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Efficient numerical methods to approximate the
parallel transport operators of the induced connection
on a sub-bundle of a vector bundle are presented.
These methods are simpler than naive applications
of a Runge-Kutta algorithm and have accuracy
up to order 4. They have the desirable property
of being insensitive to choices of trivialization of
the sub-bundle. The methods were developed to
solve a problem of computing skyrmions using
the Atiyah-Manton—Sutcliffe and Atiyah—Drinfeld—
Hitchin-Manin constructions, but are applicable to
a broader range of problems in computational
geometry.

1. Introduction

Given a hermitian vector bundle equipped with a unitary
connection V, any sub-bundle E comes equipped with
a natural connection VE. The covariant derivative VFs
of any section s of E is defined to be the orthogonal
projection of Vs onto E. Induced connections feature
prominently in submanifold geometry, where the tangent
and normal bundles of a submanifold inherit natural
connections from the Levi-Civita connection of the
ambient manifold, and in quantum mechanics, where
they are known as Berry connections. They also play
a central role in the Atiyah-Drinfeld—Hitchin-Manin
(ADHM) construction of instantons, which constructs
solutions of the anti-self-dual Yang-Mills equation using
induced connections (for reviews, see [1-4]).

A fundamental property of any connection is the
collection of its parallel transport operators. These are
linear maps between fibres E, — E; that depend on
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a choice of curve y from p to 4. They determine the holonomy group of the connection, and in
discrete geometry, they are used to form a discrete representation of the connection [5]. Parallel
transport operators of induced connections arise naturally in quantum mechanics, e.g. where they
are known as Berry phases. The main result of this note is a collection of high-order numerical
methods to approximate the parallel transport operators of an induced connection.

The results that we presented here are motivated by the ongoing work to approximate
skyrmions using the Atiyah-Manton-Sutcliffe construction [6-18]. This construction approximates
soliton solutions of a nonlinear field theory, the Skyrme model, using parallel transport operators
of Yang-Mills instantons. The simplest and most effective way of constructing instantons is
the ADHM method, which uses induced connections. To obtain a skyrmion from an instanton
entails computing hundreds of parallel transports. Moreover, to compute quantities relevant to
applications in nuclear physics, one may need to compute skyrmions from hundreds of different
instantons. So an efficient and accurate method to compute parallel transport of an induced
connection is highly desirable in this context.

Computing parallel transport amounts to solving an initial value problem

2'(x,0)=—-A(x)2(x,0) and £(0,0)=1d, (1.1)

where A = V1 V,/V is the connection matrix with respect to a chosen orthonormal frame V(x). The
most obvious method to compute 2 (used, e.g. in [14]) is to first find an orthonormal frame V(x;)
at a finite set of points x1,...,x; (using a Gram-Schmidt algorithm), then approximate A using
finite differences and finally approximate the solution £2 using a Runge-Kutta method.

There are two problems with this naive method. The first is that it is not gauge-covariant.
The matrix £2(x, 0) represents a linear map between the fibres of E at 0 and x, so depends on the
choice of bases V(0) and V(x), but does not depend on the choice of bases V(w) at intermediate
points 0 < w < x. However, any approximate solution obtained using the naive method described
earlier would depend on V(w) at intermediate points w. In particular, if V(w) happens to depend
on w in a discontinuous way, then the accuracy of methods such as Runge-Kutta (which assume
analyticity of all functions involved) is questionable. A second criticism of the naive method is
that it is inefficient. It entails computing derivatives (to obtain A) and then partially undoing this
by computing integrals (to solve the parallel transport equation).

The methods that we present below compute parallel transport directly from V(x), and so
avoid this inefficiency. Our methods are derived using an algebraic approach that raises some
intriguing questions and may be of independent mathematical interest.

Given the ubiquity of induced connections, it seems likely that our results will prove useful in
other contexts. We sketch one possible further application to the geometry of curves at the end of
§4. An outline of this article is as follows: in §2, we establish our notation and derive some simple
approximations to parallel transport. In §3, we introduce an operator formalism and use this to
derive more sophisticated approximations to parallel transport. In §4, we illustrate our method in
a simple example and describe some applications. Section 5 discusses some interesting theoretical
questions about our method.

2. Simple approximations to parallel transport

(a) Statement of the problem

Throughout this article, we will take our ambient vector bundle to be the trivial bundle C" x R
over the manifold R, equipped with the standard hermitian metric and the trivial connection.
No generality is lost here, because parallel transport is always defined along a one-dimensional
submanifold of the ambient manifold, and all vector bundles and connections over R are trivial.
We will let E be a rank m sub-bundle with orthonormal frame v!, ... ,v™. This means that, for

each x € R, the fibre E, is the span of vectors vix), ..., " (x) satisfying Vi) ul(x) = 8ij. Let V be
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the n x m matrix-valued function whose columns are v}, ... v"; note that V1V =1d,,. A section of
E can be written in the following form:

z2(x)=V(x)yx), y:R—C™ 2.1)
A section z is parallel if 2 € E*. This is equivalent to Vz' = 0, which is in turn equivalent to
Y (%) + Ay(x) =0, A):=V(@)V(x). (2.2)

Equation (2.2) is known as the parallel transport equation, and A= V'V’ is the matrix of the
induced connection.

The solution of the parallel transport equation with initial condition y(xg) = yo can be written
as follows:

y(x) = $2(x, x0)yo, (2.3)
where £2 is a U(m)-valued function, called the parallel transport operator. The parallel transport
operator is the unique solution to

%Q(x, x0) + A(x)2(x,x0) =0, £2(x0,x0) = Idy. (2.4)

Gauge transformations g : R — U(m) correspond to an x-dependent change of basis. They act
as

V(@)= V(0g() and  y(x) > gx) y(x). (2.5)
The induced action on the parallel transport operator is
£2(x,%0) = g(x)" 2(x, X0)3(x0). (26)
The goal of this article is to find approximations 2K (x 4+, x) to 2(x + h, x), such that
Q(x 4 h,x) = 25(x + h,x) + O(HF1). 2.7)

Our approximations will be written as rational functions of V(x;) for a finite set of points xg < x1 <
xp < ---. We will require that, under gauge transformations, V(x;) = V(x;)g(x;), 2K transforms in
the same way as £2:

2K + 1, x) > g + )T 2% + 1, 0)g (). (2.8)

(b) Order2 approximation
A simple solution to this problem (used earlier in [9]) is
QY x+h,x)=Vx+h)V(). (2.9)

Notice that under gauge transformations, V(x + Mv(x) — glx+ Wtvix + h)+V(x)g(x), so 1
transforms in the desired way.

To see that the approximation is order 1, we use Taylor expansions. The parallel transport
equation (2.2) implies that

y=-V'Vy, (2.10)
v =—-()'vy—viviy—vitvy (2.11)
= (—(VY'V = VIV (VIV)2)y. (2.12)
So
Q(x + h, X)y(x) = y(x + h) (2.13)
=y(x) + hy'(x) + gy“(x) +0(1) (2.14)

2
= [1 Wty + ’%(—(V’)*V/ —vtv' 4+ (V*V’)z)i| v+ O(), (2.15)
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where in the last line, y, V, V/, V" are understood to be evaluated at x. Conversely,

> t
Vx+h)'v) = |:V(x) + 1V (x) + %V”(x) + O(hS)} V(x) (2.16)
h2
=Vv+hvH)v + 7(V”)*V +O(h3) (2.17)
=1-—hvtv —i? ((V’)*V’ + %V* V”) +O(H3), (2.18)

where in the last line, we used V'V =1d,,,, V)TV + VIV =0 and (V/)'V + 2(V)'V' + VIV” =0.
Comparing the two calculations, we see that 2(x + 1, x) = Vix +h)V(x) + O(H?).
To improve this method, we seek a second-order approximation in the following form:

2%(x+h,x)=aV(x+ h)'V(x) + bV ve+ ], (2.19)

where a,b € R are to be determined. Note that the choice of operators on the right ensures that 02
transforms in the desired way under gauge transformations. To compare this with £2, we need
the Taylor expansion of the second operator:

5 -1
Vv +hn] = [v*v +hvtV 4+ %v* V' 4+ O(h3)} (2.20)

1
=1—hvv +i? ((v+ V' — Ev*v”) + O(H%). (2.21)
So our approximation is

aV(x + V) + bV v+ )t

=@+b)A—-hVV)+ 1 (—#V* V" —a(V)'V 4+ bVt V/)2> + O(1®). (2.22)

This agrees with the expansion (2.15) of £2 precisely whena =b= % So our order two method is

Q% (x+h,x) = %(V(x + )"V + V)tV + . (2.23)

3. Higher order approximations

(@) Anoperator expression for £2

The method used earlier to derive a second-order approximation can in principle be used
to derive higher order approximations. However, in practice, the algebra quickly becomes
cumbersome. In this section, we derive an operator expression for §2 that allows for much simpler
derivations of approximations £2X.

Let I"(E) be the space of sections of E, or more precisely, the set of functions z: R — C" such
that VV*tz =2z. Consider the operator w(h) : I'(E) — I'(E) defined by

(w(h)2)(x) = V(x)2(x, x — )V (x — h)z(x — h). (3.1)

The matrices £2(x + h, x) determine, and are determined by, the operators w(h). The advantage of
introducing the operators w(h) is that they can be expressed in the following simple way:

w()z=Vexp(—h(D + A))V'z. (3.2)

In this expression, D denotes the operator d/dx, and V, V1, A act on vector-valued functions by
matrix multiplication.

To show that the right-hand sides of (3.2) and (3.1) are equal, we first consider the case where
h=0. In this situation, both (3.2) and (3.1) correspond to multiplying z(x) with the identity matrix,
so they agree.
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To show that they agree for all values of 11, we differentiate both:

(3% + %) V() 2(x, x — HV(x — h)z(x — h) (3.3)
=(V'(x) = V(x)A®) R, x — )V (x — h)z(x — h) (3.4)
=WV AV (2@, x — )V (x — h)z(x — h) (3.5)
and
(a% + %)(Vexp(—h(D + A)Vtz) (3.6)
=D(V exp(—h(D + A)V'z) — V(D + A) exp(—h(D + A))V'z (3.7)
=([D, V] — VA) exp(—h(D + A)V'z (3.8)
= (V'VI—VAVH)V exp(—h(D + A)) V1. (3.9)

In the first of these calculations, we used the parallel transport equation (2.4), and in both
calculations, we inserted a factor of VIV =1d,,. We find that the operators w(h) defined by both
(3.1) and (3.2) satisfy

%w(h) = (=D — VAV +V'VHw(h). (3.10)

Since the two operators satisfy the same differential equation and agree when & =0, they agree
for all values of h.

It will prove convenient to rewrite (3.2) as follows. Since vtV =1d,, and A = V'[D, V], we have
that D + A = VI DV. Therefore,

w(h) =V exp(~=hVIDV)VT (3.11)

4

h? h® h
=1—hPD + Z-PDPD — ~~PDPDPD + - PDPDPDPD + o), (3.12)

in which we have introduced the projection operator P = VV* onto I' (E). Note that Pz =z for any
z € I'(E); we have used this fact (and the fact that w(h) acts on I'(E)) to eliminate operators P from
the right of all products in (3.12). We now seek operators (/) that approximate w(/) and from
these deduce approximations to §2(x + , x).

(b) Order2

We begin by rederiving the second-order expression obtained earlier. We seek an approximation
w2 (h) to w(h) using the operators w1, 73 : I'(E) — I'(E) defined by

(1 (W)2)(x) = V() V* (x)z(x — h) (3.13)
and
o(h) = (=h) . (3.14)
We obtain Taylor expansions as follows:
m1(h) = VVT exp(—hD) (3.15)
2
=1-—hPD + %PDZ + O(H%) (3.16)
and
2\
mo(h) = (1 +hPD + 2PD2> +0@®) (3.17)

2
=1—hPD — %PDz + H*PDPD + O(h®). (3.18)
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Once again, we have used the fact that P = VV* acts as the identity on I'(E).
If we compare equations (3.16) and (3.18) with the expansion (3.12) of w(h), it is clear that

W20 = 3 () + 201) 619

is a second-order approximation to w(h).
To compare equation (3.19) with our earlier approximation (2.23) to §2, we rewrite 71 (h) and
7o (h) as follows:

(M1 (W2)(x) = V@IV @) V(x = DIV (x — )z(x - h) (3220)
and
(ma(M)z)(x) = V[V = V()] Vi (x = h)z(x — h). (3.21)

The first of these is obtained from (3.13) using the fact that VV*tz=z for ze I'(E), and it can be
checked that the second satisfies w5 (h)1(—h) = w1 (—h)m2(h) = 1, as required by (3.14). From these,
it follows that w? and £22 given in (3.19) and (2.23) satisfy

(@?(W)z)(x) = V()22 (x, x — )V (x — h)z(x — h), (3.22)

and by comparing with (3.1), we see that w? reproduces our earlier approximation £22.

(c) Order3

To obtain an order 3 approximation, we consider an ansatz

0> (h) = a10° (g) w? (Z) + ay 2 (h). (3.23)

To compare this with (3.12), we need an expansion for w?. This is obtained in a similar way to the
expansions (3.16) and (3.18):

hZ
w?*(h)=1—hPD + — PDPD
sf 13,15 1 > 1
+h’( -—=PD° + -PD“PD + —PDPD~ — —PDPDPD
6 4 4 2
a1 3 1 opm2 1 3 1.5
+ h* | —=PD’PD + -PD“PD* + —PDPD” — —PD*“PDP D
12 8 12 4
1 ) 1 , 1 5
—PDPD?PD — - PDPDPD? + - PDPDPDPD ) + O(1°). (3.24)
From this, it follows that
2(5 2(ﬁ)—1 hPD + ﬁPDPD+h3 1L pps
@ iyein)= 2 24

1 1 1
+1—6PDPD2 + 1—6PD2PD - 1PDPDPD) + O(h*). (3.25)
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By comparing these two expansions with (3.12), we see that > given in (3.23) is an order 3
approximation to w if and only if

1 1
1
-1 -1
1 1 -1
2 2 1
— i _1 ai 2
24 6 =| 0 |. (3.26)
a
o1 0
16 4
1 1 0
6 4 1
11 3
4 2
The unique solution is a1 = % and a; = —%. The corresponding order 3 approximation to £2 is
4 h h 1
2%+ h,x) = 592 (x +h,x+ E) 22 (x + E,x) — 592(3( + I, x). (3.27)

(d) Order4

To obtain an order 4 approximation, we consider operators of the following form:

a)4(h) =mw? (g) ? (g) ? (g) + mw? (Z) w? (%) + a30° <%) w? <g> + a4a)2(h). (3.28)

The expansion of the final operator appearing on the right is given in (3.24), and the expansions
of the remaining three operators can all be derived from (3.24):

h h h
2 (" 2 (™ 2 ("
@ (3)‘” (3)“’ (3)
h2
=1—hPD + ?PDPD

+1 —iPDf’ + 1 pp2pp + iPDPD2 - EPDPDPD
54 36 36 54

1 1 1 1
+h*( —PD®PD + — PD?*PD? + — PDPD® — — PD?*PDPD
108 216 108 54

1 1 1
—%PDPszD - 571PDPDPD2 + EPDPDPDPD) + O, (3.29)

h 2h
2 (" 2 (="
¢ (3)“’ (3)
h2
=1—hPD + EPDPD

1 1 1
+1 (——PD3 + —PD*PD + —PDPD? — EPDPDPD)

18 12 12 18
7 17 1 19
+h* ( =—PD®PD + — PD?*PD? + — PDPD® — — PD?*PDPD
324 648 324 324

1 5 25 , 29 5
3 PDPD?PD — % PDPDPD? + 62PDPDPDPD) + 031 (3.30)
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2h h
2 (<) o (N1
and W <3>w (3)
h2
=1—-hPD + 7PDPD

1 1 1
+ 1 ——=PD?® + —PD?*PD + — PDPD? — iPDPDPD
18 12 12 18

25

11 17 7
+ht (—PD3PD + ——PD?*PD? + — PDPD® — ——PD?PDPD

324 648 324 324

1 19 29
— —PDPD?*PD — — PDPDPD? + ——PDPDPDPD 5). 31
12 324 * 162 ) +00r) (3:31)

It follows that w* given in equation (3.28) is an order 4 approximation to w given in (3.12) if and
only if a1,a3,a3 and a4 satisfy the linear equation,

1 1 1 1
-1 -1 -1 -1
1 1 1 1 1
2 2 2 2 1
1 1 1 1
54 18 18 6 1
1 1 1 1 2
36 12 12 4 0
1 1 1 1 0
36 12 12 4
1n 5 5 1| /am 0
54 18 18 2 . 1
1 7 11 1 =| 6 (3.32)
108 324 324 12||% 0
R VA A AT I
216 648 648 8
1 11 7 1 0
108 324 324 12 0
1 19 25 1
54 324 324 4 0
1 1 1 1 0
3% 12 12 4 1
1L’ 19 2
54 324 324 4
1 29 29 1

12 162 162 2

The unique solution is given by (a1,4a2,43,44) = ﬁ(%, —27,-27,8). So our order 4 approximation
to 2 is

1 2h 2h h h
4 _ 2 2 n 2 r
2 (x—i—h,x)——44 <90.Q <x+h,x+—3>9 (x—l— 3,x+3>9 (x+3,x>

2h 2h
— 2702 <x+h,x+ §> 2 (x+ ?,x>

h h
—27522 (x +hx+ 5) 2? (x + §,x> +8Q2%(x+h, x)) . (3.33)
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(e) Improved methods

The connection matrix A= V'V’ that appears in the parallel transport equation (2.2) is anti-
hermitian. It follows that £2(x + h, x) is a unitary m x m matrix, and hence that

| det(2(x + h, x))| = 1. (3.34)

Therefore,

QK + b, x) = | det(25(x + h, )|~V 2k (x + I, x) (3.35)
satisfies | det(£2X(x 4 i, x))| = 1 and hence is a better approximation to parallel transport that £2~.
In fact, in certain situations, .ak(x +h,x) — 2(x + h,x) = O(**2), so this improved approximation
is an order of magnitude better than $2F. We review these situations below.

The first case to consider is where our sub-bundle E has rank 1. In this case, 2 isa 1x 1
matrix, and so

det(2%(x + I, x)) = 25(x + I, x). (3.36)
Since £2(x + h, x) is unitary and £2(x + 1, x) "1 = £2(x, x + h), we have that
Q+hx) =20 x+h). (3.37)
We will assume similarly that

2K+ b0t = 2K, x + h). (3.38)

This assumption is satisfied by all of the approximations 021, 22, 2% and 2% obtained earlier.
Now we introduce €¥(x) such that

QK + b, x) = 2(x + h, x) + Kk (x) + O(H2). (3.39)

It follows that
Q5 x + h) = Q2(x, x + h) + (=) e (x + h) + O(H*?) (3.40)
=Q(x,x + h) + (=) ek (x) + OHF?), (3.41)

because ek(x + 1) = €X(x) + O(h). Therefore,

| det(2F(x + 1, x))1> = (e + 1, x)2%(x + 1, x)" by (3.36) (3.42)
=2 x +h,0)25x,x+h) by (3.38) (3.43)
=(R(x + h,x) + Ktk (x)
x (2(x,x + ) + (=) ek () + O ?) (3.44)
=14 [1 4 (=1 rkHLek 4 omk+2). (3.45)

Here, in the final line, we used that £2(x + i, x)§2(x, x + h) = 1 and that 2(x + 1, x) =1 + O(h).
Thus, in the case that k is odd, we obtain

QK + h,x) = 28 + h, x)(1 + 201K =072 1 o(Hk+2) (3.46)
= (2(x + h,x) + K1) — Kby + 0 2) (3.47)
= Q(x + h,x) + O(H*?). (3.48)

Thus, if k is odd and E is a complex line bundle, Q%isanorderk + 1 approximation to £2.
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We obtain a similar result if E is a symplectic bundle of rank 2. Recall that, if n is even, C"
carries a symplectic structure defined by an anti-linear map | : C* — C" of the form

U1 1y
up —1i
I: : > : . (3.49)
Up—1 iy
Up —ily_1

A subspace E is called symplectic if Ju € E for all u € E. If E is symplectic and of rank 2, it admits an
orthonormal basis of the form v!, Jul. In this case, we can write the 1 x 2 basis matrix V = (v! Jv!)
in the following form

M1+ q1i +q3j + g1k

V= , (3.50)

0 1+, 2 +, 3
T2+ G ol + 05 0] + 0, 0K

L
where ¢ are real and

1 0 . 0 —i . 0 -1 —-i 0
1:(0 1), 1:(_i 0), ]:<1 0) and k:(O i)’ (3.51)

In other words, V can be written as a vector of quaternions. It follows that each of the
approximations ok (x 4+ h, x) can be written as a real linear combination of 1, 1, j, k, and hence that

[det 25(x + h, x))?1 = 2F(x + h, )25 (x + h, 2t (3.52)

This means that the calculation starting with equation (3.42) goes through as in the rank 1 case,
and we again obtain that if k is odd, then 2* is an order k + 1 approximation to £2.

The final situation to consider is where E is a real rank 1 sub-bundle of a real vector bundle.
This case is trivial in the sense that the parallel transport operator is a 1 x 1 orthogonal matrix,
so is either 1 or —1. Similarly, §k(x + h,x) has determinant £1 so is either 1 or —1. Thus, for
sufficiently small 1, 2F is a perfect approximation to £2*.

4. Implementation

(a) Simple example

We now illustrate the methods developed earlier in a simple example. For ¢ in the interval
[—m/2,7/2], let E; € C* be the kernel of the matrix,

cost 0 sint  cost
rt)= . 4.1
® ( 0 cost —cost sin t) 1)

Then E is a rank 2 sub-bundle of the trivial rank 4 bundle over [—x/2, 7/2]. We will approximate
the parallel transport operator £2(7/2, —7/2).

To do so, we choose N + 1 equally-spaced points t; = —7 /2 + iz /N in the interval [-7/2, 7 /2],
with 0 <i < N. For each i, we find an orthonormal basis for the kernel of I'(t) and arrange the
basis vectors into a 4 x 2 matrix V(t;) satisfying V()T V(t)) =1dy. The kernels of I'(ty) and I'(ty)
are equal, and for both of these, we choose the basis

V(to) =V(tn) = (4.2)

o O O =
o O = O
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Table 1. Error in calculating the parallel transport using the methods £2 over N intervals.

N 6 12 % 48 96

(ol 3.56 x 107" 1.96 x 107 1.03 x 10~ 531 x 1072 269 x 1072
P s oo s s e
P e e e o0 es
b 29102 X0 794 %107 3081076 1BIx07

Table 2. Error in calculating the parallel transport using the improved methods 2% over Nintervals.

N 6 12 % 48 96

Q! 123 x 107 3.03 x 1073 7.54 x 1073 1.88 x 1073 471 x 107
Sy oy s e 0 e
Sy S S e e e
2r 980 x 10 439 x10° X075 %07 136107

To approximate parallel transport to accuracy 1/ Nk we compute the matrices Qk(t(iﬂ)(k,l), tigk—1))
for 0 <i < N/(k — 1). We then compute

U = 25(tn, k1) 2K (N1, EN—2k42) - - - 25 (1, o) (4.3)
Our earlier results imply that (7 /2, —7/2) = U + O(1 JNK).
The matrix §2(/2, —m/2) can in fact be computed exactly by solving the differential equation
(2.4). The result is
(4.4

Q(Z j)z —cos(%) —sin(\%)
22 () (@)

We can assess the accuracy of our approximation by computing the error E = % Tr(AAT), where
A=U — Q2(n/2,—m/2). The results are displayed in table 1. As expected, using a higher order
method allows one to attain a desired accuracy with fewer points than would be necessary with
a lower order method.

Now we consider the improved method. Recall that the improved method asks as to
multiply each matrix Qk(t(,-+1)(k_1), tik—1)) with a positive real number so that the modulus
of its determinant is 1. Since scalar multiplication commutes with matrix multiplication and
determinants are multiplicative, this is equivalent to computing U as in (4.3) and then computing
U= U//det(U). Thus, the additional computational cost associated with the improved method
is minimal.

Nevertheless, in the cases where k is odd, the improved method 2% is a substantial
improvement over 2% and comparable in accuracy with %1 as can be seen in table 2. The reason
for this improvement is that the kernel of our matrix E is a rank 2 symplectic subspace of C#, so by
our earlier results, U — Q(n/2,—7/2) = O(1/N*¥*1) when k is odd (whereas U — 2(r/2, —7/2) =
O(1/N").

Table 2 also shows that the errors obtained with the methods 2! and 22 are identical: this is
because these two methods are in fact mathematically equivalent. To see this, one simply needs
to note that

VTV VIE+ V()

+ —1
VOV EH I = i va e = Vieva T P

(4.5)
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using the fact that VT (x)V(x + k) can be written as a quaternion. Thus, £2! and 22 given in
equations (2.9) and (2.23) agree up to scalar multiplication, and their normalized counterparts
Q21! and 22 agree exactly.

(b) Application to instantons and skyrmions

The ADHM construction produces instantons (i.e. finite-action solutions of the self-dual Yang-
Mills equations) using induced connections [1-4,19]. In fact, all instantons can be produced by
the ADHM method.

In the case of gauge group SU(2), the method starts with an (1 + 1) x n matrix A of quaternions
that depends on a point x € R%. This must be written in the following form:

L
A, 22,08, 1t = *
OL ) =\ M~ (a1 4 31 + 30 + 1310 © Tdhy o

with L, M matrices of quaternions of size 1 x n and n x n such that M is symmetric. The matrix
must be such that A(x)"A(x) is a real invertible matrix for all x. This constraint ensures that the
kernel Ey of A(x)" is of quaternion dimension 1 (or complex dimension 2). So one can choose a
column vector V(x) of quaternions satisfying V)tV (x) =1 that spans the kernel. The instanton is
obtained by setting

Au(x)=V(x)t %(x). (4.7)

In other words, the instanton is the induced connection on the sub-bundle E.

Atiyah-Manton proposed [6,7] that holonomy of instantons could be used to approximate
skyrmions, which are used to model atomic nuclei. To be more precise, let A be a fixed instanton
with gauge group SU(2). For each (1, 2%, x%) e R3, let U(x!,x%,x%) be the parallel transport
operator from t = —oo to t = oo along the line in R* parametrized as t > (x!,x%,x3,t). Atiyah-
Manton proposed that the resulting function U:R3 — SU(2) can be used to approximate a
solution of the Euler-Lagrange equations of the Skyrme model.

This approximation was shown to work well in a number of situations [4,11-15]. Subsequently,
Sutcliffe gave a theoretical explanation of the success of the approximation [16]. Sutcliffe moreover
showed that instantons could also be used to approximate skyrmions coupled to vector mesons.
In Sutcliffe’s construction, one chooses a gauge transformation g : R* — SU(2) such that the gauge
transformed connection

~ _ 4 0
Ay =g'A8+8 1%, (4.8)

satisfies A4 = 0. The vector mesons are then obtained by computing the integrals,

oo
Wi(x!, 2%, x%) = J dMA;(x!, %, 3, 1) dt (4.9)
for a certain function ¢(t).

Our methods provide an efficient numerical implementation of the Atiyah-Manton-Sutcliffe
construction. If the ADHM data of an instanton is known, then to compute the holonomy matrix
U at a point (x1, x2,x3), one needs to divide the corresponding line in R* into a finite number of
sub-intervals. The holonomy matrix U can then be computed as a product of parallel transport
operators along these intervals. To obtain accurate results, it is important to include the points
(1, %2, x3, £00) at the two ends of the line. The basis matrices V(x!, x2, x3, +00) at these two points
by definition span the kernel of

1
lim AR, 3,x4)+=ﬂ:(0 1®Idn). (4.10)
xtoo x4

We note that the kernel of this matrix is the same in both the —|—oo and —oo cases and does not
depend on x!, x?,x3. It is important to choose the same basis V(x!,x?, x3, £00) = Vo, for all values
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of x1,x2,x3. A very natural choice is

1

0
V(xl,xz,x3,:|:oo)= P (4.11)

0

The choice of bases at other points is of no consequence because the approximation 2% depends
only on the choice of bases at x* = +00. The only constraint is that the columns of V should be
orthonormal vectors in C2"+2,

The example described in the previous subsection corresponds to taking the holonomy of
a charge 1 instanton. In this case, n =1, and the ADHM matrix is particularly simple and is
given by L=1, M =0. The matrix in equation (4.1) is just cos tA%(0,1,0,tant), and the parallel
transport operator §2(/2, —/2) that we computed was therefore U(0, 1, 0). Notice that our choice
of parametrization x* =tant maps the points x* = +00 to t =+7/2. This parametrization also
ensures that the points on the circle in $* that corresponds under stereographic projection to our
line in R* are fairly evenly spaced. This is a sensible way to choose points because the instanton
on R* constructed by the ADHM construction is the pull-back of an instanton on S*.

Our method also aids the calculation of the vector mesons. This is because the constraint A4 = 0
imposed on the connection (4.8) is equivalent to the parallel transport equation:

88% + A4g=0. (4.12)

One can therefore calculate g(x!,x?,x%,x*) by calculating the parallel transport of A along the
straight line from (xl,xz,xe’, —00) to (xl,xz,x3,x4). In fact, if one was also computing U, then one
would already have calculated this parallel transport as part of that process. Having calculated g,
one can calculate A; efficiently using the identity

- 9 -
A=VI—, V=vg, (4.13)

which is easily shown to be equivalent to (4.7) and (4.8). In practice, these derivatives would
be approximated as finite differences. Finally, the integral in the definition (4.9) of W; can be
approximated by a finite sum.

(c) Calculating the total torsion of a space curve

In this section, we describe another possible application to the geometry of spacial curves. Let
x:[0,L] - R3 be a smooth arclength-parametrized closed curve (meaning that x(L) =x(0) and
d"x/ds™(L) =d"x/ds"(0) for all n). Let u,n,b be its Frenet frame and let «, t be its curvature and
torsion. The total torsion of x is expressed as follows:

L
T:= J 7(s) ds. (4.14)
0

This quantity appears in a number of contexts. For example, all curves embedded in a sphere have
total torsion zero, and the sphere and plane are the only surfaces with this property [20]. The total
torsion is a conserved quantity for the localized induction equation for vortex filaments [21] (and
is the second such quantity in the hierarchy developed in [22]). The total torsion is related to the
self-linking number L € Z and the writhe Wr € R by the formula T/27 =L — Wr [23].

The torsion t can be understood as the induced connection on the normal bundle to the curve.
To see this, choose the frame v'(s) = n(s) and v%(s) = b(s) for the normal bundle and combine these
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into a 3 x 2 matrix V. Then, by the Frenet equations, the induced connection is

, [(n-n n-b 0 -t
A=V+V=<b.n, bb,):(f o)' (4.15)
It follows that
cosT sinT
2,0 = (— sinT cos T) ' (4.16)

Thus $2(L, 0) determines the fractional part of T/27, and of Wr.

Our methods can be used to calculate the fractional part of T/2x, and hence of Wr, to high
precision. To do so with the order 3 method, one must first choose a finite set xp, ..., xan-1 of
points along the curve, written in the form x; = x(s;) with sy <s1 <--- <syn—1. Then the curve
can be approximated by a polygonal arc with edge vectors u; := x;;1 — x;, where the indices are
understood modulo 2N. For each edge vector, one must choose 3 x 2 matrices V; satisfying Vl.Tul- =
0 and VI.TV,- =1Idjy. One then calculates

1 -
22 = E(ViTHVi +(vIvin™, (4.17)
4 1
3 2 2 T T -1
Q] = §Q2j+1 ‘sz - 6(V2j+2V2j + (szV2j+1) ) (4.18)
and U=23 1923 5...923. (4.19)
Finally, one finds an angle 6 € [0, 27) by solving the system:
u
11 _c0sh and ——2  —sing. (4.20)
2 2 2 2
Uiy + Uy, Uiy + Uy,

The fractional part of T/2x is given by

L%J -2 4o (%) . (4.21)

Obviously, higher precision could be obtained using the order 4 method. Note that it is not
necessary to choose the basis matrices V; to approximate the Frenet frame—any choice of the
orthonormal frame would be suitable because our method respects changes of basis (and because
the group SO(2) is abelian).

With a little more effort, one could also compute the integer part of T. To do this, one
should choose the columns of V; to be discrete approximations to the normal and binormal. For
example, applying Gram-Schmidt orthogonalization to the vectors u;, w41 — uj_1,u; X (ujp1 —
u;_1) results in a discrete approximation to the unit tangent, normal and binormal. One then
defines H; = .Q.?’Qf’i 1+ .(28’ . One can compute the integer part of T/27 by looking at sign changes
of the upper right entry of H]-. More precisely, let n be the number of integers j such that
(Hp11 >0, (Hj12 <0 and (Hjy1)12 > 0, and let n_ be the number of integers j such that (H;)11 > 0,
(Hjh12 > 0 and (Hj;1)12 < 0. Then the total torsion is given by T =27 (n4 —n-) +6 + O(N~3).

5. Conclusion

We have derived numerical methods to approximate parallel transport operators for the induced
connection on a subbundle of a vector bundle. Our methods are simpler than a naive application
of the Runge-Kutta method and insensitive to choices of basis.

Our most accurate method has errors of order 4. This level of accuracy should be sufficient for
most applications. But the algebraic framework that we have presented could be used to derive
higher order methods if desired. We expect that an order k method could be obtained for any k € N,
and it would be of interest to find a mathematical proof of (or counterexample to) this statement.

Another interesting question concerns the number of sub-intervals required to obtain an order
k method. Our order 3 method for approximating £2(h, 0) required us to divide the interval [0, /]
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sub-intervals of length /1/2, while our order 4 method requires 3 sub-intervals of length /1/3. We
find it surprising that so few sub-intervals are needed. To see why, one only needs to look at
equation (3.31), whose solution was required to find an order 4 method. This is a linear system of
14 equations in 4 unknowns, so it is surprising that we were able to find a solution. Similarly,
the linear system (3.26) has a solution despite having more equations than unknowns. These
observations suggest that there is some underlying reason why solutions can be found, despite
the equations apparently being overdetermined, but we have been unable to find a satisfactory
explanation. It would be an interesting mathematical problem to determine the minimum number
of subdivisions required to obtain an order k method.

These questions have a natural algebraic formulation. The expressions that appear in our
calculations in §3 are sums of mononomials of the form PD'PD/PDk . . .. These can be represented
as elements D' ® D/ @ D¥ - - of the tensor algebra TR[D] over the space R[D] of polynomials
in D. In particular, the parallel transport operator w(h) in equation (3.12) that we are trying
to approximate corresponds to exp(—hD) =1 —hD + (h?/2)D ® D — - - - (with & treated as a real
number). This is just the exponential of —hD using the tensor product. On the other hand,
the expression mq(h) in (3.16) is 1 —hD + (H2/2)D?% — ..., which is the exponential of —hD
defined using the polynomial product. Our approximations (3.19), (3.23) and (3.28) are Laurent
polynomials in mq(nh/(k — 1)) that agree with w(l) up to terms of total degree k+ 1. So the
problem of finding approximations to the parallel transport operator amounts to comparing the
exponential maps defined by two different products on TR[D].
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