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Abstract

The anomalous magnetic moment of the muon provides one of the most stringent tests
of the Standard Model with very precise determinations from both experiments and
theory. However, there is a persistent tension between the two determinations, which
has increased to 4.2 standard deviations with the latest experimental result. Currently,
experimental efforts are underway to reduce the uncertainty by up to a factor of four.
Testing the Standard Model on this more precise level requires that also the theory
error is reduced to the same level. The Standard Model uncertainty is dominated by
low-energy contributions from the strong interaction, namely the Hadronic Vacuum
Polarization and the Hadronic Light-by-Light scattering. The Hadronic Light-by-
Light scattering can be systematically decomposed into contributions from various
intermediate states, with the dominant role played by the π0-pole, followed by the η-
and η′-poles.

In this work, the π0- and η-pole contributions are estimated from twisted mass lattice
QCD with physical light and heavy quark masses. Three ensembles generated by
the Extended Twisted Mass Collaboration are used for the π0- and one ensemble for
the η-pole calculation. For the η-pole, this is the first ab-initio calculation directly
at the physical point.

The main results for the pole contributions are aπ-pole
µ = 56.7(3.1) × 10−11 and

aη-pole
µ = 13.8(5.5)× 10−11.
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Chapter 1

Introduction

The anomalous magnetic moment of the muon provides one of the most precise tests
of the Standard Model (SM) and is currently measured with a precision of around
0.4 ppm [1, 2], with an uncertainty from the SM prediction at an equal level [3].
However, for about the last twenty years, there is a persistent tension between theory
and experiment, which with the latest results has increased to 4.2σ. This discrepancy
has lead to a significant interest in the particle physics community, since it both
constrains plausible extensions of the Standard Model and impacts our understanding
of beyond-the-standard-model (BSM) physics.
The SM prediction is commonly split into quantum electrodynamic (QED), elec-
troweak and hadronic contributions, with the hadronic contributions being split
into the Hadronic Vacuum Polarization (HVP) and the Hadronic Light-by-Light
scattering (HLbL). It turns out that the error in the theory prediction is dominated
by the hadronic contributions. The aim of this thesis is the calculation of parts of
the HLbL contribution from first principles.
The structure of this introduction is as follows. First, the magnetic moment is intro-
duced before reviewing the current predictions of the electron and muon anomalous
magnetic moments. Then, in Sec. 1.1 a brief overview on the experimental devel-
opment and techniques is given before reviewing the SM contributions in Sec. 1.2.
Finally, in Sec. 1.3, a few more details on the quantities calculated in this work as
well as the structure of this thesis are explained.
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The magnetic moment µ⃗ is an intrinsic property of a spin-1/2 particle, defined
through the interaction of the particle with an external magnetic field B⃗, with the
potential energy of the magnetic moment given by U = −µ⃗B⃗ [4]. It is given in
natural units by

µ⃗ = g
q

2m
S⃗, (1.1)

with S⃗ the particle’s spin, q its charge, m its mass and g the gyromagnetic ratio
which describes the overall strength of the magnetic moment in units of the classical
magnetic moment [5]. The Dirac equation predicts a value of g = 2 for any spin-1/2
elementary particle, i.e. in particular for the three charged leptons (the electron e,
muon µ and tauon τ) [6]. In the framework of relativistic quantum field theories,
this “Dirac term” arises at lowest order in quantum electrodynamics (QED) from the
tree-level interaction of a lepton with a real external photon.
The gyromagnetic ratio differs from 2 through contributions from radiative corrections,
where the interaction of the lepton with a photon is modified by virtual loops and
lines. This is a per-mille level effect for the gyromagnetic ratio of the electron and
muon [5,7]. For the charged leptons l = e, µ and τ , the anomalous magnetic moment
al is defined by half the difference from Dirac’s prediction gl = 2, i.e. by

al =
gl − 2

2
. (1.2)

Already in 1948, the first order correction from QED was calculated by Julian
Schwinger. It increases gl universally for all three charged leptons by α/π, where α
is the fine structure constant [8]. This increase was confirmed experimentally for the
electron in the same year [9].
In general, quantum field theories are not analytically solvable. In the perturbative
approach, quantities are expanded in powers of some coupling smaller than one in
order to approximate the exact values by truncating the expansion at some power.
For QED, this coupling is the fine structure constant, which is of O(10−2). Higher
order corrections in the framework of perturbative QED then scale with higher
powers of the fine structure constant.
Both the theoretical SM predictions and experimental measurements of ae and aµ

are among the most precisely determined quantities in particle physics. They not
only serve as a test of the SM but also as an indication of BSM physics if experiment
and theory show differences, since BSM forces or virtual particles might contribute
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to al. The SM prediction of the electron anomalous moment is dominated by QED
and is in particular sensitive to the experimentally measured value of α, resulting in
combined differences to the most recent experimental value of [10]

aexp
e = 115 965 218.073(20)× 10−11

of -2.5σ to 1.6σ. Note that the experimental value for ae has a precision of 0.24 ppb,
while the theoretical predictions have precisions in the range of 0.1 ppb to 0.6 ppb,
depending on the used determination of the fine structure constant α.
The most recent experimental value of the muon anomaly, from April 2021 [1, 2],

aexp
µ = 116 592 061(41)× 10−11,

has a precision of 0.35 ppm, while the recommended SM value from the g − 2 theory
initiative [3],

aSM
µ = 116 591 810(43)× 10−11,

has a precison of 0.37 ppm, resulting in the combined difference of 4.2σ. Despite
the lower precision of both the measurement and theoretical prediction of the
muon anomalous moment it is of special interest since it is much more sensitive to
electroweak, strong and BSM contributions compared to ae. As pointed out in [11],
any modification to the photon propagator or a new coupling to both electrons and
muons would perturb aµ by a factor (mµ/me)

2 ≈ 40 000 compared to ae. In principle,
the tauon anomalous moment would be even more sensitive to new physics, but its
extremely short mean life time of 290.3(5) fs [12] makes a precision measurement of
aτ impossible with the currently available technologies.

1.1 Overview of the experimental development

The history of the muon g − 2 experiments starts with the measurement published
in 1957 by the Columbia Nevis group [13], with a second result published just two
months later by the University of Liverpool, already reaching a precision of 1% on
gµ [14]. The Columbia Nevis group then improved their experiment, resulting in
a measurement of aµ with a precison of 6.5% which they published in 1960 [15].
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Borrowing the magnet from Liverpool, the first of three experiments at CERN was
started in 1959. The CERN I experiment gave a measurement with a 0.4% error on
aµ already in 1962 [16,17]. Recognizing the need for increased observation time of
the spin precession for higher precision, the CERN II experiment [18] was the first to
make use of a storage ring to employ relativistic muons with a boosted mean life time
in the laboratory frame compared to their mean life at rest of 2.1969811(22)µs [12].
Further improvements were made in the CERN III experiment, most notably muons
at the so-called “magic momentum” of 3.1 GeV/c were stored for measuring aµ, which
cancels out the first order electric field contribution from the used focusing electric
quadrupoles [19]. More details about the “magic momentum” will be given later in
this section. The final report of the three CERN experiments, published in 1979,
gives a precision of 7.3 ppm on aµ when combining all CERN measurements [19].
The most recent completed experiment was conducted at the Brookhaven National
Laboratory (BNL). It follows the same general technique as CERN III, with the
most notable improvements being firstly direct muon injection utilizing a passive
instead of a pulsed inflector magnetic and pulsed magnetic kicker, and secondly the
superferric superconducting storage ring magnet with a more uniform magnetic field.
After the measurements concluded in 2001, the final report was published in 2004,
giving aµ with a precision of 0.54 ppm [20].

Figure 1.1: Arrival of the BNL E821 muon storage ring at Fermilab in 2013 for FNL
E989 (left), installed ring in its detector hall (right). Pictures from [21].

For the Fermilab muon g− 2 experiment, the storage ring from BNL was transported
to Fermilab in 2013, see Fig. 1.1 for some photographs. The 14 m diameter ring was
transported in a five-week journey of more than 5000 km over land and sea.
Notable improvements include better instrumentation for the magnetic field and the
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muon spin precession frequency measurements as well as the utilization of a more
intense and pure muon beam [22]. The target precision is 0.14 ppm after a total of
six data taking periods, with Run-6 being completed in 2023. The Run-1 result,
published in 2021, already reached the same precision as the final BNL result, the
analysis from Run-2 and Run-3 is expected to be published in 2023 [1, 2].
Planned to start data taking in 2027 is the muon g − 2/EDM experiment J-PARC
(E34) in Japan. Its goal is to provide an independent measurement of aµ with an as
of yet unused approach to the muon beam line utilizing a very low-emittance muon
beam, produced by re-acceleration of thermal muons, which eliminates the need for
the strong focusing electric quadrupoles used at BNL or Fermilab and thus allows
muon momenta different from the “magic momentum” [23–25].

The muon g − 2 storage ring experiments inject spin-polarized muons into
the magnetic storage ring and measure the relative precession frequency of the spin
of the muons with respect to their momentum. This so-called anomalous precession
frequency ωa is defined as the difference between spin precession frequency ωs and
the cyclotron frequency ωc for muons orbiting in a highly uniform magnetic field
B⃗ [7]. In the absence of an electric field and for muons orbiting perpendicular to the
magnetic field,

ω⃗a ≡ ω⃗s − ω⃗c = −aµ
qB⃗

mµ

(1.3)

holds, where mµ is the muon mass. Thus a measurement of ω⃗a, combined with precise
knowledge of the storage ring magnetic field B⃗, allows for a precise determination of
aµ. In the presence of an electric field E⃗ and while accounting for an electric dipole
moment (EDM) of the muon, the total spin precession vector with respect to its
momentum is given by

ω⃗ = ω⃗a + ω⃗η

= − q

mµ

[
aµB⃗ −

(
aµ −

1

γ2 − 1

)
β⃗ × E⃗

c
+
ηµ
2

(
β⃗ × B⃗ +

E⃗

c

)]
, (1.4)

where ω⃗η is the precession vector due to the EDM and β⃗ and γ the velocity and
Lorentz factor of the muon. ηµ is the factor corresponding to gµ for the EDM [23]. In
the CERN III, BNL and Fermilab experiments, the muons are tuned to the “magic
momentum” of 3.1GeV/c, where γ ≈ 29.3, such that the second term in Eq. (1.4)
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goes to zero. In the Fermilab experiment, the stored muon beam has a narrow
momentum spread of approximately 0.15% around the “magic momentum”. This
momentum spread is picked up by the detectors and taken into account for the
analysis [1]. The planned experiment at J-PARC will use no electric field for focusing
the muon beam, thus reducing all terms involving E⃗ in Eq. (1.4) to zero. The key
requirement for storing the muon beam with only a magnetic focusing field is a muon
beam with low emittance [23].

1.2 Overview of the Standard Model contributions

Turning to the theoretical calculations of aµ, the SM prediction for the anomalous
magnetic moment gets contributions from all sectors of the SM, and is commonly
split into

aSM
µ = aQED

µ + aEW
µ + aHVP

µ + aHLbL
µ , (1.5)

with aQED
µ the QED contribution, aEW

µ the elektroweak (EW) contribution, aHVP
µ the

Hadronic Vacuum Polarization (HVP) contribution and aHLbL
µ the Hadronic Light-

by-Light scattering (HLbL) contribution. Both the QED and EW contributions
come with negligible uncertainty, the error of the SM prediction is dominated by the
hadronic contributions due to the non-perturbative strong interaction at low energies.
In 2020, the Muon g − 2 Theory Initiative published a white paper [3], with the goal
to provide community-approved values for the SM contributions. An update of the
white paper is expected for 2023. In Tab. 1.1, the SM values are summarized and
compared to the experiment.
The most precisely determined SM contribution is aQED

µ , which accounts for more than
99% of the anomalous magentic moment of the muon. aQED

µ consists of all contribution
only involving photons and leptons, it has been calculated both analytically and
numerically up to four-loop order, the fifth-loop order contribution has been fully
calculated numerically. Its uncertainty stems from four- and five-loop QED, the
estimation of the six-loop QED and the fine structure constant α, with a negligible
total uncertainty of 0.9 ppb, cf. [3, 26] and references therein.
Also coming with a negligible uncertainty of 8.6 ppb is aEW

µ , which constitutes of all
diagrams involving at least one of the EW bosons, i.e. W , Z or Higgs. They are
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Contribution Value× 1011

E821 116 592 089(63)
E821 + E989 Run-1 116 592 061(41)
QED 116 584 718.931(0.104)
Electroweak 153.6(1.0)
HVP (e+e−, LO+NLO+NNLO) 6 845(40)
HLbL (phenom. + lattice + NLO) 92(18)
SM total 116 591 810(43)
aE821
µ − aSM

µ 279(76)
aE821 + E989 Run-1
µ − aSM

µ 251(59)

Table 1.1: Experimental values and recommended SM contributions to aµ from [3],
FNL Run-1 value from [2].

strongly suppressed by the heavy masses of the EW bosons and in total contribute
numerically at the same order as aHLbL

µ . Their calculation has been done up to
two-loop order, with dominant three-loop effects estimated from the renormalization
group. The uncertainty is dominated by non-perturbative hadronic insertions entering
at two-loop, cf. [3, 7] and references therein.
The most sizeable hadronic effect, contributing the most to the SM prediction error,
comes from the HVP, entering at order O(α2) in the framework of perturbative QED.
Its leading order Feynman diagram is depicted in Fig. 1.2. aHVP

µ can be calculated

Figure 1.2: Hadronic vacuum polarization diagram in the muon g − 2 at leading
order. The striped circle indicates all possible intermediate hadronic states.

using data-driven methods, utilizing experimental input from e+e− annihilation into
dispersion relations, or from lattice QCD. The data-driven HVP estimations have
been calculated by various groups using different assumptions on the functional form
of the cross section entering the dispersion relation and treating the data differently.
Three such results have been merged up to NNLO to obtain the sub-percent level
precision value in Tab. 1.1, see [3, 27–33]. Improvements of the data-driven estimate
are expected from new e+e− → hadrons cross section measurements, in particular
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those of the π+π− channel. Belle-II [34], BaBar [35] and BES-III [36] are all expected
to provide such data sets, while CMD-3 recently released new results [37]. On
the lattice, the first result with sub-percent precision was the BMW-20 analysis
published in 2020 [38]. Other recent lattice results are the LM-20 [39], ETM-22 [40]
and CLS/Mainz-22 [41] analyses, of which the latter two study so-called short and
intermediate distance windows. Note that these results were not yet included in [3]
and that both the BMW-20 and LM-20 results would push the SM prediction for aµ
closer to the experimental value, with a combined discrepancy between theory and
experiment of only 2σ.
Entering at O(α3) in the framework of perturbative QED is the contribution from
Hadronic Light-by-Light scattering, aHLbL

µ , which also can be calculated by data-
driven methods and lattice QCD. Due to its suppression by an additional power of α
compared to the HVP contribution, the HLbL contribution is two orders of magnitude
smaller. Since the HLbL involves four-point functions as opposed to the two-point
HVP function, it is determined to a much lower relative precision than HVP, such
that the second most significant contribution to the overall error of the SM prediction
comes from HLbL. aHLbL

µ gets contributions from single meson exchanges, axial-vector
mesons, tensor mesons and charged pion and kaon loops [3]. There have been many
approaches to estimate the HLbL contribution, e.g. [42–51], with the modern data-
driven and dispersive methods providing model-independent evaluations of aHLbL

µ .
The HLbL tensor can be systematically decomposed into contributions from various
intermediate states [52–55]. The bulk of aHLbL

µ is expected to originate from states at
energies of up to 1.5 GeV/c, with the numerically dominant role played by the π0-pole,
followed by η- and η′-poles, while two pion and two kaon contributions are further
suppressed. Its leading order Feynman diagram as well as the pseudoscalar-pole
diagrams are depicted in Fig. 1.3. Lattice QCD can be utilized to both provide form
factors and hadron scattering amplitudes used with the approach of systematically
decomposing the HLbL tensor into contributions from intermediate states as well
as for calculating the full HLbL scattering amplitude [56–62]. Recent data-driven
estimates of the pseudoscalar-pole contributions include [63–65] and recent lattice
QCD calculations [66–71].
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P

+ crossed

+
P

+ . . .

Figure 1.3: The pseudoscalar-pole diagrams contributing to the leading order HLbL
scattering in the muon g − 2. The striped circle on the left indicates all possible
intermediate hadronic states, while the striped circles on the right indicate the
nonperturbative P → γ∗γ∗ transition form factors required to evaluate these contri-
butions.

1.3 Hadronic Light-by-Light scattering and the aim

of this thesis

The calculation of the leading pseudoscalar-pole contributions to HLbL involve the
transition form factors (TFFs) FP→γ∗γ∗ of the transition of a neutral pseudoscalar
meson P = π0, η and η′ to two (virtual) photons, P → γ∗γ∗, defined by the matrix
element

i

∫
d4x eiq1x⟨0|T{jµ(x)jν(0)}|P (q1 + q2)⟩ = εµνρσq

ρ
1q

σ
2FP→γ∗γ∗(q21, q

2
2), (1.6)

where jµ and jν are the electromagnetic currents and q1 and q2 the photon momenta.
For the space-like single-virtual FP→γ∗γ(−Q2, 0) with Q2 ≳ 1GeV2, there exists
experimental data from CLEO, CELLO, BaBar and Belle, cf. [72–76], while lattice
QCD provides access to a broad range of (space-like) photon four-momenta comple-
mentary to the experiments. The TFFs can also be used to determine the partial
decay widths

Γ(P → γγ) =
πα2m3

P

4
|FP→γγ(0, 0)|2, (1.7)

where mP is the pseudoscalar mass, and slope parameter

bP =
1

FP→γγ(0, 0)

dFP→γ∗γ(q
2, 0)

dq2

⏐⏐⏐⏐
q2=0

, (1.8)
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which plays a role in the electromagnetic interaction radius of the pseudoscalar
mesons.
The aim of this work is the computation of the pseudoscalar transition form factors
FP→γ∗γ∗ for the pseudoscalar states P = π0 and η to determine the corresponding
pole contributions to aHLbL

µ as well as the partial decay widths Γ(P → γγ) and slope
parameters bP . Twisted mass lattice QCD (tmLQCD) ensembles with Nf = 2+1+1

flavours tuned to the physical point, i.e. with physical light and heavy quark masses,
at maximal twist [77] are used, which guarantees automatic O(a) improvement for
the observables calculated in this work [78,79].
The structure of this thesis is as follows. In Chapter 2, twisted mass lattice QCD is
introduced and some of its properties discussed. Then, details on the lattice setup
used for this thesis are given. In Chapter 3, a brief overview on the calculation of
the pseudoscalar-pole contributions to HLbL is given before the computation of the
amplitudes used for their calculation is discussed in detail. Finally, some properties
of the employed ensembles and configurations are given. Chapter 4 reproduces the
publications written as part of this work, i.e. [68,69,71], while Chapter 5 is a draft in
preparation for publication. Finally, Chapter 6 concludes this thesis with a summary
and outlook.
Appendix A gives details on the operators, symmetries and conventions used in
the pion-pole calculation and is part of the draft in Ch. 5, appendix B deals with
theoretical aspects relevant for Ch. 2 and 3 and in particular with the symmetries
and operators relevant for the η-pole calculation. Next, appendix C gives details
on model averaging and error calculation, while the final appendix D contains a
selection of plots complementary to the ones shown in Ch. 3 to 5.
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Chapter 2

Twisted mass lattice QCD and lattice
setup

In this chapter, twisted mass lattice QCD is introduced in Sec. 2.1. It starts with
a short discussion on lattice QCD and Wilson lattice QCD in Secs. 2.1.1 to 2.1.3
before turning to Wilson twisted mass lattice QCD in Secs. 2.1.4 to 2.1.8. Finally,
the used lattice setup is discussed in Sec. 2.2.

2.1 Twisted mass lattice QCD

In this section, the basics of twisted mass lattice QCD (tmLQCD) are reviewed,
closely following [80–82], with other references explicitly pointed out where relevant.
It is organized as follows. After some introductory remarks, the Wilson lattice
regularization scheme is introduced and a few of its properties as well as the problem
of unphysical zero modes are discussed, leading to its modification by the twisted
mass term to alleviate the problem of the unphysical fermion zero modes. Then, the
equivalence of twisted mass QCD (tmQCD) and QCD in the continuum are sketched
and cutoff effects in tmLQCD are discussed. After that, non-degenerate quarks and
additional flavours are introduced. Finally, the section ends with some concluding
remarks. For general introductions to lattice QCD the interested reader is referred
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to [83–86], while more details on twisted mass lattice QCD can be found in [77–79].

2.1.1 Introduction to lattice QCD

In order to discuss quantum chromodynamics (QCD), the fundamental quantum
field theory of quarks and gluons, in a mathematically well-defined way it has to
be regularized. QCD has the property of asymptotic freedom, meaning that the
renormalized dimensional coupling of QCD, g0, which depends on the energy scale of
the considered physical process and measures the strength of the interaction at said
energy scale, is decreasing with increasing energy. Thus pertubation theory can be
used to make phenomenological predictions in the high energy region, but not in the
low energy region where g0 is of order O(1). An effective approach which has become
a standard method in elementary particle physics is the replacement of space-time
by an Euclidean lattice. There are multiple sensible discretizations of the continuum
QCD action, with the simple one proposed by Wilson [87, 88] getting rid of the
so-called fermion doubling problem, see e.g. [83], at the cost of explicitly breaking
chiral symmetry in the discretized theory. Lattice QCD, being non-perturbative,
makes it possible to compute physical quantities in the low energy region, such as
the mass spectrum or hadronic matrix elements. In lattice QCD, the path integral
is regularized by replacing the continuous space-time by a four dimensional finite
lattice with lattice constant a, given for a hypercubic lattice by

Λ = {n|ni ∈ {0, 1, ..., Nx − 1} for i ∈ {1, 2, 3}, n4 ∈ {0, 1, ..., Nt − 1}}, (2.1)

with n = (n1, n2, n3, n4), where Nx is the spatial and Nt the temporal extent of
the lattice. The lattice constant a has the physical dimension of length and is
thus called “lattice spacing”. Physical space-time points are then given by x = an,
but to keep the notation compact, only n is used here. The fermionic degrees of
freedom are ψ(n), ψ̄(n), while the gauge degrees of freedom are the link variables
Uµ(n) = exp(ig0aGµ(n)), n ∈ Λ, where Gµ is the gluon field and g0 the bare gauge
coupling. Note that there is a relation between the coupling constant g0 and the
lattice spacing a in physical units through the renormalization group equations, see
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e.g. [89]. Then, n-point correlation functions are given by

⟨O(n1, ..., nm)⟩ = Z−1

∫
D[U, ψ, ψ̄] e−SO(n1, ..., nm), (2.2)

with O(n1, ..., nm) a product of local gauge invariant composite fields localized at
n1, ..., nm, ni ∈ Λ. The partition function is given by

Z = ⟨1⟩ =
∫
D[U, ψ, ψ̄] e−S, (2.3)

where S is the Euclidean action of the system discretized on the lattice such that the
Euclidean continuum action is recovered for a→ 0. The path integral measures on
the lattice are products of measures of all quark field components and link variables,
i.e.

D[ψ, ψ̄] =
∏
n∈Λ

∏
f,α,c

dψf
α,c(n)dψ̄

f
α,c(n), D[U ] =

∏
n∈Λ

4∏
µ=1

dUµ(n), (2.4)

with explicit flavour index f ∈ {1, 2, 3, 4, 5, 6}, Dirac index α ∈ {1, 2, 3, 4} and color
index c ∈ {1, 2, 3}. Using Monte Carlo methods, it is possible to simulate QCD in a
finite volume lattice and calculate such correlation functions at finite lattice spacing.
To obtain results for the correlation functions in the continuum, the limit a → 0

needs to be taken. For more details see [84].

Using the Wilson fermion action, errors of order O(a) are introduced in the results
of the simulations. O(a) cutoff effects in on-shell quantities can be cancelled using
Symanzik’s improvement program [90–93] by the addition of local O(a) counterterms
to the lattice action. Applied to Wilson quarks, it turns out that particle masses and
energies can be O(a) improved by adding just a single counterterm to the action, the
Sheikholeslami-Wohlert (SW) or clover term [94], but matrix elements of composite
operators come with sets of counterterms for each operator, and [95] shows that O(a)

improvement becomes impractical for quarks with non-degenerate masses. Further,
the Wilson fermion action suffers from unphysical fermionic zero modes in quenched
and partially quenched simulations, as discussed in Sec. 2.1.3.

While twisted mass QCD was introduced to solve the problem of these unphysical
fermionic zero modes in lattice QCD with Wilson quarks, it turns out that it can
also be used to circumvent some lattice renormalization problems [77,96] and that
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scaling violations can be reduced to O(a2) by “automatic O(a) improvement”, not
needing all the counterterms from the standard Wilson formulation [78].

2.1.2 The Wilson lattice action

The QCD action can be decomposed in a pure gauge and a fermionic part,
i.e. S = Sg + Sf . Focussing on the fermionic part Sf of the QCD action, the Wilson
lattice regularization scheme is characterized by the fermionic lattice action [88]

Sf = a4
∑
x

ψ̄(x) [DW +m0]ψ(x), (2.5)

DW =
3∑

µ=0

{
1

2

(
∇µ +∇∗

µ

)
γµ − ar∇∗

µ∇µ

}
, (2.6)

where ψ, ψ̄ are the quark and antiquark fields, m0 is the bare mass parameter matrix
and the covariant lattice derivatives ∇µ,∇∗

µ in the Wilson-Dirac DW operator are
defined in App. B.1. The so-called Wilson parameter r is always set to 1 unless
otherwise specified. The quark field is a vector in flavour space with Nf components
labelled by ψf while m0 is diagonal with components m0f , f ∈ {1, ..., Nf}. In the
case of degenerate quark masses, i.e. m01 = ... = m0Nf

, the fermionic Wilson lattice
action (2.5) is invariant under SU(Nf )V global vector transformations of the fermion
field, given by

ψ(x) → ψ′(x) = exp

[
iαa

V

λa

2

]
ψ(x),

ψ̄(x) → ψ̄′(x) = ψ̄(x) exp

[
−iαa

V

λa

2

]
,

(2.7)

with transformation parameter αa
V where the group generators in the fundamental

representation are the flavour matrices λa/2, a ∈ {1, ..., N2
f − 1}, given for Nf = 2

by the three Pauli matrices and for Nf = 3 by the eight Gell-Mann matrices. Note
that the standard continuum action of QCD, cf. App. B.2, with degenerate quark
masses is also invariant under this vector (or isospin) symmetry. On the other hand,
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global axial transformations of the fermion field, given by

ψ(x) → ψ′(x) = exp

[
iαa

A

λa

2
γ5

]
ψ(x),

ψ̄(x) → ψ̄′(x) = ψ̄(x) exp

[
iαa

A

λa

2
γ5

]
,

(2.8)

do not leave (2.5) invariant even for m0 = 0 due to the Wilson term ar∇∗
µ∇µ, while

they would leave the standard continuum action of QCD with m0 = 0 invariant. Thus
the chiral group SUL(Nf)× SUR(Nf) is not a symmetry of Wilson fermions. Inter
alia, consequences of the explicit breaking of all axial symmetries are a linear mass
divergence of the renormalized quark mass since the quark mass term is not protected
against additive renormalization, a non-trivial multiplicative renormalization required
to restore the current algebra up to O(a) effects for the non-singlet axial current
since axial transformations are not an exact symmetry and it also leads to the leading
cutoff effects having O(a).

2.1.3 Unphysical fermionic zero modes with Wilson quarks

Due to the aforementioned additive renormalization of the quark mass, the value
of m0 corresponding to the physical light quark masses is typically negative in
simulations with Wilson quarks, which leaves the massive Wilson-Dirac operator
DW +m0 unprotected against zero modes. These are considered unphysical since one
expects from the continuum theory that zero modes of the Wilson-Dirac operator
are prohibited by any non-zero value of the renormalized quark mass. To illustrate
this phenomenon, consider the eigenvalues of DW +m0. They are given by

m0 + ci, (2.9)

where ci are the eigenvalues of the massless Wilson-Dirac operator DW . These
eigenvalues are in general complex numbers, but it is also possible that they are real,
i.e. ci = ri. If m0 + ri ≪ 1, i.e. if the massive Wilson-Dirac operator has a very
small eigenvalue, the numerical inversion of DW +m0 breaks down [84].

The textbook example from [80,81], illustrating a case where this could be problematic
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due to not including the quark determinant in the generation of an ensemble of gauge
configurations dictated by the limited available computing power in the past, goes
as follows. Consider for Nf = 2 quarks the pion two-point function given by

Gab(x) = −
⟨
ψ̄(x)γ5

τa

2
ψ(x)ψ̄(0)γ5

τ b

2
ψ(0)

⟩
= −Z−1

∫
D[U, ψ, ψ̄] e−Sψ̄(x)γ5

τa

2
ψ(x)ψ̄(0)γ5

τ b

2
ψ(0), (2.10)

with τa the three Pauli matrices acting in flavour space and Z given in Eq. (2.3).
Introducing the Hermitian Wilson operator,

QW ≡ γ5(DW +m0), QW = Q†
W , (2.11)

by noting the γ5-hermiticity ofDW , i.e. γ5DWγ5 = D†
W , and performing the functional

integrals over the fermion fields leads to

Gab(x) =
1

2
δabZ−1

∫
D[U ] e−Sg det

(
Q2

W

)
Tr
[
Q−1

W (0, x)Q−1
W (x, 0)

]
, (2.12)

with the trace running over colour and spin indices. This expression is never
singular as shown in the following, which is an example of the fact that a functional
integral over Grassmann variables cannot diverge. Using the eigenfunctions ϕi(x)

and eigenvalues λi of QW yields

Gab(x) =
1

2
δabZ−1

∫
D[U ] e−Sg

[∏
i

λ2i

]∑
j,k

ϕj(0)
1

λj
ϕ∗
j(x)ϕk(x)

1

λk
ϕ∗
k(0), (2.13)

so eigenvalues in the quark propagators, i.e. those in the denominator, are cancelled
by corresponding factors coming from the fermionic determinant.

Historically, in the so-called quenched model the quark determinant det(Q2
W ) was

not included in the generation of an ensemble of gauge configurations to significantly
reduce the computational cost. Thus contributions from vanishing eigenvalues to
a fermionic correlator are not compensated by the determinant in this case, which
leads to large fluctuations in some observables. Such gauge field configurations are
called “exceptional”. The inclusion of such exceptional configurations in the ensemble
average would lead to much larger errors on the affected observables, i.e. in principle
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any observable depending on quark propagators, but they cannot just be omitted
since that would invalidate the Markov chains in the Monte Carlo procedure.
With the increase in available computing power in recent years, modern lattice
QCD simulations are in general unquenched, i.e. including the quark determinant
in the generation of an ensemble of gauge configurations. As a consequence, gauge
configurations leading to vanishing eigenvalues of the massive Wilson-Dirac operator
are never accepted when generating an ensemble since they get a weight of zero in
the Metropolis accept-reject step due to the vanishing quark determinant in that
case, cf. e.g. [83,84].

2.1.4 Twisted mass lattice QCD

The main motivation for the introduction of the twisted mass term were the zero
modes discussed in Sec. 2.1.3. The Wilson twisted mass lattice regularization scheme
for a doublet of two mass degenerate quarks is characterized by the fermionic lattice
action

Sf = a4
∑
x

χ̄(x)
[
DW +m0 + iµqγ5τ

3
]
χ(x), (2.14)

where µq is the bare twisted mass parameter and χ, χ̄ are used to denote the quark
and antiquark fields in the twisted basis. Extensions to non-degenerate quarks and
additional flavours will be discussed later in this section. It is indeed straightforward
to see that the presence of the twisted mass parameter eliminates the unphysical
fermionic zero modes, since for the Wilson twisted mass operator

Q = γ5(DW +m0 + iµqγ5τ
3) = QW + iµqτ

3 (2.15)

holds, using det(γ5) = 1 thus yields

det
(
DW +m0 + iµqγ5τ

3
)
= det

(
QW + iµq 0

0 QW − iµq

)
= det

(
Q2

W + µ2
q

)
> 0

(2.16)

for µq ̸= 0, such that exceptional configurations only appear in the massless µq = 0

theory. Note that the Wilson term breaking the axial symmetries (2.8) even when
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m0 = 0 implies that the twisted mass term cannot be eliminated by an axial rotation,
thus there is no exact equivalence between the fermionic Wilson lattice action with
vanishing and non-vanishing twisted mass parameter. However, as discussed in the
next subsection, both regularizations are equivalent in the continuum limit.

2.1.5 Equivalence of tmQCD and QCD

For the moment still only considering a doublet of two mass degenerate quarks, the
fermionic continuum action of twisted mass QCD takes the form

Sf =

∫
d4x χ̄(x)

[
/D +m0 + iµqγ5τ

3
]
χ(x)

=

∫
d4x χ̄(x)

[
/D +Minv exp

[
iωγ5τ

3
]]
χ(x), (2.17)

with /D = γµDµ, the covariant derivative Dµ = ∂µ + Gµ and Gµ the gluon field.
Further, Minv =

√
m2

0 + µ2
q and the twist angle ω is defined by tan(ω) = µq/m0.

Under a global chiral field rotation

χ→ χ′ = exp
[
i
α

2
γ5τ

3
]
χ,

χ̄→ χ̄′ = χ̄ exp
[
i
α

2
γ5τ

3
]
,

(2.18)

the fermionic continuum tmQCD action (2.17) transforms to

Sf =

∫
d4x χ̄′(x)

[
/D +Minv exp

[
i(ω − α)γ5τ

3
]]
χ′(x). (2.19)

Thus for tan(α) = tan(ω) = µq/m0 the standard fermionic continuum QCD action,

Sf =

∫
d4x ψ̄(x)

[
/D +Minv

]
ψ(x), (2.20)

is recovered. See App. B.2 for more details. The basis {ψ̄, ψ}, where the continuum
QCD action takes the standard form is called the physical basis, while {χ̄, χ} is
used to distinguish quark fields for which the continuum QCD action takes the from
(2.17). Note that tmQCD may thus be regarded as a family of equivalent theories,
parametrized by Minv and the twist parameter ω. Since standard QCD is part of this
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family, tmQCD and QCD share all symmetries, with the symmetry transformations
in the twisted basis being the standard symmetries transformed using Eq. (2.18).
These transformations will be called twisted symmetries, the ones used in this thesis
at ω = π/2 are collected in App. A.1.2 to A.1.4 and B.3. Further, the n-point
correlation functions given in Eq. (2.2) can be expressed in both the physical and
twisted basis using (2.17), giving the relation

⟨O[ψ, ψ̄]⟩(Minv,0) = ⟨O[ψ, ψ̄]⟩(Minv,ω) ≡ ⟨O[χ, χ̄]⟩(m0,µq), (2.21)

where the index (Minv, 0) indicates that the correlation function has been computed
in standard QCD with quark mass Minv, while the indices (Minv, ω) or (m0, µq)

indicate that it has been computed in tmQCD with masses m0 and µq at twist
angle tan(ω) = µq/m0. Chiral multiplets relevant for this work can be constructed
from the axial and vector (Noether) currents V a

µ and Aa
µ as well as the non-singlet

pseudo-scalar (axial) density P a and the singlet scalar density S0, given in the twisted
basis for Nf = 2 as

V a
µ = χ̄γµ

τa

2
χ, Aa

µ = χ̄γµγ5
τa

2
χ,

P a = χ̄γ5
τa

2
χ, S0 = χ̄χ,

(2.22)

and in the physical basis as V ′a
µ = ψ̄γµ

τa

2
ψ, analogous for the other three. Again

using Eq. (2.18) yields

V
′1
µ = cos(ω)V 1

µ + sin(ω)A2
µ, A

′1
µ = cos(ω)A1

µ + sin(ω)V 2
µ ,

V
′2
µ = cos(ω)V 2

µ − sin(ω)A1
µ, A

′2
µ = cos(ω)A2

µ − sin(ω)V 1
µ ,

V
′3
µ = V 3

µ , A
′3
µ = A3

µ,

P
′a = P a for a ∈ {1, 2}, S

′0 = cos(ω)S0 + 2i sin(ω)P 3,

P
′3 = cos(ω)P 3 +

1

2
i sin(ω)S0.

(2.23)

The standard example for a correlator is then

⟨A′1
µ (x)P

′1(y)⟩(Minv,0) = cos(ω)⟨A1
µ(x)P

1(y)⟩(Minv,ω) + sin(ω)⟨V 2
µ (x)P

1(y)⟩(Minv,ω)

(2.24)
and more general correlation functions in standard QCD will be linear combinations
of tmQCD correlation functions at the same twist angle ω. Further, the classical
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partially conserved axial current (PCAC) and partially conserved vector current
(PCVC) relations, given by

∂µA
′a
µ = 2MinvP

′a, (2.25)

∂µV
′a
µ = 0, (2.26)

in the physical basis are equivalent to

∂µA
a
µ = 2Minv cos(ω)P

a + iMinv sin(ω)δ
3aS0, (2.27)

∂µV
a
µ = −2Minv sin(ω)ε

3abP b, (2.28)

in the twisted basis. In summary, the relation between classical QCD and tmQCD
in the continuum is given by a change of the quark fields and mass variable, thus
continuum tmQCD is just a particular way of writing down QCD. For these consider-
ations to carry over to the lattice, the theory needs to be regularized with a regulator
which preserves the chiral symmetry of the massless theory, i.e. the transformation
(2.8) and thus in particular also (2.18).
Such a regularization is given by Ginsparg-Wilson (GW) quarks on the lattice. Using
GW fermions, the same steps as performed formally in the continuum can be repeated
at finite lattice spacing, in particular, Eq. (2.21) is a valid expression in the bare
theory. For the renormalized theories to be equivalent, all members of a chiral mul-
tiplet need to be renormalized in the same way and all multiplicative renormalization
constants have to be independent of the twist angle ω exactly [77]. An example
for such a renormalization scheme is a mass-independent scheme constructed by
imposing renormalization conditions in the chiral limit. In this case, Eqs. (2.23)
holds for renormalized correlators. Note that this means that with GW fermions
there is, as was the case for the considerations in the continuum, no reason to even
introduce a twisted mass term, it can be rotated away since both massless theories
are invariant under chiral rotations.
From universality, one expects that tmQCD and standard QCD lead to the same
renormalized correlation functions up to cutoff effects also in other regularizations,
even if they are not chirally symmetric [77]. Note that this has been established in
particular for lattice regularizations with Wilson quarks [97]. Twisted mass QCD
with Wilson quarks leads to differing regularizations at finite lattice spacings, para-
metrized by the twist angle ω, since even in the massless limit, the twisted mass
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term cannot be rotated away due to the Wilson term, but they all have the same
continuum limit.

2.1.6 Automatic order O(a) improvement

As mentioned in Sec. 2.1.1, at maximal twist ω = π/2, tmQCD has the property of
“automatic O(a) improvement” [78,79], while standard Wilson quarks in principle
require the introduction of (a set of) counterterms for each operator of interest to
achieve O(a) improvement. To go to maximal twist, the bare untwisted quark mass
m0 has to be tuned to the so-called “critical mass” mcr, which maximally disaligns
the Wilson term and the mass term. The critical mass is the value of m0 for which
the physical quark mass vanishes. Some more general remarks on this tuning can be
found in [82,98,99], while the tuning used for this work is discussed in detail in [100].
For tmQCD at maximal twist it can be shown that O(a) counterterms at most
contribute at O(a2). There are different arguments for automatic O(a) improvement,
the one recapitulated here follows [82].
Using Symanzik’s improvement program, Symanzik’s effectve fermionic action close
to the continuum limit is given by

Seff = S0 + aS1 + a2S2 +O(a3), (2.29)

where
S0 =

∫
d4x χ̄(x)

[
/D +mR + iµRγ5τ

3
]
χ(x), (2.30)

with mR and µR being renormalized mass parameters. Further,

Sk =

∫
d4yLk, (2.31)

with the Lagrangians Lk being linear combinations of local composite fields with
dimension 4 + k. Note that the gauge action has leading O(a2) discretization errors,
thus its form is not relevant for the discussion here. Composite lattice fields Φlatt are
of the form

Φlatt = Φ0 + aΦ1 + a2Φ2 +O(a3), (2.32)
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Term R1
5 D µq → −µq∑

x

∑
µ χ̄
(
∇µ +∇∗

µ

)
γµχ + + +∑

x

∑
µ χ̄∇∗

µ∇µχ – – +
mcr

∑
x χ̄χ – – +

iµq

∑
x χ̄γ5τ

3χ + – –

Table 2.1: Parity of the terms of the tmLQCD action Eq. (2.14) with Wilson fermions
under the transformations Eqs. (2.34) to (2.36).

where Φ0 is d-dimensional for a d-dimensional lattice field, and Φk is d+k dimensional.
This gives for the lowest-order Symanzik expansion

⟨Φlatt⟩ = ⟨Φ0⟩0 + a⟨Φ1⟩0 − a

∫
d4y ⟨Φ0L1⟩0 +O(a2), (2.33)

where ⟨.⟩0 stands for the continuum expectation value taken with S0. Automatic
improvement means that the terms a⟨Φ1⟩0 and a

∫
d4y ⟨Φ0L1⟩0 vanish exactly due to

symmetries of the continuum theory at maximal twist. Defining the discrete chiral
transformations in the first isospin direction R1

5

R1
5 : χ→ iγ5τ

1χ, χ̄→ iχ̄γ5τ
1, (2.34)

the operator dimensionality transformations D

χ(x) → exp

[
3πi

2

]
χ(−x)

χ̄(x) → χ̄(−x) exp
[
3πi

2

]
Uµ(x) → U †

µ(−x− aµ̂)

(2.35)

and the twisted mass sign flip transformations

µq → −µq, (2.36)

the tmQCD fermion action Eq. (2.14) is invariant under R1
5 × D × [µq → −µq],

see Tab. 2.1. Note that operators of even dimension d are even under D, while
operators of odd dimension d are odd under D. Further, R1

5 is a symmetry of the
theory since the continuum action Eq. (2.30) is even under R1

5. The terms in Eq.
(2.33) transform as follows.
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Φlatt can be assumed to be even under R1
5 and to have even dimension d such that

⟨Φlatt⟩ is invariant under R1
5 ×D × [µq → −µq], which is a symmetry of the lattice

theory as shown above. This implies that the other terms in (2.33) are also invariant
under R1

5 ×D × [µq → −µq]. Φ0, being the continuum counterpart of Φlatt, is then
also even under R1

5 and has even dimension d. Φ1 has dimension d+ 1 and is thus
odd under D. Since ⟨Φ1⟩0 is even under R1

5 × D × [µq → −µq], Φ1 must be odd
under R1

5. Since ⟨Φ1⟩0 is the expectation value of an R1
5-odd observable weighted

with an R1
5-even action S0, it vanishes. ⟨Φ0L1⟩0 also vanishes, since L1 is odd under

D and odd under R1
5, such that Φ0L1 is odd under R1

5. Thus at maximal twist the
terms proportional to a vanish, i.e.

⟨Φlatt⟩ = ⟨Φ0⟩0 +O(a2). (2.37)

More details and arguments using other transformations can be found in [78, 79]
and [80–82].

2.1.7 Introducing non-degenerate quarks and additional fla-

vours

There are two proposals for both intoducing non-degenerate light quarks as well as
adding further doublets of heavier quarks [101, 102]. In the first proposal [101], a
flavour off-diagonal splitting is introduced in the fermionic action,

Sf =

∫
d4x χ̄(x)

[
/D +m0 + iµqγ5τ

3 + δmτ
1
]
χ(x), (2.38)

with mass splitting parameter δm. Going to the physical basis is done by first
performing an isovector rotation of α2 = π/2,

χ→ χ′ = exp

[
iα2

τ 2

2

]
χ

⏐⏐⏐⏐⏐
α2=π/2

=
1√
2
(1 + iτ 2)χ,

χ̄→ χ̄′ = χ̄ exp

[
−iα2

τ 2

2

] ⏐⏐⏐⏐⏐
α2=π/2

= χ̄
1√
2
(1− iτ 2),

(2.39)
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which transforms the Lagrangean density as

/D +m0 + iµqγ5τ
3 + δmτ

1 → /D +m0 − iµqγ5τ
1 + δmτ

3. (2.40)

The axial rotation in the direction of the twisted mass term now takes the form

χ′ → ψ = exp

[
−iα1

τ 1

2
γ5

]
χ′,

χ̄′ → ψ̄ = χ̄′ exp

[
−iα1

τ 1

2
γ5

]
,

(2.41)

yielding the fermionic action in the physical basis for tan(α1) = µq/m0 as

Sf =

∫
d4x ψ̄(x)

[
/D +Minv + δmτ

3
]
ψ(x), (2.42)

such that the mass spectrum is obtained asM± =Minv±δm. The fermion determinant
will then be positive if Minv > δm. This trivially extends to additional doublets of
heavier quarks by adding additional sets of the three mass parameters. The fermionic
Wilson twisted mass action with two non-degenerate quarks on the lattice then takes
the form

Sf = a4
∑
x

χ̄(x)
[
DW +m0 + iµqγ5τ

3 + δmτ
1
]
χ(x). (2.43)

The second proposal [102] to introduce non-degenerate quarks and additional flavour
doublets, illustrated here for four quark fields, i.e. χ̄ = (ū, d̄, s̄, c̄), uses the continuum
action

Sf =

∫
d4x χ̄(x)

[
/D +m+ iµγ5τ

3
]
χ(x), (2.44)

where

m =

⎛⎜⎜⎜⎜⎝
mu 0 0 0

0 md 0 0

0 0 ms 0

0 0 0 mc

⎞⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝
Mu cos(ωl) 0 0 0

0 Md cos(ωl) 0 0

0 0 Ms cos(ωh) 0

0 0 0 Mc cos(ωh)

⎞⎟⎟⎟⎟⎠ , (2.45)
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and

µ =

⎛⎜⎜⎜⎜⎝
µu 0 0 0

0 µd 0 0

0 0 µs 0

0 0 0 µc

⎞⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝
Mu sin(ωl) 0 0 0

0 −Md sin(ωl) 0 0

0 0 Ms sin(ωh) 0

0 0 0 −Mc sin(ωh)

⎞⎟⎟⎟⎟⎠ , (2.46)

with Mi =
√
m2

i + µ2
i , i ∈ {u, d, s, c} and two twist angles ωl and ωh, satisfying

tan(ωl) =
µu

mu

= − µd

md

, tan(ωh) =
µs

ms

= − µc

mc

. (2.47)

Thus the non-degeneracy and additional flavours are introduced in such a way that
the mass term remains diagonal. Standard QCD is recovered for ωl = ωh = 0. The
relation to the physical basis takes the form

χ→ ψ = exp

[
iωl

τ 3l
2
γ5 + iωh

τ 3l
2
γ5

]
χ,

χ̄→ ψ̄ = χ̄ exp

[
iωl

τ 3l
2
γ5 + iωh

τ 3l
2
γ5

]
,

(2.48)

where

τ 3l =

⎛⎜⎜⎜⎜⎝
1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎠ , τ 3h =

⎛⎜⎜⎜⎜⎝
0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 −1

⎞⎟⎟⎟⎟⎠ , (2.49)

with the standard four flavour QCD action taking the form

Sf =

∫
d4x ψ̄(x)

[
/D +m

]
ψ(x). (2.50)

On the lattice, it however turns out that the fermionic determinant in this case is
only positive if both the up and down quarks and the strange and charm quarks are
mass degenerate. For simulations, usually degenerate light quarks are used, either
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together with twisted non-degenerate quenched heavy quarks, or with untwisted
non-degenerate heavy quarks.

2.1.8 Closing remarks

In conclusion, twisted mass lattice QCD with Wilson quarks provides interesting
advantages over the standard Wilson lattice regularization at the cost of parity and
flavour symmetry breaking, which are only recovered in the continuum, and the
restriction to an even number of quarks. In particular important for this work is the
isospin breaking at finite lattice spacing, which allows a splitting between neutral
and charged pions. This splitting is not physical, for Nf = 2 degenerate quarks in
the continuum limit a degenerate triplet of pions is obtained. The isospin splitting is
an O(a2) effect, independent of the twist angle ω, cf. [81]. The discussed advantages
are the positivity of the tmQCD fermion determinant at non-vanishing twisted mass
µq and the automatic O(a) improvement at maximal twist. Another important
advantage not discussed here lies in bypassing some lattice renormalization problems
of standard Wilson quarks, see [80,81] for an introduction.
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2.2 Lattice setup

For this thesis, gauge ensembles produced by the Extended Twisted Mass Collabora-
tion (ETMC) in isospin-symmetric QCD (isoQCD) with Nf = 2 + 1 + 1 flavours of
Wilson Clover twisted mass quarks are used, with quark masses tuned very close to
their physical values [40, 100,103–105]. The renormalizable lattice action

S = Sg[U ] + Sq,sea[ψl, ψh, U ] + Sq,val[{qf , q′f}, U ] + Sghost[{ϕf , ϕ
′
f}, U ] (2.51)

is used, which corresponds to a mixed lattice setup, i.e. with separate actions for sea
and valence quarks, with twisted mass [77, 78] and Osterwalder-Seiler fermions [106].
In this way, any undesired strange-charm quark mixing through cutoff effects in the
valence quarks is avoided and automatic O(a) improvement of physical observables
is preserved [79].
For the gluon action Sg[U ] the Iwasaki improved gluon action [107] is chosen, given
e.g in [100] by

Sg =
β

3

∑
x

⎛⎜⎜⎝b0 4∑
µ,ν=1
1≤µ<ν

{
1− ReTr

(
U1×1
x,µ,ν

)}
+ b1

4∑
µ,ν=1
µ̸=ν

{
1− ReTr

(
U1×2
x,µ,ν

)}⎞⎟⎟⎠ , (2.52)

with bare inverse gauge coupling β = 6/g20, b1 = −0.331 and b0 = 1− 8b1. U1×1
x,µ,ν is a

simple plaquette loop and U1×2
x,µ,ν a rectangle loop [108], i.e.

U1×1
x,µ,ν = Uµ(x)Uν(x+ aµ̂)U−1

µ (x+ aν̂)U−1
ν (x),

U1×2
x,µ,ν = Uµ(x)Uν(x+ aµ̂)Uν(x+ aµ̂+ aν̂)U−1

µ (x+ 2aν̂)U−1
ν (x+ aν̂)U−1

ν (x),

(2.53)
where Uµ(x) = exp(ig0aGµ(x)) with Gµ(x) the gluon field, cf. Fig. 2.1. The fermionic
part of the action is split into a sea quark and a valence quark action. The sea quark
action Sq,sea takes the form [40,101]

Sq,sea = a4
∑
x

{
ψl(x)

[
γµ∇̃µ + µl − iγ5τ

3W cl
cr

]
ψl(x)

+ ψ̄h

[
γµ∇̃µ + µσ + τ 3µδ − iγ5τ

1W cl
cr

]
ψh

} (2.54)
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x+ aµ̂x

x+ aµ̂+ aν̂x+ aν̂

Uµ(x)

Uν(x+ aµ̂)

U−1
µ (x+ aν̂)

U−1
ν (x)

x+ aµ̂x

x+ aµ̂+ aν̂x+ aν̂

x+ aµ̂+ 2aν̂x+ 2aν̂

Uµ(x)

Uν(x+ aµ̂)

Uν(x+ aµ̂+ aν̂)

U−1
µ (x+ 2aν̂)

U−1
ν (x+ aν̂)

U−1
ν (x)

Figure 2.1: The simple plaquette loop U1×1
x,µ,ν (left) and rectangle loop U1×2

x,µ,ν (right)
with base at x lying in the µν-plane [108].

written in terms of a light ψ̄l = (ūq,sea, d̄q,sea) and heavy ψ̄h = (c̄q,sea, s̄q,sea) quark
doublet. W cl

cr is the critical Wilson Clover operator, which inter alia contains the
critical mass mcr, and it is defined later in this section. ∇̃µ = 1

2
(∇µ +∇∗

µ) with the
covariant lattice derivatives ∇µ,∇∗

µ defined in App. B.1.
In [40], the valence quark action Sq,val is given for several replica of each quark
flavour, labelled by η ∈ {1, 2, ...}, with different values of the Wilson parameter rf,η.
In practise, it is restricted to rf,η = (−1)η−1 ∈ {−1, 1}. The valence quark action is
then given by

Sq,val = a4
∑
x

∑
f,η

{
q̄f,η(x)

[
γµ∇̃µ +mf − sign(rf,η)iγ5W

cl
cr |r=1

]
qf,η

}
, (2.55)

where qf,η is a single flavour field with f ∈ {u, d, s, c}. The critical Wilson Clover
operator is defined as

W cl
cr |r = −1

2
ar∇∗

µ∇µ +mcr(r) +
1

32
acSW (r)γµγνa

−1 [Qµν −Qνµ] , (2.56)

containing the Wilson term, a critical mass mcr term as well as a Clover term
1
32
acSW (r)γµγνa

−1 [Qµν −Qνµ]. The Clover term is a lattice discretization of the
Pauli term i

4
cSWσµνFµν , see [94, 109, 110] for more details. The Sheikholeslami-

Wohlert coefficient cSW is identical for all sea and valence flavours, it is fixed by
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using an estimate from 1-loop tadpole boosted perturbation theory [111] by

cSW ≃ 1 + 0.113(3)
g20
P
, (2.57)

with P the plaquette expectation value. Isospin breaking lattice artefacts, entering
at O(a2), can be significant in the case of the neutral pion mass, but they can be
suppressed by introducing a Clover term as in Eq. (2.56), see [81, 100, 103]. This
allows simulations close to physical light quark masses with the lattice spacings used
in this work. In Eq. (2.54), W cl

cr = W cl
cr |r=1 and the flavour structure is given by

the Pauli matrices τ 1 and τ 3. In both the sea and valence quark action, the critical
Wilson Clover term is taken at maximal twist with respect to the light and heavy
Wilson bare quark masses to profit from automatic O(a) improvement [78, 112]. For
this, the critical mass mcr is set to the same value for all flavours [79].
The valence ghost action takes the form

Sghost = a4
∑
x

∑
f,η

{
ϕ̄f,η(x)

[
γµ∇̃µ +mf − sign(rf,η)iγ5W

cl
cr |r=1

]
ϕf,η

}
, (2.58)

with the ghost field ϕf,η being a complex spin-1/2 boson field. It is included to
exactly cancel the valence fermion contributions to the effective gluonic action [40].
Note that no ghost fields ever occur in the actual computations. The ghosts are
needed to cancel surplus degrees of freedom of the local gauge fields compared to the
physical degrees of freedom [86,113,114].
For the light quark doublet, both in the sea and valence action, the bare quark
mass takes a single value µl = µu = µd such that the pion mass is close to
Mphys

π =M isoQCD
π = 135.0(2)MeV [104].

The masses of the strange and charm sea quarks are set within approximately 5% to
their physical values by tuning µσ and µδ, using the phenomenological determina-
tions of the ratios MDs/fDs = 7.9(0.1), i.e.the ratio of the Ds meson mass and decay
constant, and mc/ms = 11.8(0.2) [40, 100,103,104].
The strange and charm valence quark masses can be fixed accurately by two physical
inputs, e.g. by the kaon and D-meson masses [100,103–105,115] or equivalently by
reproducing the energies of the ϕ and J/ψ resonances [40]. Up to lattice artefacts in
the charm sector, both methods lead to agreeing values for the strange and charm
valence quark masses. In this work, the strange and charm valence quark masses
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have been fixed by the Ω-baryon mass for the π → γ∗γ∗ calculation and the η-meson
mass for the η → γ∗γ∗ calculation as well as the Λ+

c -baryon mass.
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Chapter 3

Lattice calculation of aP−pole
µ

In this chapter, details of the lattice calculation of aP−pole
µ not covered in

Chapters 4 and 5, i.e. the publications written as part of this thesis, are discussed.
First, in Sec. 3.1, some general remarks on the construction of the pseudoscalar-pole
contributions in Minkowski space are made in Secs. 3.1.1 and 3.1.2 before turning to
the calculation from lattice QCD in Secs. 3.1.3 to 3.1.7. Then, an overview of the
needed amplitudes is given in Sec. 3.2 before detailed expressions for the amplitudes
connecting to the data available for this thesis are given in Secs. 3.3 and 3.4 for
the pion-pole calculation and in Secs. 3.5 and 3.6 for the η-meson pole calculation.
Finally, Secs. 3.7 and 3.8 contain details relevant for the extraction of the transition
form factors and the employed ensembles and correlators. Further technical details
regarding model averaging and error calculation can be found in App. C.

3.1 Pseudoscalar-pole contributions to HLbL

Here, the theoretical background for the determination of the Hadronic Light-by-
Light (HLbL) contribution to the muon anomaly is reviewed, with a focus on the
pseudoscalar-pole contributions to HLbL and the transition form factors (TFFs)
appearing in these contributions. First, some relevant definitions for HLbL are
introduced, before the pole contributions themselves are discussed. The section ends
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with the introduction of the TFFs in Euclidean space and their construction on the
lattice.

3.1.1 Basic definitions

Following [50, 116], the quantity of interest for obtaining the muon gyromagnetic
ratio is the muon proper vertex function Γρ(p

′, p), defined as

(−ie)ū(p′)Γρ(p
′, p)u(p)

= ⟨µ−(p′)|(−ie)
∑
l

(ψ̄lγρψl)(0) + (ie)
∑
q

eq(q̄γρq)(0)|µ−(p)⟩, (3.1)

at vanishing momentum transfer, with p2 = p
′2 = m2

µ, with mµ the muon mass. The
spinor wave functions are denoted by ū and u, e denotes the electric charge of the
electron. The first sum runs over the charged lepton flavours l = e−, µ−, τ− and the
second sum over the quark flavours with eq the corresponding quark electric charge in
units of |e|. The vertex function restricted to only the light and strange quark pieces
of the electromagnetic current insertion, (u, d, s), is denoted by Γ̂ρ(p

′, p). Denoting
the light and strange quark electromagnetic current as

jρ(x) =
2

3
(ūγρu)(x)−

1

3
(d̄γρd)(x)−

1

3
(s̄γρs)(x), (3.2)

the lowest order electroweak diagram for the HLbL contribution to the vertex function
is

(−ie)ū(p′)Γ̂ρ(p
′, p)u(p) = ⟨µ−(p′)|(ie)jρ(0)|µ−(p)⟩

=

∫
d4q1
(2π)4

d4q2
(2π)4

−i
q21

−i
q22

−i
(k − q1 − q2)2

× i

(p′ − q1)2 −m2
µ

i

(p′ − q1 − q2)2 −m2
µ

× (−ie)3ū(p′)γµ(/p′ − /q1 +mµ)γ
ν(/p

′ − /q1 − /q2 +mµ)γ
λu(p)

× (ie)4Πµνλρ(q1, q2, k − q1 − q2), (3.3)
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where k = p′ − p = q1 + q2 + q3 with p the incoming and p′ the outgoing muon
momentum, k the external photon momentum and the qi the internal photon momenta.
See Fig. 3.1 for an illustration. The second line, i.e. the first line under the integral
sign, denotes the internal photon propagators, the third and fourth lines are the
internal muon propagators with three electromagnetic vertex factors, and the final
line contains the fourth-rank light quark hadronic vacuum polarization tensor. It
corresponds to the hadronic “blob” in the diagram in Fig. 3.1. The tensor is defined

p p′

q3, λ

k, ρ

q2, ν

q1, µ

Figure 3.1: Hadronic Light-by-Light scattering diagram, showing the momentum
assignment for the calculation of the muon electromagnetic vertex, cf. Eq. (3.3). The
striped blob represents the fourth-rank light quark hadronic vacuum polarization
tensor, defined in Eq. (3.4). Omitted for brevity are the additional five possible
permutations of the qi.

as

Πµνλρ(q1, q2, q3)

=

∫
d4x1d

4x2d
4x3e

i(q1x1+q2x2+q3x3)⟨0|T{jµ(x1)jν(x2)jλ(x3)jρ(0)}|0⟩, (3.4)

where |0⟩ denotes the QCD vacuum. The external photon momentum k is incoming,
the momenta of the internal photons outgoing from the hadronic “blob”. Since jµ(x)
is conserved, the hadronic tensor obeys the Ward identities

{
qµ1 , q

ν
2 , q

λ
3 , (q1 + q2 + q3)

ρ
}
Πµνλρ(q1, q2, q3) = 0, (3.5)

from which it follows that

Πµνλρ(q1, q2, k − q1 − q2) = −kσ ∂

∂kρ
Πµνλσ(q1, q2, k − q1 − q2), (3.6)
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such that the tensor is linear in k when going to the static limit kµ → 0 in which the
anomalous magnetic moment is defined. Further, one obtains the decomposition

ū(p′)Γ̂ρ(p
′, p)u(p) = ū(p′)

[
γρF̂1(k

2) +
i

2m
σρ,τk

τ F̂2(k
2)

]
u(p), (3.7)

with the Pauli form factors F̂1(k
2) and F̂1(k

2), cf. [50] and references therein for
more details. Further it follows that Γ̂ρ(p

′, p) = kσΓ̂ρσ(p
′, p), where the two index

vertex function is given by

ū(p′)Γ̂ρσ(p
′, p)u(p) = −ie6

∫
d4q1
(2π)4

d4q2
(2π)4

1

q21

1

q22

1

(k − q1 − q2)2

× 1

(p′ − q1)2 −m2
µ

1

(p′ − q1 − q2)2 −m2
µ

× ū(p′)γµ(/p
′ − /q1 +mµ)γ

ν(/p
′ − /q1 − /q2 +mµ)γ

λu(p)

× ∂

∂kρ
Πµνλρ(q1, q2, k − q1 − q2). (3.8)

Using kρkσū(p′)Γ̂ρσ(p
′, p)u(p) = 0 and following [117], it is found that F̂1(0) = 0,

such that the HLbL contribution to the muon magnetic moment can be extracted in
a simple way from the two index vertex function as

F̂2(0) =
1

48m
Tr
[
(/p+m) [γρ, γσ] (/p+m)Γ̂ρσ(p, p)

]
. (3.9)

Note that the HLbL contribution to the muon magnetic moment can also be extracted
from the one index vertex function Γ̂ρ(p

′, p), see [50].

3.1.2 Pseudoscalar-pole contributions

As mentioned in Sec. 1.2, the pseudoscalar-pole contributions, for on-shell intermedi-
ate pseudoscalar states P ∈ {π0, η, η′}, play the numerically dominant role amongst
all contributions to HLbL in a systematic decomposition into various intermediate
states [52–55]. They are depicted in the two diagrams to the right in Fig. 1.3, where
the striped blobs represent the transition form factors FP→γ∗γ∗ .
Further following [50], the contributions to Πµνλρ(q1, q2, q3) arising from the exchange
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of a single pseudoscalar are given by

Π
(P )
µνλρ(q1, q2, q3) =

i
FP→γ∗γ∗(q21, q

2
2)FP→γ∗γ∗(q23, (q1 + q2 + q3)

2)

(q1 + q2)2 −m2
P

ϵµναβq
α
1 q

β
2 ϵλρστq

σ
3 (q1 + q2)

τ

+ i
FP→γ∗γ∗(q21, (q1 + q2 + q3)

2)FP→γ∗γ∗(q22, q
2
3)

(q2 + q3)2 −m2
P

ϵµραβq
α
1 (q2 + q3)

βϵνλστq
σ
2 q

τ
3

+ i
FP→γ∗γ∗(q21, q

2
3)FP→γ∗γ∗(q22, (q1 + q2 + q3)

2)

(q1 + q3)2 −m2
P

ϵµλαβq
α
1 q

β
3 ϵνρστq

σ
2 (q1 + q3)

τ , (3.10)

with mP the on-shell pseudoscalar mass. The transition form factors are defined by

Mµν(p, q1) = i

∫
d4x eiq1x ⟨0|T{jµ(x)jν(0)}|P (p)⟩

= εµναβq
α
1 q

β
2FP→γ∗γ∗(q21, q

2
2), (3.11)

or equivalently by

−2
[
q21 · q22 − (q1 · q2)2

]
FP→γ∗γ∗(q21, q

2
2) = εµναβq

α
1 q

β
2Mµν(p, q1), (3.12)

where p = (EP , p⃗)
T is the pseudoscalar momentum and q1 = (ω1, q⃗1)

T

and q2 = (ω2, q⃗2)
T the photon virtualities. Note that p = q1 + q2, and

p2 = E2
P − p⃗2 = m2

P , i.e. we fix the mostly negative metric sign convention, and
FP→γ∗γ∗(q21, q

2
2) = FP→γ∗γ∗(q22, q

2
1). Further, the pseudoscalar state is normalized

relativistically as ⟨P (p)|P (q)⟩ = (2π)3(2EP )δ(p⃗− q⃗) and uses the Fourier convention
|P (p⃗)⟩ =

∑
x e

ip⃗x⃗|P (x⃗)⟩ for going from momentum to position space.
To obtain corresponding contributions to aµ, the derivative

∂

∂kρ
Π

(P )
µνλσ(q1, q2, k − q1 − q2)

⏐⏐⏐
k=0

=

i
FP→γ∗γ∗(q21, q

2
2)FP→γ∗γ∗((q1 + q2)

2, 0)

(q1 + q2)2 −m2
P

ϵµναβq
α
1 q

β
2 ϵλσρτ (q1 + q2)

τ

+ i
FP→γ∗γ∗(q21, 0)FP→γ∗γ∗(q22, (q1 + q2)

2)

q21 −m2
P

ϵµστρq
τ
1ϵνλαβq

α
1 q

β
2

+ i
FP→γ∗γ∗(q21, (q1 + q2)

2)FP→γ∗γ∗(q22, 0)

q22 −m2
P

ϵµλαβq
α
1 q

β
2 ϵνσρτq

τ
2 (3.13)
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is inserted into Eq. (3.8), which after taking the corresponding Dirac traces yields

aP−pole
µ = F̂2(0)

⏐⏐⏐
P−pole

=

− e6
∫

d4q1
(2π)4

d4q2
(2π)4

1

q21q
2
2(q1 + q2)2[(p+ q1)2 −m2

µ][(p− q2)2 −m2
µ]

×
[
FP→γ∗γ∗(q21, (q1 + q2)

2)FP→γ∗γ∗(q22, 0)

q22 −m2
P

T1(q1, q2; p)

+
FP→γ∗γ∗(q21, q

2
2)FP→γ∗γ∗((q1 + q2)

2, 0)

(q1 + q2)2 −m2
P

T2(q1, q2; p)

]
, (3.14)

where T1(q1, q2; p) and T2(q1, q2; p) are given in [50].
After a Wick rotation of the momenta, with the rotated Euclidean momenta denoted
here by capital letters, i.e. Q2

i = −q2i , P 2 = −p2 = −m2
µ and using the method of

Gegenbauer polynomials to average over the direction of the muon momentum p, it
is possible to perform all angular integrations in Eq. (3.14) except for the one over
the angle θ between the four-momenta Q1 and Q2 for arbitrary TTFs, see [50,118].
This leads to the three-dimensional integral representation

aP−pole
µ =

(α
π

)3 [
aP−pole(1)
µ + aP−pole(2)

µ

]
, (3.15)

with

aP−pole(1)
µ =

∫ ∞

0

dQ1

∫ ∞

0

dQ2

∫ 1

−1

dτ

w1(Q1, Q2, τ)FP→γ∗γ∗(−Q2
1,−Q2

3)FP→γ∗γ∗(−Q2
2, 0), (3.16)

and

aP−pole(2)
µ =

∫ ∞

0

dQ1

∫ ∞

0

dQ2

∫ 1

−1

dτ

w2(Q1, Q2, τ)FP→γ∗γ∗(−Q2
1,−Q2

2)FP→γ∗γ∗(−Q2
3, 0), (3.17)

where α is the fine structure constant. The integrations run over the lengths of the
two Euclidean four-momenta Q1, Q2 and the angle θ between them, with τ = cos θ

and Q2
3 = Q2

1 +Q2
2 + 2Q1Q2τ . The dimensionless weight functions w1(Q1, Q2, τ) and

w2(Q1, Q2, τ) are given in App. A.2. w2 is symmetric under the exchange Q1 ↔ Q2

and both w1,2 go to zero for Q1,2 → 0 and τ → ±1. This separates the generic
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kinematics of the pole contribution, described by the weight functions, from the
dependence on the TFFs [118]. Illustrations of the kinematical reach in the lattice
setup used in this thesis can be found in App. D.3.

3.1.3 Obtaining the transition form factors in Euclidean

spacetime

Below the threshold for hadron production, i.e. if q21,2 < M2
V = min(M2

ρ , 4m
2
π), such

that the integration contour does not encounter a singularity, where one of the
photons can mix with a heavier on-shell state, the matrix element in Eq. (3.11)
can be written in Euclidean spacetime [66, 119–122]. For this, the Wick rotation
x0 → −iτ is performed, yielding∫

dx0 → −i
∫
dτ, and eiω1x0 → eω1τ . (3.18)

The current operators in Euclidean space jEµ (x) are related to the Minkowski space
current operators via

jµ(x) = −iδµ,0−1jEµ (x), (3.19)

using γE0 = γ0 and γEi = −iγi in the mostly negative sign metric convention. Note
that on the r.h.s of Eq. (3.19) there is no sum over µ, δµ,0 simply counts the number
of temporal indices of jµ(x). For the matrix element, this Wick rotation yields

Mµν = in0ME
µν = εµναβq

α
1 q

β
2FP→γ∗γ∗(q21, q

2
2),

ME
µν(p, q1) = −

∫
dτeω1τ Ãµν(τ),

(3.20)

where n0 = δµ,0+ δν,0 counts the number of temporal Lorentz indices. The amplitude
under the τ integration is given by

Ãµν(τ) =

∫
d3x⃗e−iq⃗1x⃗⟨0|T{jEµ (x⃗, τ)jEν (0)}|P (p⃗)⟩. (3.21)

Note that by fixing all spatial momenta, ME
µν(p, q1) =ME

µν(ω1), i.e. ω1 is the remaining
free parameter, cf. Eq. (3.24). Inverting the relation between ME

µν(ω1) and Ãµν(τ)
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yields

Ãµν(τ) = − 1

2πi

∫ γ+i∞

γ−i∞
dω1 e

−ω1τME
µν(ω1), (3.22)

where the integration contour is valid for any EP − |q⃗2|≤ γ ≤ |q⃗1|, avoiding the
aforementioned threshold for hadron production. More details are given in [66,67].
To extract the transition form factors FP→γ∗γ∗(q21, q

2
2) from Eq. (3.20), the kinematic

factor εµναβqα1 q
β
2 needs to be removed. In this thesis, the pseudoscalars are taken

at rest, i.e. with p = (EP , p⃗)
T = (mP , 0⃗)

T , such that the relation between the
pseudoscalar momentum and photon momenta takes the form(

EP

p⃗

)
=

(
mP

0⃗

)
=

(
ω1

q⃗1

)
+

(
ω2

q⃗2

)
, (3.23)

implying q2 = (mP − ω1,−q⃗1)T and giving

q21 = ω2
1 − q⃗21, q22 = (EP − ω1)

2 − (p⃗− q⃗1)
2 = (mP − ω2

1)− q⃗21, (3.24)

for the photon virtualities. The kinematic factor with one or more temporal indices
vanishes, since

ME
00 ∝ ε00αβq

α
1 q

β
2 = 0, (3.25)

ME
0k ∝ ε0kαβq

α
1 q

β
2 = −ε0kijqi1q

j
1 = 0, (3.26)

and the kinematic factor with two spatial indices takes the form

ME
ij ∝ εijαβq

α
1 q

β
2 = εijkmP q

k
1 . (3.27)

Using the behaviour of the kinematic factor for a pseudoscalar at rest leads to the
introduction of the scalar amplitude Ã(τ),

Ãij(τ) = −εijkmP q
k
1Ã(τ) ⇔ Ã(τ) = − εijkq

k
1

mP |q⃗21|
Ãij(τ), (3.28)

where

Ã(τ) = − 1

2πi

∫ γ+i∞

γ−i∞
dω1 e

−ω1τFP→γ∗γ∗(q21, q
2
2), (3.29)
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with
FP→γ∗γ∗(q21, q

2
2) = −

∫ ∞

−∞
dτ eω1τ Ã(τ). (3.30)

Note that Ãµν(τ) with one or two temporal indices vanishes, and that, since Ã(τ)
is a function of |q⃗21|= |q⃗22|, multiple choices of q⃗1 with a fixed value of |q⃗21| can be
averaged, cf. App. B.7.
The superscript E is now dropped and it is assumed that the expressions are stated
in Euclidean spacetime unless otherwise specified.

3.1.4 Construction of Ã(τ) on the lattice

The construction of Ã(τ) used in this thesis follows [66,67], with the main important
difference being the placement of the pseudoscalar annihilation operator to the
far Euclidean future instead of the far Euclidean past as in the references. The
connection between the two conventions is given in Sec. 3.1.5.
Consider the three-point (3pt) correlation function Cµν(τ, tf ) on the lattice given by

Cµν(τ, tf ) = a6
∑
x⃗,y⃗

e−ip⃗y⃗eiq⃗1x⃗⟨T{P (y⃗, tf )j†µ(x⃗,−τ)j†ν (⃗0, 0)}⟩, (3.31)

with P = iψ̄γ5τ
Pψ a pseudoscalar annihilation operator to the far Euclidean future,

and j†µ vector current creation operators, cf. App. A.1 and B.8. Note that by fixing
the pseudoscalar momentum and the momentum of one of the vector currents, the
momentum of the other vector current is given by conservation of momentum or
translation invariance. Introducing the propagation time tP as

tP =

{
tf − |τ |, τ < 0,

tf , τ > 0,
(3.32)

the asymptotic behaviour of Cµν(τ, tf ) can be studied by inserting complete sets of
eigenstates, cf. App. B.4. For tP → ∞ this results in

Cµν(τ, tf ) ≈
ZP a

3

2EP

∑
x⃗

eiq⃗1x⃗e−EP tf ⟨P (p)|T{j†µ(x⃗,−τ)j†ν (⃗0, 0)}|0⟩, (3.33)
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or

τ < 0 : Cµν(τ, tf ) ≈
ZP a

3

2EP

∑
x⃗

eiq⃗1x⃗e−EP tP ⟨P (p)|j†µ(x⃗, 0)j†ν (⃗0, τ)|0⟩,

τ > 0 : Cµν(τ, tf ) ≈
ZP a

3

2EP

∑
x⃗

eiq⃗1x⃗e−EP tP ⟨P (p)|j†ν (⃗0, 0)j†µ(x⃗,−τ)|0⟩,
(3.34)

where the factor 2EP appears as a consequence of the relativistic normalization of
|P ⟩ and where the overlap factor ZP is defined by

ZP = ⟨0|P (⃗0, 0)|P (p⃗)⟩ = e−ip⃗x⃗⟨0|P (x⃗, 0)|P (p⃗)⟩. (3.35)

Note that for the pion, ZP is set to be Zπ = Z∗
π = Fπm

2
π/mPCAC > 0 by the PCAC

relation for the choice of the pseudoscalar operator used here, cf. [66, 67,123].
Both the overlap factor ZP and energy EP for the pseudoscalar operator can be
obtained from fitting the corresponding pseudoscalar two-point (2pt) function

C(2)(t) = a3
∑
x

e−ix⃗p⃗⟨0|P (x⃗, t)P †(⃗0, 0)|0⟩t→∞−→|ZP |2

2EP

e−EP t. (3.36)

Following Eq. (3.21), Ã(τ) can then be defined as

Ãµν(τ) = lim
tP→∞

2EP

ZP

eEP tPCµν(τ, tf ). (3.37)

For a pseudoscalar at rest, the definition of the scalar amplitude Ã(τ) follows from
Eq. (3.28), with an analogous construction to define a scalar amplitude C(τ) from
Cµν(τ, tf). A discussion and diagrams of the Wick contractions contributing to
C(2)(t) and Cµν(τ, tf ) can be found in Sec. 3.2.

3.1.5 Connection to the standard definition

The standard definition of Cµν(τ, tf), found e.g. in [66, 67], places a pseudoscalar
creation operator in the far Euclidean past. The 3pt correlation function with the
pseudoscalar to the far future defined in Eq. (3.31) and calculated in Wilson tmLQCD
can be connected to this standard definition using symmetries. As pointed out in [81],
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standard CPT is a symmetry of Wilson tmLQCD, with C and PT being symmetries
individually. Note that standard P and T are not symmetries of Wilson tmLQCD,
instead one has twisted parity and twisted timereversal symmetries, cf. App. A.1.3
and App. A.1.4.
Under PT , Eq. (3.31) transforms as

Cµν(τ, tf ) = a6
∑
x⃗,y⃗

e−ip⃗y⃗eiq⃗1x⃗⟨T{j†ν (⃗0, 0)j†µ(−x⃗, τ)P (−y⃗,−tf )}⟩. (3.38)

Noting that P † = −P leads to the form

Cµν(τ, tf ) = a6
∑
x⃗,y⃗

eip⃗y⃗e−iq⃗1x⃗⟨T{j†µ(x⃗, τ)j†ν (⃗0, 0)P (y⃗,−tf )}⟩

= −a6
∑
x⃗,y⃗

eip⃗y⃗e−iq⃗1x⃗⟨T{jµ(x⃗, τ)jν (⃗0, 0)P †(y⃗,−tf )}⟩. (3.39)

The asymptotic behaviour is given by

Cµν(τ, tf ) ≈ −Z
∗
P a

3

2EP

∑
x⃗

e−iq⃗1x⃗e−EP tf ⟨0|T{j†µ(x⃗, τ)j†ν (⃗0, 0)}|P (p)⟩, (3.40)

thus the PCAC relation implies that Ãµν(τ) is the same in both definitions up to a
sign. This sign is always included later unless stated otherwise, such that Ã(τ) can
be used to obtain the TFFs as detailed in Sec. 3.1.3.

3.1.6 Backward propagation

Due to the finite-time extent of the lattice, backward propagating pions may con-
tribute to correlation functions. By the “method of images”, where an operator at
time t has images at t+ nLt, with n ∈ Z and Lt the temporal extent of the lattice,
correlation functions on a time-torus can be linked to corresponding amplitudes
in infinite Euclidean space. As demonstrated in detail in App. B.5 for generic 2pt
correlators, one finds

C
(2)
ft (t)

t→∞−→|ZP |2

2EP

(
e−EP t + e−EP (Lt−t)

)
(3.41)
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for the pseudoscalar 2pt function when considering the most dominant contribution
from backward propagation, where the subscript “ft” stands for the finite-time
corrected amplitude.
For the 3pt amplitude Cµν(τ, tf ) the calculation of the finite-time correction is slightly
more involved, cf. App. B.6. One finds

Cµν,ft(τ, tf ) =
ZP a

3

2EP

∑
x⃗

eiq⃗1x⃗e−EP tf ⟨P (p)|T{j†µ(x⃗,−τ)j†ν (⃗0, 0)}|0⟩

+
ZP a

3

2EP

∑
x⃗

eiq⃗1x⃗e−EP (Lt−tf−τ)⟨P (p)|T{j†ν (⃗0,−τ)j†µ(x⃗, 0)}|0⟩, (3.42)

including only the most dominant correction. For the scalar amplitude Ã(τ) one
finds

τ < 0 : Ãft(τ) = Ã(τ)
(
1− e−EP (Lt−2tP+τ)

)
,

τ > 0 : Ãft(τ) = Ã(τ)
(
1− e−EP (Lt−2tP−τ)

)
.

(3.43)

Note that the lattice calculation yields C(2)
ft (t) and Ãft(τ). For C(2)(t) this is taken

into account by an appropriate fit function when extracting EP and ZP , namely by
using a cosh, see Sec. 3.4.1. For the extraction of Ã(τ) the factors from Eq. (3.43)
are used. In principle, images which have wrapped more than one time are also
included in the finite-time amplitudes, but due to their exponential suppression with
additional factors of Lt they are not considered here.

3.1.7 Isospin rotation

As mentioned in Sec. 2.1, at finite lattice spacing a, isospin symmetry is broken in
Wilson tmLQCD, which is an O(a2) effect. For the 3pt amplitudes, these artefacts
can be avoided by only keeping the isospin preserving parts. The light electromagnetic
current operator is decomposed into definite isospin contributions as

jµ =
∑
f

Qf ψ̄fγµψf =
2

3
ūγµu−

1

3
d̄γµd =

1

6
j0,0µ +

1

2
j1,0µ , (3.44)
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where u and d stand for the up and down quark fields, and

j0,0µ = ūγµu+ d̄γµd, (3.45)

j1,0µ = ūγµu− d̄γµd. (3.46)

Note that the first index in the superscript stands for the total isospin I and
the second index for its third component Iz. If one also considers heavy quark
contributions, they would be included in j0,0µ with appropriate charge factors, since
only the u and d contributions rotate under isospin. Introducing the short-hand
notation Cµν = ⟨Pjµjν⟩ for Eq. (3.31), i.e. showing only the operators relevant for
this discussion, yields in terms of the isospin decomposed currents

Cµν =
1

12
⟨Pj0,0µ j1,0ν ⟩+ 1

12
⟨Pj1,0µ j0,0ν ⟩

+
1

36
⟨Pj0,0µ j0,0ν ⟩+ 1

4
⟨Pj1,0µ j1,0ν ⟩. (3.47)

For the π0, which has isospin I = 1, only the first line in Eq. (3.47) contributes to
the full Cµν in the isospin symmetric limit. In the same limit for the η- and η′-meson,
both having isospin I = 0, only the second line contributes.
In the isospin symmetric limit, the neutral pion form factor can be transformed into
the charged form factor by an isospin rotation. In the physical basis, consider the
vector isospin rotation

ψ → eiθaτ
a/2ψ,

ψ → ψe−iθaτa/2,
(3.48)

for θ2 = π/2, θ1 = θ3 = 0. This defines the isospin transformation Iy. Using the
identity

e−iθτa/2τ beiθτ
a/2 = τ b cos θ +

1

2i
[τa, τ b] sin θ + δabτ

a[1− cos θ], (3.49)

the neutral pion operator transforms as

π0 = iψ̄γ5τ
3ψ

Iy→ iψ̄γ5τ
1ψ = π+ + π−, (3.50)
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and the vector currents as
j0,0µ

Iy→ j0,0µ ,

j1,0µ

Iy→ j1,+µ + j1,−µ ,
(3.51)

where all operators are defined in App. A.1. For the isospin preserving parts of the
amplitude, this yields

⟨π0j0,0µ j1,0ν ⟩ Iy→ ⟨π+j0,0µ j1,−ν ⟩+ ⟨π−j0,0µ j1,+ν ⟩,

⟨π0j1,0µ j0,0ν ⟩ Iy→ ⟨π+j1,−µ j0,0ν ⟩+ ⟨π−j1,+µ j0,0ν ⟩.
(3.52)

In the twisted basis, the vectorial isospin rotation takes the form

χ→ e−iωγ5τ3/2eiθaτ
a/2eiωγ5τ

3/2χ, (3.53)

χ→ χeiωγ5τ
3/2e−iθaτa/2e−iωγ5τ3/2, (3.54)

where ω = π/2 at maximal twist. Acting with Iy on the neutral pion operator yields

π0 = χχ
Iy→ −iχγ5(τ+ + τ−)χ = −i(π+ + π−), (3.55)

where the factor of −i arises due to the normalization chosen for the operators in
this thesis. The vector current operators in the twisted basis transform as

V 0,0
µ

Iy→ V 0,0
µ , (3.56)

V 1,0
µ

Iy→ iA1,+
µ − iA1,−

µ , (3.57)

where V 0,0
µ and V 1,0

µ are the twisted versions of j0,0µ and j1,0µ . All operators are again
given in more detail in App. A.1. For the isospin preserving parts of Cµν one finds

⟨π0V 0,0
µ V 1,0

ν ⟩ Iy→ ⟨π−V 0,0
µ A1,+

ν ⟩ − ⟨π+V 0,0
µ A1,−

ν ⟩,

⟨π0V 1,0
µ V 0,0

ν ⟩ Iy→ ⟨π−A1,+
µ V 0,0

ν ⟩ − ⟨π+A1,−
µ V 0,0

ν ⟩.
(3.58)

Note that each charged 3pt function is (twisted) charge odd, thus the difference
between the two charged 3pt functions on each line of Eq. (3.58) is charge even,
cf. App. A.1.2 and App. B.3. Thus the even charge parity of the neutral 3pt amplitude
is preserved under Iy. Further note that the replacement of the amplitudes with
their isospin rotated counterparts is valid since it just modifies the coefficients of the
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extrapolation to the continuum limit without changing the value of the amplitude
itself in the continuum limit.

3.2 Contributions to C(2) and Cµν

The Wick contractions contributing in the case of the 2pt function C(2)(t) and
3pt function Cµν(τ, tP ) are depicted in Figs. 3.2 and 3.3. Lines in these diagrams
correspond to quark propagators, which in the case of twisted mass fermions satisfy
a more complicated γ5-hermiticity, namely

D(x, y) = γ5τ
1D†(y, x)γ5τ

1, and S(x, y) = γ5τ
1S†(y, x)γ5τ

1, (3.59)

where D is the twisted mass Dirac operator and S the corresponding propagator (the
inverse of D, cf. [84]). This modification is needed since the twisted mass term flips
sign under the usual γ5 Hermitian conjugation, the conjugation by τ 1 flips the sign of
the twisted mass term again while not affecting the remaining isospin-invariant pieces
of the twisted mass Dirac operator. Note that for a flavour doublet, this modified
γ5-hermiticity implies a flavour change. Using the short-hand notation S(x, y) = Sxy

and introducing flavour indices, one has

Sf1,f2
xy = γ5(S

f2,f1
yx )†γ5, (3.60)

where f1, f2 denotes the two flavours.

P † P

0 t

P † P

0 t

Figure 3.2: Wick contractions contributing to C(2)(t). There are connected (left)
and (fully) disconnected diagrams (right).

Writing the pseudoscalar and current operators in the form

O(t) = (χ̄ΓOχ)(t), (3.61)
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P

j†ν

j†µ

−τ 0 tP

P

j†ν

j†µ

−τ 0 tP

P

j†ν

j†µ

−τ 0 tP

P

j†ν

j†µ

−τ 0 tP

P

j†ν

j†µ

−τ 0 tP

Figure 3.3: Wick contractions contributing to Cµν(τ, tP ). These are the connected
(top left), vector-current disconnected (“V-disconnected”, top middle and right),
pseudoscalar disconnected (“P-disconnected”, bottom left) and fully disconnected
(bottom right) diagrams. Note that there would be a second connected diagram
where the quark propagators run in the opposite direction which is omitted here.

where ΓO contains the appropriate normalization, Dirac and flavour structure for the
operator of interest, the Wick contractions for the 2pt function depicted in Fig. 3.2
schematically correspond to

connected: ⟨(χ̄ΓPχ)(t)(χ̄ΓP †χ)(0)⟩, (3.62)

disconnected: ⟨(χ̄ΓPχ)(t)(χ̄ΓP †χ)(0)⟩. (3.63)

Using the same notation, the Wick contractions for the 3pt function depicted in
Fig. 3.3 in the same order as in the figure schematically correspond to

connected: ⟨(χ̄ΓPχ)(tP )(χ̄Γj†ν
χ)(0)(χ̄Γj†µ

χ)(−τ)⟩, (3.64)

V-disconnected: ⟨(χ̄ΓPχ)(tP )(χ̄Γj†ν
χ)(0)(χ̄Γj†µ

χ)(−τ)⟩, (3.65)

V-disconnected: ⟨(χ̄ΓPχ)(tP )(χ̄Γj†ν
χ)(0)(χ̄Γj†µ

χ)(−τ)⟩, (3.66)

P-disconnected: ⟨(χ̄ΓPχ)(tP )(χ̄Γj†ν
χ)(0)(χ̄Γj†µ

χ)(−τ)⟩, (3.67)

fully disconnected: ⟨(χ̄ΓPχ)(tP )(χ̄Γj†ν
χ)(0)(χ̄Γj†µ

χ)(−τ)⟩. (3.68)
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Explicit expressions for the relevant Wick contractions for both the π0 and η/η′

correlators using propagators will be given in the following sections.

3.3 Pion Wick contractions contributing in Cµν

As detailed in Sec. 3.1.7, the neutral pion 3pt amplitude can be related to the charged
pion amplitude. Since there is no charged pion loop, i.e. no possible Wick contraction
of the charged pion operator with itself due to its quark content, the P-disconnected
and fully disconnected Wick contractions vanish, cf. Fig 3.3. Note that for the neutral
pion 3pt amplitude in twisted mass, they would need to be included since the neutral
pion loop does not vanish due to isospin breaking. This leaves the connected and
V-disconnected Wick contractions, where for the connected contractions only light
currents contribute, while in the disconnected contractions also currents involving s
and c quarks need to be considered, since they are present in the sea quarks. The
operators, conventions and symmetries relevant for this section can be found in
App. A.1.

3.3.1 Connected contraction

To make the discussion of the Wick contractions both more legible as well as a bit
more general, a change of notation is made. The pion operator insertion time in the
far future is now labelled by tf , the current operator jµ sits at source time ti, the
current operator jν at insertion time tc, with analogous temporal labels for twisted
and isospin rotated currents Vµ and Aµ. Define τ = tc− ti as the temporal separation
between the two current operators and tP as the temporal separation between the
pseudoscalar and the closest current operator in the temporal direction. The indices
on the temporal labels are then also used for the propagators, see Eq. (3.60).
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The connected contractions in Cµν are given by Eqs. (3.47) and (3.58) as

Cconn.
µν =

1

12

(
⟨π−V 0,0

µ A1,+
ν ⟩conn. − ⟨π+V 0,0

µ A1,−
ν ⟩conn.

)
+

1

12

(
⟨π−A1,+

µ V 0,0
ν ⟩conn. − ⟨π+A1,−

µ V 0,0
ν ⟩conn.

)
. (3.69)

These connected amplitudes can now be expressed using the quark propagators, e.g.

⟨π+A1,−
µ V 0,0

ν ⟩conn. = Tr
[
Su
icγνS

u
cfγ5S

d
fiγµγ5

]
+ Tr

[
Su
ifγ5S

d
fcγνS

d
ciγµγ5

]
, (3.70)

while suppressing the Fourier factors. The connected 3pt data sets available for this
thesis contain data for arbitrary counter-clockwise contractions, defined explicitly by

⟨F3F2F1(p⃗, q⃗,Γf ,Γc,Γi)⟩ ≡
∑
x⃗,y⃗

eip⃗y⃗e−iq⃗x⃗ Tr
[
SF3
if ΓfS

F2
fcΓcS

F1
ci Γi

]
, (3.71)

where xf = (y⃗, tf), xc = (x⃗, tc), xi = (⃗0, ti = 0), SF
ab = SF (xa, xb) and Γa gives

the appropriate Dirac structure. Note that p⃗ is the pion momentum and q⃗ the
momentum of the current at insertion, with the momentum of the current at source
given by momentum conservation. The clockwise contractions can be transformed
into counter-clockwise contractions using γ5-hermiticity. One finds

Tr
[
SF1
ic ΓcS

F2
cf ΓfS

F3
fi Γi

]
= Tr

[
(SF̄1

ci )
†Γc

c(S
F̄2
fc )

†Γc
f (S

F̄3
if )

†Γc
i

]
, (3.72)

where F̄ stands for the opposite flavour of F within the doublet and where
the superscript c denotes a conjugation of the Dirac structure with γ5,
i.e. Γc = γ5Γγ5 = ±Γ† = ±Γ for the gamma matrices used in this thesis,
cf. App. A.1.5. Going back to the example in Eq. (3.70) one finds for the clockwise
contraction

Tr
[
Su
icγνS

u
cfγ5S

d
fiγµγ5

]
= Tr

[
(Sd

ci)
†(−γν)(Sd

fc)
†γ5(S

u
if )

†(−γµγ5)
]

= Tr
[
γ5γµS

u
ifγ5S

d
fcγνS

d
ci

]∗
= −Tr

[
Su
ifγ5S

d
fcγνS

d
ciγµγ5

]∗
, (3.73)
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where in the last step cyclicity of the trace and {γ5, γµ} = 0 was used. Using the
explicit definition in Eq. (3.71), the clockwise contraction takes the form

−⟨udd(−p⃗,−q⃗, γ5, γν , γµγ5)⟩∗. (3.74)

Converting the clockwise contractions to counter-clockwise contractions thus cor-
responds for the charged connected contractions to taking the complex conjugated
counter-clockwise contractions with flipped flavours and momenta while keeping the
Dirac structure. Thus suppressing the Dirac structure, the connected amplitude in
Eq. (3.69) is given by

Cconn.
µν =

1

12
(⟨dud(p⃗, q⃗)⟩ − ⟨dud(−p⃗,−q⃗)⟩∗)

− 1

12
(⟨udu(p⃗, q⃗)⟩ − ⟨udu(−p⃗,−q⃗)⟩∗)

+
1

12
(⟨duu(p⃗, q⃗)⟩ − ⟨duu(−p⃗,−q⃗)⟩∗)

− 1

12
(⟨udd(p⃗, q⃗)⟩ − ⟨udd(−p⃗,−q⃗)⟩∗) . (3.75)

Next, the average with the twisted parity (Pτ 1) flipped state is taken, see App. A.1.3.
Each of the amplitudes flips sign and transforms into its charge conjugated partner
with flipped momenta. Additionally, a sign σ is picked up if both indices are either
temporal or spatial, i.e. σ = −(−1)n0 , with n0 the number of temporal indices. The
twisted parity averaged amplitude takes the form

1

2
(1+ Pτ 1)Cconn.

µν =

1

2

1

12
(⟨dud(p⃗, q⃗)⟩ − ⟨dud(−p⃗,−q⃗)⟩∗ − σ⟨udu(−p⃗,−q⃗)⟩+ σ⟨udu(p⃗, q⃗)⟩∗)

−1

2

1

12
(⟨udu(p⃗, q⃗)⟩ − ⟨udu(−p⃗,−q⃗)⟩∗ − σ⟨dud(−p⃗,−q⃗)⟩+ σ⟨dud(p⃗, q⃗)⟩∗)

+
1

2

1

12
(⟨duu(p⃗, q⃗)⟩ − ⟨duu(−p⃗,−q⃗)⟩∗ − σ⟨udd(−p⃗,−q⃗)⟩+ σ⟨udd(p⃗, q⃗)⟩∗)

−1

2

1

12
(⟨udd(p⃗, q⃗)⟩ − ⟨udd(−p⃗,−q⃗)⟩∗ − σ⟨duu(−p⃗,−q⃗)⟩+ σ⟨duu(p⃗, q⃗)⟩∗) . (3.76)

As shown in Sec. 3.1.3, for the case of a pion in the rest frame, i.e. p⃗ = 0, only the
spatial components of Cµν contribute to the TFFs, thus σ = −1 and 1

2
(1+Pτ 1)Cconn.

µν
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takes the simple form

1

2
(1+ Pτ 1)Cconn.

µν =

1

12
Re (⟨dud(q⃗)⟩ − ⟨dud(−q⃗)⟩ − ⟨udu(q⃗)⟩+ ⟨udu(−q⃗)⟩)

+
1

12
Re (⟨duu(q⃗)⟩ − ⟨duu(−q⃗)⟩ − ⟨udd(q⃗)⟩+ ⟨udd(−q⃗)⟩) . (3.77)

Two examples for the p⃗ = 0 charged connected 3pt amplitude after contracting the
Lorentz structure and averaging over the momentum orbit as described in Sec. 3.1.3
can be found in Fig. 3.4.
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Cconn. ( ) for ±  on cB211.072.64

tf/a = 28, |q1|2(Lx/2 )2 = 9
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tf/a = 28, |q1|2(Lx/2 )2 = 29

Figure 3.4: Momentum orbit averaged Cconn.(τ, tf = 2.23 fm) for τ/a ∈ [−20, 20] on
cB211.072.64 for two orbits. Note the small errors on the connected amplitude. A
more comprehensive overview, also showing amplitudes for the other ensembles, can
be found in App. D.1.

3.3.2 V-disconnected contraction

The V-disconnected contractions in Cµν are given by Eqs. (3.47) and (3.58) as

CV−disc.
µν =

1

12

(
⟨π−V 0,0

µ A1,+
ν ⟩V−disc. − ⟨π+V 0,0

µ A1,−
ν ⟩V−disc.

)
+

1

12

(
⟨π−A1,+

µ V 0,0
ν ⟩V−disc. − ⟨π+A1,−

µ V 0,0
ν ⟩V−disc.

)
−1

6
(V ↔ V s) +

2

6
(V ↔ V c), (3.78)
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where (V ↔ V s) and (V ↔ V c) stands for the same expressions as in the brackets
in the two lines above them while exchanging the vector currents by

V 0,0;s
µ = s̄γµs, or V 0,0;c

µ = c̄γµc. (3.79)

These are the s and c vector currents, they can contribute here through disconnected
loops. It is convenient to split the V-disconnected contribution as

CV−disc.
µν = CV−disc.,l

µν + CV−disc.,s
µν + CV−disc.,c

µν . (3.80)

Quark propagators can again be used to express these amplitudes, with the vector
current loop and pion-axial current correlator given by

LF
µ (q⃗,Γx) =

∑
x⃗

e−iq⃗x⃗ Tr
[
SF
xxΓx

]
, (3.81)

AP FF̄
µ (p⃗, q⃗,Γf ,Γx) =

∑
x⃗,y⃗

eip⃗y⃗e−iq⃗x⃗ Tr
[
SF
fxΓxS

F̄
xfΓf

]
, (3.82)

where xf = (y⃗, tf), xc = (x⃗, tc), xi = (⃗0, ti = 0), SF
ab = SF (xa, xb) and Γa gives the

appropriate Dirac structure. The pion has momentum p⃗ and the current at insertion
momentum q⃗. Note that the light vector current loop Ll(q⃗,Γx) is simply given by
the sum of the u and d loops, i.e. Ll(q⃗,Γx) = Lu(q⃗,Γx) + Ld(q⃗,Γx). Introducing a
generic loop L(q⃗,Γx) and defining a generic V-disconnected contribution,

CV−disc.,gen
µν =⟨π−V 0,0

µ A1,+
ν ⟩V−disc. − ⟨π+V 0,0

µ A1,−
ν ⟩V−disc.

+⟨π−A1,+
µ V 0,0

ν ⟩V−disc. − ⟨π+A1,−
µ V 0,0

ν ⟩V−disc., (3.83)

and rewriting it in terms of loops and correlators yields

CV−disc.,gen
µν =

Lµ(−q⃗,Γi)× AP ud
ν (p⃗, q⃗,Γf ,Γc)− Lµ(−q⃗,Γi)× AP du

ν (p⃗, q⃗,Γf ,Γc)

+Lν(q⃗,Γc)× AP ud
µ (p⃗,−q⃗,Γf ,Γi)− Lν(q⃗,Γc)× AP du

µ (p⃗,−q⃗,Γf ,Γi). (3.84)

Since the s and c vector currents transform in the same way as their light counterpart
under (twisted) parity one has the same properties as in Sec. 3.3.1 when taking the
average with the parity flipped state. Again using σ = −(−1)n0 , the twisted parity
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averaged amplitude takes the form

1

2
(1+ Pτ 1)CV−disc.,gen

µν =
1

2

[
Lµ(−q⃗,Γi)× AP ud

ν (p⃗, q⃗,Γf ,Γc)− Lµ(−q⃗,Γi)× AP du
ν (p⃗, q⃗,Γf ,Γc)

−σLµ(q⃗,Γi)× AP du
ν (−p⃗,−q⃗,Γf ,Γc) + σLµ(q⃗,Γi)× AP ud

ν (−p⃗,−q⃗,Γf ,Γc)

+Lν(q⃗,Γc)× AP ud
µ (p⃗,−q⃗,Γf ,Γi)− Lν(q⃗,Γc)× AP du

µ (p⃗,−q⃗,Γf ,Γi)

−σLν(−q⃗,Γc)× AP du
µ (−p⃗, q⃗,Γf ,Γi) + σLν(−q⃗,Γc)× AP ud

µ (−p⃗, q⃗,Γf ,Γi)
]
. (3.85)

For the case of a resting pseudoscalar, σ = −1 since only the spatial components
contribute, cf. Eq. 3.28, and thus

1

2
(1+ Pτ 1)CV−disc.,gen

µν =
1

2

[
Lµ(−q⃗,Γi)× AP ud

ν (q⃗,Γf ,Γc)− Lµ(−q⃗,Γi)× AP du
ν (q⃗,Γf ,Γc)

+Lµ(q⃗,Γi)× AP du
ν (−q⃗,Γf ,Γc)− Lµ(q⃗,Γi)× AP ud

ν (−q⃗,Γf ,Γc)

+Lν(q⃗,Γc)× AP ud
µ (−q⃗,Γf ,Γi)− Lν(q⃗,Γc)× AP du

µ (−q⃗,Γf ,Γi)

+Lν(−q⃗,Γc)× AP du
µ (q⃗,Γf ,Γi)− Lν(−q⃗,Γc)× AP ud

µ (q⃗,Γf ,Γi)
]
. (3.86)

The corresponding l, s and c V-disconnected contributions are then given by inserting
the appropriate vector current loop and normalization, i.e.

1

2
(1+ Pτ 1)CV−disc.,l

µν =
1

12

1

2
(1+ Pτ 1)CV−disc.,gen

µν

⏐⏐⏐
Lµ=Ll

µ

, (3.87)

1

2
(1+ Pτ 1)CV−disc.,s

µν =−1

6

1

2
(1+ Pτ 1)CV−disc.,gen

µν

⏐⏐⏐
Lµ=Ls

µ

, (3.88)

1

2
(1+ Pτ 1)CV−disc.,c

µν =
2

6

1

2
(1+ Pτ 1)CV−disc.,gen

µν

⏐⏐⏐
Lµ=Lc

µ

. (3.89)

Note that as mentioned in Sec. 2.2, Osterwalder-Seiler fermions are used for the s
and c quarks, which needs to be taken into account in the actual construction. More
details on this can be found in Sec. 3.5.2. Some examples for the p⃗ = 0 charged
V-disconnected 3pt amplitudes after contracting the Lorentz structure and averaging
over the momentum orbit as described in Sec. 3.1.3 can be found in Fig. 3.5. Note
that the momentum at insertion tc is used for the orbit averaging.
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Figure 3.5: Momentum orbit averaged CV−disc.(τ, tf = 2.23 fm) for τ/a ∈ [−20, 20]
on cB211.072.64 for two orbits. The top row shows V-disconnected contributions
with a disconnected light current loop, the middle row with a disconnected strange
current loop and the bottom row with a disconnected charm current loop. The
V-disconnected contributions typically are 2-3 orders of magnitude smaller than the
connected contribution with errors which are well under control. For some momentum
orbits signals for CV−disc.,l and CV−disc.,s can be extracted, while CV−disc.,c just adds
noise. See App. D.1 for more examples.
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3.4 Pion Wick contractions contributing in C(2)

The neutral pion 2pt amplitude can also be related to the charged pion 2pt amplitude,
again simplifying the calculation since there is no disconnected charged pion con-
tribution. Under the isospin rotation given in Sec. 3.1.7, the neutral 2pt amplitude
for a pion with momentum p⃗ at xf = (y⃗, tf ) and a pion with opposite momentum at
xi = (x⃗, ti) transforms as

⟨π0(tf )π
0(ti)⟩

Iy→ −⟨π+(tf )π
−(ti)⟩ − ⟨π−(tf )π

+(ti)⟩. (3.90)

Using quark propagators, the 2pt functions are written as

PP F1F2(p⃗,Γf ,Γi) =
∑
x⃗,y⃗

eip⃗y⃗e−ip⃗x⃗Tr
[
SF1
fi ΓiS

F2
if Γf

]
, (3.91)

with Γa giving the appropriate Dirac structure. Suppressing this structure, since
here Γf = Γi = γ5, the charged pion 2pt amplitude is written as

C(2)(ti, tf ) = −PP du(p⃗)− PP ud(p⃗). (3.92)

Using γ5-hermiticity, one finds

Tr
[
SF1
fi γ5S

F2
if γ5

]
= Tr

[
SF1
fi γ5S

F2
if γ5

]∗
, (3.93)

implying
PP F1F2(p⃗) = PP F1F2(−p⃗)∗. (3.94)

Twisted parity transforms each amplitude into its charge conjugated partner and
flips each momentum, such that

1

2
(1+ Pτ 1)C(2)(ti, tf ) = −1

2

[
PP du(p⃗) + PP ud(−p⃗) + PP ud(p⃗) + PP du(−p⃗)

]
= −1

2

[
PP du(p⃗) + PP ud(p⃗)∗ + PP ud(p⃗) + PP du(p⃗)∗

]
= −Re

[
PP du(p⃗) + PP ud(p⃗)

]
. (3.95)
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Note that one arrives at the same result in the case of p⃗ = 0 by just using Eq. (3.94).
An illustration for the p⃗ = 0 charged 2pt amplitude can be found in Fig. 3.6.
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Figure 3.6: C(2)(t) (left) and the effective mass meff in MeV (right) on cB211.072.64.
Note the clean exponential decay, which is determined by the ground state energy.
The effective mass is introduced in Sec. 3.6.3. For the calculation of meff , backwards
propagation is taken into account. The 2pt functions on the other two ensembles
can be found in App. D.1.

3.4.1 Fitting the charged pion 2pt function

To extract the overlap factor |Zπ± |2 and pion energy Eπ± = mπ± for the resting pion
while taking the finite-time correction from Eq. (3.41) into account, the charged pion
2pt function is fitted with the fit function

C(2)(t = tf − ti) = A · 2e−B·Lt/2 cosh (B · (t− Lt/2)) . (3.96)

The fit parameters A,B then correspond to

A =
|Zπ± |2

2mπ±
, (3.97)

B = mπ± . (3.98)

Since the signals for the charged 2pt amplitudes are very precise, i.e. they have
a large signal-to-noise ratio, the actual fits are done including one excited state,
resulting in the charged pion mass values shown in Tab. 3.1 for the three ensembles
used in this thesis.
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3.4.2 Pion Ã

The construction of Ã(τ) in principle requires the placement of the pseudoscalar
operator at asymptotically large Euclidean time, cf. Eq. (3.37). This limit is approx-
imated here by studying multiple fixed temporal separations between the pseudoscalar
operator and the current operator at source. These temporal separations are called
source-sink separations. If there is no difference in Ã(τ) with increasing temporal
separation, i.e. no excited state contamination, the limit is well approximated. With
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Figure 3.7: Momentum orbit averaged Ã(τ) (top row) and difference between Ã(τ)
and the central value of Ã(τ, tf/a = 36) (bottom row) using tf ∈ {2.23, 2.87, 3.50} fm
for τ/a ∈ [−20, 20] on cB211.072.64 for two orbits. In the bottom row, the points are
shifted slightly along the τ/a-axis for better legibility. Note the excellent convergence
for the different tf , indicating that there is no excited state contamination. Plots of
the variance for these two orbits can be found in Fig. 3.8. Other examples can be
found in App. D.1.

the exception of one momentum orbit on cD211.054.96, there is no excited state
contamination for any of the used source-sink separations, thus the smallest on each
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ensemble was used since this minimizes the statistical errors on Ã(τ). Two examples
for the p⃗ = 0 charged Ã(τ) and its variance after contracting the Lorentz structure
and averaging over the momentum orbit as described in Sec. 3.1.3 can be found in
Figs. 3.7 and 3.8.
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Variance of A( ) for ±  on cB211.072.64
|q1|2(Lx/2 )2 = 29
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Figure 3.8: Variance on the momentum orbit averaged Ã(τ) using
tf ∈ {2.23, 2.87, 3.50} fm for τ/a ∈ [−20, 20] on cB211.072.64 for the same two
orbits as in Fig. 3.7. Note that the variance increases with increasing tf for each
value of τ/a.

3.5 η- and η′-meson Wick contractions contributing

in Cµν

For the η- and η′-meson 3pt amplitude, all Wick contractions depicted in Fig 3.3
need to be included in principle. However, at the presently achievable accuracy, all
V-disconnected diagrams as well as the P-disconnected diagram with c quark vector
currents are not relevant and thus not included here, see also [71]. Further, at the
time this thesis was written, only data on the cB211.072.64 ensemble was available,
cf. Sec. 3.8, and the quality of the data only allowed the extraction of the η8 2pt and
3pt amplitudes. The operators, conventions and symmetries relevant for this section
can be found in App. A.1 and App. B.8, details on the projection on the η-meson
state in Sec. 4.3.7.3.
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3.5.1 Mixing of singlet and octet state

Only considering the strong interaction, the quark model of the three lightest quarks
predicts nine eigenstates, two of which are

η1 =
1√
3
(ūu+ d̄d+ s̄s), (3.99)

η8 =
1√
6
(ūu+ d̄d− 2s̄s), (3.100)

with the same quantum numbers, which together with the π0 form the centre of the
pseudoscalar meson nonet with JP = 0−, i.e. with total spin 0 and odd parity built
from pairs of u, d and s quarks and the corresponding anti-quarks. The indices 1
and 8 indicate that η1 belongs to a singlet and η8 to an octet in the SU(3) symmetry
theory of quarks for the three lightest quarks, with the pseudoscalar nonet formed
by the singlet and octet. Due to electroweak interaction, bound states with the same
overall quantum numbers can mix, such that the physical η and η′ states are given
by a linear combination of the singlet and octet states, i.e.(

η

η′

)
=

(
cos θP − sin θP

sin θP cos θP

)(
η8

η1

)
, (3.101)

with mixing angle θP = −11.3◦ ≈ −0.2 [12]. As detailed in Sec. 4.3.7.3, the η-meson
state can be extracted from the η8 operator without explicitly taking the mixing into
account due to its overlap with the η-meson state.

3.5.2 Osterwalder-Seiler strange quarks

In twisted mass Osterwalder-Seiler calculations, two strange quark flavours s± (up-
and down-type strange quark) are considered, they form a flavour degenerate doublet
and are analogous to the up and down quark for the light contribution, the difference
being that they both carry the same charge factor of −1/3 [106]. This gives the
extended isospin symmetry group SU(2)u,d × SU(2)s+,s− , up to lattice artefacts.
Discrete symmetries act on the strange doublet like on the light doublet.
In the continuum limit, where explicit flavour symmetry breaking terms are absent,
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it would not matter if one uses s+ or s−. Since they are treated here like the up and
down quark, there will be additional factors of 1/2 such that the normalization is
consistent with respect to the light contribution.
Replacing s by (s+, s−)T in the corresponding operators, cf. App. B.8, yields

ηs = iψ̄γ5ϵψ, (3.102)

and
JQ,s
µ = ψ̄γµQψ, (3.103)

with

Q =

(
−1/3 0

0 −1/3

)
, (3.104)

where ψ = (s+, s−)T . The corresponding current operator takes the form

JQ,s
µ = −1

3
s̄+γµs+ − 1

3
s̄−γµs−, (3.105)

and will be treated like the strange current in Sec. 3.3.2.

3.5.3 Classification of the relevant Wick contractions

As discussed in Sec. 3.1.7, only the second line in Eq. (3.47) contributes to Cµν

for η- and η′-meson. Using the short-hand notation Cµν =
⟨
PJQ

µ J
Q
ν

⟩
, the Wick

contractions considered here are

⟨
PJQ

µ J
Q
ν

⟩
=

⟨
ηlJ

Q,l
µ JQ,l

ν

⟩
conn.

light connected (3.106)

+
⟨
ηlJ

Q,l
µ JQ,l

ν

⟩
P−disc.

light disconnected (3.107)

+
⟨
ηsJ

Q,s
µ JQ,s

ν

⟩
conn.

strange connected (3.108)

+
⟨
ηsJ

Q,s
µ JQ,s

ν

⟩
P−disc.

strange disconnected (3.109)

+
⟨
ηsJ

Q,l
µ JQ,l

ν

⟩
P−disc.

mixed disconnected I (3.110)

+
⟨
ηlJ

Q,s
µ JQ,s

ν

⟩
P−disc.

mixed disconnected II, (3.111)
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with the operators given in the twisted basis in App. B.8. In the following, the
construction of these contractions is discussed. Note that both ηl and ηs pick up
a normalization factor of 1/

√
6 when constructing the η8 3pt amplitude and a

normalization factor of 1/
√
3 when constructing the η1 3pt amplitude. These factors

are not explicitly included in the following.

3.5.4 Light connected contraction

Here, the light connected contribution to the amplitude, given in Eq. (3.106), is
considered. To lighten the notation, the superscript l is dropped for the rest of this
subsection. In terms of quark propagators, the data available for this thesis is of
the form Eq. (3.71), i.e. given in terms of arbitrary counter-clockwise contractions.
Inserting F = F1 = F2 = F3 yields

⟨F (p⃗, q⃗)⟩ccw = ⟨F (p⃗, q⃗,Γf ,Γc,Γi)⟩ ≡
∑
x⃗,y⃗

eip⃗y⃗e−iq⃗x⃗ Tr
[
SF
ifΓfS

F
fcΓcS

F
ciΓi

]
(3.112)

for these contractions. Directly going to p⃗ = 0 and suppressing the Dirac structure,
one finds

⟨
ηJQ

µ J
Q
ν

⟩
conn.

=
1

36

⟨
ηV 0,0

µ V 0,0
ν

⟩
conn.

+
1

4

⟨
ηV 1,0

µ V 1,0
ν

⟩
conn.

=
5

18
(⟨u(q⃗)⟩ccwconn. + ⟨u(q⃗)⟩cwconn. − ⟨d(q⃗)⟩ccwconn. − ⟨d(q⃗)⟩cwconn.) , (3.113)

where the clockwise contractions are defined analogous to Eq. (3.112). Under twisted
parity, the spatial components of the amplitude are odd, cf. App. B.8.1, such that
for µ, ν both spatial

1

2

(
1+ Pτ 1

) ⟨
ηV 0,0/1,0

µ (q⃗)V 0,0/1,0
ν

⟩
conn.

=

1

2

(⟨
ηV 0,0/1,0

µ (q⃗)V 0,0/1,0
ν

⟩
conn.

−
⟨
ηV 0,0/1,0

µ (−q⃗)V 0,0/1,0
ν

⟩
conn.

)
, (3.114)
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holds, and thus

1

2

(
1+ Pτ 1

) ⟨
ηJQ

µ J
Q
ν

⟩
conn.

=

1

2
· 5

18
[⟨u(q⃗)⟩ccwconn. − ⟨u(−q⃗)⟩ccwconn. + ⟨u(q⃗)⟩cwconn. − ⟨u(−q⃗)⟩cwconn.

−⟨d(q⃗)⟩ccwconn. + ⟨d(−q⃗)⟩ccwconn. − ⟨d(q⃗)⟩cwconn. + ⟨d(−q⃗)⟩cwconn.] (3.115)

Counterclockwise and clockwise amplitudes are related to one another through
γ5-hermiticity

⟨u(q⃗)⟩ccwconn. = ⟨d(−q⃗)⟩cw,∗
conn. , (3.116)

with the given Dirac structures, yielding in terms of flavour components

1

2

(
1+ Pτ 1

) ⟨
ηJQ

µ J
Q
ν

⟩
conn.

=

5

18
Re [⟨u(q⃗)⟩ccwconn. − ⟨d(q⃗)⟩ccwconn. − ⟨u(−q⃗)⟩ccwconn. + ⟨d(−q⃗)⟩ccwconn.] . (3.117)

Two examples for the p⃗ = 0 connected 3pt amplitude for η8 after contracting the
Lorentz structure and averaging over the momentum orbit are shown in Fig. 3.9.

3.5.5 Light disconnected contraction

Next, the light disconnected contribution to the amplitude, given in Eq. (3.107), is
considered. Again, the index l is dropped for the rest of this subsection. The relevant
objects in terms of quark propagators are the loops and vector current correlators
given by

LF (p⃗,Γf ) =
∑
y⃗

eip⃗y⃗ Tr
[
SF
ffΓx

]
, (3.118)

V V F
µν(q⃗,Γc,Γi) =

∑
x⃗

e−iq⃗x⃗ Tr
[
SF
icΓcS

F
ciΓi

]
, (3.119)

where again xf = (y⃗, tf), xc = (x⃗, tc), xi = (⃗0, ti = 0), SF
ab = SF (xa, xb) and Γa gives

the appropriate Dirac structure. The pseudoscalar has momentum p⃗ and the current
at insertion momentum q⃗. Suppressing the Dirac structure, the light P-disconnected
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contraction is then written as

⟨
ηJQ

µ J
Q
ν

⟩
P−disc.

=
5

18

(
Lu(p⃗)− Ld(p⃗)

) (
V V u

µν(q⃗) + V V d
µν(q⃗)

)
. (3.120)

Under twisted parity the amplitude transforms as

1

2

(
1+ Pτ 1

) ⟨
ηJQ

µ J
Q
ν

⟩
P−disc.

=
1

2
· 5

18

{(
Lu(p⃗)− Ld(p⃗)

) (
V V u

µν(q⃗) + V V d
µν(q⃗)

)
−
(
Lu(−p⃗)− Ld(−p⃗)

) (
V V u

µν(−q⃗) + V V d
µν(−q⃗)

)}
. (3.121)

By using γ5-hermiticity, i.e.

Ld,u(p⃗) = Lu,d(−p⃗)∗, (3.122)

V V d,u
µν (q⃗) = V V u,d

µν (−q⃗)∗, (3.123)

all d-quark contributions can be transformed into u-quark contributions,

1

2

(
1+ Pτ 1

) ⟨
ηJQ

µ J
Q
ν

⟩
P−disc.

=
1

2
· 5

18

{
(Lu(p⃗)− Lu(−p⃗)∗)

(
V V u

µν(q⃗) + V V u
µν(−q⃗)∗

)
− (Lu(−p⃗)− Lu(p⃗)∗)

(
V V u

µν(−q⃗) + V V u
µν(q⃗)

∗)}
=

5

18
Re
[
(Lu(p⃗)− Lu(−p⃗)∗)

(
V V u

µν(q⃗) + V V u
µν(−q⃗)∗

)]
. (3.124)

Finally, for p⃗ = 0, one gets

1

2

(
1+ Pτ 1

) ⟨
η(p⃗ = 0)JQ

µ J
Q
ν

⟩
P−disc.

=
5

18
Re
[
2iIm[Lu(0)]

(
V V u

µν(q⃗) + V V u
µν(−q⃗)∗

)]
=

5

18
Re
[
2iIm[Lu(0)]iIm[V V u

µν(q⃗) + V V u
µν(−q⃗)∗]

]
= −5

9
Im[Lu(0)]Im[V V u

µν(q⃗)− V V u
µν(−q⃗)]. (3.125)

Two examples for the p⃗ = 0 P-disconnected 3pt amplitude for η8 after contracting
the Lorentz structure and averaging over the momentum orbit are shown in Fig. 3.10.
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3.5.6 Strange connected contraction

Following the same procedure as for the light connected contribution, the the strange
connected contribution to the amplitude, given in Eq. (3.108), takes the form

⟨
ηsJ

Q,s
µ JQ,s

ν

⟩
conn.

= ϵ
1

2
· 1
9
(⟨s+(q⃗)⟩ccwconn. + ⟨s+(q⃗)⟩cwconn. − ⟨s−(q⃗)⟩ccwconn. − ⟨s−(q⃗)⟩cwconn.) , (3.126)

where a factor of 1/2 is included to account for double counting of diagrams due
to the use of Osterwalder-Seiler fermions. After converting all clockwise to counter-
clockwise contributions using γ5-hermiticity, the twisted parity averaged amplitude
is then given by

1

2

(
1+ Pτ 1

) ⟨
ηsJ

Q,s
µ JQ,s

ν

⟩
conn.

= (3.127)

ϵ
1

18
Re [⟨s+(q⃗)⟩ccwconn. − ⟨s−(q⃗)⟩ccwconn. − ⟨s+(−q⃗)⟩ccwconn. + ⟨s−(−q⃗)⟩ccwconn.] ,

(3.128)

in terms of flavour components, where ϵ = −2 for η8 and ϵ = 1 for η1. Two examples
for the p⃗ = 0 connected 3pt amplitude for η8 after contracting the Lorentz structure
and averaging over the momentum orbit are shown in Fig. 3.9.
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Figure 3.9: Momentum orbit averaged connected C(τ, tf = 1.11 fm) for η8 for
τ/a ∈ [−20, 20] on cB211.072.64 for two orbits. Shown in brown is the full connected
contribution, in blue the connected contribution involving only light quarks (“l conn.”)
and in green the one involving only strange quarks (“s conn.”). Note the suppression
of the strange contribution with respect to the light one. A more comprehensive
overview can be found in App. D.2.

3.5.7 Strange disconnected contraction

For the strange disconnected contribution to the amplitude, given in Eq. (3.109), the
derivation for the light disconnected contribution can be followed, with a factor of
1/2 both for the loop and for the current contribution. The 3pt amplitude reads

⟨
ηsJ

Q,s
µ JQ,s

ν

⟩
P−disc.

= ϵ

(
1

2

)2

· 1
9
(Ls+(p⃗)− Ls−(p⃗))

(
V V s+

µν (q⃗) + V V s−
µν (q⃗)

)
, (3.129)

which after converting all s−- to s+-quark contributions and taking the twisted parity
average leads to

1

2

(
1+ Pτ 1

) ⟨
ηsJ

Q,s
µ JQ,s

ν

⟩
P−disc.

= ϵ
1

36
Re
[
(Ls+(p⃗)− Ls+(−p⃗)∗)

(
V V s+

µν (q⃗) + V V s+
µν (−q⃗)∗

)]
. (3.130)
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For p⃗ = 0 one then finds

1

2

(
1+ Pτ 1

) ⟨
ηs(p⃗ = 0)JQ,s

µ JQ,s
ν

⟩
P−disc.

= −ϵ 1
18

Im[Ls+(0)]Im[V V s+
µν (q⃗)− V V s+

µν (−q⃗)], (3.131)

with ϵ = −2 for η8 and ϵ = 1 for η1. Two examples for the p⃗ = 0 P-disconnected
3pt amplitude for η8 after contracting the Lorentz structure and averaging over the
momentum orbit are shown in Fig. 3.11.

3.5.8 Mixed disconnected I contraction

Here, the mixed disconnected contribution with a strange loop and light current
correlator to the amplitude, given in Eq. (3.110), is considered. One factor of 1/2
needs to be included to account for double counting due to the strange loop, resulting
in

⟨
ηsJ

Q,l
µ JQ,l

ν

⟩
P−disc.

= ϵ
1

2
· 5

18
(Ls+(p⃗)− Ls−(p⃗))

(
V V u

µν(q⃗) + V V d
µν(q⃗)

)
. (3.132)

For p⃗ = 0, this leads to

1

2

(
1+ Pτ 1

) ⟨
ηs(p⃗ = 0)JQ,l

µ JQ,l
ν

⟩
P−disc.

= −ϵ 5
18

Im[Ls+(0)]Im[V V u
µν(q⃗)− V V u

µν(−q⃗)]. (3.133)

Two examples for the p⃗ = 0 P-disconnected 3pt amplitude for η8 after contracting
the Lorentz structure and averaging over the momentum orbit are shown in Fig. 3.10.
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Figure 3.10: Momentum orbit averaged P-disconnected C(τ, tf = 1.11 fm) for η8 for
τ/a ∈ [−20, 20] on cB211.072.64 for two orbits. Shown in red is the full P-disconnected
contribution with the light current correlator, in pink the disconnected contribution
involving only light quarks (“l × l corr.”, corresponds to light disconnected) and in
grey the one involving a disconnected strange quark and the light current correlator
(“s × l corr.”, corresponds to mixed disconnected I). The cancellation between the
P-disconnected contribution with light current correlators and the light connected
contribution shown in Fig. 3.9 is crucial when building the amplitude for η8. More
momentum orbits are shown in App. D.2.

3.5.9 Mixed disconnected II contraction

Finally, the mixed disconnected contribution with a light loop and strange current
correlator to the amplitude, given in Eq. (3.111), is considered. One factor of 1/2
needs to be included to account for double counting due to the strange current,
giving

⟨
ηlJ

Q,s
µ JQ,s

ν

⟩
P−disc.

=
1

2
· 1
9

(
Lu(p⃗)− Ld(p⃗)

) (
V V s+

µν (q⃗) + V V s−
µν (q⃗)

)
. (3.134)

For p⃗ = 0, this leads to

1

2

(
1+ Pτ 1

) ⟨
ηl(p⃗ = 0)JQ,s

µ JQ,s
ν

⟩
P−disc.

= −1

9
Im[Lu(0)]Im[V V s+

µν (q⃗)− V V s+
µν (−q⃗)]. (3.135)

Two examples for the p⃗ = 0 P-disconnected 3pt amplitude for η8 after contracting
the Lorentz structure and averaging over the momentum orbit are shown in Fig. 3.11.
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Figure 3.11: Momentum orbit averaged P-disconnected C(τ, tf = 1.11 fm) for η8
for τ/a ∈ [−20, 20] on cB211.072.64 for two orbits. Shown in purple is the full
P-disconnected contribution with the strange current correlator, in green the discon-
nected contribution involving a disconnected light quark and the strange current
correlator (“l × s corr.”, corresponds to mixed disconnected II) and in turquoise the
one involving only strange quarks (“s × s corr.”, corresponds to strange disconnected).
More momentum orbits are shown in App. D.2.

3.6 η- and η′-meson Wick contractions contributing

in C(2)

For the η- and η′-meson contributions to C(2), both diagrams in Fig. 3.2 need to be
considered. The same pseudoscalar operator as in the last section is used, i.e.

η(ϵ) = ηl + ϵηs, (3.136)

where ϵ = −2 for η8 and ϵ = 1 for η1. Note that the 2pt amplitudes built here need
an additional normalization factor of 1/

√
6 for each involved η8 operator and of 1/

√
3

for each involved η1 operator.

67



3.6.1 Connected contraction

The connected pseudoscalar 2pt function in terms of quark propagators, given in
Eq. (3.91), can be written as

PP F (p⃗,Γf ,Γi) =
∑
x⃗,y⃗

eip⃗y⃗e−ip⃗x⃗Tr
[
SF
fiΓiS

F
ifΓf

]
, (3.137)

since the amplitudes relevant here come in flavour pairs. Again suppressing the Dirac
structure, the connected contraction takes the form

⟨η(ϵ, tf )η(ϵ, ti)⟩conn. = PP u(p⃗) + PP d(p⃗) +
ϵ2

2
(PP s+(p⃗) + PP s−(p⃗)) , (3.138)

with a factor 1/2 due to the Osterwalder-Seiler strange quarks. The d- and s−-quark
contributions are related to the u- and s+-quark contributions, respectively, by
γ5-hermiticity as usual, while twisted parity transforms the amplitudes into their
charge conjugated partners and flips all momenta, such that

1

2

(
1+ Pτ 1

)
⟨η(ϵ, tf )η(ϵ, ti)⟩conn. =

=
1

2

[
PP u(p⃗) + PP d(p⃗) +

ϵ2

2
(PP s+(p⃗) + PP s−(p⃗))

+ PP d(−p⃗) + PP u(−p⃗) + ϵ2

2
(PP s−(−p⃗) + PP s+(−p⃗))

]
= Re

[
PP u(p⃗) + PP u(−p⃗) + ϵ2

2
(PP s+(p⃗) + PP s+(−p⃗))

]
. (3.139)

Thus the connected η(ϵ) 2pt function with p⃗ = 0 is given by

⟨η(ϵ, tf )η(ϵ, ti)⟩conn. = 2Re
[
PP u(⃗0) +

ϵ2

2

(
PP s+ (⃗0)

)]
. (3.140)

For the cross-correlator this translates to

⟨η(ϵf , tf )η(ϵi, ti)⟩conn. = 2Re
[
PP u(⃗0) +

ϵfϵi
2

(
PP s+ (⃗0)

)]
. (3.141)
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3.6.2 Disconnected contraction

In terms of quark loops, cf. Eq. (3.118), the disconnected contribution to the 2pt
amplitude reads

⟨η(ϵ, tf , p⃗) η(ϵ, ti,−p⃗)⟩disc. =(
Lu(p⃗,Γf )− Ld(p⃗,Γf ) +

ϵ

2
[Ls+(p⃗,Γf )− Ls−(p⃗,Γf )]

)
·
(
Lu(−p⃗,Γi)− Ld(−p⃗,Γi) +

ϵ

2
[Ls+(−p⃗,Γi)− Ls−(−p⃗,Γi)]

)
, (3.142)

with factors of 1/2 again due to Osterwalder-Seiler. Converting all d- and s−-quark
contributions using γ5-hermiticity and directly going to p⃗ = 0 yields

⟨η(ϵ, tf ) η(ϵ, ti)⟩disc. =(
2iImLu(⃗0,Γf ) + 2i

ϵ

2
ImLs+ (⃗0,Γf )

)
·
(
2iImLu(⃗0,Γi) + 2i

ϵ

2
ImLs+ (⃗0,Γi)

)
(3.143)

= 4i2
(

ImLu(⃗0,Γf )ImLu(⃗0,Γi) +
ϵ2

4
ImLs+ (⃗0,Γf )ImLs+ (⃗0,Γi)

+
ϵ

2
ImLu(⃗0,Γf )ImLs+ (⃗0,Γi) +

ϵ

2
ImLs+ (⃗0,Γf )ImLu(⃗0,Γi)

)
. (3.144)

For the cross-correlator this translates to

⟨η(ϵf , tf ) η(ϵi, ti)⟩disc. =

= 4i2
(
ImLu(⃗0,Γf )ImLu(⃗0,Γi) +

ϵfϵi
4

ImLs+ (⃗0,Γf )ImLs+ (⃗0,Γi)

+
ϵi
2

ImLu(⃗0,Γf )ImLs+ (⃗0,Γi) +
ϵf
2

ImLs+ (⃗0,Γf )ImLu(⃗0,Γi)
)
. (3.145)

Illustrations for the η8 and η1 2pt amplitudes with p⃗ = 0 can be found in Fig. 3.12.
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Figure 3.12: C(2)(t) on cB211.072.64 for η8 (top row) and η1 (bottom row). In
contrast to the charged pion 2pt functions, and especially for the η1 operator, there
is no region of exponential decay clearly dominated by just one decay constant.
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3.6.3 Fitting the η- and η′-meson 2pt functions

As seen in Fig. 3.12, it is quite challenging to extract the overlap factors and masses
for η8 and η1. The same fit function as in Sec. 3.4.1 was used, but the choice of fit
window is much more delicate, especially for η1.
Promising fit windows can be identified by determining plateaus in the effective mass
meff . Assuming that the 2pt function C(2)(t) of interest is dominated by a state with
energy E, it is described by an exponential decay

C(2)(t) = Ae−Et. (3.146)

This is in general a reasonable approximation for sufficiently large t, with E being
the energy of the ground state. The standard definition of meff is then given by

meff = log

[
C(2)(t)

C(2)(t+ 1)

]
t≫1
≈ log

[
e−Et+E(t+1)

]
= log[eE] = E. (3.147)

If the periodic boundary conditions are taken into account, the expression for meff

becomes

meff
t≫1
= log

[
C(2)(t)

C(2)(t+ 1)
· 1 + e−E(Lt−2(t+1))

1 + e−E(Lt−2t)

]
, (3.148)

cf. App. B.5. Note that E on the r.h.s of Eq. (3.148) is a priori not known. Thus, an
initial guess for E is made using Eq. (3.147) and then iteratively improved according
to Eq. (3.148), see Lst. 1 for an example implementation in python. For the pion 2pt
function, there is a significant contribution from the backwards propagating state, see
Fig. D.4, while for the η8 and η1 2pt functions the effective masses from Eq. (3.147)
and Eq. (3.148) almost coincide due to the heavy η-meson mass, cf. Fig 3.13.
It is often useful to consider definitions of the effective mass obtained using trigo-
nometric relations for the 2pt function while including backwards propagation and
shifts of the 2pt function in the temporal direction such as

C(2)(t+ τ) + C(2)(t− τ)

2C(2)(t)
= coshEτ, (3.149)

giving

meff(t, τ) =
1

τ
arccosh

(
C(2)(t+ τ) + C(2)(t− τ)

2C(2)(t)

)
, (3.150)
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# Function for extracting the effective mass,
# including backwards propagation.
# t : integer, specifies timeslice
# c : array storing the (symmetrized) 2pt function per timeslice
# Lt: float, temporal extent of the lattice
import numpy as np
def M_eff_wrap(t, c, Lt):

mass = np.log(c[t]) - np.log(c[t+1])
res = 1
counter = 0
while res > 1e-12:

u = 1. + np.exp(-mass*(Lt - 2.*float(t) - 2.))
d = 1. + np.exp(-mass*(Lt - 2.*float(t)))
tmp_mass = np.log(c[t])-np.log(c[t+1])+np.log(u)-np.log(d)
res = abs(tmp_mass - mass)
mass = tmp_mass
counter += 1

return mass, counter

Listing 1: Example implementation of the iterative procedure used to extract meff

while including backwards propagation, cf. Eq. (3.148).

or
C(2)(t− 2τ)− C(2)(t+ 2τ)

2(C(2)(t− τ)− C(2)(t+ τ))
= coshEτ, (3.151)

and thus

meff(t, τ) =
1

τ
arccosh

(
C(2)(t− 2τ)− C(2)(t+ 2τ)

2(C(2)(t− τ)− C(2)(t+ τ))

)
. (3.152)

Note that this uses only differences of the 2pt function. Should the 2pt function of
interest have a significant vacuum expectation value (vev), it is useful to consider
shifted 2pt functions C ′(t; s) = C(2)(t)−C(2)(t+ s) for the construction of meff , since
they allow for a cancellation of the vev in meff . Illustrations for the η8 and η1 effective
mass can be found in Fig. 3.13. In particular, one sees that the η8 effective mass
obtained using the different methods presented above converges to the same plateau,
starting at t/a ≈ 11, while this does not happen for the η1 effective mass due to the
smaller overlap between the η1 operator and the η-meson state, cf. Sec. 4.3.7.3.
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Figure 3.13: Effective η8 mass mη8
eff (left) and effective η1 mass mη1

eff (right), std. meff

is calculated according to Eq. (3.147), std. meff , bwd according to Eq. (3.148),
arccosh meff according to Eq. (3.150) and arccosh diff meff according to Eq. (3.152).
In the case of mη8

eff a plateau around 550MeV is visible, while mη1
eff decays much

slower due to the smaller overlap between the η1 operator and the η-meson state,
cf. Sec. 4.3.7.3, and does not reach a plateau.

3.6.4 η-meson Ã

As discussed in Sec. 3.4.2, the approximation of the limit where the pseudoscalar
is removed to asymptotically large Euclidean times in the construction of Ã(τ),
cf. Eq. (3.37), is done by studying the excited state contamination when increasing
the temporal separations between the pseudoscalar and the current at the source.
While in comparison to the pion shorter temporal separations can be used for the
η-meson, due to its faster decay rate caused by the large η-meson mass, the signal-
to-noise ratio in the disconnected contributions rapidly deteriorates with increasing
temporal separation. Thus, a delicate balance between excited state contamination
and signal quality needs to be found. Here, three values for tf were considered. While
the lowest of the three clearly gave the best signal-to-noise ratio it at the same time
suffered from excited state contamination when compared to the larger tf , especially
for the lower momentum orbits. Since the excited states were suppressed best for
the largest value of tf , it was used in Sec. 4.3. An illustration of this can be found in
Fig. 3.14, see also the discussion in Sec. 4.3.
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Figure 3.14: Momentum orbit averaged η-meson Ã(τ) using tf ∈ {0.80, 0.96, 1.11} fm
for τ/a ∈ [−20, 20] on cB211.072.64 for two orbits. Note the clear excited state
contamination visible for the lower momentum (left) which becomes smaller for the
higher momentum (right). Other examples can be found in App. D.2.

3.7 Extending Ã(τ ) and extraction of the TFFs

To extract the transition form factors FP→γ∗γ∗ , Ã(τ)eω1τ is integrated over the whole
temporal axis, cf. Eq. (3.30). The contribution from one of the tails is enhanced
exponentially by the factor eω1τ , this effect is significant for choices of ω1 resulting
in kinematics close to the singly virtual axis for the charged pion and, due to the
large η-meson mass, significant for all ω1 for the η-meson. In addition, since the
pseudoscalar operator is placed at some finite Euclidean time, not all data has the
correct time ordering needed for the approximation of Ã(τ) in Eq. (3.37). Further, the
signal-to-noise ratio deteriorates exponentially with increasing |τ |, which significantly
hinders the extraction of the TFFs wherever the exponential enhancement of one of
the tails is significant.
As presented in Ch. 4 and 5, following [66,67], joint fits to all q⃗1 momentum orbits
using the Vector Meson Dominance (VMD) and Lowest Meson Dominance (LMD)
models are performed to determine the asymptotic behaviour of Ã(τ). The models
are used to replace the lattice data A(latt.)(τ) for |τ |> τcut when performing the
integration in Eq. (3.30). Note that τcut can be chosen independently for the two
tails, which can be useful to maximize the amount of included lattice data. The

74



integration in Eq. (3.30) gets replaced by

FP→γ∗γ∗(q21, q
2
2) =

∫ τcut

−τcut

dτ Ã(latt.)(τ)eω1τ

+

∫ ∞

τcut

dτ Ã(fit)(τ)eω1τ +

∫ −τcut

−∞
dτ Ã(fit)(τ)eω1τ . (3.153)

To get a handle on the model dependence, the lattice data content

∆latt. =

∫ τcut
−τcut

dτ Ã(latt.)(τ)eω1τ

FP→γ∗γ∗(q21, q
2
2)

, (3.154)

is stored when performing the integration in Eq. (3.153), allowing the exclusion of
TFF values which depend too strongly on the used model in the further steps.
The LMD fit function for the scalar amplitude defined from Eq. (3.37) is given by

ÃLMD(τ ≷ 0) = ±1

2

[
αM4

V + β(2M2
V +m2

P ∓ 2mP

√
M2

V + |q⃗1|2)
mP

√
M2

V + |q⃗1|2(2
√
M2

V + |q⃗1|2 ∓mP )
e∓

√
M2

V +|q⃗1|2τ

−
αM4

V + β(2M2
V +m2

P ± 2mP

√
M2

V + |q⃗1|2)
mP

√
M2

V + |q⃗1|2(2
√
M2

V + |q⃗1|2 ±mP )
e−(mP±

√
M2

V +|q⃗1|2)τ
]
, (3.155)

with MV , α and β fit parameters, cf. [66, 118,124,125]. The energy of the modelled
vector meson is EV ≡

√
M2

V + |q⃗1|2. The VMD fit function is obtained by setting
β = 0.
The LMD fit function can be integrated analytically and independently for all choices
of ω1. Directly integrating gives for the two tails∫ −τcut

−∞
dτ ÃLMD(τ)eω1τ =

−1

2

[
αM4

V + β(2M2
V +m2

P + 2mP

√
M2

V + |q⃗1|2)
mP

√
M2

V + |q⃗1|2(2
√
M2

V + |q⃗1|2 +mP )
e(+

√
M2

V +|q⃗1|2+ω1)τ

· 1√
M2

V + |q⃗1|2 + ω1

−
αM4

V + β(2M2
V +m2

P − 2mP

√
M2

V + |q⃗1|2)
mP

√
M2

V + |q⃗1|2(2
√
M2

V + |q⃗1|2 −mP )
e(−(mP−

√
M2

V +|q⃗1|2)+ω1)τ

· 1

−(mP −
√
M2

V + |q⃗1|2) + ω1

]⏐⏐⏐⏐⏐
τ=−τcut

, (3.156)
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∫ ∞

τcut

dτ ÃLMD(τ)eω1τ =

+
1

2

[
αM4

V + β(2M2
V +m2

P − 2mP

√
M2

V + |q⃗1|2)
mP

√
M2

V + |q⃗1|2(2
√
M2

V + |q⃗1|2 −mP )
e(−

√
M2

V +|q⃗1|2+ω1)τ

· 1√
M2

V + |q⃗1|2 − ω1

−
αM4

V + β(2M2
V +m2

P + 2mP

√
M2

V + |q⃗1|2)
mP

√
M2

V + |q⃗1|2(2
√
M2

V + |q⃗1|2 +mP )
e(−(mP+

√
M2

V +|q⃗1|2)+ω1)τ

· 1

(mP +
√
M2

V + |q⃗1|2)− ω1

]⏐⏐⏐⏐⏐
τ=τcut

, (3.157)

where τcut > 0. Because of the restrictions on ω1 due to the hadron production
threshold, these integrals should converge for all valid choices of ω1. Non-converging
integrals are a sign that there is some on-shell intermediate state, which would
violate the assumptions under which the Wick rotation in Sec. 3.1.3 was performed.
Some examples for integrands Ã(τ)eω1τ are shown in Fig. 3.15.
Positive and negative τ can be related analytically by using the symmetry
Ã(τ) = e−mP τ Ã(−τ). This allows one to express the TFFs using only data from the
tail without the pseudoscalar insertion at tf > 0, which should be less susceptible
to excited state contaminations. Fixing all spatial momenta leaves ω1 as the
remaining free parameter as described in Sec. 3.1.3, such that one can write
FP→γ∗γ∗(q21, q

2
2) ≡ FP→γ∗γ∗(ω1). The TFFs using only τ < 0 data are given by

FP→γ∗γ∗(ω1) =

∫ ∞

−∞
dτ eω1τ Ãµν(τ)

=

∫ 0

−∞
dτ eω1τ Ãµν(τ) +

∫ 0

−∞
dτ e(mP−ω1)τ Ãµν(τ)

=
1

2

[
F left

P→γ∗γ∗(ω1) + F left
P→γ∗γ∗(mP − ω1)

]
, (3.158)

where

F left
P→γ∗γ∗(ω) = 2

∫ 0

−∞
dτ eωτ Ãµν(τ). (3.159)
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Figure 3.15: Charged pion integrands Ã(τ)eω1τ on cB211.072.64, diagonal kinematics
q21 = q22 (top row) and single-virtual kinematics q22 = 0 (bottom row). Shown is the
integrand from lattice data in blue and from a correlated LMD fit to Ã(τ) in orange.
The fit was done across all momentum orbits (2π/Lx)

2 ≤ |q⃗1|2≤ 32(2π/Lx)
2 with

fit range [−tmax,−tmin] ∪ [tmin, tmax], indicated by the grey bands. The red point
indicates the pseudoscalar timeslice tf , the greyed out points to the right of it do
not have the correct timeordering to approximate Eq. (3.37).
For the diagonal kinematics, aω1 = amπ/2 ≈ 0.028. For the single-virtual kinematics,
aω1 = a|q⃗1|≈ 0.14 for |q⃗1|2= 2(2π/Lx)

2 (left) and aω1 ≈ 0.24 for |q⃗1|2= 6(2π/Lx)
2

(right).
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The used symmetry follows from the q21–q22 exchange symmetry in the TFFs, equivalent
to ω1 ↔ mP − ω1. Defining

Ã(τ) =
2EP

ZP

emP tP e−mP τC(τ), (3.160)

Ã′(τ) =
2EP

ZP

emP tPC(−τ), (3.161)

and

FP→γ∗γ∗(ω1) =

∫
dτ eω1τ Ã(τ), (3.162)

F ′
P→γ∗γ∗(ω1) =

∫
dτ eω1τ Ã′(τ), (3.163)

one finds

FP→γ∗γ∗(mP − ω1) =

∫
dτ e(mP−ω1)τ Ã(τ)

=

∫
dτ e(ω1−mP )τ Ã(−τ)

=

∫
dτ eω1τ Ã′(τ)

= F ′
P→γ∗γ∗(ω1). (3.164)

In particular, this allows for time reversal in Ã(τ) not only by flipping τ → −τ but also
by applying a factor of e−mP τ and implies that FP→γ∗γ∗(q21, q

2
2) and FP→γ∗γ∗(q22, q

2
1)

differ by numerical fluctuations when using Ã(latt.)(τ).

3.8 Details on the employed ensembles, correlators

and loops

An overview of the employed ensembles and their most important properties is given
in Tab. 3.1, for an introduction to the used lattice setup see Sec. 2.2.
In the pion calculation, 8 or 16 point sources per configuration are used for the
evaluation of the connected Wick contractions of the 3pt function, depending on
the ensemble, for a total of O(103 − 104) inversions. The pseudoscalar 2pt functions
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Ensemble V/a4 Nconf β a [fm] aµl M2pt
π [MeV] L [fm] MπL

cB211.072.64 643 · 128 748 1.778 0.07961(13) 0.00072 140.27(12) 5.09 3.62
cC211.060.80 803 · 160 397 1.836 0.06821(12) 0.00060 136.88(12) 5.46 3.78
cD211.054.96 963 · 192 495 1.900 0.05692(10) 0.00054 141.57(19) 5.46 3.90

Table 3.1: Parameters of the ETMC ensembles used in this work, adapted from [40].
Other paramters can be found in [40, 100, 103–105]. For the η-meson form factor
calculation, Nconf = 1539 configurations of the cB211.072.64 ensemble were used,
yielding M2pt

η = 550(20)MeV. M2pt
π and M2pt

η are the pion and η-meson masses
determined in this work from a two-state fit to the 2pt function, see Sec. 3.4.1 and 3.6.3.

are evaluated using either 8 point sources or 128 stochastic sources [126–128] per
configuration. The current-pseudoscalar correlator in the V-disconnected contraction
of the 3pt function is evaluated using 8 point sources per configuration. Finally,
the evaluation of the current loop in the V-disconnected contraction uses differing
numbers of stochastic sources. For the numerically most sizeable one, the light
current loop, 128 stochastic sources per configuration are used, with usually 4 sources
for the strange and 1 source for the charm current loops. Deflation of low-modes [129]
and hierarchical probing [130] are used to improve the signal-to-noise ratio of the
disconnected loops.
In the η-meson calculation, 16 point sources per configuration are used for the
evaluation of the connected Wick contractions of the 3pt function, for a total of
24 624 inversions. The connected pseudoscalar 2pt function and the current-current
correlator in the P-disconnected contraction to the 3pt function are evaluated using
200 point sources per configuration. Finally, the evaluation of the pseudoscalar loop
in the P-disconnected contraction uses 128 stochastic sources per configuration.
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Chapter 4

Publications

In this chapter, the publications written as part of this work are collected. Sec. 4.1
reproduces the proceedings of the 2021 lattice conference, published as [68]. It
reports on the current status of the calculation of the pion-pole contribution to
HLbL at this point in time. Sec. 4.2 reproduces the proceedings of the 2022 lattice
conference, published as [69]. It contains an update on the pion-pole calculation,
with the most notable differences to Sec. 4.1 being the inclusion of an additional
ensemble as well as the inclusion of all possible disconnected Wick contractions.
Further, it reports first preliminary results for the η-pole contribution to HLbL at a
single lattice spacing. An extensive draft further updating the pion-pole calculation
can be found in Ch. 5. Finally, Sec. 4.3 reproduces the preprint published on arXiv
as [71], which was submitted to PRL in January 2023. Presented there are first
results for the η-pole contribution to HLbL, the partial decay width Γ(η → γγ) and
the slope parameter bη at a single lattice spacing.
Note that the introductory and methodology parts of these three sections are similar,
since they are all part of the same project. The discussion in Sec. 4.2 is the most
extensive without giving details on the partial decay width and slope parameter,
which are discussed in Sec. 4.3.
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4.1 Pion-pole contribution to HLbL from twisted

mass lattice QCD at the physical point

This section reproduces [68] and was published as part of the proceedings of the 2021
lattice conference.

4.1.1 Abstract

We report on our computation of the pion transition form factor Fπ→γ∗γ∗ from
twisted mass lattice QCD in order to determine the numerically dominant light
pseudoscalar pole contribution in the hadronic light-by-light scattering contribution
to the anomalous magnetic moment of the muon aµ = (g − 2)µ. The pion transition
form factor is computed directly at the physical point. We present first results for
our estimate of the pion-pole contribution with kinematic setup for the pion at rest.

4.1.2 Introduction

In this project we aim to compute the pseudoscalar transition form factors FP→γ∗γ∗

from twisted mass lattice QCD for the three pseudoscalar states P = π0, η and
η′ in order to determine the corresponding pseudoscalar pole contributions in the
hadronic light-by-light (HLbL) scattering contribution to the anomalous magnetic
moment of the muon aµ = (g− 2)µ. Our computation is done on two ensembles with
the pion mass at its physical value. For our calculations we are using twisted-mass
clover-improved lattice QCD at maximal twist, so that we have automatic O(a)-
improvement in place. The generation of the two ensembles was done in the context
of the Extended Twisted Mass Collaboration (ETMC) where the Nf = 2 + 1 + 1

simulations include the two mass-degenerate light u- and d-quark flavours at their
physical quark-mass values and the heavier s- and c-quark flavours at quark masses
close to their physical values. At the moment, the analysis is done on two physical
point ensembles at two different lattice spacings as decribed in Table 4.1. For further
details on the simulations we refer to Refs. [104,115].
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ensemble L3 · T/a4 mπ [MeV] a [fm] L [fm] mπ · L
cB072.64 643 · 128 136.8(6) 0.082 5.22 3.6
cC060.80 803 · 160 134.2(5) 0.069 5.55 3.8

Table 4.1: Description of ensembles used for the analysis presented in these proceed-
ings.

The assumption of hadronic light-by-light scattering being dominated by single
pseudoscalar meson exchange can be used to calculate the correspondingly leading
pseudoscalar pole contributions aP -pole

µ to the muon anomly at next-to-leading order
(NLO), cf. Figure 4.1. The pole contributions are given by a three-dimensional
integral derived in Ref. [50]. It takes the form

Figure 4.1: Pseudoscalar pole contribution to hadronic light-by-light scattering in
the muon (g − 2)µ. Adapted from Ref. [66].

aP -pole
µ =

(α
π

)3 ∫ ∞

0

dQ1

∫ ∞

0

dQ2

∫ +1

−1

dτ̃[
w1(Q1, Q2, τ̃)FP→γ∗γ∗(−Q2

1,−(Q1 +Q2)
2)FP→γ∗γ∗(−Q2

2, 0)

+ w2(Q1, Q2, τ̃)FP→γ∗γ∗(−Q2
1,−Q2

2)FP→γ∗γ∗(−(Q1 +Q2)
2, 0)

]
,

(4.1)

where the nonperturbative information is encapsulated in the transition form factors
FP→γ∗γ∗ of the pseudoscalar mesons P = π0, η, η′ to two virtual photons. The
evaluation of the integrands in Eq. (4.1) requires the knowledge of the transition form
factors (TFFs) at space-like momenta, both in the single and double virtual case.
It turns out that these TFFs can indeed be obtained from a QCD calculation on a
Euclidean lattice. The relevant kinematic region is determined by the positive weight
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functions w1 and w2 which depend on the absolute values of the photon momenta,
the kinematic variable τ̃ = cos θ ∈ [−1,+1], with θ being the angle between the
photon momenta, and the mass of the pseudoscalar meson P . In these proceedings
we focus on the pion-pole contribution for which first lattice results were obtained
in [66,67].

4.1.3 The transition form factors on the lattice

In the continuum Minkowski space the TFFs are defined via the matrix element of two
electromagnetic currents jµ and jν and the pseudoscalar state P with four-momentum
p,

Mµν(p, q1) = i

∫
d4x eiq1x ⟨0 |T{jµ(x)jν(0)}|P (p)⟩

= εµναβq
α
1 q

β
2FP→γ∗γ∗(q21, q

2
2) .

For virtualities below the threshold for hadron production, the transition form factors
can be analytically continued to Euclidean space, cf. Ref. [66], and are therefore
accessible on the lattice. The Euclidean matrix element ME

µν(p, q1) can be calculated
via an integral over the temporal separation τ = ti − tf of the two currents,

ME
µν =

∫ ∞

−∞
dτ eω1τ Ãµν(τ), in0ME

µν(p, q1) =Mµν(p, q1). (4.2)

Here, n0 denotes the number of temporal indices in Mµν , q1 and q2 are the photon
virtualities, p = q1 + q2 is the on-shell pseudoscalar momentum, ω1 is a real-valued
free parameter with q1 = (ω1, q⃗1), and

Ãµν(τ) = ⟨0 |T{jµ(q⃗1, τ)jν(p⃗− q⃗1, 0)}|P (p)⟩ .

On the lattice this function is recovered from the three-point function

Cµν(τ, tP ) = a6
∑
x⃗,z⃗

⟨jµ(x⃗, ti)jν (⃗0, tf )P †(z⃗, t0)e
ip⃗z⃗⟩e−ix⃗q⃗1 ≡ ⟨jµjνP †⟩ , (4.3)
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Figure 4.2: Contributions to the three-point function Cµν : Connected (top left), vector
current disconnected (top middle and right), pseudoscalar disconnected (bottom left)
and fully disconnected (bottom right).

via
Ãµν(τ) =

2EP

ZP

lim
tP→∞

eEP (tf−t0)Cµν(τ, tP ) , (4.4)

where tP = min(tf − t0, ti − t0) is the minimal temporal separation between the
pseudoscalar and the two vector currents. The pseudoscalar meson energy EP and the
factors ZP are determined through appropriate pseudoscalar two-point functions. Be-
fore integrating over τ , one can contract the Lorentz structure of the matrix elements.
The function Ãµν with one or more temporal indices vanishes for the pseudocalar at
rest, and the spatial components can be written as Ã(τ) = im−1

P εijk
q⃗i1
q⃗21
Ãjk(τ), and

analogously for C(τ).

The amplitude Cµν contains connected, vector current disconnected, pseudoscalar
disconnected, and fully disconnected diagrams as illustrated in Figure 4.2. For
Wilson fermions the pseudoscalar disconnected diagrams on the second line are zero
for P = π0 by the exact cancellation between the up and down quark loops. For
P = η and η′ this is not the case and these disconnected diagrams must be included.
This is so also for P = π0 in the twisted mass Wilson fermion discretization, where
the diagrams on the second line are nonzero due to the broken isospin symmetry.
Since this isospin breaking is a lattice artefact, we consider an isospin rotation
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π0 → −i · (π+ + π−) with a corresponding transformation of the isospin decomposed
light quark electromagnetic currents j0,0µ → j0,0µ and j1,0µ → i · (j1,+µ − j1,−µ ), which
allows us to relate the neutral and charged pion form factors. The difference between
the two at finite lattice spacing is a lattice artefact of order O(a2).
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q2

1 [GeV2]
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1.25

1.00

0.75
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0.00
q2 2 [

Ge
V2 ]

Figure 4.3: Range of photon virtualities spanned in our calculation on the ensemble
cB072.64.

A further simplification is achieved by restricting the considerations to the kinematic
situation where the pseudoscalar is at rest, i.e., p⃗ = 0⃗. Then, the expressions for the
photon virtualities simplify to

q21 = ω2
1 − q⃗21 , q22 = (mP − ω1)

2 − q⃗21 . (4.5)

As a consequence, for each choice of spatial momentum q⃗1 one obtains a continuous
set of combinations of q1 and q2 which form an orbit in the (q21, q22)-plane as illustrated
in Figure 4.3 for mP set to the physical pion mass. There we show the orbits for all
the momenta calculated on the ensemble cB072.64. From Eqs. (4.5) it becomes clear
that the shape of the orbits becomes squeezed along the diagonal as the pseudoscalar
mass mP is lowered. This feature makes it particularly challenging to extract single
virtual pion transition form factors Fπ→γ∗γ∗(q21, 0) = Fπ→γ∗γ∗(0, q22) at large momenta
q2i on physical point ensembles if one uses only pions at rest. However, the problem
can be circumvented by using moving frames, cf. [67]. For P = η and η′ the problem
is less eminent due to the larger values of the meson masses mP .
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4.1.4 First results at the physical point

After this theoretical discussion we are now in the position to present first results for
the transition form factor Fπ→γ∗γ∗ of the pion obtained for the ensembles cB072.64
and cC060.80 at the physical point. First, we illustrate the quality of our data
with sample results for the amplitude Ã(τ) defined in Eq. (4.4). In Figure 4.4 we
show the full amplitude and separately the fully connected and the vector current
disconnected contributions for two of the momentum orbits on the ensemble cB072.64.
The vector current disconnected amplitude is multiplied by a factor −50 in order to
facilitate comparison with the connected contribution and the full amplitude. The
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Figure 4.4: Amplitude Ã(τ) for momentum orbit |q⃗2|= 10 (2π/L)2 (left) and
|q⃗2|= 29 (2π/L)2 on cB072.64. Shown in orange is the full contribution to Ã(τ),
in blue the connected contribution and in green the vector current disconnected
contribution multiplied by -50.

examples illustrate that the disconnected contribution is very small, but significant.
More generally, we find that in the peak region it is suppressed w.r.t. the connected
contribution by a factor between 50 and 200 depending on the orbit. We also conclude
from our data that the statistical error on the disconnected contribution is sufficiently
well under control on the physical point ensembles.

To obtain the form factor we need to integrate Ã(τ) weighted by the factor exp(ω1τ)

over the whole temporal axis, cf. Eq. 4.2. In order to control the statistical error
in the exponentially enhanced tail and to be able to integrate up to τ → ∞, we
proceed as follows. First, we fit the lattice data by a model function Ã(fit)(τ) in a
range τmin ≤ |τ |≤ τmax, and then we replace the lattice data Ã(latt.)(τ) by the data

86



from the fit for τ > τcut,

Fπ→γ∗γ∗(q21, q
2
2) =

∫ τcut

−∞
dτ Ã(latt.)(τ)eω1τ +

∫ ∞

τcut

dτ Ã(fit)(τ)eω1τ . (4.6)

Following Ref. [66] we use both a vector meson dominance (VMD) model and the
lowest meson dominance (LMD) model to estimate the model dependence. We
perform global fully correlated fits, i.e., we simultaneously fit all momentum orbits
in the range τmin ≤ |τ |≤ τmax and take into account the correlation between all
fitted data. In Figure 4.5 we illustrate the procedure by showing the result for the
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Figure 4.5: Integrand Ã(τ)eω1τ on cB072.64 with LMD model fits for momentum
orbit |q⃗2|= 2 (2π/L)2. Diagonal kinematics with aω1 = amπ/2 ≈ 0.0284 (left), single
virtual kinematics with aω1 = a|q⃗1|≈ 0.1388 (right).

integrand Ã(τ)eω1τ of a typical global fit to Ã(τ) in the range 9 ≤ |τ/a|≤ 12 with
χ2/dof = 1.20 on the ensemble cB072.64 using the LMD model. The plot on the left
shows the resulting integrand for the diagonal kinematics q21 = q22, while the plot on
the right shows it for the single virtual kinematics with q21 = 0. The transition form
factors obtained from the integration over the lattice data and the fitted data depend
of course on the choice of the model, the fit range and the value τcut. The variations
resulting from these choices are carried through all further analysis steps and are
included in the systematic error estimate of the final result for aµ. The typical values
of τcut we use in our analysis result in a data content of well above 98% for most
of the TFFs. However, for TFFs with (close to) single virtual kinematics, the data
content is sometimes also less for higher momentum orbits. Here, the data content is
defined as the fraction of the TFF coming from the first term in Eq. (4.6).
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Once the form factors are obtained in the whole kinematic region as described by
the yield plot in Figure 4.3, we parameterize them using a modified z-expansion of
the form

P (Q2
1, Q

2
2) · Fπγ∗γ∗(−Q2

1,−Q2
2) =

N∑
m,n=0

cnm

(
zn1 − (−1)N+n+1 n

N + 1
zN+1
1

)(
zm2 − (−1)N+m+1 m

N + 1
zN+1
2

)
(4.7)

where zk = z(Q2
k) are modified four-momenta and P (Q2

1, Q
2
2) is a polynomial, see

Ref. [67] and references therein for further details. We determine the coefficients
cnm by fitting Eq. (4.7) to samples of Fπ→γ∗γ∗(−Q2

1,−Q2
2) in the (Q2

1, Q
2
2)-plane.

The sample points are given by a set of fixed values of Q2
2/Q

2
1 on all momentum

orbits, and we ensure that all included data points pass a certain threshold for the
data content. In Figure 4.6 we show the result of such a (fully correlated) fit with
χ2/dof = 0.96 using Q2

2/Q
2
1 = 1.0, 0.59, 0.0, and N = 2 to the TFFs obtained from

a global LMD fit with {τmin/a, τmax/a} = {9, 12}, χ2/dof = 1.20, τcut/a = 20 and
a threshold of 90% on the ensemble cB072.64. As a crosscheck for the quality of
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Figure 4.6: Illustration of transition form factors and their parameterization using
the fitted modified z-expansion. Only the data coloured in green is included in the
fit.

the fit we also show the data for three other ratios Q2
2/Q

2
1 = 0.88, 0.78, and 0.10
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not included in the fit together with the fitted modified z-expansion. The variations
resulting from varying the sampling of Fπ→γ∗γ∗(−Q2

1,−Q2
2) in the momentum plane

are also included in the systematic error estimate of the final result for aµ.

Finally, having the parameterization of the TFFs at hand, we can use it in the three-
dimensional integral representation in Eq. (4.1) and calculate the bare pion-pole
contribution aπ-pole, bare

µ to the anomalous magnetic moment. In Figure 4.7 we show
the results for aπ-pole, bare

µ on the two ensembles at the physical point as a function of
τcut/a. Each data point is a weighted average of O(100) results from different fits for
Ã using VMD or LMD with different fit ranges and different fits using the modified
z-expansion on different samplings in the momentum plane. The weighted average is
obtained using weights inspired by the Akaike information criterion (AIC). The error
therefore includes the variation w.r.t. the fitting of Ã and the sampling of Fπ→γ∗γ∗

in the (Q2
1, Q

2
2)-plane. The variation of the final result with τcut indicates a residual
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Figure 4.7: AIC averaged data for a range of τcut/a for the ensembles cB072.64 (left)
and cC060.80 (right).

dependence on the specific procedure of variance reduction in the large-τ tail of Ã. In
principle, this dependence is removed in the limit τcut → ∞, but if τcut is chosen too
large the z-expansion fits become unstable and hence the final result unreliable. Our
results in Figure 4.7 indicate that choosing τcut ∈ [1.8, 2.1] fm seems a safe choice
and we perform a further AIC averaging over this range. This yields the bare results
shown in Table 4.2 for the two physical point ensembles, with total errors in the
5%-8% range. Since we use local iso-vector and iso-vector axial current operators
in our amplitude Cµν , instead of conserved (point-split) current operators, we need
to renormalize the bare results by the corresponding renormalization constants.

89



aπ−pole, bare
µ · 10−11 threshold 90% threshold 95%

cB072.64 208.9(10.1)(7.8)[12.8] 204.5(14.2)(6.3)[15.6]
cC060.80 188.9(9.9)(2.7)[10.2] 187.9(9.0)(1.9)[9.2]

Table 4.2: Bare results using the AIC procedure on the two physical point ensembles.
The first error is the statistical error, the second the systematic error and the third
the total error.

Preliminary values are available for our setup from a calculation within ETMC.

4.1.5 Conclusion and outlook

After applying the renormalization factors and performing a rough estimate of the
continuum limit, we obtain a preliminary value aπ−pole

µ = 53.7(2.6)(3.1)[4.0] · 10−11.
This can be compared to the recent lattice result aπ−pole

µ = 59.7(3.6) · 10−11 from
Ref. [67] and the dispersive result aπ−pole

µ = 63.0+2.7
−2.1 · 10−11 from Refs. [3, 63, 64],

and we find agreement within 1 to 2 standard deviations. Finalizing the analysis
might result in a slightly different central value, however, we expect that the relative
total error will stay below the 10% level. We plan to analyze a third physical point
ensemble at a finer lattice spacing which will result in a more robust continuum limit
extrapolation. We also plan to calculate the form factors for the pion in a moving
frame and to perform the analysis of the η- and η′-pole contributions, and to include
ensembles with larger pion masses.
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4.2 Pseudoscalar-pole contributions to the muon

g − 2 at the physical point

This section reproduces [69] and was published as part of the proceedings of the 2022
lattice conference.

4.2.1 Abstract

Pseudoscalar-pole diagrams are an important component of estimates of the hadronic
light-by-light (HLbL) contribution to the muon g− 2. We report on our computation
of the transition form factors FP→γ∗γ∗ for the neutral pseudoscalar mesons P = π0

and η. The calculation is performed using twisted-mass lattice QCD with physical
quark masses. On the lattice, we have access to a broad range of (space-like)
photon four-momenta and therefore produce form factor data complementary to the
experimentally accessible single-virtual direction, which directly leads to an estimate
of the pion- and η-pole components of the muon g − 2. For the pion, our result for
the g − 2 contribution in the continuum is comparable with previous lattice and
data-driven determinations, with combined relative uncertainties below 10%. For
the η meson, we report on a preliminary determination from a single lattice spacing.

4.2.2 Introduction

Here we report on the progress of the calculation originally presented in Ref. [68]. We
aim to compute the pseudoscalar transition form factors FP→γ∗γ∗ from twisted-mass
lattice QCD for the three pseudoscalar states P = π0, η and η′ in order to determine
the corresponding pseudoscalar-pole contributions to the hadronic light-by-light
(HLbL) scattering in the anomalous magnetic moment of the muon, aµ = (gµ − 2)/2.
Presented here are the recent developments of our calculation for the states P = π0

and η. We employ twisted-mass lattice QCD at maximal twist, so that we profit
from automatic O(a) improvement of observables [78, 79]. The pion-pole calculation
is performed using three Nf = 2 + 1 + 1 ensembles with varying lattice spacings,
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while the preliminary η-pole calculation uses the ensemble at the coarsest lattice
spacing only. The production of these ensembles by the Extended Twisted Mass
Collaboration (ETMC) is described in Refs. [100, 104,115]. The quark masses for all
three ensembles are tuned such that the charged-pion mass is fixed to its physical
value and the s- and c-quark masses approximate their physical values. A summary
of the properties of the three ensembles is presented in Table 4.3.

Under the assumption of pole dominance, the leading contributions to the had-
ronic light-by-light scattering come from exchanges of a neutral pseudoscalar meson
P ∈ {π0, η, η′}. The corresponding contributions to the muon anomalous magnetic
moment, aP -pole

µ , are given by the diagrams shown in Figure 4.8. The nonperturbative
information is encapsulated in the transition form factors FP→γ∗γ∗ of the pseudo-
scalar meson P to two virtual photons. The pole contributions are given by a

P

+ crossed

P

Figure 4.8: The pseudoscalar-pole diagrams contributing to the leading order HLbL
scattering in the muon anomalous magnetic moment. Striped circles indicate the
nonperturbative P → γ∗γ∗ transition form factors required to evaluate these contri-
butions.

ensemble L3 · T/a4 mπ [MeV] a [fm] L [fm] mπ · L ZV ZA

cB072.64 643 · 128 140.2(2) 0.07961(13) 5.09 3.62 0.706378(16) 0.74284(23)
cC060.80 803 · 160 136.7(2) 0.06821(12) 5.46 3.78 0.725405(13) 0.75841(16)
cD054.96 963 · 192 140.8(2) 0.05692(10) 5.46 3.90 0.744105(11) 0.77394(10)

Table 4.3: Description of ETMC ensembles used for the analysis presented in these
proceedings, including the lattice geometry, pion mass mπ, lattice spacing a, lattice
size L, and the renormalization constants ZV and ZA for the vector and axial
currents [40,100,104,115].
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three-dimensional integral derived in Ref. [50],

aP -pole
µ =

(α
π

)3 ∫ ∞

0

dQ1

∫ ∞

0

dQ2

∫ 1

−1

dτ̃[
w1(Q1, Q2, τ̃)FP→γ∗γ∗(−Q2

1,−Q2
3)FP→γ∗γ(−Q2

2, 0)

+ w2(Q1, Q2, τ̃)FP→γ∗γ∗(−Q2
1,−Q2

2)FP→γ∗γ(−Q2
3, 0)

]
, (4.8)

where Q2
3 = Q2

1 +Q2
2 + 2τ̃Q1Q2 and the weight functions w1 and w2 are analytically

known functions of the kinematics and muon and pseudoscalar masses. Each term in
the integrand in Eq. (4.8) involves two transition form factors (TFFs) at space-like
momenta, one at single-virtual kinematics and the other at double-virtual kinematics.
First lattice results for the pion-pole contribution were obtained in Refs. [66,67], while
for the η-pole contribution preliminary results have so far only been presented using
a lattice spacing of a = 0.1315 fm and lattice size L = 4.21 fm [70]. The pion analysis
first presented in Ref. [68] and extended in these proceedings complements prior work
by working directly at the physical point and using a different discretization. For
the η meson we provide a result at the physical point with a single lattice spacing of
a = 0.0796 fm with lattice size L = 5.09 fm; an extension of this result has also now
been reported in Ref. [71].

4.2.3 The transition form factors on the lattice

Following Refs. [66,68], the transition form factor in continuum Minkowski space-time
is defined via the matrix element of two electromagnetic currents jµ and jν between
the vacuum and the pseudoscalar state P ,

Mµν(p, q1) = i

∫
d4x eiq1x ⟨0 |T{jµ(x)jν(0)}|P (p)⟩

= εµναβq
α
1 q

β
2FP→γ∗γ∗(q21, q

2
2) . (4.9)

Here T{·} indicates time-ordering, p is the pseudoscalar four-momentum, q1 is the
four-momentum of jµ, and the four-momentum q2 = p − q1 of jν is enforced by
momentum conservation. For photon virtualities below the threshold for hadron
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production, the transition form factor can be analytically continued to Euclidean
space [66] and is thus accessible on the lattice. In Euclidean space-time, the matrix
element can be recovered via

Mµν(p, q1) = in0ME
µν(p, q1), ME

µν = −
∫ ∞

−∞
dτ eω1τ Ãµν(τ), (4.10)

where n0 denotes the number of temporal indices in Mµν , ω1 is the temporal com-
ponent of the momentum q1 = (ω1, q⃗1), and Ãµν is the Euclidean matrix element

Ãµν(τ) ≡
∫
d3x⃗e−iq⃗1·x⃗ ⟨0|T{jµ(τ, x⃗)jν(0)}|P (p⃗)⟩ . (4.11)

On the lattice this function is accessed from the three-point function

Cµν(τ, tP ) ≡
∫
d3x⃗ d3y⃗ e−iq⃗1·x⃗eip⃗·y⃗ ⟨0|T{jµ(τ, x⃗)jν(0)O†

P (−tP , y⃗)}|0⟩ (4.12)

via
Ãµν(τ) = lim

tP→∞
2EP

ZP

eEP tPCµν(τ, tP ), (4.13)

where tP is the pseudoscalar insertion time and ZP = ⟨0|OP (⃗0, 0)|P (p)⟩. In this work,
the pseudoscalar meson energy EP and overlap factor ZP are determined through a
separate analysis of two-point functions of the operator OP .

For the pion, we use the creation operator O†
π0 = iψ̄λ3γ5ψ, while for the η

meson, we use the creation operator O†
η = iψ̄λ8γ5ψ, where λ3 = diag(1,−1, 0) and

λ8 = diag(1, 1,−2)/
√
3 are Gell-Mann matrices describing the SU(3) flavor structure.

The creation operator O†
η has overlap with the physical η-meson state, meaning

the correct η-meson amplitude is projected at large time separations between the
operator and currents, independent of η-η′ meson mixing. The electromagnetic
currents are defined for this Nf = 2 + 1 + 1 calculation as

jµ =
2

3
ψ̄u γµ ψu −

1

3
ψ̄d γµ ψd −

1

3
ψ̄s γµ ψs +

2

3
ψ̄c γµ ψc. (4.14)

The component of the electromagnetic current involving the light quarks can be
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Figure 4.9: Wick contractions contributing to Cµν(τ, tP ). Connected (top left),
vector-current disconnected (“V-disconnected”, top middle and right), pseudoscalar
disconnected (“P-disconnected”, bottom left) and fully disconnected (bottom right).
The second connected diagram with quark propagators running in the opposite
direction is omitted for brevity.

decomposed into terms with definite isospin, i.e.,

jlµ ≡ ψ̄l γµQ̃ ψl =
1

6
j0,0µ +

1

2
j1,0µ ,

j0,0µ ≡ ψ̄l γµ 1ψl

j1,0µ ≡ ψ̄l γµ σ3 ψl,

(4.15)

where ψl = (ψu ψd) indicates the light-quark doublet and Q̃ = diag(+2/3, −1/3) is
the relevant charge matrix. The current j0,0µ has isospin I = 0 and j1,0µ has isospin
I = 0, Iz = 0. This decomposition allows us to consider only the corresponding
isospin preserving parts of the amplitude. These currents also need to be further
renormalized by ZV , due to the use of local currents instead of conserved (point-split)
currents in the calculation. The renormalization factors for the ensembles used here
have been precisely determined in Ref. [40], as detailed in Table 4.3.

The evaluation of the three-point function Cµν involves connected, vector-current
disconnected, pseudoscalar disconnected, and fully disconnected Wick contractions,
as illustrated from top left to bottom right in Figure 4.9. In the case of the π0, the
amplitude can be related in the isospin-symmetric limit to a charged-pion amplitude
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Figure 4.10: Range of photon virtualities for the pion (left) and η meson (right)
TFFs spanned in our calculation on the ensemble cB072.64.

by the isospin rotation
π0 → −i · (π+ + π−) ,

j0,0µ → j0,0µ ,

j1,0µ → i · (j1,+µ − j1,−µ ) ,

(4.16)

where j1,±µ = ψ̄l γµ σ± ψl with σ± = (σ1 ± iσ2)/2. Note that the currents j1,±µ ,
when working in the twisted basis, need to be renormalized with ZA rather than
ZV . The values of these renormalization constants are given in Table 4.3. The
isospin rotation simplifies the evaluation of the three-point function by removing
the pseudoscalar-disconnected diagram and is thus employed in our analysis of the
pion TFF. Although isospin symmetry is broken by O(a2) lattice artifacts in the
twisted-mass Wilson fermion discretization, the effect of this rotation is removed in
the continuum extrapolation. In the case of the η- and η′-meson states, pseudoscalar-
disconnected diagrams do not cancel even in the isospin symmetric limit and indeed
play an important role in capturing the physics of these states.

To evaluate the connected diagram, we choose to perform a sequential inversion
through the pseudoscalar operator. This makes it computationally convenient to
project to various choices of momenta q⃗1 for the jµ current at the cost of having
to restrict to only a few momenta p⃗ for the pseudoscalar meson. The calculation
presented here is restricted to pseudoscalar mesons at rest, i.e., p⃗ = 0⃗. In this
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kinematic setup, the expressions for the photon virtualities simplify to

q21 = ω2
1 − q⃗21 , q22 = (mP − ω1)

2 − q⃗21 . (4.17)

Thus each choice of spatial momentum q⃗1 corresponds to a continuous set of com-
binations of q1 and q2 which form an orbit in the (q21, q

2
2)-plane. The resulting reach

in the kinematics of both the pion and η-meson TFFs on the cB072.64 ensemble
is shown in Figure 4.10. The narrowness of the orbits available for the pion TFF
is due to the relatively small mass of the pion. This illustrates the challenge in
extracting single-virtual pion transition form factors Fπ→γ∗γ(q

2, 0) = Fπ→γγ∗(0, q2)

at significantly negative virtualities q2 on physical point ensembles if one uses only
pions at rest. In future extensions of the analysis presented here, it would thus be
useful to extend the single-virtual coverage by using moving frames [67]. For the η
meson, due to the higher mass, the problem is less eminent.

The rest frame also simplifies the procedure in Eq. (4.9) of extracting the Lorentz-
scalar TFF from the components of the transition amplitude. In particular, one
finds in the rest frame that Ãµν , and therefore Mµν , vanishes when one or more of
the indices are temporal. Meanwhile, the spatial components can be averaged to
yield the Lorentz scalar Ã(τ) = im−1

P εijk(q⃗
i
1/|q⃗1|2)Ãjk(τ), which is the appropriate

combination to yield the TFF after integration,

FP→γ∗γ∗(q21, q
2
2)|p⃗=0=

∫ ∞

−∞
dτeω1τ Ã(τ). (4.18)

For the pion, examples for the averaged amplitude Ã(τ) are shown in Figure 4.11,
illustrating the full amplitude and separately the connected and the vector-current
disconnected contributions with disconnected light-, strange- and charm-current
loops for two orbits on the ensemble cB072.64. The vector-current disconnected
contributions are multiplied by a factor of 50 to make the comparison to the connected
contribution and full amplitude easier. While the disconnected contributions are very
small, we still are able to extract significant signals across all momentum orbits for
the V-disconnected light and strange contributions. The charm contributions are also
determined to sufficient precision to constrain their contribution to the amplitude.
We find on all three ensembles that the total V-disconnected contribution in the
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Figure 4.11: Amplitude Ã(τ) for the pion for momentum orbit |q⃗2|= 10 (2π/L)2 (left)
and |q⃗2|= 29 (2π/L)2 on cB072.64. Shown in orange is the full contribution to Ã(τ),
in blue the connected contribution and in green, red and purple the V-disconnected
contributions multiplied by 50.

peak region is suppressed with respect to the connected contribution by a factor of at
least ∼ 50. We also find that the statistical error on the V-disconnected contribution
is well under control on all three physical point ensembles.

Sample results for the η-meson amplitude Ã(τ) as defined in Eq. (4.13) are displayed
in Figure 4.12 where we show the full amplitude and separately the different con-
tributions to it considered in our analysis for two orbits on the ensemble cB072.64.
The examples show that the contributions involving strange quarks in the currents
are suppressed at least by a factor of ∼ 10 compared to the corresponding light
contributions. Based on the results in the pion case, we expect the contributions
involving charm quarks to be more suppressed still. This contribution along with the
vector-current disconnected and fully disconnected diagrams are therefore irrelevant
at the presently achievable precision, and we do not include them in the further
η-meson analysis.

As shown in Eq. (4.18), the transition form factors FP→γ∗γ∗ are obtained by integrat-
ing eω1τ Ã(τ) over the whole temporal axis. For choices of ω1 that result in kinematics
near the single-virtual axes (cf. Figure 4.10), the exponential factor eω1τ enhances
the contribution from one of the tails exponentially. Meanwhile, the signal-to-noise
ratio deteriorates exponentially at large |τ |, presenting a significant obstacle to the
extraction of the TFFs in the single-virtual regime. Further, the lattice data for
times τ < −tP have incorrect time ordering of the operators and do not yield a valid
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Figure 4.12: Amplitude Ã(τ) for the η meson for momentum orbit |q⃗2|= 10 (2π/L)2

(left) and |q⃗2|= 29 (2π/L)2 on cB072.64. Shown is the full value of Ã(τ), as well as
the decomposition into the light and strange connected contributions and the light
and strange P-disconnected contributions.

approximation to Ãµν(τ) in Eq. (4.11).

To address both of these issues, we extend Ã(τ) by fitting the lattice data with a
model function Ã(fit)(τ) in a range τmin ≤ |τ |< τmax, and replacing the lattice data
Ã(latt.)(τ) by the fit for |τ |> τcut. The integration in Eq. (4.18) is then replaced by

FP→γ∗γ∗(q21, q
2
2) =

∫ τcut

−τcut

dτ Ã(latt.)(τ)eω1τ

+

∫ ∞

τcut

dτ Ã(fit)(τ)eω1τ +

∫ −τcut

−∞
dτ Ã(fit)(τ)eω1τ . (4.19)

Note that in principle τcut can be chosen independently in the two tails in order to
keep as much of the original lattice data as possible. For the pion, the contributions
to Fπ→γ∗γ∗ from Ãπ, (fit)(τ) are below 2% for most photon virtualities, with the
exception of some large virtualities at or close to single-virtual kinematics. In the
case of the η meson, the creation operator insertion happens at Euclidean times tη
much closer to zero, as compared to the pion, to control the rapidly deteriorating
signal-to-noise ratio for the P-disconnected contribution with increasing tη and τ .
This requires smaller values of τcut to satisfy correct time-ordering of the amplitude,
resulting in larger contributions from Ãη, (fit)(τ) to Fη→γ∗γ∗ despite the much faster
exponential decay of the heavier η-meson.

Following the approach of Ref. [66], we consider both the vector-meson dominance
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Figure 4.13: Lattice data vs. the LMD model fit of the integrand Ã(τ)eω1τ for the pion
on the cB072.64 ensemble with the momentum of the current |q⃗21|= 2 (2π/L)2. The
left plot shows the integrand for diagonal kinematics (q21 = q22) determined by fixing
aω1 = amπ/2 ≈ 0.0283, while the right plot shows the integrand for single-virtual
kinematics (q22 = 0) determined by fixing aω1 = a|q⃗1|≈ 0.1388. The grey bands show
the data included in the fit from this choice of q⃗1; note, however, that data within
these windows are taken across all choices of q⃗1 for the fit. The point in red indicates
the timeslice where the pseudoscalar creation operator is inserted, with the lighter
points to the left of this insertion having incorrect time ordering, as discussed in the
main text.

(VMD) model and the lowest-meson dominance (LMD) model to fit the amplitude.
The variation between the two then gives an estimate of the model dependence of the
results. For the pion we perform global fully correlated fits, i.e., we simultaneously
fit all momentum orbits in the range τmin ≤ |τ |< τmax and take into account the
correlations between all fitted data, while for the η meson we consider both global
uncorrelated and fully correlated fits. An example of this is shown in Figure 4.13
where we plot the integrand Ã(τ)eω1τ resulting from a fully correlated global fit to
Ã(τ) using the LMD model in the range 6 ≤ |τ/a|< 8 with χ2/dof = 1.08 for the
pion on the ensemble cB072.64. The fit quality and reduced χ2 are representative of
the remaining fits performed for other analysis choices. Shown are the integrands
for diagonal kinematics q21 = q22 on the left and single-virtual kinematics q21 = 0

on the right. Note that the so-obtained values of the TFFs depend on the choice
of the model, the fit range and the value of τcut. These various choices are all
independently carried through the further analysis steps and are finally used to
estimate the systematic error of aP -pole

µ .
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4.2.4 Results for aP−pole
µ at the physical point

To extend the form factors to arbitrary photon momenta for the integration in
Eq. (4.8), we parameterize them using a model-independent expansion of the form [67]

P (Q2
1, Q

2
2) · FPγ∗γ∗(−Q2

1,−Q2
2) ≈

N∑
m,n=0

cnm

(
zn1 − (−1)N+n+1 n

N + 1
zN+1
1

)(
zm2 − (−1)N+m+1 m

N + 1
zN+1
2

)
, (4.20)

termed the “modified z-expansion.” Above, P (Q2
1, Q

2
2) = 1 + (Q2

1 +Q2
2)/M

2
ρ precon-

ditions the form of the expansion to more easily reproduce the form factor structure,
the coefficients cnm = cmn are required to be symmetric by the Bose symmetry of the
TFF, and the zk are conformal transformations of the four-momenta in the quadrant
below the non-analytic cuts at tc = 4m2

π, as given by

zk =

√
tc +Q2

k −
√
tc − t0√

tc +Q2
k +

√
tc − t0

. (4.21)

The parameter t0 is chosen to be

t0 = tc

(
1−

√
1 +Q2

max/tc

)
(4.22)

in order to best reproduce the behavior of the TFF for Q2
1,2 ≲ Q2

max [67], with
Q2

max = 4.0GeV2 chosen for the present study. Analyticity of the TFF below tc

ensures that the z-expansion can fully describe the TFF as N → ∞. To fix the
coefficients cnm in the expansion, a fit is performed to the lattice data available
at the orbits determined by our choices of three-momenta q⃗1 (cf. Figure 4.10).
Because the orbits are in principle continuously determined by the free choice of
ω1, we follow Refs. [66, 67] and fix a finite set of inputs FP→γ∗γ∗(−Q2

1,−Q2
2) by

restricting to kinematics satisfying Q2
2/Q

2
1 = const. for several choices of this ratio.

We further restrict the inputs in the pion case by removing points for which the model
contribution to Fπ→γ∗γ∗ from Ã(fit)(τ) exceeds a given threshold, thereby minimizing
the impact of the choice of fit model at this stage of the analysis. In the following
analysis, both a threshold of 5% and 10% are considered. We use the smaller choice
of 5% for the final continuum-extrapolated result.
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Figure 4.14: Illustration of the pion transition form factor Fπ→γ∗γ∗ and its paramet-
erization using the fitted modified z-expansion. Only the data coloured in maroon is
included in the fit.

4.2.4.1 Pion

Figure 4.14 shows the example of an N = 2 z-expansion fit using TFF data satisfying
Q2

2/Q
2
1 ∈ {1.0, 0.59, 0.0} on the ensemble cB072.64, where the transition form factors

are obtained from a global LMD fit with {τmin/a, τmax/a} = {9, 12} and integration
using τcut/a = 20. Here we use a maximal upper limit of a 10% contribution to
Fπ→γ∗γ∗ from Ã(fit)(τ) as a further cut on the input data for the fit. The points marked
with maroon in the figure indicate the final data used in the fit, with other points,
including the data for the ratios Q2

2/Q
2
1 ∈ {0.88, 0.78, 0.10}, serving as a crosscheck

for the quality of the fit. Both the fit to Ã(τ) and the fit to the modified z-expansion
are fully correlated, with respective χ2

z−exp/dof = 1.03 and χ2
LMD/dof = 1.03. It is

worth noting that the z-expansion fit is most strongly constrained by the precise
data available for the ratio Q2

2/Q
2
1 = 1.0. This precision is due to a small dependence

on the tails of the integrand Ã(τ) exp(ω1τ) for these kinematics (cf. Figure 4.13).

After extrapolating Fπ→γ∗γ∗(−Q2
1,−Q2

2) to arbitrary space-like momenta using the
results of the modified z-expansion fits in Eq. (4.20), the three-dimensional integral
representation given in Eq. (4.8) can be evaluated to calculate aπ-pole

µ . We do so
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cB072.64 cC060.80 cD054.96

a
π-pole
µ · 1011 56.8(2.7)(0.3)[2.7] 56.5(2.1)(0.5)[2.2] 54.0(2.1)(0.3)[2.2]

Table 4.4: Preliminary results for estimates of aπ-pole
µ on the three ensembles used in

this analysis. The uncertainties shown are statisical, systematic and total, respectively.
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Figure 4.15: Preliminary continuum limit of aπ-pole
µ based on both constant

and O(a2) extrapolations. The extrapolations are averaged using the proced-
ure from [115], as discussed in the main text, yielding the continuum estimate
a
π-pole
µ = 55.4(1.9)fit(1.0)ctm−syst.[2.1]tot indicated by the red marker at a2 = 0.

for O(1000) combinations of the choices of fit range and fit model in the Ã(τ) fit,
the choice of τcut, and the choices of samplings of Fπ→γ∗γ∗ in the (Q2

1, Q
2
2)-plane as

inputs to the modified z-expansion fit. For the pion, the fully correlated z-expansion
fits with N = 2 give the best reduced χ2 values, so we restrict to this choice alone.
Further, for the pion we consider choices of τcut satisfying τcut ∈ [1.3, 1.6] fm in
physical units across all three ensembles. We then use a modified version of the
Akaike information criterion (AIC) to perform a weighted average across the analysis
choices; see Ref. [38] and references therein. Using this procedure we obtain separate
estimates of the statistical errors and systematic errors associated with analysis
choices described above. The preliminary values for aπ-pole

µ obtained per ensemble
are presented in Table 4.4.

Data from these three physical-point ensembles allows a continuum extrapolation to
be performed for the value of aπ-pole

µ . In the twisted-mass discretization, the leading
lattice artifacts are expected to be of O(a2). For the continuum limit of aπ-pole

µ
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we therefore consider both extrapolation with a simple constant fit versus lattice
spacing and a linear fit in a2. As shown in Figure 4.15, both fits are consistent with
the lattice data. To determine a preliminary estimate of the continuum value at the
present statistics and set of ensembles, we apply the averaging procedure presented
in Ref. [115] (see Eqs. (38)–(43) therein) to combine the constant and linear fits. The
resulting estimate of the continuum limit is found to be

aπ-pole
µ = 55.4(1.9)fit(1.0)ctm−syst.[2.1]tot, (4.23)

where the uncertainties are respectively the average uncertainty from the Ã and
z-expansion fits, the additional systematic uncertainty from variation between the
constant and linear continuum extrapolations, and the total uncertainty combined
in quadrature.

4.2.4.2 Eta

As in the case of the pion, for the η meson we apply a z-expansion fit to extra-
polate TFF results to arbitrary kinematics. Figure 4.16 shows the example of
an N = 2 z-expansion fit on the ensemble cB072.64 using TFF data satisfying
Q2

2/Q
2
1 ∈ {1.0, 0.88, 0.78, 0.59, 0.1, 0.0}, where the transition form factors are ob-

tained from a global VMD fit with {τmin/a, τmax/a} = {4, 7} and integration using
τcut/a = 8. The fit to Ã(τ) is performed with correlation taken into account, yielding
χ2
VMD/dof = 0.25, while the fit to the modified z-expansion is uncorrelated with
χ2
z−exp/dof = 1.03. Since mη ≫ mπ, in the case of the η meson even the diagonal

kinematics include significant contributions from the tails of the integrand eω1τ Ã(τ)

and thus have significant statistical uncertainties. In the single-virtual case, we
can compare our results for Fη→γγ∗ , both the data points directly as well as the
z-expansion fit, to experimental data from CLEO, CELLO and BaBar, cf. [72–75].
An illustration is shown in Figure 4.17 for the same parameters as in Figure 4.16. We
already find relatively good agreement with the experimental data despite working
at a single lattice spacing.

Using the results of the modified z-expansion fits to extend the TFF
Fη→γ∗γ∗(−Q2

1,−Q2
2) to arbitrary space-like momenta allows us to evaluate
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Figure 4.16: Illustration of the η-meson transition form factor Fη→γ∗γ∗ and its
parameterization using the fitted modified z-expansion. All data shown is included
in the fit.
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Figure 4.17: Results for the single-virtual η-meson transition form factor Fη→γγ∗

evaluated using an example set of analysis choices, as described in the main text,
versus experimental measurements described in Refs. [72–75]. The red band indicates
the result of the z-expansion fit to the lattice data shown in red points. As the lattice
data and fit are shown for a single choice of analysis parameters, the uncertainties
are purely statistical. A full analysis of the form factor itself has now been presented
in Ref. [71].
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the three-dimensional integral representation given in Eq. (4.8) to calculate aη-pole
µ ,

as in the pion case. This is evaluated for each of the O(1000) combinations of choices
of fit range and fit model in the Ã(τ) fit, the choice of τcut, the choices of samplings
of Fη→γ∗γ∗ in the (Q2

1, Q
2
2)-plane as inputs to the modified z-expansion, and the

choice of N ∈ {1, 2} for the z-expansion. Further, for the η meson we include all
choices of τcut satisfying τcut ∈ [0.16, 0.64] fm. Using the model averaging procedure
of Ref. [38], we obtain the preliminary result

aη-pole
µ = 12.7(4.6)stat(0.7)syst[4.6]tot · 10−11 (4.24)

on the cB072.64 ensemble. We note that the quoted systematic uncertainty in
Eq. (4.24) only includes the effects of the analysis choices described above, and
in particular does not include uncertainties associated with the continuum and
infinite-volume limits.

4.2.5 Conclusion and outlook

Our preliminary result aπ-pole
µ = 55.4(2.1) · 10−11 may be compared to the recent

lattice result aπ-pole
µ = 59.7(3.6) · 10−11 from Ref. [67] and the dispersive result

a
π-pole
µ = 63.0+2.7

−2.1 · 10−11 from Refs. [3, 63, 64]. We note that there is a mild tension
with the data-driven result, though our analysis is not yet finalized, as discussed
below. Our preliminary result aη-pole

µ = 12.7(4.6) · 10−11 on the cB072.64 ensemble
can be compared to the estimate aη-pole

µ = 16.3(1.4) · 10−11 from a Canterbury
approximant fit to experimental data [65] and a

η-pole
µ = 15.8(1.2) · 10−11 and

a
η-pole
µ = 14.7(1.9) · 10−11 using Dyson-Schwinger and Bethe-Salpeter equations [131,

132]. Within our uncertainties we find good agreement with these various results
already at this single lattice spacing. Figure 4.18 compares our results for both
a
π-pole
µ and aη-pole

µ with the aforementioned estimates.

At the moment, the z-expansion fits for the pion on cB072.64 are being finalized.
Though this may change the central value of aπ-pole

µ in the continuum slightly we
do not expect a drastic shift, and also no significant change in the total error. At
the same time, the continuum extrapolation strategy is being developed to avoid
either a too-conservative estimate with overestimated errors or an overly aggressive
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Figure 4.18: Left: Comparison of the estimate of aπ-pole
µ from this work versus an

estimate based on dispersion relations [3, 63, 64] and a prior estimate from lattice
QCD [67]. Right: Comparison of the estimate of aη-pole

µ from this work versus a
result derived from Canterbury approximant (CA) fits to experimental data [65] and
two estimates based on Dyson-Schwinger (DS) equations [131,132].

estimate dominated by the constant fit. Finally, future calculations on the cC060.80
and cD054.96 ensembles are planned for the analysis of aη-pole

µ , which will allow a
continuum estimate of this value directly from ab-initio lattice QCD. An ab-initio
value is not yet available for this quantity, so that such a result will provide an
important cross-check for data-driven results for aη-pole

µ .
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4.3 The η → γ∗γ∗ transition form factor and the had-

ronic light-by-light η-pole contribution to the

muon g − 2 from lattice QCD

Section 4.3 is licensed under a arXiv.org - Non-exclusive license to distribute

https://arxiv.org/licenses/nonexclusive-distrib/1.0/license.html.

This section reproduces [71] and was published as a preprint on arXiv for a
paper submitted to PRL in January 2023.

4.3.1 Abstract

We calculate the double-virtual η → γ∗γ∗ transition form factor Fη→γ∗γ∗(q21, q
2
2) from

first principles using a lattice QCD simulation with Nf = 2 + 1 + 1 quark flavors at
the physical pion mass and at one lattice spacing and volume. The kinematic range
covered by our calculation is complementary to the one accessible from experiment
and is relevant for the η-pole contribution to the hadronic light-by-light scattering in
the anomalous magnetic moment aµ = (g − 2)/2 of the muon. From the form factor
calculation we extract the partial decay width Γ(η → γγ) = 338(87)stat(17)syst eV
and the slope parameter bη = 1.34(28)stat(14)syst GeV−2. For the η-pole contribution

to aµ we obtain aη-pole
µ = 13.8(5.2)stat(1.5)syst · 10−11.

4.3.2 Introduction

Radiative transitions and decays of the neutral pseudoscalar mesons P = π0, η
and η′ arise through the axial anomaly and are therefore a crucial probe of the
nonperturbative low-energy properties of QCD. The simplest transition to two
(virtual) photons, P → γ∗γ∗, is specified through the transition form factor (TFF)
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FP→γ∗γ∗(q21, q
2
2) defined by the matrix element

i

∫
d4x eiq1x⟨0|T{jµ(x)jν(0)}|P (q1 + q2)⟩ = ϵµνρσq

ρ
1q

σ
2FP→γ∗γ∗(q21, q

2
2), (4.25)

where jµ, jν are the electromagnetic currents and q1, q2 are the photon momenta.
The TFFs determine the partial decay widths to leading order in the fine-structure
constant αem through

Γ(P → γγ) =
πα2

emm
3
P

4
|FP→γγ(0, 0)|2, (4.26)

where mP is the pseudoscalar meson mass. Γ(η → γγ) is of particular interest, since
it can be used to extract the η − η′ mixing angles and provides a normalization for
many other η partial widths [12]. At the same time, there is a long-standing tension
between its different experimental determinations through e+e− collisions on the one
hand and Primakoff production on the other [144–150]. The TFFs also provide input
for determining the electromagnetic interaction radius of the pseudoscalar mesons
through the slope parameter

bP =
1

FP→γγ(0, 0)

dFP→γ∗γ(q
2, 0)

dq2

⏐⏐⏐⏐
q2=0

. (4.27)

Moreover, the TFFs play a critical role for the leading-order hadronic light-by-light
(HLbL) scattering in the anomalous magnetic moment aµ = (g − 2)/2 of the muon.
Recent results from the Fermilab E989 and Brookhaven E821 experiments [2, 20]
indicate a 4.2σ tension with the consensus on the Standard Model prediction in
Refs. [3, 4, 27–30, 32, 33, 51, 64, 65, 67, 151–159]. The uncertainty of the latter is
dominated by the Hadronic Vacuum Polarization and the HLbL scattering. The
HLbL contribution can be estimated, among other approaches [42–51], by a systematic
decomposition into contributions from various intermediate states [52–55]. Lattice
QCD can provide ab-initio data for the required form factors and hadron scattering
amplitudes within this approach. This is thus complementary to a lattice-QCD
calculation of the full HLbL scattering amplitude [56–61].

The pseudoscalar pole diagrams, depicted in Figure 4.19, make the dominant
contribution to the HLbL scattering amplitude, with FP→γ∗γ∗ as the key nonper-
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P

+ crossed

P

Figure 4.19: The pseudoscalar pole diagrams contributing to the leading order
HLbL scattering in the muon anomalous magnetic moment. Each striped blob
indicates the insertion of a pseudoscalar meson transition form factor FP→γ∗γ∗ , where
P ∈ {π0, η, η′}.

turbative input. Of these diagrams, the π0-pole contribution has been estimated
based on a dispersive framework [63, 64] and on lattice-QCD calculations of the pion
TFF [66–68] while rational approximant fits to experimental TFF data have yielded
an estimate of all three contributions [65]. A preliminary calculation of the η- and
η′-pole contributions using a coarse lattice was reported in Ref. [70]. Experimental
results from CELLO [73], CLEO [72], and BaBar [74, 75] constrain the spacelike
single-virtual FP→γ∗γ(−Q2, 0) in the regime Q2 ≳ 1GeV2, but do not provide data
for 0 ≤ Q2 ≲ 1GeV2 or for general double-virtual kinematics. In contrast, these
kinematics are the most accessible in lattice QCD.

In this letter we present an ab-initio calculation of Fη→γ∗γ∗(q21, q
2
2) and the

corresponding η-pole HLbL contribution aη-pole
µ using lattice QCD simulations at a

single lattice spacing and a single volume. We employ Nf = 2 + 1 + 1 flavors of
twisted-mass quarks [77] tuned to the physical pion mass, physical heavy-quark
masses, and maximal twist. The latter guarantees automatic O(a)-improvement of
observables [78,79], which here includes FP→γ∗γ∗ , Γ(η → γγ), bη, and aη-pole

µ .
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Figure 4.20: Orbits of photon virtualities (q21, q
2
2) accessed in this work. Dotted lines

indicate two-pion thresholds at 4m2
π.

4.3.3 Methods

We apply the method introduced in Refs. [66,67] to the case of the η TFF. In particular,
the TFF is related to the Euclidean η-to-vacuum transition amplitude [119]

Ãµν(τ) ≡
∫
d3x⃗e−iq⃗1·x⃗ ⟨0|T{jµ(τ, x⃗)jν(0)}|η(p⃗)⟩ (4.28)

by

ϵµναβq
α
1 q

β
2 Fη→γ∗γ∗(q21, q

2
2) = −in0

∫ ∞

−∞
dτeω1τÃµν(τ), (4.29)

where n0 = δµ,0 + δν,0 counts the number of temporal indices. The kinematics are
determined by the four-momentum p ≡ (Eη, p⃗ ) of the on-shell η state with energy
Eη =

√
m2

η + p⃗ 2, the four-momentum q1 = (ω1, q⃗1) of the first current, and the
momentum conservation constraint q2 = p − q1. In the lattice setup used here, it
is most practical to fix p⃗ and evaluate the amplitude for a variety of q⃗1 and ω1.
The present calculation is restricted to the rest frame, p⃗ = (0, 0, 0), and momenta
satisfying |q⃗1|2≤ 32(2π/L)2 and |qx1 |, |q

y
1 |, |qz1|≤ 4(2π/L). Each choice of finite-volume

momentum q⃗1 gives access to Fη→γ∗γ∗(q21, q
2
2) on a particular kinematical orbit, as

shown in Figure 4.20. Notably, the |q⃗1|2= (2π/L)2 orbit lies outside the spacelike
quadrant, but still falls below the non-analytic thresholds at 4m2

π, allowing it to
be accessed on the lattice; its proximity to (0, 0) makes it particularly helpful in
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Figure 4.21: Wick contractions contributing to Cµν(τ, tη). The second connected
diagram with quark propagators running in the opposite direction and the second
V-disconnected diagram with a loop at jµ(τ) are omitted for brevity.

constraining Γ(η → γγ) and bη.

The Euclidean amplitude in Eq. (4.28) is accessed by evaluating the three-point
function

Cµν(τ, tη) ≡
∫
d3x⃗ d3y⃗ e−iq⃗1·x⃗eip⃗·y⃗

× ⟨T{jµ(τ, x⃗)jν(0)O†
η(−tη, y⃗)}⟩ .

(4.30)

For any operator O†
η with overlap onto the η state, the three-point function is projected

onto the physical η meson at large time separation, −tη ≪ min(0, τ), irrespective of
η−η′ mixing. Here we use O†

η = iψ̄λ8γ5ψ, where λ8 = diag(1, 1,−2)/
√
3 describes the

SU(3) flavor structure. The electromagnetic currents are defined by jµ = ZV ψ̄ γµQψ

with Q = diag(+2/3, −1/3, −1/3) and ZV = 0.706378 (16) [40].

Evaluating Cµν requires the Wick contractions shown in Figure 4.21. We evaluate all
connected (sub-)diagrams with point-to-all quark propagators. In the P-disconnected
diagram, we compute the quark-loop at O†

η from propagators based on stochastic
volume sources. Unlike in previous lattice QCD studies of the π0 TFF, here P-
disconnected diagrams of the isospin-singlet η operator are non-zero. The projection
onto the η state relies on a delicate cancellation between connected and P-disconnected
diagram contributions, as shown in Figure 4.22.

The amplitude Ãµν is then recovered from Cµν as

Ãµν(τ) = lim
tη→∞

2Eη

Zη

eEηtηCµν(τ, tη), (4.31)

where Zη = ⟨0|Oη(0, 0⃗)|η(p⃗)⟩ is the overlap factor associated with the chosen creation
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operator. In practice we approximate the limit tη → ∞ by considering three fixed
values of tη in the range 0.80 fm ≲ tη ≲ 1.11 fm. Contamination from excited states
and the η′ meson are suppressed best for the largest value of tη, thus we report the

values for Γ(η → γγ), bη, and aη-pole
µ from tη ≈ 1.11 fm as the main result and use

the remaining choices to check for excited state effects.

Statistical noise significantly hinders evaluation of Ãµν(τ) for large values of |τ |.
Following Refs. [66–68], we address this issue by performing joint fits of the asymp-
totic behavior of Ãµν(τ) for all q⃗1 to Vector Meson Dominance and Lowest Meson
Dominance functional forms [160] with fit windows defined by ti ≤ |τ |≤ tf . We
then integrate over τ as in Eq. (4.29) using numerical integration of the lattice data
within the peak region, |τ |≤ τc, and analytical integration of the fit form in the
tail region, |τ |> τc. In this work, we consider several choices of τc in the range
0.16 fm ≲ τc ≲ 0.64 fm.

Access to the partial decay width, the slope parameter, and the η-pole HLbL contri-
bution requires an interpolation of the TFF close to the origin and an extrapolation
in the quadrant of non-positive photon virtualities. We apply the model-independent
expansion in powers of conformal variables advocated in Ref. [67], termed the z-
expansion. Analyticity of the form factor below the two-pion thresholds at q21 = 4m2

π

and q22 = 4m2
π guarantees convergence as the highest power N in the expansion is

taken to infinity. Moreover, the expansion is restricted to account for the known
threshold scaling and contains preconditioning to more easily capture the expected
asymptotic behavior as q21, q22 → −∞. In practice we find that the N = 2 fit, consist-
ing of six free parameters, already provides a very accurate fit to all lattice results,
so we restrict to N ∈ {1, 2} in all subsequent analyses.

The η-pole HLbL contribution has the integral representation [116,118]

aη-pole
µ =

(α
π

)3 ∫ ∞

0

dQ1dQ2

∫ 1

−1

dt
[

w1(Q1, Q2, t)Fη→γ∗γ∗(−Q2
1,−Q2

3)Fη→γ∗γ(−Q2
2, 0)

+ w2(Q1, Q2, t)Fη→γ∗γ∗(−Q2
1,−Q2

2)Fη→γ∗γ(−Q2
3, 0)

]
,

(4.32)

with t = cos θ parameterizing the angle between the four-momenta, so that
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Q2
3 = Q2

1 + 2Q1Q2 cos θ +Q2
2. The weight functions w1 and w2 are peaked such that

contributions to Eq. (4.32) mainly come from the region 0 ≤ Q1, Q2 ≲ 2GeV [118].
Knowledge of the TFF in the regime of relatively small virtualities is thus sufficient
to accurately evaluate aη-pole

µ .

Finally, we quantify systematic errors associated with the choices of tail-fit model,
the parameters (ti, tf), τc and the z-expansion order N by the model-averaging
procedure detailed in the supplemental material.

4.3.4 Results

Our lattice results are obtained on the gauge ensemble cB211.072.64 produced by
the Extended Twisted Mass Collaboration (ETMC) [115]. The sea-quark masses
for this ensemble are tuned to reproduce the physical charged-pion mass and the
strange- and charm-quark masses, with a lattice spacing of a ≃ 0.08 fm and a lattice
size of L ≃ 5.09 fm (mπL ≃ 3.62) [40,115]. For the valence strange quark we use the
mixed action approach in Ref. [79], with valence strange-quark mass tuned such that
the η meson has physical mass.

We show in Figure 4.22 an example of the contributions to Cµν(τ, tη) from the
connected and P-disconnected Wick contractions on this ensemble at our largest
separation, tη ≃ 1.11 fm. The contributions involving strange-quark vector currents
are suppressed by a factor ∼ 10 for the connected and ∼ 20 for the P-disconnected
contribution compared to those from the light quark vector currents. Contributions
from charm-quark vector currents are expected to be even more suppressed [68], as
are those from V-disconnected and fully disconnected diagrams (lower two diagrams
in Figure 4.21). At the presently achievable accuracy these contributions are hence
not relevant and are not included in the analysis.

In Figure 4.23 we show our results for the TFF as a function of the virtuality
in the single-virtual case Fη→γ∗γ(−Q2, 0) (top row) and in the double-virtual case
Fη→γ∗γ∗(−Q2,−Q2) (bottom row) together with our result from the z-expansion
fits. The darker inner band indicates only statistical uncertainties while the lighter
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Figure 4.22: Contributions from the connected and P-disconnected Wick contrac-
tions in the evaluation of C(τ, tη) ≡ (iϵijkq⃗

i
1/|q⃗1|2)Cjk(τ, tη) at tη = 1.11 fm and

|q⃗ 2
1 |= 3(2π/L)2. The labels “light” and “strange” indicate the quark flavor in the

contractions of the electromagnetic currents.

outer band includes systematic uncertainties estimated from the variation of fitting
choices discussed above. At all virtualities shown, the statistical errors dominate
the total uncertainty. In addition to the available experimental data, we also show
the Canterbury approximant (CA) result from Ref. [65]. We observe reasonable
agreement between our results, the experimental data and the CA data.

From the parameterization of the momentum dependence of our TFF data we extract
the decay width, slope parameter, and a

η-pole
µ . As with the TFF itself, we repeat

the calculation for all choices of the analysis parameters to determine systematic
errors associated with tail fits of Ã and the z-expansion. A detailed breakdown is
given in the supplemental materials. For the decay width the resulting systematic
uncertainty stems mainly from the variation in the fits of the tails of Ãµν(τ) and τc,
while for the slope parameter and the HLbL pole contribution it is mainly due to
the conformal fit. The total error, however, is always dominated by the statistical
uncertainties. We also observe a mild systematic dependence on tη, as detailed in
the supplemental materials, which points to the fact that excited-state and possibly
η′-meson contributions to the transition amplitude are not completely eliminated
at the smaller values of tη. We conservatively quote results obtained at our largest
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Figure 4.23: Comparison of the TFF estimated from this work (pink curve) versus
the available Fη→γ∗γ and Γ(η → γγ) experimental results (blue points) [12, 72–75]
and a Canterbury approximant estimate (cyan curve) [65]. For better comparison to
features at both small and large Q2, the TFFs are plotted both with and without a
conventional Q2 prefactor.
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value of tη ≃ 1.11 fm for which the statistical uncertainty is largest and covers the
results at the smaller tη values.

For the leading-order decay width we obtain

Γ(η → γγ) = 338(87)stat(17)syst[88]tot eV (4.33)

in comparison to the experimental average 516(18) eV [12,145–149]. For the slope
parameter we find

bη = 1.34(28)stat(14)syst[31]tot GeV−2 (4.34)

to be compared with bη = 1.92(4) GeV−2 from a Padé approximant fit to the
experimental results [161] and bη = 1.95(9) GeV−2 from a dispersive calculation [162].
Finally, we use the parameterization of our TFF data to perform the integration in
Eq. (4.32) and obtain

aη-pole
µ = 13.8(5.2)stat(1.5)syst[5.5]tot · 10

−11 (4.35)

in comparison to a Canterbury approximant fit to experimental results yielding
16.3(1.4) · 10−11 [65], the VMD model value 14.5(3.4) · 10−11 [118], and estimates
15.8(1.2) · 10−11 [131] and 14.7(1.9) · 10−11 [132] based on the Dyson-Schwinger
equations.

We emphasize that our results are obtained at a fixed lattice spacing and a fixed
volume. The present estimates therefore exclude systematic errors associated
with finite-volume effects and lattice artifacts. The latter are expected to be of
O
(
a2Λ2

QCD

)
with the lattice discretization used here. Lattice artifacts contribute

through the bare TFFs, the vector-current renormalization factors (except in bη)
and through the setting of the lattice scale required to convert mµ to lattice units.
Both ZV and the lattice scale are determined independently of the quantities
considered here [40, 115]. A quantitative estimate of the lattice artifacts present
in a

η-pole
µ can therefore be obtained by considering the scheme of fixing the

renormalization by the physical decay width instead of the hadronic scheme.
This gives aη-pole

µ;Γ−renorm = 20.7 (4.5)stat(2.3)syst · 10−11, which differs from a
η-pole
µ in

Eq. (4.35) by 6.9 · 10−11, which is of similar size to our total error.
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4.3.5 Conclusions and outlook

The results of our lattice QCD calculation of the transition form factor Fη→γ∗γ∗(q21, q
2
2)

at physical pion mass have a precision comparable to experimental results in the
range where both are available, and demonstrate nice agreement, cf. Figure 4.23.
Our results provide single-virtual data at lower photon virtuality than currently
accessible by experiments. This includes the region around zero virtuality necessary
to study the decay width and slope parameter. The results for these quantities
in Eqs. (4.33) and (4.34) undershoot the experimental (and for bη also theoretical)
results by 1.5–2.0 standard deviations.

Our lattice computation also provides TFF data for double-virtual (space-like) photon
kinematics, which is difficult to access by experiment. We have made use of this
advantage and calculated the η-pole contribution to the anomalous magnetic moment
of the muon, aη-pole

µ = 13.8(5.2)stat(1.5)syst[5.5]tot · 10−11. Our result confirms
the currently available data-driven Canterbury approximant estimate [65] and the
theoretical model estimates [118,131,132], but does not yet reach the same precision.
Nevertheless, it provides important independent support of these estimates. The
main shortcoming of our calculation is the use of a single lattice spacing, which will
be removed in the future by computations with ETMC gauge ensembles on finer
lattices [104,115].
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4.3.7 Supplementary material

4.3.7.1 Error estimation and model averaging

All statistical errors reported in this work are given as 1σ confidence intervals derived
from Nboot = 2000 bootstrap resamplings of the ensemble of configurations. We find
virtually no autocorrelation between the relevant primary data taken on a subset
of configurations constituting the ensemble, and the bootstrap bin size is therefore
fixed to 1.

During our analysis, we make several choices corresponding to fits of the large-|τ |
tails of the amplitude Ãµν(τ) and of the finite-volume TFF orbits. In particular, the
following analysis parameters are varied:

1. The choice between using the Vector Meson Dominance (VMD) or Lowest
Meson Dominance (LMD) model to the fit the tail behavior;

2. The window (ti, tf), determining which regions of the amplitude Ãµν(τ) are
used as inputs to fit the asymptotic tail behavior;

3. The integration cutoff τc, distinguishing the region |τ |≤ τc in which the lattice
data is integrated from the region |τ |> τc in which the analytical tail model is
integrated; and

4. The order N of the conformal expansion used to fit the TFFs.

The variation of our estimates with these model choices gives estimates of the
systematic errors associated with these steps. We apply the approach of Refs. [38,163]
to construct cumulative distribution functions (CDFs) of all final quantities with
various subsets of models and with two choices of rescaling parameter λ applied
to the systematic error. The various total error estimates, given by the difference

119



between the 16th and 84th percentiles of the CDF in each case, allow an extraction
and decomposition of the total uncertainty into statistical, total systematic, and
various individual sources.

In this approach, weights must be assigned to each model included in the CDF.
Weights based on the Akaike Information Criterion [164] derived from χ2 values of
each fit have previously been employed. For the tail of the amplitude, we perform a
fit to values of Ãµν(τ) over sequential choices of τ and across all momentum orbits.
For the z-expansion, we perform a fit to values of Fη→γ∗γ∗(−Q2

1,−Q2
2) across all

orbits at several fixed choices of the ratio Q2
1/Q

2
2. This input data is highly correlated,

and determining the correlated χ2 therefore requires a very precise estimate of nearly
degenerate covariance matrices of both the tail fits and z-expansion fits. Even for
fits to small windows (ti, tf ) and few choices of orbits, we did not find estimates of
the χ2 values to be accurate in our preliminary investigations. Instead, in this work
we perform fits using much more stable uncorrelated fits and make the conservative
choice to use a uniform weighting of all possible models in the CDF method. This
can be expected to overestimate the systematic error associated with model variation.
The decomposition of uncertainties is detailed in Table 4.5 for all three final physical

1011 · aη-pole
µ Γ(η → γγ) [eV] bη [GeV−2]

Tail model vs data cut (τc) 0.22 10.1 0.020
Tail fit windows (ti, tf ) 0.18 6.5 0.009
Fit model (VMD vs. LMD) 0.31 11.6 0.034
Conformal fit order (N) 1.44 1.8 0.123
Total systematic 1.53 17.2 0.135
Statistical 5.24 86.7 0.279
Total 5.46 88.4 0.310

Table 4.5: Decomposition of uncertainties in the reported values of the three quantities
studied at the single lattice spacing and volume used in this work. The results and
uncertainties are based on the conservative choice tη/a = 14 corresponding to
tη = 1.11 fm.

quantities studied in this work. Due to correlations between the total error estimates
in each case, the decomposition does not simply add in quadrature, but nevertheless
gives an estimate of which components of the error dominate the error budget.
Unsurprisingly, the dominant sources of systematic errors vary depending on the
observable considered. For the η-pole contribution to the HLbL, the biggest source
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of systematic error is the conformal fit used to extrapolate the TFF Fη→γ∗γ∗(q21, q
2
2)

from the low-virtuality orbits accessible on the lattice to the full plane of spacelike
(q21, q

2
2). This indicates that, despite the important contributions to aη-pole

µ from low
virtualities, the large uncertainties in the nearly unconstrained higher virtualities
can still affect the estimate of aη-pole

µ from lattice data alone. Incorporating some
information about asymptotic scaling of the TFF at large virtualities is therefore
an interesting prospect for future work. The other two quantities, Γ(η → γγ) and
bη are directly related to the behavior of the TFF at q21 = q22 = 0. In the case
of Γ(η → γγ), the choices used to fit the tails of the amplitude Ãµν(τ) dominate
the systematic errors, while for bη the systematic uncertainties are still set by the
conformal expansion fit. Nonetheless, we find that the uncertainties in all three
quantities are almost entirely given by the statistical error, which always far outweighs
the systematic errors.
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Figure 4.24: Comparison of the partial decay width Γ(η → γγ), the slope parameter
bη, and the η-pole contribution a

η-pole
µ from three choices of tη/a = 10, 12, 14

corresponding to tη = 0.80, 0.96, 1.11 fm. For reference, the values are respectively
compared against estimates from the PDG [12], Padé approximant (PA) fits to
experimental data [161], and the VMD model [118] and Canterbury approximant
(CA) experimental fits [65].
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4.3.7.2 Dependence on tη

In Fig. 4.24 we show the dependence of the partial decay width Γ(η → γγ), the slope
parameter bη, and the η-pole contribution aη-pole

µ on the choice of tη which denotes
the imaginary time location of the creation operator O†

η(−tη) for the η meson, to
be compared with imaginary time coordinates of the currents jµ(τ) and jν(0). The
outer error bar denotes the total error, while the inner one shows the statistical error
only. It is clear that the total error is dominated by the statistical one in all cases
and for all tη considered in this calculation. For all three quantities we observe a
mild systematic trend with growing tη which may be an indication that excited state
and η′-meson contributions to the transition amplitude, and hence to the quantities
shown here, may still be present at the smaller values of tη. Since we are interested
in the limit tη → ∞ we conservatively quote the results for the largest available tη
for which the statistical error is largest and covers the results at the smaller values
of tη.

4.3.7.3 Interpolation of the η state

The η-meson state is the lowest-lying eigenstate of the twisted mass lattice Hamilto-
nian in the channel with quantum numbers IG

(
JPC

)
= 0+ (0−+). The exact

interpolating field to project onto the η eigenstate in the lattice calculation is un-
known. However, it is sufficient that it can be written as a linear combination of the
quark-model octet- and singlet-pseudoscalar operators

Oexact
η = α ψ̄λ8γ5ψ + β ψ̄γ5ψ + . . .

= α
1√
3

(
ūγ5u+ d̄γ5d− 2s̄γ5s

)
+ β

(
ūγ5u+ d̄γ5d+ s̄γ5s

)
+ . . . ,

(4.36)

where the ellipsis denotes further linearly independent operators. Using the octet
operator

O8 = iψ̄λ8γ5ψ =
i√
3

(
ūγ5u+ d̄γ5d− 2s̄γ5s

)
(4.37)
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as the interpolating operator means that the projection is imperfect, i.e., the creation
operator will produce a tower of Hamiltonian eigenstates from the vacuum,

O†
8 | 0⟩ = Zη |η⟩+ Zη′ |η′⟩+ . . . , (4.38)

with increasing mass or energy and with Zη = ⟨0 |O8(0) | η⟩, Zη′ = ⟨0 |O8(0) | η′⟩.
Nevertheless, the η-meson state is the unique ground state of lowest mass, and
propagation in Euclidean time systematically suppresses the contribution of the
η′-meson and excited states lying higher in the spectrum. This suppression scales
exponentially as exp (−(M −mη)t), in terms of the Euclidean time evolution t and
the relative energy gap between the mass M of the higher state and mη. This
applies to all two- and three-point correlation functions used in this work. Thus for
sufficiently long Euclidean time propagation, the projection onto the η-meson state
is achieved by our choice of O†

8 as the creation operator for the three-point function.
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Chapter 5

Pion Transition Form Factor from
Twisted Mass Lattice QCD for the
Hadronic Light-by-Light
Contribution to Muon g − 2

This chapter is a draft for a publication in preparation about the computation of the
pion transition form factor and its utilization in calculating the pion pole contribution
aπ−pole
µ to the hadronic light-by-light scattering in the muon g − 2, the two-photon

decay width Γ(π → γγ) and the slope parameter bπ.
In the time between handing in this thesis and the defense, it was published as a
preprint on arXiv as [165].

5.1 Abstract

The neutral pion generates the leading pole contribution to the hadronic light-by-light
tensor, which is given in terms of a transition form factor Fπ0γγ(q

2
1, q

2
2) and which

must be computed non-perturbatively. Recently this form factor has been computed
on the lattice with Wilson quarks, staggered quarks and using dispersive methods.
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Here we present an independent lattice calculation of this quantity determined in the
continuum and at the physical point using twisted mass lattice QCD. We provide a
parametrization of the transition form factor for arbitrary single-virtual and space-
like kinematics and compare it with experimental measurements of the single-virtual
form factor, the two-photon decay width and the slope parameter. We then use
the transition form factors to compute the pion pole contribution to the hadronic
light-by-light scattering in the muon g − 2, finding aπ−pole

µ = 56.7(3.1)× 10−11.

5.2 Introduction

The anomalous magnetic moment of the muon provides a stringent test of the
Standard Model at high precision and the possibility to glimpse subtle effects of new
physics beyond the Standard Model. First results from the Fermilab experiment [2]
in combination with the Brookhaven result [20] have yielded a new experimental
world average aµ(exp) = 116592061(41)× 10−11 (0.35ppm). A comparable precision
has been strived for on the theoretical side as summarized in a recent white paper [3].

The leading hadronic contributions to the muon anomalous magnetic moment come
from diagrams involving the hadronic vacuum polarization (HVP) and the hadronic
light-by-light scattering (HLbL) tensors. Both make significant contributions at the
level of precision achieved by the experimental results. It is important to improve
the theoretical determinations of both contributions to match future targets of
experimental precision.

In the determination of the hadronic light-by-light contribution, lattice calculations
most frequently analyze the complete tensor [56–62]. On the other hand, the data-
driven dispersive approach first decomposes the hadronic tensor into contributions
from single- or multi-particle exchanges. Contributions from heavier intermediate
states are suppressed, allowing one to compute the light-by-light tensor in a controlled
expansion [52–55].

The leading single-pole contributions to the HLbL arise from the exchange of neutral
pseudoscalar mesons, cf. Fig 5.1, which may be expressed in terms of the non-
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P

+ crossed

P

Figure 5.1: Pseudoscalar-pole diagrams contributing to the leading order hadronic
light-by-light scattering. Each striped circle indicates a non-perturbative P → γ∗γ∗

transition form factor required to evaluate these contributions, where “P ” stands for
the pseudoscalar.

perturbative transition form factors [50],

Mµν(p, q1) = i

∫
d4xeiq1x⟨0|T{jµ(x)jν(0)}|P (p)⟩

= ϵµναβq
αpβFPγγ(q

2
1, q

2
2), (5.1)

where the pseudoscalar “P ” is on shell, p2 =M2
P , and the photon momenta q1 and

q2 = p− q1 may be either on-shell or virtual. The pseudoscalar pole contributions to
the hadronic light-by-light tensor are given in terms of the transition form factor as

Π
(P )
µνλρ(q1, q2, q3) = i

FPγγ(q
2
1, q

2
2)FPγγ(q

2
3, (q1 + q2 + q3)

2)

(q1 + q2)2 +M2
P

× ϵµναβq
α
1 q

β
2 ϵλργδq

γ
3 (q1 + q2)

δ + (cyclic), (5.2)

with the dominant contributions arising from the lightest neutral pseudoscalars,
P ∈ {π0, η, η′}.

Because of its light mass, the π0 pole contribution is larger than those of the η and
η′ by roughly a factor of four. This feature, together with the relative simplicity of
accessing the pion transition form factor in both lattice and data-driven approaches,
means that the study of this transition form factor is farthest advanced at this point.
On one hand, the pion transition form factor has been determined in a data-driven
dispersive approach [63–65]. On the other hand, an ab-initio determination is desirable
to remove dependence on experimental inputs. As such, the neutral pion transition
form factor has also been computed on the lattice by the Mainz group using Wilson
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quarks [66,67] and by the BMW collaboration using staggered quarks [166].The major
source of uncertainty in the latter approaches is the extrapolation to the continuum
and physical pion mass limits. This motivates the present work, which evaluates the
pion transition form factor from twisted mass lattice QCD using ensembles directly
at the physical pion mass. We note that the computation in [166] has also been done
at physical pion mass.

The structure of this paper is as follows. In Sec. 5.3, we present the theoretical
background for the extraction of the required amplitudes from lattice QCD simulations
and their extension to arbitrary Euclidean times. In Sec. 5.4, we describe the
calculation of the transition form factors and their extension to arbitrary photon
virtualities. Furthermore, we discuss the sampling used for this extension as well
as details of the renormalization. In Sec. 5.5 and 5.6, we present the calculation of
aπ−pole
µ from the transition form factors and introduce the decay width Γ(π → γγ)

and the slope parameter bπ. Next, in Sec. 5.7, we discuss the Akaike Information
Criterion as a tool to estimate statistical and systematic errors before presenting our
model averaged results in Sec. 5.8, comparing them to experimental and theoretical
predictions. Then, in Sec. 5.9, we make some concluding remarks and give an
outlook on possible future directions for improving the calculation presented here.
In App. A.1, we list the operators used in our calculation, along with their behavior
under some transformations and the gamma matrix conventions we use. In App. A.2,
we give more details on the integral representation introduced in Sec. 5.5.

5.3 Methodology

By analytic continuation, the Minkowski space neutral pion transition form factor in
Eq. (5.1) is related to the amplitude in Euclidean space [119–121]

Mµν(p, q1) = in0ME
µν(p, q1), ME

µν =

∫ ∞

−∞
dτ eω1τ Ãµν(τ), (5.3)
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where n0 = δµ,0+ δν,0, ω1 is the temporal component of q1, and the integrand is given
by the Euclidean matrix element

Ãµν(τ) =
⟨
0|T{jµ(q⃗1, τ)jν(p⃗− q⃗1, 0)}|π0(p)

⟩
. (5.4)

The lattice evaluation of the transition form factor proceeds by first extracting this
matrix element from a lattice three-point function, then integrating Eq. (5.3) for
various choices of ω1, as we now discuss.

5.3.1 Three-point Function

We will access the matrix element Ãµν(τ) through the following lattice three point
correlation function

Cµν(τ, tP ) =
∑
x⃗f ,x⃗c

⟨T{π0(xf )j
†
ν(xc)j

†
µ(xi)}⟩eip⃗x⃗f e−iq⃗1x⃗c

= ⟨T{π0(p⃗, tf )j
†
ν(q⃗1, tc)j

†
µ(x⃗i = 0⃗, ti)}⟩, (5.5)

where the pseudoscalar has an outgoing momentum p⃗ at late times tf , and the vector
current at the insertion tc has an incoming momentum q⃗1. The vector current at the
source ti is at position x⃗i and automatically picks up an incoming momentum p⃗− q⃗1

by translation invariance, or equivalently conservation of momentum. τ = tc − ti

is the temporal separation of the vector currents, and tP = min(tf − ti, tf − tc) is
the minimal temporal separation between the pseudoscalar and the nearest vector
current.

In the limit that the pion annihilation operator π0(p⃗, tf) is in the distant future,
tf ≫ ti, tc, the Euclidean matrix element in Eq. (5.4) can be recovered from the
three-point function. In the following, we will suppress the dependence on momenta
and spatial positions, and find for τ > 0

Cµν ≈ e−Eπ(tf−tc)
Zπ

2Eπ

⟨
π0(p⃗)

⏐⏐j†µ(0)j†ν(−τ)⏐⏐ 0⟩
= e−Eπ(tf−ti)

Zπ

2Eπ

⟨
π0(p⃗)

⏐⏐j†µ(τ)j†ν(0)⏐⏐ 0⟩ (5.6)
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and for τ < 0

Cµν ≈ e−Eπ(tf−ti)
Zπ

2Eπ

⟨
π0(p⃗)

⏐⏐j†ν(0)j†µ(τ)⏐⏐ 0⟩
= e−Eπ(tf−tc)

Zπ

2Eπ

⟨
π0(p⃗)

⏐⏐j†ν(−τ)j†µ(0)⏐⏐ 0⟩ (5.7)

where
Zπ ≡

⟨
0|π0(⃗0, 0)|π0(p⃗)

⟩
(5.8)

Given these limiting expressions, we define

Ãµν =
2Eπ

Zπ

eEp(tf−tc)Cµν (5.9)

This amplitude is related to that in Eq. (5.3) via a time reversal transformation as
we will show.

The vector current can be decomposed into definite isospin combinations.

jµ =
1

6
j0,0µ +

1

2
j1,0µ (5.10)

Keeping only the isospin preserving pieces of the amplitude Cµν , we have

Cµν =
1

12

(⟨
π0j1,0†ν j0,0†µ

⟩
+
⟨
π0j0,0†ν j1,0†µ

⟩)
=

1

6

⟨
π0j1,0†ν j0,0†µ

⟩
(5.11)

At finite lattice spacing, isospin symmetry is broken in Wilson twisted mass lattice
QCD, which is an O(a2) effect independently of the twist angle, cf. Ref. [81]. By
only considering the isospin preserving pieces of the amplitude, these artefacts can
be avoided.

Next we study how the amplitudes defined in our conventions are related to time
reversed counterparts. The twisted time reversal transformation of our operators is
given in App. A.1.4. Let us take the neutral-pion isospin-projected amplitude for
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Cµν . The twisted time reversal transformation symmetry means that it is equal to

Cµν =
1

6

{
⟨π0(tf )j

0,0
ν (tc)

†j1,0µ (ti)
†⟩, τ > 0

⟨π0(tf )j
1,0
µ (ti)

†j0,0ν (tc)
†⟩, τ < 0

}

=
1

6

{
−⟨j1,0µ (−ti)j0,0ν (−tc)π0(−tf )†⟩, τ > 0

−⟨j0,0ν (−tc)j1,0µ (−ti)π0(−tf )†⟩, τ < 0

}
(5.12)

Then for large time separations tf ≫ tc, ti, the three-point amplitude takes the form

Cµν → − Z∗
π

2Eπ

e−Eπtf
1

6

{
⟨0|j1,0µ (−ti)j0,0ν (−tc)|π0(p⃗)⟩, τ > 0

⟨0|j0,0ν (−tc)j1,0µ (−ti)|π0(p⃗)⟩, τ < 0

}
(5.13)

= − Z∗
π

2Eπ

e−Eπ(tf−tc)
1

6

{
⟨0|j1,0µ (τ)j0,0ν (0)|π0(p⃗)⟩, τ > 0

⟨0|j0,0ν (0)j1,0µ (τ)|π0(p⃗)⟩, τ < 0

}
(5.14)

Therefore we find in the limit tf ≫ ti, tc

Ãµν = −Z
∗
π

Zπ

Ãµν (5.15)

I.e. our definition of Ãµν differs from the standard Mainz definition Ãµν by at most a
phase. For the pion, the overlap factor is set to be Zπ = Z∗

π = Fπm
2
π/mPCAC > 0 by

the PCAC relation with the choice of pion operator used here, cf. [66, 67, 123]. Thus
our definition of Ãµν differs from the standard Mainz definition by a sign only, which
is always included going forward such that the amplitude with contracted Lorentz
indices, given in Eq. (5.25), is real and positive.

One then constructs

Ãµν(τ) =
2Eπ

Zπ

lim
tP→∞

eEπ(tf−t0)Cµν(τ, tP ). (5.16)

We use gauge ensembles produced by the Extended Twisted Mass Collaboration
(ETMC) in isospin-symmetric QCD (isoQCD) with Nf = 2+1+1 flavours of Wilson
Clover twisted mass quarks are used, with quark masses tuned very close to their
physical values. Some properties of the used ensemble can be found in Tab. 5.1, for
more details see Refs. [40, 100,103–105].
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Ensemble V/a4 Nconf β a [fm] aµl Mπ [MeV] L [fm] MπL
cB211.072.64 643 · 128 748 1.778 0.07961(13) 0.00072 140.2(2) 5.09 3.62
cC211.060.80 803 · 160 397 1.836 0.06821(12) 0.00060 136.7(2) 5.46 3.78
cD211.054.96 963 · 192 495 1.900 0.05692(10) 0.00054 140.8(2) 5.46 3.90

Table 5.1: Parameters of the ETMC ensembles for the analysis presented in this
work, adapted from [40]. Further paramters can be found in [40,100,103–105].

We perform our calculation for fermion fields in the twisted basis denoted χ related
to the usual light fermion doublet ψ = (u, d) through the twist transformation
(ψ, ψ̄) = (eiπγ5τ

3/4χ, χ̄eiπγ5τ
3/4) which removes the twisted mass term in the action.

We define the normalization of our operators to be convenient in the twisted basis,
as shown in App. A.1.

In the twisted mass formulation, the three point amplitude Eq. (5.5) contains
disconnected contributions in which the pion contracts with itself. These include
a singly disconnected contribution which correlates the neutral pion loop with
the connected vector-vector two point function, as well as a doubly disconnected
contribution with three loops. For this reason, we instead consider the isospin-rotated
amplitude

C±
µν = −1

6

⟨
π−j1,+†

ν j0,0†µ

⟩
+

1

6

⟨
π+j1,−†

ν j0,0†µ

⟩
, (5.17)

which does not contain a pion loop disconnected contribution. This amplitude only
contains connected and vector current disconnected (“V-disconnected”) contributions,
depicted in Fig. 5.2. The rotated amplitude is related to Eq. (5.5) by lattice artifacts
of order O(a2) due to isospin breaking away from the continuum limit in twisted mass
lattice QCD. These artifacts are accounted for in the final continuum extrapolation.

To confirm the relation between Eq. (5.11) and Eq. (5.17), note that the vectorial
isospin transformation acts on fields in the twisted basis as

χ(x) → e−iωγ5τ3/2eiθaτa/2eiωγ5τ3/2χ(x), (5.18)

χ̄(x) → χ̄(x)eiωγ5τ3/2e−iθaτa/2e−iωγ5τ3/2. (5.19)

where we have ω = π/2 for maximal twist. Consider the rotation θ1 = θ3 = 0,
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Figure 5.2: Wick contractions contributing to C±
µν(τ, tP ). These are the connected

(top row), and pseudoscalar disconnected (“P-disconnected”, bottom row) diagrams.
Note that the connected diagrams only involve light quarks, while the disconnected
current loop in the P-disconnected diagrams can also be a strange or charm current
loop, since s and c charms are present in the sea quarks.

θ2 = π/2, call this transformation Iy. For the neutral pion, one finds

π0 = χ̄(x)χ(x)
Iy−→ −iχ̄(x)γ5(τ+ + τ−)χ(x) = −i(π+ + π−). (5.20)

Similarly the vector current operators transform as

j0,0µ

Iy−→ j0,0µ , (5.21)

j1,0µ

Iy−→ ij1,+µ − ij1,−µ . (5.22)

Applying this to Eq. (5.11), the amplitude in Eq. (5.17) is recovered.

5.3.2 Kinematics

The pion momentum p⃗ is set through the pseudoscalar interpolating operator in
Eq. (5.5), with the energy Eπ imposed by the on-shell condition. Momentum conser-
vation p⃗ = q⃗1 + q⃗2 allows us to freely vary one of the two vector current momenta,
for example q⃗1, from the available finite-volume momenta q⃗1 = 2π

L
n⃗, n⃗ ∈ Z

3. In
Eq. (5.3) we can also continuously vary ω1, while ω2 is given by energy conserva-
tion Eπ = ω1 + ω2. The kinematical range accessible on the lattice can then be
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Figure 5.3: Range of photon virtualities spanned in our calculation on the ensembles
cB211.072.64 (left) and cC211.060.80 (middle) and cD211.054.96 (right).

parametrized by the accessible virtualities of the electromagnetic currents,

q21 = ω2
1 − q⃗21,

q22 = (Eπ − ω1)
2 − (p⃗− q⃗1)

2. (5.23)

For a resting pseudoscalar p⃗ = 0, it holds that Eπ = mπ and q⃗2 = −q⃗1. In this case,
the photon virtualities simplify to

q21 = ω2
1 − q⃗21,

q22 = (mπ − ω1)
2 − q⃗21. (5.24)

The condition q2i < 4m2
π, or equivalently

√
4m2

π + q⃗21 +mπ < ω1 <
√

4m2
π + q⃗21 pre-

vents the off-shell photon from turning into a real hadron state [119]. Fig. 5.3 depicts
the kinematical range for 26 different choices of |q1|2 with (2π/L)2 ≤ |q⃗1|2≤ 32(2π/L)2

for the finite volumes accessible on the three distinct ensembles used in this work.
For all three ensembles, the maximum momentum used in the evaluation of the
three-point correlation function gives access to virtualities up to |q21,2|≈ 1.7GeV2.
Using Eqs. (5.1), (5.3) and (5.24) it is straightforward to show that the rest-frame
Ãµν(τ) vanishes when one or both Lorentz indices are temporal, while the spatial
components can be written as

Ãij(τ) = −imπϵijkq
k
1Ã(τ). (5.25)
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Inverting the relation gives

Ã(τ) = iϵijk
qk1

mπ q⃗21
Ãij(τ), (5.26)

where Ã(τ) is a scalar under the spatial rotation group. Since the full amplitude can
be extracted from the scalar Ã(τ) in the rest frame, we focus on the evaluation of
this scalar function for the remainder of this work.

We start from the lattice data Cµν(τ) by constructing C(τ) and averaging over
equivalent momenta through the cubic group to increase statistics. Let

Q = {{q⃗(i)} : q⃗2(i) = q⃗2, q⃗(i) ̸= −q⃗(j)∀i ̸= j} (5.27)

be half the orbit of momentum q⃗2 (i.e. to avoid double counting, it only contains q⃗
or −q⃗, not both). Then one takes

C(τ) =
1

2|Q|
∑
q⃗∈Q

iϵijk
q⃗k

mπq2
Cij(τ), (5.28)

which is related to Ã(τ) by Eq. (5.16).

5.3.3 Finite-time Extent Corrections

With periodic temporal boundaries, an operator inserted at a specified time may
create or destroy states which will have or have wrapped around the lattice, i.e.
backward propagating pions may contribute to the three-point correlation function.
We study the asymptotic behaviour of the three-point correlation function of the
backwards propagating pions, again considering the limit that the pion is in the
distant future, tf ≫ ti, tc, with τ = tc − ti and hiding the dependence on momenta
and spatial positions. We have for τ > 0

Cµν ≈ e−Eπ(T−(tf−tc)−τ)Zπ(p⃗)

2Eπ

⟨
π0(p⃗)

⏐⏐⏐j†c(0)j†i (−τ)⏐⏐⏐ 0⟩ (5.29)
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and for τ < 0

Cµν ≈ e−Eπ(T−(tf−ti)+τ)Zπ(p⃗)

2Eπ

⟨
π0(p⃗)

⏐⏐⏐j†i (0)j†c(τ)⏐⏐⏐ 0⟩ , (5.30)

such that

Ãµν(τ > 0) =
2Eπ

Zπ

lim
tP→∞

eEπ(tf−t0)Cµν(τ, tP )
[
1− e−Eπ(T−2tP−τ)

]−1
,

Ãµν(τ < 0) =
2Eπ

Zπ

lim
tP→∞

eEπ(tf−t0)Cµν(τ, tP )
[
1− e−Eπ(T−2tP+τ)

]−1
. (5.31)

Examples for Ã(τ) including finite time corrections are shown in Fig. 5.4.
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Figure 5.4: Ã(τ) for τ/a ∈ [−20, 20] with |q⃗1|2= 10(2π/L)2 including finite-time
extent corrections on the ensembles cC211.060.80 (left) and cD211.054.96 (right).
Show in orange is the full Ã(τ), in blue the connected contribution, and in green, red
and purple the V-disconnected contributions (multiplied by 50 for easier comparison)
with a light, strange and charm current loop, respectively.

5.3.4 Tail Fits

The extraction of the transition form factor in principle require access to Ã(τ) for
arbitrary τ , cf. Eq. (5.3). To estimate the amplitude over the whole temporal
range we use two phenomenological models, namely the VMD and the LMD model,
cf. [118,124,125]. They were chosen since they allow global fits to all momenta in
our data simultaneously and since they reproduce certain constraints explained in
the following. In the chiral limit and at low energy, a fermionic triangle diagram
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contributes an extra term, the so-called Adler-Bell-Jackiw (ABJ) anomaly [167,168],
to the PCAC relation, this restrains the form factor to

Fπ0γγ(0, 0) =
1

4π2Fπ

, (5.32)

with Fπ = 92.3(1)MeV the pion decay constant [12]. The Brodsky-Lepage behaviour
constrains the single-virtual form factor at large Euclidean (spacelike) momentum
[169–171]. At leading order in αs, one finds

Fπ0γγ(−Q2, 0)
Q2→∞−→ 2Fπ

Q2
. (5.33)

This behaviour is reproduced by the VMD model, but the LMD model tends to
a constant at large Eucidean momenta in the single-virtual form factor. Finally,
the operator product expansion (OPE) at short distances [172, 173] restricts the
doubly-virtual form factor where both momenta become large at the same time, one
finds in the chiral limit

Fπ0γγ(−Q2,−Q2)
Q2→∞−→ 2Fπ

3

[
1

Q2
+O

(
1

Q4

)]
. (5.34)

This behaviour is reproduced by the LMD model, but the VMD model in this case
falls off as 1/Q4 [66].
The VMD and LMD form factors are given by

FVMD
π0γγ =

αM4
V

(M2
V − q21)(M

2
V − q22)

(5.35)

and
FLMD

π0γγ =
αM4

V + β(q21 + q22)

(M2
V − q21)(M

2
V − q22)

, (5.36)

respectively, where α = αth = 1/(4π2Fπ) = 0.274GeV−1 to reproduce the ABJ anom-
aly, MV usually is set to the ρ meson mass and β = βOPE = −Fπ/3 = −0.0308GeV
to reproduce the leading OPE prediction [66,124,125]. We will treat α,MV and β as
free model parameters when fitting the models to our data. For the LMD amplitude
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fit function one finds

ÃLMD(τ ≷ 0) =

± 1

2

[
αM4

V + β(2M2
V +m2

π ∓ 2mπ

√
M2

V + |q⃗1|2)
mπ

√
M2

V + |q⃗1|2(2
√
M2

V + |q⃗1|2 ∓mπ)
e∓

√
M2

V +|q⃗1|2τ

−
αM4

V + β(2M2
V +m2

π ± 2mπ

√
M2

V + |q⃗1|2)
mπ

√
M2

V + |q⃗1|2(2
√
M2

V + |q⃗1|2 ±mπ)
e−(mπ±

√
M2

V +|q⃗1|2)τ
]

(5.37)

using Eqs. (5.3) and (5.36) and noting that Ãµν is essentially the Laplace transform
of the form factor [66]. The VMD fit function is obtained by setting β = 0.

In particular the VMD model is not expected to capture the short-distance behavior
of Ã(τ) well, but both models capture the long-distance behavior accurately. However,
we will use the lattice data directly for the short-distance region as discussed in
Sec. 5.4.1.

5.4 Transition Form Factor

5.4.1 Numerical Integration

To obtain the transition form factors, we need to evaluate

Fπ0γγ(q
2
1, q

2
2) =

∫ ∞

−∞
dτ Ã(τ)eω1τ , (5.38)

where for a given momentum orbit |q⃗1|2 the squared four-momenta q21 and q22 are given
by Eq. (5.24). While Ã(τ) decreases exponentially quickly for |τ |≫ 1, the exponential
factor eω1τ still probes a tail of Ã(τ) if |ω1| is sufficiently large. This makes the
numerical integration difficult: Since the signal-to-noise ratio decreases when going
to larger |τ |, fluctuations in one of the tails due to the small signal-to-noise ratio
are exponentially enhanced. We observe that this effect is small for the diagonal
case with q21 = q22 ⇒ ω1 = mπ/2, mainly since at the physical point, mπ is small, and
severe for the single-virtual case q21 = 0 ⇒ ω1 = |q⃗1| due to the strong dependence
of ω1 on the used momentum orbit, especially for the larger momentum orbits. For
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an illustration, see Fig. 5.5. For choices of virtualities between these two cases, the
exponential enhancement gets more and more pronounced when going from the
diagonal to the single-virtual case. Further, the range of integration over the lattice
data is limited naturally due to the finite extent of the lattice.
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Figure 5.5: Integrands Ã(τ)eω1τ with |q⃗1|2= 6(2π/L)2 on the ensemble cB211.072.64,
comparing diagonal kinematics q21 = q22 (left) and single-virtual kinematics q22 = 0
(right). Shown in blue is the integrand from lattice data and in orange from a
correlated LMD fit to Ã(τ) according to Eq. (5.37). The fit was done globally across
all momentum orbits (2π/L)2 ≤ |q⃗1|2≤ 32(2π/L)2 with fit range [−10,−8] ∪ [8, 10],
indicated by the grey bands, giving χ2/d.o.f. = 1.01. The red point indicates
the timeslice where the pseudoscalar operator is inserted, while the greyed out
points are those with a timeordering not satisying the one from Eq. (5.4). For
the diagonal kinematics, aω1 = amπ/2 ≈ 0.028, for the single-virtual kinematics,
aω1 = a|q⃗1|≈ 0.31.

These issues are addressed by the introduction of cutoff times τL/Rcut , with lattice data
replaced by a fitted Ã(τ) for τ ≥ τRcut and τ ≤ τLcut. In our analysis, we perform a
global fit per jackknife or bootstrap sample to Eq. (5.37) across data at all available
q⃗1 and for values of τ selected from symmetrical fit ranges on both sides of the peak,
i.e. τ ∈ [−τmax,−τmin] ∪ [τmin, τmax]. The left and right cutoff times are selected
depending on the sign of ω1 to include as much data as possible on the exponentially
suppressed tail of the integrand, in particular by fixing τLcut = T/2 or τRcut = T/2

when ω1 ≥ 0 or ω1 < 0, respectively. The choice of the remaining cutoff time is
varied to assess the systematic error associated with this fitting choice.

Finally, we filter the choices of cutoff times and kinematics to demand that for a
given momentum orbit and ω1 a certain percentage of Fπ0γγ(q

2
1, q

2
2) must come from
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the lattice data. This is done to minimize the introduction of a model dependence in
the final result.

5.4.2 z-Expansion

Integrating the amplitude for various choices of ω1 in principle gives access to the
form factor for any of the kinematics on the discrete orbits shown in Fig. 5.3. We
then use the z-expansion proposed in [67] to extrapolate this data to the whole
kinematical range. This is a model-independent way of extending the transition
form factor to arbitrary photon momenta which is preconditioned to more easily
reproduce the form factor structure. Following [67], the model independent fit form
is constructed by first defining the conformal variables z1 and z2 [174]

zk =

√
tc +Q2

k −
√
tc − t0√

tc +Q2
k +

√
tc − t0

, k ∈ {1, 2}, (5.39)

where tc = 4m2
π, indicating the position of the branch cut due to the two-pion

threshold. t0 is a free parameter which can be tuned to optimize the rate of
convergence. The optimal choice of t0 for a given Q2

max is

t0 = tc

(
1−

√
1 +Q2

max/tc

)
, (5.40)

which reduces the maximum value of |zk| in the range [0, Q2
max]. We use

Q2
max = 4GeV2 in the present study.

In terms of these conformal variables, one can write

Fπ0γγ(−Q2
1,−Q2

2) =
∞∑

n,m=0

cnmz
n
1 z

m
2 , (5.41)

since the transition form factor is analytic for |zk|< 1. The coefficients cnm = cmn are
symmetric due to the Bose symmetry. Note that |zk|< 1, such that a fast convergence
of the sum is expected. In practise, this means that it is sufficient to restrict the
sum to m,n ≤ N , where the maximum order N is chosen to reach a given accuracy.
The transition form factor can be multiplied by an arbitrary analytical function
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P (Q2
1, Q

2
2) and the resulting product expanded in powers of zk. This allows for the

preconditioning to more easily reproduce the form factor structure. As shown in [67],
the choice

P (Q2
1, Q

2
2) = 1 +

Q2
1 +Q2

2

M2
V

, (5.42)

where MV = 775.26(23)MeV [12] is the ρ meson mass, leads to a parametrization of
the transition form factor which decreases asymptotically as 1/Q2 in all directions
in the momentum plane even at finite values of N , thus satisfying the momentum
dependence of Eqs. (5.33) and (5.34). As shown in [175], to enforce the appropriate
scaling at the two-pion threshold, the derivatives of the transition form factors with
respect to zk at zk = −1 need to be fixed to zero, giving the expansion [67]

P (Q2
1, Q

2
2)Fπ0γγ(−Q2

1,−Q2
2)

=
N∑

m,n=0

cnm

(
zn1 − (−1)N+n+1 n

N + 1
zN+1
1

)
×
(
zm2 − (−1)N+m+1 m

N + 1
zN+1
2

)
. (5.43)

One possibility to obtain results in the continuum limit is to perform a combined fit
to all three ensembles with a correction term for O(a2) lattice artefacts by modifying
the coefficients as

cnm(a) = cnm(0) + δnm

(
a

aref.

)2

, (5.44)

where we use the cC211.060.80 lattice spacing for aref..

In contrast to [67] and the recently published [166] we perform fully correlated fits
to the modified z-expansion. We are using N = 1, 2 and variations N = 1 plus
one additional coefficient, since usually at least two of the N = 2 coefficients are
correlated with c11, see Sec. 5.4.3. While we can only include O(102) data points per
ensemble, we find that the resulting fits describe the lattice data well, even the cuts
not included in the fit, as seen in the example in Fig. 5.6.

Note that the transition form factors obtained from Eq. (5.43) multiplied by Q2 tend
to a constant by construction, with predictions for the single-virtual and diagonal case,
cf. Eqs. (5.33) and (5.34). We exclude analyses where the single-virtual transition
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Figure 5.6: Correlated z-expansion fit to q22
q21

∈ {1.0, 0.88, 0.0} on cC211.060.80, using
c00, c10, c11 and c22. Only TFF data points where at least 95% of the transition form
factors come from lattice data (colored red for the used cuts) are included, for Ã(τ)
a global LMD fit with fit range [20, 21] and τcut = 23 in lattice units is used. The
reduced χ2 are χ2

Ã
/d.o.f = 0.86 and χ2

z−exp./d.o.f = 1.00. Data in blue are shown for
illustration only. The whole sampling is shown in Fig. 5.8.

form factor multiplied by Q2 tends to a constant smaller than zero, since this clearly
violates those predictions.

5.4.3 Sampling in the Momentum Plane

As illustrated in Fig. 5.3, the transition form factor obtained from the lattice is a
continuous function of ω1 for each spatial momentum orbit |q⃗1|2. In order to fit to the
z-expansion, we need to sample choices of ω1 to determine our input data first. In
this work, we do so by selecting ω1 corresponding to fixed choices of the ratio q22/q21,
i.e. by finding the intersection between our available orbits and several diagonal “cuts”
through the (q21, q

2
2) plane. Because the underlying lattice data are identical for all

choices of ω1 within each orbit, data at nearby values of ω1 are strongly correlated.
A relatively sparse sampling is therefore possible without sacrificing useful inputs
to the z-expansion fits. Both q22/q21 = 0 and q22/q21 = 1 are useful choices of ratio to
include, the former since the single-virtual transition form factor plays an important
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role later, and the latter since we get the best signal-to-noise ratio in the transition
form factor there.

We found that correlated z-expansion fits with both N = 1 and N = 2 lead to a
good quality of fit when including three or four such cuts. However, for N = 2, at
least two of the coefficients cnm are correlated in this case. Even when including
only one of the N = 2 coefficients in conjunction with all three N = 1 coefficients,
we find slight correlations between some of them. See Fig. 5.7 for an example using
cnm = {c00, c10, c11, c22} with the corresponding correlation matrix given by

cor(cnm) =

⎛⎜⎜⎜⎜⎝
+1.00 −0.30 −0.39 +0.31

−0.30 +1.00 −0.05 −0.14

−0.39 −0.05 +1.00 −0.88

+0.31 −0.14 −0.88 +1.00

⎞⎟⎟⎟⎟⎠ , (5.45)

To get reliable estimates of the individual coefficients, it is desirable to only use a
subset of the coefficients which are not strongly correlated. Furter, with N ≥ 3 the
fits in general do not converge.

We used the following procedure for the sampling in the momentum plane. For
however many cuts we want to make we determine ω1 such that q22/q21 ∈ {0, 1}
are included and that the arc length of the curve parametrized by ω1 between
neighbouring samples on |q⃗1|2= 32(2π/L)2 is constant. This fixes the ratios q22/q21
which we then use to determine the needed ω1 on the other spatial momentum orbits.
To better cover the close to single-virtual region, we also include a cut q22/q21 = 0.1

together with five cuts with equal arc length, cf. Fig. 5.8. We do correlated z-
expansion fits per jackknife or bootstrap sample for a number of choices of three
cuts (all combinations from the ones with equal arc length which include both the
diagonal and single-virtual case, as well as the diagonal and closest to diagonal case
plus the q22/q21 = 0.1 cut) from the six shown in Fig. 5.8 and for four cuts (with the
diagonal, closest to diagonal, closest to single-virtual and single-virtual cut), while
imposing a threshold for a minimal data content in the transition form factor of 95%
to minimize the VMD and LMD model dependence as mentioned in Sec. 5.4.1.
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Figure 5.7: Cornerplot of a correlated z-expansion fit to (q22/q
2
1) ∈ {1.0, 0.88, 0.0} on

cC211.060.80, using coefficients c00, c10, c11 and c22. Only TFF data points where
at least 95% of the transition form factors come from lattice data are included,
for Ã(τ) a global LMD fit with fit range [20, 21] and τcut = 23 in lattice units is
used. The reduced χ2 are χ2

Ã
/d.o.f = 0.86 and χ2

z−exp./d.o.f = 1.00. Notice the clear
(anti)correlation between c11 and c22 and the less severe (anti)correlations between
all other coefficients except for c10 and c11 which are almost completely uncorrelated.
The corresponding correlation matrix is given in Eq. (5.45). When including all
N = 2 coefficients, it turns out that c20 and c21 are strongly correlated with c11 for
almost all choices of parameters.
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Figure 5.8: Sampling in the momentum plane used to extract Fπ0γγ(q
2
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2) over the

whole kinematical range. Cuts (q22/q21) ∈ {1.0, 0.88, 0.78, 0.59, 0.1, 0.0} on ensemble
cB211.072.64.

5.4.4 Renormalization

As detailed in App. A.1, we use point-like (local) bare current operators instead of
the exactly conserved one-point split vector currents j̃ 0,0

µ and j̃ 1,0
µ and the one-point

split axial current j̃ 1,±
µ . The vector currents j̃ 0,0

µ and j̃ 1,0
µ are Noether currents

associated with the flavor global vector transformations, i.e. they follow from Ward-
Takahashi Identities (WIs), and the axial current j̃ 1,±

µ follows from the axial WI. It
is computationally much cheaper and easier to use the nonconserved local operators
instead of the point split operators, but this must then be renormalized as discussed
in the following.

As shown in [176–178], for LQCD with Wilson fermions, the conserved vector currents
do not require renormalization, i.e. ZṼ = 1, because of the existence of an exact WI,
which at the same time implies that the local vector currents j0,0µ and j1,0µ are not
conserved. However, the matrix elements of the local vector current coincide with
those from the point split vector current in the continuum. It is further shown that
the renormalization constant (RC) of the local vector current, ZV , is finite and that
it can only depend on the bare gauge coupling β (which controls the lattice spacing),
i.e. ZV (β) ̸= 1. It is then shown in [40] that for our lattice setup, both j0,0µ and j1,0µ
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Ensemble ZV ZA

cB211.072.64 0.706378(16) 0.74284(23)
cC211.060.80 0.725405(13) 0.75841(16)
cD211.054.96 0.744105(11) 0.77394(10)

Table 5.2: Values of ZV and ZA for the ETMC ensembles which were used in this
work, cf. [40].

are renormalized with the same RC.

Because of the chiral symmetry breaking Wilson term in the action, it is less
straightforward to implement the axial symmetry, however, the PCAC is recovered
in the continuum by using suitable renormalization conditions [177, 178]. It is shown
in [176] that the WI for the one-point split axial current contains an additional
term compared to the vector current case, coming from the variation of the Wilson
term under axial transformations. Still, the local axial current can be used since
ĵ 1,±
µ = lima→0 ZÃj̃

1,±
µ = lima→0 ZAj

1,±
µ holds, with ĵµ the PCAC and ZÃ(β) and

ZA(β) the point split and local axial current RCs, respectively.

For the ensembles used in this work, the RCs were calculated in [40] using a hadronic
method based on the WI, employing a high statistics determination of the needed
correlators. The resulting ZV and ZA are found in Tab. 5.2, and the corresponding
renormalized local current operators are given by

j0,0µ,R = ZV j
0,0
µ , (5.46)

j1,0µ,R = ZV j
1,0
µ , (5.47)

j1,±µ,R = ZAj
1,±
µ . (5.48)

Note that the TFFs and the pion pole contributions to aµ, after the transformation
Iy, are renormalized with ZVZA and Z2

VZ
2
A, respectively. Further note that the errors

on the RCs are negligible compared to the errors on the bare TFFs, such that we
only use the central values of the RCs.
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5.5 3d Integral Representation of the Contribution

to aµ

We follow [118] and [116] and use the three-dimensional integral representation for
the pion pole contribution

aπ−pole
µ =

(α
π

)3 [
aπ−pole(1)
µ + aπ−pole(2)

µ

]
, (5.49)

where α is the fine structure constant,

aπ−pole(1)
µ =

∫ ∞

0

dQ1

∫ ∞

0

dQ2

∫ 1

−1

dτ

w1(Q1, Q2, τ)Fπ0γγ(−Q2
1,−Q2

3)Fπ0γγ(−Q2
2, 0), (5.50)

and

aπ−pole(2)
µ =

∫ ∞

0

dQ1

∫ ∞

0

dQ2

∫ 1

−1

dτ

w2(Q1, Q2, τ)Fπ0γγ(−Q2
1,−Q2

2)Fπ0γγ(−Q2
3, 0). (5.51)

The integration is performed over the magnitudes Q1, Q2 of two of the four-momenta
and τ = cos θ describing the angle θ between them, with the third four-momentum
fixed by Q2

3 = Q2
1 +Q2

2 + 2Q1Q2τ . The weight functions w1 and w2 are given by

w1(Q1, Q2, τ) =

(
−2π

3

)√
1− τ 2

Q3
1Q

3
2

Q2
2 +m2

π

I1(Q1, Q2, τ), (5.52)

w2(Q1, Q2, τ) =

(
−2π

3

)√
1− τ 2

Q3
1Q

3
2

(Q1 +Q2)2 +m2
π

I2(Q1, Q2, τ), (5.53)

where the functions I1,2 are given in App. A.2. Note that w1,2 are both dimensionless
and w1,2(Q1, Q2, τ) → 0 for Q1,2 → 0 and for τ → ±1. Further, w2 is symmetric
under the exchange of Q1 and Q2. In [118], the weight functions for the pion are
studied and discussed in detail. One finds that the momentum region Q1,2 ≤ 0.5GeV
is the most important in Eqs. (5.50) and (5.51) for aπ−pole

µ . For some examples, see
Fig. 5.9. In particular, note that w2(Q1, Q2, τ) is roughly an order of magnitude
smaller than w1(Q1, Q2, τ).
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Figure 5.9: Weight functions w1(Q1, Q2, τ) (left) and w2(Q1, Q2, τ) (right) for the
pion for momenta Q1 and Q2 with a selection of τ = cos θ, corresponding from
top to bottom to θ ∈ {165◦, 90◦, 45◦}. Note the different momentum range for and
magnitude of w2 as well as its symmetry with respect to Q1 ↔ Q2.
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By introducing a momentum cutoff Λ, i.e. by replacing∫ ∞

0

dQ1,2 −→
∫ Λ

0

dQ1,2 (5.54)

in Eqs. (5.50) and (5.51), one can estimate the importance of various momentum
bins. Though the cutoffs are only directly imposed on Q1,2, they imply a cutoff of
Q3 ≤ 2Λ on the third momentum as well. We find that the integrals saturate rapidly,
such that we get around 85% of the total result with Λ = 1GeV and around 90%
with Λ = 1.5GeV, i.e. from momentum regions with strong data support from our
lattice calculation. An example of this is shown in Fig. 5.10. Again, we integrate
separately for each jackknife or bootstrap sample to consistently propagate the errors.
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Figure 5.10: Contribution to aπ−pole
µ for increasing cutoff Λ for ensemble cC211.060.80,

using a N = 2 correlated z-expansion fit to (q22/q
2
1) ∈ {1.0, 0.88, 0.1, 0.0}. Only TFF

data points where at least 95% of the transition form factors come from lattice
data are included, for Ã(τ) a global LMD fit with fit range [7, 8] and τcut = 26 in
lattice units is used. The reduced χ2 are χ2

Ã
/d.o.f = 0.85 and χ2

z−exp./d.o.f = 1.02.
Indicated is the saturation at Λ ∈ {0.5, 1.0, 1.5}GeV as well as the value of the full
contribution for this particular choice of parameters.
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5.6 Decay Width and Slope Parameter

To leading order in the fine structure constant α, the transition form factors determine
the partial decay width through

Γ(π → γγ) =
πα2m3

π

4
|Fπ0γγ(0, 0)|2 . (5.55)

The neutral pion decay width has been measured in the PrimEx and PrimEx-II
experiments [179,180] with a combined result of Γ(π → γγ) = 7.802(52)stat(105)sys eV.

Further, the transition form factors can be used to extract the slope parameter

bπ =
1

Fπ0γγ(0, 0)

dFπ0γγ(q
2, 0)

dq2

⏐⏐⏐⏐⏐
q2=0

, (5.56)

thus providing input for determining the electromagnetic interaction radius. The
averaged experimental result for the slope parameter is bπ = 1.84(17)GeV−2 [12].

These quantities are easily extracted from the form of the z-expansion fit at
(q21, q

2
2) = (0, 0). The value of Fπ0γγ(0, 0) comes directly from the z-expansion

fit, while the derivative can be acquired by differentiating the form of the z-expansion
in Eq. (5.43) with respect to −Q2

1, yielding the slope parameter

bπ = − d

dQ2
1

lnFπ0γγ(−Q2
1, 0)|Q2

1=0

≈ d

dQ2
1

lnP (Q2
1, 0)|Q2

1=0

− d

dQ2
1

ln
[ N∑
m,n=0

cnm

(
zn1 − (−1)N+n+1 n

N + 1
zN+1
1

)
×
(
zm2 − (−1)N+m+1 m

N + 1
zN+1
2

)]
Q2

1,2=0

=
1

M2
V

− 1

z1

dz1
dQ2

1

[ N∑
m=0
n=1

ncnm
(
zn1 − (−1)N+n+1zN+1

1

)
×
(
zm2 − (−1)N+m+1 m

N + 1
zN+1
2

)]
Q2

1,2=0
.

(5.57)
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The term in square brackets can be directly evaluated, and the derivative of the
conformal parameter is given by

1

z1

dz1
dQ2

1

⏐⏐⏐⏐⏐
Q2

1=0

=
1

t0

√
1− t0/tc. (5.58)

5.7 AIC Information Criterion

Due to different choices for the parameters, each analysis chain, defined by all
considered choices of parameters for a given set of cuts in the momentum plane,
yields O(103 − 104) values for aπ−pole

µ , Γ(π → γγ) and bπ. The parameters we can
choose are the fit range and fit model in the fit to Ã(τ), τcut when constructing the
transition form factors and finally the included cuts in the momentum plane in the
fit to the modified z-expansion. For the remainder of this section such a choice of
parameters is called an “analysis”. A priori, only fits with χ2/d.o.f close to 1 are
included in an analysis chain for the single ensemble analyses. For the combined
z-expansion fits the input Ã(τ) fit ranges and τcut were chosen to be similar in
physical units across all ensembles, using tmin ∈ [0.48, 1.27] fm, tmax ∈ [0.64, 1.43] fm
and τcut ∈ [1.35, 2.07] fm on cB211.072.64 as a reference and remaining within 10%

of these physical-units values for the cC211.060.80 and cD211.054.96 ensembles. The
fits across all ensembles are of relatively good quality, with χ2 values in the range
1 ≲ χ2

Ã
/d.o.f ≲ 2.4. We calculate the statistical errors for each analysis using the

jackknife resampling procedure, with configurations spaced far enough such that
there is virtually no autocorrelation between the input data Ã(τ).

To take a weighted average of estimates under various analysis choices in an analysis
chain, we use a modified version of the Akaike Information Criterion (AIC) [164,181].
Closely following the method introduced in [163] and [38], the model averaging
proceeds as follows. For a target observable y, here aπ−pole

µ , Γ(π → γγ) or bπ, we
build a histogram from the different analyses, assigning to each analysis a weight
given by the AIC. This criterion is derived from the Kullback-Leibler divergence,
which measures the distance of a fit function from the true distribution of the points.
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Figure 5.11: Cumulative distribution functions (CDF) of aπ−pole
µ for the combined

fit using cnm = {c00, c10, c11, c22}. The orange curve shows the CDF of ≈15’000
different analyses obtained from their AIC weights, the errors on the orange point
show the statistical errors for some analyses with a significant weight in the model
averaging. This curve corresponds to P (y;λ = 0) while the blue curve corresponds
to P (y;λ = 1), as defined in Eq. (5.61). Indicated in red is the total error obtained
as described in Eq. (5.62). To separate the statistical and systematic part of the
error, we further calculate P (y;λ = 2), as described in the main text.

For a derivation see [163]. We use the the modified AIC introduced in [38],

AIC ∼ exp

[
−1

2

(
χ2 + 2npar − ndata

)]
, (5.59)

where the χ2, the number of fit parameters npar and the number of data points ndata

describe the fit of interest. The first two terms in the exponent correspond to the
standard AIC, and the last term is needed to weigh fits with different lengths in the
fit ranges when fitting to Ã(τ) or to weight z-expansion fits with a differing number
of cuts in the momentum plane when sampling the transition form factors. In general,
two fitting steps are involved in the determination of each of aπ−pole

µ , Γ(π0 → γγ),
and bπ on a given ensemble: the global fit to Ã(τ) and the z-expansion fit to the
transition form factor. A combined weight can be assigned to each combination
of fitting choices across both of these steps by multiplying together the respective
AIC weights given in Eq. (5.59). In the alternative simultaneous continuum and
z-expansion fit procedure described in Sec. 5.4.2, the model averaging step is instead
performed globally across all three ensembles, and therefore a combined AIC weight
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is assigned by multiplying together the weights of the fits to Ã(τ) across all three
ensembles as well as the weight of the final global z-expansion fit with lattice artifacts
included. In either case, the result is one unnormalized weight w̃i per analysis.

To perform model averaging, the weights across all included analyses must first be
normalized, to give

wi = w̃i/
∑
j

w̃j. (5.60)

The weights wi may then be interpreted as a probability. Noting that due to the
central limit theorem, the statistical uncertainties follow a Gaussian distribution
N(y;mi, σi), with central value mi and standard deviation σi, one can include the
statistical uncertainties. The central value and standard deviation are given by the
jackknife resampling procedure for each analysis. We then define the cumulative
distribution function (CDF)

P (y;λ) =

∫ y

−∞
dy′

∑
i

wiN(y′;mi, σi
√
λ), (5.61)

where the rescaling of the statistical error by λ is introduced to later separate
statistical and systematic error. For an illustration, see Fig. 5.11.

We choose the median of the CDF as the central value of y and the total error is
given by the 16% and 84% percentiles of the CDF, i.e.

σ2
total ≡

[
1

2
(y84 − y16)

]2
, (5.62)

where P (y16; 1) = 0.16 and P (y84; 1) = 0.84. The systematic error could then be
defined by evaluating the 16% and 84% percentiles of the P (y; 0) since fixing λ = 0

removes the contribution of the statistical errors to the distribution. However, since
P (y; 0) as a function of step functions is a step function itself, the definition of the
systematic error would be highly sensitive to the value of the chosen percentile. A
more robust choice for the systematic error can be made by first demanding

σ2
total ≡ σ2

stat + σ2
sys, (5.63)

and noticing that the rescaling of each σ2
i by λ is expected to increase σ2

stat by the

153



same factor, i.e.

λσ2
stat + σ2

sys ≡
[
1

2
(ỹ84 − ỹ16)

]2
≡ σ̃2

total, (5.64)

where P (ỹ16;λ) = 0.16 and P (ỹ84;λ) = 0.84. The systematic and statistic errors can
then be separated by a second choice of λ:

σ2
stat =

σ2
total − σ̃2

total

1− λ
, σ2

sys =
σ̃2

total − λσ2
total

1− λ
. (5.65)

In particular, the CDF is smooth for big enough λ and the procedure is insensitive
to the choice of λ.

For a better understanding on the composition of the systematic error, we follow the
error budgeting procedure suggested in [38]. For one of the choices made during the
analysis chain, e.g. the choice between the VMD or LMD fit to Ã(τ) or the different
fit ranges, we first determine the total error for each possible option, varying all other
components of the analysis. We then construct a second CDF as in Eq. (5.61), with
mi the average of the 16% and 84% percentiles, σi the total error and wi the sum of
the weights coming from this choice. Using this CDF, we derive the systematic error
as described above for the original CDF, this is our result for the systematic error
corresponding to the choice. Note that the estimated systematic errors associated
with each of the steps of the analysis by this procedure are correlated, thus they do
not sum up quadratically to the full systematic error.

5.8 Results

Here, our results using the model averaging described in Sec. 5.7 are summarized.
Comparing to our earlier publication [69] we have refined the analysis by system-
atically studying different z-expansion fits and by excluding analyses leading to
unphysical transition from factors as described in Sec. 5.4.2. We include cut-off times
τcut ≈ [1.3, 2.0] fm on all three ensembles with a matching as described in Sec 5.7 for
the combined fits.

For the single ensemble analyses, an AIC averaging over different choices of z-
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expansion fits was performed. We then use the continuum limit extrapolation
method described in Ref. [115] (see Eqs. (38) – (43) therein). The results including
error budgeting are summarized in Tab. 5.3.

For the z-expansion fits we considered in the combined fitting it turns out that the
set cnm = {c00, c10, c11, c22} leads to the least correlation amongst the coefficients
and gives a fully correlated chi-squared per degree of freedom of 1.36. This is our
preferred continuum result. We find

aπ−pole
µ = 56.7(3.1)stat(0.4)sys[3.1]tot × 10−11, (5.66)

Γ(π → γγ) = 7.50(0.48)stat(0.07)sys[0.48]tot eV, (5.67)

bπ = 2.16(0.07)stat(0.01)sys[0.07]tot GeV−2. (5.68)

These values including error budgeting are summarized in Tab. 5.4, an illustration is
show in Fig. 5.12.
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Figure 5.12: Combined fit, single ensemble and continuum extrapolated results from
Tabs. 5.3 and 5.4: aπ−pole

µ (left), Γ(π → γγ) (middle) and bπ (right). Indicated are
the statistical and total errors as well as constant and linear fits in a2 used in the
continuum extrapolation. In each plot, the points from left to right correspond to the
continuum extrapolation in brown, the combined fit (blue cross), the cD211.054.96
(blue diamond), the cC211.060.80 (blue triangle) and the cB211.072.64 (blue circle)
result. In the Γ(π → γγ) and bπ plots, dashed black and grey lines show the
experimental values and their errors, namely Γ(π → γγ) = 7.802(117) eV [180] and
bπ = 1.84(17)GeV−2 [12].

We note that our result for aπ−pole
µ is compatible both with our earlier analysis [69],

where we used the continuum extrapolated result instead of one coming from a
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cB211.072.64 aπ−pole
µ × 1011 Γ(π → γγ) [eV] bπ [GeV−2]

value 57.54(1.81) 6.89(0.33) 1.63(0.18)
σstat 1.39 0.28 0.11
σsys 1.16 0.18 0.15

fit model 0.09 0.01 0.01
fit range 0.00 0.00 0.00
τcut 0.17 0.06 0.03

sampling 0.20 0.06 0.04
z-exp. 1.15 0.17 0.14

cC211.060.80 aπ−pole
µ × 1011 Γ(π → γγ) [eV] bπ [GeV−2]

value 56.65(2.04) 6.72(0.29) 1.54(0.14)
σstat 1.33 0.28 0.13
σsys 1.54 0.08 0.04

fit model 0.01 0.00 0.00
fit range 0.07 0.01 0.00
τcut 0.36 0.03 0.02

sampling 0.50 0.03 0.03
z-exp. 1.51 0.04 0.02

cD211.054.96 aπ−pole
µ × 1011 Γ(π → γγ) [eV] bπ [GeV−2]

value 58.11(2.12) 7.51(0.39) 2.03(0.09)
σstat 2.08 0.36 0.06
σsys 0.37 0.13 0.06

fit model 0.00 0.00 0.00
fit range 0.01 0.00 0.00
τcut 0.19 0.08 0.03

sampling 0.10 0.05 0.03
z-exp. 0.29 0.10 0.06

continuum limit aπ−pole
µ × 1011 Γ(π → γγ) [eV] bπ [GeV−2]

value 57.46(1.58) 7.01(0.32) 1.89(0.20)
σstat 1.57 0.26 0.10
σsys 0.15 0.17 0.17

Table 5.3: Resulting values including error budgeting on the single ensembles and
extrapolated continuum limit results according to [115]. Note the small error budgets
from fit model and fit range, indicating that by restricting the transition form factors
in the z-expansion to have at least a 95% contribution from lattice data indeed leads
to no strong dependence on the model used to extend Ã(τ).
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combined fit aπ−pole
µ × 1011 Γ(π → γγ) [eV] bπ [GeV−2]

value 56.70(3.08) 7.50(0.48) 2.16(0.07)
σstat 3.06 0.48 0.07
σsys 0.35 0.07 0.01

fit model 0.00 0.00 0.00
fit range 0.00 0.00 0.00
τcut 0.33 0.07 0.00

sampling 0.19 0.05 0.01

Table 5.4: Preferred continuum result from the combined fit using
cnm = {c00, c10, c11, c22} and δnm = {δ00, δ10}.

combined fit, as well as the recent lattice result aπ−pole
µ = 57.8±1.8stat±0.9sys×10−11

from Ref. [166]. Comparing to the dispersive result aπ−pole
µ = 63.0+2.7

−2.1 · 10−11 from
Refs. [3, 63,64], we find that our result is compatible at the level of 1.7σ.

For Γ(π → γγ), we find agreement with Γ(π → γγ) = 7.11± 0.44stat ± 0.21sys GeV−2

from Ref. [166]. Our result is also compatible with the experimental value
Γ(π → γγ) = 7.802(52)stat(105)sys eV from Ref. [180].

Finally, for bπ, we are compatible with the experimental result bπ = 1.84(17)GeV−2

from Ref. [12] at the level of 1.7σ. However, we find a tension of 2.75σ with
bπ = 1.78(12)GeV−2 from the extraction based on Padé approximants [182] and a
disagreement of 5σ with the dispersive result bπ = 1.73(5)GeV−2 from Refs. [63, 64].

We note that from the continuum extrapolated values, cf. Tab. 5.3, we would find for
the same comparison a tension of 2.1σ with the dispersive result for aπ−pole

µ and a
tension of 2.3σ with the experimental value for Γ(π → γγ), while finding agreement
with all other mentioned quantities. However, as illustrated in Fig. 5.12, the used
continuum limit procedure from [115] is quite aggressive when using data points
from only three ensembles, and the single ensemble data for bπ leads to a constant fit
with χ2/d.o.f ≈ 5 and is thus clearly not compatible with the assumption of having
only small O(a2) discretization effects.

The z-expansion coefficients for the combined fit are given by
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c00 c10 c11 c22

0.2220(48) -0.0596(59) -0.050(18) 0.27(14)

with correlation matrix

cor(cnm) =

⎛⎜⎜⎜⎜⎝
+1.00 −0.46 −0.07 +0.07

−0.46 +1.00 +0.03 −0.08

−0.07 +0.03 +1.00 −0.83

+0.07 −0.08 −0.83 +1.00

⎞⎟⎟⎟⎟⎠ , (5.69)

the corresponding cornerplot is given in Fig. 5.13. The resulting transition form
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Figure 5.13: Cornerplot of the AIC averaged coefficients of the combined correlated
z-expansion fit, using c00, c10, c11 and c22. Notice the anticorrelation between c11 and
c22 and the less severe anticorrelation between c00 and c10. All other coefficients are
virtually uncorrelated. The corresponding correlation matrix is given in Eq. (5.69).

factors for diagonal and single-virtual kinematics are shown in Fig. 5.14. We find
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good agreement with the smallest CELLO [73] bin, i.e. close to the momentum region
covered by lattice data, for the single-virtual kinematics, while we tend to lower
values compared to the experiment at larger momenta.
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Figure 5.14: Transition form factors from the combined fit using diagonal (left) and
single-virtual (right) kinematics. For the diagonal kinematics, the OPE prediction is
indicated by the dashed black line while for the single-virtual kinematics, experimental
values from CELLO [73], CLEO [72], BaBar [74,75] and Belle [76] are shown. The
region with direct support from lattice data is shaded in grey.

5.9 Conclusion

We have presented an independent ab-initio computation of the pion transition form
factors at the physical point in twisted mass lattice QCD, covering the kinematic
range relevant for the extraction of the pion pole contribution to the HLbL. We are
able to include all disconnected Wick contractions contributing to the amplitudes
relevant for the calculation of the form factors.

We find agreement between the calculated pion form factor and the experimental
data in the single-virtual regime, also with compatible values for the experimental
values of the decay with and the slope parameter.

The main result of this paper, namely the pion pole contribution to HLbL,

aπ−pole
µ = 56.7(3.1)stat(0.4)sys[3.1]tot × 10−11, (5.70)
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is compatible with the recent lattice result aπ−pole
µ = 57.8± 1.8stat ± 0.9sys × 10−11

from Ref. [166] and compatible at the 1.7σ level with the dispersive result
aπ−pole
µ = 63.0+2.7

−2.1 · 10−11 from Refs. [3, 63,64].

In the future, we plan to also use pions in the moving frame to get a better cover-
age of the single-virtual axis. In addition, a fourth physical point ensemble with
approximately the same volume as the three used here, but with an even smaller
lattice spacing, is currently in production and could then also be included in this
calculation.
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Chapter 6

Conclusions and outlook

The aim of this thesis was the computation of the π0- and η-pole contributions to the
anomalous magnetic moment of the muon by an ab-initio calculation using twisted
mass lattice QCD at the physical point. The results can be used to cross-check other
data-driven and lattice calculations in the effort to reduce the uncertainty in the
Standard Model prediction of aµ. At the time this thesis was started, there was no
lattice calculation of aπ−pole

µ at the physical point and no lattice calculation of aη−pole
µ

had been published at all.

To estimate the π0- and η-pole contributions, a model independent parametrization of
the momentum dependence of the transition form factors FP→γ∗γ∗(q21, q

2
2) is computed

from lattice QCD at physical light and heavy quark masses for the pseudoscalars
P = π0 and η first. On the lattice, one has access to a wide range of space-like
photon four-momenta and thus TFFs complementary to the experimentally accessible
single-virtual FP→γγ∗(q2, 0). In the single-virtual case, the lattice provides data at
lower photon virtuality than the experiment. In and close to the region where both
lattice and experimental data are available for FP→γγ∗(q2, 0), the presented π0 lattice
result has a precision better than the experimental results, cf. Ch. 5, while the η
lattice result has a comparable precision, cf. Sec. 4.3.
Using these TFFs as input, the π0- and η-pole contributions to the anomalous
magnetic moment of the muon as well as the decay widths Γ(P → γγ) and slope
parameter bP are calculated. In the case of the π0-pole contribution, agreement within
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Figure 6.1: Left: Comparison of the estimate of aπ-pole
µ from this work versus an

estimate based on dispersion relations [3, 63, 64] and two estimates from lattice
QCD [67,166]. Right: Comparison of the estimate of aη-pole

µ from this work versus
a result derived from Canterbury approximant (CA) fits to experimental data [65]
and two estimates based on Dyson-Schwinger (DS) equations [131,132].

within 1.7σ with the dispersive result of Refs. [3,63,64] is found while agreeing within
errors with the recent lattice results of Refs. [67, 166], cf. Fig 6.1. The continuum
limit estimate of aπ−pole

µ = 56.7(3.1)stat(0.4)sys[3.1]tot × 10−11 presented here has a
relative error of ∼5%, competitive with the above references.
For the decay width, Γ(π0 → γγ) = 7.50(0.48)stat(0.07)sys[0.48]tot eV is in agreement
with the experimental value from Ref. [180] and the recent lattice result from Ref. [166],
while the result for bπ0 = 2.16(0.07)stat(0.01)sys[0.07]totGeV−2 agrees within 1.7σ
with the PDG experimental result [12].
The result for the η-pole contribution aη−pole

µ = 13.8(5.2)stat(1.5)sys[5.5]tot × 10−11

confirms the data-driven Canterbury approximant estimate [65] and the model
estimates [118,131,132], albeit with a significantly larger error and not yet estimated
in the continuum limit, see Fig 6.1 for an illustration. As the result presented
here comes from an independent ab-initio lattice QCD calculation, it still provides
important independent support for these estimates.
The results for both the decay width Γ(η → γγ) = 338(87)stat(17)sys[88]tot eV and
the slope parameter bη = 1.34(28)stat(14)sys[31]totGeV−2 are in tension with the
experimental results by approximately 2σ.

The work on this project is far from over! First of all, a fourth physical point ensemble
at a finer lattice spacing is in production which could also be used in this analysis to
obtain a more robust continuum limit extrapolation for aπ−pole

µ . For the analysis of
aη−pole
µ , the next steps are to extend the calculation to the other two ensembles used
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in this work to allow for a continuum estimate of this value. The measurements on
cC211.060.80 are underway. Also, in order to obtain a result for aη′−pole

µ , the quality
of the data needs to be improved in order to take into account the η-η′ mixing, which
is not possible with the currently available data. It is also planned to calculate the
form factors in a moving frame to provide better data support in the single-virtual
region.

In conclusion, twisted mass lattice QCD at the physical point, using the ETMC
ensembles, proves to be a reliable way to extract the π0- and η-pole contributions
to the anomalous magnetic moment of the muon. The estimate for the π0-pole
contribution is an independent result from first principles confirming other data-
driven and lattice results, while the presented η-pole contribution is a first ab-initio
result, serving as an important cross-check for the data-driven estimates.
There are still many open avenues to improve the calculation presented in this work,
with numerous possible directions for interesting future research.
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Appendix A

Appendix of the draft in Chapter 5

This appendix is part of the paper draft presented in Ch. 5. Since it is referenced
from other parts of this thesis, in particular Ch. 3, it is reproduced separately here
and not as part of Ch. 5.

A.1 Operators and Conventions

Our interpolating operators are defined as follows: For the pseudoscalars in the
physical basis we have

P 0 = iψγ5τ
3ψ, (A.1)

P± = iψγ5τ
±ψ, (A.2)

where the flavor matrices are given by the Pauli matrices

τ 3 =

(
1 0

0 −1

)
, τ+ =

(
0 1

0 0

)
, τ− =

(
0 0

1 0

)
. (A.3)
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They satisfy the usual Pauli matrix relations

[τ+, τ−] = τ 3, (A.4)

[τ 3, τ±] = ±2τ±, (A.5)

τ+ + τ− = τ 1, (A.6)

i(τ− − τ+) = τ 2. (A.7)

Note that in this convention the charged operators correspond to annihilation op-
erators for the relevant state, i.e. under the conventional electromagnetic charge
assignments for u and d, the operators P± transform with the opposite electromag-
netic charge, so they destroy the states π± respctively.

The local vector currents used in this work are defined as

JQ
µ = ψγµQψ

= (1/6)J0,0
µ + (1/2)J1,0, (A.8)

J0,0
µ = ψγµ1ψ, (A.9)

J1,0
µ = ψγµτ

3ψ, (A.10)

J1,±
µ = ψγµτ

±ψ, (A.11)

where Q = diag(2/3,−1/3) is the two flavor charge matrix in flavor space.

Next we write these operators in the twisted basis. At maximal twist, we have the
relations

ψ(x) = eiωγ5τ3/2χ(x)
⏐⏐
ω=π/2

=
1√
2
(1 + iγ5τ3)χ(x), (A.12)

ψ(x) = χ(x)eiωγ5τ3/2
⏐⏐
ω=π/2

= χ(x)
1√
2
(1 + iγ5τ3). (A.13)
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Translating the operators directly to the twisted basis yields

P 0 = −χχ (A.14)

P± = iχγ5τ
±χ, (A.15)

J0,0
µ = χγµ1χ, (A.16)

J1,0
µ = χγµτ

3χ, (A.17)

J1,±
µ = ∓iχγµγ5τ±χ. (A.18)

By convention, the overall phases on these operators are modified to give the final
interpolating operators and currents used in the twisted-basis calculation:

π0 = χχ = ūu+ d̄d, (A.19)

π+ = χγ5τ
+χ = ūγ5d, (A.20)

π− = χγ5τ
−χ = d̄γ5u, (A.21)

V 0,0
µ = χγµ1χ = ūγµu+ d̄γµd, (A.22)

V 1,0
µ = χγµτ

3χ = ūγµu− d̄γµd, (A.23)

A1,+
µ = χγµγ5τ

+χ = ūγµγ5d, (A.24)

A1,−
µ = χγµγ5τ

−χ = d̄γµγ5u. (A.25)

A.1.1 Hermition Conjugation

As we have defined them, the operators transform under Hermitian conjugation (†)
as

(π0)† = π0, (A.26)

(π±)† = −π∓, (A.27)

(V 0,0
µ )† = (−1)δµ,0−1V 0,0

µ , (A.28)

(V 1,0
µ )† = (−1)δµ,0−1V 1,0

µ , (A.29)

(A1,±
µ )† = (−1)δµ,0−1A1,∓

µ . (A.30)
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A.1.2 Charge Conjugation

Charge conjugation may be defined in the twisted basis by (see Ref. [81], Appendix
B)

χ(x) → C−1χ̄(x)T , (A.31)

χ̄(x) → −χ(x)TC, (A.32)

where

CγµC
−1 = −γTµ , (A.33)

Cγ5C
−1 = γ5. (A.34)

One possible choice for our gamma basis is C = C† = C−1 = iγ0γ2. Taking care
about the anticommutativity of χ and χ̄, we find the operators defined above for the
twisted basis transform as

π0 C−→ π0, (A.35)

π± C−→ π∓, (A.36)

V 0,0
µ

C−→ −V 0,0
µ , (A.37)

V 1,0
µ

C−→ −V 1,0
µ , (A.38)

A±
µ

C−→ A∓
µ . (A.39)

A.1.3 Twisted Parity

The twisted parity transformation (see Ref. [81], Eq 2.35) may be defined by

χ(t, x⃗)
Pτ1−−→ iγ0τ

1χ(t,−x⃗), (A.40)

χ(t, x⃗)
Pτ1−−→ −iχ(t,−x⃗)γ0τ 1. (A.41)
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Our operators in the twisted basis then transform as

π0 Pτ1−−→ π0, (A.42)

π± Pτ1−−→ −π∓, (A.43)

V 0,0
k

Pτ1−−→ −V 0,0
k , (A.44)

V 0,0
0

Pτ1−−→ V 0,0
0 , (A.45)

V 1,0
k

Pτ1−−→ V 1,0
k , (A.46)

V 1,0
0

Pτ1−−→ −V 1,0
0 , (A.47)

A±
k

Pτ1−−→ A∓
k , (A.48)

A±
0

Pτ1−−→ −A∓
0 . (A.49)

A.1.4 Twisted Time Reversal

Away from the continuum limit, the time reversal transformation must be combined
with a flavor change to be a valid symmetry of the Wilson Twisted Mass Lattice
QCD action (see Ref. [81], Section 2.4):

χ(x, t)
TF−→ iγ0γ5τ1χ(x,−t), (A.50)

χ̄(x, t)
TF−→ −iχ̄(x,−t)γ5γ0τ1. (A.51)

Our interpolating operators transform as follows:

π0(x, t)
TF−→ π0(x,−t) = π0(x,−t)†, (A.52)

π±(x, t)
TF−→ −π∓(x,−t) = π±(x,−t)†, (A.53)

V 0,0
µ (x, t)

TF−→ (−1)δµ,0V 0,0
µ (x,−t) = −V 0,0

µ (x,−t)†, (A.54)

V 1,0
µ (x, t)

TF−→ (−1)1+δµ,0V 1,0
µ (x,−t) = V 1,0

µ (x,−t)†, (A.55)

A1,±
µ (x, t)

TF−→ (−1)1+δµ,0A1,∓
µ (x,−t) = A1,±

µ (x,−t)†. (A.56)
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A.1.5 Dirac Matrix Conventions

First note the following notation and convention used by ETMC for the Dirac
matrices [81]. The Euclidean Dirac matrices are defined in the chiral basis as

γµ =

(
0 eµ

e†µ 0

)
, (A.57)

where e0 = −1, ek = −iσk, and σk are the standard Pauli matrices:

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (A.58)

These Dirac matrices have the properties of Hermiticity γ†µ = γµ as well as anticom-
mutation with respect to the Euclidean signature {γµ, γν} = 2δµν . Finally the 5th
Dirac matrix is defined as

γ5 = γ0γ1γ2γ3 =

(
1 0

0 −1

)
. (A.59)

Written explicitly,

γ0 =

⎛⎜⎜⎜⎜⎝
0 0 −1 0

0 0 0 −1

−1 0 0 0

0 −1 0 0

⎞⎟⎟⎟⎟⎠ , (A.60)

γ1 =

⎛⎜⎜⎜⎜⎝
0 0 0 −i
0 0 −i 0

0 i 0 0

i 0 0 0

⎞⎟⎟⎟⎟⎠ , (A.61)

γ2 =

⎛⎜⎜⎜⎜⎝
0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0

⎞⎟⎟⎟⎟⎠ , (A.62)
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γ3 =

⎛⎜⎜⎜⎜⎝
0 0 −i 0

0 0 0 i

i 0 0 0

0 −i 0 0

⎞⎟⎟⎟⎟⎠ . (A.63)

While µ = 0, 2 are symmetric and real, µ = 1, 3 are antisymmetric and pure imaginary.

A.2 3d Integral Representation Weights

The weight functions w1,2 appearing in Eqs. (5.50) and (5.51) presented here are
taken from [118] and have been derived in [116] using the method of Gegenbauer
polynomials [183–187].

The weight functions are given in Eqs. (5.52) and (5.53) and read

w1(Q1, Q2, τ) =

(
−2π

3

)√
1− τ 2

Q3
1Q

3
2

Q2
2 +m2

π

I1(Q1, Q2, τ), (A.64)

w2(Q1, Q2, τ) =

(
−2π

3

)√
1− τ 2

Q3
1Q

3
2

(Q1 +Q2)2 +m2
π

I2(Q1, Q2, τ), (A.65)

with

I1(Q1, Q2, τ) = X(Q1, Q2, τ)[8P1P2Q1Q2τ − 2P1P3(Q
4
2/m

2
µ − 2Q2

2)

+ 4P2P3Q
2
1 − 4P2 − 2P1(2−Q2

2/m
2
µ + 2Q1Q2τ/m

2
µ)

− 2P3(4 +Q2
1/m

2
µ − 2Q2

2/m
2
µ) + 2/m2

µ]

− 2P1P2(1 + (1−Rm1)Q1Q2τ/m
2
µ)

+ P1P3(2− (1−Rm1)Q
2
2/m

2
µ)

+ P2P3(2 + (1−Rm1)
2Q1Q2τ/m

2
µ)

+ P1(1−Rm1)/m
2
µ + 3P3(1−Rm1)/m

2
µ (A.66)
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and

I2(Q1, Q2, τ) = X(Q1, Q2, τ)[4P1P2Q1Q2τ + 2P1P3Q
2
2 − 2P1

+ 2P2P3Q
2
1 − 2P2 − 4P3 − 4/m2

µ]

− 2P1P2 − 3P1(1−Rm2)/(2m
2
µ)− 3P2(1−Rm1)/(2m

2
µ)

− P3(2−Rm1 −Rm2)/(2m
2
µ)

+ P1P3[2 + 3(1−Rm2)Q
2
2/(2m

2
µ) + (1−Rm2)

2Q1Q2τ/(2m
2
µ)]

+ P2P3[2 + 3(1−Rm1)Q
2
1/(2m

2
µ) + (1−Rm1)

2Q1Q2τ/(2m
2
µ)],

(A.67)

where

Q2
3 = (Q1 +Q2)

2 = Q2
1 + 2Q1Q2τ +Q2

2, (A.68)

τ = cos θ, (A.69)

Pi = 1/Q2
i , i ∈ {1, 2, 3}. (A.70)

Further,

X(Q1Q2, τ) =
1

Q1Q2x
arctan

(
zx

1− zτ

)
, (A.71)

x =
√
1− τ 2, (A.72)

z =
Q1Q2

4m2
µ

(1−Rm1)(1−Rm2), (A.73)

Rmi =

√
1 +

4m2
µ

Q2
i

, i ∈ {1, 2}. (A.74)

For a detailed discussion of the behaviour of w1,2 in different limits see [118].
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Appendix B

Theoretical aspects

In this appendix, definitions relevant for and aspects of the calculations in Ch. 2
and 3 are collected.

B.1 Dirac matrix conventions and definition of lat-

tice derivatives

The following conventions for the gamma matrices in four dimensions are used:

{γµ, γν} = 2δµν

γ†µ = γµ

γ5 = γ0γ1γ2γ3

σµν =
i

2
[γµ, γν ],

(B.1)

with µ, ν ∈ {0, 1, 2, 3}. See also App. A.1.5.
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The gauge covariant lattice derivatives action on the quark field ψ(x) are given by

∇µψ(x) =
1

a
[Uµ(x)ψ(x+ aµ̂)− ψ(x)]

∇∗
µψ(x) =

1

a

[
ψ(x)− U †

µ(x− aµ̂)ψ(x− aµ̂)
]
,

(B.2)

while the left action is defined by

ψ̄(x) ⃗∇µ =
1

a

[
ψ̄(x+ aµ̂)U †

µ(x)− ψ̄(x)
]

ψ̄(x) ⃗∇∗
µ =

1

a

[
ψ̄(x)− ψ̄(x− aµ̂)Uµ(x− aµ̂)

]
,

(B.3)

where a is the lattice spacing, Uµ(x) ≡ exp(ig0aGµ(x)) is the lattice gauge link,
depending on the gauge (gluon) field Gµ(x) and g0 is the bare coupling constant.

B.2 Equivalence between tmQCD and QCD in the

continuum

Here, the equivalence between tmQCD and QCD in the continuum is shown, following
e.g. [77, 80–82]. For simplicity, QCD with two degenerate flavours is considered,
called up and down quarks. In flavour space, the Dirac spinor is then given by the
doublet ψ̄ = (ū, d̄), the standard form of the fermionic Lagrangean density by

L = ψ̄
[
/D +m

]
ψ (B.4)

and the twisted mass fermionic Lagrangean density by

Ltm = χ̄
[
/D +m+ iµγ5τ

3
]
χ, (B.5)

where /D = γµDµ with Dµ = ∂µ + Gµ the covariant derivative in a given gauge
field Gµ (i.e. the gluon field), m a (bare) mass parameter, µ the bare twisted mass
parameter, τ 3 the third Pauli matrix in flavour space. Note that for better legibility
the indices on the mass parameters found in Sec. 2.1 were dropped. In the twisted
basis, the Dirac spinor in flavour space is denoted by χ̄ = (ū, d̄). Redefining the
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fermionic fields through chiral transformations in the third direction, i.e.

χ→ χ′ = exp
[
i
α

2
γ5τ

3
]
χ,

χ̄→ χ̄′ = χ̄ exp
[
i
α

2
γ5τ

3
]
,

(B.6)

and using
exp

[
iαγ5τ

3
]
= cos(α) + i sin(α)γ5τ

3, (B.7)

the Lagrangian density transforms as

Ltm → L′
tm = χ̄

[
/D +m cos(α)− µ sin(α) + iγ5τ

3(m sin(α) + µ cos(α))
]
χ. (B.8)

Thus this transformation leaves the form of the action invariant and merely transforms
the two mass parameters, i.e.

m→ m′ = m cos(α) + µ sin(α), (B.9)

µ→ µ′ = −m sin(α) + µ cos(α), (B.10)

Ltm → L′
tm = χ̄′ [ /D +m′ + iµ′γ5τ

3
]
χ′. (B.11)

This means that the changes of field variables and mass definitions does not change
the content of the theory, in particular, the standard form of the action is obtained
if

tan(α) =
µ

m
, (B.12)

using
cos(α) =

m√
m2 + µ2

,

sin(α) =
µ√

m2 + µ2
,

(B.13)

leading to the Lagrangean density

L′
tm, tan(α)= µ

m
= χ̄′ [ /D +Minv

]
χ′, (B.14)

where it immediately follows from Eqs. (B.9) and (B.10) that

Minv =
√
m2 + µ2 =

√
(m′)2 + (µ′)2 (B.15)
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for any choice of α. Note that Eq. (B.7) also implies

Ltm = χ̄
[
/D +Minv exp

[
iωγ5τ

3
]]
χ, (B.16)

where the twist angle ω is given by tan(ω) = µ
m

.

B.3 Further details on twisted charge conjugation

Here more explicit expressions for the twisted charge conjugation of the operators
presented in App. A.1.2 are given. One finds

π0 C−→ −χTCC−1χT = χχ = π0, (B.17)

π± C−→ −χTγ5τ
±χT = χγ5(τ

±)Tχ = χγ5τ
∓χ = π∓, (B.18)

V 0,0
µ

C−→ −(χTC)α(γµ)αβ1(C
−1χT )β = χα(γµ)βα1χβ

= −χβ(γµ)βα1χα = −V 0,0
µ , (B.19)

V 1,0
µ

C−→ −V 1,0
µ , analogous to V 0,0

µ , (B.20)

A±
µ

C−→ −(χTC)α;ρ(γµγ5)αβ(τ
±)ρσ(C

−1χT )β;σ = −χα;ρ(γµγ5)βα(τ
±)ρσχβ;σ

= χβ;σ(γµγ5)βα(τ
∓)σρχα;ρ = A∓

µ , (B.21)

under twisted charge C, noting that χ and χ anticommute since they are Grassmann-
valued fields.

B.4 Inserting states - asymptotic behaviour

In Euclidean space, operators time evolve according to

O(t) = eHtO(0)e−Ht, (B.22)

O(t)† = eHtO(0)†e−Ht. (B.23)
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The creation and destruction operators in momentum space are related to the position
space operators as

O(p⃗, t)† = a3
∑
x⃗

O(x⃗, t)†e−ip⃗x⃗, (B.24)

O(p⃗, t) = a3
∑
x⃗

O(x⃗, t)eip⃗x⃗. (B.25)

As a result of the relativistic normalization of the pseudoscalar state |P ⟩, the projector
must be written as

P̂ =
1

2EPa3
|P (p⃗)⟩⟨P (p⃗)|, (B.26)

while the overlap factor is defined by

ZP (p⃗) = ⟨0|P (p⃗, t = 0)|P (p⃗)⟩, (B.27)

or equivalently

ZP = ⟨0|P (⃗0, 0)|P (p⃗)⟩ = e−ip⃗x⃗⟨0|P (x⃗, 0)|P (p⃗)⟩ = e−ip⃗x⃗+EP t⟨0|P (x⃗, t)|P (p⃗)⟩. (B.28)

Note that Z∗
P = ⟨P (p⃗)|P †(⃗0, 0)|0⟩. For the moment suppressing lattice spacing,

position and momenta, consider the amplitude

Cµν =
⟨
0
⏐⏐T {P (tf )J†

ν(tc)J
†
µ(ti)

}⏐⏐ 0⟩ , (B.29)

with source position ti, the pseudoscalar at sink tf and current insertion at tc.
Now, let tf ≫ tc > ti ⇒ τ = tc − ti > 0. Then,

Cµν

tf≫tc>ti−→ 1

2EP

⟨0 |P (tf )|P ⟩  
Zpe

−EP tf

⟨
P
⏐⏐J†

ν(tc)J
†
µ(ti)

⏐⏐ 0⟩ (B.30)

=
ZP

2EP

⟨
P
⏐⏐eHtiJ†

ν(tc − ti)e
−HtieHtiJ†

µ(0)e
−Hti

⏐⏐ 0⟩ e−EP tf (B.31)

=
ZP

2EP

⟨
P
⏐⏐J†

ν(τ)J
†
µ(0)

⏐⏐ 0⟩ e−EP (tf−ti), (B.32)

where ⟨P |eHti = eEP ti⟨P | and e−Hti |0⟩ = |0⟩ was used. Analogous for τ < 0 and for
the pseudoscalar to the far Euclidean past.
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B.5 Backward propagation - 2pt functions

On a time-torus, an operator inserted at a specified time may create or destroy
states which will have or have wrapped wrapped around the lattice. To extract the
corresponding amplitude on the infinite Euclidean space, the “method of images” is
used. An operator at t has images at t+ nLt where Lt is the time extent and n is
an integer. As an example, consider the finite time contribution to the two point
correlation function.

⟨
0
⏐⏐O(t)O(0)†

⏐⏐ 0⟩Torus =
∑
n

⟨
0
⏐⏐O(t+ nLt)O(0)†

⏐⏐ 0⟩ , (B.33)

where only images for the destruction operator are inserted since images of the
creation operator would just generate copies of the same amplitude due to time
translation invariance. Keeping the two most dominant terms in the sum on n,
i.e. n = ±1, one arrives at the well known cosh form of the 2pt correlator. Starting
from

⟨
0
⏐⏐O(t)O(0)†

⏐⏐ 0⟩Torus =
⟨
0
⏐⏐O(0)†O(t− Lt)

⏐⏐ 0⟩
+
⟨
0
⏐⏐O(t)O(0)†

⏐⏐ 0⟩
+
⟨
0
⏐⏐O(t+ Lt)O(0)†

⏐⏐ 0⟩ , (B.34)

one finds that insertion of complete sets of states yields

⟨
0
⏐⏐O(0)†O(t− Lt)

⏐⏐ 0⟩ = ⟨0 ⏐⏐O(0)†
⏐⏐O⟩ ⟨O |O(t− Lt)| 0⟩

=
⟨
0
⏐⏐O(0)†

⏐⏐O⟩ ⟨O ⏐⏐eH(t−Lt)  
eE(t−Lt)⟨O|

O(0) e−H(t−Lt)
⏐⏐ 0⟩  

|0⟩

= ⟨0 |O(0)| O⟩
⟨
O
⏐⏐O(0)†

⏐⏐ 0⟩ eE(t−Lt)

= ⟨0 |O(0)| O⟩
⟨
O
⏐⏐O(0)†

⏐⏐ 0⟩ e−E(Lt−t), (B.35)
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⟨
0
⏐⏐O(t)O(0)†

⏐⏐ 0⟩ = ⟨0 |O(t)| O⟩
⟨
O
⏐⏐O(0)†

⏐⏐ 0⟩
=
⟨
0
⏐⏐eHt  
⟨0|

O(0) e−Ht
⏐⏐O⟩  

|O⟩e−Et

⟨
O
⏐⏐O(0)†

⏐⏐ 0⟩
= ⟨0 |O(0)| O⟩

⟨
O
⏐⏐O(0)†

⏐⏐ 0⟩ e−Et, (B.36)

⟨
0
⏐⏐O(t+ Lt)O(0)†

⏐⏐ 0⟩ = ⟨0 |O(t+ Lt)| O⟩
⟨
O
⏐⏐O(0)†

⏐⏐ 0⟩
=
⟨
0
⏐⏐eH(t+Lt)  

⟨0|

O(0) e−H(t+Lt)
⏐⏐O⟩  

|O⟩e−E(t+Lt)

⟨
O
⏐⏐O(0)†

⏐⏐ 0⟩
= ⟨0 |O(0)| O⟩

⟨
O
⏐⏐O(0)†

⏐⏐ 0⟩ e−E(t+Lt). (B.37)

Defining
A = ⟨0 |O(0)| O⟩

⟨
O
⏐⏐O(0)†

⏐⏐ 0⟩ = |⟨0 |O(0)| O⟩|2 (B.38)

and dropping the term proportional to e−E(t+Lt), one arrives at

⟨
0
⏐⏐O(t)O(0)†

⏐⏐ 0⟩Torus = A(e−Et + e−E(Lt−t))

= Ae−ELt/22 cosh (E(t− Lt/2)). (B.39)

B.6 Backward propagation - 3pt functions

Using the same convention as in the main text, in particular the same time coordinates,
but for the moment suppressing lattice spacing, position and momenta, consider the
amplitude

Cµν =
⟨
0
⏐⏐T {P (tf )j†µ(−τ)J†

ν(0)
}⏐⏐ 0⟩ . (B.40)

Following App. B.4, the asymptotic behaviour for τ > 0 is

Cµν
tP→∞−→ ZP

2EP

e−EP tf
⟨
P (p)

⏐⏐J†
ν(0)j

†
µ(−τ)

⏐⏐ 0⟩
=

ZP

2EP

e−EP tP
⟨
P (p)

⏐⏐J†
ν(0)j

†
µ(−τ)

⏐⏐ 0⟩ , (B.41)

using tP = tf . Using the method of images again and fixing the position of the
pseudoscalar by time translation invariance, the dominant finite-time correction
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comes from the amplitude

C ′
µν =

⟨
0
⏐⏐T {P (tf )j†µ(−τ + Lt)J

†
ν(Lt)

}⏐⏐ 0⟩ . (B.42)

Again considering the case τ > 0, i.e. Lt > −τ + Lt > tf , the amplitude takes the
form

C ′
µν =

⟨
0
⏐⏐J†

ν(Lt)j
†
µ(−τ + Lt)P (tf )

⏐⏐ 0⟩ , (B.43)

i.e. the amplitude has an anti-pseudoscalar in the distant past. Using (twisted)
timereversal (or the PT symmetry of the amplitude) the normal timeordering can
be recovered, yielding

C ′
µν =

⟨
0
⏐⏐P (−tf )j†µ(τ − Lt)J

†
ν(−Lt)

⏐⏐ 0⟩ . (B.44)

Note that the spatial momenta flip signs under (twisted) time reversal (but not under
PT ). By inserting complete sets of states and again using tP = tf , one then finds
the asymptotic behaviour

C ′
µν

tP→∞−→ ZP

2EP

e−EP (Lt−tP−τ)
⟨
P (p)

⏐⏐J†
µ(0)j

†
ν(−τ)

⏐⏐ 0⟩ . (B.45)

The calculation for τ < 0 proceeds analogous.

B.7 Epsilon momentum average

Starting from the scalar amplitude Ã(τ) defined in Eq. (3.28) and the scalar
counterpart C(τ), i.e.

Ã(τ) = − εijkq⃗
k

mP |q⃗2|
Ãij(τ), (B.46)

C(τ) = − εijkq⃗
k

mP |q⃗2|
Cij(τ), (B.47)

the average over momentum orbits is constructed as follows. On the lattice, let

Q = {{q⃗i} : |q⃗i|2= n2, q⃗i ̸= −q⃗j∀i ̸= j, q⃗ k
i ∈ Z} (B.48)
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be half the orbit of momentum n2 (i.e. it only contains q⃗ or −q⃗, not both). Then
one takes

Ã(τ) = −Lx

2π

εijkq⃗
k

2mP |Q|n2
Ãij(τ), (B.49)

C(τ) = −Lx

2π

εijkq⃗
k

2mP |Q|n2
Cij(τ), (B.50)

with summation over double indices from 1 to 3, q⃗ ∈ Q and Lx the spatial extent
of the lattice. Note that the discretized momenta take values of 2π

Lx
q⃗ k for a Lt × L3

x

lattice with periodic spatial boundary conditions, which gives the prefactor of Lx

2π
.

B.8 Operators for the η-meson calculation

In the physical basis, let

P = iψ̄γ5

⎛⎜⎝ 1 0 0

0 1 0

0 0 ϵ

⎞⎟⎠ψ, (B.51)

where ψ = (u, d, s)T and with ϵ = −2 for P = η8 and ϵ = 1 for P = η1 be the
interpolating operator for η8 and η1. Equivalently,

ηl = iψ̄γ5ψ with ψ = (u, d)T , (B.52)

ηs = iψ̄γ5ϵψ with ψ = s. (B.53)

The interpolating current operator is given by

JQ
µ = ψ̄γµQψ, (B.54)

with

Q =

⎛⎜⎝ 2/3 0 0

0 −1/3 0

0 0 −1/3

⎞⎟⎠ , (B.55)
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where ψ = (u, d, s)T . Equivalently,

JQ,l
µ = ψ̄γµQψ, (B.56)

with

Q =

(
2/3 0

0 −1/3

)
, (B.57)

where ψ = (u, d)T , and
JQ,s
µ = ψ̄γµQψ, (B.58)

with
Q = −1/3, (B.59)

where ψ = s.

Going to the twisted basis at maximal twist, one has the relations

ψ(x) =
1√
2
(1 + iγ5τ

3)χ(x),

ψ̄(x) = χ̄(x)
1√
2
(1 + iγ5τ

3),
(B.60)

yielding for ηl at maximal twist

ηl = iψ̄(x)γ5ψ(x)

→ 1

2
iχ̄(x)(1 + iγ5τ

3)γ5(1 + iγ5τ
3)χ(x)

= −χ̄(x)τ 3χ(x), (B.61)

where χ = (u, d)T . To align with the conventions in the code, the minus sign will be
dropped as was the case for the pion, thus

ηl = χ̄(x)τ 3χ(x). (B.62)
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For the light currents, one finds

J0,0,l
µ = χ̄γµ1χ =: V 0,0,l

µ , (B.63)

J1,0,l
µ = χ̄γµτ

3χ =: V 1,0,l
µ , (B.64)

JQ,l
µ =

1

6
V 0,0,l
µ +

1

2
V 1,0,l
µ . (B.65)

ηs at maximal twist becomes

ηs = iψ̄(x)γ5ψ(x)

→ 1

2
iχ̄(x)(1 + iγ5τ

3)γ5ϵ(1 + iγ5τ
3)χ(x)

= −χ̄(x)τ 3ϵχ(x), (B.66)

where χ = (s+, s−)T for Osterwalder-Seiler strange quarks. To align with the
conventions in the code, the minus sign will be dropped, thus

ηs = χ̄(x)τ 3ϵχ(x). (B.67)

For the current, one finds

JQ,s
µ = −1

3
χ̄γµ1χ. (B.68)

This would correspond to −1
3
V 0,0,s
µ since it has the same structure as (B.63).

B.8.1 Twisted parity for the η-meson

Under twisted parity Pτ 1,

χ(t, x⃗)
Pτ1−−→ iγ0τ

1χ(t,−x⃗),

χ̄(t, x⃗)
Pτ1−−→ −iχ̄(t,−x⃗)γ0τ 1,

(B.69)
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one finds

η(t, x⃗)l = χ̄(t, x⃗)τ 3χ(t, x⃗)

Pτ1−−→ −i2χ̄(t,−x⃗)γ0 τ 1τ 3τ 1  
=−τ3

γ0χ(t,−x⃗)

= −χ̄(t,−x⃗)τ 3χ(t,−x⃗) = −ηl(t,−x⃗), (B.70)

and
η(t, x⃗)s

Pτ1−−→ −ηs(t,−x⃗). (B.71)

The currents needed for the light case transform as (dropping the index l)

V 0,0
k

Pτ1−−→ −V 0,0
k ,

V 0,0
0

Pτ1−−→ V 0,0
0 ,

V 1,0
k

Pτ1−−→ V 1,0
k ,

V 1,0
0

Pτ1−−→ −V 1,0
0 ,

(B.72)

and for the strange case as

JQ,s
k

Pτ1−−→ −JQ,s
k , (B.73)

JQ,s
0

Pτ1−−→ JQ,s
0 , (B.74)

i.e. it transforms like the light V 0,0
µ . Note that this means that for entries of Cµν

where one of the indices is temporal and one spatial the behaviour under twisted
parity is different from the case where both are either spatial or temporal (mixed
indices give an additional minus sign).
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Appendix C

Technical details

In this appendix, technical details complementary to the ones in Ch. 3 are dis-
cussed. App. C.1 contains information on the used model averaging procedure,
while App. C.2 to C.5 contain information on the employed error calculation and
autocorrelation.

C.1 Model averaging

A version of parts of this section is also included in Sec. 5.7, the main difference
being the discussion of the effective number of data points not included there.
Due to different choices for the parameters, each analysis chain, defined by a set
of parameter choices, yields O(103 − 104) values for aP−pole

µ . These parameters are
the choice of fit range and fit model in the fit to Ã(τ), the choice of τcut when
constructing the TFFs and finally the included cuts in the momentum plane in the
fit to the modified z-expansion. For the remainder of this section such a choice of
parameters is called an “analysis”. A priori, only fits with χ2/d.o.f close to 1 are
included in an analysis chain for the single ensemble analyses. For the combined
z-expansion fits the input Ã(τ) fit ranges and τcut were chosen to be close in physical
units. i.e. within 10% of the values on cB211.072.64, with 1 ≲ χ2

Ã
/d.o.f ≲ 2.4. To

determine which analyses in an analysis chain are important, a modified version of
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the Akaike Information Criterion (AIC) [164,181] is used.
The statistical errors for each analysis are calculated by the jackknife or bootstrap
resampling procedure, with configurations spaced far enough such that there is
virtually no autocorrelation between the input data Ã(τ), see App. C.2 and C.5.
Closely following the method introduced in [163] and [38], the model averaging
proceeds as follows. For a target observable y, here aP−pole

µ , a histogram from the
different analyses is built, assigning to each analysis a weight given by the AIC.
This criterion is derived from the Kullback-Leibler divergence, which measures the
distance of a fit function from the true distribution of the points. For a derivation
see [163]. The modified AIC introduced in [38],

AIC ∼ exp

[
−1

2

(
χ2 + 2npar − ndata

)]
, (C.1)

or, equivalently,

AIC ∼ exp

[
−1

2

(
χ2 + 2npar + ncut

)]
, (C.2)

is used, where the χ2, the number of fit parameters npar and the number of data points
ndata describe the fit of interest. The equivalence follows from ndata = ntot − ncut,
since

exp

[
−1

2

(
χ2 + 2npar − ndata

)]
= exp

[
1

2
ntot

]
exp

[
−1

2

(
χ2 + 2npar + ncut

)]
, (C.3)

where ntot is the same for each fit and thus the factor exp
[
1
2
ntot
]

cancels. The first
two terms in the exponent correspond to the standard AIC, and the last term is
needed to weigh fits with different lengths in the fit ranges when fitting to Ã(τ) or to
weight z-expansion fits with a differing number of cuts in the momentum plane when
sampling the transition form factors. For the i-th analysis, two copies of Eq. (C.1) are
applied multiplicatively, one each for both the fit to Ã(τ) and the z-expansion in the
single ensemble analyses. In the combined z-expansion fit analyses, three copies of
Eq. (C.1) are applied for the fit to Ã(τ) on the three ensembles. The weights obtained
in this way are normalized such that their sum over all analyses equals 1, i.e. let wi

be the weight of the i-th analysis for the quantity y, with
∑

iwi = 1. The weights
wi are interpreted as a probability. Noting that due to the central limit theorem,
the statistical uncertainties follow a Gaussian distribution N(y;mi, σi), with central
value mi and standard deviation σi, one can include the statistical uncertainties.
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Central value and standard deviation are given by the jackknife resampling procedure
for each analysis. One then defines the cumulative distribution function (CDF)

P (y;λ) =

∫ y

−∞
dy′

∑
i

wiN(y′;mi, σi
√
λ), (C.4)

where the rescaling of the statistical error by λ is introduced to later separate
statistical and systematic error.
The median of the CDF is chosen as the central value of y and the total error by the
16% and 84% percentiles of the CDF, i.e.

σ2
total ≡

[
1

2
(y84 − y16)

]2
, (C.5)

where P (y16; 1) = 0.16 and P (y84; 1) = 0.84. The systematic error could then be
defined by evaluating the 16% and 84% percentiles of the P (y; 0) since λ = 0 cancels
the statistical contribution to the distribution. Since P (y; 0) as a function of step
functions is a step function itself, the definition of the systematic error would be
highly sensitive to the value of the chosen percentile. A more robust choice for the
systematic error can be made by first demanding

σ2
total ≡ σ2

stat + σ2
sys, (C.6)

and noticing that the rescaling of each σ2
i by λ is expected to increase σ2

stat by the
same factor, i.e.

λσ2
stat + σ2

sys ≡
[
1

2
(ỹ84 − ỹ16)

]2
≡ σ̃2

total, (C.7)

where P (ỹ16;λ) = 0.16 and P (ỹ84;λ) = 0.84. The systematic and statistic errors can
then be separated by a second choice of λ:

σ2
stat =

σ2
total − σ̃2

total

1− λ
, σ2

sys =
σ̃2

total − λσ2
total

1− λ
. (C.8)

In particular, the CDF is smooth for big enough λ and the procedure is insensitive
to the choice of λ.
For a better understanding on the composition of the systematic error, the error
budgeting procedure suggested in [38] can be used. For one of the choices made
during the analysis chain, e.g. the choice between the VMD or LMD fit to Ã(τ) or
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the different fit ranges, the total error for each possible option is first determined,
varying all other components of the analysis. Then a second CDF is constructed
as in Eq. (C.4), with mi the average of the 16% and 84% percentiles, σi the total
error and wi the sum of the weights coming from this choice. Using this CDF, the
systematic error is derived as described above for the original CDF, this gives the
result for the systematic error corresponding to the choice. Note that the estimated
systematic errors associated with each of the steps of the analysis by this procedure
are correlated, thus they do not sum up quadratically to the full systematic error.

C.1.1 Effective number of data points

As argued in [188–190], the overall sample size may not be the correct quantity to
use in the AIC when the data are correlated and the effective number of parameters
is unclear.
To that end, consider the AIC with ndata replaced by neff, where the effective sample
size neff is the number with the property that the estimator has the same variance as
the estimator one gets by sampling neff independent measurements [191]. Further
following [191], one can show that the upper limit on neff is given by

|R|= sup

{
1

a∗Ra
: a ∈ Rn,

∑
ai = 1

}
, (C.9)

where R is the correlation matrix, i.e. the normalized covariance matrix given by

Rij = ρYi,Yj
= cov(Yi/σYi

, Yj/σYj
), (C.10)

with
cov(Xi, Xj) = E [(Xi − E [Xi])(Xj − E [Xj])] . (C.11)

Further, E stands for the expected value of its argument, i.e.

E[X] =
∑
i

xipi
if pi=1/N

=
1

N

∑
i

xi, (C.12)
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and the standard deviation σXi
is given by

σXi
=
√
E [(Xi − E [Xi])2] =

√
E [X2

i ]− (E [Xi])
2. (C.13)

Note that Eq. (C.9) holds for positive definite matrices. Further, the magnitude |R|
of the correlation matrix is calculated by summing up all entries of R−1. The effective
number of data points neff = |R| is then used as a variant for model averaging.

C.2 Autocorrelation, rebinning, bootstrap and jack-

knife

The goal of a Markov chain Monte Carlo simulation is the evaluation of an integral
of the form

⟨O⟩ =
∫
dθ O[θ]p(θ). (C.14)

By generating N samples θn, n ∈ {1, ..., N} according to the probability density p(θ),
the ensemble average ⟨O⟩ is approximated by

⟨O⟩ ≈ 1

N

N∑
n=1

O(θn), (C.15)

assuming that the generated sequence of samples is a representative set of configura-
tions. Following [83], in lattice simulations, the ensemble averages typically are of
the form

⟨O⟩ =
∫
DU O[U ]e−S[U ]∫
DU e−S[U ]

, (C.16)

where S[U ] is a real functional of the link variables. The probability distribution
is given by the Boltzmann factor e−S[U ] and typically only a small fraction of the
possible link configurations contribute significantly to Eq. (C.16).
Further following [83], consider a countable set of states Cn, n ∈ {1, ..., N}, of the
system of interest, generated sequentially by a stochastic process according to some
transition probability P (Cn → Cm) to go from the system state Cn to the state
Cm. At any given simulation time n, the state of the system will then be a random
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variable, whose distribution depends only on the state at simulation time n − 1,
which defines a so-called “Markov chain”. To approximate the ensemble average ⟨O⟩
by

⟨O⟩N =
1

N

N∑
n=1

O(Cn) ≡ µO, (C.17)

it is sufficient for the Markov process to sample the distribution e−S[U ] ergodic and
that the transition probability satisfies detailed balance for any two states C and C ′,
i.e.

e−S(C)P (C → C ′) = e−S(C′)P (C ′ → C). (C.18)

If the states Cn were independently drawn from the probability distribution, the
sampling variance would be given by

σ2 =
1

N

N∑
n=1

(O(Cn)− µO)
2. (C.19)

However, since each state in the Markov chain depends on the previous state, the
states Cn are not independent by definition and the variance, following [192], is given
by

σ2 =
τO
N

N∑
n=1

(O(Cn)− µO)
2 (C.20)

instead, where τO is the integrated autocorrelation time for the given Markov chain.
Thus the error decreases as

√
τO/N instead of

√
1/N for increasing N , and τO can

be interpreted as the number of simulation time steps needed for two samples to
be uncorrelated, i.e. N/τO corresponds to the effective number of samples. The
definition of τO is

τO =
∞∑

τ=−∞
ρO(τ), (C.21)

where ρO(τ) is the normalized autocorrelation function for the observable O. In [192],
an exact expression for ρO(τ) is given, in practise one uses the estimator ρ̂O(τ) given
by

ρ̂O(τ) =
ĉO(τ)

ĉO(0)
, (C.22)
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with the autocorrelation function

ĉO(τ) =
1

N − τ

N−τ∑
n=1

(O(Cn)− µO)(O(Cn+τ )− µO), (C.23)

leading to the estimated integrated autocorrelation time τ̂O(M)

τ̂O(M) = 1 + 2
M∑
τ=1

ρ̂O(τ), (C.24)

where M ≪ N . It is recommended by [192] to choose M such that M ≥ κτ̂O(M),
for a constant κ ≈ 5, which is found to give reliable estimates of the integrated
autocorrelation time for N ≥ 1000 τO.
If τO is bigger than 1, one can do a so-called “rebinning” of the observables O(Cn)

by taking averages of blocks of consecutive observables, defining a new and smaller
set of observables. With increasing block sizes, the averages become less and
less correlated and the set of averages upon reaching τO ≈ 1 can be treated as
independent observables. Too small choices of the block size in the rebinning lead to
an underestimation of the variance. Most notably, if the block size is smaller than
the integrated autocorrelation time, it is immediately clear from Eq. (C.20) that the
naive variance, cf. Eq. (C.19), is smaller than the true variance. Since it is hard to
reliably estimate the integrated autocorrelation time for a relatively small number of
measurements, one can check the dependence of the variance on the rebinning block
size and conclude that the data can be treated as independent once the variance does
not increase with increasing block size anymore. This is illustrated in Fig. C.1 using
both jackknife and bootstrap resampling, which will be explained in the following,
to estimate the variance as well as two different methods for the rebinning. Note
that rebinning requires that the observable one wants to do statistics on either is
the rebinned observable itself or that its dependence on the rebinned observable is
linear. To estimate the variance on the observables, the jackknife and bootstrap
methods are used, cf. [194–196]. Both of them are resampling procedures used for
estimating the distributions of statistics based on a sample of independent observables
O(C1), ..., O(CN) by constructing replicas or resamplings from the original sample.
Note that as shown in [197], the jackknife is a linear approximation of the bootstrap.
As an example, one would like to find confidence intervals on µO, the approximation
of the ensemble average ⟨O⟩. Note that µO should converge to the real mean ⟨O⟩ in
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Figure C.1: Variance at τ = 0 with increasing rebinning block size on cB211.072.64
for the charged pion two-point function C(2)(τ) using local (point-to-all) (left) and
stochastic (all-to-all) (right) quark propagators for the pseudoscalar operators [126–
128]. The variance was calculated using bootstrap and jackknife resampling (denoted
by “b” and “j”) and two methods for rebinnig were used. The first method distributes
the measurements to blocks of a fixed given size, the last few measurements are
dropped if not enough are left to form a block (“1”), the second method distributes
the measurements as evenly as possible on blocks of a given minimal size (“2”). Note
that this may lead to plateaus in the plots for the jackknife resamplings. Further
note the increase in variance on the right with increasing block size, a clear indicator
of autocorrelation, while there is no such behaviour on the left, indicating that
this observable has no autocorrelation. Also given in the titles are estimates of the
autocorrelation time τWolff

int using an implementation of the method presented in [193].
For more details and plots, see App. C.5.
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the limit of infinite statistics. Since µO is a function of the Markov chain, it also has a
probability distribution, which can be approximated using the empirical distribution
of the replicas. It is shown in [198] that the bootstrap method holds for t-statistics,
in particular, it holds for giving confidence intervals on µO.
The jackknife estimator is constructed by systematically leaving out one of the
original observables to generate a new sample. In the nth sample Sn one leaves out
O(Cn) such that the set of samples is given by

S = {Sn}Nn=1 =
{
{O(Ci)}Ni=1,i ̸=n

}N
n=1

, (C.25)

the nth jackknife replica Ōn is then given by the mean of Sn, i.e.

Ōn =
1

N − 1

N∑
i=1,i ̸=n

O(Ci). (C.26)

It is straightforward to show that the central value of the original sample, µO, is
equal to the mean of the jackknife replicas

µ̄O =
1

N

N∑
n=1

Ōn, (C.27)

cf. App. C.3. The jackknife estimate of the variance is then given by

σ2
j =

N − 1

N

N∑
n=1

(Ōn − µ̄O)
2. (C.28)

The bootstrap estimator is constructed by generating Nb samples of size N by drawing
with replacement from the original sample, assigning a weight of 1/N to each O(Cn).
The set of samples is then given by

S = {Sn}Nb
n=1, (C.29)

the nth bootstrap replica Ōn by the mean of Sn, i.e.

Ōn =
1

N

∑
O(Ci)∈Sn

O(Ci). (C.30)
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For the bootstrap, the mean of the bootstrap replicas,

µ̄O =
1

Nb

Nb∑
n=1

Ōn, (C.31)

only coincides with the central value µO of the original sample in the limit of infinite
statistics, i.e. if Nb → ∞. The bootstrap estimate of the variance is then given by

σ2
b =

1

Nb − 1

Nb∑
n=1

(Ōn − µ̄O)
2. (C.32)

C.3 Central value and mean of jackknife samples

Proof of the equivalence of the central value of a dataset and the mean of the jackknife
samples:
Suppose the dataset D contains Nc values, i.e.

D = {xi}Nc
i=1. (C.33)

From this one constructs the set of jackknife samples S by leaving out xn in the nth
sample Sn, i.e.

S = {Sn}Nc
n=1 =

{
{xi}Nc

i=1,i ̸=n

}Nc

n=1
. (C.34)

The central value x̄ of D is then given by

x̄ =
1

Nc

Nc∑
i=1

xi, (C.35)

and the sample mean x̄n of Sn by

x̄n =
1

Nc − 1

Nc∑
i=1,i ̸=n

xi. (C.36)
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The mean over all jackknife samples is then

x̄s =
1

Nc

Nc∑
i=1

x̄n =
1

Nc

Nc∑
i=1

1

Nc − 1

Nc∑
i=1,i ̸=n

xi (C.37)

=
1

Nc(Nc − 1)

Nc∑
i=1

(Nc − 1)xi =
1

Nc

Nc∑
i=1

xi = x̄. □ (C.38)

C.4 Reconstruction of original data from jackknife

samples

Given the set of jackknife replicas

D̄ = {x̄i}Nc
i=1, (C.39)

the original data set D = {xi}Nc
i=1 can be recovered exactly. In matrix form,

D̄ =
1

Nc − 1

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 · · · 1

1 0 1 · · · 1
... . . . . . . . . . ...
1 · · · 1 0 1

1 · · · 1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (C.40)

such that D̄D = D̄ ⇔ D̄−1D̄ = D. Note that the inverse is given by

D̄−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−(Nc − 2) 1 1 · · · 1

1 −(Nc − 2) 1 · · · 1
... . . . . . . . . . ...
1 · · · 1 −(Nc − 2) 1

1 · · · 1 1 −(Nc − 2)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (C.41)
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C.5 Plots of variance with increasing rebinning

block size

This appendix contains a representative set of plots showing the behaviour of the
variance relative to the block size chosen in the rebinning. Shown are two-point (2pt)
functions C(2)(τ) using local (point-to-all), labelled by “twop-local”, and stochastic
(all-to-all), labelled by “twop-stoch”, quark propagators for the pseudoscalar operat-
ors [126–128], three-point (3pt) C(τ) functions using local sources, Ã(τ), converted
to configurations from jackknife samples as derived in App. C.4, as well as a quantity
Ā(τ), which is related to Ã(τ), schematically given by

Ā(τ) ∼
⟨
⟨0|T{jµ(τ, x⃗)jν(0)}P †(−tP , p⃗)|0⟩

⟨P (0, 0⃗)P †(−tP , 0⃗)⟩

⟩
, (C.42)

i.e. the ensemble average of the ratio between 3pt and 2pt function, opposed to Ã(τ)
which is the ratio of the ensemble average of the 3pt and the ensemble average of
the 2pt function. Note that the standard method of estimating the autocorrelation
on Ã(τ) by rebinning the 2pt function, extracting the needed mass and overlap
factor and then using the same rebinning on the 3pt function gives, within errors,
the same results for the variation, see C.2 for an illustration. This holds trivially
by construction for linear quantities, e.g. the 3pt function itself, but for composite
quantities, e.g. the mass and overlap factor obtained by fitting the 2pt function, the
correspondence is only observed empirically. Also given in the titles are estimates
of the autocorrelation time τWolff

int using an implementation of the method presented
in [193]. Figs. C.3, C.4 and C.5 show plots for the charged pion on cB211.072.64,
cC211.060.80 and cD211.054.96, respectively, Fig. C.6 plots for η8 on cB211.072.64.
The variances were calculated using bootstrap and jackknife resampling (denoted
by “b” and “j” in the legends) and two methods for rebinnig were used. The first
method distributes the measurements to blocks of a fixed given size, the last few
measurements are dropped if not enough are left to form a block (“1” in the legends),
the second method distributes the measurements as evenly as possible on blocks of a
given minimal size (“2” in the legends). Note that this may lead to plateaus in the
plots for the jackknife resamplings. All plots are shown for timeslice τ = 5, i.e. close
to the peak where the effects of the autocorrelation are expected to be seen the most
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clear due to the good signal-to-noise ratio. They are, however, representative for
almost all timeslices. Except for the twop-stoch 2pt functions and the η8 2pt function,
no significant autocorrelation was observed, most notably, the autocorrelation does
not show up in Ā(τ) using the twop-stoch 2pt function and the η8 Ã.
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Figure C.2: Variance on Ã (top) and mπ± (bottom) for the charged pion on
cB211.072.64 with increasing rebinning block size. The points labelled with “j” and
“b” were calculated using Ã(τ) converted to configurations from jackknife samples,
while a separate rebinning of the 2pt and 3pt function was used for the points labelled
with “reb”. Also indicated is the ratio σ2

reb/σ
2
j , considering only the block sizes used

for the “reb” datapoints.
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Figure C.3: cB211.072.64 charged pion variance with increasing rebinning block size.
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Figure C.4: cC211.060.80 charged pion variance with increasing rebinning block size.
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Figure C.5: cD211.054.96 charged pion variance with increasing rebinning block size.
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Figure C.6: cB211.072.64 η-meson variance with increasing rebinning block size.
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Appendix D

Plots and illustrations

In this appendix, plots and illustrations are collected which complement and expand
the examples given in the main text. Shown are 3pt and 2pt amplitudes for the
pion in App. D.1 and η-meson in App. D.2, the accessible kinematical regions for
the pion TFFs on all three ensembles together with a discussion of the sampling in
the momentum plane in App. D.3 and D.4 as well as pion transition form factors in
App. D.5.

D.1 Plots of pion amplitudes

Here, an overview over the charged pion C(τ), Ã(τ) and C(2)(t) is given. See Sec.
3.3 for the construction of the shown quantities.
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Figure D.1: Momentum orbit averaged C(τ, tf = 2.23 fm) for τ/a ∈ [−20, 20] on
cB211.072.64 for six orbits. Shown are in orange the full C(τ), in blue Cconn.(τ) and
in green, red and purple the three CV−disc.(τ) multiplied by 50 for easier comparison.
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Figure D.2: Momentum orbit averaged C(τ, tf = 2.18 fm) for τ/a ∈ [−20, 20] on
cC211.060.80 for six orbits. Shown are in orange the full C(τ), in blue Cconn.(τ) and
in green, red and purple the three CV−disc.(τ) multiplied by 50 for easier comparison.
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Figure D.3: Momentum orbit averaged C(τ, tf = 2.28 fm) for τ/a ∈ [−20, 20] on
cD211.054.96 for six orbits. Shown are in orange the full C(τ), in blue Cconn.(τ) and
in green, red and purple the three CV−disc.(τ) multiplied by 50 for easier comparison.
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Figure D.4: C(2)(t) (left) and the effective mass meff in MeV (right) on cB211.072.64
(top), cC211.060.80 (middle) and cD211.054.96 (bottom). On all three ensembles,
there is a clean exponential decay with a slope determined by the charged pion mass.
The extraction of the effective mass is discussed in Sec. 3.6.3.
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Figure D.5: Momentum orbit averaged Ã(τ) using tf ∈ {2.23, 2.87, 3.50} fm for
τ/a ∈ [−20, 20] on cB211.072.64 for six orbits. Note the excellent convergence for
the different tf across all orbits (2π/Lx)

2 ≤ |q⃗1|2≤ 32(2π/Lx)
2, indicating that there

is no excited state contamination.
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Figure D.6: Momentum orbit averaged Ã(τ) using tf ∈ {2.18, 2.86, 3.55} fm for
τ/a ∈ [−20, 20] on cC211.060.80 for six orbits. Note the excellent convergence for
the different tf across all orbits (2π/Lx)

2 ≤ |q⃗1|2≤ 32(2π/Lx)
2, indicating that there

is no excited state contamination.
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Figure D.7: Momentum orbit averaged Ã(τ) using tf ∈ {2.28, 2.96} fm for
τ/a ∈ [−20, 20] on cD211.054.96 for six orbits. Note the excited state contam-
ination visible in |q⃗1|2= (2π/Lx)

2, with no excited state contamination in the higher
orbits.
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D.2 Plots of η-meson amplitudes
Here, an overview over the η-meson C(τ) and Ã(τ) is given. See Sec. 3.5 for the
construction of the shown quantities.
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Figure D.8: Momentum orbit averaged C(τ, tf = 1.11 fm) for η8 for τ/a ∈ [−20, 20]
on cB211.072.64 for six orbits. Shown are in orange the full C(τ), in blue and
green the fully connected light and strange contributions and in red and purple the
P-disconnected contributions with either light or strange current correlators.
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Figure D.9: Momentum orbit averaged η-meson Ã(τ) using tf ∈ {0.80, 0.96, 1.11} fm
for τ/a ∈ [−20, 20] on cB211.072.64 for six orbits. Note the excited state contamina-
tion for the lower orbits.
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D.3 Pion kinematical reach

Here the kinematical reach for the resting pion, i.e. p⃗ = 0, on the three ensembles
used in this thesis is shown. The kinematical reach in the η-meson calculation is
discussed in Sec. 4.2 [69] and Sec. 4.3 [71]. There are in principle three kinematic
parameters, the on-shell pseudoscalar momentum p, the inserted current momentum
q1 and the source current momentum q2. From momentum conservation, q2 is given
by q2 = p− q1. Since sequential inversion through the pseudoscalar is used in the
simulations, changes to p⃗ require new inversions. The inserted current momentum q⃗1

can be varied easily. After fixing the spatial momentum, the inserted current energy
ω1, cf. Eq. (3.30), is the remaining free parameter. The other current energy is the
fixed by ω2 = EP − ω1, with EP =

√
m2

P + p⃗2 the on-shell pseudoscalar energy. The
photon virtualities are given by

q21 = ω2
1 − q⃗21, (D.1)

q22 = (EP − ω1)
2 − (p⃗− q⃗1)

2. (D.2)

One immediately sees that higher pseudoscalar masses and non-vanishing pseudoscalar
momenta lead to a better coverage of the space-like region. Shown in Fig. D.10 is
the kinematical reach in the space-like region relevant for the extraction of the TFFs
for the setup and ensembles used in this thesis for the charged pion as well as an
example for the reach in the case of p⃗ ̸= 0. Each curve corresponds to a current
momentum |q⃗1|2, with |q⃗1|2≤ 32(2π/Lx)

2 and |qk1 |≤ 4(2π/Lx).
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Figure D.10: Kinematical reach on cB211.072.64 (top left), cC211.060.80 (top right)
cD211.054.96 (bottom left). The kinematical reach on cB211.072.64 with one unit of
momentum for the pseudoscalar in lattice units is shown as well (bottom right).
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D.4 Equidistant sampling in the momentum plane

To extend the form factors to arbitrary photon momenta for the integration in
Eq. (3.15), the modified z-expansion is used, which is a model independent para-
metrization of the momentum dependence of the TFFs. More details on this can be
found in Ch. 4 to 5 and [67]. Examples of both the pion TFFs and corresponding
modified z-expansion fits are shown in App. D.5.
When performing a correlated fit to the modified z-expansion function, only O(102)

data points can be included, otherwise the covariance matrix becomes numerically
unstable. Since ω1 is a free parameter, arbitrary kinematics along the accessible
momentum orbits can be included, cf. App. D.3.
In this thesis, the TFFs are sampled by splitting the curve parametrized by ω1 for
the highest momentum orbit, |q⃗1|2= 32(2π/Lx)

2 into arcs of equal length in the
space-like region. This method is called an “equidistant sampling”. The resulting
ratios q22/q21 are then kept across all momentum orbits. The sampling was chosen
such that the single-virtual and the diagonal kinematics are always included, the
former since they appear in each term in Eq. (3.15), the latter since the data is
the most precise in this case for the pion calculation. Such a sampling is shown in
Fig. D.11. Note that actually only data from half the space-like momentum quadrant
needs to be included due to the reflection symmetry of the TFFs along the q21 = q22

diagonal. Five such equidistant cuts were used in this thesis, and additionally an
independent cut at q22/q21 = 0.1 to improve the coverage close to the single-virtual
cut.
An (approximately) equidistant sampling on the momentum curves is obtained by

ω1 =
1

2

(
mP ±

√
n
)
, (D.3)

for equally spaced n, i.e. n = αk, k ∈ N, α = const. ∈ R+.
Approximately means that the spacing is exactly equidistant in the limit mP → 0

for all n and in the limit n→ ∞ independently of mP . Note that the threshold for
hadron production restricts the allowed values for ω1, but via the choice of α the
sampling can be as fine or coarse as desired. Further, for n = 0 the diagonal case is
covered.
To prove that this choice of ω1 gives an equidistant sampling, it is sufficient to show
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that for k → ∞ the arc length between two points stays finite and constant and the
arc length between k = 0 and k = 1 goes to the same constant for mP → 0. Defining

ωi =
1

2

(
mP ±

√
αi
)
, i ∈ N, (D.4)

the arc length is given by

l(ωi, ωj) =

∫ ωj

ωi

ds(ω)dω, (D.5)

where

ds(ω) =

√(
dq21(ω)

dω

)2

+

(
dq22(ω)

dω

)2

=
√

4(mP − ω)2 + 4ω2. (D.6)

Plugging this into Eq. (D.5) yields

l(ωi, ωj) =
1

4

(
2(2ωj −mP )

√
2ω2

j − 2ωjmP +m2
P

+
√
2m2

P ln
(
2ωj −mP +

√
2
√

2ω2
j − 2ωjmP +m2

P

)
− 2(2ωi −mP )

√
2ω2

i − 2ωimP +m2
P

−
√
2m2

P ln
(
2ωi −mP +

√
2
√
2ω2

i − 2ωimP +m2
P

))
. (D.7)

Without loss of generality, choose α = 1 and ωi = ωk = 1
2

(
mP +

√
k
)
,

ωj = ωk+1 =
1
2

(
mP +

√
k + 1

)
. The resulting arc length between those two ω is

l

(
1

2

(
mP +

√
k
)
,
1

2

(
mP +

√
k + 1

))
=

1

2
√
2

(
√
k + 1

√
k + 1 +m2

P

−
√
k
√
k +m2

P +m2
P ln

(√
k + 1 +

√
k + 1 +m2

P√
k +

√
k +m2

P

))
. (D.8)

Now the limits k = 0 and k → ∞ need to be checked. For k = 0 one finds

l

(
1

2
mP ,

1

2

(
mP + 1

))
=

1

2
√
2

(√
1 +m2

P +m2
P ln

(
1 +

√
1 +m2

P√
m2

P

))
, (D.9)
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such that
lim

mP→0
l

(
1

2
mP ,

1

2

(
mP + 1

))
=

1

2
√
2
. (D.10)

For big k the Laurent series expansion (around k → ∞) gives

l

(
1

2

(
mP +

√
k
)
,
1

2

(
mP +

√
k + 1

))
=

1

2
√
2
+O(1/k), (D.11)

thus
lim
k→∞

l

(
1

2

(
mP +

√
k
)
,
1

2

(
mP +

√
k + 1

))
=

1

2
√
2
. (D.12)

Note that by expanding around any k ∈ N, one can show that the arc length in the
limit mP → 0 stays constant for all k, and that it converges to 1/(2

√
2) for small

mP and growing k. □
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Figure D.11: Sampling of the momentum plane as described in the text, with
nine regular arc lengths on the highest momentum orbit, showing momentum orbits
|q⃗1|2(Lx/2π)

2 ∈ {1, 8, 12, 20, 32} for the charged pion on cB211.072.64.
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D.5 Plots of pion TFFs

Here, a selection of TFFs and modified z-expansions are shown, together with relevant
parameters used to perform the z-expansion fit, the model averaging and resulting
from the z-expansion fit. See in particular Ch. 5 for details. For the single-virtual
experimental data, see [72–76]. For easier comparison, Tab. D.1 reproduces the
z-expansion coefficients from [67].

N c00 c10 c11 c20 c21 c22
1 0.2346(65) -0.0590(39) 0.074(19)
2 0.2350(61) -0.0651(49) -0.284(68) 0.106(33) 0.109(46) -0.29(12)

Table D.1: Selection of z-expansion coefficients from [67].

All analyses presented here use ∆latt. ≥ 95% (labelled as “threshold 95%”), meaning
that only TFF data points with at least a 95% contribution from lattice data are
included in the z-expansion fitting, cf. Eq. (3.154). Note that for most data points,
the actual data content is higher than 95%, especially for diagonal kinematics or
close to diagonal kinematics.
For the single ensemble analyses, TFF data for one choice of parameters is shown
together with the corresponding z-expansion fit and the fit parameters are presented
in a table and as a so-called cornerplot, which gives an indication of the correlation
of the z-expansion fit parameters. Note that the cornerplots are just scatterplots of
the fit parameters, as such the single ensemble analysis errors shown in them would
need to be adjusted since jackknife resampling was used for the error analysis there.
The data included in the z-expansion fit is shown in red, the data shown in blue is
there for illustration only.
For the combined analyses, where TFF data for all three ensembles is fitted sim-
ultaneously, only an example cornerplot is shown. The errors in these cornerplots
need to be adjusted by a factor of N/(N − 1), where N is the number of samples,
since bootstrap resampling was used for the combined analysis. In both cases, TFF
data from the model averaged z-expansion fit parameters and the values of said
parameters is also given.
Note that the indicated fit ranges in this section for the Ã(τ) fit are given in lattice
units and are python ranges, meaning that the indicated tmin is inclusive and tmax

is exclusive such that the actual fit range is given by ]− tmax,−tmin] ∪ [tmin, tmax[.
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D.5.1 cB211.072.64 N = 1

c00 c10 c11 χ2
Ã
/d.o.f. χ2

z−exp./d.o.f.

0.2102(13) -0.0770(21) 0.083(12) 0.84 1.12

Table D.2: z-expansion coefficients and χ2/d.o.f. of the analysis shown in Figs. D.12
and D.13.

c00 c10 c11 χ2
z−exp./d.o.f.

0.2103(12) -0.0772(21) 0.084(12) 1.13(4)

Table D.3: AIC averaged z-expansion coefficients and χ2/d.o.f. of Fig. D.14.
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Figure D.12: N = 1 single analysis TFFs.
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Figure D.13: N = 1 single analysis cornerplot.
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Figure D.14: N = 1 AIC averaged TFFs.
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D.5.2 cB211.072.64 using c00, c10, c11 and c22

c00 c10 c11 c22 χ2
Ã
/d.o.f. χ2

z−exp./d.o.f.

0.2108(13) -0.0761(20) -0.028(25) 0.27(20) 0.84 1.20

Table D.4: z-expansion coefficients and χ2/d.o.f. of the analysis shown in Figs. D.15
and D.16.

c00 c10 c11 c22 χ2
z−exp./d.o.f.

0.2108(13) -0.0760(20) -0.027(26) 0.25(20) 1.22(5)

Table D.5: AIC averaged z-expansion coefficients and χ2/d.o.f. of Fig. D.17.
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Figure D.15: c00, c10, c11 and c22 single analysis TFFs.
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Figure D.16: c00, c10, c11 and c22 single analysis cornerplot.
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Figure D.17: c00, c10, c11 and c22 AIC averaged TFFs.
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D.5.3 cB211.072.64 N = 2

c00 c10 c11 c20 c21 c22 χ2
Ã
/d.o.f. χ2

z−exp./d.o.f.

0.2109(13) -0.0843(30) -0.39(63) 0.19(32) 0.03(18) -0.49(39) 0.84 0.84

Table D.6: z-expansion coefficients and χ2/d.o.f. of the analysis shown in Figs. D.18
and D.19.

c00 c10 c11 c20 c21 c22 χ2
z−exp./d.o.f.

0.2109(13) -0.0837(30) -0.46(62) 0.23(31) 0.01(18) -0.55(39) 0.87(4)

Table D.7: AIC averaged z-expansion coefficients and χ2/d.o.f. of Fig. D.20.
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Figure D.18: N = 2 single analysis TFFs.
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Figure D.19: N = 2 single analysis cornerplot.
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Figure D.20: N = 2 AIC averaged TFFs.
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D.5.4 cC211.060.80 N = 1

c00 c10 c11 χ2
Ã
/d.o.f. χ2

z−exp./d.o.f.

0.2195(17) -0.0674(27) 0.040(17) 0.86 1.00

Table D.8: z-expansion coefficients and χ2/d.o.f. of the analysis shown in Figs. D.21
and D.22.

c00 c10 c11 χ2
z−exp./d.o.f.

0.2194(17) -0.0676(29) 0.040(18) 1.01(5)

Table D.9: AIC averaged z-expansion coefficients and χ2/d.o.f. of Fig. D.23.
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Figure D.21: N = 1 single analysis TFFs.
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Figure D.22: N = 1 single analysis cornerplot.
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Figure D.23: N = 1 AIC averaged TFFs.
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D.5.5 cC211.060.80 using c00, c10, c11 and c22

c00 c10 c11 c22 χ2
Ã
/d.o.f. χ2

z−exp./d.o.f.

0.2211(17) -0.0679(25) -0.103(33) 0.60(32) 0.86 0.94

Table D.10: z-expansion coefficients and χ2/d.o.f. of the analysis shown in Figs. D.24
and D.25.

c00 c10 c11 c22 χ2
z−exp./d.o.f.

0.2206(18) -0.0676(28) -0.091(36) 0.519(36) 0.94(6)

Table D.11: AIC averaged z-expansion coefficients and χ2/d.o.f. of Fig. D.26.
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Figure D.24: c00, c10, c11 and c22 single analysis TFFs.
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Figure D.25: c00, c10, c11 and c22 single analysis cornerplot.
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Figure D.26: c00, c10, c11 and c22 AIC averaged TFFs.
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D.5.6 cC211.060.80 N = 2

c00 c10 c11 c20 c21 c22 χ2
Ã
/d.o.f. χ2

z−exp./d.o.f.

0.2212(17) -0.0753(30) 0.18(23) -0.14(11) 0.218(67) 0.42(23) 0.86 0.66

Table D.12: z-expansion coefficients and χ2/d.o.f. of the analysis shown in Figs. D.27
and D.28.

c00 c10 c11 c20 c21 c22 χ2
z−exp./d.o.f.

0.2211(17) -0.0755(34) -0.03(44) -0.06(23) 0.17(13) 0.25(39) 0.68(3)

Table D.13: AIC averaged z-expansion coefficients and χ2/d.o.f. of Fig. D.29.
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Figure D.27: N = 2 single analysis TFFs.
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Figure D.28: N = 2 single analysis cornerplot.
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Figure D.29: N = 2 AIC averaged TFFs.
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D.5.7 cD211.054.96 N = 1

c00 c10 c11 χ2
Ã
/d.o.f. χ2

z−exp./d.o.f.

0.2053(27) -0.0742(36) 0.107(23) 0.98 1.05

Table D.14: z-expansion coefficients and χ2/d.o.f. of the analysis shown in Figs. D.30
and D.31.

c00 c10 c11 χ2
z−exp./d.o.f.

0.2054(27) -0.0742(36) 0.103(23) 1.11(6)

Table D.15: AIC averaged z-expansion coefficients and χ2/d.o.f. of Fig. D.32.
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Figure D.30: N = 1 single analysis TFFs.
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Figure D.31: N = 1 single analysis cornerplot.
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Figure D.32: N = 1 AIC averaged TFFs.
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D.5.8 cD211.054.96 using c00, c10, c11 and c22

c00 c10 c11 c22 χ2
Ã
/d.o.f. χ2

z−exp./d.o.f.

0.2043(27) -0.0713(34) 0.154(46) -1.34(0.44) 0.98 0.92

Table D.16: z-expansion coefficients and χ2/d.o.f. of the analysis shown in Figs. D.33
and D.34.

c00 c10 c11 c22 χ2
z−exp./d.o.f.

0.2045(28) -0.0714(34) 0.148(48) -1.35(44) 0.96(5)

Table D.17: AIC averaged z-expansion coefficients and χ2/d.o.f. of Fig. D.35.
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Figure D.33: c00, c10, c11 and c22 single analysis TFFs.
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Figure D.34: c00, c10, c11 and c22 single analysis cornerplot.
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Figure D.35: c00, c10, c11 and c22 AIC averaged TFFs.
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D.5.9 cD211.054.96 N = 2

c00 c10 c11 c20 c21 c22 χ2
Ã
/d.o.f. χ2

z−exp./d.o.f.

0.2043(28) -0.0738(46) -0.35(86) 0.26(44) -0.12(26) -1.60(73) 0.98 0.94

Table D.18: z-expansion coefficients and χ2/d.o.f. of the analysis shown in Figs. D.36
and D.37.

c00 c10 c11 c20 c21 c22 χ2
z−exp./d.o.f.

0.2046(28) -0.0738(47) -0.27(87) 0.21(44) -0.09(26) -1.56(73) 0.99(4)

Table D.19: AIC averaged z-expansion coefficients and χ2/d.o.f. of Fig. D.38.
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Figure D.36: N = 2 single analysis TFFs.
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Figure D.37: N = 2 single analysis cornerplot.
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Figure D.38: N = 2 AIC averaged TFFs.
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D.5.10 Combined fit N = 1 including correction coefficients

c00 c10 c11 χ2
z−exp./d.o.f.

0.2222(49) -0.0581(68) 0.024(40) 1.38

Table D.20: AIC averaged z-expansion coefficients and χ2/d.o.f. of Figs. D.39 and
D.40.
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Figure D.39: N = 1 single-virtual AIC averaged TFF.
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Figure D.40: N = 1 AIC averaged TFFs.
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Figure D.41: N = 1 single analysis cornerplot, χ2
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D.5.11 Combined fit using c00, c10, c11 and c22 and d00, d10

c00 c10 c11 c22 χ2
z−exp./d.o.f.

0.2220(48) -0.0596(59) -0.050(18) 0.27(14) 1.36

Table D.21: AIC averaged z-expansion coefficients and χ2/d.o.f. of Figs. D.42 and
D.43.
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Figure D.42: c00, c10, c11 and c22 including correction coefficients d00 and d01 single-
virtual AIC averaged TFF.
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Figure D.43: c00, c10, c11 and c22 including correction coefficients d00 and d01 AIC
averaged TFFs.

248



c00 = 0.22+0.00
0.00

0.0
80

0.0
72

0.0
64

0.0
56

0.0
48

c 0
1

c01 = 0.06+0.01
0.01

0.0
8

0.0
6

0.0
4

0.0
2

c 1
1

c11 = 0.05+0.02
0.02

0.0

0.2

0.4

0.6

c 2
2

c22 = 0.28+0.15
0.15

0.0
10

0.0
05

0.0
00

0.0
05

0.0
10

d 0
0

d00 = 0.00+0.00
0.00

0.2
10

0.2
16

0.2
22

0.2
28

0.2
34

c00

0.0
18

0.0
12

0.0
06

0.0
00

0.0
06

d 0
1

0.0
80

0.0
72

0.0
64

0.0
56

0.0
48

c01

0.0
8

0.0
6

0.0
4

0.0
2

c11

0.0 0.2 0.4 0.6

c22

0.0
10

0.0
05

0.0
00

0.0
05

0.0
10

d00

0.0
18

0.0
12

0.0
06

0.0
00

0.0
06

d01

d01 = 0.01+0.01
0.00

Combined fit, charged pion, z-expansion N = 1
global_LMD

(tcB
min, tcB

max) = (8, 10), tcB
c  = 25

(tcC
min, tcC

max) = (10, 12), tcC
c  = 28

(tcD
min, tcD

max) = (12, 13), tcD
c  = 33

#samples = 400, threshold 95%

Figure D.44: c00, c10, c11 and c22 including correction coefficients d00 and d01 single
analysis cornerplot, χ2
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D.5.12 Combined fit using c00, c10, c11 and c22 and no correction

coefficients

c00 c10 c11 c22 χ2
z−exp./d.o.f.

0.2226(98) -0.0693(16) -0.049(17) 0.25(14) 1.37

Table D.22: AIC averaged z-expansion coefficients and χ2/d.o.f. of Figs. D.45 and
D.46.
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Figure D.45: c00, c10, c11 and c22 single-virtual AIC averaged TFF.
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Figure D.46: c00, c10, c11 and c22 AIC averaged TFFs.
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D.5.13 Combined fit N = 2 including experimental TFF data

In this analysis, the single-virtual experimental data from [72–76] was included
(without considering the correlation of the experimental data).

c00 c10 c11 c20 c21 c22 χ2
z−exp./d.o.f.

0.2198(47) -0.0494(71) -0.117(26) 0.114(36) -0.235(78) -0.56(42) 1.09

Table D.23: AIC averaged z-expansion coefficients and χ2/d.o.f. of Figs. D.48 and
D.49.
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Figure D.48: N = 2 including experimental data single-virtual AIC averaged TFF.
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Figure D.49: N = 2 including experimental data AIC averaged TFFs.
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