant under gauge SU(2) x U(1) transformations. This
symmetry, however, was broken as the universe cooled down and, thus, electro-
magnetic and weak interactions seem independent in the present. This unifica-
tion of electromagnetic and weak interactions lead to the development of Grand
Unified Theories (GUT’s) that attempt to unify the electroweak and strong in-
teractions. These theories are based on the same premise as electroweak theory:
the lagrangian that describes this single interaction was invariant under a gauge
symmetry group but this symmetry is now broken.

The universe is, then, expected to have experienced a series of phase transi-

tions in its early stages:

o At Ty ~ 10 GeV, there is a spontaneous breaking of GUT symmetry.
In the simplest version of GUT,

SU(5) — SU(3) x SU(2) x U(1). (1.55)

After this phase transition, the strong interaction and electroweak inter-

action become independent.

o At Ty ~ 102 GeV, the breaking of electroweak symmetry,
SU(3) x SU(2) x U(1) - SU(3) x U(1), (1.56)
occurs and, therefore, electromagnetic and weak interactions separate.

e At Tom ~ 200 — 300 MeV, another phase transition is expected to oc-
cur (or, perhaps several): the quark-hadron phase transition. During this
transition, quark confinement into hadrons takes place. This phase tran-

sition is characterized by the symmetry breaking:

SU(3) x U(1) - U(1). (1.57)

These cosmological phase transitions may have important cosmological con-
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sequences. Recall that, Spontaneous Symmetry Breaking occurs as, at a tem-
perature T, the scalar field acquires a vacuum expectation value (VEV). Since
the universe is composed, at a given time, of several causally disconnected re-
gions, the VEV of ¢ cannot be expected to be correlated on scales larger than
the particle horizon. Therefore, given that all the vacua are equivalent, differ-
ent patches of the universe — characterized by a correlation length ¢ < d, —
are expected to have different vacuum expectation values. In order for ¢ to be
continuous, there must be regions where the underlying field cannot relax into
any vacuum state, giving rise to topological defects. This mechanism for the
formation of topological defects in cosmological phase transitions is known as
Kibble mechanism [50, 51].

1.2.1 The ¢*kink

To illustrate the process of symmetry breaking and the formation of topo-
logical defects, let us consider the simplest model that admits a topological
defect: the Goldstone model [52] with a single scalar field, ¢. For this model,

the lagrangian density is given by

L= 506"~ V(o) (1.58)

with a potential of the form

V(g) =2 (¢* —nm?)”, (1.59)

where ) is a coupling constant. The equations of motion for the scalar field, ¢,

may be obtained by varying the action,

S = JdN+1m«/7—g£, (1.60)
with respect to ¢:

1 dv
N (V=go") , = g
where N is the number of spatial dimensions, g,, is the metric tensor and
g = det(gu)-

In a 1 + 1 dimensional Minkowski spacetime, for which ¢ = —1, the static

(1.61)

solutions should satisfy the following equation of motion

0°¢ _ dV(¢)
2 d (1.62)
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The lagrangian density in Eq. (1.58), with the potential in Eq. (1.59), is
invariant under transformations ¢ — —¢, and thus has a Z5 symmetry. More-
over, V(¢) has two degenerate minima at ¢ = —1 and ¢ = 1. Now suppose that

¢ acquires an expectation value

¢+ = (0[¢]0) = £m, (1.63)

where |0) is the ground state of the model. Although all transformations of, say,

¢ by elements of Z5 yield legitimate VEVs of ¢, not all elements of Z5 have a

non-trivial effect on ¢ . As matter of fact, only the identity of the group does

so. Therefore, once the scalar field acquires a VEV, the Z5 symmetry is broken.
Eq. (1.62) has the following static solution [53]

¢(x) = ntanh [n)\l/22_1/2 (x — xo)] , (1.64)

that corresponds to a kink centered at x = xg which takes ¢ from —m as z — —aoo
tomn as © — 400. Since ¢(z) passes through ¢ = 0 at z = z( (that does not
correspond to a minima of the potential), this configuration has non-vanishing
energy. Moreover, this solution is stable: one would need an infinite amount of
energy in order to relax the field configuration to only one of the vacua. As a
matter of fact, this is a consequence of the presence of a conserved topological

current,

=0, (1.65)

where e is the two-dimensional antisymmetric symbol. This configuration,

then, has a non-vanishing conserved charge

Q= fdxjo = ¢(4+m) — ¢(—0). (1.66)

Since the vacuum state would have Q = 0, the kink configuration is unable to
relax into the vacuum while conserving the topological charge.

Note that, far from = = x(, the potential lies on one of the minima in one side
of the kink and on the opposite minimum on the other. So the kink is, actually,
a boundary where the field interpolates between —n and 1. The energy of this
configuration is localized in the region were ¢ is not in the vacuum. This region

is centered at xg and its thickness is proportional to the mass scale of the model

1 /2
—1

According to Derrick’s Theorem [54], scalar field theories of the form of Eq.
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(1.58) do not admit stable time-independent solitons with a finite energy in
more than one spatial dimensions. There is however the possibility of evading
this difficulty by not being to selective about the solitons: for instance, by
allowing for time-dependence, or by admitting static solutions with an infinite
energy. The kink solution may be trivially embedded in higher dimensional
backgrounds. In a 3+ 1 (or N + 1) dimensional theory, the static solution Eq.
(1.64) remains valid and it represents a 2 (or N — 1) dimensional planar surface,
that depends only on one of the spatial coordinates. This surface separates
two domains with different vacuum expectation values and, for that reason, it
is commonly denominated a Domain Wall. These domain wall solutions have
infinite energy (because they have an infinite extension), however their energy

per unit area is finite.

1.2.2 The Topology of the Vacuum Manifold and the Production of
Topological Defects

Let us now consider a general field theory model, whose action is invariant
under a symmetry group G. If the field acquires a VEV, ¢ (and, thus, the
symmetry breaks), some of the elements of G will have non-trivial effects on ¢y,
transforming it into another vacuum state ¢,. However, there exists a subgroup
of GG, the unbroken group H, whose elements will leave ¢y unchanged. The coset
space, G/H — the space of all non-trivial transformations of ¢y — contains all
the vacuum states. This space is the vacuum manifold of the theory, M, and
its topological properties signal the possible existence of defects and the type of

defects that might appear.

Topological defects appear if the vacuum has a non-trivial topology. Let us
now return to the case of a Zs-domain wall. In this case, G = Z; and H = 1
(where 1 is the identity), and therefore the vacuum manifold consists merely
of two points. These points cannot be continuously deformed into one another.
This fact signals the possible occurence of domain walls: these defects can only
arise if the vacuum manifold is disconnected, due to the breaking of a discrete

Symmetry.

Other types of defects may arise if M has different topological properties.

Let us consider the Goldstone model with a complex scalar field:

_ A -
£ = 500" =7 (06 —n2)" (1.68)
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In this case, the potential has a continuous (global) U(1) symmetry and it is

invariant under transformations of the form

b — ep. (1.69)

The minima of the potential lie in the circle |¢| = 1. Now let us suppose that
¢ acquires a VEV

¢o = (0 |0) =ne”. (1.70)

A transformation of the form of Eq. (1.69) will transform ¢q into ¢ = ne?(@+e)
which, in general, does not correspond to the same vacuum state — the sym-
metry is broken.

Points in physical space are mapped non-trivially into the circle of minima,
so ¢ might span the whole manifold as we travel around a circle in physical space.
Along one such path, ¢ has a non-trivial winding: the phase of ¢ varies by 2.
By continuity, ¢ must vanish in a point inside this closed circle, and therefore
there must be a non-vanishing energy density at this point. This indicates the
presence of a line-like topological defect, usually named Cosmic String. The
number of times ¢ winds around M as a circle is spun around the string — the
winding number — is a topological conserved charge. The energy of these global
U(1) strings is, unfortunately, not localized to a small region around the core
of the defect. Consequently, the energy per unit length of this configuration is
divergent. However, string originated in the spontaneous symmetry breaking of
gauge symmetries do not suffer from the same problem.

Cosmic strings can arise whenever the vacuum manifold is not simply con-
nected, or equivalently, if it contains unshrinkable loops. This type of manifolds

result, in general, from the breaking of an axial symmetry.

Moreover, if the vacuum manifold contains unshrinkable surfaces, the field
might develop non-trivial configurations corresponding to point-like defects, gen-
erally dubbed monopoles. The breaking of GUT symmetry is expected to lead
to the copious production of magnetic monopoles, which would overclose the
universe. However objects of this kind were never observed. This discrep-
ancy between theory and observation is known as Monopole Problem. In 3 4 1-
dimensions, another type of defect may also arise if the vacuum manifold has
unshrinkable 3-spheres. These defects, usually denominated textures, are space-

time defects and are, in general, unstable to collapse.

These results may be summarized in terms of homotopy theory (which is
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used to characterize the topological properties of a topological space). Roughly
speaking, the n!" homotopy group of a topological space, X, is the set of all the
mappings from the n-dimensional sphere into X, and it is denoted by m,(X).
The types of defects that can be formed in a symmetry breaking are deter-
mined by the non-trivial homotopy groups of M [50]: in 3 + 1-dimensions, a

p-dimensional defect can be formed if
7T3_(p+1)(./\/l) * 1. (1.71)

This condition is necessary for the formation of defects, but it is not sufficient:

the topology of M only indicates which type of defects can be formed.

1.2.3 The inflationary paradigm

As we pointed out in Sec. 1.1, the extreme flatness and homogeneity of
the observed universe cannot be explained by the Standard Cosmology model.
However, Guth [55] realised that both these problems may be resolved if the
universe underwent a period of accelerated expansion. The essential feature of
inflation is that the scale factor, a(t), grows faster than the Hubble radius, so

that the comoving Hubble radius decreases with time

% <Ha_1> <0. (1.72)

Therefore, if the expansion is fast enough, the size of the comoving Hubble

radius decreases drastically during inflation. In this case, the observed universe
— which appears to be composed of several causally disconnected regions —
might have been within a causal horizon in the early stages of inflation and the
observed homogeneity might be justifiable on physical grounds. Moreover, since
the final stages of the inflationary epoch are expected to occur after the GUT
phase transition, the density of magnetic monopoles — which are expected to
be copiously produced during this phase transition — is expected to decrease
steeply during this period. This solves the magnetic monopole problem: mag-
netic monopoles are expected to have been diluted by inflation to undetectable
levels. This phase of accelerated expansion would also lead to the flattening of
the universe. One sees that, during an inflationary period, Qx will gradually
decrease towards zero, and, consequently, the universe becomes locally flat.
Inflation also seems to explain the origin of the large-scale structure in the

universe. During an inflationary epoch, small-scale inhomogeneities (due to

quantum fluctuations of scalar or gravitational fields) are stretched to large
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scales. Therefore, these quantum fluctuations might have been the source of the

primordial fluctuation spectrum that seeded structure formation.

The original implementation of inflation, suggested by Guth, was abandoned
due to some inherent flaws. However, the basic idea remained due to the poten-
tial to solve some of the most pressing problems of Standard Cosmology. It has
been replaced by a new inflationary scenario [56, 57|, in which inflation is driven
by a very weakly coupled scalar field (the inflaton). In this scenario, accelerated
expansion occurs as the inflaton, which is initially displaced from the minimum
of the inflaton potential, slowly rolls towards it. As in the case of dark energy,
several models of inflation have been suggested in the literature, but none of
them is particularly compelling or considered definitive. However, the graceful
solutions provided for the shortcomings of the Standard Cosmological Model,

make inflation a generally accepted paradigm.

1.3 DEFECT PRODUCTION IN BRANE INFLATION

Fundamental string theory originated in the search for the unification of
gravity with the other fundamental forces. In quantum field theory, when treat-
ing spacetime as a continuum, several infinite results appear in measurable
quantities. As a consequence, a set of techniques was developed, known as renor-
malization, to deal with these divergences by absorbing them into the definition
of measurable quantities. However, many efforts to construct a renormalizable
quantum theory of gravity have been thwarted. Most of the infinities in these
theories appear when treating the elementary particles as point-particles. This
realization lead to the development of String Theory, in which elementary par-
ticles are represented by extended 1+1-dimensional objects: the particles are
regarded as different modes of oscillation of a Fundamental String. Although
by incorporating supersymmetry, it is possible to construct a theory — Super-
string Theory— that appears to be free of the undesirable infinities, this theory
is only consistent in 10 (941) dimensions. As a consequence, the suggestion
emerged that our universe is in fact 9+1-dimensional, but 6 of the spatial di-
mensions are compactified, so that they are very small and undetectable from

our macroscopic perspective.

Initially, cosmic strings and fundamental superstrings were thought to be
unrelated. In Ref. [58], Witten investigated whether or not superstrings could
grow to macroscopic scales and play the role of cosmic strings. However, in his
work several incompatibilities were brought to light. First of all, the tension of

superstrings appeared to be too high: superstring energy scale is close to the
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Planck scale, so that
Gu = 1073, (1.73)

If superstrings were to play the role of cosmic strings, they should be such that
[59, 60]
Gp < 10752 (1.74)

in order to agree with the observed power spectrum of CMB”. Witten also
noted, in the same article, that macroscopic superstrings would be unstable,
due to fragmentation into microscopic strings (corresponding to light particle
excitations), and to confinement by axion domain walls. Moreover, the produc-
tion of superstrings after inflation seemed unlikely, due to the string’s energy
scale. As a consequence, any existing superstring would have been diluted to
undetectable values during the inflationary epoch.

This article seemed to settle the matters for a decade, however the pic-
ture has changed due to the introduction of the brane-world scenario. This
scenario was proposed as an alternative way to recover the observed 3+1 di-
mensions, in a 9+1-dimensional universe. In this scenario there are two types of
objects: Dirichlet Branes (or Dp-branes), which are p-dimensional surfaces em-
bedded in the larger space, and Fundamental strings (or F-strings), that may
be open-ended or form closed loops. Open F-strings can end on Dp-branes,
with Dirichlet boundary conditions. In this scenario, the visible universe is, in
fact, a very large D3-brane, that can move within the 9+1-dimensional space.
The constituents of the universe consist of segments of fundamental strings with
their ends attached to our brane and are, thus, bound to it. Gravitons, on the
other hand, correspond to vibrational states of closed F-string loops that are
not bound to our brane. Consequently, gravitational effects may depend upon

the extra-dimensions.

1.3.1 Brane Inflation and Defect Production

In the braneworld context, a natural model for inflation, based on the in-
teraction between branes, emerged: the brane inflation scenario. Although this
scenario may be realized in a variety of other different ways (see for example
[61, 62, 63]), brane-antibrane (D-D) inflation [1, 64, 65] is particularly interest-

ing in what regards to cosmic superstrings. Suppose the universe has an extra

7At the time, before COBE and WMAP probes, the constraint was looser, but nonetheless
incompatible with superstring tension.
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image throat

Calabi-Yau

Figure 1.2: Schematic representation of the KLIMT geometry: a warped Calabi-
Yau Manifold with throats. This picture was taken from Ref. [70].

D-D pair separated in the compact dimensions. In this case, inflation occurs as
the branes move towards each other, and it ceases as they collide and annihilate.
The role of the inflaton is played by the inter-brane distance and the inflaton
potential is originated by the interactions between branes. An interesting fea-
ture of this model is that the annihilation of the branes is expected to provide a
mechanism for converting the energy of the relative brane motion into reheating
the universe. Even more compelling is the fact that, during a D-D collision, a
significant portion of this energy may be trapped and lead to the production of

daughter branes.

As a matter of fact, there is a tachyon field living on the worldvolume of
the D-D pair (an open string mode stretching between the two branes). As
the inter-brane distance falls bellow a critical value, the tachyon develops an
instability and triggers a spontaneous symmetry breaking. This, not only leads
to the decay of the original branes, but also leads to the formation of defects via
Kibble Mechanism [66, 67]. In Refs. [2, 68, 69, 3], it has been shown that the
production of branes with lower dimensionality is expected in a large variety of
brane inflation models, and that these defects appear as topological defects to
the 4-dimensional observer. The production of 141-dimensional D-branes (or
D-strings) is favoured over the production of branes with higher dimensional-
ity. Note however that other defects may be produced at a detectable level.
Brane inflation may, therefore, provide a natural mechanism for the formation
of cosmic strings and p-brane networks evolving in a higher dimensional space.
Note also that, since this production occurs in the final stages of inflation, this

defects are not expected to be dispersed by the accelerated expansion.

Brane inflation also found ways off tackling the superstring tension problem,

by recurring to different compactifications of the extra-dimensions. For instance,
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a particularly interesting way of realising brane inflation is the IKLIMT model
[71]. In this model, spacetime is compactified on a Calabi-Yau manifold (see
Fig. 1.2):

ds* = eQA(”L)nuyda:“dx” +ds? | (1.75)

where x| denotes the coordinates in the compact space. The metric of the
physical 4-dimensional spacetime is scaled by a factor eA(*1)— a gravitational
redshift— that varies strongly as function of the compact dimensions. In most of
the compact space, e*(*1) is approximately 1, however it may be much smaller
in some regions, the so-called ’throats’. In the IKLIMT model, inflation occurs
as a D3-D3 pair moves towards each other down one of this throats, and the
consequent string formation occurs in the bottom of the throat. In this case,
the effective string tension measured by a 4-dimensional physicist is, then, sup-

pressed by gravitational redshift

po=e®) 0 with e « 1, (1.76)

while a 10-dimensional observer measures a string tension po (which corresponds
to a string energy scale similar to the 4-dimensional Planck scale). Another
possibility would be the existence of large compact dimensions. In this case the
4-dimensional Planck length can be much smaller than the string length, and,
consequently, the strings appear to the 4-dimensional observer to have smaller

tensions.

Finally, F- and D-strings can only play the a cosmological role of cosmic
strings if there is a way to suppress their natural decay mechanisms (the detais
depend on the particular model considered [70, 72]). However, in Refs. [73,
68, 2], the authors found that D-D inflation naturally leads to the formation of

stable cosmic superstrings with tensions within the range

1072 < Gu <107, (1.77)

but mainly concentrated along Gu ~ 10~7. This range is compatible with the
bound set by the observational CMB data (in Eq. (1.74)).

1.3.2 Cosmic Superstring Properties

Cosmic superstrings have distinct properties that demarcate them from or-
dinary cosmic strings. First of all, there are two types of cosmic superstrings,

F- and D-strings, that have similar properties but have different tensions
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po =" E (1.78)

where pup and pp are, respectively, the tensions of D- and F-strings and g;
is the dimensionless string coupling. Also, superstrings might have a smaller
reconnection probability. It has been shown in Ref. [74] that in the case of
F-strings, the reconnection probability is of the order of g2, and, consequently,
it can be significantly smaller than unity. More recently, it was shown in Ref.
[75] that the reconnection probability, P, is within the range 0.1 < P < 1 for
D-D collisions, and 1072 < P < 1 for the case of F-F string crossings.

These distinctive features of cosmic superstrings are expected to have some
influence on the evolution of cosmic superstring networks. Ordinary cosmic
string networks evolve towards a linear scaling regime, during which its en-
ergy density remains constant relative to the (matter) background density. The
attainment of this regime guarantees that cosmic strings do not become patho-
logical: their energy density never overcomes the background density and, thus,
they cannot dominate the universe. Note that, as a result of cosmic string in-
teractions, the network loses energy due to the formation of cosmic string loops,
and this energy loss is beneficial for the attainment of the linear scaling regime.
In the case of cosmic superstring networks, given that the reconnection proba-
bility might be smaller than unity, this energy loss mechanism is expected to be
less efficient. Consequently, the density of (long) strings is expected to increase.
As a matter of fact, it has been shown in Ref. [76], using numerical simulations
of Nambu-Goto string networks, that if P < 0.1, then pg oc P™¢, with a ~ 0.6

(whereas for P > 0.1 little enhancement of cosmic string density was observed).

The most significant difference between superstrings and ordinary strings,
however, is a consequence of the crossings of superstrings of different types.
In this case, strings are unable to intercommute or pass through each other.
Instead, if a pF-string and a ¢D-string collide, they bind together, giving rise to
a new type of string, usually denoted as (p, ¢)-string. The tension of this bound

state is different, in general, from that of the colliding strings, and it is given by

2
(P, q) = pry[p* + 3—2 . (1.79)

Cosmic superstring crossings may result then in the formation of a trilinear
vertices (or Y-type junctions) where 3 different types of strings meet. This
process, occurring recursively, may lead to the formation of several types of
cosmic superstrings with different tensions. As a matter of fact, when a (p, q)-

string meets a (p’, ¢') string, there are two possible outcomes: either a (p+p', ¢+
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q')-string or a (p —p’, ¢ — q)-string is formed. The outcome of the intersection is
determined by the angle between the strings at the moment of collision [70, 75].
Another important point is that these bound states are only stable if ¢ and p
are co-prime. If they have a common factor, so that p = np” and ¢ = ng”
(for any natural number n), the resulting (p, ¢)-string will rapidly decay into n
(p”, q")-strings®.

Therefore, the creation of (p,q) bound states is expected to lead to the for-
mation of entangled networks with multi-tension spectra, where different types
of strings meets at Y-type junctions. Whether or not the presence of junctions
prevents string networks from attaining a scaling regime is still an open ques-
tion. However, both analytical models [77, 78, 79], and numerical simulations
of non-abelian field-theory networks [80, 81, 82, 83] seem to indicate that F-, D-

and (p, q)-strings reach a linear scaling regime.

The realization that inflation might lead to the formation of cosmic string
and p-brane networks evolving in higher dimensional spacetime, triggered a
revival of the interest in topological defects in cosmology. This interest was
enhanced due to the possibility of detecting the signatures of cosmic strings
and/or cosmic superstrings on the B-mode polarization [84, 85] and on the
small scale anisotropies [86, 87, 88] of the Cosmic Microwave background with
the Planck mission, and the possibility of detecting their gravitational waves in
LIGO2 and LISA missions (depending on their tension) [89].

In this thesis we study the cosmological evolution of p-brane networks in
N + 1-dimensional FRW universes. In order to so, we start by deriving, in
Chapter 2, a equation of motion for thin curved domain walls in higher dimen-
sional backgrounds, which is independent of the underlying field theory model.
This result is then generalized to the case of infinitely-thin p-branes of arbitrary
dimensionality. We also study in detail maximally symmetric p-brane solutions
in collapsing and expanding backgrounds, by determining the microscopic evo-
lution equations for their velocity and physical radius.

In Chapter 3, we develop an analytical model that describes the cosmological
evolution of the root-mean-square velocity and the characteristic length of a
p-brane network. This model describes the whole cosmological evolution of p-
brane networks in expanding and collapsing models, and allows us to study
the different scaling regimes that arise in their evolution. In particular, we
will study the conditions under which p-brane networks evolve towards a linear

scaling regime, with or without energy-loss mechanisms.

8The reconnection probability for collisions of two (p, q)-strings of the same kind might
also be significantly smaller than unity [75].
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The inflationary paradigm [55, 56], based on the idea that the universe un-
derwent a period of accelerated expansion in its early history, provides the most
plausible solution to the main shortcomings of the Standard Cosmological Model
— the flatness, horizon and magnetic monopole problems — and explains the
origin of the large-scale structure of the universe. In the context of the brane-
world realization of string theory, cosmological inflation could be driven by the
interaction between p-dimensional D-branes, which are (along with superstrings)
the fundamental objects of this theory [61]-[65]. These brane inflationary scenar-
ios typically end with a symmetry breaking phase transition, triggering the pro-
duction of daughter branes with lower dimensionality, that appear as topological
defects to the 4-dimensional observer. Despite the fact that, in this process, the
production of 1-branes (cosmic strings) is strongly favoured, higher-dimensional
p-branes may also be generated at a detectable level [69, 2]. Therefore, inflation
may offer a natural mechanism for the formation of p-brane networks evolving

in a higher-dimensional spacetime.

In this chapter, we will study the dynamics of p-branes of arbitrary dimen-
sionality in N + 1-dimensional FRW universes. We will start by deriving, in
Sec. 2.1, the equations of motion for N — 1-branes (or domain walls) in N + 1-
dimensional backgrounds. In Sec. 2.2, we will generalize this result for p-branes
with p # N — 1. Finally, in Sec. 2.3, we will study in detail the evolution

of maximally symmetric closed p-branes, in N + 1-dimensional expanding and

31
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collapsing FRW universes.
2.1 DOMAIN WALL DYNAMICS

In this section, we will derive the evolution equation for the velocity of do-
main walls in homogeneous and isotropic universes of arbitrary dimensionality,
and we will demonstrate that this equation is independent of the underlying
field theory model. This work was published in Ref. [13].

Consider the Goldstone model with a single real scalar field, ¢, described by

the lagrangian density

L= S0u" —V(9), (2.1)

where V(¢) is the potential. Domain walls are expected to arise in models with
spontaneously broken discrete symmetries. Therefore, in order for this theory to
admit domain wall solutions, the potential must have a discrete set of degenerate
minima. The dynamics of these domain walls is determined by the underlying

field theory. By varying the action,

S = Jdeﬁﬁ, (2.2)

with respect to the scalar field ¢, we obtain the following equation of motion:

R
e

where g = det(g,,) and g, is the metric tensor. In a N + 1-dimensional flat

(V=3 0"), = =55 (2.3)

Friedmann-Robertson-Walker universe (FRW), whose line element is

ds® = —dt* + a*(t) dx - dx, (2.4)
we find that
%9 0P 9 dv
=7 TNH- —Vi6 = ~ % (2.5)

where V2¢ = a=2V?2¢ is the comoving laplacian.

In a 3+1-dimensional Minkowski spacetime (with a = 1), a planar domain
wall static solution oriented along the z-direction is described by ¢ = ¢4(1),
with
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Po, AV
Az~ de’

(2.6)

where | = x and we took x = (21,22, 23) and x = x;. By Lorentz invariance,
this static solution may be boosted up to arbitrary velocities along the (positive)
x-direction. In this case, the planar domain wall solution to Eq. (2.5) is still
given by ¢(l) and satisfies Eq.(2.6), but now

l=~(x—0t), (2.7)

where v is the domain wall velocity and v = (1 — v?)~1/2 is the Lorentz factor.
In this case, 0l/0t = —yv and 0l/0x = 7.

Consider the more general case of a curved domain wall in a flat FRW
Universe. Let us assume that the curvature radii of the domain wall are much
larger than its thickness. As a consequence, we expect the scalar field ¢ to vary
quickly in directions orthogonal to the wall and to vary slowly in the tangential
directions [90]. It is convenient to choose a coordinate system (uq,us,us) such
that the wall is, at a given point, a coordinate surface satisfying the condition
uy = constant. The coordinate u; is then chosen to be a length parameter along
the unit (geodesic) normal to the surface at that particular point, @; (which
is then normal to all u; coordinate surfaces). The domain wall is then locally
parametrized by the coordinates us and ug, and it moves along the u-direction.
Moreover, it is also useful to choose an orthogonal coordinate system in which
the coordinate lines us = constant and us = constant are lines of curvature.
In this case, the principal directions of curvature — along which the normal
curvature of the surface takes its extremal values — coincide with the us and
ug-directions and the normal curvatures along these directions are the principal
curvatures of the surface. It is always possible to construct such a coordinate
system in the vicinity of any non-umbilic point — in which the two principal
curvatures exist and are not equal — of a coordinate surface embedded in a flat
space (see e. g. [91, 92]). Note that this set of coordinates is defined locally
in the vicinity of the core of the domain wall. According to Refs. [93, 94], the
range of validity of u; is, roughly speaking, constrained by the smaller curvature

radius of the domain wall in its local rest frame.

Let v be the velocity of the domain wall segment at the chosen point. The

domain wall solution is still given by ¢(l), but in this case [ is such that

ol ol a

— = — = d =— = 2.
ot T 681 Teoan 682 083 0, ( 8)
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where ds; = |dx;| is the arc length along direction u;, dx; = h;du;0;, Q; is
the unit vector along the direction u;, and h; are the scale factor (or Lamé
coefficients) of the coordinate system. We shall use the gauge freedom to choose
the coordinate u; in such a way that measures the arclength along the direction
perpendicular to the domain wall, so that h; = 1 and ds; = du;.

Therefore, we have that

ot~ T a'" es A et T ar '
*¢ o d’¢s 0 dos

Taking into account that, in the thin-wall approximation, ¢ = ¢(t,u;), the

laplacian is given by

vp_ L [0 (hahs 0 \] _[(Loha L ohs) 06 3%
v ¢ N h1h2h3 6u1 hl 6u1 N hg 0u1 + h3 5“1 6u1 * OU? '
(2.11)

The first term in the Laplacian is a curvature term. The curvature vector of

a curve parameterized by p is given by:

_dey

k, =
P ds,’

(2.12)

where €, is the unitary vector tangent to the curve and ds, is the arclength.
The principal curvatures of the surface are, at any point, given by the normal

curvature along its lines of curvature. The principal curvatures are then given

by

]{12 = k2 . fll s and k‘3 = k3 . ﬂl 3 (213)
where
1 [ oas
k, = — =2 : 2.14
2 hg [61@ ]ug_uo ( )
1 [ohs
ks = — |=— , 2.15
° hs [9U3]uFug 219

and u$ and uJ are constants.
The vectors 111, e and s form an orthonormal but, in general, a non-

coordinate basis. Their derivatives can be calculated using the relation
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ou; 1 0h; . 1 0h; .
_ = R Nl 2.1
ou; h; Ou; i Zk: hy Oug W (2.16)
and, hence
1 0ho 1 Ohs
ko — — — fo = —— 2, 2.17
2 hQ (}’ul’ 3 h3 &’ul ( )

The relevant curvature for domain wall dynamics is the extrinsic curvature:
the “bending” of the wall in relation to the flat embedding universe. Mathe-

matically this is measured the curvature parameter

. . 1 6ha 1 Ohs
=k - ks 0y =— | ——+ ——=1} . 2.1
" 2 U1+ X3 1 (hg aul hg 6u1> ( 8)
Therefore, Eq. (2.11) can be written as?
o %9
240 hiih 2.1
V<o I{@m + ek (2.19)

which inserted into Eq. (2.5) (and taking into account Egs. (2.9-2.10)) yields

d*¢s dos dv
a2 YT T Tae (2:20)
where
0
F = % (vv) — 3H~v + K. (2.21)

However, given that ¢ is a solution to Eq. (2.6), we should have that F = 0.
Therefore, we find that the evolution equation for the velocity of a domain wall

in a (3 + 1)-dimensional background is given by

ov

Fris (1—v*)[3Hv—k]=0. (2.22)

It is straightforward to generalize this procedure to the case of N + 1-
dimensional FRW Universes. In this case, domain walls are defects with NV — 1

spatial dimensions whose dynamics is described by

ov

g—i—(l—vZ)[NHv—m]:O, (2.23)

where

n Refs. [95, 90, 96, 93, 94], higher order thickness and curvature corrections to this
expression are obtained.
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N
k=1 ki, (2.24)
=2
and
1 oh;
ki=—) ———1;, 2.2
;m%w (2.25)

are, respectively, the curvature parameter and the curvature vectors associated
with the N — 1 coordinate curves of the domain. Here, we chose an auxiliary
coordinate system (u,---,un) such that the brane moves in the u; direction
and uo, - -+, uy are parameters whose coordinate curves coincide with the lines
of curvature. Note that, in general, the extrinsic curvature and velocity vary
along the domain wall, and, therefore, Eq. (2.23) is valid at each point on the

surface.

2.1.1 Generic Domain Wall Models

In this subsection, we show that Eq. (2.23) describes the dynamics of
generic thin domain walls independently of the lagrangian density, £ (¢, X),
of the model (where X represents the kinetic term). We will follow closely
the derivation presented in Ref. [8], where the validity of Eq. (2.23) has been
demonstrated for planar domain walls. Varying the action in Eq. (2.2) with

respect to ¢, one obtains

R
N

where £ x = (ff( and £ 4 = ‘;—¢

(V=9Lx ¢") =Ly, (2.26)

Assuming a N + 1-dimensional FRW metric, this equation yields

0 3l0) o) 2,
o (ﬁ’X at) +NH,C’X ot —V£7x~v¢—ﬁ,xv (;S—ﬁ’gb. (2.27)

In Minkowski spacetime, a planar static domain wall solution oriented along
the x direction will be given by ¢ = ¢4(1) with

d dos\
— (£’X p ) =L, (2.28)

with | = 2.

Now, consider the coordinate system (uj,---,ux) (as described in Sec. 2.1)
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and suppose that the domain wall is moving along the direction u; with velocity

v. Taking into account that

oL 3

VL x Vo= 2.29
X ¢ 8u1 6u1 ’ ( )
as well as Eqgs. (2.8)-(2.10) and (2.19), the equation of motion yields
d dos dos
—a (ﬁ,x i ) + .F,C,X a £7¢. (2.30)

Again, since ¢4(l) must be a solution Eq. (2.28), we should have F = 0 and,
consequently, Eq. (2.23) remains valid, independently of the form of the kinetic
term. Furthermore, although we only considered models with a single real scalar
field, it is straightforward to verify that Eq. (2.23) describes the correct thin
domain wall dynamics in the context of generic models with various scalar fields.
In this case, we would have an expression of the same for as Eq. (2.27) for each
of the scalar fields and, consequently, we would still recover the same equation

of motion for the domain walls.

2.1.2 Application: The PRS algorithm

By changing the time coordinate in Eq. (2.5) to the conformal time we find

2dV
o’

where dots represent partial derivatives with respect to conformal time, n.

b+ (N—1DH— V3 =—a (2.31)

Domain walls have a constant physical thickness, and consequently their
comoving thickness decreases as a~!. In cosmological numerical studies of do-
main walls, this rapid decrease poses a serious problem: the comoving thickness
becomes rapidly smaller than the grid-size resolution of the simulations, and
therefore it is only possible to resolve the walls during a small fraction of the

dynamical range.

In Ref. [97], it is argued that the dynamics of domain walls is unaffected
by its thickness, in 3 + 1-dimensional universes. The authors then proposed the

following modification to Eq. (2.31):

av
BT
a e

where o and (3 are constant parameters. They also argue that this modification

b+ aHd— V2 =— (2.32)

preserves the dynamics of domain walls as long as the parameters satisfy
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a+§:3. (2.33)

If one sets = 0 (and thus a = 3), the comoving thickness is set to a con-
stant by fiat, and therefore the difficulty in resolving the domain walls through-
out the full dynamical range is overcome. This modification, implemented in
most field-theory simulations of cosmological domain wall evolution, is known
as Press-Ryden-Spergel (PRS) algorithm. Although the claim that the dynam-
ics of domain walls is unaffected if the parameters of the algorithm satisfy Eq.
(2.33) is strongly supported by numerical tests, it has never been demonstrated
that the same dynamics is recovered from both Eq. (2.31) and Eq. (2.32). The
procedure described in Sec. 2.1 can be used to prove the validity of the PRS
algorithm. Changing the spacetime coordinates in Eq. (2.32) to a new set of

coordinates (£,y), defined as

0 1 0
z - - = .34
= d’x, (2.35)
one obtains
0% I} 0o 2, dVv

where V?, =aAV2 and H = a=#?H.

In Minkowski space, a static domain wall solutiondescribed by Eq. (2.36)
is given by ¢ = ¢4(l) and satisfies Eq. (2.6), but in this case | = y (we take
y = (y1,...,yn) and y1 = y). If we now consider the case of a curved domain wall
in a N +1-dimensional Universe, it is useful to choose a set of spatial coordinates
(u1,---,un) as described in Sec. 2.1: the wall is given by u; = constant, and the
coordinate lines on the surface coincide with the principal directions of curvature
(note that, in this case, the coordinates are scaled by a factor of a®/?). In this
case, the domain wall solution will still be of the form ¢ = ¢,(l), but now
[ =~v(up —vf).

If we proceed as described in Sec. 2.1, Eq. (2.36) may be written in the
form of Eq. (2.20), but in this case we have that

F = _6_65 (yv) — (a + g) Hyv + k%, (2.37)

where k¢ is the comoving extrinsic curvature of the domain wall, defined as
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N
K= aPay ) ki, (2.38)
i=2
and k; is given by Eq. (2.25). The factor a”/? in this definition stems from the
fact that, in this case, ds; is not comoving length along the direction wu; since
the space coordinates have been scaled by a factor of a=#/2.
Again, taking into account Eq. (2.6), we should have that F = 0. If we
change back to the physical coordinates, we finally find that

%Jr(l—vz)[(oz—Irg)HU—ﬂ]:O- (2.39)

Hence, if the modified equations are to yield the correct domain wall dynamics,
Egs. (2.23) and (2.39) should be identical, or equivalently, we should have that
B

which proves the claim (2.33), and generalizes it to FRW backgrounds with
an arbitrary number of spatial dimensions. One may then conclude that the
dynamics of thin domain walls is unaffected by the implementation of the PRS

algorithm.
2.2 P-BRANE DYNAMICS

The equation of a p-brane may be derived from the underlying field theory,
and it is then determined by an action of the form of Eq. (2.2). However, in most
situations of interest in cosmology, the thickness of p-branes is negligible when
compared to its curvature radii. Assuming that the p-branes are featureless,
their properties do not change along their surface. In this case, the velocity of
the brane is purely orthogonal to it. A infinitely thin and featureless p-brane
sweeps, while moving in spacetime, an effectively p + 1-dimensional surface (the

worldsheet). The world history of the p-brane may then be represent by

at =t (up), (2.41)

where u; with 7 = 0,1, ---, p are the parameters of the surface, ug is a timelike
parameter, and u; are spacelike parameters. These parameters may be regarded,
at least locally, as coordinates on the worldsheet. The spacetime interval be-
tween two events on the worldsheet is

ds?® = ga/gxi‘]x? dufdu” (2.42)

U
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and, therefore, the induced metric of the p + 1-dimensional worldsheet (or pull-

back metric) is given by

Gip = gagx?‘ﬂx’f;. (2.43)

In analogy to the case of a point-particle, the action of an infinitely thin
and featureless p-brane should be a functional of the worldvolume. In the case
of a particle, which sweeps a 2-dimensional worldline in spacetime, the action
is proportional to the proper length along the worldline. It is then natural to
expect the action of an infinitely thin and featureless p-brane to be proportional

to the “proper” p-dimensional area of the worldvolume:

S=—0, fdf’“u —7, (2.44)

where o, is the p-brane mass per unit p-dimensional area. This action is invari-

ant under reparametrizations of the worldsheet and it is a generalization of the

Nambu-Goto action for cosmic strings to p-branes of arbitrary dimensionality.
As a matter of fact, in the vicinity of an infinitely thin p-brane, the line

element can be written as [98]
ds® = gapdatdz” + dr - dr, (2.45)

where (dr - dr)'/? is the infinitesimal distance to the brane’s (p-dimensional)

core. Therefore, the volume element is given by
Ay = \/|g|dP T udN P (2.46)

Since we are assuming that the p-brane is thin and featureless, the lagrangian
density may only vary along the perpendicular directions and, as consequence,
it depends only on the zP*! ... 2N coordinates. Integrating the action in Eq.
(2.2) with respect to these coordinates, one obtains the Nambu-Goto action for

infinitely thin p-branes in Eq. (2.44), with
op = — Jdea:ﬁ : (2.47)
2.2.1 Equation of motion p-Branes
In this section, we will use the procedure described in Sec. 2.1 to derive the

equations of motion for p-branes of arbitrary dimensionality in N +1-dimensional

FRW universes. This work has been published in [15]. If we have prior knowl-
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edge of the motion described by the brane during its evolution — or equivalently
if the shape of the worldsheet is known — we can, in principle, define a real
scalar field multiplet, ¢¢, in the worldvolume. These fields have some interesting

properties:

e The initial conditions may be set up in such a way that these scalar fields
define a new p-brane whose velocity coincides with the velocity of the
original brane. The dynamics of this new p-brane is then described by the

same equation of motion.

e Since the fields ¢° were defined on the world-volume of the original p-

brane, the energy of the new p-brane is localized.

e This p-brane might be treated as a n — 1 brane (a domain wall) in the
n+ 1 dimensional space swept by the p-brane throughout its motion (with

n = p + 1), since the brane divides this space in two domains.

The dynamics of the scalar field multiplet, ¢¢, is defined by the lagrangian
density

L=X—V(¢), (2.48)

where X = —¢° ; ¢©F /2, and V(¢°) is the potential (on the remainder of this
subsection we shall omit the index e). The potential, V', needs to have, at least,
two degenerate minima in order to admit p-brane solutions, and they can be
made arbitrarily thin by appropriate tuning. Note that the dynamics of the p-
brane is independent of the specific model we choose to describe it, as discussed
in Sec. 2.1.1.

By varying the action

S = Jﬁ«/—gd"“u, (2.49)

with respect to ¢, one finds the equation of motion

Viglo™) =~V (2:50)

=
—g i
Notice that in Egs. (2.49) and (2.50) (and on the remainder of this section), §
refers to the induced metric of the n + 1 dimensional space in which the brane

lives. In this case, it is still given by Eq. (2.43) but now fi =0,---,p + 12.

2In this subsection, greek and latin indices marked with a tilde take the values 0, ---,p+1
and 1,---,p + 1 respectively
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Note that this new p-brane is a planar wall in an intrinsically curved n + 1
dimensional space. So, in order to write down the equation of motion for ¢, we
need to start by determining the metric induced by the N + 1 dimensional FRW
background on this n + 1-dimensional space. One may identify the timelike
coordinate with the conformal time (ug = 1), so that jog = —a®(n). Moreover,
the velocity of the brane may be taken to be orthogonal to the brane itself and,

therefore, perpendicular to all spatial directions along the brane:

Jo; =030 =0, with i=1,..,p+1. (2.51)

Consider a set of local spatial coordinates (uq, ..., up, up+1) such that the
brane is locally a coordinate surface for which u,,; is constant and it moves
along this direction. The spatial coordinates (u1, ..., u,) may be chosen in such
a way that they form an orthogonal set which parametrizes the brane locally
and, for simplicity, whose coordinate lines coincide with the principal directions

of curvature of the surface.

In this coordinate system, the metric elements may be written as

2
n 2 k _ 4212 e x
= | i () et iri, (2.52)
0, if j #1,
so that
§=—a*"Inpinl (2.53)

where the scale factors of the coordinate system, h; = ‘x; were introduced.

Eq. (2.50) then becomes

St Mo~ V2= —a? L (2.54)

with H = a/a and where

P -1 P
2, _ , 0 o9 ,
Vud = (31:[1 hj) (8up+1 (@upﬂ il hj>> ’ (2.55)

is the laplacian for this set of coordinates. Here, we considered the zero-thickness

limit, neglecting the variation of the scalar field ¢ on the directions tangent to
the brane [90] (0¢/du; = 0, for i = 1,...,p). We have also taken h,.; = 1, so
that dup1 is the infinitesimal arc-length along the w,,, direction.

It is now possible to follow closely the procedure described in Sec. 2.1. The

only point that needs special attention is the laplacian. Note that there are
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N — p directions perpendicular to the brane, and there is no reason why the
velocity’s direction should coincide with the curvature normals. Therefore, when
we defined ¢°¢, we necessarily lost information about the normal acceleration of
the p-brane. Nevertheless, in order to write the equation of motion for the
evolution of v, one only needs the tangential acceleration of the p-brane.

If we apply directly the procedure in Sec. 2.1, we find

p
Vi = 622¢> %% (Z ki-\7>, (2.56)
=1

aup+1 8up+1

where k; is the curvature vector of the curve w; (defined as u; = constant,
for i # j and 4,57 = 1,---,p), and v is the unitary vector along the velocity

direction. Since k; and Vv are not necessarily parallel, we find that

ki = ki v (2.57)

is the tangential component of the principal curvature along the direction u;,

and we can define the total tangential curvature as

P
KH = Z kiH s (2.58)
i=1

Given Egs. (2.54) and (2.56-2.58), and using the method described in detail
in Sec. 2.1, one obtains the equation of motion for the velocity of a p-brane in

N 4+ 1-dimensional FRW universes
b+ (1—0?) [(p+ 1) Hv—r)] =0. (2.59)

2.2.2 A simple test: Cosmic Strings

The world-history of an infinitely thin cosmic string in a flat FRW universe
can be represent by a two dimensional worldsheet, z*(ug, u1), obeying the usual

Nambu-Goto action

S = —MJ\/—? du. (2.60)

By varying the action in Eq. (2.60) with respect to z*, and using the Jacobi
identity,

dg = §g" dgus , (2.61)

we obtain the following equation of motion
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ah v nggﬂﬁx@x}ﬂ =0, (2.62)

with

> 1 ( -
o " = —— (V=3 ) 2.63
V== 7). (263)

Since the action in Eq. (2.60) is invariant under worldsheet reparametriza-
tions, we have gauge freedom to impose some gauge conditions. In a flat FRW

background, it is common to choose the temporal-transverse gauge conditions

ug =1 and x-x' =0, (2.64)

where x(n,u) is the 3-vector representing the string trajectory, v = wu; and
where dots and primes are the derivatives with respect to n and u, respectively.
In this gauge, x is perpendicular to the string’s tangent, and it represents the

observable velocity. We can thus, define, at any given point,

X =0V, and x' = |x'|a, (2.65)

where |x| = v(n,u) is the velocity of the string and v and @ are local unitary
vectors with the direction of the velocity and the string tangent at that partic-

ular point, respectively.
In this gauge, the equations of motion in Eq. (2.62) may be written as [99]:

X+2H(1-x)%x = ' (e'x) (2.66)
¢ = —2Hex*, (2.67)

with

X/2 %
€= (1_5(2) . (2.68)

Using the definitions in Eq. (2.65), the left-hand side of Eq. (2.66) yields

%+ 2H (1 - %) % =0V +ov + 2H (1 — v?) vv. (2.69)

Notice that v must necessarily be perpendicular to v. Moreover, the right-hand
side yields of Eq. (2.66)
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gy L L (BY (e
e ! (e X>_76l 7))~ 72k v ) (2.70)

where we have taken into account that ¢ =  [x/|, with v = (1 — v2)~%/2. More-

over, we have used the definition of curvature vector,

_ou
~0s
where ds = |dx| = |x'| du is the physical length along the string. Note that k

k (2.71)

is perpendicular to 11, and that ¥ does not necessarily coincide with the prin-
cipal curvature normal. Consequently, one may define the tangential curvature

component as

K =k-v. (2.72)

The component of Eq. (2.66) parallel to v, then yields

b+ (1—0%) (2Hv —K)) =0, (2.73)

which is equivalent to Eq. (2.23) in the particular case p = 1.

2.2.3 Tangential and Normal Acceleration of Nambu-Goto p-Branes

In this section, we derive the evolution equation for the velocity of featureless
infinitely-thin p-branes directly from the Nambu-Goto action. This computation
fully validates the results obtained using field theory equations in the thin-brane
limit (Subsec. 2.2.1), and allows us to obtain the normal acceleration of the p-
brane. This work was published in Ref. [16].

By varying the Nambu-goto action in Eq. (2.44) with respect to z*, one
obtains an equation of motion of the same form of Eq. (2.62). Let us choose a
local set of orthogonal coordinate system (u1,---,un), at a given point on the
brane’s surface, such that u; parameterize the p-brane locally and upq1,---,un
are perpendicular to it. For simplicity, we shall also assume the u; coordinate
lines are lines of curvature. As in the case of cosmic strings, in a flat N + 1-
dimensional FRW universe, it is convenient to impose temporal-tranverse gauge
conditions

u’ =7, and x-x;=0, (2.74)

52

where x represents the spatial profile of the p-branes in cartesian coordinates,

and we defined ; = 9/0u;.
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Given this choice of gauge, x represents the physical velocity, which is per-
pendicular to the p-brane itself. In a FRW background, Eq. (2.62) then yields

X + (p+DHA-)x=¢"" Z [):—:H#;(xj)Q] , (2.75)

i=1 i

€ = —((P+1)Hepx?, (2.76)

where

1 —x2

o (<xvl>2---<x,p>2f | )

Let €; be a set of unitary vectors with the directions of the axis of the
(uq,---,un) coordinate system. These vectors form an orthonormal basis, and
their derivatives satisfy Eq. (2.16). Note that, for i = 1,---,p:

6 = L (2.78)

Note also that, ‘X’g coincide with the scale factors of the coordinate system, h:.

Moreover, given the choice of gauge, we can define a unitary vector with the

direction of the p-brane’s velocity:

X
v o= — . 2.79
\ ” ( )

This vector is perpendicular to all €;, however it is a linear combination of the

€p11, ", €en vector.

By differentiating Eq. (2.75) with respect to conformal time, we find

a;= (%-6;) 6 = —— 036, (2.80)

and, consequently, there is a component of the acceleration parallel to the p-

brane given by

i_:

a; . (2.81)

p
=1

7

The right-hand side of Eq. (2.75) yields
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P P X = .
_ i 1 ‘ Jli . 06 0 (1\.
& ), [G—ZHM(X,;V] S| AT TS T e P as (;) &
i1 =1 | i %] X ¢ ¢
(2.82)
where we introduced the physical length along the ¢ direction, ds; = ‘x’g dus.
Note the curvature vector along the direction 1,
0é:
k: = —°t, 2.83
= 5 (2:83)
may be written as
0e; I FEN
A= Mrles KLY (2.84)
! j#i %] 1%

where we have separated the geodesic curvature (the components of the curva-
ture which are parallel to the brane) from the normal curvature along i direction,
kéV. Eq. (2.82) may then be written as

X,Z‘ ~ a 1
s |+ kN 4y (—) & . (2.85)
x| % 9 \7

7;’: A~
D)

G#i

Note that the first term in Eq. (2.85) is anti-symmetric with respect to
changes of the form i < j. Therefore, when considering all possible values of

these indices, this sum cancels out.

Therefore, using Eq. (2.75) one finds that
12
X —%-=—(p+ DHA—v*)ov + = > k¥ (2.86)
where we used the fact that

1 0 /1.
i (5) e 25

Using Eq. (2.86), taking into account that x = vv + vv and that v is perpen-
dicular to v, one finds that the tangential acceleration (parallel to the velocity)

is given by
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ar =% = (%-¥) v = v(1 — %) [Zkln p+17—[] (2.88)

where we defined the tangential curvature as the projection of the comoving

curvature vectors along the velocity direction

ki =k v (2.89)

This tangential acceleration allows us to obtain an evolution equation for the

velocity of the p-brane:

+(1=2)[(p+1)Hv—r)] =0, (2.90)

where the total tangential curvature,

p
K| = Z ki (2.91)
=1

was introduced. This equation is identical to that obtained from field theory

equations in Sec. 2.2.1 .

The acceleration along the perpendicular direction €; is given by

P
a; = (X . él) él = él(l - U2) Z k;N . él = él(l — UQ)KULI 5 (292)
i=1
forl = p+1,---,N. Here we have introduced the total comoving curvature
along the perpendicular direction [,
Kl = Z k%v . él . (293)

Therefore, the total perpendicular acceleration —which is simultaneously per-

pendicular to the velocity of the brane and the brane itself — is given by

)"( 1 - ’U Z el/iJ_l - X” s (294)
l=p+2

with x = x_ + x| + x1. The total normal acceleration of the brane is, then,

given by

ay =X, +%_. (2.95)
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2.3 P-BRANE LOOP SOLUTIONS

In this section we study the dynamics of closed maximally symmetric p-brane
solutions — which, for simplicity, we will denominate p-brane loops (in analogy
to the case of cosmic strings). The formation of p-brane loops may, as in the case
of cosmic strings, result from brane interaction during the cosmological evolution
of a p-brane network. The evolution of circular cosmic string loops and spherical
domain walls in a flat FRW universe has previously been studied in [100] (see
also [101]), where the existence of periodic solutions in a de Sitter universe has
been demonstrated. Cosmic strings and other defects can be formed during an
inflationary era or, if various stages of inflation occur, they may be formed in
between. It is thus crucial to understand their evolution in these regimes in
order to quantify their ability to survive any inflationary period which might
occur after they are formed [102, 103]. We will, then, generalize the results in
Ref. [100] by explicitly computing the phase space trajectories and determining
the critical radius for spherical p-branes in space-times with an arbitrary number
of dimensions. We also study in detail the more general evolution of maximally
symmetric p-branes with a S,_; ®R' topology in expanding and collapsing FRW

universes. This work was published in [11].

2.3.1 Equations of Motion for Maximally Symmetric p-Branes

In a N + 1-dimensional Minkowski spacetime, the trajectory of a p-brane

with spherical symmetry may be written, in hyperspherical coordinates, as

x(t,01,-+,0,_1) = q(t) (cos81,sin ; cos O, sin f; sin O3 cos b3, - - -

.-+ ,sin6y...sinf,_scosB,_1,sinb;...sin6,_1,0,---,0) ,  (2.96)

where 01,---,0, 9 € [0,7[ and 0,1 € [0,27[ and, for simplicity, the coordi-
nate system was chosen in order for the defect to be aligned with the first
p-dimensions.

The area of a p-dimensional spherically symmetric p-brane is given by

Sp = (p+1) Cpa lal” . (2.97)
where |g| is the physical radius and
/2

Cj=—
NCERY

(2.98)
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The energy of the p-brane is, proportional to S,vy. It then follows from

energy conservation that

dv 9 pyPs
i (1 —v%) ( = , (2.99)

where s = sign(—gq), and the invariant radius, proportional to the energy of the

p-brane,

R = |q|y"7, (2.100)

was introduced. Note that, it follows from energy conservation that

dR

e 0. (2.101)
This is no longer the case in FRW Universes, since in this case the energy of
the p-brane is no longer conserved: the expansion (or collapse) of the universe
decelerates (accelerates) the p-branes. Therefore, we need to include the usual
Hubble damping term in the equation of motion for v. Recall that the momen-
tum per comoving p-dimensional area is proportional to a~!, and therefore, in

a FRW universe, the velocity of a (planar) p-brane satisfies

vy oc aPtl. (2.102)

The complete equation of motion for v is, then

dv pyPs
2 (1 — 2 — NH 2.103
=0T - o (2,103
so that
1
R _ yr [1 - ]iqﬂ] : (2.104)
dt P
where the invariant radius is now defined as
R=~YP|r|, with r=aq. (2.105)

Now let us consider the case p-branes with a S, ; ® R’ topology (where
0 < i < p). In this case, the p-brane has a number i of dimensions with no
curvature and p — ¢ directions with spherical symmetry. The area per unit of

7-dimensional area of the non curved dimensions of the defect is

Si=(p—i+1)Cpir1vla ™", (2.106)
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and energy-momentum conservation leads to the following equations of motion
(which generalize Eqgs. (2.103) and (2.104) ):

dv _ 9 (p — i)'yl/(p_i)s

prii (1 —v*%) [ 7 (p+1)vH |, (2.107)
& yp [1 - E&] , (2.108)
dt p—1

where the invariant radius is now given by

R = |g|y"" a. (2.109)

Note that these equations are invariant with respect to the transformation
q — —q and t — —t. This implies that the phase space trajectories in expanding
and collapsing universes related by the transformation H — —H are identical.
However, the transformation ¢ — —t implies that the direction in which the

trajectory is travelled is reversed.

2.3.2 p-Brane Dynamics with H =constant

Eq. (2.108) may be rewritten as

% =v+ Hr. (2.110)
Let us consider the case of the de Sitter universe, whose Hubble parameter is
time independent. For the case of spherically symmetric p-branes (i = 0), it
is possible to determine the (r,v) trajectories in phase space. Integrating Egs.

(2.107) and (2.110) we find that the orbits of these p-branes are of the form

yP(1+vHr)=C, (2.111)

where C is constant.

The stationary solution of Eqs. (2.107) and (2.110), characterized by fixed
critical velocity, v., (dv/dt = 0), and fixed physical radius, r., (dr/dt = 0), is
given by

v = H*r? = p—i'
p+1

(2.112)

& (&

This solution describes a p-brane standing still against Hubble expansion or
collapse. We are then able to find the value of C corresponding to this stationary
solution (denoted by C.)
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1 pP/?
C.= HP (pt D2 (2.113)
Trajectories with C > C. will asymptote the line defined by
v=—(Hr)"", when |r|— o, (2.114)

and, therefore, in this limit, the p-brane loop freezes in comoving coordinates
(v = 0). On the other hand, if C < C., we may have two types of trajectories:
it |r| > rc, the trajectories would be of the same form as that with C > C;
otherwise, if |r| < r., the p-branes describe periodic trajectories in phase space.
This is clearly illustrated in Fig. 2.1, where the trajectories of a spherically
symmetric domain wall in a 3 + 1-dimensional universe (with p = 2 and ¢ = 0)
are represented. Trajectories with C < C,. are represented by solid lines and the
dashed lines represent trajectories with C > C.. Note that all the non-periodic
trajectories start at a critical point (represented by a yellow dot) defined by the

condition

v=—Hr=+=1, (2.115)

and end at (r = co,v = 0). In a collapsing universe, the trajectories are travelled
in the inverse direction.
Notice also that the periodic trajectories are asymmetric. From Eq. (2.109),

we have that

vm i (B (2.116)

This expression, combined with Eq. (2.110), shows clearly why this asymmetry
between the collapse and the expansion of the p-brane loop occurs. If the uni-
verse is expanding then there is a damping term that contributes to decrease
|v]. On the other hand, the curvature term differentiates expansion and collapse
of the loop: curvature accelerates or decelerates the p-brane depending whether
it is collapsing or expanding. In the case of a collapsing universe, this asymme-
try is also verified: although, in this case, the Hubble term contributes to the
increase of |v|, the curvature also differentiates expansion, and collapse of the

loop.

0

We may compute a critical (initial) radius, ., corresponding to an initially

static p-brane solution (v° = 0) with C = C, (in an expanding universe, it will
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Figure 2.1: Representation of the trajectories in phase space of spherical domain
walls in a 3 + 1-dimensional universe (p = 2,7 = 0). The critical points marked
with a red dot represent the critical stationary solution defined in Eq. (2.112)
and the yellow dots correspond to the critical points defined by v = —Hr =
+1. The solid lines correspond to trajectories of spherical domain walls with
C < C.. Those with |r| < 7, which correspond to domain walls with periodic
trajectories in phase space, are represented by the purple lines. The blue solid
lines correspond to trajectories with C < C. and |r| > r.. The dashed lines
correspond to trajectories with C > C. which start at the critical point defined
by Eq. (2.115) and end at (r = c0,v = 0)

asymptote to the stationary solution when ¢t — o0). This critical radius is given
by

0 1 pl/Z

" T TH (p+ 1D/ (2.117)

In the case of circular cosmic string loops (p = 1) and spherical domain
walls (p = 2), we find that the initial critical radii are 0 = |[H| ' /2 and
r0 = 21/23=3/4 | |7 respectively. We recover the initial critical radius for a
cosmic string loop found in Ref. [100], however for a spherical domain wall it
is slightly smaller (by about 10%) than the approximate solution given therein.
For larger initially static spherically symmetric p-branes with an initial physical
radius, 7°, such that ‘ro‘ > rY, the motion is not periodic and, if H > 0, the
brane eventually freezes in comoving coordinates. Specifically, the p-brane will

asymptotically behave as
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q = constant , so that Roa,, and vocat. (2.118)

If H < 0, all solutions with |7°0‘ > rY will asymptote the critical point defined
in Eq. (2.115) when t — .

The periodic solutions, with ‘7’0| < 1Y, satisfy

<d(lnR)> o, (2.119)

dt

and, consequently, it follows from Eq. (2.107) (with ¢ = 0) that the velocity is
such that

(v2) = ]%7 (2.120)

where the brackets denote a time average over one period.

If ¢ # 0, these periodic solutions no longer exist. This can easily be seen in
the R|H| « 1 limit. In this limit, the Hubble damping term has a very small
impact on the dynamics of the p-brane on timescales of approximately R, and,
consequently, the dynamics of the p-brane is quasi periodic. Hence, from Eq.
(2.107), we see that the evolution of the velocity is essentially the same for all

branes with the same value of p —i. As a matter of fact, we find that
2 p—t
= — 2.121
which depends only on the number of dimensions with spherical symmetry. We

may write Eq. (2.108) as

R _ g [1 _pmitla L,vz] . (2.122)
dt p—1 p—1

Averaging this equation over one quasi period one obtains

d (R) p—i+1l,, i, i
—=H 1——0— — =—-H —_—
= [ ) | = —a
(2.123)
so that
(R) o« expajHt, with o =— ! (2.124)

p—i+1’
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Hence, if © # 0 and the universe is expanding, the invariant radius of the
p-brane shrinks over cosmological timescales (the opposite occurs if H < 0). In
Fig. 2.2 we compare the evolution of the invariant radius, computed numerically
using Egs. (2.107) and (2.108), against the analytical macroscopic solution given

by Eq. (2.124), and the results seem to confirm the above results.

2.3.3 p-Brane Dynamics with H # Constant

Let us now consider the case of an expanding or collapsing universe, with
a time dependent expansion rate. For simplicity we shall assume that the dy-
namics of the universe is driven by a fluid with w = constant # —1, so that
a o |t|’6, with 8 = 2/(N(w + 1)). We identify ¢ = 0 with either the big-bang
(for w > —1) or with the big-rip (for w < —1).

For -1 < w < w,, with w, = (2 — N)/N, (or equivalently for 5 > 1), the
comoving Hubble radius, H~!/a, decreases with time. Consequently, it is still

possible to find a critical radius associated with a solution characterized by

v—ov. #0, when t— . (2.125)

By requiring that the first and second time derivatives of v vanish asymptotically
at late times, and using Eq. (2.107), we find that

p—i B
H)? = S 2.126
(o)’ = 2 2 (2126)
—1p—i
profotp=i (2.127)
B p+1
In the g — 1 limit, v. — 0 and, therefore,
reH oo (B—1)" or (we —w)?® - 0. (2.128)

Here, the value of the critical exponent, 7., is equal to —1/2 and is independent
of i, p and N.

The critical radius in Eq. (2.126) no longer exists for w < —1 or w > w,. If
w > w,, the comoving Hubble radius increases throughout the evolution. This
means that all p-branes (even those that are initially very large), will eventually
come inside the Hubble sphere. Consequently, at late times the physical radius
will be such that » « H~!, and the p-branes will oscillate quasi-periodically. If

w < —1, however, the Hubble radius decreases with increasing physical time.
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Therefore, any p-brane that initially describes a quasi-periodic trajectory (with

r « H™1) will eventually freeze in comoving coordinates.

The analysis of the collapsing case is trivial and follows directly from the
q — —q and t — —t duality described in Section 2.3.1. In this case, if w <
we, the comoving Hubble radius, |H |_1 /a, increases with time. Hence, all
p-branes will eventually come inside the horizon, and they will oscillate quasi-
periodically when R |H| becomes much smaller than unity. On the other hand,
if w > w,, the comoving Hubble radius decreases with time. Therefore, all
p-branes will eventually have a physical radius much larger than |H |_1, and
asymptotically the physical radius behaves as |r| oc a so that yv o a~ (P,
Consequently, as the universe collapses (a — 0), the p-branes become ultra-
relativistic while staying effectively frozen in comoving coordinates. This result
has been demonstrated in refs. [104, 105] for defect networks in 3+ 1 dimensions,

and we will discuss this regime in more detail in Sec. 3.82.

2.3.4 The impact of Cosmology on small Cosmic String Loops

In Sec. 2.3.2, we have shown that a spherically symmetric (i = 0) p-brane
loops with an initial physical radius smaller than the critical radius in Eq.
(2.112) oscillate periodically. Therefore, their macroscopic dynamics never be-
come dominated by the background cosmology: its effects average to zero on
each period of brane motion. As a matter of fact, if we consider the evolution of
p-branes with R |H| « 1 in a flat FRW universe, Egs. (2.107) and (2.108) imply
that the impact of background cosmology should be very small on timescales
< R. In this section we investigate whether or not there are cosmological mod-
els, in which the large-scale of the universe can affect the macroscopic dynamics
of small spherically symmetric p-brane. Let us assume that H is no now time

dependent, but instead it is of the form

H(t) = Ho + AH(t), (2.129)

where Hy > 0 is a constant and |[AH| < Hy. For simplicity, in this section,
we consider the case of a circular cosmic string loop in 3 4+ 1 dimensions (N =
3,p = 1,i = 0). The generalization of our analysis for arbitrary N and p is

straightforward. If we take

AH = Hy (1 —20°(t+0)) , (2.130)
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where v is the microscopic velocity of the loop and 6 is a constant phase, Eq.
(2.108) becomes
dR 9 9
it (1 —20%(t)) [Ho + H1 (1 —20°(t +6))] . (2.131)
The evolution of the loop during one quasi period is hardly affected by
the cosmological expansion and, consequently, the Minkowski space solution —

given by

t
T = 7 COS (—) ; (2.132)
To
. t
v=-—sin| 5], (2.133)

— is still a very good approximation, in the RH « 1 limit and on timescales
much smaller than H~!. Taking into account that 1 — 2v?(t) = cos (2t), and
averaging the right-hand side of Eq. (2.131) over one time period, one obtains
the following equation for macroscopic evolution of circular loops

d(R H

% = 71 cos (20) (R) |, (2.134)

and, hence, we should have that

1
(R) oc exp(agHqt), with g = 5(305(20). (2.135)

We clearly see that the evolution of the universe may have an impact on
the macroscopic evolution of cosmic string loops over cosmological timescales,
even if they are very small. To illustrate this effect, we solved numerically
the equations of motion for a cosmic string loop. In Fig. 2.3, we plot the re-
sults for the time evolution of the invariant radius of a loop with initial radius
R(t;)Hy = 0.002 and for a Hubble parameter given by Hy = 2H; and 6 = 0.
As expected, this particular cosmology has indeed an impact on the evolution
of the invariant radius making its mean value increase, after each period, by
the predicted amount. Note, however, that this case serves merely for illustra-
tive purposes, and that these kind of effect is only expected in special cases.
Nonetheless, this shows that there are situations in which the evolution of the
universe as a whole may affect the microscopic p-brane dynamics over cosmo-

logical timescales, even though this effect is expected to be very small.

It is interesting to realize that we may write the Hubble parameter as a

function of the loop parameters, R and v, using Eqs. (2.107) and (2.108):
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din R 1,\""
s iy Y ) B (2.136)
dt p—1i

This equation clearly shows that the dynamics of a single p-brane might be used

to infer the dynamics of the underground cosmology.
2.4 CONCLUSIONS

In this Chapter, we derived the evolution equation for the velocity of curved
thin domain walls in NV + 1-dimensional Friedmann-Robertson-Walker universes.
We also demonstrated that this equation of motion is valid independently of the
underlying field theory model. Moreover, we used this result to obtain the
equation of motion for an infinitely-thin p-brane of aribitrary dimensionality in
FRW universes with an arbitrary number of spatial dimensions. Furthermore,
we derived the equation of motion for infinitely thin and featureless p-branes, by
computing the tangential and normal components of the acceleration directly
from the Nambu-Goto action.

We demonstrated explicitly that the Press-Ryden-Spergel algorithm pre-
serves the dynamics of thin domain walls in FRW universes with an arbitrary
dimensionality, if its parameters satisfy a4 /2 = N. This result then validates
the use of the PRS algorithm in field theory simulations of domain wall network
evolution, independently of the lagrangian density of the model. Notice, how-
ever, that the implementation of the PRS algorithm may affect the small-scale
dynamics of the networks: an increasing physical thickness may lead to the de-
struction of its small scale structure, and it necessarily affects the dynamics of
small closed loops. The PRS algorithm also increases artificially the impact of
junctions on the overall network dynamics, however this effect is expected to be
negligible for light junctions.

We have also studied the dynamics of p-branes with a S,_; ® R’ topology
in expanding and collapsing homogeneous and isotropic universes, with N + 1-
dimensions. We have demonstrated that, in a FRW universe with a time in-
dependent Hubble parameter, the spherically symmetric p-branes may have a
periodic motion, provided that their initial radius is small enough compared to
the Hubble radius. We have obtained analytically the equations for these trajec-
tories in phase space for spherical branes and the corresponding critical points,
and we computed the root-mean-square velocity of the periodic solutions. We
have also found that spherically symmetric branes with an initial radius larger
than a critical value will eventually freeze in comoving coordinates. Therefore,

one would expect realistic small loops to decay, due to the emission of gravi-
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tational radiation, while large loops are stretched if the universe is expanding
at a constant rate. Despite the fact that these loops are idealistic in the sense
that they are maximally symmetric and they do not contain small-scale struc-
ture, these results are expected to provide a good insight into the behaviour
of realistic loops produced during the evolution of string networks. These re-
sults may also be relevant to understand cosmic string network evolution during
inflationary stages, as discussed in Ref. [100].

We also studied the case of p-branes with ¢ # 0, and shown that, in this case,
periodic solutions do not exist over cosmological timescales, even if R|H| « 1.
Moreover, we investigated the case of collapsing and expanding universes with
a time dependent Hubble parameter and we found that, for 5 > 1, a critical
radius may still be defined. We found that, as 8 — 1, r.H o (w,. — w)?e, with
ve = —1/2. Finally, we discussed the impact that the large scale dynamics of
the universe can have on the macroscopic evolution of very small loops, showing
that there are situations in which the evolution of the universe as a whole may

affect the macroscopic p-brane dynamics over cosmological timescales.
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Figure 2.2: Time evolution of the invariant radius, R, of a domain wall with
cylindrical symmetry with R(¢;)H = 0.002 (solid line) and the evolution of (R)
as predicted in Eq. (2.124) (dashed line)
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Figure 2.3: Time evolution of the invariant radius, R, of a circular cosmic string
loop for H(t) = Ho + Hi(1 — 2v2(t)) (solid line) and the expected evolution of
(R) (dashed line). We have taken Hy = 2H; and R(t;)Hy = 0.002.
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In order to understand the cosmological consequences of p-brane networks,
it is necessary to understand their cosmological evolution. The main features
of the evolution of standard cosmic strings have been extensively studied in
the literature, using both analytical and numerical tools. The formation of
string networks is expected to occur as a result of symmetry breaking phase
transitions in the early universe, which is a very dense environment. Therefore,
cosmic string motion is expected to be, right after formation, heavily damped
due to interactions with the relativistic particles of the surrounding plasma. The
early evolution of string networks is then essentially determined by the frictional
forces caused by these interactions, and, for that reason, their dynamics are said
to be friction-dominated in this phase. The friction-dominated epoch, however,
is transient: as the universe expands and the radiation energy density decreases,
the effects of friction become progressively less important and eventually become
negligible.

Once friction becomes sub-dominant, the evolution of the network is es-
sentially determined by the interplay between the damping caused by Hubble
expansion, and the energy loss provoked by string interactions. This energy loss,
caused by the formation of closed loops and subsequent radiative decay, plays
a key role in the network’s evolution. In the absence of any energy loss mech-
anisms, the background energy density would decrease faster than the cosmic
string energy, and thus cosmic strings would eventually dominate the energy

density of the universe. If an energy-loss mechanism exists, however, the net-
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work may evolve towards a scale-invariant regime, in which the string energy
density remains a constant fraction of the background energy density. In this
case, the cosmic string networks do not have pathological cosmological conse-
quences.

The first attempts to describe the large-scale evolution of string networks
analytically were based on the assumption that a single lengthscale — the cor-
relation length — is sufficient to describe their dynamics [106, 107, 108]. Using
these One-scale models, the authors were able to demonstrate that the linear
scaling regime is stable and, therefore, if the networks attain this regime, it will
determine their late-time evolution. Moreover, subsequent numerical simula-
tions [109, 110, 111, 112, 113, 114] revealed that these models provide a fairly
good description of the large-scale dynamics of string networks, but they are
inadequate at small-scales. In particular, these studies revealed that string in-
teractions lead to the production of small cosmic string loops — much smaller
than the correlation length — and therefore one-scale models are inadequate
to describe the small-scale structure of the strings. On the positive side, in
these simulations, the string networks appeared to be evolving towards a linear
scaling regime, indeed. Several other analytical models, resorting to the use
of more than one lengthscale, were subsequently developed in an attempt to
account for the small-scale structure and to provide a more accurate description
of loop production and decay [115, 116, 117]. These models, however, have the
unattractive feature of having several phenomenological terms.

In Ref. [4], the one-scale model was ameliorated by treating the average root-
mean-square velocity of the network as a dynamical variable (in the original one-
scale model it was assumed to remain constant). This Velocity-dependent One-
scale model provides a quantitative description of the string network throughout
its evolution, describing the friction-dominated early-time evolution as well as
the natural attainment of a linear scaling regime. We will outline this model in
Sec. 3.1.

In Sec. 3.2, we will, then, generalize this model to describe the large-scale
evolution of p-brane networks of arbitrary dimensionality, in N + 1-dimensional
Friedmann-Robertson-Walker universes, using the results of the previous chap-
ter. As in the case of cosmic strings, the evolution of p-brane networks may
be separated in two different epochs: a friction-dominated era, in which the
motion of p-branes is damped due to particle scattering; and a frictionless era,
in which the evolution of the network is mainly determined by Hubble expan-
sion (or collapse) and by brane interactions. In Sec. 3.3, we study the different
scaling regimes that may arise during the frictionless era, in expanding and col-

lapsing universes. We will focus particularly on the conditions that a p-brane
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network must satisfy in order to attain a linear scaling regime. In Sec. 3.4,
we will study the scaling regimes that may arise while the p-brane motion is

friction-dominated, in collapsing and expanding universes.

3.1 VELOCITY-DEPENDENT ONE-SCALE MODEL FOR COSMIC
STRINGS

The Velocity-dependent One-scale (VOS) model, proposed in Ref. [4] and
later extended in [118], describes the evolution of the root-mean-square velocity
and characteristic lengthscale of cosmic string networks in 3 + 1-dimensional
FRW universes. This model provides a quantitative description of the large-scale
evolution of cosmic string network, both at early and late times. Interestingly,
the linear scaling regime is an attractor solution of the VOS equations, and,

therefore, in this framework, string domination is naturally avoided.

3.1.1 Lengthscale Evolution

The VOS equations for cosmic strings are obtained by averaging the Nambu-
Goto equations of motion in 3 4+ 1-dimensional FRW universes, in Eqgs. (2.66)
and (2.67).

The total string energy is defined as

E = pa(n) f edu, (3.1)

where € is the coordinate energy per unit length defined in Eq. (2.68), and p is

string energy per unit length. The total string energy density should scale as
E

and, thus, by differentiating Eq. (3.1), and using Eq. (2.66), we find that

% +2Hp(149%) =0, (3.3)

where the root-mean-square (RMS) string velocity,

.2
o .oy JXedu
Y _<X>_ [edu ’

(3.4)

was introduced.
The VOS model is based on the assumption that the large-scale evolution of a

long-string network may be described by a single lengthscale, the characteristic
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length L. This lengthscale can be interpreted both as the typical distance
between nearby strings, and the typical radius of curvature of the cosmic strings.
In each volume L3, there is, on average, a string segment of length L, therefore

we can define the characteristic length as

_ kL
Using Eq. (3.3), we obtain
dL
— —HLOL+ v?), (3.6)

which describes the cosmological evolution of the characteristic length of the

string network.

3.1.2 Velocity Evolution

Another key feature of the VOS model is the fact that the RMS velocity is
a dynamical variable. Therefore, to complete the description of the network’s
evolution, we need an equation of motion for its RMS velocity. By differentiating
Eq. (3.4), and using Egs. (2.66) and (2.67), we obtain the evolution equation

of motion for v

% = (1-2%) [% — 2Hv] , (3.7)

which is exact up to second order [4], and was derived under the assumption
that

%) = (%27 (3.8)
Moreover, the average radius of curvature, R, defined by

a(n) . d*x
SAEres (39)

was introduced. In Eq. (3.9), G represents the unitary curvature vector and ds

is the physical length along the string,

ds = |x'|du = (1 — x2)7 edu. (3.10)

In Eq. (3.7), a dimensionless curvature parameter k, defined by

(1 -%*)(x 1)) =ko(1 —0%), (3.11)
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was also introduced. This momentum parameter measures the angle between the
curvature vector and the velocity of the cosmic strings, and, thus, it evaluates the
existence of small scale structure on the strings. For string networks with small-
scale structure, k is a dynamical variable that depends on the RMS velocity of

the network. In Ref. [118], the following ansatz for k was proposed

1 — 84S
1—8v6°

Therefore, although this model uses an unique scale to describe the network

k(v)

_2\2
B s

(1 —0%)(1 + 2v/20%) (3.12)

evolution, the effects of small-scale structure on the dynamics may be included in
the evolution equation for the RMS velocity, by considering a velocity-dependent

curvature parameter.

3.1.3 Loop Production and Energy Loss

Egs. (3.6) and (3.7) do not take into account string interactions. When two
cosmic strings meet they exchange partners and reconnect (see Fig 3.1), leading
to the creation of two kinky cosmic strings. This particular type of interaction
does not lead to any energy loss by the network, however the same process can
lead to the formation of cosmic string loops in two ways: if a cosmic string self-
intersects or when two kinky cosmic strings intersect at more than one point.
Most of these cosmic string loops are very small, and consequently they begin to
oscillate quasi-periodically and decay radiatively (in general via the emission of
gravitational radiation). The production and decay of cosmic string loops leads,
then, to energy losses, and it must be taken into consideration in Eq. (3.3).

The rate of loop production, as a result of string collision, has been estimated
by Kibble in Ref. [106]. Let us regard the string configurations as a collection
of independent segments of length L, each in a volume L3. The probability of
another segment of length ¢ (moving with velocity v) encountering one of the

other segments within a time Jt is, approximatively,

o— . (3.13)

The probability of creation of a loop with a length within ¢ to ¢ + d¢ may, if we
maintain the one scale assumption, be described by a scale-invariant function of

the ratio ¢/L. The rate of energy loss caused by loop production is, then, given
by

dp

_ v tde _ . _p
g =0y fw(E/L)Zf =cug, (3.14)

loops
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where the energy-loss parameter, ¢, was introduced. According to [4], the energy
loss parameter is expected to be constant throughout the nertwork’s evolution.
Using Eq (3.5), we find that

s (3.15)

3.1.4 Frictional Forces

Throughout their evolution, cosmic strings scatter off the relativistic parti-
cles of the background plasma. This particle scattering results in a frictional
force per unit length that might be described by [119]:

1 v

F=——— 3.16
Cr /1 — 2 ( )

where v is the string velocity vector and ¢; is the friction lengthscale, defined

as

7
b= 3 (3.17)

where T is the background temperature and [ is a numerical factor related to
the number of particle species interacting with the strings.

This frictional force can be included in Egs. (2.66) and (2.67), by adding an
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extra-term of the form

_ 1
(U™ — 2 zaMiU,) —, (3.18)
Uy
where U“ is the four-velocity of the background fluid. In the case of a FRW

universe, the four-velocity of radiation is given by

U® = (a"",0,0,0) . (3.19)

This extra effect may be included in Eqgs (2.66) and (2.67) by replacing the
Hubble Damping term by [119]:

a a
2= 4 . 3.20
P (3.20)

If we proceed as in Sec. 3.1.1 and 3.1.2, we find that

dp v? U
dL 2
2— = (2H+ — |L+¢év 3.22
i ( + £d> + cv, (3.22)
dv k v
— = 1-Y)|=—-— 2
@ - a-ali-7] (3.23)

where the damping lengthscale, that includes damping caused both by Hubble
expansion and by the frictional forces,
1 1

— =2H + — 24

was introduced. Egs. (3.22) and (3.23) allow us to describe the cosmological
evolution of a cosmic string networks, and they form the basis of the VOS model

for cosmic strings.

3.2 VELOCITY-DEPENDENT ONE SCALE MODEL FOR P-BRANE
NETWORKS

In Ref. [120], the VOS model for cosmic strings was generalized to isotropic
and anisotropic N + 1-dimensional backgrounds. Furthermore, a phenomeno-
logical VOS model [121, 122] for domain wall networks in isotropic backgrounds
was shown to successfully describe the results of high-resolution field theory nu-

merical simulations [8]. In this section, we develop a more general VOS model
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that describes the dynamics of p-brane networks of arbitrary dimensionality in
N + 1-dimensional homogeneous and isotropic universes in a single framework.

The work presented in this section was published in [14, 15].

3.2.1 Equation-of-State Parameter of a p-brane Network

In order to derive the equation of state for a p-brane network, let us start
by computing the energy-momentum tensor of a p-brane. Consider a local
inertial frame in which a p-brane segment is instantaneously at rest. For a
locally flat p-brane, we may choose a local set of planar orthogonal coordinates
(t, xl, ... ,xN), such that z!, ..., 2P parameterize the brane and 2?1, ... 2V
are perpendicular to it. The properties of a featureless p-brane do not change
along the parallel directions, and, for that reason, the physical velocity is purely
perpendicular to the brane. Therefore, the energy-momentum tensor, T#", must

be invariant under Lorentz boosts along the tangential directions of the brane.

Consider a boost along one of the parallel directions 157 withi=1,---,p.

The energy-momentum tensor, transforms as

T = AAR T, (3.25)
where
Agl = Ag =7 Ag, = Ag =v, Aél =1, (3.26)
and all other components vanish. Here i = cooeup,l=1,--- N and [l # 1.
Hence
TO/l' _ ")/TOI + "}/'UTgl _ TOl ’ (327)
Ti~’l’ _ ,YT; + ’)/’UTOZ _ T;l ’ (328)
(3.29)
which leads to
7% =T = 0. (3.30)
Moreover,
TO7 = 42 (TOO + T“) +72 (1 +0?) T% = 7%, (3.31)

from which we obtain

T = 0. (3.32)
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Finally, we have that
700" _ ~2T00 4 721}2T'i% = 700 (3.33)

which yields
T = -T%. (3.34)

If the p-brane is maximally symmetric with respect to the N — p perpendic-
ular directions and its energy is localized, then Derrick’s theorem [54] implies

that a necessary condition for stability is that [123]
J dPxT™™ =0, (3.35)

for m > p+1 (with D = N — p and dPz = dzP™! x ... x dz"). Furthermore,
spherical symmetry with respect to the D perpendicular directions implies that,
at the core, we should have that 7" =0,forn 2 p+1, m = p+1 and n # m.
In most situations of interest in cosmology, the thickness of the p-brane is very
small when compared to its curvature radii and may therefore be neglected.
If the p-brane is infinitely thin, the non-vanishing components of the energy-

momentum tensor are
™ =07, jdpa:éN(X —xp,), and T = —0p fdpxéN(x —Xp), (3.36)

where o0, is the (constant) p-brane mass per unit p-dimensional area, x is a N-
vector whose components are cartesian coordinates, x, represents the p-brane

spatial profile, and 6V (x) is the N-dimensional Dirac delta function.

Consider a perfect gas of planar p-branes, moving with an average velocity
vl inside a large volume, and let us assume, for simplicity, that they are aligned
with the (z1,---.x,) coordinates. Although this is a simplistic construct, we
shall see that it will allow us to derive an expression for the equation-of-state
parameter of a p-brane network. Following the approach in Ref. [17], in the
limit of many p-branes, the average energy-momentum tensor of the brane gas

will be

3
]

<T;W> =

5 (3.37)

where we defined

1% will be properly defined in the next section.
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Ty, = f dPxT,., (3.38)
whose non-vanishing components are Tg = 0p, and Tg = —o,, for i=1,---,p.

Furthermore, we made the assumption that, on average, there is approximately
a p-brane segment of p-dimensional area LP in each volume LY. Under this
assumption, the average number of p-branes per D-dimensional (perpendicular)
area is given by L. As in the case of the VOS model for Cosmic strings
discussed in Sec. 3.1, this characteristic length, L, will be the unique scale used
to describe the network.

Let us now assume that the p-branes are moving with an average velocity v
in the positive x; direction, with [ > p + 1. By performing a Lorentz boost of

T,,, along this direction, characterized by

A =AY =+, AL =AY =qv, and AV =1, for i1, (3.39)

it is straightforward to show that

TO/I = ’)/2(7;0, j:‘ll/l = ’)/2/(_}0']), ﬂ” = Tol: = 721_10'1) 3 TZE:I == _Up, (340)

and that the remaining components vanish. The average energy-momentum
tensor for the p-brane gas may, then, be obtained by averaging over all possible

orientations and boost directions. We then find that

Op ;.
(T)) = 5y diag (Nv*,v%9% = p, -+, 0" = p) , (3.41)
and, consequently,
P 1 .
Wy = 5 = N[(p-l—l)UQ—p] . (342)

Here, P is the average brane pressure, defined as

_ 1 ;
= — (7). (3.43)

and p is the average p-brane energy density

p=(1y) . (3.44)

Note that Eq. (3.42) has two important limits. In the relativistic limit, with
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v — 1, one has that w — 1/N independently of the dimensionality of p-branes.
On the other hand, in the non-relativistic limit (v — 0), one has w = —p/N.
Note also that Eq. (3.42) is identical to that obtained in Ref. [124] directly

from the Dirac-born-Infeld action.

3.2.2 Lengthscale Evolution

Let p be the average p-brane density of the universe, defined as

p=V"1 dev, (3.45)

where p is the p-brane energy density and V' is the physical volume. Let us
assume that the p-brane network is statistically homogeneous and isotropic on
large enough scales, so that it behaves effectively as a brane gas. Energy-

momentum conservation in a FRW universe implies that

%JFNH (p+P)=0, (3.46)

where

P=V"1 JPdV (3.47)

is the average brane pressure.

It is straightforward to show that, in the case of a p-brane network, the
energy-loss due to interface collapse may be described by a term of the same
form as in Eq. (3.14). However, some remarks are necessary. For simplicity, we
shall consider the most trivial case of flat p-branes. A moving p-brane sweeps
a g-dimensional surface (with ¢ = p + 1), with N — g degrees of freedom. If
N < 2(N — q), two flat g-dimensional surfaces intersect in general. However,
that is no longer true if N > 2(N —q) (or equivalently p < (N —1)/2), and a p-
brane cannot be expected to necessarily encounter another one after travelling a
distance L. In fact, due to the higher dimensionality of the background space, p-
branes can miss each other. Therefore, in this case, any energy-loss mechanisms
are expected to be less efficient. Moreover, in expanding backgrounds, the
probability of interaction, for p < (IV — 1)/2, is expected to decrease over time,
insomuch that — even if ¢ is initially considerable — it is expected to decrease
to very small values throughout the evolution. Nonetheless, we shall include a
term of the form of Eq. (3.14) in the evolution equation for the energy density
of p-branes, bearing in mind these differences for p < (N —1)/2.

By introducing Egs. (3.42) and (3.14) into Eq. (3.46), one finds that:
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dp v? cv
L4+ (DH+—)p=—-=— 4
dt+< +Ed)p 7 (3.48)

where the effects of friction were included in the damping length,

LY S (3.49)

and D = N —p. The scaling behaviour of ¢/; will be discussed in Sec. 3.4. Here,
we have also introduced the RMS velocity of the network that, in this case, is
defined by

_ JvPpdV
o [pav

In this section, (---) denotes the volume weighted average. An equivalent defi-

(3.50)

nition for 1-branes would be

5 [ v?vdl
- frdl

As in the case of cosmic strings, we assume that the p-brane network may

(3.51)

be characterized by a single lengthscale, the characteristic length L. This scale

may be defined as

__ol? oy
Alternatively, one may use the physical length, defined as
o
(p/7) = LNp_p : (3.53)
ph

This definition is not as useful as that in Eq. (3.52), since a direct relation
between Ly, p and v does not exist. Albeit, L, has the advantage that it
is only sensitive to the spatial profile of the network, and that it measures the
physical distance between nearby branes. In any case, L and Ly, are, in general,
very similar, except if the p-branes are ultra-relativistic, as we will discuss in
Sec. 3.82.

Using (3.52), we then find that

dL L c
— =HL+ —70* + —70 54
dt T ot T o (3.54)

describes the evolution of L during the evolution of the p-brane network.
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3.2.3 Velocity Evolution

In order to obtain the evolution equation for the RMS velocity, we average
the equation of motion for the velocity of the p-branes, obtained in Sec 2.2.3.
Multiplying Eq. (2.90) by v, making the weighted volume average, and then

dividing by v, one obtains

%+%<v(1—v2)[(p+1)HU—Hn]> =0. (3.55)
If we assume that
(") = @7, (3.56)

this further simplifies to

-2 [ﬂ_ﬁ] —0, (3.57)

1—v%) k) B Jv (1 —v?) kypdV
(1-22)  o(1—22) [pdV ° (3.58)

The assumption in Eq. (3.56) is valid in the relativistic limit up to first
order in (1 — v), and it has negligible impact in the non-relativistic limit. This
assumption is equivalent to that of the original VOS model for cosmic strings, in
Eq. (3.8). Note that k is a dimensionless curvature, and it is also related to the
existence of small scale structure: it measures the deviation of velocity direction
from the curvature vectors, and, thus it is a measure of brane’s smoothness
(recall Egs. (2.89) and (2.91)). It can, therefore, be easily identified with the
momentum parameter in Eq. (3.11). Note also that although it is possible
to construct network configurations with the same o but different k, in most

realistic situations it is sufficient to consider that k = k(v).

Egs. (3.54) and (3.57) constitute a unified VOS model for the dynamics
of p-brane networks in N + 1- dimensional FRW universes. Notice that this
equations reduce, for p = 1, to the VOS equations of motion for cosmic strings
in FRW universes of arbitrary dimensionality [4, 120], and that they were derived
under the same assumptions. Note also that, for p = N — 1 and N = 3, these
equations reduce to the VOS equations of motion for domain wall networks in
3 + 1-dimensional FRW universes derived using phenomenological arguments
in Ref. [121]. As a matter of fact, the VOS equations for cosmic strings and

domain wall differ mainly on the coefficient of the cosmological damping term,



74 Velocity-Dependent One-Scale Model for p-Branes

that assumes the value 2 for cosmic strings, and N for domain walls. Therefore,
the differences between the macroscopic evolution of cosmic string and domain

wall networks are expected to increase as the dimensionality of space increases.
3.3 FRICTIONLESS SCALING REGIMES

In this section, we will use the generalized VOS model to study the scaling
laws of p-brane networks in expanding and collapsing homogeneous and isotropic
backgrounds, during the frictionless epoch. For simplicity, we shall assume that
the dynamics of the universe is driven by a fluid with w = constant # —1, so

that
2

B .
t th f=-—" .
b, with N(w+ 1)

(3.59)

Here t4 > 0 represents the time elapsed since the initial singularity (if dt, = dt)
or the time remaining up to the final singularity (if dt, = —dt) at t, = 0. We
shall consider six different models labelled by M/, where s = + depending on
whether dt = +dt, and i =1,20r 3 for 5 < 0,0 < < 1or 8> 1, respectively.
The models My, M; and M; represent expanding solutions with ¢, = 0 either
at the the big-bang (M and M;") or at the big rip (for M; ). The models M,
My and My represent collapsing universes with ¢, = 0 either at the the big-
crunch (M, and My ) or at the initial infinite density singularity with a, = oo
(for M;"). The Hubble radius, |H_1‘, increases with time if w > —1. On the
other hand, if —1 < w < w,, with w. = (2—N)/N (so that 8 > 1) the comoving
Hubble radius, ‘H _1‘ /a, decreases with time. Note that the comoving Hubble
radius will monotonously increase or decrease with time depending on whether a

is negative or positive, respectively. In this section, we shall assume that ¢ = 0.

3.3.1 Linear Scaling Regime

If the friction lengthscale becomes negligible when compared to the Hubble
radius, p-brane evolution is mainly determined by the competition between the
Hubble expansion (or collapse) — which tends to stretch (or contract) the branes
— and the energy loss due to brane interactions. As a result of both effects,
the network evolves towards a linear scaling regime, which is a general attractor
solution of the VOS equation (in models that admit this solution). During
this regime the characteristic length L remains constant relative to the horizon
dig ~t.

If we write
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a | @ | H | C/E | Main Characteristic
Mf| -]+ +]| C Linear Scaling
My |+ | — E Linear Scaling
My |+ |+ | — E Inflation
M|+ |-+ | E SuperInflation
My | —|+] -] C Ultrarelativistic
My | — | —| — C Linear Scaling

Table 3.1: Summary of the main properties of the different M? models. The
label ¢ takes the value i = 1,2 or 3 for 5 < 0,0 < 8 < 1 or > 1, respectively.
On the other hand, s = + depending on whether dt = +dt, and t, is the
time elapsed since the initial singularity (s = +) or the time remaining until
the final singularity (s = —). The remaining + and — indicate the sign of
the cosmological parameters represented in the table and the letters C' and
F indicate whether the model corresponds to a collapsing or to an expanding
universe, respectively.

L= f(t*)t* ) (3~60)

R

So, the linear scaling regime should be characterized by

£€=0 and v = constant, (3.62)
with
k(k + ¢) _ (1—-B)kD
£ = ‘ ‘ and U= — . 3.63
51— ADE+ 1) B+ oo+ 1) (369
Note that we should have that

O<v<1l and £>0 (3.64)

in order for v and £ to have physical significance. These conditions are sufficient
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to show that models M3~ and M; do not admit linear scaling solutions (for
¢ > 0). In the case of the M5 model, this scale-invariant regime would not
persist, and for that reason we will not consider this model in this section: it
will be treated in Sec. 3.82.

There are several complementary constraints which reduce significantly the
possible range of parameters consistent with a linear scaling solution. The
RMS velocity, o, of maximally symmetric p-branes with a S, ; ® R topology
oscillating periodically in a Minkowski spacetime is given by Eq. (2.121). The

minimum velocity of these branes, v2, = 1/2, corresponds to the case when
one of the principal curvatures is non-zero (i = p — 1). The maximum velocity,

2

max

branes, for which all the principal curvatures of the surface are equal and non-

v p/(p + 1), corresponds to the case of fully spherically symmetric p-
zero (i = 0). Note that causality constraints do not allow for flat p-branes
and, consequently, we do not consider the case of branes for whose principal
curvatures are vanishing. For 8 = 0, the curvature parameter k must be equal
to zero in order for a linear scaling solution with ¥ < 1 to be possible. In an
expanding universe, the expansion of the universe hinders the velocity of the
branes, leading to a smaller RMS velocity and a positive curvature parameter,

k. Therefore, one expects that

0 < U < Umax, for M. (3.65)

On the other hand, if the universe is collapsing, the resulting brane acceleration

leads to larger v and a to negative curvature parameter. In this case,

Umin <0 <1, for M; and Mj . (3.66)

Moreover, the characteristic lengthscale of the network is necessarily con-
strained by causality and, as a consequence, L is required to be smaller than
the particle horizon at any given time?. In the case of models M, M, and
M, this implies that

tody te
L <dy= = , 3.67
H f o) " =B (3.67)

with ¢; = 0 or t; = —00, depending on whether s = + or —, respectively. This

constraint results in another restriction to the RMS velocity:

2This constraint is only relevant in the case of models that admit linear scaling solutions:
in the case of the M3+ and M, , the particle horizon is infinite.
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v < (k4+¢)72. (3.68)

The constraints on the RMS velocity of p-brane networks for the M;", M,
and M; models determine the range of values of the curvature parameter, £,
for which linear scaling solutions are allowed, for any given 8 and N. Figs.
3.2 and 3.3 illustrate this range in the case of contracting (M;" and M; ) and
expanding (M) models, respectively, for N — 1-branes (domain walls). The
first thing to notice is that, in contracting models, linear scaling regimes are
strictly forbidden if & = 0 (since 92 < 0 is not allowed). On the other hand,
if ¢ # 0, the consequent energy loss decelerates the branes, and the network
may attain the linear scaling regime with a RMS velocity within the physically
significant range in Eq. (3.66), for negative curvature parameters. The left and
right panels of Fig. 3.2 show the range of the curvature parameter for which the
linear scaling solutions are permitted, as a function of the expansion exponent,
in the case of the models M; and M, respectively (for ¢ = 0.5). In both
cases, scaling solutions are allowed for every value of 8 but the allowed range
of k is strongly restricted. Also, in both models, for ¢ = 0.5, the causality
constraint, given by Eq. (3.68), does not introduce further restrictions on the
(k?/N, B/(1 — B)) plane. However, as ¢ increases so does the scaling value of &
and, therefore, the region for which causality is violated widens and inhibiting
the attainment of this scale-invariant solution for some values of . As a matter

of fact, if the value ¢ is big enough, all linear scaling solutions may be forbidden.

In the case of model M;, the network is able to reach a linear scaling
regime for § < 1 — p/N (or equivalently v < vpax ), even if ¢ = 0, as the
left panel of Fig. 3.3 illustrates. For larger values of 3, the allowed range of
the curvature parameter is only limited by causality. The presence of energy-
loss mechanisms is also advantageous for the attainment of the linear scaling
solutions in expanding universes: they decelerate the branes in such a way that
it is possible to attain these solutions with ¥ < vpax, for 0 < 8 <1 —p/N and
¢ # 0 (as shown in the right panel of Fig. 3.3).

Note, however, that the linear scaling solution in Eq. (3.63) is attainable for
B =1—p/N in My models, even for non-interacting (¢ = 0) p-brane networks.

In this case, the linear scaling solution would be characterized by

B e and o — | L=BD
- \/‘5(1 —A)D(p+1) ‘ ¢ Blp+1)° (3.69)
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Figure 3.2: Range of values of the curvature parameter, k, for which domain wall
networks are able to attain the linear scaling regime (grey area), as a function
of %, for the M; (right panel) and M;" (left panel), for ¢ = 0.5. The dash-
dotted (blue) line represents the values of k?/N for which L = dy. The dashed
(red) and solid (purple) lines correspond to points for which v? = %, and v? =1,

respectively. Note that, in this case, k < 0.
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Figure 3.3: Range of values of the curvature parameter, k, for which domain
wall networks are able to attain the linear scaling solution, as a function of %,

for the M model (grey area). The left and right panels represent the possible

values of k%/N, for ¢ = 0 and ¢ = 0.5, respectively. The dash-dotted (blue) lines
correspond to L = dy and the dashed (red) lines correspond to v? = 1 — %
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In the case of cosmic string networks (with p = 1) in N 4 1-dimensional
backgrounds, linear scaling regimes are attainable in the absence of an energy-

loss mechanism if

5;1_%. (3.70)

This indicates that, if N > 3, these solutions are not attainable in radiation
or matter-dominated eras. Despite the fact that, for N > 3, the probability
of string interactions is expected to decrease over time (since, in this case,
p < (N —1)/2), it is not clear that this process would lead to a vanishing
energy-loss parameter: although the formation of cosmic string loops as a result
of the collision of two strings is expected to be suppressed, it is not clear that
the same would occur to loop formation due to string self-intersection. Note
however that, if ¢ # 0, even if it is very small, linear scaling solutions may be
attainable for small values of the curvature parameter k (which correspond to
networks with small-scale structure). These remarks are also valid to any branes
with p < (N — 1)/2: even though in this case ¢ is expected to be quite small,
scale-invariant solutions might be possible for all values of 8 in the M, model
(0<pB<1).

3.3.2 Inflation and Superinflation

In the M3 and M| models, the expansion of the universe is accelerated with
a > 0. The acceleration of the expansion hampers the velocity of the branes,
and it is efficient enough to make these velocities arbitrarily small. In this case,
Eq. (3.54) yields
dL

= = HL, so that Loxa. (3.71)

Therefore, in these models, the network is conformally stretched. As a matter

of fact, during this regime one has that

1
v or o o a” Y8 S0, (3.72)

The velocity then remains arbitrarily small, and consequently the stretching

regime is able to persist in inflationary and superinflationary models.

Other question one might pose is whether or not a p-brane network is able

to drive the acceleration of the universe. The Einstein equations for a N + 1-
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dimensional FRW, in which the branes are the dominant component of the

energy density, yield

Z - _% (N -2)p+NP|, (3.73)
LN\ 2
¢ - weee

where G 1 is the N + 1 dimensional Newton constant. These equations are a
generalization of Eqs (1.10) and (1.12) for N 4 1-dimensional universes. Using
this equations and Eqgs. (3.46) and (3.42) one obtains

2 2

= Nl+w,) D+(p+Lp2

(3.75)

In order to accelerate the universe one needs 5 > 1 (or equivalently w, < w,)

and, consequently

5 2—-D
v < P (3.76)
We may then conclude that only domain walls (D = N —p = 1) are able to
drive an inflationary phase. In the case of the domain wall dominated universe,
the RMS velocity should then be such that

~2

72 < (3.77)

1
N’

if the universe is to accelerate.

3.3.3 Ultra-Relativistic Collapsing Solution

Consider the case of the M; model which represents a collapsing universe
with 0 < 8 < 1. This model would admit linear scaling solutions, for k£ <
—¢. However, in this model, the comoving Hubble radius decreases with time.
As a consequence, the curvature scale of the p-branes will necessarily become
smaller than ‘H *1|, and they will eventually freeze in comoving coordinates
whilst travelling at the speed of light. The linear scaling regime would therefore
never persist in the M, model.

Though, in general, in the context of VOS models, the correlation length,
L, may be identified with the physical distance travelled by a brane segment
before encountering another segment of the same size, this identification breaks
down in the ultrarelativistic limit [104, 105]. It follows from Eq. (3.53), that
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Lon ~5YP L, (3.78)

where ¥ = (1 — %)~ %/2. The fraction of the energy lost by the network due to

interface collapse in a timescale dt may be estimated as

dp dL
_dp_dL v

v

In the ultrarelativistic limit, as v — 1, we have that
5 oc a=PHD (3.80)

Therefore, the efficiency of the energy-loss parameter is quickly driven towards

zero, as the universe collapses:

¢oc 7 YP o oPTV/P 0, (3.81)
Eq. (3.54) then yields
. N +1
L= HL 3.82
(3= ) L. (382)
and, consequently,
L oc aV+U/D (3.83)

so that the physical lengthscale of the network freezes in comoving coordinates

Lph o a. (3.84)

The network will then be conformally contracted, while moving at ultrarela-
tivistic speeds. Notice that, since p oc L™, we find that during this regime the

brane density scales as

poca” N+ (3.85)

and thus, in this model, the p-brane network will asymptotically behave as a

radiation component.
3.4 FRICTION DOMINATED REGIMES

The frictional force per unit of p-dimensional area exerted on a p-brane as a

result particle scattering can be estimated as [98]:
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F ~ noyvrAp (3.86)

N

where n oc =" is the particle density, v ~ 1 is the thermal velocity of the

interacting particles, o; is the transport cross-section for the particle scattering

ly is the average momentum transferred per collision. Note that,

and Ap oc a”
we have assumed that the interacting particles are massless, and that brane
motion is non-relativistic. As in the case of cosmic strings [125], the scattering
cross-section of p-branes should depend only on the typical wavelength of the

scattered particles, A\. On dimensional grounds, we may write:

oy oc AP (3.87)

and, given the fact that A oc a, we have that

F oc o P2y, (3.88)

Using Eq. (3.16), we find that the friction lengthscale scales as

lf o aP*?, (3.89)

throughout the evolution of the network.

In Secs. 3.4.1 and 3.4.2, we will discuss the scaling regimes that arise during
the friction dominated phase of the evolution of an expanding universe. The
existence of the stretching and Kibble regimes for cosmic string networks was
established in Ref. [4], using the VOS model for cosmic strings — although the
existence of the latter was previously suggested by Kibble in Ref. [126]. The
scaling laws for these regimes were derived for the case of domain walls in 3
spatial dimensions in Ref. [121], using a VOS model for domain walls derived
using phenomenological arguments. In Sec. 3.4.3, we will then briefly discuss

these regimes in the collapsing models.

3.4.1 Stretching Regime

If the density of p-branes is initially low, the characteristic lengthscale of the
network will be close to the horizon, and, consequently, it will be much larger

than the friction lengthscale. In this limit,
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v l
P« sothat v~ kff (3.90)
Given the fact that /; « L, we expect the p-branes to have very small

velocities. In this limit,

dL
E:HL’ sothat L o a, (3.91)

and the p-branes are conformally stretched.

Note, however, that, during this regime, the velocity scales as

l
v~ L o aPtt, (3.92)
L
Therefore, during thus regime, the velocity increases quickly, and consequently

this regime is necessarily transient.

3.4.2 Kibble Regime

The Kibble regime emerges as the friction lengthscale approaches the char-
acteristic lengthscale of the network (¢¢/L ~ HL). Given the fact that, during
this regime, the RMS velocity is higher than it has hitherto been, a considerable
amount of energy will be lost due to brane interaction (in this case HL ~ ¢v).
As a result, even though the dynamics is still dominated by friction, the scaling

laws are different from those of the stretching regimes:

L ot | o qzelflr+2)-1] (3.93)

b o 4/l |H| o azsPrr2+1] (3.94)

This regime is also transient: as the universe expands, the friction lengthscale
grows faster then L, and it will eventually overcome it (as a matter of fact,
for < 1/(p + 2), L decreases with time). At this point, friction becomes

subdominant, thus bringing the Kibble regime to an end.

This regime is unavoidable. If the initial density of the network is high
enough, the Kibble regime will occur right after the formation of the p-branes,
and the network will not experience the stretching regime. If, on the other
hand, the initial brane density is sufficiently low for the network to experience

the stretching regime, the Kibble regime will follow it.
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3.4.3 Friction-Dominated Regimes in Collapsing Universes

The scaling solutions given by Eqgs. (3.91-3.94) also account for the dynam-
ics of a p-brane network in collapsing universes during the friction dominated
era. Note however that, in this case, the friction lengthscale decreases with
time, and friction domination is the endpoint of the network’s evolution: as £
decreases, the network comes to a standstill in comoving coordinates and, then,
it is conformally contracted. In this regime, the average density of the network
is given by p oc a7 L.

As the universe contracts, the background temperature and density increase
and approach those of the original brane-forming phase transition. At that

point, the branes dissolve back into the high radiation background.
3.5 CONCLUSIONS

In this chapter, we have studied the evolution of p-brane networks, in flat
expanding and collapsing homogeneous and isotropic backgrounds with an ar-
bitrary number of spatial dimensions, using a Velocity-Dependent One-Scale
Model. This model allows us to characterize the evolution of the network by
following the cosmological evolution of its characteristic lengthscale and aver-
age root-mean-square velocity. We used this model to study the different scaling
regimes that arise in collapsing and expanding universes, both on friction dom-
inated and frictionless epochs. We particularly focused on the conditions that a
p-brane network must satisfy in order for linear scaling regimes to be attainable.

This work is a significant improvement over previous analytical studies of do-
main wall dynamics (with p = N — 1), unifying in a common framework the dy-
namics of domain wall networks in expanding/collapsing and frictionless/friction-
dominated regimes. Notice also that, for N = 3 and p = N — 1, this model
reproduces the VOS model for domain walls derived phenomenologically in Ref.
[121], and thus confirms its validity. Moreover, this analytically-derived gener-
alization provides an important tool to describe the evolution of domain wall
networks in more than 3 spatial dimensions which, up to now, was restricted to
very special configurations.

Our model provides a unified semi-analytic description of p-brane network
dynamics, highlighting the common and distinctive features characterizing the
evolution of p-brane networks of different dimensionality. In particular, it high-
lights the similarities between cosmic string and domain wall network evolution
in 3+ 1 dimensions, which may be of particular relevance for the study of cosmic

superstrings.



Domain Walls and Dark Energy

Domain walls are often regarded as malignant objects in cosmology. As
the universe expands, the background energy density decreases faster than the
domain wall energy density, and consequently domain walls will eventually be-
come the dominant energy component. In the case of cosmic strings, domination
may be avoided due to the attainment of the linear scaling regime, which has
the fortunate property that the string density remains constant relative to the
background density. Domain wall networks also appear to evolve towards a

scale-invariant solution, however, in this case

,5_0
Pb

where p, is the domain wall energy density. Therefore, domain wall domination

o t, (4.1)

seems unavoidable, even in the linear scaling regime.

Moreover, it has been pointed out in Ref. [127] that the gravitational effects
of domain walls would introduce excessively large anisotropies in the cosmic
microwave background, if they are originated at high-energy scales. However, if
the walls are light enough (i.e., if they have a small surface tension), they may
not dominate the energy density until the present time. In this case, the wall-
forming phase transition should occur at an energy scale smaller than about
1MeV (o ~n? < (1MeV)3) — This is known as the Zel’dovich bound!.

INote however, the classical derivation of this bound involves the assumption that there is,
roughly, one defect per Hubble volume. In many scenarios of interest, the number of defects
per Hubble volume might be significantly larger and, in that case, domain wall tension should

85



86 Domain Walls and Dark Energy

Although domain walls are subject to this tight constraint, they may still
play interesting cosmological roles. In particular, it has been suggested in Ref.
[5] that a domain wall network could be a candidate for dark energy, provided
that it is frozen by cosmological expansion. In this case the observed acceler-
ation of the expansion of the universe would be a consequence of domain wall
domination of the energy density of the universe. The conditions under which
these frozen, or frustrated, networks might arise have been studied in detail in
[6, 7, 128], and the results seem to rule out that scenario. Moreover, it has been
argued in [129, 130] that if a bias is introduced — for example, if there exists
a slight asymmetry between the minima of the potential of the model or if one
of the vacua is, for some reason, favoured over the others — the domain wall
network may be destabilized, and they may eventually decay. Biased domain
wall networks may not only provide a way to evade the Zel’dovich bound, but
are also behind the devaluation scenario [131], proposed as a possible solution
to the Cosmological Constant Problem.

In this chapter, we will explore these possible connections between domain
wall networks and dark energy. In order to analyse these paradigms, one needs
to understand the dynamics of domain wall networks. We will, therefore, start
by using the results of the previous chapters to outline the main features of their
dynamics, in Sec. 4.1. We will then adapt the equations of motion for domain
walls to these dark energy scenarios. In the case of frustrated networks, we will
incorporate the dynamical effect of massive junctions in the Velocity-dependent
One-scale model to study their potential role in frustration. Moreover, we will
develop an analytical model for biased domain walls, in order to analyse the

devaluation scenario.
4.1 DOMAIN WALL DYNAMICS

In this section, we will briefly discuss domain wall dynamics, using the results
of the previous chapters. Let us start by considering the case of a thin domain
wall in a 3 + 1 dimensional FRW universe. Using Eq. (2.107), we find that the
evolution equation for its velocityis given by

dv ()

- = (1— %) [Tz — 3HU] , (4.2)

where f(v) = 2¢'/%s, for spherically symmetric domain walls (p = 2 and i = 0),
or f(v) = s, for a domain wall with cylindrical symmetry (p = 2 and i = 1).

For a spherically symmetric domain wall, the invariant radius is defined as

be subjected to even more stringent bounds.



4.1 Domain Wall Dynamics 87

Ry = |q| ~v'/2a, and its evolution is described by an evolution equation of the
form (see Eq. (2.108))

As to the case of domain walls with cylindrical symmetry, the invariant radius

is defined as Ry = |¢| va, and satisfies the following equation of motion:

dRy

= (1—3v*) HR; . (4.4)

Let us now move to the case of the (averaged) evolution equation for a
domain wall network in a 3+ 1 dimensional FRW universe. These equations are

written in terms of the characteristic length, which in this case is defined as

&1 Q

po=2, (4.5)

and in terms of the RMS velocity of the network, v. In this case, Eqs. (3.54)
and (3.57) yield, respectively

dL L

— = HL(1 +30°) + —0v* +év, (4.6)
dt l;

dv k v
—=(1-0)|~+~—-3Ho—— | . 4.
g =10 )(L SHU zf) (47)

These equations are in agreement with the phenomenological VOS model for

domain wall networks developed in Ref. [121].

Let us ignore the both network’s energy losses and the frictional forces due
to particle scattering. When comparing Eqs. (4.2) and (4.7), we find that, even
though v and v, are defined differently, the matching between their evolution
equation is closer than one might naively expect. As a matter of fact, they
differ only in the form of the phenomenological curvature term. However, when
contrasting Eqs. (4.3) and (4.4) with Eq. (4.7), the discrepancies appear signif-
icant. Note, however, that these differences arise from the fact that Ry (or Ry)

and L are defined very differently.

Consider the case of a spherically symmetric domain wall. Its physical radius

is defined in such a way that the energy of the defect is proportional to R3.
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When considering a network, however, the characteristic length is such that
L = oV /E, and thus the evolution equations for these two variables are not
even comparable. Instead, in order to compare these two equations, we can
define an effective characteristic lengthscale proportional to the squared root of

the network’s energy:

E=pV =0lL%, (4.8)
so that
a3/?
Leff oC m . <49>

Introducing Eq. (4.9) into Eq. (4.6), we find a sugestive

dfl‘:ﬁ = (1 - gzﬂ) HLes (4.10)
which scales precisely as Ry. This expression highlights the fact that the differ-
ences between Eqgs. (4.3) and (4.7) are mainly apparent

Bearing in mind that, in the case of a domain wall with cylindrical symmetry,
R1 is proportional to the energy per unit length of the defect, an equivalent

definition would be

Lo Laﬁ . (4.11)
We then have that, in this case,
dL,

dtﬁ = (1 - 3{}2)HLeffa (412)

which is in agreement with Eq. (4.4), indeed.

4.2 DOMAIN WALL NETWORKS WITH MASSIVE JUNCTIONS AND
DARK ENERGY

As discussed in the previous chapter, a domain wall dominated universe
could undergo accelerated expansion, provided that the RMS velocity of the
network is small enough. It is then natural to enquire if domain wall networks
could play the role of dark energy. Recall that the equation-of-state parameter

of a domain wall network is, on average, given by:

(4.13)

S
I
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It is evident, given the observational constraints in Eq. (1.52), that domain wall
networks cannot be the unique contributor to the dark energy budget. However,
if the RMS velocity is very small — so that the network is frozen in comoving
coordinates — it is able to provide a negative pressure: at most w = —2/3 In
this case, the domain wall network is said to be frustrated and it may, in prin-
ciple, give a significant contribution to dark energy. These frustrated domain

wall networks were suggested as a candidate for dark energy in Refs. [5, 49].

The conditions under which a domain wall network is able to frustrate were
extensively studied in Refs. [6, 132, 7, 8]. If frustrated domain wall networks
are to provide a significant contribution to the dark energy budget, they have

to satisfy two main requirements:

1. The energy density must be of the same order as the critical density in

the present:
o

Po =7 ~pe. (4.14)

2. Fluctuations generated by domain walls have to be smaller than 10~5 on
scales of the order of the Hubble radius, H L or otherwise they would
generate strong (unobserved) signatures on the cosmic microwave back-

ground?.

These two conditions are sufficient to exclude standard domain wall networks
as a potential dark energy source. It has been shown in Ref. [6], using a VOS
model for domain walls, that these conditions can only be satisfied by frustrated
domain wall networks if the curvature parameter is very small (k « 1). Stan-
dard domain wall networks without junctions have a curvature parameter that
is, in general, close to unity, k ~ 1, and therefore they can ruled out as a dark

energy candidates.

The inclusion of junctions in domain wall networks severely increases the
complexity of the problem. In this case, the possible lattice configurations de-
pend on energetic, geometrical and topological considerations, and their stability
depends both on local and global considerations. The conditions under which 2-
dimensional domain wall networks with junctions are able to frustrate have been
studied in detail in Ref. [6], and several stability factors have been identified.
First of all, it has been shown that domain with less than 6 edges are unstable if

only Y-type junctions — where 3 domain walls meet — exist. The authors have

2This is a conservative estimate: according to [8], the CMB observational data limits these
fluctuations to 10~° down to smaller scales of approximately HO_1/100.
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further shown that if the average dimensionality of the junctions is increased,
the average number of edges per domain decreases, also leading to the formation
of unstable domains. Another factor of instability would be the presence of an
hierarchy of tensions: domain walls with higher tension tend to collapse, leading
to the increase of the dimensionality of the junctions. On the other hand, the
authors found that the probability of annihilation of two nearby triple junctions
decreases as the number of vacua increases. In fact, in models with more than
two vacua connected by domain walls of the same tension, only stable Y-type
junctions would form. Note that the only possible equilibrium configuration
with triple wall junctions is an hexagonal “honeycomb” lattice. Although this
lattice configuration seems to be stable, it is not expected to arise in realistic
wall-forming phase transitions nor to be the result of the evolution of a realistic
network. As matter of fact, very small curvature parameters (k « 1) are only
expected in very special configurations — such as the hexagonal lattice, square
lattices with X-type junctions and triangular lattices with *-type junctions —
corresponding to very specific initial conditions which would violate causality if
they were to extend over scales larger than the particle horizon. This realization
lead the authors to conjecture that frustrated domain walls networks are not

expected to arise naturally from realistic phase transitions.

These results were tested numerically, using 2 and 3-dimensional high-re-
solution field theory simulations [7, 132, 8]. In order to do so, the authors not
only used some pre-existing domain wall models, but have also developed an
”ideal model”, which has maximal probability of evolving towards frustration.
This ideal model has a large number of vacua connected by domain walls of equal
tension, so that the major sources of instability are removed (for a specific real-
ization see [7]). The use of this model then allowed the authors to avoid testing
the large variety of domain walls field-theory models existent in the literature.
The results of these simulation seem to confirm the no-frustration conjecture,
even in the case of the ideal model: the dynamical behaviour of the networks
did not show any evidence of evolving towards frustration, but instead it was
consistent with the attainment of a scaling solution. These results seem then to

conclusively rule out frustrated domain wall networks as dark energy candidates.

In these studies, the contributions of the domain wall junctions to the en-
ergy density were assumed to be very small. However, massive monopole-type
junctions can effectively freeze a domain wall network, provided that they are
heavy enough. In that case, their contribution to the energy budget could not

be neglected, and it has been argued in Refs. [6, 8] that it would lead to an
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equation-of-state parameter even greater than —2/3, which is incompatible with
the observational bounds. In this section, we investigate the impact of string
and monopole-type junctions on the dynamics of domain wall networks. How-
ever, accounting for the detailed contribution of the junctions on domain wall
networks is not a trivial task. The VOS model for domain wall networks does not
take into account the dynamical contributions of junctions. Moreover, the stan-
dard PRS algorithm — implemented in all field theory numerical simulations
in order to ensure fixed comoving resolution — increases artificially the impact
of junctions on the overall dynamics during the course of the simulations. This
effect is not very important for the light junctions which are usually considered
in such simulations, but it could be relevant in the case of heavy junctions. In
order to overcome these problems, we develop a semi-analytical non-relativistic
VOS model for the evolution of the characteristic length and velocity of domain
wall networks that incorporates the contribution of string and monopole-type
junctions in the overall dynamics. We, then, analyse the conditions under which
massive monopole-type junctions are able to frustrate the domain wall network
and determine whether or not such a frustrated network could account for a sig-
nificant fraction of the Dark Energy of the Universe. In order to do so, we will
consider the best possible scenario as far as frustration is concerned, assuming
that the junctions are massive enough to render the network non-relativistic.
This work was published in [12].

4.2.1 Non-relativistic VOS model with massive junctions

Consider the configuration represented in figure 4.1 where four junctions of
energy per unit length p are connected by four planar domain walls of energy per
unit length o, defining a square domain of characteristic size [. Three domain
walls meet at each (Y-type) string junction. Here we assume that nothing varies
along the direction perpendicular to the square domain, so that the infinite
string junctions have no curvature. In this case, the domain wall dynamics is
effectively two-dimensional. The energy per unit length of this configuration is
given by the sum of the contributions from the four domain walls, moving with
velocity v, the four cosmic string, moving with velocity v, = \/2v, and from the

four static domain walls:

E = 4oyl + dpry, +20\2(lg — 1), (4.15)

where we defined v = (1 —v?)~2 v, = (1 - vi)_l/z, and v = —(dl/dt) /2.

For simplicity, we shall make the approximation that the shape is maintained
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Figure 4.1: The left panel represents the 2-dimensional domain wall configura-
tion prior to collapse. Solid lines represent domain walls of superficial tension o
and the dots represent string junctions of tension . The right panel represents
the configuration after some time has elapsed.

during the collapse of the square domain. In this case, the domain walls do not
acquire curvature, and it remains concentrated in the vertices. Although we
expect the domain walls to acquire curvature in the course of collapse, this
approximation will capture the relevant physics, and does not affect our main
results. It then follows from energy conservation that, in Minkowski spacetime,

the equation of motion for v is given by

et (Y g
where

s(v) =2 — */75 , (4.17)
and ;

g(v) = (%“) . (4.18)

The physical meaning of Eq. (4.16), can be summarized very briefly:

1. Domain Walls are accelerated due to the curvature which, in this particular

configuration, remains concentrated at the vertices;

2. The acceleration of the domain walls can be reduced due to the inertia of

the cosmic string junctions, which are connected to the domain walls.

Note that Eq. (4.16) does not apply directly to the case of the domain wall

network with string junctions, since it has been obtained for a very particular
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configuration. Albeit, we shall use it as a guide into the fundamental aspects of

the networks’ dynamics.

The characteristic lengths of the two-dimensional domain wall network and

of the string-type junctions, L, and L, are defined as

Po = Li and p, = (4.19)

e

L2 ’
where p, and p,, represent the average density of domain walls and the average
density of cosmic string junctions, respectively. The relation between L, and
L, depends on the geometrical properties of the domain wall network. For a
regular hexagonal lattice with Y-type junctions, each string junction is shared
by three hexagons, and thus L, /L, = 31/ 4/21/ 2. Similar arguments can be used
to show that, for a regular square lattice with X-type junctions, L, /L, = 2,
while L, /L, = 3%/4 for a regular triangular lattice with #type junctions. We
see that, in general the characteristic lengths are similar (L,/L, ~ 1) and,

consequently, we shall assume that L, = L, = L.

Identifying [ with L/2 in Eq. (4.16), we find that, in the non-relativistic

limit,

dv k 1

I + T (@> = 0. (4.20)
with k& = 2s5(0) = 1 — +/2/2. This equation preserves the generic form of the
acceleration term contained in Eq. (4.16). If we include the accurate damping
term caused by Hubble expansion, it should provide an approximate description
(up to numerical factors of order unity) of the evolution of the characteristic
velocity of a non-relativistic domain wall network with junctions in 2 spatial
dimensions. Note, however, that in the case of the network, the curvature pa-
rameter represents an average over the whole network rather than the specific
configuration represented in Figure 4.1, as in Eq. (3.58). Also, maintaining
the notation of the previous chapter, we use bars to represent RMS averaged
quantities, so that v represents the RMS velocity of the domain wall network,

and so on.
Note that

1 7 Do
= =— = f;, 4.21
1+UML %_I_[{Lz p f ( )

where p = p, + p, is the total energy density and f, = %" is the fraction of

energy density which is due to domain walls. This allows us to rewrite eq (4.20)
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Figure 4.2: The left panel represents the 3-dimensional domain wall config-
uration prior to collapse. The planes represent domain walls with a superfi-
cial tension o, solid lines represent string junction of tension p, and the dots
represent monopole-type junctions of mass m. The right panel represents the
configuration after some time has elapsed.

as:

dv k
4 Zf =0. 4.22
dt Lfa 0 ( )

Given this equation, the generalization to the 3 dimensional case is trivial. In
three spatial dimensions, domain walls meet at string junctions, which may, in
turn, intersect at monopole junction (see [8] and references therein for details on
specific field theory models and network realizations). In this case, we need to

consider the impact of monopole-type junctions, of mass m and energy density

m

Pm = T3 (4.23)

on the network dynamics. One may suspect that, in this case, both domain walls
and cosmic strings contribute to the acceleration of the network, and that this
acceleration is damped by the monopoles. So, we may infer that the evolution
equation for the velocity should be of the same form as Eq. (4.22) but with
fo © fo + fu. To verify that this is indeed the case, let us consider a cubic
configuration as represented in Fig. 4.2, and assume that, as in the case of the
2-dimensional network, the curvature is concentrated at the vertices, so that the
domain walls and string junctions do not acquire curvature during collapse.

The energy of this configuration is given by
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E = 601y + 12p7,0 + 8ymm + 3320 (12 — 12) + 4v/3(ly — 1), (4.24)

where v, = V/2v is the velocity of the cosmic string junctions, v, = /3v is the
velocity of the monopole junctions, v, = (1 — vi)_l/Q, Ym = (1 — vfn)_l/2 and
dl/dt = —2v,, = —24/20.

Energy conservation, in this case, yields

3 3
(4.25)

As in the case of the 2-dimensional network, we will use this equation to infer
the general form of the curvature term. In the non-relativistic limit, we may
identify [ with L/4 to obtain

dv k 1

J— + -,
dt Ll—l——aLf‘HLQ

(4.26)

up to coefficients of order unity. It is straightforward to show that this equation

is equivalent to:

dv k
= (fs =0, 4.27
with L = L,, = L, = L,. Here we introduced the energy density fractions of

the various components, defined as

po 1
f, = o - (4.28)
P 1+ 0722 + %
P 1
fu = — = — (4.29)
1% 1+M_L+7
pm 1
fm = =iy e (4.30)

where p = po + py + pm-

We have implicitly assumed that the energy of the domain walls, as well as
that of string and monopole junctions, is localized. This is not always a good
approximation. For example, in the case of global monopoles, there is a nearly

constant long-range force between monopoles and anti-monopoles, which is rele-
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vant to the dynamics®. In Ref. [134], local and global hybrid networks of cosmic
strings and monopoles were studied. The author has shown that the forces be-
tween monopoles and anti-monopoles lead to the annihilation of the network
shortly after creation (though in some particular cases the network can, in fact,
be relatively long-lived). It is reasonable to expect that, in the case of a do-
main wall network with string-type and monopole-type junctions, the long-range
forces between monopole and anti-monopole would also lead to the annihilation
of the network. Note, however, that this particular model is developed with the
specific purpose of investigating whether the inertia caused by the presence of
massive junctions is sufficient to frustrate a domain wall network, and if such a
network could contribute to the acceleration of the universe. Since such long-
range forces would constitute an additional obstacle to the frustration of the
domain wall network, and maintaining the best case scenario premise, we will
not consider them. Nevertheless, by considering non-standard kinetic terms, it
is possible to localize the energy of the monopoles inside their core [123]. These
localized k-monopoles interact very little, if they are sufficiently distant from
one another, and hence they are not expected to lead to the rapid annihilation

of the network.

Given the fact that we intend to describe these networks in a cosmologi-
cal context, we also need to account for the deceleration caused by the Hub-
ble expansion. Recall that (planar) domain walls, (planar) cosmic strings and

monopoles behave differently under Hubble expansion:

d
yvoLa? e d—:+3vH(1—v2)=0, (4.31)
d
Vv, o a”? s % + 2v,H(1 — vﬁ) =0, (4.32)
dvm,
YnUm € a e % + v, H(1—v2) =0, (4.33)

for domain walls, cosmic strings and point masses respectively. The behaviour
of the domain wall network with massive junctions under expansion will be de-
termined at any time by the current dominant component of the energy density.
Therefore, we use the energy density fractions as weight factors in the estimate
of the Hubble damping term to be added to Eq. (4.27). The equation describing
the evolution of the characteristic velocity of the network then becomes, in the

non-relativistic limit,

3See, for example, [133] and references therein
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dv k 1
— +Ho(l+ f,+2f)+—|——+— ] =0, (4.34)
dt " L\1+ i

where 1+ f, +2f, = fm + 2f, + 3f», and we have assumed that v = v, = o,

(we will justify this assumption later in this section).

Let us now derive a evolution equation for the characteristic lengthscale,
L. Cosmological expansion also has different impacts on the energy density of

domain walls, string and monopole-type junctions. In the absence of energy-loss

mechanisms,
_ _ 1 dﬁa 9\ —
Po OC ya = E—I—H(l—i—Bv )poe =0, (4.35)
I5
P O Apa? & % +2(1+ @i)Hﬁ/L =0, (4.36)
dpm 02
B € Ama 3 % +3 <1 + %m) Hpm =0, (4.37)

for domain walls, cosmic strings and point masses, respectively. In the course of
network evolution, energy will be exchanged between the different components,
leading to similar characteristic velocities: v,, ~ v, ~ v. Let Qx be the
energy transferred per unit of time and volume from the component X to the
other two components. To account for the energy transfer between the different
components, one needs to include extra terms Q,, ), and @, on the right-hand

side of Eqs. (4.35-4.37), respectively.

Taking into account that

Qa + Qu + Qm = 0, (438)
and that
dp _ dps , dpu | dpm
dt dt dt dt ’

the energy transfer terms cancel out when considering the evolution of the total

(4.39)

energy density:
dp
% +
We could add a term proportional to vp/L to right-hand side of Eq. (4.40), in

order to account for any energy losses by the network. Note, however, that in

[(B—f.—2fs)+0> (1 + fu+2f,)| Hp=0. (4.40)
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the non-relativistic limit, this term can be neglected. In any case, it is easy to
verify that this term leads to a larger L and, consequently, it is prejudicial to
frustration. Again, we will be considering the best case scenario for frustration:
the absence of any energy loss mechanisms.
Using Eqgs (4.19) and (4.23), we then obtain the evolution equation for the
lengthscale of the network
dL 92fs+ fu+1

E: 1+v H—_%]HL (441)

In the non-relativistic regime, with v « 1, one has that

dL
EZHL’ so that L oc a, (4.42)
and
pm o€ a3, P € a”? and p, cal. (4.43)

Note that the energy density of domain walls decays more slowly than that
of cosmic strings and of monopoles. Therefore, even if at early times the energy
density of monopoles is dominant, the domain walls will eventually overcome
their domination and become the most significant part of the energy density.
They will, then, necessarily determine the late time evolution of the network.

Note that Eqs (4.34) and (4.41) reduce to the standard non-relativistic VOS
equations of motion (Eqgs. (3.6) and (3.7)), if we set p, = p,, = 0, assuming
there are no energy losses. On the other hand, if we set p, = p,, = 0, we also

recover the standard non-relativistic VOS equations form domain wall networks.

4.2.2 Implications for dark energy

The main aim of this subsection is to investigate the conditions under which
massive monopole-type junctions are able to frustrate a domain wall network
and to determine whether or not such a frustrated domain network could account
for a significant fraction of the energy density of the universe. We shall work
with the best possible scenario and assume that the domain wall network is
effectively frustrated (v « 1) and, consequently, it will be sufficient to consider
the non-relativistic regime. We shall also assume that p,, is always much greater
than either p, or p, up to the present day, in order to maximize the impact of
the massive junctions on the dynamics of the domain wall network. Relaxing
these assumptions, would make this mechanism less efficient from the point of

view of frustration.
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Solving Eq. (4.34) in the matter dominated era, assuming that p, = 0 and
pm » po and neglecting the decaying mode, one obtains
2dv 2ky p
Hio~ 220 2 25000 (4.44)
5dt 7L pn
A similar analysis for p, = 0 and p,, » p, would give
2dv 2kop
Ho~->— =-—2, 4.45
3dt 5L pp ( )
In both limits one has ~ ~
02 < HLv ~ kP2 Pe (4.46)
m
where we have taken into account that v < LH due to the fact that the char-
acteristic velocity, v, does not change abruptly. The result given in Eq. (4.46)
is rather robust and has a simple physical interpretation. For non-relativistic
domain wall or string networks with junctions one has 2> < k. In the case
of a network with a dominant component of monopole-type junctions, only a
fraction of the kinetic energy (approximately (ps + pu)/pm) generated due to
the curvature is transferred to the domain walls and strings, due to the large
inertia of the monopole-type junctions.

The amplitude of the fractional energy density fluctuations, §, associated
with domain walls on a physical scale, Ly, much larger than the characteristic
scale, L, of a domain wall network is given approximately by
6ﬁ0 Q(r

~

pe /N’

where N ~ (Ly/L)3 is the number of domain walls on a volume V = L3, Q, =

5= (4.47)

Po/Pe, and dp, is the root mean square fluctuation in the domain wall energy
density on a given scale Ly . Recall that the amplitude of CMB temperature
fluctuations generated by domain walls, around the present time is contrained
to be smaller than 10~> down to scales of the order of Ly = Hy!'. This implies
that

6 ~ Qoo(HoLo)*? <1075, (4.48)

Consequently, we should have that

HoLy < 10730273 (4.49)

which results in the constraint Ly < Q;OQ / 3Mpc. If there are no abrupt changes

on the domain wall velocity, this also translates into a stringent limit on the
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characteristic velocity of the domain walls at the present time:

o < HoLo < Q,07%1073.. (4.50)

Hence, using Eq. (4.46) with ky ~ 1 one obtains

RP2OTP0 (HoLe)? < 31076, (4.51)
Pmo

The value of the curvature parameter has been estimated using high-resolution
numerical simulations of domain wall evolution [8]. As previously pointed out,
these simulations indicate that standard domain wall networks without junctions
k ~ 1, while for networks with junctions smaller values have been observed, but
still of order unity. A value of k « 1 is only expected in the case of unnatural
configurations which cannot be expected from realistic phase transition (e.g.
the previously discussed 2-dimensional “honeycomb” lattice). Consequently, we

shall assume that k ~ 1.
Note that domain walls would need to have an average energy density of
the order of the critical density to provide a significant contribution to the dark
energy, so we shall assume that 0,9 ~ 1. Therefore, a sucessful domain wall

scenario for dark energy would require that

Ly < 1Mpc, and Ty <1073 (4.52)

Using Eq. (4.51), we see that these values can only be achieved if

La0 <1076, (4.53)
Pmo
and, therefore, the energy density of the junctions would have to be 6 orders
of magnitude larger than the critical density*. Such high value is clearly in
complete disagreement with all cosmological evidence. Clearly, if Q,q is very
small, frustration may effectively occur but in that case domain walls would not

play a relevant role as a dark energy component.

4.2.3 General Considerations on the Frustration of p-Brane Networks

In this section, we will consider the effect of a generic interaction mechanism
between p-branes and other cosmological component on the dynamics of p-brane
networks, in order to study their potential role in frustration. This work was
published in [16].

4If one was to limit the CMB fluctuations generated by domain walls to be smaller than
10—® down to smaller scales of HO_1/100, a stronger result would be obtained.
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As discussed previously, analytical and numerical studies indicate that do-
main wall evolution does not result naturally in the frustration of the network.
Frustration would, then, require the presence of an additional mechanism to
decelerate the domain walls. Note however that the relevant question is not
whether or not there are mechanisms that can frustrate the network — for in-
stance, massive junctions or the mechanism described in [135, 136] clearly do
the job — but whether or not this frustrated network could contribute to the
dark energy budget. In order to address this question, let us consider the case
of a p-brane network and let us assume an interaction mechanism between the
p-branes and a component average density pins exists. A very conservative upper
limit to the total momentum per unit volume transferred from that component

to the p-branes in one Hubble time,

4.54
2~ 2[5 (454)
would be pint. In this case, we should have that

dv

- <vH 4.55

with x = pint/p. The effects of this interaction mechanism on the network
dynamics may then be included in Egs. (3.57) and (3.54) by redefining the
damping length:

=(p—Ir><+1)H+i (4.56)

lq 7

where we have assume that the efficiency of interaction mechanism is the max-
imum possible: |dv/dt|, , = xH.

In homogeneous and isotropic universes with a decelerating power-law ex-
pansion, in the frictionless regime (¢ « H™'), a p-brane network may admit

linear scaling solution of the form of Eq. (3.62) if y is constant. In this case,

k:—l—c) - (1—B)kD
\/‘ YTyl B U_\/ﬂ(k+5)(p+x+1)'(4'57)

Therefore, this interaction mechanism may decelerate the branes slightly.

However, if the interacting component of the energy density is subdominant
(that is, if x < 1), its potential role on the frustration of the networks —
characterized by L « H~ ! and v « 1 — is very limited. Relaxing the assumption
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that the p-brane network is the dominant energy component may clearly help
frustration: if pine » p (x » 1), the interaction mechanism may decelerate the
branes effectively, and freeze the network in comoving coordinates. However, in

this case, pint would be the main contributor to the energy budget.

Clearly, assuming that y is time independent is unrealistic: one would expect
the expansion of the background to affect the efficiency of any realistic interac-
tion mechanism (for instance, the ratio x = pint/p is expected to be a function
of the scale factor). Nonetheless, Egs. (3.57) and (3.54) (with a damping length
as in Eq. (4.56)) show that considering a time varying y does not help much
if its present value is yo < 1. As matter of fact, frustration might only occur,
under these circumstances, for networks which have k « 1 for v « 1. This
generalizes the previously mentioned result that the frustration of domain wall
networks can only occur for £ « 1 to p-branes of arbitrary dimensionality. In
the particular case of domain walls, there is very strong analytical and numer-
ical evidence that networks (with or without junctions) are unlikely to attain
k « 1 in the non-relativistic limit, if they are the dominant energy component
[6]. This result effectively rules out domain wall networks as a cosmologically
relevant dark energy candidate: frustration can either occur if the network is
design to have £ « 1 in the non-relativistic limit — which appears to be un-
realistic — or if y is much larger than unity — in which case the domain wall
energy density would be subdominant and would not contribute significantly to

the dark energy budget.

For p < N — 1, the Hubble damping is less efficient and, thus, frustration is
even less likely to result from the natural evolution of the network. Therefore,
unless there is a natural mechanism that drives k& towards zero in the non rel-
ativistic limit — which seems unlikely — the no frustration conjecture is also

expected to apply to any realistic and cosmologically relevant p-brane network.

The mechanism for the frustration of domain wall network in Refs. [135, 136]
is expected to face similar problems. The authors perform field theory simula-
tions of a model with Zs x U(1) symmetry in (2+1)-dimensions. Their model
has two discrete vacua, allowing for domain walls and a conserved Noether
charge. The authors argue that the Noether charge and currents become local-
ized on the walls, forming kinky vortons, providing a possible mechanism for
the frustration of domain wall networks. However, the authors do not calculate
the overall equation of state of the network. Had they done that, they would
have found significant deviations with respect to that of a frustrated featureless

domain wall gas (w = —2/3).
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4.3 BIASED DOMAIN WALLS AND THE DEVALUATION MECHA-
NISM

The cosmological constant is the simplest explanation for the current ac-
celeration of the universe. It fits remarkably well the observational constraints
from several cosmological probes and it has a natural physical interpretation as
the vacuum energy density. However, the observed value of the cosmological
constant is extraordinarily low, more than 120 order of magnitude smaller than
the particle physics predictions. The theoretical value for vacuum density is
sometimes humorously dubbed “the worst theoretical prediction in the history
of physics”, but this discrepancy is indeed a fundamental problem in modern

physics.

In Ref. [9], the authors proposed a dynamical solution to the cosmological
constant problem, involving the evolution of a biased domain wall network. In
the simplest model of biased domain walls, the vacuum states separated by a wall
have a slight energy difference, so that one of these vacua has a smaller energy
density [137, 129, 130]. As a result of this energy difference, the domain wall
feels a dynamically relevant pressure that pushes it towards the domain with
the highest energy density [130, 138]. Depending on its importance relative to
other processes— most notably the surface tension— the walls may be long-lived
(as in the standard case) or disappear almost immediately. Biased domain walls
were originally envisioned as a way to evade the Zel’dovich bound, however they

are also behind the devaluation scenario proposed in [9].

This scenario requires a model with a potential which has a large number of
nearly degenerate minima, spanning a large number of values of vacuum energy.
After inflation, different patches of the universe are expected to fall into different
minima, leading to the formation of a biased domain wall network. The domain
walls would then feel a pressure that would drive them towards the regions of
higher energy density. As a result, these regions would be suppressed and the
universe would be driven towards lower and lower values of the cosmological

constant.

In this section, we will make a detailed analysis of the Devaluation scenario.
We will start by analyzing the dynamics of biased domain walls, both by study-
ing a simple field theory realization and by developing an analytical model that
incorporates the effect of bias on the evolution equations for domain walls. We
will then use the results to carry out a thorough analysis of the devaluation

scenario. This work was published in [10].
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4.3.1 Qualitative analysis of Biased Domain Walls

Let us then consider the simplest field theory model

L= %qb,#gb’“ _V(9), (4.58)

with a tilted potential

V(p) = 2114 [(ﬁ—z — 1) + K%] . (4.59)

It then follows [98] that the height of the potential barrier and surface tension

are respectively

A
Vi = 1”4’ (4.60)
o~ N, (4.61)

while the wall thickness and the asymmetry parameter (energy difference be-

tween the two vacua) are respectively

5~ \/LVT) ~ (Vo) (4.62)

e =2kVp. (4.63)

The dynamics of biased domain walls are determined by the competition

between the surface pressure,

g

(caused by the superficial tension), and the volume pressure,

pv =¢, (4.65)

originated by the energy difference between vacua. At early times, the dynamics
of the domain walls is dominated by the surface tension, which acts to increase
the radius of curvature of the wall. However, when the domains become large
enough, the volume pressure becomes comparable to the surface pressure, lead-
ing to the decay of the domain walls [130, 139]. In flat space-time this happens

when
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r~Z. (4.66)

€
For instance, we phenomenologically expect that at the Ginzburg temperature
(when the network first becomes well-defined) the correlation length should

approximately be given by L ~ (An)~! and, in this case, we have that

Typically one might expect this to be smaller than unity but not much less.
However, there is, in principle, enough parameter freedom to make it much
larger or much smaller than that. When the volume pressure dominates, one

expects that the walls will move with an acceleration

g ~ A2 (4.68)

On the other hand, if the surface pressure dominates initially the walls may
survive long enough to reach a linear scaling regime, L. ~ t. Understanding,
how fast the volume pressure becomes important — or equivalently how long
the walls will survive and how fast they will decay — is a key issue in several
cosmological scenarios, including devaluation. Moreover, the Zel’dovich bound

[127] provides an additional and often limiting observational constraint.

4.3.2 Analytic Model for Biased Domain Walls

Modelling the effect of this bias is fairly straightforward in the context of
the microscopic model we introduced in Sec 4.1. Suppose that the two vacua
on either side of a domain wall have different energy densities Vi, and V,, and
let ¢ = Vi, — Vot be their energy difference. The resulting effect on domain
wall dynamics is very easy to understand if we consider a planar domain wall
in Minkowski space. In this case the inner and outer regions of the domain wall
are not well defined but we shall assume that the domain wall is moving in the

direction out — in. Energy conservation implies that

d(o7) = vdte, (4.69)

from which we get

w_ e (4.70)
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we can immediately note that this is coincides with Eq. (4.68) apart from the
relativistic gamma factors. With our conventions, if the wall is moving towards
the region with higher energy density (¢ > 0), this region becomes smaller, and,
consequently, the wall gains momentum to compensate the energy loss. This
confirms the expectation that the domain wall will feel a pressure which will
tend to drive it into the region of higher energy density. We can alternatively

write this as

dv kAL/2 1 —v2)3/2
— (1 —0?)32 S ( R) : (4.71)

i
which highlights the fact that ¢ acts like an effective curvature, and therefore
accelerates the wall. Its distinguishing feature is that the scale is set by the
micro-physics of the model in question (ultimately by the form of the potential),
rather than the macroscopic dynamics (as is the case for the usual curvature
radius of the walls). Moreover, this lengthscale is constant, whereas the usual
curvature radius increases as the walls evolve. This implies that the volume
pressure term will gradually become more dynamically relevant. Having said
that, note that the extra ~ factor can switch this term off if the walls become
ultra-relativistic (v — 1). It is then clear that we can now add this volume

pressure correction to our domain wall evolution equation (4.2), yielding

dv flv) e

— =(1—-2? — —3H 4.72

o= ”)(Rﬁm 3v), (4.72)
or equivalently

dv _ o (f0) 7!

i (1—-w )( R, + R 3Hv | . (4.73)

The effect of the bias can also be added to Egs. (4.3) and (4.4), in order
to incorporate in the evolution of the wall invariant radius, R. In the case of

spherically symmetric domain wall, the equation of motion takes the form

8?}R0
207’

(4.74)

dRy 3
2

— 1—=v?>|HR
qt U) o+

or, using the definition of R, in Eq. (4.71), it can be written in the more

suggestive form

—=(1-= H 1— 222 4.
o ( 21)) Ry + (1 —v7) >R, (4.75)
Similarly, for domain walls with cylindrical symmetric, we find that:

R,
dt

R
— (1—3v%) HRy + —2*, (4.76)
o
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or equivalently

de Rl
— = (1=3v") HRy + (1 - v2)1/2vR—v : (4.77)

Recall that, when extrapolating to a biased domain wall network, Eqs. (4.74)
and (4.76) should be compared to Egs. (4.10) and (4.12). Notice that this
additional term due to the bias may be regarded as an additional energy loss by
the network. As discussed previously, the importance of this term is expected to

grow as the walls evolve, although it switches off in the ultra-relativistic limit.

It obviously follows from the above discussion that this model reproduces
the result [130] that domains with a larger energy density will decay when their
typical size R > o/e, and indeed it provides a more quantitative estimate—
since the relativistic gamma factor may be significant. We may also compare
the importance of the pressure term with that of the Hubble damping term in
Eq. (4.2). For non-relativistic domain walls the pressure term dominates over
the Hubble damping term slightly earlier than over the curvature term (assum-
ing that R < H~'). However, for R ~ H~! and v not too small, the two criteria
are very similar. If R < H~! and the above criteria are satisfied, then the do-
mains with a larger energy density disappear exponentially fast. This result is

the basis of the devaluation mechanism.

As an illustrative example of the effect of bias on the dynamics of biased
domain walls, we have solved Eqs (4.72) and (4.74) numerically for a spherical
domain wall, initially at rest, with a higher vacuum energy in its inner domain.
This allowed us to determine the evolution of the domain wall’s physical ra-

1/2

dius, go = Roy~/#, until collapse (which was defined as the moment when ¢

vanishes).

Fig. 4.3 shows the time of collapse of a spherical domain wall, with or without
bias, and the relative difference between these collapse times as a function of
the ratio between its initial wall invariant radius, Ry, and the initial Hubble
radius. The bias term acts as a further mechanism to accelerate the domain
walls, allowing them to overcome the Hubble damping term faster and thus
making them collapse in a shorter period of time. The relative importance of
this effect grows as the initial radius increases. However, the curvature term
becomes negligible for large R and, therefore, in this limit, the dynamics of
the wall is essentially determined by the bias term. As a result, the relative

difference tends to a constant, in this limit.

Fig. 4.4 shows the relative difference between the collapse time, with and
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without an energy difference between minima, for /0 ranging from 0 to 100
(for a spherical domain wall with R(t;) = H;'). Notice that as the bias term’s
importance grows, this relative difference tends to a constant. Given the bias
term makes the velocity become ultra-relativistic faster, the time of collapse
with bias has an obvious lower bound, given by the time a photon takes to
travel a distance equal to the initial physical radius of the domain wall, in a flat

FRW universe. This minimum collapse time is given by:

1/(1-8)
min a(ti)(l — B)QZ +t;
gmin ( . , (4.78)

where [ is the expansion exponent and ¢; is the initial physical radius. In this
particular case of the collapse of a spherical domain wall with ¢; = 1 during
the radiation dominated era, this lower bound yields ™" ~ 4, and the relative

5

difference tends to A ~ 0.33 as /0 increases®. This simple example clearly

shows that the effect of bias, as a source of instability, is limited.

4.3.3 The devaluation mechanism

The devaluation mechanism [9] aims to explain the observed small non-
vanishing value of the cosmological constant using the dynamics of biased do-
main walls. The key physical idea is that, under plausible circumstances, a
network of unstable domain walls might form at a certain critical temperature,
dividing the universe in many different regions with different values of the vac-
uum energy density. Domain walls separating different vacuum domains will
then feel a pressure which will tend to suppress those with higher energy thus

driving the universe towards lower and lower values of the cosmological constant.

A simple potential that has the relevant features is

V(¢) = Vycos (m) — e% +C, (4.79)

where Vj is effectively the barrier height and € is the energy difference between
minima. From the original paper [9], the expectation is that
n~ Vi > 10MeV | (4.80)

and obviously

5We took t; = 1 and a(t;) = 1.
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Figure 4.3: In the top panel it is represented the collapse time of a spherical

domain wall (in units of initial time), with (%) and without (¢.) an energy differ-
ence between domains, as function of the ratio between the initial wall invariant
radius and the initial Hubble radius. On the lower panel, it is represented the
relative difference between the time of collapse with and without bias. We took

efo = 1.
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Figure 4.4: The relative difference between time of collapse with and without
bias for /0 ranging from 0 to 100 and for a spherical domain wall with R(¢;) =
Hit

g4~ plt < 1073V . (4.81)

It is important to realize that, in this particular model, all the domain walls
interpolating between successive pairs of minima in the above potential have
similar tensions. The model also requires a large number of minima, but the
exact number is actually not relevant for the analysis that follows. Moreover,
it was argued that domains with negative energy vacua would be suppressed so
that the domain wall dynamics would lower the cosmological constant to the
lowest non-negative value possible (pyqc ~ € ~ pc). We will question the validity
of this assumption later on.

The initial conditions are expected to be such that L; ~ T o~ Vofl/ e n—t,

which is significantly smaller than the Hubble radius:

RH mpj 20
— ~ —— < 107". (4.82)
. /4 ~
L; v, /
Clearly, with L; ~ !, the surface pressure pr ~ n* ~ V{ will initially dominate
the volume pressure py ~ € and the walls will initially be very stable. So for

this choice of parameters, devaluation is not very efficient.

On the other hand, the largest correlation length we can have (which corre-

sponds to the largest instability) is L ~ t. Recalling that
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t~—"t (4.83)
in the radiation era, and

mpj

f~—t (4.84)
1/2
T3/2T2

in the matter era, we find that, in this maximal instability case, the domain

walls become unstable and disappear for

(i)z ~ 2 (4.85)

b
mpj Vo mpy

(1)3/2 e (m”>1/2 (4.86)
mpy Vompy \ Teq ’ .

respectively. In order for the decay to happen in the radiation era we need
T >T., ~ 1eV, and using Eq. (4.81) we find

Nrad < 100keV (4.87)

which is clearly incompatible with the assumed bound in Eq. (4.80). It then
follows that if this mechanism (at least as originally envisioned) is to explain
the observed value of the cosmological constant, the domain walls must survive
through the radiation era, and decay only in the matter era. In other words, in
the original scenario, devaluation must occur late in the history of the universe,
and not early. This is due to the energy scale required to match the observed
value of the cosmological constant, and is another manifestation of the under-
lying fine-tuning. Repeating the calculation for a decay during the matter era
(and ignoring the effect of the recent acceleration phase on the expansion rate,

which is negligible in this context), we now find

nmat E, 10 MGV 3 (488)

which saturates the bound given by Eq. (4.80).
Therefore the best we can do is to have a network that disappears around to-
day. If so, and again neglecting the effect of the recent dark energy domination,

we would expect the cosmological constant to be

1/4 3/4 3/8 1/8
pv{zc -~ ( mn ) / < TO ) / ( Teq > / (489)
mpy mpy mpi mpi ’

and since Tp, ~ 1eV and T ~ 2 x 10~%eV we get
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3/4
1/4 (i> 10'3eV (4.90)

vac
mpj

from which we would get pil,{fc =10"3eV for n ~ 10 MeV as previously stated.

There is, however, an obvious problem with such a scenario: 10MeV do-
main walls decaying today are observationally ruled out. For the rather classic
Zel'dovich bound [127], 1 ~ 1 MeV, we only get p},{ﬁ; ~ 10~%eV. This is op-
timistic not only because the observational bound is somewhat lower, but also
because we really want the network to decay a bit before today to be clear of

observational problems.

Indeed, for late devaluation there are several extra requirements (absent in
the case of early devaluation) which need to be satisfied. If devaluation is not
complete and there are some walls still around, their average contribution to the
energy density of the universe needs to be p, < 107%p.. Otherwise, assuming
that the characteristic size of the domains is > H~!, there would be a detectable
contribution of domain walls to the cosmic microwave background anisotropies.
This means that the wall tensions are strongly constrained. We know from Eq.
(4.66) that if we have two contiguous domains with a vacuum energy difference of
€ then the domain with larger vacuum density will be exponentially suppressed
when € > o/L. Recall that /L is the average energy density of the domain
wall network and that, as we saw, p, must be at least five orders of magnitude

smaller than the critical density. So in this case,

/4 < 10~%eV

vac ~ ’

(4.91)

and devaluation would lead to a vacuum energy density significantly smaller
than the critical density at the present time. In fact this number might even be

smaller than that, depending on the domain wall tensions.

Beyond particular realizations of the devaluation mechanism, several general
comments can be made about the underlying physical scenario. Before touching
upon some of these, let us note that this simple model may allow for positive and
negative values of the vacuum energy density. It is argued [9] that gravitation
itself may prevent the vacuum energy density from attaining negative values.
However, here we will be mainly concerned with the evolution of domain wall
networks during the matter and radiation eras in which the contribution of the
domain wall and the vacuum energy densities can be neglected. In this context,

there is no cut-off that prevents the vacuum energy densities from attaining
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negative values. Such a mechanism can only operate when the vacuum energy
densities are the dominant contribution for the dynamics of the universe. Hence,
a low-energy cut-off of the order of the critical density at the present time needs
to be introduced by hand in the devaluation model, which is clearly not an
attractive feature of the model.

In this scenario a domain wall network forms at a critical temperature T, ~
Vol/ Itis straightforward to put a lower bound on the number, N, of domains
that are initially present in a region with a comoving size of the order of the

Hubble radius at the present day,

Te 3/2 Tc 3
v (L) () o
0 eq

Assuming a fixed energy difference beween successive minima and that the bar-

rier height and tuning of the potential are roughly comparable (as in the simple
devaluation toy model introduced above), we see that the difference in energy
densities between successive minima is bounded from below,

T4
e <3 ~ Te(To Teq)*?, (4.93)

if all the minima are populated at the time when the network forms. In fact, if
we assume that close to T, the domains rapidly attain a typical size of the order
of the Hubble radius then

e~ To(To Tog)*?, (4.94)

which is much larger that the energy density at the present time. Of course,
not all the minima need to be populated and, in this case, £ can be smaller.
However,the domain wall tension would no longer be the same for all domain
walls, since domain walls would in general interpolate between distant minima.
We also note that a single domain with the lowest possible energy density does
not necessarily survive domain wall evolution since, even in the absence of the
devaluation mechanism (which will only operate for ¢ 2 o/L), domain wall
dynamics in the scaling regime naturally leads to the suppression of most of the
available domains during each Hubble time.

The above analysis also confirms the naive expectation that the devaluation
mechanism can only be effective if L < H~!. If this is not the case (either be-
cause the walls are somehow pushed outside the horizon, or in the opposite limit,
L « H~1), the dynamics of the domain walls is even less efficient in suppressing
domains with larger values of the vacuum density. In the absence of friction,

and assuming that L < H !, a domain wall network will in fact approach the
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scaling regime, with L oc H~!, which is quite generically an attractor solution.
Friction may slow down the domain walls, and if they are sufficiently light, the
evolution may be friction dominated up to the present time, but this will not
help.

Therefore the devaluation scenario does not naturally lead to the required
value of the vacuum energy density. A simple and physically intuitive way of
expressing this is in terms of fine-tuning. A cosmological constant is considered
unappealing because its observational value is many orders of magnitude below
what one would naturally expect from particle physics considerations. From
this perspective, the motivation of the devaluation scenario is that it would lead
to a small value in a natural way. However, this is not so because the same

fine-tuning problem is still there, since we still need a low energy cut-off.

Many of the features of this simplest implementation of devaluation can be
relaxed. We may have complex domain wall networks with junction, domain
walls with tensions that may be correlated with the differences between the
vacuum energy densities. In fact the domain walls may not all be formed at
the same time, with additional domains with smaller energy densities separated
by low tension domain walls being formed only at smaller critical temperatures.
Still, it is clear that the devaluation mechanism is too efficient and consequently
it will always be necessary to introduce by a hand a low energy cut-off of the
order of the critical density at the present day.

In more realistic particle physics scenarios there will typically be many cou-
pled scalar fields that can lead to domain walls. From a phenomenological point
of view, there are several reasons why this more general case may differ from
the simplest implementation of the devaluation mechanism. The potential may
be significantly more complicated, as in landscape-type scenarios. This by itself
need not be a great advantage, since in any case energy minimization criteria will
always favour evolution down the potential, regardless of the number of fields.
In particular, any number of uncoupled fields will lead to a scenario very similar
to the single-field case. More important, though, is the existence of coupled
fields, since this generically leads to domain wall networks with junctions, and
also to more complicated spectra of wall tensions, which need not necessarily
be of comparable magnitude.

The presence of walls with significantly different tensions may be important
to the network dynamics. Recall that biased walls will decay when their char-
acteristic size grows to L > o/e. Since in this model ¢ is effectively fixed to the

observed vacuum energy density, we see that higher-tension walls are actually
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more stable than lower-tension walls (since a larger characteristic size is needed
to make them decay). Notice that this is contrary to standard energy minimiza-
tion arguments, whereby higher-tension walls tend to decay into lower-tension
walls. If we now consider a network of walls with junctions and a non-trivial
hierarchy of tensions, and temporarily assume that the various types of walls
with different tensions have comparable characteristic sizes (which may be too
naive an assumption), then one may reach a threshold where the lowest-tension
walls present become unstable and decay. This may render the whole network
unstable and make it disappear well below what one would expect from a stabil-
ity analysis for the higher-tension walls. Therefore this mechanism may increase
the efficiency of devaluation. However, given that the devaluation mechanism
is already too efficient in its simplest implementation this extra efficiency will
not help. Hence, it seems that a low energy cut-off of the order of the critical
density at the present day would still be necessary in order for devaluation to

stop at the observed value of the dark energy density.

4.4 CONCLUSIONS

In this chapter, we have discussed the potential role of frustrated domain
wall networks as a dark energy component. We have imposed strong constraints
on the characteristic length and velocity of domain wall networks with string
and monopole-type junctions using a semi-analytical VOS model. We have
shown that a successful domain wall scenario for dark energy would require
that Ly < 1Mpc and vy < 10~3. We have demonstrated that such small values
of Ly and vy could only be achieved if the contribution of the monopole-type
junctions to the total density of the universe was several orders of magnitude
larger than that of domain walls and strings (assuming 2,9 ~ 1), in complete
disagreement with observations. These results highlight the main difficulty with
alternative mechanisms for the frustration of domain wall networks. The inclu-
sion of additional degrees of freedom such as heavy junctions and friction may
slightly reduce the characteristic length and velocity of domain walls; however
it is insufficient to lead to frustration, due to the limited amount of matter with
which domain walls can interact while conserving energy and momentum at

present time.

Moreover, we studied the effect that a generic interaction mechanism be-
tween p-branes and another cosmological component may have on the dynam-

ics of p-brane networks. We demonstrated that, if p-branes are the dominant
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component of the universe, then frustration is not possible unless the curva-
ture parameter is driven towards very small values for non-relativistic networks
or if the expansion is accelerated. In the case of domain walls there is very
strong analytical and numerical evidence (both in two (IV = 2, p = 1) and
3 (N =3, p = 2) spatial dimensions) that k never becomes much smaller
than unity (except deep into inflationary or friction dominated regimes), thus
preventing frustration from being attained for realistic domain wall networks
playing a dark energy role. We conjectured that this may be a general result,
valid for any realistic p-brane network independently of the values of N and p
with1<p<<N-1.

We have also studied the evolution of biased domain walls in the early uni-
verse by including the dynamical effects of bias in the microscopic equations of
motion for domain walls. We discussed the roles played by the superficial ten-
sion and the volume pressure (caused by the energy difference between nearby
vacua) in the evolution of the domain walls, and quantified their effects by look-
ing at the collapse of spherical domain walls. These results were then applied
to the devaluation scenario, suggested as a possible solution to the cosmological
constant problem. Our results indicate that devaluation will, in general, lead to
values of the cosmological constant that differ by several orders of magnitude
from the observationally inferred value. We also argued that, beyond any par-
ticular realizations, this scenario is expected to be too efficient and, therefore,
it does not naturally lead to the required energy density. In order to do so,
the devaluation scenario requires a low-energy cut-off of the order of the critical
density at the present on the spectra of the vacuum energy density. As a conse-
quence, the devaluation scenario cannot be regarded as a satisfactory solution

to the cosmological constant problem.



Conclusions

This thesis focused mainly on the dynamics of p-brane networks in higher di-
mensional Friedmann-Robertson-Walker universes, and their cosmological con-
sequences. In order to study the cosmological consequences of p-brane net-
works, it is necessary to understand the dynamics of p-branes. For that reason,
we started by studying the dynamics of N — 1-branes, or domain walls, and
computed analytically the equation of motion for the velocity of a curved thin
domain wall — whose curvature radii are much larger than its thickness — in
N + 1-dimensional homogeneous and isotropic backgrounds. We demonstrated
specifically that the dynamics of domain walls is independent of the form of
the potential — which is only required to support stable domain wall solution
— and it does not depend on the form of the kinetic term of the lagrangian
density. We have also demonstrated that the modification to the scalar field
equation of motion, implemented in many cosmological field theory simulation
of domain wall networks in order to ensure fixed comoving thickness (known as
PRS algorithm), does not affect the dynamics of thin domain walls.

Furthermore, we derived the equation of motion for the velocity of a infinitely
thin and featureless p-brane of arbitrary dimensionality, and obtained its normal
acceleration. We have also studied in detail the dynamics of closed p-brane
solutions with a S,_; ® R! topology, and obtained equations of motion for their
velocity and invariant radius, in FRW universes. The dynamics of these p-brane
loops were studied in several cosmological backgrounds, with constant and time-

dependent expansion rates, experiencing expansion and collapse. This study
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allowed us to obtain constraints on the root-mean-square velocity of p-brane
loops in expanding and collapsing universes, and to understand the evolution of
p-brane loops under expansion.

We moved on to consider the case of p-brane networks in higher dimensional
FRW background. By averaging the equation of motion for a p-brane, we were
able to obtain a evolution equation for the RMS velocity of a p-brane network.
We also assumed that the p-brane network is statistically homogeneous and
isotropic at large scales, so that it can be treated as brane gas. This allowed
us to obtain an evolution equation for the p-brane energy density and for the
characteristic length of the network. The equations of motion for RMS velocity
and for characteristic length of the network constitute a generalization of the
Velocity-Dependent One-Scale Network for cosmic strings, to the case of p-brane
networks in FRW universes with an arbitrary number of spatial dimensions.

This generalized VOS model allowed us to study the scaling regimes that
arise in different expanding and collapsing cosmological models, both in the
friction-dominated and frictionless epochs. We studied, in particular, the con-
ditions under which p-brane networks are able to reach linear scaling solutions.
We used the previously derived constraints on the RMS velocity to determine
the allowed range of the curvature parameter, for which these solution are at-
tainable. We have also discussed the particular case of cosmic string networks
in NV + 1-dimensions, and constrained the values of the expansion exponent, 3,
for which these linear scaling solutions might arise in the absence of the energy-
loss mechanism. We have shown that, for non-vanishing energy-loss parameter,
these linear scaling solutions are attainable for all 0 < # < 1, provided that the
curvature parameter has an adequate value.

We gave special attention to the cosmological consequences of domain wall
networks and their relations to dark energy. We adapted the VOS model for
domain walls to account for the dynamical effects of string and monopole-type
junctions on the evolution of domain wall networks. We found that the presence
of massive junctions is able to effectively “freeze”, or frustrate, the domain wall
networks, provided that their energy density is several orders of magnitude larger
than that of the domain walls. Domain wall networks are able to provide a phase
of accelerated expansion, provided that their velocity is small enough. For this
reason, frustrated domain wall networks have been suggested as dark energy
candidates. However, frustration does not seem to arise naturally as a result of
the evolution of domain wall networks without the existence of an alternative
mechanism to decelerate the walls. Our results indicate that, although the
presence of heavy junctions can effectively frustrate the network, this would

require a very large junction energy density, that is not in agreement with
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observational results. Therefore, our results seem to rule out frustrated domain
wall networks with massive junctions as dark energy candidates. Moreover, we
demonstrated that considering alternative frictional mechanisms does not help
much: in order to decelerate the branes, we should either have that k « 1 in
the non-relativistic limit, or the contribution of the branes to the energy density
should be subdominant. Therefore, any frustrated domain wall network would
be unable to contribute significantly to the dark energy density.

We have also studied the dynamics of biased domain walls, that (in the
simplest realization) arise when the minima of the potential of the model are
nearly-degenerate. In this case, there is another dynamical effect to take into
consideration in the motion of the domain walls: the pressure that results from
the energy difference between minima. This pressure drives the domain walls
towards the region of higher vacuum energy density. We have adapted the
equation of motion for domain walls to account for this dynamical effect, and
found that it may be interpreted as an effective curvature term, that aids do-
main collapse. We used these results to study the devaluation scenario, that
was proposed as a dynamical solution to the cosmological constant problem.
According to this scenario, after inflation, different patches of the universe fall
into different minima of a potential with a large number of nearly degenerate
minima, spanning a wide range of vacuum density values, and, therefore, a bi-
ased domain wall network permeates the universe. These domain walls would,
then, feel a volume pressure towards the regions of higher energy density, that
would lead to the suppression of these regions. As a consequence, the natural
evolution of the biased domain wall network would lead to the disappearance of
regions with higher values of the cosmological constant, and the universe would
natural evolve towards small values of the vacuum energy density. However,
our results show that, beyond of specific realization of this scenario, devalua-
tion would require a low-energy cut-of in order to reproduce the observed value
of the cosmological constant. In other words, this scenario also suffers from

fine-tuning problems.
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