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Abstract
Lattice calculation of the mass difference between the long- and short-lived K mesons for
physical quark masses

Bigeng Wang

The two neutral kaon states in nature, the K; (long-lived) and K (short-lived) mesons, are
the two time-evolution eigenstates of the K* — KO mixing system. The prediction of their mass
difference Amg based on the standard model is an important goal of lattice QCD. Non-perturbative
formalism has been developed to calculate Amg and the calculation has been extended from the
first exploratory calculation with only connected diagrams to full calculations on near-physical[1]
and physical ensembles|2].

In this work, we extend the calculation described in Reference [2] from 59 to 152 configurations
and present a new analysis method employed to calculate Amg with better reduction of statistical
error on this larger set of configurations. By using a free-field calculation, we will show that
the four-point contractions in our calculation method yields results consistent with the Inami-Lim
calculation[3] in the local limit. We also report a series of scaling tests performed on 24° x 64
and 32 x 64 lattice ensembles to estimate the size of the finite lattice spacing error in our Amg
calculation.

We will present the Am calculation on the ensemble of 64 x 128 gauge configurations with
inverse lattice spacing of 2.36 GeV and physical quark masses obtaining results coming from 2.5
times the Monte Carlo statistics used for the result in [2]. With the new analysis method and

estimated finite lattice spacing error, we obtain Amg = 5.8(0.6)sta(2.3)sys X 10~ 2MeV. Here the



first error is statistical and the second is an estimate of largest systematic error due to the finite
lattice spacing effects.

The new results also imply the validity of the OZI rule for the case of physical kinematics in
contrast to the previous calculation of Amg with unphysical kinematics[1], where contributions
from diagrams with disconnected parts are almost half the size of the contributions from fully

connected diagrams but with the opposite sign.
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Chapter 1: Introduction and background

1.1 The standard model and flavor physics

The standard model, developed in 1960s, works well in the energy scale up to several hundreds
of GeV. It unifies the three basic interactions, electromagnetic, strong and weak interactions and
has successfully explained most of the experimental data we currently have. As the top quark
(1995), the tau neutrino (2000), and the Higgs boson (2012) were detected, the validity of the
standard model was further confirmed.

The electromagnetic sector of the model, is described by quantum electrodynamics(QED)
which is the earliest part of the standard model to be proposed and which works very well with
excellent agreement to very high precision between the experimental and theoretical results.

The strong sector is described by quantum chromodynamics(QCD). Because of asymptotic
freedom, QCD perturbation theory works fairly well in the high-energy region. However, for
energy close to the scale of Apcp where the strong coupling a has a magnitude of order ~ O(1),
QCD perturbation theory does not converge and has uncontrolled contributions from high orders.
The perturbation calculation in the low-energy region is limited by the computational challenges
imposed by high-order perturbative terms. While in the low-energy region, experimental results
are copiously generated and effective theories are quite successful in making predictions taking
advantage of the approximate chiral symmetry of QCD, theoretical predictions from first-principle
calculations based on the standard model are still limited.

The weak sector, which is the least understood part of the standard model, shows many intrigu-
ing properties like left-left only interactions, CP violation and quark mixing. In spite of the success
of the standard model, there are some observations related to the weak sectors which need to be

compared to the predictions by the standard model. These quantities may indicate new physics



beyond the standard model and the weak sector is expected to be the place where new physics may

be discovered.

1.2 Neutral kaon mixing and Amg

Interesting quantities like the unitarity of the Cabibbo-Kobayashi-Maskawa(CKM) matrix and
the CP violation parameters are being carefully measured in many weak-decay processes. Among
them, flavor changing neutral current(FCNC) transitions are rare in the standard model and are
sensitive to new physics.

The mass difference between the long- and short-lived K mesons, Amg, is generated by K
meson mixing through AS = 2 weak interaction which is a process second-order in the Fermi
constant G r and is closely related to the indirect CP violation parameter ex. This tiny quantity
has been precisely measured experimentally to be 3.484(6) x 10712 MeV [4] and the comparison
between the prediction for this quantity by the standard model and its experimental value will serve
as a detector of new physics beyond the standard model.

However, like other weak decay quantities, for Amg one of the main difficulties in making a
prediction based on the standard model is that the weak interactions are entangled with hadronic
processes where the strong forces play a important role and one must handle the strong interactions
non-perturbatively. In the previous calculations[3] [5], the division of short and long distance in
the operator product expansion is made at an energy scale below the charm quark mass. The charm
quark is treated perturbatively and the effective Hamiltonian is a local AS = 2 operator. However,
the result[5] from the calculation of the QCD correction factors using perturbation theory shows
the next-to-next-to-leading-order(NNLO) terms are about 36 % of the leading order(LO) terms
indicating a slow convergence of the perturbative series.

Due to the Glashow-Iliopoulos—Maiani(GIM) mechanism, the dominant contribution to Amg
comes from the charm quark scale and below and the calculation can be better performed by
making the division of long and short distances at an energy scale larger than the charm mass and

treating the charm quark non-perturbatively by using two AS = 1 operators in a lattice calculation.



With the improvement of lattice computational power in the past decades, this has recently become
feasible. Since the first exploratory calculation[6] performed by the RBC-UKQCD collaboration
on a 2+1 flavor, domain wall fermion (DWF), 163 x 32 x 16 lattice ensemble with a 421 MeV pion,
more developments in the calculation toward the complete prediction with physical quark masses
have been achieved[1][7].

Our lattice calculation is based on first principles with well-controlled systematic errors. The
finite lattice spacing errors can be estimated from a series of scaling tests with different lattice
spacings. Ultimately one can perform calculations for several lattice spacings and extrapolate the
results to the continuum limit. Corrections to the Amg due to the finite volume effects coming
from the two-pion state scattering have been studied theoretically and we can use the formulas in
Reference [8] to evaluate them for our calculation.

In this work, we will present the first lattice calculation of Amg based on the standard model
with physical quark masses. In Chapter 2, we will have a brief review of the physics of the neutral
kaon mixing in the standard model and explain our non-perturbative calculation of Amg using a
renormalization scale above the charm quark mass. In Chapter 3, we will show the formalism and
methods we have used to calculate Amg with lattice QCD. Chapter 4 further explains the data anal-
ysis methods we used to obtain physical quantities with well-estimated statistical errors. In Chapter
5, we will study several important sources of systematic errors, and show consistencies between
the non-perturbative renormalization factors used in our Amg calculation and previous published
results. We will also present a free-field calculation demonstrating the four-point contractions in
our calculation method yield results consistent with the Inami-Lim calculation in the local limit[3].
In Chapter 6, we will present the results from our calculation of Amg on a 64> x 128 x 12 lattice
ensemble with physical quark masses. In Chapter 7, we will summarize our physical results and
discuss the outlook for future comparisons between the prediction for Amg based on the standard

model and its experimental value.



Chapter 2: The physics of Amg

In Nature, we find two types of neutral K meson with different masses and lifetimes. Amg,
refers to the mass difference between the long- and short-lived K mesons. This mass difference is
generated by the fact that the states with definite strangeness, i.e. K and F, are not the eigenstates
of the weak Hamiltonian and they mix through second order weak interactions.

We can express the dynamics of the mixing using Wigner-Weisskopf theory:

d [K°(1) i [K°()
i— = (M-I : (2.1)

dt EO(I) 2 EO(I)

where the matrices M and I" are given by:
(K?|Hw|n)(n|Hw|K?)
() { J

Mij =mg 6i; +P Zn: me —E. , (2.2)
Tij =21 ) (KP|Hwln){n|Hw K98 (mk - Ey), 2.3)

where the indices i, j = 1,2 denote the K° and KO states and Hy is the AS = 1 effective weak
Hamiltonian and the # denotes that a principal value will be taken when the integrand’s denomi-
nator is vanishing.

The states K° and KO are related by the CP transformation:
CPIK?) = -|K"), (24)

and if we assume the CP invariance of the effective weak Hamiltonian, then the mass matrix are

symmetrical and the matrix elements are real. If the small effects of CP violation are neglected then



the long-lived (K1) and short-lived (K) are approximately the two CP odd and even eigenstates:

o K- KO KO+ KO 0s)
§R —/—, L~ .
V2 V2
Therefore we obtain the key formula for the Amg calculation:
KO|H Hy|K°
Amg = mg, —mg, = 2ReMip = 2P Z (KT |Hw|n) (nlHiw | > (2.6)
- mg — En

Based on the standard model, the contribution to the Amg comes from box diagrams, double-
penguin diagrams and disconnected diagrams. These diagrams are shown in Figure 2.1, 2.2 and
2.3. In order to perform the calculation, with a combination of perturbative and non-perturbative
lattice calculations, long- and short-distance characteristics of each diagram have to be examined.
Here we use the operator product expansion(OPE) method and the corresponding effective Hamil-

tonian to help us achieve this goal.

2.1 The operator product expansion(OPE) and Amg

The operator product expansion is commonly used in calculations of weak and hadronic pro-
cesses and its general idea is to express the physics at a low energy scale in terms of an effective
Hamiltonian, which is derived from the full theory by integrating out contributions from heavy

particles above the low energy scale:
Hy = ) Ci(1)0; (), 2.7)
>

where the Wilson coefficients C; contain the information from the high energy part which is inte-
grated out from the original theory and the low energy part is preserved in the operators O ;. The
renormalization scale u labels the energy scale where the above division between high and low
energies is made.

In a QCD-related problem, because of asymptotic freedom, i.e. that the QCD interaction be-



comes weak at a high energy scale u and the strong coupling constant a(u) < 1, the factor can be
calculated perturbatively with high accuracy. The low energy part associated with the remaining
operators should be treated non-perturbatively by performing lattice QCD simulations.

This is very useful since one can separate the calculation into two parts: the calculation of
high-energy factors perturbatively and the calculation of the remaining low-energy matrix elements
non-perturbatively with well-controlled systematic errors in each part. The choice of energy scale
u is somewhat arbitrary but in order to reduce the systematic errors from perturbative and non-

perturbative calculations, one usually make the scale u to obey:

1
= > u> Agcp, (2.8)
a

where a is the lattice spacing and Agcp is the typical energy scale where a;(Agcp) ~ 1. There-
fore, the low energy part is then called to be "long-distance" and the high energy part is called to
be "short-distance", based on the reciprocal relationship between the typical energy and distance
scale of the interactions.

The above condition shown in Equation 2.8 is a rather generic one. To choose a proper u
suitable for a specific problem, one has to take into consideration the limit of the available lattice
ensembles, computational costs and the corresponding systematic errors introduced by perturbative
and non-perturbative calculations. These restrictions themselves are evolving as the developments
of lattice QCD are still going on, especially when the lattices with smaller lattice spacings are being
generated, and supercomputers with stronger computational power are becoming accessible. At
the same time, as the perturbative calculation extends to larger number of orders, the lower bound
of the energy scale u can be taken smaller. Therefore, the division of short- and long-distance
calculation, may vary among different methods and different times in history.

Here using the OPE, we will firstly summarize an earlier method to calculate Amg[3][9] [S]. By
examining the short- and long-distance characteristics of Amg calculation and taking the current
available computational resources into consideration, we will present our choice of the short- and

long-distance division for our full calculation of Amg on a lattice with physical quark masses.



2.2 GIM mechanism: short- and long-distance characteristics of Amg

The GIM mechanims plays an important role in the kaon-mixing problem. The internal quark
lines with different flavors, i.e. up, charm, top, will appear in the diagrams. We start from the

AS = 1 effective Hamiltonian:

G " ’ ’
Hy = 7; Z VeV (C1017 + C097). (2.9)

q,q9'=u,c,t

Here ngq’i:l , are current-current operators, defined as:
07" = Gy"(1 = y5)d) (G (1 =ys5)q)), 05" = Gy (1 =ys5)d;)(G;y*(1 = ys5)g}), (2.10)

where i and j denote the color indices of the quark fields. As a AS = 2 process, the kaon mixing
has two AS = 1 weak operators involved and if we perform the Wick contractions, for a specific

diagram labeled as @, we will find:

Rl = B 2R 4B 11 B A 11 EF 4Ry, 1 ) 4,

(2.11)
where the upper index shows the flavors of the two internal contracted quark lines. Based on the

unitarity of the CKM matrix, we have:
Ay+Ad:.+4,=0, (2.12)

where 4, = Vq,dV;, s g4 = u,c,t, and we can rewrite the Equation 2.11 for example by eliminating

Ae = =4, — 4, and simplify it to be:

(u—c)(u—c) (t=c)(t=0) (u=c)(t=c)
R =B 48 2a @ e



where the (¢ — ¢), with ¢ = u, t, denotes that the internal quark line with flavor ¢ are subtracted by
a quark line with flavor charm. We can see that all the diagrams will vanish if up, charm and top
quarks have degenerate masses, which is just what the GIM mechanism predicts.

Therefore, including the effect of the GIM mechanism on the diagrams can be effectively con-
sidered as subtracting one of the quark flavors from each quark lines in the diagrams which are
built with the other two flavors. Given such formalism to include the GIM mechanism, we can

further examine the long- and short-distance characteristics of each sub-diagram, in the context of

the OPE.

2.2.1 Calculation of Amg from the bag parameter By

In the earlier calculation of Amg[5], one uses A, = —4, — A; to eliminate A,, and obtains the

expression:
(c=u)(c—u) (t=u) (1—u) (c—u)(1—u)
(X) gy = 224X + 2(X) +22:4(X) . (2.14)

In Reference [5], the division of short and long distance is made at an energy scale below the
charm quark mass. As a result, the contributions from box diagrams related to charm quarks
belongs to the short-distance region and the remaining mixing channels like K « (7%, 7) < KO
and K® & nr < KO are assigned to be long-distance and remain unresolved. The double-penguin
diagrams, have both short-distance and long-distance contributions under this division. It’s difficult

to separate the two, and only the short-distance contribution has been studied[10].

d 114 S d u.cC, 1 S
—————NNANNN———— "' = =

u,c,t 4t u,c,t W %%
—:—"\/\/\/\/\,—*{— " - -
W J S u,c,t d

Figure 2.1: Contribution to Amg from box diagrams.
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Figure 2.2: Contribution to Amg from double-penguin diagrams.
G 3
d d 5
u, c,t W
%% Y
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5 0000000 —— 7~
G
Figure 2.3: Contribution to Amg from disconnected diagrams.
: 0 o ot = - @
KO g KO K @Q
—NC " v A e
H W H 11,74 H W H W

Figure 2.4: Contribution to Amg from long-distance diagrams according to the division when
o< meg.



For the short-distance part, the charm quark contribution is integrated out and calculated per-
turbatively. The effective Hamiltonian from box diagrams can be expressed in terms of a AS = 2

local operator multiplied by a Wilson coefficient from weak and short-distance QCD effects:

_ G2 _2 A
Wﬁ,ff_z = 16;2Mvzv[/1%771So(Xc)+/1¢2771So(xz)+2/1c/1r77350(xc,X;)]X[as(ﬂ)] o[1+ 4(:)13]0LL+h-C-,

2

where x; = ;—5, Xx; = u,c,tand x, is set to be 0. The local operator is given by:
w

Orr = (5d)y-a(5d)v_a, (2.16)

where (V — A) denotes the left-handed spin structure of the form y,, (1 —s). The non-perturbative
calculation focuses on the evaluation of the matrix element (K°|O, L|F>. Note that here our nor-
malization convention is (K°(p1)|K%(p>)) = 2E(27)38%(p1 — p») and different from the conven-
tion used in our finite-volume lattice calculation which can be found in Appendix A. Practically,

we calculate the scale- and scheme-invariant bag parameter:

. KO K°
By %( |b(,U)ZOL§(,U)| >, (2.17)
Fmy

where Fk is the kaon decay constant and b(u) is the renormalized Wilson factor at energy scale
. The So functions, are the Inami-Lim functions which comes from the electroweak box diagram
without QCD correction:

So(xe) ® xey,  xe <1, (2.18)

dx, — x> +x)  3x)Inx,
So(x;) = - : 2.19
T S ETU I @1

Xy 3x; 3xt21nx,
xe 4(1-x) 4(1-x,)2

So(xc, x;) = x¢[In ]. (2.20)

The short-distance QCD correction based on perturbation theory are expressed by the combi-

10



nations of the factors ny, 172, 73 which are a;-dependent terms. Finally, Amg can be calculated

using the formula:

G2 .
Amg = 6—7£MV2VF,%BKmK [A2171S0(xc) + 4771 S0(x2) + 22 Am380 (xe, x1) . (2.21)

By calculating Bx non-perturbatively, we can obtain a value of the short-distance contribution
to Amg, by leaving out the contributions from long distance, based on the specific division u < m,
where charm quark is integrated out. However, the result[5] shows only 36% accuracy in the
next-to-next-to-leading-order(NNLO) calculation of the QCD correction factors using perturbation
theory and indicates a slow convergence of the perturbative series. Therefore, treating charm quark
non-perturbatively on the lattice provides an alternative way with well-controlled systematic errors

and enables us to calculate the full contribution from all types of diagrams.

2.2.2 Non-perturbative calculation of Amg using a renormalization scale above the charm quark

mass

With the improvement of lattice computational power, treating the charm quark non-perturbatively
becomes feasible and we can perform the division of long and short distances at an energy scale
larger than the charm mass. Therefore, under this division, the contributions from up and charm
quarks are now all long-distance and we will see later in this chapter that the GIM mechanism also
ensures that the Amg computed in this way on the lattice has a physical continuum limit.

We will start from the AS = 1 effective Hamiltonian and eliminate 1. in Equation 2.11. Using

Ae = =4, — A;, we obtain the contracted diagram @ for any topology X with the GIM

GIM

mechanism included:

(u—c)(u—c) (t-c)(t—c) (u—c)(t-c)
@GIM - ﬂi@ + A?@ +2Auds @ ’ (2.22)

where the (¢ — ¢), with ¢ = u, t, denotes that the internal quark lines with flavor ¢ have a charm

quark line subtracted.
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Because only the real part of matrix element M, contributes to Amg, we can examine the
numerical values of the coefficients 12, 12 and 1,4, and estimate the overall contributions to the

. ) (g—c)(g’-c) .
real part of matrix element M1, from each sub-diagram @ . At the same time, we should

also examine the long- and short-distance characteristics of each sub-diagram @wﬁ)(q,%‘) an
decide whether the quark flavors ¢ and ¢’ should be treated non-perturbatively.

Detailed discussion about these two important aspects can be found in [11]. Following that
discussion, we will focus on the diagrams with the (u-c)(u-c) flavor structure and include contribu-

tions from all possible diagrams, i.e. the box diagrams, double-penguin diagrams and disconnected

diagrams.

2.3 Calculation of the diagrams with two bi-local AS = 1 operators on the lattice

On the lattice, due to the discretization, we don’t naturally have a continuous space-time in-
tegral, and the contribution from the distance at the lattice scale is dominated by lattice artifacts.
For a calculation of physical quantities on the lattice, such effects should be considered as a well-
controlled source of systematic errors and in the limit where lattice spacing a goes to 0, physical
continuum results should be obtained. Therefore, before we move on and implement the calcu-
lation of the diagrams on the lattice, we have to confirm that our Amg computed on the lattice
corresponds to a physical quantity with well-defined continuum limit.

The inner loops in the box diagrams or self-loops in the penguin and disconnected diagrams
may lead to ultra-violet divergences and the lattice calculation as a result may have no well-defined
continuum limit. However, as we can see below, the GIM mechanism and the left-left spin structure
of the two current-current weak operators remove the divergence and the quantities we calculate on
the lattice for Amg are well defined once the four quark operators themselves have been properly
renormalized.

Here we start our discussion with Amg calculated from diagrams from two AS = 1 weak
operators evaluated in momentum space. If we simply perform the calculation where charm quark

is integrated out, the loop integrals are divergent. This can be understood by writing down the
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QCD-free loop integral appearing in the diagrams, regulated by the lattice cutoff a~':

-1

L:l d4p [’}"“(1 - 75);)2_ my y'(1- 75);2;’::%] [...]V”u, (2.23)

+m2

or equivalently using the gamma matrix properties, we can write the integral as:

-1

/n: d*p [y“(l - 75)‘¢2 fm%yv(l - YS)J%m%] []Vﬂ (2.24)

where the [] denotes a similar spinor product as in the brackets on its left. By naive power
V.

counting, we can see the integral diverges in a quadratic manner as a — 0.
However, under our division of the short- and long-distance contribution where the charm quark
is treated non-perturbatively, the GIM mechanism leads to the (u — ¢) flavor structure in the inner

loops of the diagrams. With the charm quark and GIM cancellation, we have the expression below

for an inner loop integral with the (u — ¢) flavor structure:

-1

o p-mu P
/mc dp[y“(l—ys)(yhm%—p%m

Oy —)/5)] [( - ...)]W, (2.25)

where a~! suggest the lattice cutoff of the momentum integral. Because of the left-left spin struc-
ture of the current-current operator, the term leading to logarithmic divergence vanishes and we

obtain:
-1

a 2 _ .2
/ d*p|y"(1-y5)( Pl — )

(p? +m) (p* +m2)

(1 —y5)] [( - )] . (2.26)

V.
As the result, we will have a convergent integral with the dominate contribution coming from the
distance ~ 1/m., rather than a divergent integral as a — 0. Therefore, our Amg lattice calculation
is well-defined in the continuum limit and we can reduce the systematic errors from the finite lattice
spacing by using a lattice with a smaller lattice spacing.

In our calculation on the 64> x 128 lattice ensemble with physical quark masses, we have
a~! = 2.36GeV and m.a = 0.31 and our discussion of the finite lattice spacing effects coming

from direct scaling tests is included in Chapter 5.
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Chapter 3: Calculation of Amg with lattice QCD

The previous chapter demonstrates that Amg is a long-distance quantity which can be calcu-
lated on the lattice with a well-defined physical continuum limit. In this chapter we will show the
details about how we calculate Amg using lattice QCD. We will first explain the quantities from
which we extract the value of Amg and then the implementation of the calculations of these quan-
tities. Lastly, the non-perturbative renormalization which connects the lattice value of Amg to the

physical value will be demonstrated.

3.1 Amg and integrated correlation functions

The kaon mixing process can be studied using lattice QCD by calculating four-point correlation
functions. As shown below in Figure 3.1, we can evaluate such a correlation function by putting a
K? creation operator at time #; and a K annihilation operator at time ¢ r and inserting two effective

weak Hamiltonian operators at time #; and #;.

Figure 3.1: A four-point correlator on the lattice.

The correlation function is given by:
G (11,12, 1, 17) = (OT{KO(t7) Hy (12) Hy (1)K (1;) }|0), (3.1)
where T{...} means the time ordering of the operators is imposed. If we insert a complete set of

14



intermediate states, it can be expressed as:
G(6) = Nge <1570 %" (KO| Hyy n) (n| Hy | K )" ~En, (3.2)
n

where 6 = 1, —1 is the time difference between the two weak operators and N is the normalization
factor for the kaon interpolating operators F(r r)and K 0(,).

To calculate Amg we can integrate the four-point correlation functions over the time locations
of one of the weak operators with the other one being fixed as shown in Figure 3.2 and obtain the

single-integrated correlator:

t1+T

AST) = 32 " O {K 1) H (1) H (1)K 1)} 0. 33

"=t -T

which is connected to the correlation function G by:

1

fn+T .
ANT) =57 ), OIT{KO(ty = 15+ A) Hy (12) Hyy (1)K (1) }|0)

" ty=t;-T

(3.4)
d 1

= ZG(n,tz =t1+0,t,tp=t; +A) + EG(tl,tz =ttty =t +A).
o=1

If we insert a complete set of intermediate states between the weak operators Hy in Equation

3.3 and drop terms of order a? in the sums, we find:

KO Hy|n)(n|Hw|K°)
mg — En

AS(T) = Nge™x 7710 % ( {=1 + ¢~ (Enmme)Ty (3.5)
n

We obtain Amg from the constant term in Equation 3.5, after we remove the term with exponential

dependence on T.
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K%(t:) K%ty)

d

ty —T ty+ 1T

Figure 3.2: The single integration method on the lattice. The shadowed box refers to the region of
integration.

3.1.1 Three point matrix elements for subtraction of terms with exponential time growth

The term & with exponential dependence on T which we need to be removed from A is:

& = N2 oKty =t) Z (KO|Hw|n){(n|Hw|K") o~ (En=mi)T (3.6)
K - mg — En

The contributions from the states |n) with E,, > mg, are negligible at large T values. However, the

contributions coming from states |n) with E,, < mg increase exponentially as T becomes larger

and we need to calculate their contribution:

_ <KO|HW|n><n|HW|KO>e—(E,,—mK)T’

&
" mg — E,

(3.7

and subtract them from the AS. Therefore we need to calculate the matrix elements: (F|len),
(n|Hw|K°) and the energies E, of the low-energy states.

In our case of physical quark masses, the vacuum state |0), single-pion state |r) , two-pion state
|7r) each have energy smaller than mg and their contributions need to be subtracted. The single-
eta state |i7) has an energy slightly larger than mg and its contribution proportional to e~ (" ="x)T
may not be negligible. Therefore we will also subtract the contribution from single-eta state.

Because operators sd and sysd can be written as a total divergence, we have the freedom to
add these two operators with coefficients ¢ and ¢, to our effective Hamiltonian without changing
the final results. With properly chosen coefficients ¢ and cp, we are able to remove two of these

contributions.
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The kaon to n matrix element is expected to be very noisy since it includes disconnected dia-
grams. Here we choose ¢ and ¢, to satisfy Equation 3.8 so that contributions from the |0) and |7)
will vanish:

(OlHw — cp3ysd|K®) =0,  (n|Hw - ¢;5d|K) = 0. (3.8)

As a result, the current-current operators Q; in the original AS = 1 effective weak Hamiltonian

should be modified to be :

Q; = Qi — cpiSysd — cyi3d (3.9)

with ¢p; and c¢g; being calculated on the lattice from the ratios of the matrix elements:

_ (nlQilK®) __{010:|K®)

_ ey = i) 3.10
alsdIKY P OysdIK%) G-10)

Si

With the choice shown in Equation 4.10, we can reduce the size of statistical error from the
noisy states by taking advantage of the correlation between the denominators and the numerators
in Equation 4.10 and we only need to subtract less noisy contributions from the other two states

explicitly.

K 4 . At T

Figure 3.3: The three-point correlation function with a kaon source and a pion sink.

We can extract the matrix elements from the three-point correlation functions. For example, a
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three-point correlation function with a kaon source and a pion sink is shown in Figure 3.3. The

three-point correlation function is given by:

C2i (A, 1) = (010}, (A)Q:i(1) Ok (0)]0) (3.11)
= > D (0107 (0)e™ A [n)¢nle™"' Q;(0)e ™" m) (m|O o 0) (3.12)
= > > {010,(0)n)(n]Q:(0)m) (m|O gol0ye™En(A= e Ent (3.13)

where A is the time distance between the kaon creation operator and the pion annihilation operator
and 7 is the time distance from the kaon operator to the weak operator. Ogo(0) denotes a kaon
creation operator at time 0 and 0;0 denotes a pion annihilation operator at time A.

Since the sum over m is dominated by kaon ground state for large enough ¢ and the sum over
n is dominated by pion ground state for large enough (A — t), we can further simplify above

expression to:

CO (A, 1) ~ (0107, (0) ) (1 Q1K) (KO gol0) e (A~D) ~mit (3.14)

= NaNg(n°|Q;| K ye (A0 gmmx!

We can extract the term (7°|Q;(0)|K°) from C2 (A, r) if we obtain factors like (OleT0 (0)|79),

(K°|O0|0) and the meson masses from two-point correlation functions.

3.1.2 Two-point correlation functions for masses and normalization factors

The masses and normalization factors of meson states can be obtained from two-point corre-
lation functions. Using the case of the kaon source and kaon sink as an example, the two-point

correlation function, is of the form:
CR(1) = (010}, (1050 (0)[0) = Y [(n]O}|0) e~ (3.15)
KO KO K KO . .
n
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The term which dominates the sum is the one with non-zero |(n|0j<o |0)| and relatively large e =577,

There are kaon excited states which can have non-zero |(n|0;(0 |0)| value. However for large t, the

lowest non-zero state, i.e. the kaon ground state dominates; so we have an approximate expression:
2pt 01 2 -
Con (1) = (K07 [0)[Pe™K" (3.16)

Thus we can obtain |(I(O|Oj<0|0)|2 and mg from fitting this expression and can then remove the

time-dependence and normalization factors from the related three-point correlation functions.

3.2 Operators and Wick contractions

The K; — K mass difference can be calculated from the four-point correlators as shown in
Equation 3.3. Based on our OPE division, after neglecting the contribution from the top quark, the

AS =1 effective Hamiltonian Hy can be expressed as:

G . , ,
Hw = TF D VaaVe (CI0]" + 02057, 3.17)
q.q'=u,c

and Q?q,i:m are current-current operators which contribute to Amg, and are defined as:
Q1" = 5y (1 - y5)d)(@* (1 = y5)g}), Q17 = Gy (1 = y5)d)(Gy" (1 - y5)g)). (3.18)
By taking advantage of the Fierz identity, we can write the operator Q> in a color-diagonal form:
04" = (57" (1 = ¥5)a) (@7 (1 = ¥5)d)). (3.19)

The effective weak Hamiltonian, using Q?q/ as defined in Equation 3.18, can be explicitly written
as:

G
Hy = 7; 086,56, C; (Q" — Q) + cos?0,.(C;Q") — sin®6.(C;QM) |, (3.20)
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where 6. is the Cabibbo angle since we have top contribution omitted based on the discussion in
Chapter 2.

In addition to these weak operators, we must include meson source and sink operators as well.
The contractions among these meson operators and the effective weak operators yield the correla-
tion functions from which we would like to extract matrix elements. To have a better overlap with
the meson ground state, we use Coulomb gauge-fixed wall source and sink operators to create the

—0 .
K? and destroy the K . The meson operators are of the form, using kaon operator as an example:

Oxo(t) = K(1) = ) id(E, )V (%, 0)ysV' (3, )s(5, 1), (3.21)
Xy
where the sum over X and y in the spacial hyperplane at time ¢ leads to wall source propagators and
the V transforms the gauge links in the spatial hyperplane into Coulomb gauge.
The n meson operator seems to be more complicated because the 1 and " mesons are mixtures
of the octet state ng and the singlet state 7; under the SU(3) symmetry. The mixing of these two

states can be expressed in terms of the mixing angle 6 as:

|7) cos@ —sinf || |ng)

- , (3.22)
I7”) sin@  cos6 |\ |n1)
where |ng) and |n;) are obtained by applying the operators:
Ins) 1 (wysu + dysd — 25yss)|0) (3.23)
ng) = —=uysu + dysd — 28yss .
V6
M) = ——(ysu + dysd +5759)10) (3.24)
mp)=—=wuysu Vs SYs5S .
V6

In our calculation, because 6 is small and the systematic error from omitting |77;) is negligible, we

take the |ng) as the 7 state appearing in the three-point matrix elements .

20



Four-point contractions

We must evaluate the four-point correlation functions (()lT{ﬁ(tf)HW(tz)HW(tl)KO(t,-)}|O)
by performing Wick contractions between the operators. There are four types of topology for the
contractions between the current-current operators and meson operators as shown in Figure 3.4.
In addition to these diagrams, there are also diagrams which contain contractions between the
lower dimensional operators sd, sysd and the current-current operators Q;, as shown in Figure
3.5. Because these diagrams have similar topologies to those of the type-3 and type-4 diagrams,
we assign them to the category of type-3 and type-4 diagrams when we separate and evaluate the

contributions from the different types of diagrams to Amg.

type 1 type 2
d &
d s
,,. OO0
8 A
type 3 type 4

Figure 3.4: Four types of contractions in the 4-point correlators with Q| and Q,. All the in-
ternal loops have the (u-c)(u-c) flavor structure because of the GIM mechanism.The single dots

—0 . .
correspond to the K and K operators while the paired dots correspond to the weak four-quark
operator.

For the inner propagators, because of GIM mechanism, we will have the (u-c)(u-c) flavor struc-
ture, which can be deduced from the operators in Equation 3.20. Because of the GIM mechanism,
we can combine groups of four-point diagrams @, to realize a (u-c)(u-c) flavor structure for all

internal quark lines with a common factor cosé.siné,.:

. (u—c)(u—c)
@GIM = cos@csmGC@ . (3.25)
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Figure 3.5: The "mixed" contractions in the 4-point correlators. The top two are products of the
csi8d and cp;Sysd contracted with the Q; and the bottom two are products of the c,;5d and c;5ysd
operators. The diagrams on the left and the type-3 diagrams have a similar topology. The diagrams
on the right and the type-4 diagrams also have a similar topology.

After the Wick contractions are specified, each group of diagrams can be calculated in terms of
specific products of propagators. For example, a typical four-point diagram labeled with index 2

shown in Figure C.1 can be explicitly calculated as:

@giaa = Tr| TS (e )5 [8Y (e )] Tl G,y (o017 TSY (1) 518Y (0017 TuSE, (000,
(3.26)

where I'* = y#(1 —ys), [...] ! denotes a propagator with the opposite direction and 77[...] means

taking trace over spin and color indices. The propagator notations are defined here as followings:

S;V (x,7) means a propagator with a wall source on time slice # and a point sink on space-time

site x and Sg (y,x) means a propagator with a point source on site x and a point sink on site y

and the subscript g denotes the quark flavor. The flavor structure is labeled by g = s,d. The

(x, y) represents a point-source-point-sink propagator with flavor up subtracted by the same

(u ¢)
type of propagator with flavor charm.

Three-point contractions

We have to calculate three-point correlation functions between the kaon state and light states

to extract the matrix elements of the form (n|Q;|K°), (n|5d|K°) and (n|sysd|K"). The three-point

22



contractions can be roughly categorized into two types of diagrams, figure-eight and eye diagrams
with self-loop propagators, as shown in Figure 3.6. All the three-point diagrams are listed in the

Appendix C.

Q
<

Figure 3.6: Examples of figure-8 diagram(left) and eye diagram(right) that appears in the three-
point contractions.

The GIM mechanism enters three-point contractions only through the diagrams with self-loop
propagators, like the eye diagrams. We can understand this from the fact that the initial and final
states in our three-point calculation have no charm flavor and there is only one weak Hamiltonian
operator inserted. Only the combination 1,C;(Qf" — Q¢¢) in the effective weak Hamiltonian op-
erator shown in Equation 3.20, can be contracted to produce a self-loop propagator and will yield
a self-loop propagator with an up quark subtracted by a self-loop propagator with a charm quark.
We denote such a flavor structure as (uu — cc). For example, the eye diagram shown in Figure 3.6

can be explicitly calculated as:

GIM - Z Tr [1"# S (1) ysSY (1 1) ys 1SV (x, tl-)]_l]Tr [rﬂsfuu_cc) x|, (327

X

where I'* = y#(1 — s), the space-time site x are all on a time slice # and Tr[...] indicates a trace

over spin and color indices.
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Two-point contractions

The contractions appearing in the two-point correlation functions are shown in the Appendix

D. For example, the kaon two-point contraction is given by:
C (tp,1) = Tr | Sy (1 t)ys IS (10171 (3.28)

The source and sink of the two-point correlation function are both wall operators. Please note the
contraction where the wall source and wall sink are on the same time slice are different from the
self-loop propagators appearing in the three-point correlation functions which are generated by the

weak operator with a point source.

3.3 Evaluation of correlation functions on the lattice

Under the path integral formalism of quantum field theory, the expectation value of an observ-
able O, like a correlation function required in our calculation, can be expressed in terms of path

integral as:

0) ="+ (3.29)
On a lattice with Euclidean space and time, the expectation value is given by:

_ / DDPOe™S

_ ) 2Pve 3.30
/ Dbe—S (3-30)

(0)
where Z = f DDe5(®) is the partition function if interpreted from a statistical mechanics per-
spective. Therefore, we obtain the expectation values of the observables by performing averages
over ensembles which follow the distribution properties encoded in the partition function.

By using the Hybrid Monte Carlo(HMC) method, ensembles of gauge configurations satisfy-
ing the distribution determined by the lattice action S are generated. The correlation functions
required in our calculation are evaluated on these lattice configurations statistically. Specifically,

we obtain the expectation values of the diagrams by calculating each diagram on each configura-
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tion and then performing an ensemble average. As basic elements of the diagrams, all the required
propagators have to be calculated numerically on each configuration. In this section, we will show
the lattice action used to generate lattice configurations and the propagators necessary for our Amg

calculation.

3.3.1 Chiral symmetry and lattice actions

Chiral symmetry of the standard model in the massless quark limit, and the spontaneous break-
ing of symmetry, lead to the spectrum of light mesons like pion, kaon etc. The interactions at low
energy between these hadronic states are restricted by the conditions imposed by chiral symmetry.
Therefore, for lattice calculations related to light mesons, reproducing the chiral symmetry and
also anomalies in a lattice calculation is crucial.

On the other hand, in our non-perturbative renormalization(NPR) calculation, chiral symmetry
prevent operators with different chiralities from mixing and we can limit the dimension of the
operator basis needed for NPR.

Based these two arguments, we expect a lattice calculation with a sufficient level of chiral
symmetry in the continuum limit not only to preserve the physical spectrum at the low energy
scale but also at higher energy scales to reduce the complexity of our NPR calculations.

There are several fermion actions that achieve either approximate or exact chiral symmetry
consistent with the restrictions on the Dirac operator D as described by the Nielson-Ninomiya
theorem. The clover-improved Wilson fermion action has terms which break chiral symmetry.
Although the overlap fermion action on the lattice has exact chiral symmetry, calculations using
it are computationally expensive. Compared to these two types of fermion actions, our choice of
fermion action, the domain wall fermion action, has well-controlled, approximate chiral symmetry.

The domain wall fermion formalism is based on the fact that, in a continuum 5-dimensional
field theory, if we include a varying mass m(s) as a function of the fifth dimension s in the 5-
dimensional Dirac operator:

Ds=d4+7y50, —m,s >0, (3.31)
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where the mass m(s) is given by:

+m s>0
m(s) = me(s) , m >0, (3.32)

-m s<0

one finds boundary states localized at s = 0 in the fifth dimension are four-dimensional fermions
with definite chirality, given the infinite dimension in the s direction. On the lattice, with a compact
fifth dimension and periodic boundary conditions where i (x,, s+2L;) = (x,, s) and mass m(s) =
mlﬁ, the right-handed and left-handed chiral fermions on the boundaries couple to each other and
their coupling is proportional to the residual mass for the massive fermions even without extra
interactions:

Myes ~ 2me~2"Ls (3.33)

Here m..s is a measure of the chiral symmetry violation and any matrix element of an operator with
chiral symmetry violation should be of a similar size or smaller. We have to balance the level of
chiral symmetry we would like to obtain and the computational cost during the inversion, which is
proportional to the size of the fifth dimension L.

To implement it on the lattice, Shamir’s domain wall fermion action is used and it is given by:

5 Ly
S 1_ _ .
S S [0 (3 + ) — mly ~ S50, (3:34)
b=1 x s=1 2 2

where the lattice sites on the five-dimentional lattice is n = {x,s}. x is the four-dimensional
space-time coordinate and s is the coordinate in the fifth dimention.

To further reduce the computational cost, we use Mobius domain wall fermions where L; is
reduced while the approximate chiral symmetry is still preserved. Results for several quantities
indicating that the chiral properties of 64> lattice with physical quark masses should be appropriate
to be used for the Amg calculation [12].

For the gauge action, we used an improved gauge action, the Iwasaki gauge action, which can
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be written explicitly as:

Se(U)=p Y (1- CS—O)ReTrUP(x,u,v) Y (- %)ReTrUR(x,,u, V), (3.35)

X,U<y X,UFEY

where the first term is derived from the Wilson action and the second term is the additional 1 X 2

plaquette term with:

Ur(x, 11,v) = Up(mUpu(n + @)Uy (n+ 20U (n + i+ 9)UJ (n + MU (n). (3.36)
The coefficients ¢y and c; are given by:
c1 =-0.331,c0=1-8cy. (3.37)

In Table 3.1, we list the key parameters of several lattices which we use in our calculation of

Amg and estimation of systematic errors.

a’! Lattice

Lattice Action B | btc | Ly m; mp Myes
name F+G) (GeV) Volume
241 DWF+I | 1.785(5) | 243 x64x16 | 2.13 | 1.0 | 16 | 0.0050 0.0400 | 0.00308
321 DWF+I |2.38309) | 323 x64x16 |225] 1.0 | 16 | 0.0040 0.0300 | 0.000664
641 MDWF+I | 2.359(7) | 643 x 128 x 12 | 2.25 | 2.0 | 12 | 0.000678 | 0.02661 | 0.000314
32IF DWF+I 3.152) | 323x64x12 [237] 1.0 | 12| 0.0047 0.0186 | 0.000631

Table 3.1: Dynamical 2+1 flavor domain wall fermion lattices used in our Amg calculation [12].
The fermion and gauge (F+G) action abbreviations are: DWF = domain wall fermions, MDWF =
Mobius domain wall fermions, I = Iwasaki gauge action. m;;;, are the sea quark masses in lattice
units.

3.3.2 Propagators

Propagators on the lattice can generally be written as:

S=D", (3.38)
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where D is the lattice Dirac operator. If suppressing the spin and color indices, the S and D have
the dimension N X N where N is the total number of lattice sites in five dimensions. If S is viewed
as an N X N matrix then each matrix element itself is a 12 X 12 Wilson matrix.

A propagator with source on site x and sink on site y is just S(x,y) = D~!(x,y). Given the
large size of N, inverting the whole matrix D is very computationally expensive. Based on the
diagrams we need to evaluate, we don’t need propagators from all the lattice site sources, therefore
inverting the matrix D is unnecessary.

Instead, we write down a propagator S¥(x) with sink on site x and with a source of type X

represented by a vector % (y), as a linear combination of point source propagators as below:
$¥(x) = ) S(ym* (). (3.39)
y

If written in a matrix form, this becomes:

S¥(x) = (Sp)(x) = (D7) (x) (3.40)

or
D(a,x)S*(x) = D(a,x)(D"'n*)(x) = n*(a) (3.41)

or
DSX =X, (3.42)

Therefore we can obtain the propagator SX (x) for all the x on the lattice by solving the linear
equation shown in Equation 3.42. Here the SX is no longer a matrix but a vector with each element
being a Wilson matrix, propagating from the certain source X to a sink site on the lattice. Note,
each source % is actually a set of 12 sources with 12 spins and colors. The 12 sources provide the
column index for the 12 x 12 Wilson matrix identified in the previous sentence. Therefore, in the
following discussion, we use an upper index to label the type of the source, and a lower index to

label the key parameter of the source and a variable x in the bracket, to represent the element with
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index x in the vector of propagators.
Given the large size of the lattice, we decompose the original lattice into parts and distribute

the inversion tasks among the massive cores on supercomputers.

Wall-source-point-sink propagators

The source n" for a wall-source propagator with source on time slice f,.. with spin a and color
ais:

Vab5wﬁ, I =1trc
[0, o (6 ]5p = (3.43)
O’ t i tsrc’

where V' is the gauge fixing matrix with color indices written in Latin letters a and b and spin

indices are labeled by Greek letters @ and 5. And we solve the linear equation:
DSy =nY. (3.44)
to obtain the propagators S er o

Wall-source-wall-sink propagators

To build a two-point correlation function of a meson, we need wall-source-wall-sink propaga-
tors. The wall-source-wall-sink propagators are created by summing all the wall propagators with

the source at 74 and the sink on the specified sink time slice 7 :

SWW(tsrc, tsnk) = Z V(tsnka ﬁ)SzvSVn (tsnka )_’)) (3.45)
y

Point-source-point-sink propagators

The source distribution 1" for a point-source propagator with source on site x;, with spin «

and color a is:

[Tli,.c,m (x)]bﬁ = Vabdaﬁdxxsrca (3.46)
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where aa labels a 12-component vector with spin index @ and color index a. And we solve the
linear equation:

DSL =nl (3.47)

xsrc

and a propagator with the sink on site xg, is just S)fm (Xsnk)-

Random-source and All-to-All(A2A) propagators

Self-loop propagators S (x) which have both source and sink on the same lattice site have to
be calculated.

To increase the statistics for these self-loop propagators, on each time slice, we would like to
average self-loop propagators multiplied by the rest of the diagram from all spacial sites. One
natural way is to calculate the point-source propagators as in Equation 3.47.

This is very computationally expensive due to the large number of lattice sites. Instead of
calculating S? (x) for all x, we use random-source propagators under the formalism of A2A prop-
agators.

The basic idea of the A2A propagator is that a propagator with a specific source can be statis-
tically approximated using a A2A propagators with random sources. Here we illustrate how this
method is applied to our self-loop propagator calculations.

Firstly we introduce a random point source i; where i the index of random hits, which satisfies:

N
- - . 1 - - - -
(te, HN(ty, 7)) = lim — § (1, DMi(ty, ¥) = 8(t; — 1,)8°(F = 7). (3.48)
N—ooo N P

In our calculation of self-loop propagators, we used Z; random numbers where the random
number on the sites can either be 1 or -1 and one can easily check that Equation 3.48 is satisfied.

Secondly, if we obtain a vector of all propagators S lR with random source 7; with hit index i
satisfying:

DS® =, (3.49)
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where 7;(y) = 1:(ty, ¥), we can express it as:
Sk =Dy, (3.50)

We can obtain SX(x) where the source and sink are both at a lattice site x by averaging the product

of random propagators S ZR (x) and the random source 7;(x):

N
S =~ %Zl SE Qo () = Z D™ (x. 2)(mi(2)n; (1)) = D7 (x. 2820 = D7 (xx) - (351

where (...) indicates an average over N hits. The approximation in Equation 3.51 becomes exact
in the limit of large statistics, and we can pick out SX(x) for all possible values of x and then sum
over x to obtain the complete contribution of all self-loop propagators.

Low-mode deflation and Lanczos eigenvectors

Calculation of the above propagators is equivalent to solving linear equations of the form in
Equation 3.42. A common method to obtain such solutions is the Conjugate Gradient(CG) method
and we use it to calculate the required propagators in our Amg calculation.

One of the requirement of CG method is the matrix A in linear equation:
Ax = b, (3.52)

should be Hermitian. In our case ,the Dirac matrix itself is not Hermitian so we multiply both sides

of the Equation 3.42 with D' and obtain:
(D'D)SX = MS¥ =¥ = DTyX. (3.53)

Now the matrix M = D'D satisfies the Hermitian condition M = M while the solution S¥

remains the same.
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Another observation of our calculation is that for different propagators with different sources,
while the right-hand side of the linear equation is specific to each source type, the left-hand side,
especially the matrix M = D'D is generic. An improvement using low-mode deflation can be
used to accelerate the calculation and the low-mode eigenvectors can be reused to accelerate the
CG solving process for various sources.

The number of CG iterations in solving Equation 3.53 is proportional to the condition number,

which is the ratio between the largest and the smallest eigenvalue of the matrix M given by:

&~

max . (3.54)

/lmin

K =

Low-mode deflation aims to remove the low-mode component of M, denoted as M;, so that
Kp, the condition number of the remaining high-mode matrix M), is reduced and the number of
CQG iterations is reduced. In our calculation, only light quark propagators are solved with low-
mode deflation. Given the much larger charm quark mass, the condition number for solving charm
propagators is already small enough and performing the low-mode deflation is not very efficient.

Using a projector formed by n eigenvectors |A;) of the matrix M with lowest eigenvalues A;:
P = i |4i) (il (3.55)
i=1
we can decompose Equation 3.53 into two parts:
M =n), SE=Ps* )l =py¥ (3.56)
where M; = PMP, and
MSY =1y, SX=(1-P)SX, 0 = (1 -P* (3.57)

where My = (1 - P)M(1 - P).
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If we express the vector of projected propagator SIX as a linear combination of low-mode eigen-

vectors |4;) with coefficients S\.:

sX = Z S¥140) (3.58)

and plug it into Equation 3.56, we obtain Sf explicitly:

S;‘_ZS |A>—Z< Tﬁm (3.59)
i=1 !

The remaining matrix related to the high modes, can be solved using the CG method. Be-
cause the low-mode part has been removed, the smallest eigenvalue of the remaining matrix My, is
increased. Therefore, the number of CG iterations in solving M), can be significantly reduced.

Low-mode deflation is also applicable to our calculation of self-loop propagators using random
source A2A propagators. The random source are only introduced when solving the high mode parts

and the corresponding self-loop propagators S¥(x) is given by:

z|>

SE(x) = SF,(x) + (%, (x)) = Z Wy + Z SF,Com] (x) (3.60)

where |4;)(x) is the xth element of eigenvector |4;) and (S ﬁ (X)) is the statistically averaged A2A
self-loop propagator over Ny, hits calculated for the high modes.

Deflation requires a certain number of eigenvectors of the matrix M with the lowest eigenval-
ues. The implicit restarted Lanczos(IRL) algorithm is used to generate 2000 eigenvectors for our
calculation on the 643 x 128 lattice.

3.3.3 Sample all-mode averaging(AMA) method

The stopping condition for solving Ax = b numerically with CG method is defined as:

T+l < E, (361)
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where € is the tolerance of the CG solver and r. is the residual of the (k + 1)th iteration calculated
in an iterative way:
Fkel =Tk — @k Apk, (3.62)

|ral?

Ik |r12c+l|
(PrlAlpi)

Izl

where ) = and pry1 = Tre1 + pk. The smaller the €, the more CG iterations are
needed.

We use the sample AMA method to reduce the computational cost. AMA method aims to
calculate physical quantities with unbiased improved estimators which have significantly reduced
statistical errors at modest computational cost[13].

The standard AMA correction is applied on each configuration, among different time slices:
on most time slices, quantities are calculated with a CG tolerance €, ("sloppy") and on the other
time slices, quantities are calculated with a smaller CG tolerance e.,;("exact") in addition to the
case with CG tolerance €, and make the difference between the results from the two cases as
corrections. In contrast, the sample AMA correction is applied among configurations: on most
configurations, quantities are calculated with a CG tolerance €, of 107*. On the other configura-
tions the same quantities are calculated with two CG tolerances €, = 10~*and €.y, = 1078, The
differences between "sloppy" and "exact" calculations are used as corrections to the "sloppy"-only
configurations.

In our case, we have data for type-3 and type-4 diagrams, three-point and two-point functions

from both "sloppy" calculations and corrections.

3.4 Non-perturbative renormalization

In the process of obtaining the effective weak Hamiltonian, we need to include the ultraviolet
behavior of the full theory obtained by integrating out the heavy particles. The resulting Wilson
coefficient functions and the matrix elements of operators Q; have a u-dependence, where u is the
renormalization scale where the operators are defined.

The typical way to calculate the renormalized Wilson coefficients is based on dimensional

34



regularization and specifying a specific renormalization scheme like M S. However, for a lattice
operator, we can not simply perform dimensional regularization with a lattice of dimension 4 +

-1 can be

2e. Instead, the lattice operators Qll.‘”(a) regulated by the inverse lattice spacing, a
renormalized using lattice perturbation theory if both a~! and renormalization scale u are large
enough. However, this is usually complicated and has challenges for convergence.

Alternatively, we use non-perturbative renormalization for the lattice operators and obtain the

Wilson coefficients C l.l‘” from those in the M S scheme in three steps [14] [9]:

* Non-perturbative renormalization: Renormalize the lattice in a regularization-independent(RI)

scheme.
* Perturbation theory: Convert from the RI to the M S renormalization scheme.
* Perturbation theory: Calculate the Wilson coefficients in the M'S scheme.

Generally, mixing between the operators happens during the renormalization and the relation
between the operators defined in the M S scheme and the lattice operators given by these three steps

can be expressed as:

CZA/]_SQIA/[S CMS(l +Ar )Rl—)MSZlat—ﬂi’lQlal Clathal (363)

1

So the Wilson coefficients for the lattice operators Cl.l‘” can be expressed as:
Clat CMS(I +Ar )RI—)MSZlat—>RI (364)

3.4.1 Four-quark operators and irreducible representations of SU(4) X SU(4)

Before we perform NPR on lattice, we have to confirm how many operators are involved and
include all the operators which can mix with the current-current operators in our calculation of
Am K-

The operators are products of quark operators with different flavors and transform under global
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SU(4) x SU(4) rotations, where N = 4 is the number of flavors. The NPR calculation is designed
to remove the short-distance ultraviolet singularities of the operators. Thus we can perform the
NPR calculation in the limit where the u, d, s and ¢ quark masses are set to be degenerate. In
addition, because chiral symmetry is approximately preserved by the domain wall fermion action,
operators belonging to different irreducible representations of the SU(4) group will not mix with
each other during the renormalization group evolution and operators which are members of the
same irreducible representation that is which transform into each other under the SU(4) x SU(4)
symmetry will have the same renormalization factor. Therefore, identifying the irreducible repre-
sentations to which the operators belong will minimize the number of lattice operators needed for
the NPR calculations.

One usually starts from the general problem where the four-quark operator is transforming as
a fourth-rank tensor and use the tensor method to find the operator combinations belonging to
irreducible representations. Our calculation involves only a left-left spin structure so we will focus

on left-left operators. The four-quark left-left operators can be written as :

Q11 = (Tr)(@r; ® qL.)(@L; ® qL1), (3.65)

where we identify qz with an up quark, q% with a down quark, qi with a strange quark and qi
with a charm quark. The quark fields transform in the fundamental representation of SU(4),. If
we denote the representation under left-handed and right-handed chiral transformation as (L,R),
then g, ;, q, ; transform as (4,1) and g, g1, transform as (4, 1). The transformation of QO
indicates that it is a member of a 256-dimensional representation (4®4) ® (4®4) of SU(4); which
is reducible. We can use the permutation symmetry of the tensor indices of the coefficient matrix

(Tp L)Zjl to decompose the tensor:
T ij _ T {i.7} T {i.7} T [i.7] T [i,7] 3.66
( LL)kl = ( LL){k,l} + ( LL)[k,l] + ( LL){k,l} + ( LL)[k,l]’ ( . )

where {i, j} denotes indices that are symmetric and [7, j] indices that are anti-symmetric under
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permutation. We can identify the correspondingly sub-spaces which are invariant under SU(4),,
transformation with each of the four types of tensors. We can further find the irreducible represen-
tations of SU(4); by considering the trace of a pair of upper and lower indices [15]. In addition,
because the operators in our calculation are symmetric under simultaneous exchange of indices

{i.J}
{k.l}

case (T, L)B(Jl]] are relevant. The dimension of the two sets of irreducible representations are ob-

(i, k) & (j,1), only the completely symmetric case (771 ) and the completely anti-symmetric

tained based on the trace properties and are shown in Table 3.2.

Symmetry of 77, (TLL)&ﬁ (Trr) B(Jl]]
Dimension 10x 10" =100 6x6" =36
Irrep. dimension 84,15,1 20,15,1

Table 3.2: The dimension of the irreducible representations of SU(4); relevant to our calculation.

Then we can examine the operators relevant to our calculation and identify which of the irre-

ducible representations these operators enter. Based on Equation 3.20, the operators are:

Q1= 01" - 0 = (5idy)L(itju;) — (5:d;)L(C;c))L, (3.67)
0y = 08" - 05 = (5;d))L(ju;) L. — (5id})1(Ejci)Ls (3.68)
Q1 = (5id)(@jci)L, (3.69)
04 = (Sd)L(djci)L, (3.70)
0" = (5;di)L(Ejuj)L, (3.71)
Q5" = (5:d;)L(Cjui)r. (3.72)

For each case, we apply the Fierz identity and rewrite the operators in the color unmixed form:

Q1 = Q" — Q% = (5d) (i), — (5d)L.(c)r, (3.73)

0 = Q4 - Q5 = (5u)(ad), — (5¢)(Ed)y, (3.74)
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Q1" = (5d)L(iic)L,
05" = (5c)(id)y,
Q1" = (5d)L(cu)r,

5" = (Su)L(ed)L,

where there is no coloring mixing and the color indices are suppressed.

(3.75)

(3.76)

(3.77)

(3.78)

We define a new set of operators which contains linear combinations of the above operators:

X X X
Q+ = Q1 + Q2 5
X X X
0- = Q1 - Qz >
where the label X denotes the possible flavor structures which can be “~", “uc" and “cu"

X =~ as an example:

0. = (5d) (), — (5d)(¢c) + (u)p(dd)y — (5¢)(¢d)p,

0- = (5d) (), — (3d)(Gc)p, — (5u)p(@d)y + (5¢)1(¢d)y,

(3.79)

(3.80)

. Using

(3.81)

(3.82)

we can find that Q% corresponds to a tensor of coefficients (7 L);Jl which is traceless and symmetric

under permutations and therefore belongs to the (84,1) irreducible representation while for Q%, Ty 1

is traceless and anti-symmetric under permutations and therefore belongs to the (20,1) irreducible

representation. We can also directly use the renormalization factors calculated from any operator

belonging to (84,1) or (20,1) representations for our Qi( operators. Thus, we only need to perform

NPR for Qf and QX for a single choice of X, since the renormalization factors for the other X

choices are identical. However, since the Q_)_f are linear combinations of the QIX operators, and the

QZX enter both (84,1) and (20,1) representations, we can also perform the NPR using the basis of

QlX with a 2 X2 operator renormalization mixing matrix and the relationship of the renormalization
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factors between the two basis is given by:

Zo =71 % Z, (3.83)

where the Z;; with 7, j = 1,2 are the 2 X 2 mixing matrix elements entering:

Zu Znllof
zQX = : (3.84)
Ziy Zn|\0¥
with the diagonalized form being:
70% = 7.0%. (3.85)

The Z. factors can be obtained either by using RBC-UKQCD’s standard NPR package which
includes the calculation of renormalization factors for operators belong to (84,1) and (20,1) repre-
sentations or performing a NPR calculation with only two QZX operators involved. We can compare
the results to confirm that our NPR results are consistent. Details of these comparisons can be
found in Chapter 5.

Below we will describe how we perform the NPR calculation using only two QIX operators in
three steps. We choose X to be “cu" for simplicity since the renormalization factors for other X

values are identical.

3.4.2 Non-perturbative renormalization: the RI-SMOM renormalization scheme

To begin with, we specify the regularization independent(RI) scheme where the connection to
the M S scheme is achieved and where the NPR is performed. We choose the Rome-Southampton
scheme as the RI scheme and we need to renormalize the results on the lattice using the same
scheme. The corresponding renormalization factors are denoted as Z/“—R!. The RI scheme we
choose to renormalize lattice operators is further specified to be the RI-SMOM(y,;, ¥,) scheme
where "S" denotes that the input momenta are non-exceptional and symmetrical. The first y,

denotes the fact that the projectors used for the operator mixing matrix M are constructed from y
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matrices and the second y,, denotes the scheme in which the quark wave function renormalization
factor Z, is calculated.

The renormalization condition is imposed as:

Zlat—>Rl

M=F, (3.86)
q

where the operator mixing matrix M is calculated from the off-shell amputated four-quark Green’s
functions I'; and projectors #;. The matrix F is the operator mixing matrix calculated at tree level
with the same operators and projectors. The factor Zg is introduced to renormalize the four external
quark fields.

The off-shell four-quark Green’s functions G; with i = 1, 2 are defined as:

1 _ —
Gi(p1.p2) = 5 ) (O W)s(p)a(p2)e(p1)d(p2)). (3.87)
If written explicitly using Equation 3.69 and 3.70, the G; are given by:

1 o . , . 1B
G(pr.p2)igis = 3 2 € PPV (rsSE e, p1Y) ™ Y (1= 95) Sl p2) "}
X,

(3.88)
T cc’ 1 c’'d i
{VSSC(X,pl)YS) YH(1 = y5)Su(x, p2) } ,
abed _ 1 =2i(p2—p1)x T aa’ . u c’'b ap
G2(P1: Papys = 3, Z e {(7553 (x, p)ys)* YH(1 = y5)Sa(x, p2) }
X,U (3.89)

’ g 70
{VsSZ(x, PO)Ys) Y (1 =v5)Su(x, p2)* d} :

where S, (x, p) is a propagator with quark flavor ¢, a momentum source with momentum p, and a
sink position x. Here ys-hermiticity, i.e. 557 (x, y)ys = S(y,x), is used and we label spin indices
with Greek letters a, 8, v, 6 and color indices with Latin letters a, b, ¢, d.

The SMOM scheme requires that:
pi=p;=(p1-p2)*=p, (3.90)
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where we also define our renormalization scale u. This choice of a non-exceptional momentum
scheme suppresses the long-distance contributions due to the gluon exchange between the external
legs. The momenta in lattice units, which we choose for our NPR calculation performed on the
323 x 64 lattice ensemble are:

Pl = [4,4,0,0], (3.91)
Pt =10,4,4,0], (3.92)

where one can easily check that Equation 3.90 is satisfied. The energy scale y can be calculated
by:

(3.93)

where L; denotes lattice size in the ith dimension and we have o' = 2.38 GeV.
We contract the operators and evaluate the five-point diagrams as shown in Figure 3.7. The
momenta of the quark lines are introduced by using fixed momentum sources and the calculations

and gauge field averaging are performed on Landau gauge fixed ensembles.

a, C, "y

Figure 3.7: Five-point diagrams evaluated in NPR for Amg operators. I'4 and I'p denote the spin
structure of the vertex.

The amputated Green’s functions are then obtained by multiplying G;with the inverse of the
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external quark propagators S(p) with momentum p:

Ti(p1, p2)ages = Gi(p1, p2)as s ((ysST(p1)ys) D ea((Su(p2)) ™G (rsSEp)Ys) ™55 ((Sa(p2)) ™ i »

(3.94)
where the (...) denotes the ensemble average. In our NPR calculation, the quark flavors are degen-
erate and the quark propagators are obtained by calculating the quark propagators with a momen-

tum source:

S(p) = Z S(x, p)e P~ (3.95)

We use two projectors with the same spin and color structures as the two operators Q7":
(PO ags = [ =75)¥"apl(1 = ¥5)¥,lys6*"6%, (3.96)

(P24 = [(1 = y5)Y"lapl (1 = ¥5)yulys0 96, (3.97)

Combining the amputated Green’s function with the projectors, we get the operator mixing
matrix:

M =TiP;. (3.98)

Here we have suppressed the spin and color indices where the same letters appearing in Equation
3.94,3.96 and 3.97 are contracted. Because of the Fierz identity, one can easily check M| = M2,
and M|, = M>;. Therefore, in the NPR evaluation, we need only to calculate I'; and matrix
elements M;; and M1,.

Accordingly, we can easily work out the tree-level mixing matrix:

1 1 1/3

F=——— 3.99
(12x4)? 13 1 (3:99)
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The quark field renormalization factor Z, is calculated from Zy and A,y based on:

Zq—l(A +Ay) (3.100)
zZy 2 AT '

where Zy is the renormalization constant for the local vector correction. The three-point ampli-

tudes A4 and Ay are to be evaluated using local currents and are given by:

1
Av(p) = ETr( S e 13)), (3.101)
u

1
Aa(p) = 22Tr( Y Th(ys © 1)), (3.102)
u

where the amputated Green’s functions F“ﬁ and FZ shown in Figure 3.8 are given by:

D = (s () (5 Y958 e pysmuS e )USEN ™), (31103

= ¥ i/l ¥ -1

4= (s (P (5 2 vsS @ pysyasSe ) (SN, (3104
T ' uY5

P P

Figure 3.8: Three-point diagrams used to calculate A4y in the y scheme.

For our calculation of Amg on the 643 x 128 lattice ensemble, we performed the NPR calcu-
lation on a 323 x 64 lattice ensemble with lattice spacing almost the same as the 64° lattice. By

using Zy = 0.7447 from Reference [12] and calculating A4 and Ay, we obtain Z, = 0.7720.
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3.4.3  Perturbation theory: conversion from RI-SMOM to M S scheme

We have chosen the RI-SSMOM(y,,, ¥,) scheme for our NPR calculation and the connection
matrix Ar to the M S scheme with four-flavor SU(4) x SU(4) chiral symmetry calculated pertur-

batively is given by:

“12In(2) = 8
oo W | TNty ~8+12In(2) 5105
|84 12in(2) 2@, 8

and for N, = 3, we obtain:

() ~4In(2)+3% -8+12In(2)

|84 12In(2) —4In(2) + &

Ar (3.106)

where a,(u) is the coupling constant calculated from the two-loop perturbation calculation and
its formula is given by Equation (III.19) in [9]. To calculate a,(u), Agcp in four-flavor theory,
denoted as Agé D is required. Ag‘é D is calculated from A(Qsé D’ which is the Agcp in five-flavor

theory, by requiring that the value of coupling at bottom quark mass a,(m;) is the same from both

four- and five-flavor calculations. The value of A(S)

0CD is specified by the known value of @ (my),

the coupling at Z boson mass.
We choose to have the scale u = 2.64 GeV, which is calculated from the momentum scale
we have on the 323 x 64 lattice ensemble. Using the parameters shown in Table 3.3, especially

Agcp =0.33 GeV, we obtain o, (1 = 2.64GeV) = 0.27074 and Ar values as shown in Table 3.4.

my my mz as(mz) | mp(mp) | AD) AgéD
172.2 GeV | 80.4 GeV | 91.1876 GeV | 0.1184 | 4.19 GeV | 231 MeV | 330 MeV

Table 3.3: The values of input parameters for the calculation of Wilson coefficients.

3.4.4 Perturbation theory: calculation of the Wilson coefficients in the M S scheme.

The final step is to calculate the the Wilson coefficients in the M S scheme which evolve from

the My scale to our scale u = 2.64 GeV according to the renormalization group theory, using

44



Equation (X1I1.44)-(XII.61) in [9]. The values of CZM_S which have been calculated in our earlier
Amg calculation [16] can be found in Table 3.4 and we continue to use these values in our Amg
calculation. The numbers from each steps and the Wilson coefficients Cl.l‘” for our lattice operators

are also summarized in Table 3.4.

Cist CS/TS Al"]] = Arzz Arlz = AI’Q[ ZV Zq le = Zzz le = 221 Ciat C;at

0260 1.118 -2.28x 107 6.85x 1073 0.7447 0.7720 0.5642  -0.03934 -0.1859 0.6382

Table 3.4: The Wilson coefficients, the RI — MS matching matrix elements, the non-perturbative
lat — RI operator renormalization matrix elements in (y,, ¥,) scheme and their final product Cl.l””,
calculated at the scale u = 2.64 GeV.
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Chapter 4: Data analysis of Amg calculation

In this chapter, we will discuss the data analysis method used in our Amg calculation. In Sec-
tion 4.1, we will discuss how we process the data and obtain the quantities needed from fitting
the data to theoretical formulas of two-point, three-point and four-point correlation functions. In
Section 4.2, we will discuss data analysis for type-4 diagrams with multiple source-sink separa-
tions. Because these data analysis methods are generic to calculations on several lattices, we will
only introduce the notations of the parameters and present the values we used in our calculation in
Chapter 6. In Section 4.3 and Section 4.4, we will discuss the data format we use and the jackknife

method introduced for the evaluation of statistical errors.

4.1 Fitting of correlation functions

4.1.1 Fitting two-point correlation functions

We obtain the normalization factors for meson operators and meson masses from fitting two-
point correlation functions to the time dependence shown in Equation 3.16.
Taking the periodic boundary condition that we imposed on the 64> x 128 lattice in the time

direction, the time dependence becomes:

T

C}Z‘;t(l) ~ N}%/[(e—li + e—mM(T—t)) = 2N@€_%Cosh(§ — l), 4.1)

where M denotes the meson state, N, is the normalization factor and 7 is the lattice size in time
direction. We can see that for r < (7 — t), we can neglect the second term and Equation 3.16 is

reproduced.
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We can accordingly define the effective mass as:

[ JCPYt+ 1) + C?P(t - 1)
2C2P (1)

meg (1) = cosh™ 4.2)

and in the region where the contributions from excited states and effects from the boundary condi-

tion are negligible, we expect a constant with a value of the meson mass m:

e—m(l+1) + e—m(t—l)

meg(t) = cosh™! ] = cosh™! [cosh(m)] =m. 4.3)

e—mt

Thus we can decide the range of our fitting based on the plateau in the plot of effective mass as a

function of 7.

4.1.2 Fitting three-point correlation functions

To remove the exponentially increasing terms, we have to calculate matrix elements such
as: (n]Q;|K®), (n|[sd|K°) and (n|sy°d|K°). In our calculation, we don’t need to calculate both

(FlQ;lm and (n|Q’|K 0y since the two matrix elements are connected by CP transformation:
(K|Q;In) = (KO|(CP)™ CPQ/(CP)™'CPIn) = e(n)(n|Q}|K°)", (4.4)

where €(n) can take value +1 depending on whether the |n) is the odd or even under CP. Thus
we only calculate (n|Q}|K 9y and multiply it by the corresponding CP eigenvalue €(#) to obtain

<E|Q;|n>. For the light states considered in our calculation, we have:
e(m) =€e(n) =1, (4.5)

€(0) = e(nm) =—1. (4.6)

We need to calculate the (7|Q}|K 9y and (77 1=0|Q;|K ) matrix elements. To obtain these matrix

elements from three-point correlation functions, based on the time dependence of the three-point
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correlation functions shown in Equation 3.14 ,we can accordingly define the function to be fitted

as:

c2 (At
(A, t) = K—)ﬂ'( )

gQi
NNNKe—m,r(A—t)e—mKt ’

K—n

4.7)

where A is the time separation between the kaon source and the pion sink and 7 is the time sep-
aration between the weak operator Q; and the kaon source. An alternative definition which we

use in our calculation is given by taking the ratio between three-point and two-point correlation

functions:
0, _ NNkCZ (A1)
Cyl (A1) = o0 I (4.8)
Cr (A-1)Ci (1)
Similarly for the sd operator, we have the function to be fitted as:
— N:NxC¥, (At
G (A= —= Kor(01) (4.9)

P (A=-DCP ()

We expect Gg;ﬂ(A, t) and Elg(d_) . (A, 1) to be constants, in the region of various values of A and ¢
where the contributions from excited states and effects from the periodicity in time are negligible,
and their values should be equal to the matrix elements (7°|Q;|K°) and (x°[5d|K°) separately.

In order to calculate the (nolQl’.lK 0y and (rmi=0|Q}|K Y matrix elements, we need to calculated

the coefficients defined in Equation 4.10. The corresponding ratio functions to be fitted are defined

as:
CRL,, (A1) c2 (At
RO(A1) = =1 RU(Ar) = ’;;do—) (4.10)
Cx_, (A1) Ce oA 1)

We expect the ratio functions have constant values, in the region of various values of A and ¢t where
the contributions from excited states and effects from the periodicity in time are negligible, and
their values should equal to the coefficients cy; and c; defined in Equation 4.10 separately.

4.1.3 Fitting three-point correlation functions with multiple source-sink separations

The diagrams with self-loop propagators are usually noisy and for disconnected diagrams,

the statistical noise does not decrease as the disconnected parts are separated farther from each
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other. We therefore increase the statistics of the diagrams with self-loop propagators by combining
correlation functions with different source-sink separations. It’s important to note that for three

point correlation functions, we calculate connected and disconnected diagrams together with N,

Amax _Amin

source-sink separations A € {Amin, Amin + Astep> Amin + 2Asteps --+» Amax }» Where Ageep = =%
sep

However, for four-point correlation functions, we calculate type-1, type-2 and type-3 diagrams
with a single value of A and calculate disconnected type-4 diagrams with multiple values of A.
For the three-point correlation functions, we relabel the variables of the correlation functions.

We define the time separation between the weak operator and the meson sink to be:

S=A-t, 4.11)

and we average the three-point quantities with the same ¢ value among all the allowed source-sink

separations A as shown in Figure 4.1.

----------------------- -(A >
Q; 5
: T ®.J 0 @
l (S
K & n

®

n

@

Figure 4.1: Error-weighted average among three-point correlation functions with multiple source-
sink separation A for a specific operator-sink separation 9.

For the fitting of kaon to eta three-point correlation functions, we first obtain ﬂSQii (A, 0) with
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the same ¢ value for all allowed source-sink separations A and perform an error-weighted average
to obtain:

A

C3 (A, 0)

R2i(6) = <R§"(A, 5)>A - <
K—n

where <> denotes the error weighted average among all possible A values.
A

We then obtain the coefficients c; by fitting the plateaus in the plots of ﬁg’ () to constants. In
order to avoid excited state contamination, when performing the fitting, we include only QSQI." (0)
with 6 > fiin, Where f1piy 1s the minimum time separation we set between the operator and meson
sink.

Similarly, for the matrix elements (mm;-0|Q; |KY), we first average C%_)MI:O(A, 0) with the

same 0 value among all the allowed source-sink separations A and obtain:

’

Q'
=0 , Nin;oNkCy! (A, 6)
: ~0; 1=0
CK—>7T7TI:O(6) = <CK_’7””=0(A’ t)>A B <

K—nnrr—o

2; 2
Car J(A=DCP' (@) |,

, (4.13)

where <> denotes the error weighted average among all possible A values. We then obtain the
A

’

:Q,'
matrix elements (77;-0|Q;|K 9y by fitting the plateaus in the plots of C K (0) tO constants.
As we can see from Figure 4.1, the statistics of the quantities with smaller ¢ values is larger

compared to the case of larger 6 where only a few source-sink separations will be possible.

4.1.4 Fitting four-point correlation functions with single-integration method

The fitting of the integrated correlator in Equation 3.5 can be separated into fitting the integrated

s ’ /.
correlator with Q7 and Q7:

(KO1Q!n)(n|Q"|K®)

mg — E,

AS(T) = Nge "= (=1 + ¢~ Enmme)Ty, (4.14)
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The relationship between ﬂisj (T) in Equation 4.14 and A5 (T) in Equation 3.5 is thus given by:

AST) =25 Y CCAST), (4.15)
i,j=1,2
where the C; are Wilson coefficients and A, = V4V, = cosf.sinf,.
To find out the Ty where the exponential terms are negligible and calculate Amg, we analyze

the four-point correlation functions in the following steps:

1. Perform an average of unintegrated correlators over all allowed values of kaon source time
t:

L
1 13
G(A,ty, ty) = T Z Gty =to+t,tr =ty +t;,t;,ty =t; + A). (4.16)
t

ti=1
For each A value, we have the time difference between the two weak operators, 6 = |, — 1|
ranging from O to A and for each ¢ values we perform an average over all the possible ¢, and

ty pairs:
A'=§

_ 1
G(A0) = v Z G(A, to, 1, +6), (4.17)

tx:tmin,K
where A” = A = 2tmink, A" = A — tmink and fin x 1s the minimum time separation between
the operator and the kaon source or the kaon sink. We divided the averaged unintegrated

correlator G (A, 6) by the factor N Iz(e"”KA to normalize it and obtain:

~ G(A,)9)
G(0) le(e_mKA (4.18)
2. Subtract light states from the averaged unintegrated correlator:
G™(6) =G(6) = ) (KO|Hwln)(n|Hy|K )ems—Eno
e (4.19)
= > (KOlHuy |n) (n| H | K" Fn),

n#ny

where {n;} denotes the set of light states n; to be subtracted. We can plot the subtracted
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unintegrated correlator as a function of ¢ and identify an appropriate value of 6 = d¢y where

the value of the correlator is consistent with zero within the errors.

3. Perform a single-integration over ¢ of the subtracted correlator between 6 = 0 and 6 =T to

obtain:

T

_ - 1~ KO|H Hyw|K°

AT) = G (o) + EGS“b(O) =3 (K7 W|”><”b|: wl >{—1 + e~ Enmm)Ty - (4.20)
mg — Ly

o=1 n#nj

With this combination of 6 > 0 and 6 = 0 terms, the sums in Equation 4.20 are equivalent
to a continuum integral over & up to terms of O(a?), provided the sum over ¢ extends to the

region where G (0) =0.

We can separate the subtracted integrated correlators AS (T) into the subtracted correlators

with operators Q' and Q%:

T

— — 1~
ALT) = ) GiP(6) + 3G (0)
=t . @.21)
Z (K|Q}In)(n|Q’|K") (B
— {_1+e (En mK)T},
n#n; mg — En
where 5?}‘[’ is the subtracted four-point correlator with weak operators Q7 and Q;.:
G (6) = Gij(8) = > (KO1Q)In)(n|Q)|K )e s Eno
e 4.22)
= D (KO1Q}In)(nl Q) K )e 2,

n#ny

and G; ;(0) is similar to the G (6) in Equation 4.18 but with the two Hy operators replaced

by operators Q; and Q;..

4. Plot the single-integrated correlator as a function of 7" and find a value of T' = T,y where ﬁfj
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converges to a constant within errors:

(K°|QIn)(n|Q}|K°)

mg — E,

A (Tow) % = )

n#n;

(4.23)

The limits d¢, and T are expected to be close to each other.

5. Add light state contributions explicitly to ﬁlsj (Teut) and obtain the constant k;; which is given

by:

(KO1Q!In)(n|Q’|K®)

ki = A (Ta) = ) ——
el (4.24)
<K0|Q§|n><n|Q}|K0>

P mK_En

The value of Am is then given by:

G2
Amigt = =LA, > (=2) x ' CH . (4.25)
i,j=1,2

After we separate the contributions to Amg according to operator combinations Q;Q;., we can

further categorise the contributions from different diagram topologies for each Q;Q} combination.

Compared to the double-integration method used in earlier Amg calculations[1] [7], the method

discussed here leads to a result with smaller statistical errors. Details about the comparison be-

tween results from these two methods can be found in Chapter 6.

Type-1 and type-2 diagrams are all connected and contain no self-loop propagators. For each

diagram, we have one of the weak operator on site x and another weak operator on site y. If we

denote the spacial volume as V and the size of time integration range as 7', the number of the point-

source-point-sink propagators we need to calculate is of order O (7T'V) and number of contractions

is of order O(TV?). In addition, because all parts of the diagrams are connected to each other, we

cannot decompose the diagrams into independent pieces and calculate them separately. This large
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number of propagators and contractions is not practical.

In our calculation, instead of calculating O(TV) propagators, we simplify the calculation to
reduce the number of propagators to be of order O(7T) and the number of contractions to be of
order O(TV). To do this, we specify one of the weak operators and sum over all sites y = (7, 1,)
with the same time value #,, and the other operator as the source on site x = (4t,, 4ty, 4ty, t,), for all
tx € [tmins tmax] Which is the range of integration. By doing this, only one of the sites on each time
slice ¢, is sampled and we multiply it by the spacial volume factor V to keep the normalization
same as the case where all the point-source-point-sink propagator pairs are calculated. This is
demonstrated in Figure 4.2. As we can see, such a simplification introduces asymmetry between
the operators on the site x and y. The two cases shown in Figure 4.2a and 4.2b in fact are the same
correlation function calculated. In fact, we calculate the contractions both ways and average them
to double the statistics.

For type-3 diagrams, as shown in Figure 4.3, the two weak operators are not connected directly
by quark lines, thus we can decompose the calculation of the diagrams into upper and lower pieces
for a specific source-sink separation. The number of propagators to be calculated for the upper
and lower pieces are of order O(7TV) and we use A2A propagators which have been discussed in
Chapter 3, to reduce this cost to O(T).

For type-4 diagrams, the left half and the right half of each diagram are not connected by quark
propagators. Therefore, we can calculate and contract the propagators by breaking the calculation
into left and right pieces. The number of propagators to be calculated for the left and right pieces

are also of order O(TV) and A2A propagators are used to reduce this cost to O(T).

4.2 Data analysis of type-4 diagrams

As shown in Figure 4.4, type-4 diagrams can be assembled from left and right pieces:

G (11, 12, i, 15) = G*"' (11, 1) X G™M (1, 1), (4.26)
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L t f
(b)

Figure 4.2: Type-1 and type-2 diagrams having point-source-point-sink propagators with different
sink sites and a single point source but corresponding to the same quantity. The vertical grey band
means there are multiple point sinks within the spacial volume at the same time.
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Upper

Lower

Figure 4.3: A typical type-3 diagram having separable upper and lower pieces. The single dots

correspond to the K® and K° operators while the paired dots correspond to the weak four-quark
operator.

[oft Right

OO

Figure 4.4: A typical type-4 diagram having disconnected left and right pieces.The single dots

correspond to the K° and KO operators while the paired dots correspond to the weak four-quark
operator.
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and thus we can calculate left and right pieces separately and assemble type-4 diagrams with all

allowed source-sink separations A to increase the statistics.

4.2.1 Fitting type-4 diagrams with multiple source-sink separations

We obtain the error weighted average of the four-point type-4 correlation functions G (0) in

three steps:

1. Combine the left and right pieces of diagrams averages for all possible kaon sources on all

time slices and normalize them to get the type-4 correlators:

L
1 1
G(A,ty,ty) = I § GP(t) =ty + 11,10 =ty + 11,1ty = 1; + A). (4.27)
ti=1

2. For each A value, we have the time difference between the two weak operators, 6 = |t, — |
ranging from O to A and for each ¢ values we perform an average over all the possible 7, and

ty pairs:
)

— 1
G(A) = s Z G(A, by, 1, +9), (4.28)

Ix=Imin,K
where A” = A = 2tmink, A" = A — tink and fmin k is the minimum time separation between

the operator and the kaon source or the kaon sink.

3. We then normalize G (A, §) and perform an error-weighted average over all allowed values

of A to obtain the type-4 unintegrated correlators:

4.29
le(e‘mKA (4.29)

o) - <M> |
A

where <> denotes the error weighted average among all allowed A values.
A
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4.2.2 Removal of random source correlations in type-4 diagrams

We are using a random source to build the self-loop propagators SX(x) which are obtained
by averaging propagators calculated from npj; random hits. The details about how to build the
self-loop propagators using A2A propagators have been discussed in Section 3.3.2. The type-
4 diagrams are then constructed as a product of left and right factors, each contracted from an
operator ; including a product containing a self-loop propagator. We can symbolically write the

left and right factors as sums of contractions calculated from each random hit i:

Mhit Mhit

Gleft Z Ll’ Gnght Z R (430)

Nhit Nhit

When we multiply the left and right factors together to obtain a type-4 correlator:

Mhit Mhit

4 = — 4.
G nthL)X( ZR) (4.31)

there are npj; pairs with a left piece L; and a right factor R; which are calculated from the same
random hit and therefore have unwanted correlations. Thus we need to remove all these terms

which are given by:
Mhit

i=1

and rewrite our subtracted type-4 diagrams with a new normalization factor as:

Mhit Mhit Mhit

G4 = (ZL XZR —ZL xR) (4.33)

hlt — Nhit

or equivalently to be:

G4 = Thit [Gleft % Gright _ i C]
Mhig — 1 nhit
n Phit Nhit Nhit (434)
_ hit [ ]
= L)X (— R; L; X R;
Nhit — 1 L npie Z i) ( Z i) = Z

h1t =
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For a diagram contracted from sd or s7y5d operators, at most one of the left or right pieces contains
a self-loop propagator. Therefore there is no correlated hit contribution to be subtracted.
Furthermore, instead of calculating all the np; hits to obtain C, we make an simplification in

which the average of only ngy hits are calculated:

Nsub
(Li X R;) = Z Li X R; (4.35)
Nsub =
and C 1s approximated as:
Thit PR
Z Li X Ri ~ (C) = (Li X R;) X npyy = —= Z Li X R;. (4.36)
i=1 Msub 327
Substituting this into Equation 4.34, we obtain:
G4 = Thit [Gleft % Gright _ L<C>]
Nhit — Nhit
it it Nsub (4.37)

1 1 1
_ (— S Ly x(— YR - LixRi
Nhit — 1 Mgt le l Mhit ]Z:: P (e = 1) X ngp ; e

4.3 Calculating Amg from four-point correlation function data

As discussed in Section 4.1.4 and Section 4.2.1, we use the averaged unintegrated correlator for
the calculation of Amg using single-integration method. The averaged single-integrated correlator

in Equation 4.20 is obtained from averaged unintegrated correlator in Equation 4.19 :
_ r 1~
AST) = Z G(5) + =G(0). (4.38)
6=1 2

In this section, we will show how our four-point correlation function data is used in the calculation
of the averaged unintegrated correlator G (6). In our lattice calculation, we distinguish the weak

operator contracted to the kaon source and the weak operator contracted with the kaon sink. In
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(a) data matrix element g,Al,,z, with t; < 1p,tx = t1,t, =t (b) data matrix element g,j,l ,witht] <t 1y =1ty =11

Figure 4.5: The four-point contraction data stored in a matrix Qé’ly, where the 7, labels the operator
contracted to the kaon source while the #, labels the operator contracted to the kaon sink. #; and 7,
label the matrix indices according to the time of the two operators.

our analysis of the data obtained from lattice calculation, we first average the contracted four-point
correlation functions over all allowed kaon source positions ¢#; as in Equation 4.16, and save them in
a two-dimensional data matrix Qé’ty, where the superscript A denotes the source-sink separation
of the four-point correlation functions. The first index ¢, labels the time difference between the
kaon source and the operator contracted to the kaon source. The second index 7, labels the time
difference between the kaon sink and the operator contracted to the kaon sink. Thus, for a certain
set of values t; = 5,f, = 10 as an example, the related data matrix elements, both Qélo and
gle,s shown in Figure 4.5a and 4.5b, should contribute to the same correlator G(A, ¢, = 5,t, =
10) defined in Equation 4.16, therefore the connection between our data matrix element and the

averaged correlation function is given by:

N -6 i
1 1
" N2emA | N =5+ 1 2, Ot 6)_ (4.39)

Ix=Imin,K

1 S "
A A
= le(e‘mKA AN =65+1 Z (gt,t+6 + gt+6,t)

L [:tmin,K |

6 #0,
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where A” = A — 2tpink, A" = A — tmink and fpmin x 1S the minimum time separation between the
operator and the kaon source or the kaon sink. And for 6 = 0, the connection between our data

matrix element and the averaged correlation function is given by:

G(A,6=0)
le(e‘mKA
1

- 2 —mKA
Nyge

G(6=0) =
(4.40)

A,
1
oS o

t:tmin,K

Note, Qtﬁ is defined the same as Qé’,y but with the specific values 7, = 1, = 1.

4.4 Fitting Amg with statistical errors

After calculation of various correlation functions from N configurations, we need to fit the data
with respect to the theoretical formula to extract the quantities we need to obtain Amg. At the
same time, as shown in Equation 4.20-4.25, Amg is a complicated combination of the results from
fitting two-point, three-point and four-point correlation functions. We evaluate the corresponding

the statistical error of Amg using the jackknife method.

4.4.1 Fitting with the jackknife method

Suppose we have raw data blocks R;(¢), with i = 1,2,...,N from N lattice configurations,
with ¢ being the variable in a theoretical function f(©,¢) to be fitted to determine the parameter
©. Firstly, we create N single-jackknife blocks, with each single-jackknife block average S;()

generated by N — 1 raw data blocks:

&m:N%TZﬁAQ (4.41)
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Then we can obtain the parameter ®; from fitting S;(¢) to the theoretical function f(®,t) for each

i, by minimizing the following quantity:

X =D 1F(O01) = Si01[f(©,1) = SO (1,1), (4.42)
t,t
where C() is the correlation matrix for the ith jackknife block. In order to calculate C?), we need
to calculate the average over the jth double-jackknife block related to the fitting of ith single-
jackknife block. The double-jackknife block is obtained by leaving out two data elements from the
raw data block R and the average is given by:

(XxRe) —Ri — R;
N -2

DY = NEx? (4.43)

In the cases where the average over the ith single-jackknife block §; are available, we can also

obtain D}") from S;:
(Si+S;)x(N=1) =2 Sk
N -2 :

DY = j#i (4.44)

In our analysis, we have two sets of code with one of them using Equation 4.43 and the other one
using Equation 4.44. We perform jackknife fitting using both sets of code and same results are
obtained.

The correlation matrix C¥) is then given by:

O =825 (00w -D | [P ) - D)), 449
J#i

where D;i) is the average over the jth double-jackknife block related to the fitting of ith single-

jackknife block and 50) () is the mean of the D;i) which is given by:

D" (1) = —Nl_ - ;Dﬁ.i)(t) = —Nl_ 0 [Zkl Ri (1) - Ri(f)] = Si(7). (4.46)
J#i
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If we only perform a uncorrelated fit, Equation 4.42 is simplified to be:

2 [f(®.1) = Si(1)]°
£ = 4.47
Lo e
where O't-z(l) is given by:
70 =0 = 573 3P0 -5l (4.48)
J#i

After the fitting for each single-jackknife block, the mean of the fitting parameter ® is given

by[17]:
_ 1 ¥
0= Z 0, (4.49)
i=1
with the statistical error:
N-1 _
0% = —~ Z(Qi - 92 (4.50)

4.4.2 Application to Amg data analysis

On the ith configuration, after averaging over all possible kaon source time .., we obtain the
raw data of the correlation function Ef(A, 0) as defined in Equation 4.17.

Then we perform jackknife resampling on the raw data from N configurations and obtain a
single-jackknifed ensemble {EI-J(A, 0)},i = 1,...,N. The superscript J denotes that the single-
jackknife resampling is performed. For type-1, type-2 and type-3 diagrams, we have only one A
value. Thus for each single-jackknife block i, we remove the exponential time dependence using
fitting results from two-point and three-point correlation functions from the same jackknife block,
like my ;, m! m.,mg ; and obtain the single-jackknife unintegrated correlation function G/ (6) as
defined in Equation 4.19.

For the case where we perform error weighted average among multiple source-sink separation
A for each operator time difference 9, like for type-4 diagrams, we also need single-jackknifed

E,-(A, ) to obtain the error-weighted averaged unintegrated correlation functions G i(0) defined
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in Equation 4.29.
Then, we obtain (Amg); from the single-integrated correlator for each jackknife block and

calculate the mean to be:

N
1
(Amg) = ;(AmK)i, (4.51)
with the statistical error:
N
N-1 2
o = == 2 ((Ami) = (Ami)) (4.52)

i=1

4.4.3 Sample all-mode averaging(AMA) corrections and the super-jackknife method

The super-jackknife method is used to estimate the uncertainty of combined data sets. In our
calculation, for type-3 and type-4 diagrams, three-point and two-point functions, we have data
from "sloppy" calculations to be combined with data from sample AMA corrections which have
been discussed in Section 3.3.3. Here I will present the application of super-jackknife method in
our calculation.

For a certain quantity Y, a pion correlator as an example, from the data {y;};_; _», caculated

.....

in Figure 4.6, we then combine the two jackknife ensembles to form a super-jackknife ensemble

{Y, }k=1..n.+n. With Ng + N, elements, where the super-jackknife data block Y, is given by:
Y, =Y +AY, k=1,..N, (4.53)

Y, =Y +AViy,, k=Ns+1,..Ny+N, (4.54)

where AY = Nl Z?]:"l AY; is the mean value of the corrections and Y = Ni Zf\;“l Y; is the mean value

of the "sloppy" results.
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Raw data sets:

n Y2 s UN.—1 UN. Ayl Ayg Ach,1 Ach
~~
N elements N, elements
Jackknife data sets:
Y Y, s Y. -1 Yn. AY,; AY, AYy 1| AYy,
N, elements N, elements
Super-jackknife data set:
Vi +27|n+A7| - |+ A7 |+ AV [Fran|Fian| o [Fiav o |Tian |

(Ns + N.) elements

Figure 4.6: Combination of two jackknife ensembles with the super-jackknife method.

After the fitting for each super-jackknife block, the mean of the fitting parameter © is given by:

. 1 Ns+N,.
0= ®
Ny+N. &
with the statistical error:
Ng+N,
N,+N, -1 ¢
2 s c 2
£ = 0;,-0
O~ ) Ns n Nc ; ( i )
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Chapter 5: Systematic errors and normalization factors

In this chapter, we will discuss the systematic errors of our Amg calculation. In Section 5.1,
we will discuss corrections to Amg from finite volume effects. In Section 5.2, we will discuss
estimation of the systematic error introduced by the around-the-world effects. In Section 5.3,
by using a free-field calculation, we will show that the four-point contractions in our calculation
method yields results consistent with the Inami-Lim calculation[3] in the local limit. In Section
5.4, we will show consistency of NPR factors used for Amg with other published NPR values.
Last but not least, in Section 5.5, we will estimate the systematic error from finite lattice spacing

effects.

5.1 Finite volume effects

Lattice calculations are performed with a finite space-time volume rather than an infinite vol-
ume and therefore corrections from finite volume effects are needed. In the case where there is no
multi-particle state, finite volume corrections are exponentially suppressed in the lattice size L and
can be made small. However, in the case where multi-particle states exist, the scattering among
these particles in the finite volume leads to correction terms suppressed by power of L which are
usually not negligible.

In our Amg calculation, the intermediate states include multiple particle states and the finite-
volume effects coming from the scattering among these particles have to be corrected. Especially,
we are interested in the contribution to the finite-volume effects from the two-pion intermediate
)F Vv ,

state. This has been discussed in [8] and the finite volume correction to Amg, §(Amg is

obtained from the correction to the kaon mixing matrix element M1, which is given by:

§(Amg)FV = 2Re(6M)y), (5.1)
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M5 = MY, + 6Mya, (5.2)
where M3 is the matrix element calculated in infinite volume given by:

(KO|Hy|ar, mi )= (a, mg|Hw|K°)
mpg — E ’

M5 =P dE (5.3)
12 o Za:

where E labels the intermediate-state energy and « labels the other degrees of freedom. M Yz is the

matrix element calculated in finite volume V and is given by:

(KO Hy |m)""V" (n|Hw |K®)
M/, = : 5.4
A §n pra— (54)
The correction 6 M5 is given by:
dh(E
OMyz = —cot(h(mg)) d(E ) X f(mg), (5.5)
E=mg

where f(mg) is a product of finite-volume matrix elements with volume V’ which leads to E,, =
meg:

Flmg) = K Hwnmgom )YV (x5 5o |Hw | KO). (5.6)

The function A(E) is obtained from Liischer’s quantization condition for a two-pion system in a

spatial box of size L X L X L with periodic boundary conditions:
kL
h(E,L) = ¢(7 ) +60(E) = ¢(q) + 60(k) = nr, (5.7

E?=4(m2 +k?), q=kL/2n, (5.8)

where n = 1,2, ... labels the energy levels in increasing order and ¢(g) is a kinematic function
defined in [18] which can be calculated using Equation (3) and (A9) in [19]. 6o(k) is the S-wave

scattering phase shift.
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As for the derivative term % evaluated at £ = mg in Equation 5.5, we calculate it using:

dh _dg(q) dg _déo(k)dk _ 9¢'(q) + kéa(k)E

= - = 5.9
dE - dg dE ' dk dE Ank? (59)
We approximate the derivative term o, (k) with the scattering length ay:
, doo (k) . 6o(k)
= ~a=1 . 1
Oolk) = =~ > a=lim = (5.10)
and approximate the phase shift 6o(k) appeared in cot(h(mg)) as:
déo(k
So(k) ~ 60(0) + 0lk) )« aok, (5.11)

dk

especially for k = k,,,, where m%( = 4(m2 + k2, ) is satisfied. The approximation we make is
intended to yield an estimate on the magnitude of the finite volume corrections with a relative low
accuracy. The scattering length ag can be solved from the energy of the two-pion state E,, using

Equation (3.1) and (3.2) in [20]:

2

4ra a a 6
Eﬂﬂzzmﬂ—m{1+Clz+C2E}+0(L ), (512)
c1 =-2.837297, ¢, = 6.375183. (5.13)

For the two-pion state with / =2, f(mg) is negligible compared to the value for the two-pion
state with / = 0, and we will consider only the contribution from the two-pion I = O state. The
results for the finite volume corrections to our Amg calculation on the 641 lattice ensemble is given

in Table 5.1.

2f(my) h=6+¢ coth dh/dE | coth x dh/dE | §(Amg)TV
—0.0086(25) | —0.49(6) | —1.85(27) | 33.5(4) —-62(10) —0.54(18)

Table 5.1: The nm;—g contribution to the finite volume correction of Amg, and the relevant terms.
The last term is the finite volume corrections to Amg, in units of 1072 MeV.
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5.2 The around-the-world effects

The around-the-world effects, refer to contributions to the correlation functions where prop-
agation occurs through the boundary in the time direction, a contribution which would decrease
exponentially as the length of the lattice volume in the time direction is increased. In our calcula-
tion of the three-point correlators in addition to the time dependence described in Chapter 4 and
suggested by the propagation paths shown in Figure 5.1a, we have the alternative path contributing
to the around-the-world effects as shown in Figure 5.1b. We expect the time-dependence of the
three-point correlation functions with the around-the-world effects included to be approximately

given by:

C2: (A1) o (n|Q+|K)e ™K (A 4 (0|0 KO, m)e MK ¢ A T=(A=D] (5.14)

K—n

where the first term on the right hand side is the term we fit as discussed in Chapter 4 and the
second term on the right hand side is due to the around-the-world effects. For a small value of 7
which is also large enough so that contributions from the excited states are negligible, the second
term is greatly suppressed by a factor of e_;nf;# = ¢"x(I=27) 'where T = A — 1.

To better estimate the relative magnitude of the around-the-world effects, we need not only
know the suppression from the exponential time dependence, but also the magnitudes of the matrix

elements (|Q.|K") and (0]|Q.|K", 7). We notice[21] that when the operator is outside the region

between the source and sink as shown in Figure 5.2, the correlation function can be written as:

CQJ_r (A,t — A+ t,) o <O|Q1|KO, 7T>e_mKA€_(mK+m”)t/ " <ﬂ|Qi|K0>e_mK [T—(A+z’)]e_m7rz/’ (5.15)

K—n

where ¢’ denotes the time difference between the operator and pion sink and for simplicity we
neglect the effects of K — m scattering and use mg + m, for this two particle energy. The ratio
-mg (T-7') — e—mK(T—ZT’)’

between the exponential factors of the second term and the first term is < g

where 7 = A + ¢/, and therefore when 7/ < g, the first term dominates.
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Figure 5.1: K — m correlator when the operator is located in the region between kaon source and
pion sink, showing two possible propagation paths: (a) the conventional path and (b) the around-
the-world path. A denotes the source and sink separation and ¢ denotes the time difference between
the operator and kaon source. 7" denotes the lattice size in the time direction.

Thus we can obtain an estimate of (0|Q.|K°,x) in the region when v < % by fitting the

quantity:
0. ’
— NyNgCg* (A t=A+1)
C% (Ar=A+r)= —~ Kr=0 (5.16)
K,m—0 2pt N ~2pt ’
Cr ()Ce (A+71)
to a constant.
I A A I A I
/\ I | /\ I |
N | | o o |
/ g D ’
K : A+t : %W Q+ L= E E ‘W Qir_(ase
‘ I I | ‘ % ‘ I | | ‘ W
t /.—: :—.J t /k-w: :—4-’
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Figure 5.2: K — n correlator when the operator is located outside the region between kaon source
and pion sink, showing two possible propagation paths: (a) the conventional path and (b) the
around-the-world path. A denotes the source and sink separation and ¢ denotes the time difference
between the operator and kaon source. T denotes the lattice size in the time direction.
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We will estimate the magnitudes of the around-the-world effects in our three-point calculations.
Details of the analysis of the around-the-world effects for the calculations on the 64° x 128 lattice

ensemble will be discussed in Chapter 6.

5.3 Free-field verification of the four-point contractions in the local limit

A valuable test of our computational setup can be obtained by specializing to the case of no
gauge field interactions and requiring that in the local limit(m, and m. large) our four-point con-
tractions agree with the local Inami-Lim free field calculation.

As discussed in Chapter 2.2, we can calculate Amg from box diagrams with or without in-
tegrating out charm quarks. Starting from the box diagrams shown in Figures 5.3a and 5.3b, by
integrating out the W bosons, we obtain the four-point diagrams shown in Figures 5.3c and 5.3d. If
the inner quark loops are then integrated out, we obtain the three-point diagrams shown in Figures
5.3e and 5.3f.

In the QCD-free case, there is no strong coupling and thus we can calculate Amg in two equiv-

alent ways:
* Apply the single-integration method to the four-point correlation functions.

 Extract the matrix element from the three-point correlation functions and multiply it with the
Inami-Lim factor obtained from integrating out inner up and charm loops in the four-point

diagrams.

Thus, if no extra factor is introduced in the relatively more complicated four-point calculation, we

expect the same result from calculations performed both ways.
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Figure 5.3: Diagrams related to QCD-free Amg calculation with different effective weak Hamilto-
nian.
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5.3.1 Calculation with four-point correlation functions

As discussed in Section 3.1, Amg can be extracted from the single-integrated four-point corre-

lation function A3 (T):
. 2
apt M7 e A(T) _ G 2 lat ~lat g,
B = 2 = D (=) x ik, (5.17)
K ij=1.2

where C; are Wilson coefficients, A, = V,4V,; = cosf.sinf. and k;; is defined in Equation 4.24 in
Section 4.1.4.
Based on Equation (XII.21) in [9], in the QCD-free case, we find the Wilson coefficients C. = 1

in the effective Hamiltonian:

G . , ,
Hw = TF D VaaVe (€017 + €017, (5.18)
q,q'=u,c

where 074 = %(Q‘]”’ + Q;’q’). Equivalently, the Wilson coefficients for operators Q; and Q, are
Cy =0, G, = 1. Thus we only need to calculate the two diagrams contracted from two QO operators

as shown in Figure 5.3c and 5.3d and the formula for Amg is simplified to be:

2 2

G G
Amj,‘(pt = TF/lﬁ X (=2) X C1Ch ks = TFﬂi X (=2) X k2. (5.19)

5.3.2  Connection between the four-point and three-point diagrams

As we can see in Figure 5.4, for the QCD-free case, we could contract part of the two bi-
local operators to form a inner loop and then integrate the inner loop appearing in the four-point
diagrams in momentum space analytically and compare what we will call the “partially contracted”
operator pair of two O, operators with the local operator to obtain the factor related to the loop

integral.
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d

(a) Operator O*P', which is a partially contracted op- (b) local operator O,
erator pair of two O, operators.

Figure 5.4: The connection between O*P!, the partially contracted operator pair of two Q5 operators
and the local operator O .

Integrating the inner loop for two bi-local operator O, gives:

1 (Zﬂ)4 Gr / - mg - mi 2
4pt:__ /12 M2 4k K1 — Vil I 5
21 (2n)8 "« \/5) d [s)’ ( 75)k(m% eI k2))’ (I-1ys) (5.20)

2
After integrating over the k2, if we assume the ratio % is small, we obtained the partially con-

c

tracted operator :

N G2 _ _
O = Z—m[sy" (1 = y5)d[5y" (1 = ys)d], (5.21)

where N is the factor relating the spinor product:

[5y*(1 = ys)y"y (1 = ys)d][sy" (1 = ys)y*y*(1 - ys)d] (5.22)

and local operator:

Orr = [sy"(1 = ys)d][sy"(1 - ys)d], (5.23)

where the matrix y® comes from the term ¥ which appears in the loop integral.
We find N = 4 and obtain the connection between the partially contracted parts of bi-local

operators O, and the local operator Oy :

G Gj
O = L0 [5y" (1 - ys)dI[5y" (1 - y5)d] = - AimZ011. (5.24)
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This is consistent with Equation (XII.1) in [9] which uses the Inami-Lim function when m, = 0
and -« < 1.
mwy
2
If the up quark mass is not much smaller than the charm quark mass and the ratio Z—;‘ is not

c

small, the loop integral in 5.20 can be calculated as:

00 2 2122 2 4
I4pt:/ 4 (m; —m;)™x _1+4a%in(a) —a 2 (5.25)
0

(m? +x)2(m2 +x)2 1 -a? @
mu

L This leads to a more useful connection formula between the local

c

where x = k% and a =

operator and the partially contracted bi-local operator pair:

2

G
O = ST OL (5.26)
T

The connection between local operator Oy; and bi-local operator pair of two Q, operators
also leads to the connection between the four-point and the three-point diagrams we calculate in
the QCD-free case. If the inner quark loop in the four-point diagram shown in Figure 5.3c is
integrated out, we obtain the three-point diagram shown in Figure 5.3e multiplied by the factor
T4P'. This is also valid for four-point diagram shown in Figure 5.3d and the three-point diagram

shown in Figure 5.3f.

5.3.3 Calculation with three-point correlation functions

Based on Equations (XII.1-3) in [9] and using the normalization convention (K°(p’)|K%(p>)) =

5°(p1 — p»), we obtain the formula of Amg calculated from three-point correlation functions:

3pt G% 2 2””‘2 =0 0
AmP = @MWACME (K90 L|K), (5.27)
W

where Oy is given in Equation 5.23, and the approximated Inami-Lim functions S(x,) = 0,

2
S(xe) = x. = 1&’; are used. If the up quark mass is not neglected, according to the analysis in
w
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Section 5.3.2, Amg calculated from three-point correlation functions is given by:

G} —
An’L;(pt - 8_7-2/1514pt<K0|0LL|K0>’ (5.28)

where 74 is defined in Equation 5.25. The matrix element <F|O 1L|K?) can be extracted from
the three-point diagrams shown in Figure 5.3e and 5.3f.

We can compare the contributions to Amg from each four-point diagram and its correspond-
ing three-point diagram and expect consistent results. In our comparison, we choose to compare
the contribution from the four-point diagram (c) and the three-point diagram (e) in Figure 5.3.

Therefore we would like to calculate two quantities:

. G2 G}
Am‘;;pt = —2F/13 X (=2) X Cémcéatkéz = TF/ll% X (=2) x ka, (5.29)
and
s G .
A = BT P (KOI0LLIKYY', (5.30)

where the prime indicates the contributions from only the specific contractions shown in (c) and
(e) of Figure 5.3. Similar to the QCD calculation, we can create free quark propagators, contract
the propagators and fit the correlation functions to extract quantities like the normalization factors
of the meson operators and the masses which determine the time dependence of the three- and
four-point correlators. Thus, we will compare these free-field four- and three-point functions by

examining them in nearly the same way as is done for similar quantities in an interacting theory.

5.3.4 Comparison between BG/Q supercomupter and analytic calculation

Firstly, the free-field calculation is performed on the BG/Q supercompter using a 64> x 128
lattice. The lattice size we can use for the comparison is limited by the computational power and
a 64° x 128 lattice is the largest size feasible. However, we may need a larger lattice to do the
calculation with smaller finite lattice spacing errors and around-the-world effects. An alternative

approach is to use the analytic expression for the free-field domain wall fermion propagators. Thus,
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Free 4-point on BG/Q | |Frm: 4-point Analytic : Free 4-point Analytic
Lattice size 643x128 Lattice size 643x128 Lattice size 643x256

&~

v

Free 3-point on BG/Q Free 3-point Analytic ) Free 3-point Analytic
Lattice size 643x128 I lLattif:e size 643x128 Lattice size 643x256

Figure 5.5: The relationship between the BG/Q and our analytic free-field calculations. The yel-
low double-arrow represents the comparison between four- and three-point results. The purple
double-arrow represents the comparison between BG/Q and analytic results. The blue single ar-
row represents the extended calculation using analytic expressions.

we first confirm the consistency between the BG/Q results and the analytic results, on this smaller
lattice, and then focus on the analytic comparison with larger lattice. This sequence of comparisons
is shown in Figure 5.5.

Some key quantities obtained from BG/Q supercomputer and analytic calculations are com-
pared by taking their ratios and the results of these comparisons are shown in Table 5.2. For the
two-point correlation functions G?P'(¢) calculated in both ways, we take their ratios for all allowed
values of time separation ¢. The averages of these ratios for all ¢ are listed in the column labeled
by "Ratio AVE" and the differences of the ratios are estimated by the standard deviations listed
in the column labeled by "Ratio STD" and the largest discrepancies from 1 among the ratios are
listed in the column labeled by "Max Ratio Discrepancy". For the three-point calculations, we
compare the extracted matrix elements (F|O .|K®). For the four-point calculations, we compare
the four-point correlation function G (A, t,, t,) for all allowed ¢, and ty within the integration box

of size T = 10.
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The consistency is confirmed by the ratios having values close to 1 with minor discrepancies

from the numerical precision and finite lattice size in the fifth dimension.

Quantity Ratio AVE | Ratio STD | Max Ratio Discrepancy
Pion Corr. 1.0000 | 4.68 x 107% 45x%1073
Kaon Corr. 1.0000 | 4.90x 10~* 48x1073
(K%lO|K®) 1.0000 | 4.90 x 10~* 1.0x 1073
Diagram (c) in Fig. 5.3 | 1.0000 | 5.77 x 107* 1.3x1073

Table 5.2: Ratios of the quantities obtained from BG/Q numerical calculations and analytic calcu-
lations. The lattice size is 64° x 128 and m, = 0.15.

5.3.5 Results

In order to insure that the inner quark loop in the four-point calculation is local compared to the
distance scale that characterizes the external quark lines, we choose to have the masses of down
and strange quark light while the masses of up and charm quark appearing in the inner loop heavy.
For our choices, shown in Table 5.3, the up quark is not much lighter than the charm quark and the
three-point results should be obtained using Equation 5.30. We perform comparisons with different
charm masses and the input parameters are shown in Table 5.3.

We then obtain the unintegrated correlators which are plotted in Figure 5.6 and 5.7 and inte-

grate them over all the allowed values of §, which is the time separation between the two bi-local

operators.
Lattice size | my | my my, me Am?tr/Am?t, ratio
643 %256 |0.03]0.03]0.1125] 0.15 0.9713
64> x 256 | 0.03 ] 0.03 | 0.1125 | 0.25 0.9584

Table 5.3: The input parameters used in the QCD-free analytic calculation and the Am?t’/Am?(pt’
ratios at T = 30 are included.

As shown in Figures 5.8 and 5.9, as the integration upper limit 7 is increasing, the ratio between
the four- and three-point results approaches a constant close to 1 for each value of m..
The ratios between the four-point and three-point results for a large value of 7" are shown in

Table 5.3. With the ratios only deviating from 1 only by a few percents, which is consistent with
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Figure 5.6: The unintegrated four-point correlator plotted as a function of 6. m. = 0.15, with other
quarks masses shown in Table 5.3.
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Figure 5.7: The unintegrated four-point correlator plotted as a function of 6. m,. = 0.25, with other
quarks masses shown in Table 5.3.
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Figure 5.8: The ratio between the four-point and three-point results plotted as a function of the
integration upper limit 7 with m, = 0.15.
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Figure 5.9: The ratio between the four-point and three-point results plotted as a function of the
integration upper limit 7 with m, = 0.25.
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the uncertainty from finite volume effects, we conclude that using the analytic method, which
is verified to be equivalent to BG/Q numerical calculation in the free-field case, the contraction
results of four-point diagrams agree with the results of the Inami-Lim calculation when m . and m,,

are massive.

5.4 Consistency of NPR factors used for Amg with other published NPR values

It is important to compare the NPR factors that we use in this thesis with published values
where possible. However, the published NPR factors are calculated under SU(3) x SU(3) flavor
symmetry while our NPR is performed under SU(4) X SU (4) flavor symmetry. We need to identify
those NPR factors which are common to both cases.

The sum of matrix elements Z; = Z;| + Z;; in our Amg NPR corresponds to the renormaliza-
tion of the Q. operator which belongs to the (84, 1) irreducible representation of SU(4) x SU (4).
As discussed in Section 3.4.1, an operator belonging to the (84, 1) representation has a tensor of
coefficients which is traceless and symmetric under permutations of upper and lower indices. In
the case of SU(3) x SU(3) flavor symmetry, an operator belonging to the (27, 1) irreducible rep-
resentation, also has a tensor of coefficients which is traceless and symmetric under permutations
of these indices. Consequently, this (27,1) SU(3) x SU(3) operator also belongs to the (84,1)
representation and will have the same renormalization factor as that for operators which belong to
the (84, 1) representation.

The previously calculated Amg NPR factors[6] on the 24l lattice ensemble in the (y,, ¢)
scheme at a scale u = 2.15 GeV can be compared with an earlier published Z ) yalue [22].

(27,1)

The numbers can be found in Table 5.4 and we can verify that Zg4.1) = Z11 + Z12 = Z(27,1).

Znw=2Zyn Zinp=2Zy Zu+Zp ZI“HR’/Zﬁ ZZ Z1,1)

raw

0.5916  -0.05901  0.5326 0.825(7)  0.8016(3) 0.5301(48)

Table 5.4: The Wilson coefficients from Amg NPR[6](Ieft half) and from Table VII of [22] at a
scale u = 2.15 GeV.

In addition, we have a previously published NPR factor Zp, for the quantity Bg[12] which is
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given by:

(4.5)
Zh = 2, (5.31)
ZA

where Z, can be calculated from A4,y and Z,; as defined in Equations 3.100 and 3.101. Here the
label A denotes the type of projectors which defines the renormalization scheme and B denotes the
scheme in which quark fields are renormalized.

As shown in Table 5.5, on the 321 lattice, we can use our Amg NPR factor, Z ((g :”ly)" ) = Zi1+Zp»

calculated at a scale u = 3.00 GeV and Z, from [12] to obtain a Zp, value consistent with the

published Zp, value in [12].

Z((g;;f)”) Zy  Zs, from Amg NPR | Zg, in [23]

0.5195(2) 0.7447(1) 0.9368(6) 0.9396(2)

Table 5.5: The NPR factor Z'* >Rl obtained in a Amy calculation which together with Z, from
[12] gives the value for Zp, shown in the third column which can be compared with the results for
Zp, from Table XIX in [23] (right half) at a scale u = 3.00 GeV, for (y,, y,) scheme.

5.5 Finite lattice spacing effects

5.5.1 Elimination of O(a) finite lattice spacing errors

Because we are using chiral fermions, we expect only O (a?) finite lattice spacing errors. How-
ever, on the lattice, when a time integral is replaced by a sum over time slices, this may introduce
finite lattice spacing errors ~ O(a). In the double-integration method, it can be demonstrated that
this effect is eliminated by the symmetry of the integration. In our single-integration method, after
the exponentially growing contribution from states with £, < mg has been removed the result-
ing unintegrated correlator vanishes near the integration limits, so that any O(a) contribution is

suppressed.
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5.5.2  Sources of O(a?) finite lattice spacing errors

After eliminating the O(a) finite lattice spacing errors, we have to estimate the remaining
O(d?) finite lattice spacing errors. The first possible source is associated with the heavy charm
quark we have included in our lattice calculation. The effect should be proportional to the di-
mensionless quantity (m.a)?. Determination of the size of this term will allow us to estimate its

contribution to our systematic error.

5.6 Scaling test on lattices with different lattice spacings

A scaling test, in which we measure the same physical quantities on several lattices with dif-
ferent lattice spacings, can help us determine the size of the O(a?) finite lattice spacing error and
give an estimate of how large these effects are.

Thus, in order to estimate the finite lattice spacing errors for our Amg calculation, we perform
scaling tests focusing on the matrix elements obtained from three-point correlation functions and
four-point integrated correlators using two different lattice spacings. It’s economical to start with
a smaller lattice where the relatively large m.a value is examined. We perform the scaling tests on
the 241 and 32I ensembles and details about these two lattices are listed in Table 3.1.

To obtain the input valence quark masses for the two ensembles which result in meson masses
on the two lattices which are consistent, we first set the physical values of meson masses to be
the ones obtained from the calculation on the 32IF ensemble using its unitary quark masses. Then
based on several meson masses obtained on the 241 and 32I ensembles for various valence quark
masses[12], we perform interpolations to obtain the valence quark masses which yield physical
meson masses consistent with the 32IF meson masses described above using formulas from chiral
effective theory. The calculated valence quark masses and the expected meson masses are shown

in Table 5.6.

83



LattiCC mx my mﬂ-,prea mﬂ-,pre/MeV mK’prea mK’pre/MeV mcCl

241 0.00667 | 0.0321 | 0.2079 371.15 0.3125 557.83 0.15:0.05:0.35
321 0.00649 | 0.0249 | 0.1557 371.15 0.2332 557.83 (0.15:0.05:0.35)%
Lattice | m yni Myuni | Myunid | My uni/MeV | mg wnia | mg yni/MeV mea

32IF | 0.0047 | 0.0186 | 0.1179 371.15 0.1772 557.83 -

Table 5.6: Parameters related to the lattices for measurements. m, is the valence mass for light
quarks: up and down. m, is the valence mass for strange quark. The predicted pion mass my pre
and the predicted kaon mass mg e are displayed both in lattice units and in physical units.

5.6.1 Results from two-point functions

As discussed in Section 4.1, we can obtain meson masses from two-point correlation functions.
We expect our input valence quark masses to produce mesons with equal physical masses on the
two different lattices. The results listed in Table 5.7 and Table 5.8 verify that not only light mesons
like pion and kaon, but also heavy charmed mesons with relatively large values of m, have consis-
tent masses. We can therefore conclude the quantities we have calculated on these two ensembles

with different lattice spacings are consistent in physics.

Lattice | Neonf | m;/MeV mqa My pre@ | Myg/MeV mga MK pred
241 186 | 371.3(7) | 0.2080(4) | 0.2079 | 556.2(7) | 0.3116(4) | 0.3125
321 222 | 371.4(6) | 0.1558(2) | 0.1557 | 557.5(6) | 0.2340(3) | 0.2332

Table 5.7: The light meson masses resulting from light and heavy quark masses obtained from
interpolation calculations on the 321 and 241 ensembles.

me 241 | m./GeV 241 | mR/GeV 241 | mp 241/GeV | m. 321 | m./GeV 321 | mR/GeV 321 | mp 321/GeV
0.15 0.26775 0.4079 1.0891(27) 0.11 0.26775 0.4068 1.115109)
0.20 0.357 0.5439 1.2599(31) 0.15 0.357 0.5423 1.2940(10)
0.25 0.44625 0.6799 1.4142(37) 0.19 0.44625 0.6779 1.4563(11)
0.30 0.5355 0.8158 1.5550(43) 0.22 0.5355 0.8135 1.6057(11)
0.35 0.62475 0.9518 1.6836(50) 0.26 0.62475 0.9491 1.7442(12)

Table 5.8: m, masses and corresponding D meson mass mp for the 241 and 32I ensembles,
with renormalized masses using mass renormalization factors Z;; oal = 1.5235(13) and Z;; 1 =
1.5192(39)[12].
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5.6.2 Scaling of three-point matrix elements

We can then examine how the matrix elements extracted from three-point functions scale on
these lattice ensembles. The three-point diagrams which contribute to (x|Q;|K®) matrix elements
are shown in Figure 5.10. Compared to the eye diagrams shown in Figures 5.10c and 5.10d having
self-loop parts, the figure-8 diagrams shown in Figures 5.10a and 5.10b have relatively low statis-
tical errors and don’t involve the heavy charm quark which is the most probable source of large
discretization error.

If we can compare the results for only the contribution of the figure-8 diagrams to these three-
point functions, we can test the scaling violation with high precision. To perform such scaling
violation tests on the three-point functions and also on the four-point functions which we will
present later, we have to establish that the set of diagrams we are studying is a well-defined por-
tion of the full physical amplitude by itself and have a continuum limit as the lattice spacing a
approaches 0. We would expect that the difference between such a diagram and its continuum
limit can be described by ca® where c is approximately a constant and the possible logarithmic
corrections to the ca? behavior is neglected.

Here for the case of the contribution of figure-8 diagrams to these three-point functions, we
can justify our comparison by creating an alternative interpretation for the process being studied.
If we view the transition being computed as K — D in an unphysical four-quark theory in which
the charm quark is degenerate with the light up and down quarks, the eye-diagrams containing
the (u — ¢) self loops vanish and we can interpret the figure-8 diagrams as the only diagrams
that would contribute, provided we neglect the 1% effects arising from our failure to match the
sea quark masses on the 241 and 32I ensembles. Thus, if we further make sure that both the
three-point function and the corresponding NPR factors are being calculated consistently in this
partially quenched four/three-quark theory, we can expect that the figure-8 diagrams alone have a
meaningful scaling limit with the finite lattice spacing error behaving as ca?.

However, the above argument is limited to the figure-8 diagrams. We can also make a more

direct argument for a collection of diagrams to be studied in isolation in a lattice calculation which
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is more generic and applies to both figure-8 diagrams and four-point connected-only diagrams that
we will present later, based on a lower-level understanding of renormalization and the continuum
limit. Like the current case of the figure-8 diagrams, within a natural collection of the diagrams, the
diagrams have fermion propagators contracted with a fixed topology. At the same time, for a lattice
calculation with a specific contraction of quark propagators, the path integral provides a sum over
all possible gluon emissions, gluon self-interactions and closed fermion loop insertions. For such
a specific quark propagator topology, provided the quark propagator topology does not introduce
new divergent sub-diagrams not present in QCD, the renormalizability and chiral symmetry of
DWF QCD will lead to a continuum limit with a ca? scaling behavior. However, even if new
divergent sub-diagrams do appear, such as the vertex correction arising from the exchange of a
gluon between two of the legs of a four-quark vertex resulting from an insertion of Hy, provided
that we have included these same diagrams when performing the NPR subtractions, we can still

obtain a well-defined collection of diagrams having a continuum limit with a ca? scaling behavior.

d U d u
(a) (b)

d d

(©) (d)

Figure 5.10: K to m diagrams. The upper two are figure-8 diagrams contracted with operator Q;
(a) and Q, (b). The lower two are eye diagrams contracted with operator Q; (c) and Q> (d).
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Figure 5.11: The three-point correlation functions GI%_)H(A, t) and gg;ﬂ(A, t) calculated from
figure-8 diagrams plotted as functions of ¢, the time of the operator. The kaon source is at the
time of the first data point on the left on each curve. The upper two plots are results from the 241
ensemble. The lower two plots are results from the 32I ensemble. We use Ny, = 5 source-sink
separations shown in Table 5.9. The values of (7|Q,|K®) and (7|Q_|K") are obtained from the

fitting of plateaus. The mean values and errors from uncorrelated fits are plotted as three straight
lines within the fitting range.
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Based on the relationship Q. = (Q1+Q5), we can easily obtain the matrix elements (7|Q.|K°)
from linear combinations of results from Q; operators. In Figure 5.11, we plot the three-point
correlation functions 5%_)7((& t) calculated from figure-8 diagrams by which we have divide the
time dependence according to Equation 4.8 with the source-sink separations listed in Table 5.9.
For each case, as the source-sink separation becomes larger and the effects from the excited states
become negligible, a plateau region near the middle of the curve appears. We fit each three-point
function in the plateau region to a constant and obtain the contribution from the figure-8 diagrams
to the three-point matrix elements. The plateaus also indicate that correlation functions calculated

from the figure-8 diagrams alone have the same expected physical time dependence.

N, sep Amin
5 18

Amax Astep
30 3

Table 5.9: Multiple source-sink separations used in the plots of the three-point correlation functions
on the 241 and 32I ensembles, shown in Figure 5.11.

Z factors Matrix elements in physical Unit
u/GeV | TIrrep 321 241 321 241 Scaling violation
(@' =2.38GeV) (a~! =1.78GeV) || (a~! =2.38GeV) (a~! =1.78GeV)
2.15 | 84,1) | 0.52997(11) 0.47143(8) 0.003957(18) 0.004045(18) 2.19 %
(20,1) | 0.58755(14) 0.57493(26) 0.011949(65) 0.009936(59) 18.39 %
2.64 | (84,1) 0.52489(6) 0.46996(6) 0.003919(18) 0.004032(18) 2.84 %
(20,1) | 0.60358(11) 0.58239(11) 0.012275(67) 0.010065(60) 19.78 %

Table 5.10: The Z factors of NPR in (y,,¥,) scheme and (r]0+|K®)(figure-8 only) in physical
units on the two lattice ensembles and different scale p. The relative scaling violations are listed
in the last column.

Z factors Matrix elements in physical Unit
wu/GeV | Irrep 321 241 321 241 Scaling violation
(@' =2.38GeV) (a~! =1.78GeV) || (a~! =2.38GeV) (a~! =1.78GeV)
2.15 | (84,1) 0.60490(35) 0.55073(40) 0.004516(21) 0.004725(22) -4.51%
(20,1) 0.67062(61) 0.67164(46) 0.013638(74) 0.011608(69) 16.08%
2.64 | (84,1) 0.58968(16) 0.53025(13) 0.004403(20) 0.004549(21) -3.27%
(20,1) 0.67807(31) 0.65711(32) 0.013790(75) 0.011357(68) 19.35%

Table 5.11: The Z factors of NPR in (y,, ¢) scheme and (r|0+|K°)(figure-8 only) in physical
units on the two lattice ensembles and different scale u. The relative scaling violations are listed
in the last column.

The results for these figure-8 diagrams are listed in Table 5.10 and Table 5.11 at u = 2.15 GeV
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and u = 2.64 GeV. The figure-8 matrix element of the operator O, which belongs to the (84,1)
representation has a small scaling violation of size ~ 2 — 4%, while the figure-8 matrix element
of the operator Q_ which belongs to the (20,1) representation has a large scaling violation of size
~ 20%.

Even in the absence of a heavy charm quarks, such an unexpectedly large scaling violation as
appears in the matrix element of Q_ operator is not unique. As shown in our previously published
paper[24], K — nirwr matrix elements calculated from operators belonging to the (8,8) irreducible
representation also show similarly large finite lattice spacing errors as shown in Table XIV of

Reference [24].

5.6.3 Scaling of four-point single-integrated correlation functions

Similar to the three-point scaling tests, we perform a series of scaling tests for the contribution
from four-point diagrams of type 1 and type 2, which are all connected. We also need to calculate
three-point matrix elements (7|Q"|K") to remove the exponentially increasing terms from the
single-integrated four-point correlators.

In this case, only connected diagrams are calculated, and only up quark can appear in our inter-
mediate states. When we calculate the three-point matrix elements (|Q%/|K°), we must use the
interpolating operator O o = iwysu rather than O 0 = i (wysu—dysd)/V2 and only include figure-8
diagrams shown in Figures 5.10a and 5.10b since without disconnected diagrams the combination
uysu and 3y5d behave as independent degenerate mesons[6].

We perform the scaling tests on the single-integrated four-point correlation functions. For the
relatively light input charm masses used here, the correlation function is highly non-local and
limited by the lattice size, we can not use a sufficiently large T to extract Amg from the single
integration as discussed in Section 3.1. However, because the single-integrated correlator itself is a
physical quantity with a continuum limit, we can perform the scaling tests on the single-integrated
four-point correlators for the operators Q. if we use consistent physical integration ranges on the

two different lattices.
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In Figure 5.12, we plot the unintegrated correlators with two Q, operators for various m,
values which yield equal D meson masses on the 241 and 321 ensembles. We find the unintegrated
correlators on the 241 and 321 ensembles almost overlap with each other and have no significant
scaling violations.

The red dashed line represents the cutoff value for the single-integration on the 321 ensemble
and the black line represents the cutoff value for the single-integration on the 241 ensemble. To
remove the O (a) errors from difference in the integration range for the single integration, we per-
form interpolations on the 241 ensemble to match the integration cutoff value on the 32I ensemble,
which is T,y = 5.87 GeV~! and evaluate the integral using the trapezoidal rule.

The single-integrated correlators with two Q. operators and a fixed integration cutoff 7o, =
5.87 GeV~! are plotted as a function of D meson mass in Figures 5.13a and 5.13b. We take the
ratios between the results on the two lattices with the same D meson masses in physical units for
various charm masses. If the charm quark is the dominating source of scaling violation, as we
reduce the charm mass, the ratio between different lattice spacing should approach 1. This can be
verified in Figure 5.13c. On the 641 ensemble, the m.a = 0.32 ~ 0.33 gives the physical D meson
masses. To estimate the finite lattice spacing effect for our lattice calculation on the 641 ensemble,
we mark the point where m.a = 0.32 on the coarser 241 ensemble and find the scaling violation is
about 5%.

Similarly, in Figure 5.14, we plot the unintegrated correlators with two Q_ operators for various
m. values which yield consistent D meson masses on the 241 and 321 ensembles. In contrast to
the case with two Q. operators, we find the unintegrated correlators with two Q_ operators on the
241 and 321 ensembles have significant scaling violations. In Figures 5.15a and 5.15b, we plot the
single-integrated correlators with two Q_ operators on the 241 and 321 ensembles. In Figure 5.15c,
we plot the ratios between the results on the two lattices as a function of physical D meson mass.
The scaling violation at m.a = 0.32 is about 14%. However, we find the ratio for the case with two
Q_ operators is not approaching 1 as the charm mass becomes smaller but instead approaching

a ratio which is about 1.4. This indicates that in addition to the scaling violation introduced by
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the heavy charm quark, the scaling error for the four-point integrated correlators with two Q_
operators, can be as large as 40%.

In our Amg calculation, we have combinations of four-point correlation functions with Q and
Q_ operators. Based on the scaling tests performed on the 241 and 321 ensembles, we estimate the

finite lattice spacing error to be of order of 40%.
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Figure 5.12: The 32I and 241 unintegrated correlators with two Q. operators at same physical
D meson masses. The vertical lines are the cutoff physical time for the single-integration and
an additional interpolation is performed to remove the O(a) errors due to the difference of the
integration range.
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Chapter 6: Amg calculation with physical quark masses

6.1 Details of calculation

The calculation was performed on the 641 ensemble and the details about the ensemble are
listed in Table 3.1. For the 2+1 quark flavors, the valence quark masses are set to be their unitary
values, and we include a physical valence charm quark with mass in lattice units of m.a = 0.31,
which is close to the value determined by fitting the D mass or 77, mass.

As discussed in Section 3.3.3, in our calculation, type-3 and type-4 diagrams are AMA cor-
rected while type-1 and type-2 diagrams are only calculated as part of the exact measurements
that are also used to determine the AMA corrections for the type-3 and type-4 diagrams. We have
in total 152 configurations and the numbers of configurations used in different types of diagrams
are listed in Table 6.1. For type-1, type-2 and type-3 diagrams, we use single separation A = 48
between the kaon source and kaon sink and for type-4 diagrams, we use multiple source-sink sep-
arations A € {20,21,...,48} to increase the statistics. We set #x min Which is the minimum time

difference between the weak operators and the kaon source or sink, to be 10.

Diagram types | sample AMA correction | # of Sloppy | # of Exact
Type-3&4 Y 116 36
Type-1&2 N 0 36

Table 6.1: Numbers of configurations with different CG precision for different types of diagrams
in our Amg calculation with sample AMA correction.

The lattice calculation is performed on a BG/Q supercomputer partition with 8192 nodes. It
takes about 5.5 hours for a “sloppy” calculation on one configuration and 20.5 hours for both
“sloppy” and “exact” calculations on a BG/Q partition with 8192 nodes.

On each gauge configuration, we read in 2000 Lanczos eigenvectors calculated for light quarks

which can be constructed from 400 base eigenvectors with multi-grid Lanczos technique[25],
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which saves about 90% of the disk space for the storage of Lanczos eigenvectors. The eigenvectors
are used in low-mode deflation and construction of A2A propagators for self-loop propagators. The

high mode components of the A2A propagators are evaluated from 60 random volume sources.

6.2 Results

6.2.1 Two-point results

We plot the effective mass meq(¢) from two-point correlation functions as defined in Equation
4.2 for the mesons. The effective mass plots are shown in Figure 6.1 for K° and 7 ground states,

Figure 6.2 for the m—n states and Figure 6.3 for the i state. We fit the plateaus in the plots to obtain
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Figure 6.1: Effective mass plots for the kaon (a) and pion (b) ground states. The mean values and
errors from uncorrelated fits are plotted as three straight lines within the fitting range.

masses for our calculation. The results are shown in Table 6.2 in both lattice units (¢~ = 2.36

GeV) and physical units.

Unit KO T n =0 M=
lattice | 0.2104(1) | 0.0574(1) | 0.258(2) | 0.1138(5) | 0.1149(2)
MeV | 496.5(3) | 135.4(2) | 609(37) | 268.5(1.3) | 271.1(5)

Table 6.2: Fitting results for meson masses and 7 — 7 energies in lattice units (a™' = 2.36 GeV)

and in physical units.
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values and errors from uncorrelated fits are plotted as three straight lines within the fitting range.
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These values are close to the experimental values of the meson masses and verify that our
calculation on the 641 ensemble with physical quark masses produces mesons with physical masses

we expect.

6.2.2 Three-point light-state matrix elements: overview

As discussed in Section 3.1.1, in our calculation of Amg, we have to subtract light state con-
tributions from our unintegrated correlators and add light state contributions back to Amg after
the single integration. We have to calculate (7|Q}|K 0y, <7T7T[:()|Ql,~|KO> where the Q' operators are
defined as:

Q; = Q; — cpisysd — cgis5d, (6.1)

and the coefficients cy; and cp; are calculated from the ratios of the matrix elements:

oo QK% - (0104IK®) 62)
T @isdIK®)” T (OfsysdIK®) '

so that contributions from the |0) and |) will vanish:
(OlHw — cpsysd|K®) =0,  (n|Hw — c5d|K°) =0. (6.3)

6.2.3 Three-point light-state matrix elements: K to 7 matrix elements

To calculate <7r|Q2|K0>, we need to calculate (7|Q;|K°) and (r|5ysd|K") and combine them as
below:

(m|Q]IK?) = (n|Qi|K”) = cq(nl5d|K?). (6.4)
In Figure 6.4, we plot the three-point correlation functions as discussed in Section 4.1.2:

co _ NxNkCZ', (A1)
CP(A-0CP (1)

(A1) (6.5)
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Figure 6.4: The three-point correlation functions 5%_) (A1) (a), 5%_W(A, t) (b) and 52"_) (A1)

(c) plotted as functions of operator-kaon-source time separation . We use a single source-sink
separation A = 28. The values of (7|Q|K°) , (7|Q2|K°) and (n|5d|K") are obtained from the
fitting of plateaus. The mean values and errors from uncorrelated fits are plotted as three straight
lines within the fitting range.

We use a single source-separation A = 28 and fit the correlation functions to constants in the
region of various values of ¢ where plateaus are observed and fitted values should be equal to the
matrix elements (7°|Q;|K") and (7°|5d|K") separately. In Table 6.3, we list the values of these

kaon to pion matrix elements. The coefficients ¢y calculated from the kaon to eta matrix elements
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will be shown in Section 6.2.4.

(r|011K") (7|Qa2|K®) | (x[5d|K?)
—-5.02(3) x 107* | 1.408(4) x 1073 | 8.097(15)

Table 6.3: The K° to 7 matrix elements (7|Q;|K°) , (7|Q2|K°) and (n|5d|K°) obtained from the
fitting of plateaus.

Following the discussion in Section 5.2, we expect the time-dependence of the three-point

correlation functions with the around-the-world effects included to be approximately given by:

Co (A1) < (m|Qi| KOye ™K e7ma (A1) 4 (0|0 KO, wye MKt~ maT=(A=D] (6.7)

K—n
and we can obtain the matrix element (0|Q;|K°, 7) outside the region between the kaon source

and pion sink to estimate the around-the-world effects and justify our fitting formulas discussed in

Section 4.1.2. We plot the three-point correlation functions:

_ NxNgC% _ (At=A+1)
C]gln-_x)(A’t = A+ t/) = — »7T — (68)
’ Co (1) C (A+17)
and =
— NxNgCy' (At =A+1)
Cl oAt = A1) = —— KT8 (6.9)

CP () CP (A +1)
in Figure 6.5 and fit each curve in the plateau region to constants which should equal to the matrix

elements (0|Q;|K°, 7) and (0|5d|K°, n) separately. The results are shown in Table 6.4.

0101[K%, m) [ (01Q2|K" 7) [ (O[3d|K°, m)
—-1.90(2) x 1073 [ 2.97(3) x 1073 | 11.36(14)

Table 6.4: The estimated contribution from around-the-world K° and 7 to vacuum matrix element.

We can therefore estimate the around-the-world effects in our calculations of K° to 7 matrix

elements by examining the ratios between the terms from the conventional propagation path and
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Figure 6.5: Around-the-world three-point functions glg,;_)O(A, t=A+1") (a) and é‘v%n_)o(A, t =
A +1") (b) plotted as functions of operator-kaon-source time separation . We use a single source-
sink separation A = 28. The values of (0]Q;|K°, 7), (0|Q»|K°, 7) and (0|5d|K°, ) are obtained
from the fitting of plateaus. The mean values and errors from uncorrelated fits are plotted as three
straight lines within the fitting range.
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the around-the-world path in Equation 6.7. For Q; operator, we have:

_OIQIK ) e T QUK e

= 6.10
IOIKY e (0101 K0 x) (©-10)

where 7 = A —t. If we take the maximum value of Tpax = A —fimink = 28 — 16 = 12, we obtain the

upper bound of the ratio of the around-the-world effects:

(OUK?)  ar-2m _ ~190X 1072

(0]Q11K, 7) ~5.02 x 10~

ﬂl,max =
6.11)

Similarly, we obtain the upper bound of the ratio for O, matrix element:

(MQ2IK®) o (r=2ny) _ 297 % 107

X 6—0.0574X(128—2X12) — 00054 ~ 05070
(01Q2|K?, ) 1.41 x 1073

RZ,max =
(6.12)

and the upper bound of the ratio for sd matrix element:

(m|sd|K®) . - 8.097  _ -
R- — M (T—2Tmax) — % 0.0574x(128-2%12) _ 0.0018 ~ 0.29 6.13
sdmax = 05K, 1) 1136 ¢ o (6.13)
Based on the values of R max R2.max and Rs4 max, We can therefore conclude that the around-
the-world effects are negligible and we can fit the three-point correlators using Equation 4.8 to
obtain three-point matrix elements with negligible systematic errors from the around-the-world

effects.

6.2.4 Three-point subtraction coefficients: cg; and cp;

(0]Qi|K®)

Oy sd K0y We obtain the kaon to vacuum matrix elements in a

To calculate coefficients cp; =
similar manner to the calculation of kaon to pion matrix elements and list them in Table 6.5. Then
we take their ratios and the values of ¢ are listed in Table 6.7.

&0
Compared to the coefficients cp;, the coefficients cg; = 22‘%:150;

have larger statistical errors due

to the disconnected diagrams needed to calculate the kaon to eta matrix elements. To increase the
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(01Q11K°) (01021K®) | (Olsysd|K®)
—1.284(3) x 1072 | 2.449(4) x 1072 | 87.22(13)

Table 6.5: The kaon to vacuum matrix element, and the matrix element of 5ysd operator to be
subtracted.

statistics, the calculations of cy; are performed with multiple values of source-sink separation A as
described in Section 4.1.3. The total number of separations Ngp, the minimum separation Apyp,

the maximum separation Apax and Agep, are listed in Table 6.6.

Nsep Anmin Amax Astep
5 16 40 6

Table 6.6: Parameters used for fitting three-point correlation functions with multiple source-sink
separations.

We first obtain Rsi (A, 6) with the same ¢ values for all allowed source-sink separations A and

perform an error-weighted average to obtain:

cg (A.6) > o1
A

C¥L, (A, 6)

R2i(6) = <R§f(A, 5)>A - <
K—n

and then plot the ratios functions as shown in Figure 6.6 and fit the plateaus to constants which
should equal the subtraction coefficients cs;. We have listed the fitting results of ¢y in Table 6.7.
We can see the coefficients cg; have relative large statistical errors which will significantly influence
the statistical error of Amg. In the future, to further reduce the statistical error of Amg, we should

focus on the statistical error reduction for the coefficients cy;.

Csl Cs2 Cpl Cp2
2.06(32) x 107 | =3.12(21) x 10™* | —1.473(2) x 10~* | 2.808(2) x 10~*

Table 6.7: The subtraction coefficients for the scalar and pseudo-scalar operators determined from
the kaon to eta and kaon to vacuum matrix elements of Q, Q», 5d and sysd operators.
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Figure 6.6: The three-point ratio functions ﬁsQil(é) (a), and 7332 (6) (b) plotted as functions of
operator-pion-sink time separation 6. We use multiple source-sink separations which are shown in
Table 6.6 to obtain ﬂSQii (A, 6) and perform an error-weighted average over all allowed source-sink

separations A for each ¢ value to obtain ﬁSQl." (6). The values of ¢4 and ¢y are obtained from the
fitting of plateaus. The mean values and errors from uncorrelated fits are plotted as three straight
lines within the fitting range.

6.2.5 Three-point light-state matrix elements: K to 77 matrix elements

To increase the statistics, the calculations of (77r;-o|Q}|K 0y are performed with multiple values
of source-sink separation A as described in Section 4.1.3. The total number of separations Nyep,

minimum separation Ay, maximum separation Apyax and Agep are listed in Table 6.6.

We first combine the kaon to two pion three-point correlation functions C,%_)MI O(A, 0) with

csrse (A ) multiplied by the subtraction coefficients cp; which are listed in Table 6.7 to obtain

K—nmy

Qi (A 0). We then perform error-weighted average on c (A 0) with the same ¢

K—nmy- K—nmy-

C

values over all allowed source-sink separations A to obtain:

’

, (6.15)

Q;

—0; 0 N NaryoNkCl (A, 0)

CK—>mr1 0(5) - < K—nrmr- o( t)> 2pt (A l‘)Cth(l‘)
7T7T1 =0 A

where <> denotes the error weighted average among all possible A values. And then we plot
A
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the three-point functions Eﬁ;mm (6) shown in Figure 6.7 and fit the plateaus to constants which
should equal the matrix elements (n7;-o|Q}|K 0y, Similarly, for kaon to the 7, I = 2 state matrix
elements, we plot the three-point functions EIQ;)MI:Z((S) shown in Figure 6.8 and fit the plateaus
to constants which should equal the matrix elements (77;-2|Q;|K°). Please note there is no mixed
diagrams related to the sysd operator for the kaon to the nwr, I = 2 state matrix elements and

therefore there is no prime on the operators Q; in the matrix elements (77;-,|Q;|K°).
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Figure 6.7: The three-point functions C Kl_,m”:o(é) (a), and C Kz_,,m 1_,(0) (b) plotted as functions
of the operator-two-pion-sink time separation 6. We use multiple source-sink separations which

are shown in Table 6.6 to obtain C Qi

K—»nm:o(A’ 0) and perform an error-weighted average over all

’

:Q,'
allowed source-sink separations A for each ¢ value to obtain Cg_, (). The values of the matrix
elements (77r;-0|Q}|K®) and (m7;—0|Q}|K®) are obtained from the fitting of plateaus. The mean
values and errors from uncorrelated fits are plotted as three straight lines within the fitting range.

We have listed the fitting results of (7r7r1=0|Ql’.|K0> and (n7=2|Q;|K") in Table 6.8.

(nm=]02|K°)
1.449(4) x 1073

(nm=|011K°)

1.449(4) x 1072 Ok
. X -

—-11.8(2.2) x 107

(mr1=0l051K°)
17.6(2.6) x 107

Table 6.8: The K to 77r matrix element for Isospin 0 and 2. The =2 matrix elements for Q| and Q,
have the same values because they come from the same three point diagrams because of the Fierz
symmetry.

As shown in Table 6.8, we can see K to nir, I = 2 matrix elements are about a order of
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Figure 6.8: The three-point functions Cg_,, .. ,(0) (a), and Cg_,, .. (5) (b) plotted as functions
of the operator-two-pion-sink time separation ¢. We use multiple source-sink separations which
are shown in Table 6.6 to obtain C%_mm:z(A, d) and perform an error-weighted average over all

allowed source-sink separations A for each ¢ value to obtain C Kl_ﬂmm (0). The values of the matrix
elements (77;-2|01|K°) and (n7;=>|Q>|K°) are obtained from the fitting of plateaus. The mean
values and errors from uncorrelated fits are plotted as three straight lines within the fitting range.

magnitude smaller than the matrix elements for the / = 0 case and this is consistent with our
expectation. Using the matrix elements of K to nnr, I = 0 matrix elements, we can calculate the

contribution to Amg from the 7, I = O state:

(KO|Qjlmm =) (m1=0 Q| KO)

=0.067(39)x10™2MeV,
mg — Eqzp

G2
(mmy=0) _ “F 42 1 1
Amyg ™= = - A § (=2)xCCf" =
i,j=1,2
(6.16)

and find that it contributes only about 1% to the mass difference.

6.3 Contributions to Amg

As discussed in Section 3.1, in our single-integration method, we subtract the light states before
integration and expect the resulting unintegrated correlator to decrease exponentially as the time
separation between the two weak operator 6 = |f| — t»| increases. By examining the values of the

unintegrated correlators, we can identify the range of 6 where the contributions are consistent with
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zero and therefore avoid including their contributions to statistical errors.

The unintegrated four-point correlators as functions of ¢ are plotted in Figure 6.9. From the
unintegrated correlators, we find for 6 > 10 the values of correlators are zero within uncertainties.
Thus we choose the integration upper limit 7., = 10 and obtain Amg from the single-integrated
correlators ﬂfj(T = 10), where i, j = 1,2 and T denotes the integration upper limit. The Amg
value extracted from the single-integration method is shown in Table 6.9. We have used the Wilson

coefficients in Table 3.4 following the same NPR schemes used in an earlier Amg calculation[2].
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Figure 6.9: The four-point correlators. (a) shows the unintegrated correlator obtained from an
error-weighted average over all locations of the pair of operators subject to the constraint that
neither operator is closer to the single kaon operators than 10 time units. (b) shows the correlators
ﬂisj (T') obtain by integrating the data shown in the left plot over §. Please note in each plot, the
raw data from the lattice calculation is plotted and the y axis does not have meaningful units.

We also calculate Amg using double-integration method used in earlier calculations[1][7]. As
shown in Figure 6.10, the double-integrated correlators show good linear time dependence as ex-
pected in the region T € [9, 19] and we therefore fit the curve to obtain Amg according to Equation
(3.3) in Reference [7].The results are also listed in Table 6.9. Compared to the results using the
double-integration method, the results from the single-integration method have smaller statistical
errors, because we can exclude the statistical noise from the unintegrated correlators at large ¢

values.
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Figure 6.10: Double-integrated correlators (A;; (T). Please note in the plot, the raw data from the
lattice calculation is plotted and the y axis does not have meaningful units.

Analysis method Amg Amg(typel&2) | Amg(type3&4)
Double-integration | 6.31(0.98) 6.71(0.48) -0.20(0.65)
Single-integration | 6.34(0.57) 6.24(0.24) 0.33(0.50)

Table 6.9: Results for Amg in units of 107! MeV. Double-integration results are obtained from
uncorrelated fits with fitting range 10:20.

In our Amg calculation, the type-1 and type-2 diagrams are connected and the type-3 and
type-4 diagrams are disconnected. In order to check the validity of the OZI rule in our results,
we also calculate the contributions to Amg from the connected diagrams and the disconnected
diagrams separately. The separation is made as following: for the connected-only contribution,
only type-1 and type-2 diagrams are included; all the rest contributions to Amg are included in
the contributions from type-3 and type-4 diagrams. Please note the mixed diagrams due to our
introduction of sd and sysd operators are combined with the type-3 and type-4 diagrams which
have similar topologies.

Similar to the connected-only calculation in the scaling test of the four-point correlation func-

tions discussed in Section 5.6.3, in our calculation of the contribution to Amg from the con-
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nected type-1 and type-2 diagrams, we use the interpolating operator O 0 = iuysu rather than
0,0 = i(Wysu — dysd)/V2 and only include figure-8 diagrams to calculate the three-point matrix
elements (|Q;|K°) to remove the exponentially increasing terms from the single-integrated four-
point correlators. In our calculation of the contribution to Amg from the disconnected type-3 and
type-4 diagrams, when we subtract the light state terms, we subtract from the type-3 and type-
4 unintegrated correlation functions the difference between the light-state terms in the full Amg
calculation and the light-state terms in the connected-only calculation.

The unintegrated correlators from the two different types of diagrams are plotted in Figure 6.11
and corresponding contributions to Amg are shown in Table 6.9. The main contribution to Amg
is from the type-1 and type-2 diagrams and the contribution from the type-3 and type-4 diagrams
which are disconnected is zero within uncertainty. This may imply the validity of the OZI rule
in the case of physical kinematics in contrast to the earlier calculation of Amg with unphysical
kinematics[ 1], where contributions from type-3 and type-4 diagrams are almost half the size of the
contributions from type-1 and type-2 diagrams but with the opposite sign.
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Figure 6.11: Unintegrated correlators from type-1 and type-2 diagrams (a) and type-3 and type-4
diagrams (b). Please note in each plot, the raw data from the lattice calculation is plotted and the y
axis does not have meaningful units.
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6.3.1 AMA correction

Our use of the sample AMA method reduced the computational cost of the calculation by a
factor of 2.3, while the statistical error on the AMA correction will add to the total statistical error.
Table 6.10 shows the size of the error coming from the correction which is added in quadrature to
give our final error. We can conclude that the AMA method does not contribute much to the error

in our final answer.

Analysis method | type 3&4 error | type 3&4 error | type 3&4 error
from "sloppy" | from correction in total
Double-integration 0.60 0.24 0.65
Single-integration 0.39 0.29 0.49

Table 6.10: Contributions to the statistical error for Amg from type-3 and type-4 diagrams (in
units of 107! MeV ). From left to right, type-3 and type-4 errors from the "sloppy", from the
AMA correction and in total are shown. In our calculation, the type-3 and type-4 diagrams are
AMA corrected while the type-1 and type-2 diagrams are calculated only as part of the exact
measurements that are also used to determine the AMA corrections for the type-3 and type-4
diagrams.

6.4 Systematic errors

Two potentially important systematic errors come from finite-volume and finite lattice spacing
effects. As discussed in Section 5.1, the potential large finite volume effects can be removed by
performing a known correction. The finite-volume correction to Amg based on the discussion in

Section 5.1 is estimated to be:

§(Amg)FY = —0.54(18) x 107> MeV. (6.17)

As for the finite lattice spacing effects, the O(a?) error due to the heavy charm is estimated
to be a significant source of systematic error. If we use the physical charm mass and our lattice
spacing a~! = 2.36 GeV for the estimate, this relative error should be ~ (m.a)?> ~ 25%. Our

the scaling tests at larger lattice spacings in Section 5.5 show that at m.a = 0.32, the scaling
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violation for the four-point single-integrated correlators with Q. operators is about 5% and the
scaling violation with Q_ operators is about 13%. However, there is a scaling violation of size
~ 40% being observed in the case with Q_ operators as m.a approaches zero and we therefore

estimate the finite lattice spacing error of our Amg calculation to be ~ 40%.

6.5 Conclusion

After including the finite volume correction, our result for Amg based on 152 configurations

with physical quark masses is:

Amg = 5.8(0.6)a(2.3)sys X 10712MeV. (6.18)

Here the first error is statistical and the second is an estimate of largest systematic error due to the

finite lattice spacing effects.
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Chapter 7: Conclusion and outlook

In this work, we have presented the first lattice QCD calculation of Amg , the mass difference
between the long- and short-lived K mesons, with physical quark masses. The calculation was
performed on an ensemble of 2+1 flavor gauge configurations with a~! = 2.36GeV and a 64 x 128

lattice volume using 152 configurations. Our preliminary result for Amg is:
Amg = 5.8(0.6)at(2.3)sys X 10712MeV. (7.1)

Here the first error is statistical and the second is an estimate of largest systematic error, the dis-
cretization error, based on the scaling tests performed on the 241 and 321 ensembles. Having a
mature method to carry out the calculation with systematic errors under control, the next step is
to increase the statistics and reduce the systematic errors. While the statistical error approaches a
relatively small size of 10%, the systematic errors have more significant effects.

A comparison between our physical standard model Amg value and the experimental value
3.484(6) x 107!2 MeV [4] suggests reasonable agreement given the large finite lattice spacing
errors. Future calculations on the Summit supercomputer will extend our current scaling tests on
the 241 and 32I ensembles to smaller lattice spacings, and will reveal a comprehensive picture
about the finite lattice spacing errors. Calculations on a 96> x 192 lattice with a~! = 2.8 GeV
should improve the precision to ~ 5% level. The calculation on 96 x 196 lattice together with
this completed calculation on the 64> x 128 ensemble with physical quark masses, will allow the

continuum limit to be explored.
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Appendix A: Normalization conventions and dimensions of the matrix

elements

In our lattice calculation, we need to multiply the lattice results by appropriate powers of the
lattice spacing a to match the dimension of the physical quantities being calculated. Thus, we need
to specify the dimensions of the physical quantities we calculate and evaluate them in physical

units.

A.1 Normalization convention of meson states

The normalization convention used for the quantum states in the continuum infinite volume

matrix elements we are computing, using the K meson as an example, is given by:
(K (PDIK(p2)) = (27)°6° (p1 = Pa). (A.D)

and the dimension of the meson states in units of mass is —%. Under such convention, a single

particle plane wave state in infinite volume with momentum p has the wave function:
U5 (7) = w(FlP)e = €. (A2)
Please note this is different from the relativistic convention:
(K (PDIK’(P2)) = 2EQ2n)°8* (P = p), (A.3)

where the dimension of the meson states in units of mass is -1.

In our finite volume lattice calculation, a single particle momentum eigenstate in finite volume
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with momentum p,, will have the wave function:

- -] > 1 '_).7
oY () = v (Fpay = —=e7, (A4)

Vi3

where L3 denotes the spacial volume and the corresponding normalization condition for the finite-

volume states is given by:

V<p_>n|p_;l’>V = 5n,n’- (AS)

The dimension of the finite-volume meson states in units of mass is 0.
The relationship between the one particle state in infinite volume |p)., and the one particle

state in finite volume |p)y with momentum p is given by:
B = lim VL3, (A6)

In each of the following sections, we will first present the dimension of a matrix element in the
infinite volume so that we can obtain the appropriate powers of the lattice spacing a to multiply
the results from the lattice calculation and then derive the corresponding finite-volume expression

based on Equation A.6 which will be calculated on the lattice.

A.2 Dimension of three-point matrix elements

A.2.1 Dimension of three-point matrix elements with four-quark operators

In infinite volume, the dimension of the matrix element related to four-quark operators in units

of mass, using « (7|Q+ (6, )| K% as an example, is given by:

dim [ oo (7| Q4 (6, NIK"] = dim[quark field] X 4 + dim[|K)e | + dim[|7)e]

3 3 3
—§X4—§—§—3,

(A.7)

In our lattice calculation in a finite volume, we calculate v (r]Q_ (£)|K°)y with O, () = / dxQ.(X,1),
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the dimension of the matrix element related to four-quark operators in mass unit, is given by:

dim[y (7|0, (1)|K°)y] = dim[quark field] x 4 + dim[3D integral] + dim[|K)y] + dim[|7)y]
:§x4—3+0+0:3,

(A.8)

where the "3D integral" refers to the integral we perform over the spacial volume for the operator

at a specific time 7. Using translation invariance, we can write:

> 1 N 1 —
@mgaﬁffwmmzﬁgm. (A.9)

Therefore using Equation A.6 and Equation A.9, the relationship between v (7|Q. (1)|K°)y and

oo (m|Q+ (0, 1)| K%)co is given by:
- 1 — —
w1 Qu (001K o = (VL y (el 0L (DK = v (xlQ (01K . (A.10)

if the finite-volume corrections are negligible and neglected.
Thus, the physical matrix elements v (7|0, |K°)y on which we perform scaling tests are given
by:

V(7|0LIK )y = v(x[0y KO x (a™")? X Z.., (A.11)

—lat . . . .
where v (r|Q. |K°)y are values of matrix elements obtained from lattice calculations and Z. are

the NPR factors calculated at the RI-SMOM scheme.
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A.2.2 Dimension of three-point matrix elements with two-quark operators

We also introduced the two-quark operators sd and sysd with lower dimensions. In infinite

volume, the dimension of three-point matrix element (7|5d (%, t = 0)|K")., is given by:

dim[oo(7|5d(%, t = 0)|K®Yoo] = dim[|7)e] + dim[quark field] X 2 + dim[|K )eo]

3 3
:——+—><2—§:0.
2 2 2

(A.12)

In our lattice calculation in a finite volume, the dimension of the matrix element of these two-

quark operators in units of mass, using y (7| f d>x5d(%,t = 0)|K%)y as an example, is given by:

dim[y (x| / Px5d(E, 1 = 0)|K%W] = dim[|x)y] +dim[|K)y]
+ [dim[quark field] x 2 + dim[3D integral ] (A.13)

:0+0+%x2—3:0.
The relationship between y (]| f d3x5d(X,t = 0)|K®)y and o (7|5d (%, t = 0)|K")e is given by:
=302 4 _ 0y _ \/—3 2 1 _ 0y _ - 0
wo(m[sd(x,1 = 0)|K" ) = (VL) v<7T|FSd(l)|K v = v{r[sd()|K )y, (A.14)

if the finite-volume corrections are negligible and neglected.
Thus, the physical matrix element y (7| / d’xsd(X,t = 0)]K%)y on which we perform scaling

tests are given by:
ed / d*xsd (%, 1 = 0)|KYy = v (x| / dxs5d™ (%t = 0)|K%y x (a™H? % Z,,, (A.15)

where v (7| / d*xs5d™(%,t = 0)|K")y is the value of the matrix element obtained from lattice

calculations and Z,,, is the mass renormalization factor.
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A.3 Dimension of four-point correlation functions

According to Equation 4.14 and the dimension analysis for the finite-volume three-point ma-
trix elements as shown in Equation A.11, we obtain the dimension of the finite-volume single-

integrated correlation functions fﬂfj (T) which is given by:

K9|Q; 0'|K°
dim{ A (T)] = dim Z v{(K®|Q;Im)vv(n|Q;|K")v
m mg = En (A.16)
= dim[y (n[Q}|K%)y] x 2 - dim[mg — E,] =3x2~1=5,

where é: = / d3Q;()?,t = 0). We obtain the physical Amg by multiplying the contants k;; ob-
tained from the value of single-integrated correlation functions on the lattice ﬂf}flat(T), as shown

in Equation 4.25 by (a™!)°:

2

G
A = 2R S (<2) x CtCly | x (a1 A7)
Q=12

2
and dim[Amﬁ(hyS] = dim[%ag] + dim[ﬂfj (T)] = =4+ 5 =1 as expected.
Similarly, for the unintegrated correlation functions like for éf;b(t) defined in Equation 4.22

we have:

dim[G}" ()] = dim[ > v(KOg; |n>w<n|§_’,~|K°>ve<mK-En>f]

n#nj

(A.18)
= dim[y(n|Q}|K%)y] x2=3x2=6.

Thus the unintegrated correlation functions we plot in physical units, can be obtain from multiply-

ing the values of the unintegrated correlation functions on the lattice Fle?;b’lat(t) by (a=1®:
~sub ~sub,lat “1\6
Gls;l (1) = Gls;l () x (a7)° x Z;, (A.19)

where Z;; are the NPR factors calculated at the RI-SMOM scheme.
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Appendix B: Input parameters used in Amg calculation

Gr | 1.16637 x 107°GeV >
m, 172.2 GeV
mw 80.4 GeV
my 91.1876 GeV
A, 0.2196
1 0.2253(7)

Table B.1: Input parameters used in Amg calculation.

A, is calculated using the Wolfenstein parametrization. To order O(1°), we have:

Ay=A-% -

> 5 (B.1)

For the value of 4, listed in Table B.1, following our earlier calculations, we calculate it up to

o(A%):
Ay=1—-——. (B.2)
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Appendix C: Diagrams

In this appendix, we show each diagram that is computed and give its type and assign an

additional numeric label that will be used in Appendix D to identify it.

C.1 Four-point diagrams

Following the earlier calculation of Amg[16][26], we obtain the four-point diagrams listed in

this section using the AS = 1 weak operators Q| and Q»:
07" = (5iy" (1 = ys5)di)(@;v" (1 = vy5)q)), (C.1)

01 = (5" (1 = y5)g)) (@, 7" (1 - ys)d,), (C.2)

where we have written the operator Q, in a color-diagonal form by taking advantage of the Fierz
identity. In this way, the pair of lines joined to a single dot in the diagrams shown below corre-

sponds to those quark propagators whose color and spin indices are contracted.
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d u, ¢ s d u,c s
s U, C d s U, C d
1 2

d u, c s d U, c s
§ u,c d § u, ¢ d
3 4
Figure C.1: Diagrams for type-1 contractions[26]. The single dots correspond to the K° and KO
operators including a y5 matrix. The paired dots correspond to the weak four-quark operators. The
pair of lines joined to a single dot corresponds to those quark propagators whose color and spin
indices are contracted with, in the case of spin indices, only factors of y,, or y,ys in between.

d s d s
S d ‘. d
5 6

7 8

Figure C.2: Diagrams for type-2 contractions[26]. The single dots correspond to the K and KO
operators while the paired dots correspond to the weak four-quark operators. The conventions used
here are the same as those explained in the caption of Figure C.1.
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11 12

Figure C.3: Diagrams for type-3 contractions[26]. The single dots correspond to the K° and KO
operators while the paired dots correspond to the weak four-quark operators.The conventions used
here are the same as those explained in the caption of Figure C.1.

d u, c u,c 8 d U, ¢ u,c s
13 14

d u, ¢ u,c S d u, ¢ u,c s
15 16

Figure C.4: Diagrams for type-4 contractions[26]. The single dots correspond to the K° and KO
operators while the paired dots correspond to the weak four-quark operators. The conventions used
here are the same as those explained in the caption of Figure C.1.
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21

Figure C.5: Diagrams for type-3-like mixed contractions[26]. The single dots at the left and right

ends correspond to the K° and KO operators while the paired dots correspond to the weak four-
quark operators. The single dots in the middle correspond to the sd or sy5d operator. The conven-
tions used here are the same as those explained in the caption of Figure C.1.
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d u,c s d u,c s
22 23

d U, C S d u, c s
24 25

d s
26

Figure C.6: Diagrams for type-4-like mixed contractions[26]. The single dots at the left and right

ends correspond to the K° and KO operators while the paired dots correspond to the weak four-
quark operators. The single dots in the middle correspond to the sd or sy5d operator. The conven-
tions used here are the same as those explained in the caption of Figure C.1.
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C.2 Three-point diagrams

In this section, we will show the diagrams which contribute to the three-point correlators from
which we need to extract light state matrix elements. For the kaon to pion, kaon to eta and kaon
to vacuum diagrams, we used the the operator O, written in a color-diagonal form by taking ad-
vantage of the Fierz identity and therefore, in the diagrams shown in this section the pair of lines
joined to a single dot correspond to those quark propagators whose color and spin indices are con-
tracted. Because kaon to two-pion diagrams are calculated without writing the operator Q, in a
color-diagonal form in our earlier Amg calculation [16], we will present kaon to two-pion diagrams
separately in Section C.3.

In Figure C.7, we show all the diagrams contribute to the kaon to pion three-point correlators.
The kaon to eta three-point point correlators have more diagrams in addition to the diagrams which
contribute to the kaon to pion three-point correlators. Therefore in Figure C.8, we show the dia-
grams which contribute to the kaon to eta three-point correlators in addition to the ones shown in
Figure C.7.

In Figure C.9, we show all the diagrams which contribute to the kaon to vacuum three-point
correlators. The diagram labeled by index 17 is a two-point diagram but we put it with other kaon
to vacuum three-point diagrams because it will be subtracted in the calculations of the kaon to
vacuum three-point correlators. In Figure C.10, we show all the diagrams which contribute to the

three-point By correlators which we also calculate along with other three-point diagrams.
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S < u
1 2
d d
s d S d
3 4
d
3
13

Figure C.7: Diagrams for three-point K — 7 correlators. The single dots at the left and right ends
correspond to the K° and 7 operators while the paired dots correspond to the weak four-quark
operators. The single dot in the middle of the diagram 13 corresponds to the sd operator.
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d s d s
5 6

d d

: u, ¢ U u, ¢ u
7 8

d d

: U, c s u,c S
9 10

e

S

Figure C.8: Diagrams for three-point K — 7 correlators in addition to the ones shown in Figure
C.7. The single dots at the left and right ends correspond to the K and 7 operators while the paired
dots correspond to the weak four-quark operators. Diagram 13 has been included in Figure C.7.
The single dot in the middle of the diagrams 14-16 corresponds to the sd operator.
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d d
: u,c : u,c
S S
11 12

17

Figure C.9: Diagrams for three-point K to vacuum correlators. The single dots at the left end
correspond to the K° operator while the paired dots correspond to the weak four-quark operators.
The single dot on the right in the diagram 17 corresponds to the sysd operator. Please note the
diagram 17 is a two-point diagram but we put it here along with other kaon to vacuum three-
point diagrams because it will be subtracted in the calculation of the kaon to vacuum three-point
correlators.

d s d s
18 19

Figure C.10: Diagrams for three-point B correlators. The single dots at the left and right ends

correspond to the K and KO operators while the paired dots in the middle correspond to the weak
four-quark operators.
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C.3 Three-point diagrams: kaon to two-pion diagrams

The kaon to two-pion diagrams are calculated without writing the operator O, in a color-
diagonal form in our earlier Amg calculation [16], and we follow the same convention for our
kaon to two-pion diagrams. In Figure C.11, we list the kaon to two-pion diagrams in a different
style as in the previous sections: the pairs of vertices with a cross correspond to the weak four-
quark operators; for a diagram having only solid lines, the pair of solid lines joined to the vertices
correspond to those quark propagators whose color and spin indices are contracted and for a dia-
gram having dashed lines, the pair of solid lines joined to the vertices correspond to those quark
propagators whose spin indices are contracted and the color contractions are denoted by the dashed
lines.

Because we have introduced sysd operators, there are mix diagrams as well for kaon to two-
pion correlators and we list them in Figure C.12.

If we write the operator Q5 in a color-diagonal form, we will find in Figure C.11, Diagram
2 multiplied by -1 is equivalent to Diagram 3 and Diagram 4 multiplied by -1 is equivalent to
Diagram 1. The -1 comes from the difference of number of loops between the equivalent diagrams.
In Figure C.13, we also list the diagrams equivalent to to Diagrams 6, 8 and 10 in Figure C.11
under the Fierz transformation. In the future calculations, we can equivalently calculate the kaon

to two-pion correlators with the operator Q> in a color-diagonal form as well.
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~—_ o4 P - HH““"--E%_ u-c B P
7 8
s /7N = S N —®
< b, ) {/;/ < b ) ([
T N A \¥ ) T \—/ ¢ \E;o
9 10

Figure C.11: Diagrams for three-point K to 7w correlators. The single dots at the left end corre-
spond to the K° and the double dots at the right end correspond to the 77 operators. The pairs
of vertices with a cross correspond to the weak four-quark operators. The dashed lines denote the
color contractions.
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mix1 mix2

Figure C.12: The mixed diagrams for three-point K to 7 correlators. The single dots at the left
end correspond to the K¥ and the double dots at the right end correspond to the 77 operators. The
vertex with a cross and labeled by ys correspond to the sysd operator.

11 12

R
. ! B
— ™ . { \\ o
« ° “(/:\ \ s

™~ i / * It
-, K o 14
T e

13

Figure C.13: Extra diagrams which can be used for three-point K to 7z correlators. The single
dots at the left end correspond to the K° and the double dots at the right end correspond to the 77
operators. Diagrams 11, 12, and 13 are equivalent to Diagrams 6, 8 and 10 in Figure C.11 under the
Fierz transformation and can be used in the future calculations. The pairs of vertices with a cross
correspond to the weak four-quark operators. The dashed lines denotes the color contractions.
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C.4 Two-point diagrams

In Figure C.14, we list the two-point diagrams related to the two-point pion, kaon, and eta

meson correlators.

[ [ S

i L

1 2 3

OO0

OO0

Figure C.14: Diagrams for two-point correlators. The single dots at the left and right ends corre-
spond to the meson interpolating operators. m — m two-point diagrams are shown in Figure C.15.

In Figure C.15, we list the two-point diagrams related to the two-pion meson correlators. We
also need to remove the (O|77r) contribution from the two-pion meson correlators. The diagram

related to the two-pion to vacuum is shown in Figure C.16.
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R \Y%

Figure C.15: Diagrams for two-point 7 — 7 correlators. The double dots at the left and right ends
correspond to the two pion interpolating operators separated by 6 lattice units in time.

p2v

Figure C.16: |[rm) — |0) diagram to be subtracted from the two-point 7 — 7 diagram V. The double
dots correspond to the two pion interpolating operators separated by 6 lattice units in time.
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Appendix D: Contractions

In this chapter, we will list all the contractions we use in our Amg calculations. All the indices
and labels of the diagrams can be found in the figures shown in Appendix C. The expressions for
the time dependence of two-point, three-point and four-point correlators are described in Chapter

4.

D.1 Two-point contractions

The two-point diagrams and their indices can be found in Section C.4 and the contractions for

two-point correlation functions are listed below:

) =(1) (D.1)
c(n=02) (D.2)
(1) = - (2><@+4><@ 4x(4)- 4x@+4x@+4x@) (D.3)
(1) = = (2x@ +(3)-4x(4)-(5)-2x(6)- 2><@) (D.4)
i?f,z(t)—2><(@ @) (D.5)
() =2x(D)+(C)-6x(R)+3x (V") (D.6)

where we subtract (O|zr) contribution shown in Figure C.16 from the diagram @ to obtain @:

@:@—x. (D.7)
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D.2 Three-point contractions

For three-point diagrams, we follow the convention of our earlier Amy calculations and assign
"-1" explicitly to the diagrams with the even number of loops and put them within a pair of paren-
thesis. The diagrams labeled by circled indices themselves do not have the signs included. Please
note this convention looks different from the common convention used where the diagrams with
the odd number of loops are assigned with an extra factor of "-1" due to the anti-commutation of
the fermions but is actually consistent with the common convention. This difference is caused by
the fact that our definition of interpolating operators and the way we perform contractions. For
example, we have the kaon interpolating operator O o = i(d’yss) and the pion interpolating opera-
tor O o0 = i(uysu — dysd)/V2 in our kaon to pion three-point correlator calculations. With such a
source and a sink, there will be an extra minus sign, i2 = —1, because we do not include the minus
sign in the contractions.

The three-point diagrams and their indices can be found in Section C.2 and the contractions for

three-point correlation functions are listed below:

c2 (A1) = %[(—@) NN (D)
c®. (A1) = % [(2)-(4)] (D.9)
i (A0 =(13) (D.10)

CceL,, (A1) = %[(—@) +(-3) —2x (-(5) +2x (1) -2x(9)] (D.11)
c2, (An) = %[@+@—2x@+2x () - 2% (~(10)] (D.12)
CZ"_)n(A,t):%[®—2x—2x@+2x] (D.13)

c2 (A0 =i(11) (D.14)
c2 (A1) = -i(12) (D.15)
et (an) = ~i(17) (D.16)
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For the K — nmj—o three-point correlation functions, we have separate diagrams and indices shown
in Figures C.11. Because we have introduced sysd operator, we have mixed diagrams in K —
nr=o contractions shown in Figure C.12. We include the mixed diagrams and first combine them

with a few diagrams with the similar topologies:

(7)) = (D) - cp1 (D.17)
(-(8) = (-(8) - sz (D.18)
=©- Cpl(—) (D.19)
== CPZ(—) (D.20)

Then we have contractions:

co . (A6) = %[(—@) ~2x(3)-3x (<(3) =3x (7)) - 3x(9)] (D.21)
Cl (A6) = %[(—@) —2x(#)-3x(~(6) -3 x ((8) -3 x ]. (D.22)

For the K — nm;—; three-point correlation functions, there is no mixed diagram involved and the

contractions are:

CoLorn, (A6) = —i\/g (1) +(3)] (D.23)
C22 (A 0) = —i\/g [(-2)+(4)]. (D.24)
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Using the Fierz transformation, we can find:

3®=-@ (D.25)
(4)=-(1) (D.26)
@ =—(6) (D.27)
(12)=-(® (D.28)
(13)=-(10) (D.29)

and therefore expect:

col (A6 = —i\/g [(D)+@=CcZ,. (A6 = —i\/g [(-2)+(4)], (D.30)

CE (A= %[(—@) ~2x(@)-3x(11)-3 x@+3 x@]. (D.31)
where @ and @ are given by:

@ =(12)- cpz, (D.32)
(13)=(13)- cpz(—). (D.33)

D.3 Four-point contractions

For four-point diagrams, we follow the convention of our earlier Amg calculations and assign
"-1" explicitly to the diagrams with the even number of loops and put them within a pair of paren-
thesis. The diagrams labeled by circled indices themselves do not have the signs included. Please
note this convention looks different from the common convention used where the diagrams with

the odd number of loops are assigned with an extra factor of "-1" due to the anti-commutation of
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the fermions but is actually consistent with the common convention. This difference is caused by
the fact that our definition of interpolating operators and the way we perform contractions. For
example, we have the kaon interpolating operator Ogo = i (dyss) in our four-point correlator cal-
culations. With such a kaon source and a kaon sink, there will be an extra minus sign, 2= -1,
because we do not include the minus sign in the contractions.

For the mixed diagrams, we use the subscripts "sysd" and "sd" to denote lower-dimensional
operators appeared in the diagrams. We use G, 7(0) to denote the four-point correlation functions
with weak operators Q; and Q;. with i, j = 1,2 and the time difference between the two weak
operators 1s 6. The contractions shown below have been compared and found agreed with earlier

theses[16][26].

G(0) = [(D+(5) + )+ (-(13))]
— ep[((17) + (=(19)) +(22) + 24)ls,00 + &, 121) + (=(26)) 15350 (D.34)
~cal(<(17) + (=(19)) +(22) + 24)I5a + 3, 121) + (~(26) 5.

G2(6) = [(2)+ (<(6) +(10)+ (-(14))]
~ el (18)+(20) + (=(23) + (-2 lyoa + Q)+ (-(26)]5yea  (D39)
~ eal(18)+(20)+ ((23) + (-(25) I5a + A 120) + (<(26) Isa.

G12(6) = [(-3) + (D + (-(11) + (15)]
+ (@) +®)+ ((12) +(16)]
— el (=(17)) + (=(19)) +(22) + (24)I550 — e [(18) +(20) + (~(23)) + (25 I5ysa
+ 205102 [(21) + (<(26) 5,50
~cal(<(17) + (=(19)) +(22)+ (2415 - et [(18)+(20)+ (~(23)) + (~(25)) s
+2cq0[(20)+ (<(26) 15

(D.36)
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Appendix E: Analytic free-field calculation with free domain wall fermion

propagators

E.1 Analytic free DWF propagators in coordinate space

On a lattice of size L, X L, X L, x L; with lattice spacing a, the analytic expression for a four-
dimensional free DWF propagator in momentum space with the size in fifth dimension Ly — oo is

given by [27]:
=iy p, —myg(l —We™)

S = , E.1
(P = e s m2(1- We) 1)
where p, = nsin(pya), W = (1 = M) +rn (1 = cos(pya)),n = %, And a is given by:
U
1+ W2
2cosha = % (E.2)

where x = n Y sin?(p xa). When the momentum p is close to the boundary of the Brillouin zone,
u

e.g. pua — 0, we obtain the asymptotic expression we expect:

M2 - M)
iYupuas — M(2 - M)mf’

Sq(p) — (E.3)

We can see the effect that M has on the quark mass and the normalization factor Z, of the propa-
gators:

mg=2-M)Mmy (E4)
Z,=2-MM. (E.5)

In our free-field calculation discussed in Section 5.3, we need analytic free DWF propagators in

coordinate space for various sources. To go to the coordinate space, we need to Fourier transform
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these propagators. To save computational cost, the Fourier transformations are performed on the
coefficients of the 1 and y,, matrices[28].

If we write Equation E.1 as:

Sq(p) = f(p)(cu(p)yu +c1(p)l), (E.6)

where f(p) = (We“—1)+ml_2f(1—we—n)’ cu(p) = —ip,, and c1(p) = —my(1 — We™). Please note, for

p = (0,0,0,0), we must use the asymptotic expression Equation E.3 and write the momentum-
space propagator as:

1
§,(0) = ——1. (E7)
mpy
Then for position space propagators S(x), we have:

S4(0) 1+ f(p)

= ————(cu(p)yu +c1(p)1)) e’ (E.8)
LLLL &L LLL HAPIYu T C1Lp

Sq (x)

or

Sq(x) = (Cu(x)yu + C1(x)1). (E.9)

Using Equation E.8, we can easily verify that ys-hermiticity is satisfied:
S(=x) = 55" (x)ys. (E.10)

To show this, we should notice that ¢, (p) are pure imaginary while f(p) and ¢y are pure real and

the last two of the gamma matrices’ properties in Euclidean space listed below are satisfied:
° Tr()/uyv) = 45u,v
® Y5Yu = —YuYs

¢ 72::7#
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E.1.1 Wall source propagators

For wall source propagators, the spacial momentum p = 0 and thus we need a non-trivial
Fourier transformation only in time. Using the conventions above, each propagator is represented
by a 5-element vector [c,(p),c1(p)] and the wall source propagator S‘qv(t) obtained from the

Fourier transformation is given by:

Sq(p=0 0 " . .
sy =220 S SO G poy v i@ ponier E1D

! pt#0 !

or written more compactly as

Sy (1) = Cu(t)y + C1(N)1, (E.12)

with p; = ZL—’:nt, where 7, is an integer obeying —% <ns < +%, and L; is the lattice size in time di-
rection. Because of the spacial translational invariance, the difference between wall-source-point-
sink and wall-source-wall-sink propagators is factor of the spacial volume size V3p = L,LyL, and
we should be aware of this V3p factor in the contractions.

In our free-field calculation, we adopt the following treatment for the normalization factors:
* Any factor resulting from volume summations are omitted.

* The propagators are not divided by the Z, factor mentioned in Equation (E.5) for each M

value.

¢ The input mass m ¢ is modified so that for each M value, the same "physical" fermion mass

1s used.

Thus, the omitted factors of spatial volume or Z, mentioned above are restored while doing the
contractions. Thus, we will make sure each correlator has the correct normalization, although the

propagators are conventionally normalized.
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E.1.2 Point-source-point-sink propagators

In principle, we should perform a Fourier transformation as in Equation E.8. The Fourier
transformation requires O(V4p) operations and further summing up the contracted diagrams is of
O(Vap), thus the total calculation is estimated to be O(V32DLI). Here we are assuming an FFT
is performed and ignoring a (n(V) factor. This is quite difficult for large lattice like 64° x 128.
However, we can simplify the problem by looking at only a specific contribution to Amg from
the four-point diagram shown in Figure 5.3c and comparing it with the corresponding three-point
diagram shown in Figure 5.3e.

For the four-point diagram shown in Figure 5.3c the spacial dependence of the inner loop could

be factored out as follows (if we neglect the spin matrices):

CP\ (11,17, 11, 1) Z Tr{SY (t,~1:) SV ¥ (t,~1:)xS(Z, t,~1) xS T (ty=1 1) SY (ty~1 )X S(=F, tx~1,)}
(E.13)

and we could simplify the loop in the middle as below:
C¥ (11, 15,1, 1,) Z Tr{..S(X 1)...S(=%,—1)...} (E.14)
X

Since the order of summing over X and taking the trace is interchangeable, we could sum over X

first. So if we pick out the tensor element related to the loop:

4ptumc S(p)a S(p)pe” sz
Z(Z L,L,L Lt (Z LyLy,L L[ (E.15)

where a, b are each an index specifying a component of the propagator when expressed as a vector
of five coefficients. We will omit the tensor indices below but one should assume the indices are
implicitly included. Please note that S(0) has a special form but this will not change the equation

shown above. If we change the order of the summation and combine the tensor products, we
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obtain:

7 ,i(Po—pt -
dptume _ S(p) ® S(p’)e P00 i(F-p) 3
T "= (02 e DI
p p X
_ Z Z S(P.po) ® S(l;’,l?i))ei(po_pé)[t( 57
p p
. o (e (E.16)
YT S(P, po) ® S(p, py)e'Poro)
B 272
7 V2L;
S eSp, 1)
= 230,
P
We can then perform the sum over p first and obtain:
-S(7 5 1)) el (Po—py)t M 7\ pi(Po=p )t
4ptume (Zp S(P,PO) ®S(p’p()))e 0 _ (Po,po)e
T =N 13 =>> a3 (E.17)
Po py ! po p !

This is better considering that Matlab can efficiently perform a summation in a parallel manner for

the large number of allowed p.

E.2 Contractions

The contractions in our calculation have traces calculated for products of gamma matrices and
this process is independent of the coefficients C,, and Cy. Thus, for a specific contraction, we can
perform the trace and obtain a tensor of traces and then combine it with the related components of

the propagators.

E.2.1 Two-point contractions

A general two-point contraction with wall sources is given by:

C™(ti,t7) = Tri{ysSY (t7 — t:)ysSY (t; — 1)} (E.18)
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and we can rewrite in a tensor form as:
2
CP(11,17) = CY(tp = 1)Cy (1 = 1 )T T (E.19)

w 2pt . . . .
where C;" are the five components of the propagators and sz is generic for all two-point diagrams

with pseudo-scalar meson source and sink:
2
Tl.jpt =Tr{ysTiysT;}, T € {y,, 1} (E.20)

Below are a few comments:
* The components of the reverse propagator can be obtained using 5 hermiticity.

* The trace in the code is only for spin, thus one need to multiply the results by number of

colors N, to include the trivial color trace.

* Since there are two quark lines, there is an Zq2 = M?(2 - M)? factor by which the correlation

function is needed to be divided to reproduce the usual free-field conventions.

E.2.2 Three-point contractions

The three-point contractions for the three-point diagram shown in Figure 5.3e is given by:

C¥PU(t) = Tr[ys(ysSh (1 A)ys)yu(1 = ¥5)Ss(t; 0)ys(vsS  (£:0)ys)y* (1 = y5)Ss(1;A)],  (E.21)

where ¢ is the time difference between the local operator and the source and A the time distance
between the source and the sink.

In our case we write C3P'(¢) in tensor form:

4
CP (1) = Y CYf ((=(t = A)CH(OCY (- CP (¢ - A)Tjs.t,’,‘:j,m, (E.22)
u=1
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Figure E.1: The three point diagram with tensor index labeled.

where CI.W are the components of coefficient vector of the propagators, CZIVZ (-1) =1vs C;VZT (t)ys and

C:Z/j(_(t - A)) = y5C3,/;(t — A)ys represent the transposed propagator using s hermiticity and

T3pt,ud

ikl includes both the upper half and lower halves of the diagram shown in Figure E.1:

3ptaud
Tu})jt,llcl,l,m =Tr{ysUjyu(1 = ys)UkysUiyu(1 = ys)Tm}, T € {yu, 13, (E.23)

where the repeated index u is not summed as implemented in my analysis code. Note:

w

* The components of the hermitian conjugate propagator like C;, (—7) could be obtained using

s hermiticity.

* The trace in the code is only for spin. Thus one need to multiply the results by number of

colors N, to include the trivial color trace.

* Since there are four quark lines, there is a Z;t = M*(2 — M)* factor by which the correlation

function needs to be divided.

148



E.2.3 Four-point contractions

If we omit the gamma matrices, the four-point contraction shown in Figure E.2 is given by:

CP'(ti, 17,y 1y) Z Tr{SY (tx=t:) SV T (t,~1:)XS (X, ty—t)XSW (ty=1 1) SV T (ty=1 ) XS (=%, ty~1,) }.

(E.24)
d, u,c .
3 u.c d,
Figure E.2: The four-point diagram with tensor index labeled.
In our case we write it in the tensor form:
4 4
C4pt(tia Ly, Iy, ty) = Z C;z[_(ty - ff)]Cka (tx — ti)C;/VJ [—(2 — ti)]cg’/n(ty - tf)
u=1 v=1 (E25)

4pt.umc 4pt,ud
x ij (ty IX)Ty,v,i,j,k,l,m,n’

where CiW are the components of the propagators, C;‘;[—(ty —-tp)] = yscsuﬁ(ty — tf)ys and

C;V,l[—(t)C -1)] = y5C:f/lT(tx — t;)7ys represent the transposed propagators using ys hermiticity

and 7P+ « 1.m., includes both the upper half and lower half of the diagram shown in Figure E.2:
MV, ] ,K,L,m,n
Aptud
T ki = TT Ty (1= y5)U iy (1= y5)TeysTiyy (1 = 5) Ty (1 = y5)Ta, T € {7, 11,
(E.26)

where the repeated indices u, v are not summed.

Note:

* The components of the reverse propagator could be obtained using ys hermiticity.

* The trace in the code is only for spin, thus one need to multiply the results by number of

colors N, to include the trivial color trace.
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* Since there are six quark lines, there is a Zg = M®(2 — M)® factor by which the correlation

function needs to be divided.

E.3 Time dependence of the free-field correlation functions with around-the-world effects

Because of we calculate the free propagators on a lattice with periodic boundary condition in
the time direction, the lattice propagators do not simply equal to those for infinite time extent, but
instead are equivalent to a sum of these infinite-time propagators. For the free-field case, due to the
absence of confinement from the QCD, the quark propagators connecting the meson interpolating
operators can propagate independently on various paths. As a result, the correlation functions
we calculated on the lattice after performing contractions may have significantly different time-
dependence than for the infinite-time case.

In the large time extent limit, the difference is negligible but in most cases, if we use light
quarks and the lattice size in time is limited, the effects may be significant and one needs to ex-
amine the around-the-world effects before fitting. In order to extract physical quantities from the
correlation functions, we also have to include the around-the-world effects. In this section, we will
derive the time dependence for the correlation functions including the around-the-world effects
and show how we can extract physical quantities from them.

Basically, a quark propagator S(z;0) = S(¢) in a volume of infinite time extent from source at

time O to sink at time t, is given by:
S(t) = S1e7"'O(t) + Sre™'O(~1), (E.27)

where S1 and S, are the Wilson matrices corresponding to forward and backward propagation and
O is the step function.

In the non-relativistic case where p = 0, S; o (yg + 1) and S5 « (—yg + 1). As a result,
S1SI < (yo+1), SZSE o (—=yo+1) and Sng = 0. However, the propagator shown in Equation E.27

is not what we have in our lattice calculations. On the lattice we use periodic boundary condition
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in time, with a source set at a certain time index on lattice ¢, and solve the propagators from the
source to each sink point. Different from the single-source result shown above, within the box with
periodic boundary conditions in time, for a certain sink, there are infinitely many sources coming

from each period. Thus the propagator $'(¢) calculated on the lattice is given by[21]:
Skt () = Z S(t+iT) + Z S(—(T —1) - jT), (E.28)
i=0 j=0

where T is the period in the time direction of our lattice. The terms in the sum with index i are
propagators with sources on the left (earlier time) side and those with index j are propagators with

sources on the right (later time) side. If we plug Equation E.27 into the equation above, we obtain:

SH(1) = S1e7ma N el 4 gy T N mimal (E.29)
i=0 7=0
And using Y220 x' = 7, we simplify it to:
1
Slat([) = 1_6—_qu(S1€_mqt + Sze_mq(T_l)). (E.30)

E.3.1 Pseudo-scalar meson: two-point correlation functions

For our lattice calculation, the meson two-point correlators are given by:
C(2) =Tr[Sq(1;0)y5S4(0;2)ys], (E3D)

where the ys comes from the pseudo-scalar meson interpolating operator. Using ys Hermiticity

S(y;x) = y5ST(x;y)ys and )/g = 1, we have:

C(t) = Tr[S,(r; O)SZ,(t; 0)] = Tr[Sq(t)SII,(t)] (E.32)
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If we use the expression for the free lattice propagators shown in Equation E.30 in, we obtain the

time dependence for the conventional two-point correlation function shown in Equation E.31:

1 Y 1

1 - e—qu 1= e—quT

C(t) = NX( )[e™(matma)t 4 = (matmg )(T=1)] (E.33)
where N is defined as N? = Tr(SlSI) = Tr(SzSg) and we have used SlSz = 0 which is valid for
the zero momentum case.

Thus, we can perform the analysis discussed in Section 4.1.1 to extract the normalization fac-
tors and the effective masses and we will expect the effective mass obtained meg = m,+m, . Thus,
for our free-field case the structure of our "meson" propagator look remarkably like what is found
in a confining theory!

Using the input masses listed in Tab. E.1, we fit the curve shown in Figure E.3 to Equation

E.33, we can find that m;; = 2m; and m;; = m; + m; as listed in Tab. E.1.

mj nig mi mis

0.02 | 0.03 || 0.039997 | 0.049994

Table E.1: Masses obtained from fitting of two-point correlation functions using input masses
listed in the first and second columns. // denotes that two light quarks propagators are used in the
two-point contractions. and /s denotes one light and one strange quark propagators are used in the
two-point contractions.

E.3.2 Pseudo-scalar meson: three-point correlation functions

Following the discussion in Section 4.1.2, for the free-field case, when the around-the-world
effects are negligible, and we expect the three-point correlation function, using the Bx diagram as

an example, can be written as:
Capt(A, 1) = NE(KO|O 1 |K e s (Bt gmmxt, (E.34)

where ¢ denotes the time difference between the O operator and the kaon source and A is the

source-sink separation.
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o m, = 0.02
5! % Is m, = 0.03 |
o Il fit

0 50 100 150

Figure E.3: Free two-point correlation functions and fitting curves.

Here, we will derive the expression for three-point contractions with the around-the-world
effects taken into account.
To calculate the three-point Bx matrix element, we have to calculated the two contractions

shown in Figure E.4b which we label it to be "1" and Figure E.4c which we label it to be "2":
Ci(A 1) = Tr[y* (1 = y5)Su(£;0)ST(5;0)ys] X Tr [y, (1 = 5)Su (5 M)SE(1:0)ys],  (E35)

Ca(A, 1) = Tr[y* (1 = y5)Su(£;0)S1(£;0)ys) X v, (1 — 5) S, (t; A)SI(t; A)ys], (E.36)

where the y5 comes from the pseudo-scalar interpolating operator and we have used ys Hermiticity
S(y;x) = y58T(x;y)ys and ’yg = 1. §,(¢; A) denotes a propagator with the source at time A and
the sink at time ¢ and quark flavor g. A is the source-sink separation and is larger than ¢.

The quark propagator S, (#; A) calculated on the lattice with the periodic boundary conditions

in the time direction can be expressed in terms of propagators S(7) = S(¢;0) in the infinite volume
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(a)

b) (©

Figure E.4: Three-point Bg diagram with the square block representing the operator O (a). Two
possible contractions are shown in (b) and (c).
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as:

Sht(g A) = Z S(T = (A—1t) +iT) + Z S(=(A—1) - jT) (E.37)
i=0 7=0
S A) = ————(S1e M T=(A=0) g, eMa(A1)) (E.38)
1 — el

Thus, in the zero momentum case where SiS; =N 25i jand i, j = 1,2, we can calculate some useful

quantities like:

Triy*(1 = ys5)S18Tys] = =NTr[y*ysyoys] = =Tr[y*(1 - y5)$250ys] = a*, (E.39)

Triy*(1-y5)S183ys] = 0. (E.40)

Then if we substitute the propagators in Equation E.35 with the expressions in E.30 and Equation

E.38, using the results calculated in Equation E.39 and Equation E.40 , we obtain:

Ci(A 1) = (ate™™ " — ate K T=D) x (oK T=(A0) _ g o=mx (A1)
= _QZ(e—mKt _ e—WlK(T—t)) X (e7"K (A1) _ p=mx (T—(A—t)))

(E41)

— —az(e_mKA — e MK (T—t)e—mK(A—t) _ e—mK(T—(A—t))e—mKt + ¢ MK (2T—A))

— —az[e_mKA _ e—mK(T—A)(e—ZmK(A—t) _ e—ZmKt) + e—mK(ZT—A)]’

where mg denotes the sum m; + mg. Thus we expect C; (A, t) to be a r-dependent function of the
form:

Ci1(A, 1) = Aj[-2¢ ¥ Tcosh(mg (A — 21)) + A/], (E.42)

where A and A} = e MKkA 4 o=mk (2T-4) are constants and for 7 = 0, we have C| (A,r=0)=0.

Similarly, for C; (A, t), we first calculate the trace part:

Tr[y*(1=y5)SiS] sy, (1=y5)S;STys] < Tr[y* (1=ys) (xy0+1) 7, (1=ys) (£yo+ ) ys X f**(T, A, 1),

(E.43)
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where f**(T, A, t) is the time factor depending on the 4 + combinations:

e—mK(T—(A—ﬂ)e—mth++
eTMKA 4~
(T, A, 1) =3 (E.44)

- 2T-A
e mg ( )’ —+

e M (T=1) g=mg (A=1) __

Using the following relations:

Try*(1 =ys)(D)yu(1l =ys5)(1)ys] =0, (E.45)

Tr{y"(1 = vys)(£y0)y.(1 =ys)(1)ys] = Tr[y*(1 —ys)(D)y.(1 = ys5)(xyo0)ys] =0, (E.46)
Triy*(1 = ys) (2y0)yu (1 = ¥5)(£y0)ys] = = = 2Tr [y yoyuyo] =  + %, (E.47)

we obtain:
Ca(1) = —a'*[e7"K2 — 7Kk (T=8) (o= 2mi (A=t) _ p=2mity | o=mx (2T=A)] (E.48)
Thus we expect C>(A, t) to be a t-dependent function of the form:
Ca(A, 1) = Ay[—2e KT cosh(my (A — 21)) + All, (E.49)

where A, and Aé = ¢ MKkA 4 p7mx (2T-D) gre constants and for ¢ = 0, we have Cr(A,t=0)=0.
Lastly, by adding Equation E.42 and Equation E.49 together, we obtain an expression predic-
tion of the three-point correlator related to Bg:

1

e—mlT

1 P
) X(K0|0LL|K) [-2¢7" KT cosh(m (A - 21)) + AS]. (E.50)
e Ms

2
P

Foi (1) = Ni (77

where A’2 = A’1 = e MkA 4 oMk (2T-8) and N denotes the normalization factor N defined in
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Equation E.33 for the specific pair of light and strange quarks. We can also find in the limit where
T is large, Equation E.34 is reproduced while for ¢ = 0, we have # (¢ = 0) = 0.
In Figure E.5, we show that the three-point Bg correlation functions we have obtained and the

fitting curve of the form shown in Equation E.50 are very consistent.
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Figure E.5: Free three-point By correlation function g, () as defined in Equation E.50 and fitting
curves, calculated using the input masses listed in Tab. E.1.

We can therefore use the formulas derived above to evaluate the around-the-world effects in our
free-field calculations and extract normalization factors of the interpolating operators and three-
point matrix elements from two-point and three-point correlation functions in our free-field calcu-

lation even when the around-the-world effects are not negligible.
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