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Resumo

Este trabalho é uma revisdo do método de integracdo em dimens&o negativa como
uma ferramenta poderosa no calculo das correcoes radiativas presentes na teoria
quantica de campos perturbativa. Este método é aplicavel no contexto da regulariza-
cao dimensional e permite obter solugdes exatas de integrais de Feynman onde tanto
o parametro de dimensao como os expoentes dos propagadores estdo generalizados.
As solugbes apresentam-se na forma de combinacées lineares de fungoes hipergeomé-
tricas cujos dominios de convergéncia estdo relacionados com a estrutura analitica
da integral de Feynman. Cada solucéo definida por seu dominio de convergéncia esta
conectada com as outras através de continuacgdes analiticas. Além de apresentar e
discutir o algoritmo geral do método com detalhe, mostram-se aplica¢des concretas a
integrais escalares de um e dois loops e a renormalizacdo da eletrodindmica quantica
(QED) a um loop.

Palavras Chaves: Correcoes radiativas; integral de Feynman; regularizacdo dimen-
sional; continuacédo analitica; dimens&o negativa.

Areas do conhecimento: Ciéncias Exatas e da Terra; Fisica; Fisica Teérica; Teoria
de Campos.
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Abstract

This work is a review of the Negative Dimension Integration Method as a pow-
erful tool for the computation of the radiative corrections present in Quantum Field
Perturbation Theory. This method is applicable in the context of Dimensional Reg-
ularization and it provides exact solutions for Feynman integrals with both dimen-
sional parameter and propagator exponents generalized. These solutions are pre-
sented in the form of linear combinations of hypergeometric functions whose domains
of convergence are related to the analytic structure of the Feynman Integral. Each
solution is connected to the others trough analytic continuations. Besides presenting
and discussing the general algorithm of the method in a detailed way, we offer con-
crete applications to scalar one-loop and two-loop integrals as well as to the one-loop
renormalization of Quantum Electrodynamics (QED).
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Introducao

Desde o nascimento da teoria quantica de campos, os métodos perturbativos tém
demonstrado ser extremamente tuteis (possivelmente os mais tteis) para obter pre-
dicdes na fisica de particulas. Com a chegada dos diagramas de Feynman, pode-se
levar em conta as corregoes perturbativas ordem por ordem de uma maneira simples
e elegante. Contudo, ao passar da ordem zero de perturbacdo, em dire¢cdo ao que
se conhece como corregoes radiativas, aparecem diagramas que envolvem integrais
sobre os 4-momentos (diagramas com loops) e algumas destas integrais sdo even-
tualmente divergentes. Dado que os diagramas ao nivel de arvore s6 reproduzem as
predicoes da teoria classica, a poténcia geral da teoria quantica de campos perturba-
tiva depende radicalmente da possibilidade de calcular e manipular essas integrais,
inclusive se sdo divergentes. Enquanto a precisido das medidas experimentais con-
tinuar aumentando e as predigoes da teoria quantica de campos continuarem depen-
dendo tdo profundamente das correcoes radiativas, a necessidade de explorar e testar
novas formas de calcular e manipular integrais de Feynman permanecera em vigor.

Neste trabalho expde-se uma técnica matematica para encontrar solugées ana-
liticas exatas de integrais de Feynman conhecida como método de integracdo em
dimensdo negativa (NDIM). Esta técnica foi inicialmente proposta por Halliday e
Ricotta em 1987 [1] e desde entdo tem sido aplicada com sucesso a diversos casos
[2]-[16]. O método tem mostrado ser uma ferramenta poderosa para resolver diagra-
mas que envolvem loops e em certos casos pode-se comprovar a sua equivaléncia com
outros métodos [12, 13]. Um progresso relativamente recente aconteceu quando I.
Gonzalez e I. Schmidt encontraram em 2007 uma significativa otimizacdo do método
além de proporcionar um novo fundamento matematico da técnica com base na pa-
rametrizacdo de Schwinger e a expansao em série de Taylor-Riemann [15]. Este fato
convida a reexaminar alguns dos resultados obtidos antes da otimizacéo e a procurar
uma panoramica renovada do NDIM. Esta dissertacido esta dentro desse espirito, e
o seu principal objetivo é explicar o NDIM desde um enfoque atualizado, procurando
um equilibrio entre o detalhe, a claridade e a conciséo. Devido a que o tema central
é uma ferramenta de calculo, a grande maioria deste trabalho foi dedicada a expor
aspectos matematicos e manipulac¢ées formais. Contudo, procurou-se néo perder de
vista a motivacéo fisica que esta por tras.

A ordem de exposicdo sera a seguinte. O capitulo 1 comeca apresentando o marco
geral em que esta inscrito o NDIM. Partindo de uma tipica integral de Feynman no
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espaco de Minkowski, explica-se a utilidade de pensar estas integrais como fungoes
de variavel complexa e sdo expostos os varios conceitos que permitem o controle exato
das suas eventuais divergéncias. Depois, resume-se em forma geral os passos envolvi-
dos para solucionar estas integrais segundo o NDIM, partindo da representacdo de
Schwinger. O capitulo 2 é um pequeno compéndio de aplicagcdes do NDIM a integrais
escalares em um e dois loops. Os primeiros casos sédo bastante conhecidos na literatu-
ra mas foram escolhidos porque a sua simplicidade é ideal para ilustrar o método. Al-
guns dos resultados posteriores podem ser considerados originais em varios sentidos;
em especial porque alguns deles reexaminam casos explorados antes da otimizacao
encontrada por Gonzalez e Schmidt. O capitulo 3 é uma manifestacio do interesse
fisico que subjaz a este trabalho; nele ilustra-se como o NDIM pode ser aplicado a
uma teoria de campos fisicamente relevante. Escolheu-se analisar a renormalizacéo
a primeira ordem da eletrodindmica quéantica (QED) a partir de alguns dos resultados
do capitulo 2. Esta escolha esta muito bem justificada na importancia histérica dos
resultados e o amplo tratamento que tem esse caso na literatura; isto facilita enorme-
mente o trabalho de comparacdo. Apesar de ser um caso tdo conhecido, alguns dos
resultados do capitulo 3 podem ser considerados novidades (e ndo s6 no sentido de que
foram achados pelo NDIM). O capitulo 4 é uma critica das limitacdes e as vantagens
do NDIM desde a perspectiva atual; é justificavel adiar esta discussio até este ponto
devido a que os capitulos precedentes lhe oferecem uma base concreta. Finalmente,
no capitulo 5 sdo apresentadas as conclusoes e as perspectivas futuras. Além disso,
os apéndices merecem mencéo propria. Eles foram tirados do corpo principal deste
trabalho somente porque sdo de um conteddo profundamente matematico; porém,
eles explicam conceitos essenciais ao NDIM e nenhuma exposi¢ao do método estaria
realmente completa sem eles.



Capitulo 1

Considerac¢oes Preliminares

1.1 Forma geral de uma integral com L loops

Os objetos de estudo basicos deste trabalho sdo integrais da forma,

Fluk (pg,my) = (H/ Qk:4> H | N (py qimy) (1.1)
i (27) j=1 [T]2 —mi e
com,
L E
rj = ijk% + Zij‘Pi- (1.2)
k=1 i=1

A integral (1.1) representa um diagrama de Feynman amputado com L loops, N li-
nhas internas, e F linhas externas. Os r; representam os momentos das linhas in-
ternas e as m; suas massas respetivas. As matrizes ¢ ik € Xji s6 podem ter entradas
0 e +1; dado que os p; representam os £ momentos externos, os g, representam os L
momentos internos independentes, e aplica-se a conservacgio do 4-momento em cada
vértice do diagrama. O numerador N'{#} é um tensor com indices s, (t = 1,...,T)
que pode ser expresso como um polindmio de produtos diretos de 4 -vetores p! e ¢', a
métrica de Minkowski n*”, e eventualmente as matrizes de Dirac v*. No ultimo caso,
Nkt seria um tensor de matrizes que agem sobre spinores de Dirac. O polindmio
tensorial N{#:} terd coeficientes associados as constantes de acoplamento envolvi-
das nos vértices do diagrama, aspectos combinatérios, assim como eventuais fatores
associados a dimens&o do espago-tempo no qual a teoria se desenvolve. Os fatores
combinatorios dos diagramas néo véo ser levados a conta. O termo ie¢ nos denomi-
nadores corresponde a prescricdo usual que assegura que tal propagador de Feynman
no espaco de momento tem a forma adequada ao voltar ao espago de posi¢cdes quando
e— 0T,

Embora as variaveis p;, m;, ¢, na férmula (1.1) sejam no final nimeros reais; é
conveniente pensar nelas como nimeros complexos. De fato, a presenca da prescricéo
+ie € ja uma justificativa de que a perspectiva de variavel complexa faz-se necessaria.
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No caso de nimeros complexos, as integrais com respeito as variaveis {q;: } significam
integrais de contorno no espaco C*~. A perspectiva de variavel complexa é o primeiro
passo para empregar amplamente uma das técnicas mais poderosas da analise com-
plexa: a continuacdo analitica. No apéndice A explicam-se com mais detalhe os fun-
damentos desta técnica.

1.2 Rotacao de Wick

Uma das primeiras aplica¢oes da continuacédo analitica no calculo de integrais de
Feynman acontece no procedimento conhecido como rotacdo de Wick. Este procedi-
mento é usado para qualquer diagrama e se faz necessario devido a que na integral
(1.1) o denominador poderia cancelar-se quando T'JQ- = —mjz se néo fosse pelo termo
+ie; em outras palavras, o integrando diverge nos polos dos propagadores. Apesar
do termo +ie controlar estas divergéncias, nao fica claro como esta prescri¢do deve
ser aplicada para obter respostas sem ambigiiidades. A rotacdo de Wick permite en-
contrar estas respostas calculando primeiro as integrais quando as energias externas
pio estdo no eixo imagindrio. As integrais para outros valores dos p; o poderdo ser

achadas por continuacédo analitica.

Para entender melhor a rotacdo de Wick, é conveniente usar a parametrizacdo de
Feynman,

L r(e) (1, ) S0Ee)
M= mnre (WLh ™ e

onde cada A; representaria um propagador cujo expoente e v;. Desta forma, pode se
exprimir (1.1) como,

N PV 6 (1= 0 25) N (pr, i)
f{ﬂt . / d qk / dx. J .
p mJ (H > H o l'] |: N

Z%ﬂfﬂ‘z—Zjvl 27”6]

(1.4)
Agora, defina-se uma nova funcéo G} (p;, mj,0) onde todas as energias internas e
externas estejam rodadas, pio — €“pio g0 — €%qi0,

L 0 d a3 N N
Gld (pi,my,0) = (He fé’“:);{ q’“) H/O dej | T(N)§ {1 g
j=1 j=1

k=1
N (ePp; o, piy € q10, qismy)

2i0 3N 2 N N
[6 2 jm1 i — 2 j=1 L) (|r]| +mj ) +l€}

(1.5)

Sobre esta fungéo, no intervalo 6 € [0, 5], se pode dizer:

1. glud (pi,m;,0) = Vatl (pi,mj), ou seja, a integral (1.1) é obtida para um dos
possiveis valores de 6.



2. Enquanto a integral em geral for convergente, a fungdo G{#} (p;,m;,6) é uma
funcao analitica da variavel 6 no intervalo [0, g] independentemente dos valores
das outras variaveis. A unica possibilidade para ela nfo ser analitica seria que
o denominador se anulasse. Mas isto néo é possivel porque a parte imaginaria
do denominador é sempre definida positiva gracas ao termo ie. Desta forma, a
prescricao +ie faz possivel uma continuacgéo analitica com respeito a variavel ¢

no intervalo [0, 5].

3. O caso Glu} (pi,mj, %) merece especial atencdo. Enquanto no caso § = 0 os
produtos do tipo p; - p; estdo definidos segundo a métrica (pseudo-riemanniana,
sem sinal definido) de Minkowski,

(p1-D2)g—o = (P1 - P2) s = Pi0Pj.0 — Pi - Py

no caso ¢ = 7 estes produtos estdo definidos como,

(i - pj)g—z = = (Pi-pj)p = — (Piopjo +Pi - Pj),

onde o subindice E indica que se trata da métrica euclidiana. A grande van-
tagem de trabalhar com uma métrica riemanniana auténtica como a métrica
euclidiana é que todos os produtos internos adquirem sinal definido, o qual fa-
cilita enormemente os calculos subseqiientes. Além disso, observe-se que se
as energias p;( na continuacdo analitica fossem energias fisicas (ou seja, se
tivessem valores reais, p; o € R), o caso = 7 significaria que se estda assumindo
que 0s p; o S40 Imaginarios puros.

O item (3) merece ainda mais explicacdo. Assuma-se que os p; o na integral (1.1)
sdo efetivamente imaginarios puros (p; o = iP; 0, Pip € R). Pode-se provar (através de
um procedimento idéntico ao da sec¢do 1.5) que existe uma transformacéo ortogonal
seguida de uma translacio, equivalente a uma mudanca nas variaveis de integracéo
qk,0 — Qk,0, que deixa a integral (1.1) como,

P (Rpam) = (HW> H/ daj | T'(N) s 1_295 Nl

e =) [det A2

N E N -N
ZQ%,O_ZBZ' (& x, ) Pi2,0 - Z; (|I']‘ +m; ) + i€ . (1.6)
j=1 =1 j=1

A expressio (1.6) oferece outra forma de enxergar a rotacdo de Wick. Esta outra
perspectiva aparece apés uma nova mudanca de variaveis para passar das variaveis
Q10 & sua versdo em coordenadas esféricas generalizadas,

N N
Fld (P, piymy) = / dQ/dQ < de?’“) H/ dey | T(N)S (1= a
j=1 j=1

—N

{ne}
[:\/t:; ZB —Zx] (]rj\ +m)—|—ze ) (1.7)
e 2 —

,_.
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Em tal caso, o denominador pode ser visto basicamente sob a forma [Q% — A? + ie] N
e portanto s6 ha polos quando @ = + (A —ie). Apesar de que as expressoes (1.6) e
(1.7) néo contém o fator ¢’ nas energias internas como em (1.5), a variavel § pode ser
vista agora como um verdadeiro dngulo de rotacdo pelo qual se muda o caminho de
integracéo da variavel Q. Isto é ilustrado na figura 1.1. Gracas ao termo ic, a regido
encerrada pelo caminho na figura 1.1 ndo contém polos. Desta forma, o caminho
rodado 1 — 3 é igualmente valido como caminho de integracdo enquanto o arco 2 — 3
é desprezivel no limite em que seu raio é infinito. Quando # = 5 obtém-se um caso
idéntico a G{#} (p;, m;, T) exceto por alguns fatores do tipo i", n € Z.

A

Im {Q}

Figura 1.1: Tlustracdo da rotacdo de Wick como uma mudanca no caminho de
integracéo da variavel Q.

Os resultados desta secdo podem ser resumidos da seguinte forma. Em vez de ten-
tar calcular a integral minkowskiana (1.1) de dificil manipulacéo, pode-se em cambio
trabalhar com a integral euclidiana,

f{“t (pi,mj) (H/ d%) L 1[(1"2)1—1—7%2] Né’“t}(pz‘aqumj), (1.8)

i)E
onde o termo +ie pode ser omitido dado que a ambigiiidade no propagador ja foi es-

clarecida*. Porém, o numerador NV} (i} (pi, 1; m;) precisa de uma explicacdo. Para que

{u}

a rotacdo de Wick seja coerente, o numerador N’ precisa conter as mudancas do

i /2

fator e Estas se resumem nas seguintes regras basicas de transformacéo com

respeito ao numerador nio rodado (Minkowski),

(i - Pir)yy — — (Piz * Pin) g5 (1.9a)
By — (D) (1.9b)
(UW)M - (77“”)3“ (1.9¢)

*Isto é, no eixo imagindrio o caminho de integracgéo fica longe dos polos dos propagadores.
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Desta maneira, férmulas como {v*,7"} = 27" ou (§)> = p* permanecem intactas;
assim como toda a algebra das matrizes de Dirac. Uma vez que a integral (1.8) estiver
resolvida, o tinico que se precisa fazer é usar as regras inversas e assim obter ,

Fled (piymj) = (-~ f;;“t} (pi,m;j) (1.10)

E—M
A justificacdo deste método baseia-se na continuacéo analitica. Contudo, a analise do
item (2) assumiu que as integrais convergiam. Sabe-se que este ndo é sempre o caso
e faz-se necessaria uma forma de sobrelevar esta dificuldade.

1.3 Regularizacao dimensional

Como ja foi dito, as integrais de Feynman precisam ser manipuladas controladamente
apesar de que algumas delas sio de fato divergentes. O artificio matematico que con-
segue este controle conhece-se como regularizacdo. A regularizacéo consiste basica-
mente em utilizar um ou varios parametros regularizadores adicionais na integral
para que a divergéncia apareca como um limite singular em um determinado valor
desses parametros. Entre os varios métodos de regularizacéo (cut-off direto, Pauli-
Villars, etc.) existe um que é freqiientemente preferido na literatura atual conhecido
como regularizacdo dimensional (RD) [38]. A razao desta preferéncia é que a RD con-
serva extensamente as simetrias do problema inicial ao longo de todo o processo de
manipulacdo matematica, exceto alguns casos muito especiais onde podem acontecer
anomalias [20]. A RD é especialmente preferida devido a que preserva as simetrias
de boa parte das teorias de Gauge, sendo este tipo de simetrias as que parecem sub-
jazer a dindmica interna das particulas fundamentais.

A RD consiste na continuac¢fo analitica do valor da dimensionalidade das inte-
grais de Feynman para valores complexos. Sem precisar explicar o que poderia sig-
nificar um espago com dimenséo complexa, a RD aproveita certas identidades formais
que expressam uma integral especifica para um numero arbitrario de dimensdées D.
No caso de dimensdes inteiras positivas (D € Z1), essas identidades coincidem com as
expressoes especificas da teoria nessa dimensdo. A vantagem consiste em que essas
identidades podem extender-se a um valor complexo onde as divergéncias aparecem
como polos simples em valores inteiros positivos de D. Dessa forma, as divergéncias
podem ser controladas mediante uma expansio em série de Laurent ao redor do polo.

Existem varias maneiras de enxergar a RD. Para ilustra-las, tome-se como exem-

plo a integral euclidiana,
j (m?, D) :/de:(k2+m2)_1, (1.11)

a qual é evidentemente divergente quando D > 2. Para analizar a dependéncia
analitica de j (m?, D) com respeito a D, insira-se a unidade dentro da integral de
(1.11) mediante a representacéo,
D
1 0
1=— —k 1.12
5 mzl [ T m} : (1.12)
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e, ao integrar por partesT, observa-se que

/de (K2 +m?) " = 5 Z/de [k }(k2+m2)_1
_ Qi/dekQ (K +m?) ™

2
= /Dkk;2 (k% +m?) "

D
[/de (k* +m?)~ —m?/d%(k?+m2)‘2

>

Sl o

Portanto,
. 2 -2

Ao repetir o procedimento,

ek = [n ] 0wt

obtém-se que,

D 2 n—=2 _ 2 4 D 2 2\—3
/d k:(k‘ +m) =—-m <D—4>/d k‘(k +m) . (1.14)
Juntando (1.13) e (1.14) conclui-se que,
. 8 _
](mQ,D):m4 [(D—2)(D—4)] /de(k2+m2) 5 (1.15)

Dado que a integral na direita de (1.15) é finita para D < 6, encontra-se uma estru-
tura de polos simples para D =2e D = 4.

Por outro lado, a estrutura de polos simples em (1.11) pode ser vista usando coor-
denadas esféricas generalizadas e outras identidades. Dado que,

/de(k2+m2)_s = /dQD 1/ dk kP~ (K2 +m?) "
= o [Tas) (07 [ ]

r(z+1)
DT{'D/2 2%_8 ) D

= — dyy= 'ly+17°
2 (D +1) ) /0 vyl

onde dQ)p_1 é o elemento de angulo hiper-esférico. Usando a representacio integral
(C.3), obtém-se,

25T (s=7%)

[Pk 4 )™ = 2P ) 0 -

; (1.16)

TPara que isto seja valido, assume-se provisoriamente que todas as integrais envolvidas sdo conver-
gentes, ou seja, que se trabalha em uma regido adequada do valor de D.
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em particular, B
j(m? D) == (m?) > 7'T(1-2). (1.17)

Da mesma forma que (1.15), a equagéo (1.17) mostra de novo uma estrutura de polos
simples para valores pares de D. Mediante uma extenséo deste argumento, pode-se
mostrar que para o caso geral de L loops a estrutura de polos com respeito a dimenséo
continua se apresentando [21]. Desde o ponto de vista da regularizacdo dimensional,
desaparecem as dificuldades encontradas na secao anterior para completar a rotacao
de Wick em integrais divergentes. Mudando a integral para o caso de dimenséo geral,
a continuacédo analitica envolvida na rotacio de Wick sera valida para valores de D
onde nédo houver divergéncias. Todo comportamento singular restringe-se a certos
valores isolados de D.

1.4 Parametrizacao de Schwinger e integrais com estru-
tura tensorial

No contexto geral da RD e de integrais euclidianas, a parametrizacdo de Feynman
de (1.4) ndo é a técnica mais adequada [14, 20]. Nestes casos, faz-se uso de outra
parametrizacéo (associada a J. Schwinger) que aproveita a possibilidade de resolver
integrais gaussianas em dimensées genéricas. Antes de continuar, é preferivel fazer
uma generalizacdo dos expoentes dos propagadores em (1.8) além da dimensdo D

generalizada,
L N
dP 1
FH (pi,my; v, D) = (H J (gg> I % | V¥ oasmy). (1.18)
k=1 (27) j=1 [7“]2 +m§]

A justificativa desta generalizacéo sera apreciada mais na frente. A parametrizacio
de Schwinger comeca representando cada propagador (denotado aqui com a variavel

A) como,

1 _ 1 > v—1_—zA
Y F(V)/O ' e " dx, Re{r} >0, (1.19)

para assim exprimir (1.18) como,

L
f‘{.“t}( va) — Hdeqk Df/\/’{ﬂt}( P ')X
E bi,mjiVj, D Di, qi5m
k=1 (2m)

N
exp{ — Z T (7“]2 + mJQ) : (1.20)
j=1
onde o simbolo [DZ é uma abreviagéo,

N 0o $l{j*1
D7 = / de; =2 . (1.21)
/ ]1;[1 0 ! I (vy)

Defina-se p e q como matrizes F x 1 e L x 1 | respectivamente cujas entradas (p);

e(q) ; s@o os 4-vetores p; e g; respectivamente. Sabendo que segundo (1.2) os r; estéo

10s ntiimeros E e S estdo definidos na secéo 1.1.
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definidos de acordo com cada vértice no diagrama, pode ver-se que a integral (1.20)
pode ser expresa como

d
féut} (Pumj;Vj,D) _ (H.{ Qk> /D_‘N{“t (p q; m])
k=1

N
exp{ —q'Aq+2p'Bq—p’Cp — Z xjm? , (1.22)

j=1
onde A, B e C sdo matrizes de ordem L x L, £ x L e E x E respectivamente. Devido as
matrizes {;;, e x;; em (1.2), cada uma das entradas destas matrizes tem a forma geral
Zj\f: L ojxj com o = +1,0. As matrizes A e C sdo simétricas e ndo singulares, de fato
constituem formas quadraticas definidas positivas. O argumento da exponencial em
(1.22) pode ser simplificado através de um método analogo a completar o quadrado

que aproveita a invarianca translacional do denominador. Usando a identidade,

T
—q'Aq+2p'Bq = — (q — A_IBTp> A (q — A_lBTp) +p'BA'BTp, (1.23)

e apds uma translacdo nas variaveis de integracdo q, obtém-se,

dPq 5
FI{E‘“} (pi,mj;vj,D) = <H{ k)/D N (p, gy, + pr;my) x
k=1

N
exp{ —q' Aq+p'Dp — Z xjm?- , (1.24)
j=1
onde D = BA™'BT” —Cejp, = <A*1BTp>k. Apés uma transformacio ortogonal,

q = Oq’, que diagonaliza o primeiro termo da exponencial® e uma nova mudanca de
. 1/2
variaveis, 0y = )\k/ 4, chega-se finalmente a,

D
FU (pi,my; vy, D) = (H Jd Qk) /DQN{M} (Pa ((;Sz)k+15k;mj) X

kl( k

N
-Q'Q+p'Dp — Z:ﬁjm? . (1.25)

———5 €xp
[det A]P/2 =

Se nao fosse pelo numerador, a integral respeito aos (i ja estaria resolvida pela
formula de uma integral gaussiana generalizada,

Hfd @) gama_ [ L ) (1.26)
- (2m)P \um??) '

Afortunadamente, a presenca do numerador em uma integral de Feynman néo é um

grande problema dado que, independentemente de sua estrutura tensorial, sempre
existe uma forma de reduzir a integral a uma soma de integrais escalares acom-
panhadas de coeficientes tensoriais extraidos da métrica e os momentos externos

§(q0)" AOq = " Aq’ com A = diag (\1,...,\r) a matriz diagonal de valores préprios.
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[34, 35]. Estas novas integrais escalares costumam ter outros expoentes nos propa-
gadores (diferentes de v; = 1) e a dimensao delas também pode estar mudada (au-
mentada em algum numero par). Para o caso de um s6 loop, a reducéo das integrais
tensoriais a integrais escalares pode ser feita diretamente através da formula (1.25),
pois nesse caso A sera simplesmente um namero (matriz 1 x 1). Em geral, a estru-
tura do denominador das novas integrais escalares ndo muda, e é por isso que é téo
conveniente tentar resolver a verséo escalar (W {#+} = 1) da integral na equacéo (1.18)
com a dimenséo e os expoentes generalizados. Esta integral, apés a parametrizacéo
de Schwinger e a integracéo dos loops, esta definida como,

1

N
73 CXP p ' Dp — Z x]—m? . (1.27)

tht} (pi,mj; Vi, D) = /Df
{(zm)L det A] j=1

Em resumo, o problema foi reduzido a calcular integrais com relacdo aos parametros
de Schwinger z;. E nesse momento em que a técnica de integracdo em dimenséo

negativa, o tema central deste trabalho, resulta tutil.

1.5 Método de integracao em dimensao negativa

A técnica de integracdo em dimenséao negativa (NDIM) deve o seu nome ao fato que,
dentro do contexto da regularizacdo dimensional, efetua uma continuagéo analitica
para valores negativos do parametro D. Nesse sentido, o conceito de dimensé&o nega-
tiva néo é particularmente mais surpreendente que o conceito de dimenséo complexa
envolvido na regularizacdo dimensional. Em ambos os casos néo se esta definindo
um auténtico espaco geométrico com dimensdo D exdtica, sendo que sdo expressoes
formais que exprimem as integrais em uma dimensé&o arbitraria D. Analiticamente
estas expressoes podem fazer sentido inclusive para valores negativos de D; embora
néo se tenha um significado geométrico sobre isso. O NDIM foi originalmente conce-
bido na considerac¢édo da seguinte integral gaussiana,

/qu e = (7;)13 (1.28)

Se a exponencial fosse expandida segundo a usual série de McLaurin, e se invertesse

a ordem da somatoéria com a integral, se teria uma identidade do tipo,

i(_l)nr(;\in/d% ()" = (Dg; (1.29)

n=0

o que poderia significar que, ao comparar os expoentes de A em ambos lados da igual-
dade,

/qu ()" = (1" BT (1), 0, (1.30)

Dado que expanséo da exponencial sé6 cobre valores de n positivos, a deducdo da iden-
tidade (1.30) s6 faria sentido se a dimensédo D for negativa; dai a origem do nome da
técnica.
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A deducao da identidade (1.30) contém em esséncia o NDIM geral [2]. Para re-
solver uma integral escalar (N {#+} = 1) geral como (1.18) comega-se com uma integral
gaussiana do tipo,

L N
I = H Jd%a exp | — ij [7’2- + mz} , (1.31)
(27_[_)D P J J

k=1
onde 7; esta definido segundo (1.2). Através do método de completar o quadrado,
explicado nas equacoes (1.22-1.26), encontra-se que,
1 T = 2
Ia = 573 ©XP | P Dp — ijmj . (1.32)
{(47r)L det A} j=1

Por outro lado, expandindo a exponencial em (1.31),

- dD 5 1% a;
IG:(H {277)%) 2 Hr((ajlln(ra2+m?)]wf : (1.33)

k=1 ai,a2,..,any | j=1

e invertendo a ordem entre a integral e a somatoria, obtém-se,

N )
— (_1)0‘J aj {u} ) L '
e = Z jl_IIF(aJ—i—l)xj FE (pumJaVJ = a],D). (1.34)

a1,a2,...,aN
Através da expansfo em série da fungdo exponencial e certas expansées multinomiais
9, existe sempre uma maneira de expandir (1.32) como uma série multipla respeito
as variaveis z;,
N
1 T 2
I = b/z €XP | P Dp — E xmj
[(4W)Ldet A} j=1

-y D (e ([T -

N1yeeesNs,eesNG [ngl r (no + 1)] r=1 j=1

N
[T« | A D), (1.35)
j=1

onde as «, (ns), 3; (ns) e 0;(ns) sdo fungdes lineares dos indices ns; 0s k. (p;) séo

combinacées lineares adequadas dos momentos externos; e A (n,, D) representa um
conjunto de vinculos lineares relacionados com as expansées multinomiais que res-
tringem a independéncia dos indices n,. Comparando os expoentes das z; na ex-
panséao de (1.34) com aqueles de (1.35), conclui-se finalmente que a solucéo geral da
integral de Feynman (1.18) escalar é,

N

TVeja-se a equacio (B.8).
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Dado que existem vinculos lineares nos indices n; presentes em A (ns, D) € 6g,4v,,0,
o numero de indices da somatéria é menor do que o original S. Em geral, a ex-
panséo (1.36) podera ser exprimida como uma série hipergeométrica generalizada de
uma ou varias variaveis. Este resultado do NDIM é compartilhado com o método
de integracdo por Mellin-Barnes, o qual permite uma facil comparacéo entre os dois
métodos [12]. Espera-se que aparecam diversas possiveis séries hipergeométricas,
segundo os indices ns que se deixarem idependentes apds aplicar os vinculos. As dife-
rentes séries hipergeométricas terdo possivelmente regides de convergéncia distintas,
que correspondem a regioes cinematicas distintas no espaco de momentos externos
{pi} e as massas {m;}.

Se as equagoes (1.27) e (1.35) sdo comparadas atentamente, percebe-se que pode-
riamos afirmar que,

R N
féﬂt} (pi’mj; v, D) _ Z F (ns, D, L) (H (kz)ar> H (mjz)ﬂj X
j=1

Ry Py NG [Hle I (no + 1)} r=1
N ) I'Vj_l

H/ d; Fj(yj) A (ng, D). (1.37)

Ao observar (1.37) e (1.36), conclui-se que, ap6s a parametrizacio de Schwinger (1.20),
a solucdo da integral gaussiana multipla (1.27), e a expansdo em série multipla (1.35),
o NDIM poderia resumir-se na equivaléncia formal,

(e.)
/ de 2"l = (~1)"T (v)T (1 —v) 3041,0- (1.38)
0

Contudo, ficam algumas duvidas razoaveis com respeito a deducdo anterior. Embo-
ra seja completamente possivel que D tome valores negativos na regularizacdo di-
mensional, em um sentido rigoroso s6 se esta interessado no caso em que D — 4.
Nesse caso nédo ha como fazer sentido ao resultado (1.30) enquanto n for positivo. A
situacéo se complica ainda mais quando se lembra que, no caso de integrais diver-
gentes, D toma um valor complexo na vizinhanga de D = 4 para que a integral possa
ser expandida como uma série de Laurent. Neste ultimo caso, n na formula (1.30)
ndo poderia ser nem sequer inteiro. Uma critica semelhante vale para o resultado
geral (1.36) pois na comparacédo de expoentes das .Z'?j apareceria de novo o dilema
dos possiveis valores das a; na expansdo em série da exponencial. Baseados nes-
tas davidas, I. Schmidt e I. Gonzalez encontraram que a auténtica fundamentacéo
matematica do NDIM residia na area da matematica conhecida como cdlculo frac-
cional [15]. No apéndice B explicam-se melhor os conceitos pelos quais a anterior
manipulagao algébrica das expansoes em série esta bem fundamentada.
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Capitulo 2

Integrais escalares em 1 e 2 loops

O algoritmo descrito no capitulo anterior baseou-se em expressdes de integrais de
Feynman assaz gerais que dificultam a compreensdo do seu contetdo exato. Neste
capitulo oferece-se uma explicacdo mais concreta do NDIM por meio de alguns exem-
plos de integrais escalares que surgiriam em uma teoria do tipo ¢* & ¢*. Esclarece-se
que o interesse fisico dessas integrais transcende o alcance de um possivel modelo
fisico com campos escalares do tipo ¢ @ ¢*. Dada a possibilidade de reduzir integrais
tensoriais a escalares [34], alguns dos resultados deste capitulo poderéo ser usados no
capitulo 3 onde sera analizada uma teoria com integrais tensoriais: a eletrodinamica
quantica (QED). Outra extensio da aplicabilidade dos resultados deste capitulo re-
side em que algumas das integrais escalares resolvidas podem ser importantes no
calculo de outras integrais escalares mais complexas. Os exemplos deste capitulo
comecam desde os casos mais simples, aumentando progressivamente em complexi-
dade.

2.1 Diagrama tipo bolha

Um dos exemplos mais simples possiveis de integral de Feynman é o que surge do
diagrama ilustrado na figura 2.1. Este diagrama corresponde a correcoes radiativas
de primeira ordem do propagador escalar. Sem levar a conta fatores de proporciona-
lidade, a integral euclidiana envolvida com este diagrama é,

dPq (27r)_D
[q% +m?]" [(q —p)* +m3

(2.1)

ZR

fbub. (pami;VDD) = /

onde se esta supondo o caso mais geral possivel de duas linhas internas massivas e
com massas diferentes. A parametrizacdo de Schwinger correspondente é,
1

d4q 2 fooo dq;j x’fji 2 2 2 2
P :/ J e~ ¥10° ~w2(q=p)" —zymi —zam (2.2)
bub. (27T)D H T (Vj)

j=1

15



que, apos o procedimento descrito pelas equacgoes (1.22)-(1.26) para resolver integrais
gaussianas, resulta sendo*,

exp{— L1L2 g —xlm% :cgm%}
Fbub. = / Dz s D : (2.3)
(471') 2 (xl + $2) 2

P~d

P P

Figura 2.1: Diagrama tipo bolha.

Apoés a expansdo em multiplas séries de poténcias das exponenciais obtém-se,

D
)R gt n2 g Ans (g popg) M T
Foub. = (4m)” /D:U ) 1 2 ( )

ni,n2,n3 I'(n+1)T(ne+1)T (ng +1)
(p*)" (m?)™ (m3)™, (2.4)

que expandida segundo a férmula de expansdo binomial em multiregides resulta em,

D ni+n2+ng ni1+nz+ns

_ )n1+n2+n3 T (1 —ny — 3) " al
Fow. = 4T /Dm T(ni+1)...0(ns+1) %
(p ) (ml) (m%)nS 5n1+n4+n5+%70‘ (2-5)

A equacdo (2.5) é um caso particular da férmula (1.35), onde podem identificar-se
01 (ns) = ny +ng + ng € 62 (ns) = n1 + n3 + ns. Pelo NDIM, resumido na identidade
(1.38), as integrais com respeito aos parametros de Schwinger podem ser feitas e
assim surge a solucéo,

_ -7 _q\ritnetnztritr FA—v)P(1—wyT (1 I %)
Foun, = (47) MZ%( 1) T(ny+1)...T (n5 + 1)
pz ni m2 n2 m2 ns3 A nS,D , (2.6)
1 2

onde A (ng, D) significa o conjunto de vinculos lineares,

n+ng+ng = —vi= 91 (ns) s
ny+ng+ngs = —vo=~0 (ns),
ny+mng+ns = —%. 2.7

*Lembre-se a abreviagéo (1.21).
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Dado que segundo (2.7) ficam dois indices somatorios n; independentes em (2.6), a
multiplicidade de opcées para escolher dois indices entre os cinco seria em principio:
(g) = #lm, = 10. Porém, nem todos estes pares de indices sdo independentes entre
si (pois ny — ny = % —viens—ng = % — v9), e portanto s6 existem oito opcoes
diferentes. A dedugdo da primeira solucéo sera explicada com detalhe e as outras so

serdo apresentadas.

Seja a primeira solugéo a somatodria de (2.6) segundo os indices n; e ns. Neste
caso a solucéo do sistema linear de equacoes (2.7) é,

D

ng = 3 —V2—VI— N1 N
nNg = —Vi—"N1—"N2;
D
ny = Vi— 5 =+ no. (2.8)

Substituindo (2.8) em (2.6) obtém-se,

_ —D o\ B D(1—v1)T(1—v2)T(1-n1 - 2)
.7'—bub.[n1,n2} = (—4m)" > (m2)2 Z I(14+o—n1—n2)l(1—v1—n1—no)T (1+v1— 2 +ns)

n1,m2
(p?/m3)"™" (mi/m3)"™

I‘(n1—|—1) F(Tm—}—l) '

(2.9)

onde o = % — v9 — v1. Multiplicando e dividindo por termos que envolvem funcées

gamma,e comparando com (C.4), completam-se quatro simbolos de Pochhammer na
somatoéria. Portanto,

_D 2 %—l/l—ug F(l*%)lﬂ(lfuz)
’ (m2) I(1+0)0(1411-2)

Foubfnine] = (—4m)

Z (1_V1_”1_n2)n1+n2(1+U_n1_”2)n1+n2 (pQ/m%)"fH (m%/m%)nz

(2.10)
o (1_%—”1)n1(1+”1—%)n2 F'(ni+1) T'(na+1)
Usando a identidade (C.8), tem-se,
_D D_y—v 1+V1_QU
Fowbfmmy] = (—4m)72 (m3)2 """ %
(1 - f)%Jra
Z (u1)n1+n2(u2+ur%)nl+n2 (—pz/mg)n1 (m%/m%)n2 2.11)
o @), m=g), T(u+1) Tlp+1)’
que ao ser comparado com (C.15) acaba sendo,
_D D_yi—v (VQ)
= 4 2 2 2 1 2 PR S S
Fbub.[n1,ns] (4m)" 2 (m3) 0210
Fy (Vl,l/2 + v — %; %, I+vi— %; —pQ/m%m%/m%) - (212)

De uma forma similar, calculam-se as outras sete solugoes. As oito solucoes estéo
expostas na tabela 2.1, elas possuem a forma geral,

fbub. (p7 my; V’iaD)[m’n] = (47{)_% G F4 (ava/;ﬁ7’7;xay) . (213)

Observa-se uma grande similaridade entre os pares de solugdes F,up. [n,,1.] € Fbub.[n1,n3]>
0 Par Fiub.(ny na) € Fbub.[n1,n5]> € © PAT Fhub.ns,na] € Fbub.[ns,ns)- A similaridade resume-se
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em que uma solucdo do par é equivalente a outra mas com a permutacao 1 < 2. A
solu¢éo Fiyp,[n, ns) Merece um comentdrio a mais. O termo G dela contém no denomi-
nador um fator I" (1 — %) que nao pode ser compensado com outro no numerador para
assim formar um simbolo de Pochhammer. Esse termo faz que, independentemente
do valor de D, no final o coeficiente G tenda sempre a anular-se. Desta forma, essa
solucéio néo deve ser considerada [6].

A funcéo hipergeométrica de Appell tem uma regido de convergéncia dada por
(C.16) e depende dos seus argumentos = e y. Na tabela 2.1 evidencia-se que estes ar-
gumentos, ao serem comparados com a regido de convergéncia, definem trés regides
cinematicas diferentes das varidveis p?, m} e m3. Contudo, algumas das solugdes
contém a mesma regido cinematica. Ao serem comparados os resultados pelo NDIM
com os de outros métodos [12, 13], conclui-se que nestes casos somam-se todos os
resultados linearmente independentes correspondentes & mesma regido cinemdtica.

Desta forma, o resultado final do diagrama tipo bolha é, segundo as trés regides

cinematicas,
2|3 213
m m
Foub. 1 = Fbub.fna,ns] T Fbub.[na,na] T Fbub.fns,ns)s ‘721 +’7§ <1
p? % m% 2
Fbub. 11 = Fbub.[n1,n2] T Fbub.[n1,ns]> ‘m? + ‘m*% <1
p? % m% 2
Fbub. 111 = Fbub.[n1,n5] T Fbub.[n1,n4]> ‘mfg + ‘m? < 1L (2.14)

A origem dessas regides cinematicas reside em um fenémeno conhecido como rami-
ficacdo na continuacao analitica e é explicada no apéndice A.

Existem varios casos particulares da integral (2.1) que sido interessantes em si
mesmos. Através do NDIM, estes resultados particulares podem ser extraidos de
duas formas diferentes. Por um lado, pode ser a partir de uma integral mais particu-
lar que (2.1) e entdo aplica-se todo o procedimento. Por outro lado, podem ser usados
os resultados adequados da tabela 2.1 restringindo-os ao caso particular. Aprovei-
tando a generalidade da integral inicial, se tentara usar esta segunda via.

Em primeiro lugar, suponha-se que as duas massas sdo iguais (m; = mo = m).
Nesse caso, apresentam-se duas formas de reduzir a funcdo de Appel F; explicadas
nas férmulas (C.18) e (C.19). A primeira aplica-se as solugdes desde Fiup [, ,n,] até
Fbub.[n1,n5)> € @ segunda aplica-se as outras trés. Quando a formula (C.18) é aplicada,
obtém-se o mesmo resultado para as quatro solugoes iniciais,

_D oD
flﬁlb[mmﬂ = (4m) 2 (m%) (2_0> D %

T2

1 2
3F2 <V17V27_0-;U1T+V27%;_4€ni2> ) (215)

onde foi usado um caso particular da funcdo hipergeométrica generalizada (C.11).
Quando a formula (C.19) é aplicada, obtém-se resultados diferentes para cada uma
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das solucdes. A primeira solucéao €,

~Db oo (Y1), (V2),
‘Fﬁlb-[nz,na’] = (4m) = (p2) (o), +D .
oty

3F2 (_07 272?1-7D5 4722713; 1 + vy — %7 1 + V2 — %7 _41%2> ) (216)

onde o superindice A indica que as massas sfo iguais. A segunda solucéo é,

o+

o T (—j—D/2) (m?)
I'(=7) ()"
3Py (v, g SRR oy~ 1 D -4 (217)

Fiub| = (4m)”

na,my] (V2)f§ X

e a terceira (}'ﬁlb.[n&%]) é equivalente a segunda ap6s a permutacdo 1 < 2. Seguindo a
filosofia de separar as solugdes nas regioes cinematicas onde a fungéo hipergeométrica
é convergente, e evitando somar solucées degeneradas (linearmente dependentes),
obtém-se dois dominios de convergéncia,

A A A A 4m? .
Foub.r =  Fbub.na,ns] T Fbub.no,na] T Fbub.[ng,ns)’ ‘;nT <1
A A :
Foub.ir =  Fbub.[n1,na)’ ‘—4’;2 <1 (2.18)

Outro caso particular de (2.1) aparece quando uma das duas massas é zero. De-
vido a simetria sob a permutacdo 1 < 2 s6 é necessario considerar um dos casos:
my1 = 0 ou me = 0. Escolha-se o primeiro caso e defina-se ms = m. Também tera
que ser lembrado que o indice v correspondera aquele de massa nula. Algumas das
solucoes da tabela 2.1 ndo sdo aplicaveis porque contém nos argumentos da funcéo
hipergeométrica variaveis com denominador m?. Nestas condi¢des, encontram-se trés
solucdes ndo nulas e diferentes. A primeira é,

SlS

(m2)ff % a (1/1, —0; %; _Lz> ) (2.19)

B
fbub.[ (_U)%—&-o

— (4m)

n1,na)

a segunda é,

_D 1/1) (VQ) 2
Fiub.naing] = (1) 2 (9°)7 Co)y s 2 (1 —o—D 14y - L —%) . (2.20)
20+5
e a terceira é,
B RN 2)U+yl D D 2
Fhub.ngni = (47) 2 (»*) N (V2)_g o Fy <1 +uv1—5,vi1 4+ 5 — v —’;‘—2) .
(2.21)
A separacio em regides cinematicas para esta restricdo nas massas é,
B B B 2 )
Foub.sr = Fbubnoma] T Foubfnoms)s |57 | < 1
B B 2
Foubtr = Foubfnimg]r |mz| <1 (2.22)
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Finalmente, o resultado (2.20) permite achar o caso quando as duas massas sio nulas,
o qual é simplesmente,

~—

(pQ)U (1/1)0 (VQ o (2.23)

Fiap, = (A7)~ o),
o+

ol

Todos os resultados do diagrama tipo bolha apresentados aqui ja eram conheci-
dos através de métodos distintos ao NDIM [17]; contudo, este exemplo foi uma das
primeiras provas que o NDIM era de fato confiavel. Por causa disso, o diagrama tipo
bolha é um exemplo recorrente na hora de explicar o NDIM [6, 15]. Aproveita-se este
momento para esclarecer certas convencoes usadas nesta dissertacdo que diferem
da forma de apresentar os resultados em outros trabalhos sobre o NDIM. Aqui sao
expostas solucbes para integrais euclidianas com propagadores (com expoentes posi-
tivos) no denominador; tal como é mostrado na equacgéo (1.18). Outros textos mostram
os resultados das integrais no espaco de Minkowski (o qual gera certos fatores iniciais
e muda o sinal dos produtos p; - p;) ou péem os propagadores como numeradores cujos
expoentes podem ser negativos.

Para completar a discusséo sobre o diagrama tipo bolha se fara a analise das suas
equacoes de Landau, as quais explicam a ramificacdo em regides cinematicas das
solucdes (veja-se apéndice A). O caso particular do denominador (A.1) é entéo,

Toup, = 21¢% + 2 (¢ — p)* — z1m? — zam3, (2.24)

com a restri¢do x1+x2 = 1 presente na delta de Dirac da parametrizacdo de Feynman.
Devido a topologia do diagrama, a unica possibilidade para que exista a superficie de
Landau é que todas as linhas estejam on-shell, e portanto as equacgoes de Landau sio,

rig—x2(p—q) = O; (2.252a)
¢ = m (2.25D)
(g—p)? = mi (2.25¢)

Manipulando adequadamente estas equacdes chega-se a seguinte representacéo da
superficie de Landau,

pt —2p°m? — 2p*m3 + (m% - m%)2 =0. (2.26)

1
2
)

~ ~ . ., . 2
Quando esta equacéo é resolvida em termos das variaveis = = ’%
1

2 2
as quais definem as regides de convergéncia das funcdes hipergeométricas encon-
tradas na solugdo da integral Fy,,, conclui-se que a superficie de Landau define
exatamente trés regides cinematicas accessiveis por continuacio analitica e que elas
coincidem com aquelas achadas pelo NDIM. A figura 2.2 mostra como a superficie
de Landau separa estas trés regioes. Também pode observar-se que os casos particu-
lares em que m; = mo (]:lﬁlb_) em; =0 (flﬁlb.) encontram seu ponto de ramificacao
exatamente onde as curvas respectivas cortam a superficie de Landau.
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Tabela 2.1: Solugdes do diagrama tipo bolha.

G

m?” a7a/;ﬁ77 x?y .
n1, N9 (mg)g (7(;’)2)%10 vy, —0; %, 14+v; — % —TI:TQ%, %
ni,ns (m%)" (_g)l)%g+a Vo, —0; %, 1+ vy — % 51—21, Z—%

(m3)™™ D.D {4 D _ _Pm
ni,ng (miz::/z (VQ)_% Vi, 55%, + D) 1) m2? m?
2
ni,ns (?nll)%)uz (Vl),g vo, 2D 14+ L -y %,%
N9, N3 (pZ)o (1:10)5,2(:5)%0 1—0—%,—0;1—}—1/1—5,1—}—1/2—% —%ﬁ, %23
o+vy
n2, N4 (n(?,g)ul (va -D I+ —2vl4+v— 21+ 52— %5,—%2%
oty
ng, ns (7?22))1'2 (m),g T4y — Sl — 21+ 2 -1 %z%,*%;
+ +
N4, N5 (m1)” V2<g§)a o 2(12) 1,%;1+%—y1,1+ 5 — U2 %2%, %2%

w T

Figura 2.2: Regides de convergéncia da integral Fy,,,. A superficie de Landau esta

indicada com uma linha sé6lida. Também ilustram-se os casos particulares ]-"{)‘Lb e

J—"ﬁb que correspondem a x = y e x — oo respectivamente.
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2.2 Diagrama tipo triangulo

Na escala de complexidade, a seguinte integral a 1-loop corresponde ao diagrama
mostrado na figura 2.3. Este diagrama contribuiria para a correcdo radiativa a
primeira ordem da funcéo de correlacdo de 3-pontos. Esta integral logo revela uma
riqueza muito maior que aquela do diagrama tipo bolha. Ignorando de novo constan-
tes de proporcionalidade, a integral de Feynman neste caso é,

dPq (2m)”"
[q% +m?]" [(q —p2)’ + m%} : [(q —p)° + m%] :

Firi. (pi, mi; D, v;) = / (2.27)

Antes de aplicar a expansé&o em série da representacdo de Schwinger, a integral (2.27)

aparece como,

exp {7x1x:spf+xix2p§+wzx3p§ - 2371 xjmz}
Foi = / D& EREEE P (2.28)
(471')7 (J,‘l + xI9 + $3)7
e apods a expansédo da exponecial e a expansdo multinomial tem-se,
DZ ni+nz+na+ny no+nzt+ns+ng, ni+nz+ne+ng
Fu = APT (—1ymtectne 21 =2 - 06/(ns,D),0 X
(471_)7 — F(n1+1)F(n9+1)
(L= — o —m3 = 2) 61" (03)"™ (3)" (md)™ (m3)" 3)" . @:29)
onde,
@(nS,D):n1+n2—|—n3+n7+n8—|—ng+%. (2.30)

Apoés usar o NDIM, a solucao de (2.27) é,

i TO—w)T )T rg) T (1= —ny—ny— D)
Firi. = (—4m) man F'(np+1)...T'(ng +1) X
()™ (#3)™ (p3)"™ (m3)™ (m3)"™ (m3)"™ A (ns, D), (2.31)

onde A (ng, D) significa os quatro vinculos lineares,

ny+ng+ng+ny = —rq,
ng +nsg+ns+ng = —Vg,
ny+mn3+net+ng = -—vs,
ni+mng+ng+ng+ns+ng = o, (2.32)
enestecasoo =2 — vy — Vo — V3.

2

Em principio, o numero de solucdes diferentes da integral geral (2.27) ascenderia
a (g) = 126. Mas devido ao sistema de equacbes néo existe solucdo para 45 esco-
lhas dos indices da somatodria e outras 12 solugoes cancelam-se em forma similar a
solugdo Fiyp.n,ns)- Neste trabalho néo serdo expostas as 69 solugdes restantes, as
quais estido presentes nas referéncias [11] e [13]. Estas soluc¢es sdo em geral séries
hipergeométricas de cinco variaveis e a forma delas, dada a simetria do diagrama, se

repete segundo as 6 permutacdes possiveis dos indices j € {1,2,3} nas massas m;,
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qd—h

i

Figura 2.3: Diagrama tipo tridngulo.
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os momentos p; e os expoentes ;. Esta secdo se limitard a apresentar resultados da
integral (2.27) para valores restritos nas massas e nos momentos.

A primeira restricdo de (2.27) que sera considerada é quando duas massas sao
idénticas (m; = my = m) e a terceira é nula (m3 = 0). Com essa restricdo, a
representacio de Schwinger (2.28) se reduz a,

_ mxgpitaizopdtaazapl

_D 2
(1 + 22 + 23)" 2 exp{ R — (z1 +x2) M } . (2.33)

Fih = fiﬂ;

2
Este é o momento adequado de explicar a otimizagdo do NDIM feita por I. Gonzalez e
I. Schmidt [15]. A otimizag¢do minimiza o nimero de indices n; na expanséo de mul-
tiregides e ao mesmo tempo maximiza o nimero de vinculos. Esta melhora consiste
em manter os multindmios que se repetem dentro da exponencial da representacéo
de Schwinger até que eles se juntarem em um s6 termo, e s6 depois disso se procede a
expandi-los. Se a otimizacéo nao for feita, a solugéo consistiria em fazer nulo o indice
ng nos vinculos (2.32) pois ele corresponde & massa nula m3. Isto daria um sistema
com oito indices e quatro vinculos, deixando outros quatro vinculos independentes e
em principio uma multiplicidade de (i) = 70 solugbes. O nimero real de solugdes pelo
método néo otimizado é 32 [13]. Pelo contrario, apos a otimizagao obtém-se a solucgao,

R D D e
—4Am)2 nyons
()" ()™ (#3)" (m*)™ A (ns, D), 2.349)
com A (ns, D) asinalando os vinculos,
ny+ne+ny = —vq,
ng+ng+ng = —va,
ni+ng+ng = -—vs,
ny+ng+ngt+ng = o,
ng+ns—ny—ng = 0. (2.35)

O numero de indices continua sendo oito, mas o nimero de vinculos aumentou a
cinco e em principio a multiplicidade diminuiu a (§) = 56. Na verdade, o nimero total
de solucgoes diferentes é 28. Nas tabelas 2.2e 2.3 mostram-se os argumentos de certas

solucgoes, as quais tém a forma geral,

G ny N2 N3
Fiin = 7ND Z AN (n1,n2,n3)iii, (2.36)
. (471_)? s 7’L1! TLQ! 7”L3!
com N € {1,2,...,16}. Nao foram mostradas as solucdes que podem ser obtidas pela

permutacdo p; < p3, V1 <> vo; assim que as outras doze solugoes diferentes podem
ser extraidas permutando estes momentos e expoentes na solugdo com N = 2 e as
que vdo desde N = 5 até N = 15. A melhora nesta solucdo respeito a da referéncia
[13] ndo consiste somente em que diminuiu o nimero de solugdes, mas também em

que se obtiveram séries hipergeométricas de apenas trés variaveis. A grande maioria
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Tabela 2.2: Solucées para o diagrama tipo tridngulo, primeira parte.

N Gn 21,22, 23
e o
2 ()" wa)y (), (04 )y i

3  (»m)° (V}lj)cr (v2), (o J;%)_za_g % % _prg?

4 (m)7TE T (p3) 2 (V3) D 9,y (V2) 520, (V1) 50, B, 5, %5

5 ()" (m)7 (e —vs),, (n2),,_n 5,
6 (1) (1) (04 B)yn W), 0 (2)n s, i

7 (p%)—y1 (mz)a-i-Vl (v2), ( 5 — Vl)fg—a %7 %‘%’2, %32

8  (») " (m? 7 (& - 1/1),,3 D (v2),, D (V3)§_2u3 zé’ ;Tp;’ _;7)?2
9 (1) (1) (B40) W)y i)y, o 85,20
10 (32) " (1B)7 (va)y, 0 (B+0), _ (va), oY
11 (P%)UJWQ (P% vh ( 2)U+yl (V1) _g—ap, (V2) g0y, (V3)§—2u3 7%%27 %7 %21’2
12 (p3) " (p3) " (m?)" T (ve) Z%z%%’ 5 El
18 () ()" () ), p (va), T
14 () () ()7 (), 00). ,f’nf Z e
15 (JD%)VQ_7 (pg)a+l/3 (p:?’))Uer (Vl)_o—Qul (V3)—o'—2V3 (V2)§72u2 _gpgl ) —171%2’ _}T?
16 ()7 (D) 1) 1) 0ny (0) g0, 0)p i
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das solugoes em [13] sdo fungdes hipergeométricas de quatro variaveis. Infortunada-
mente, inclusive no caso de func¢des hipergeométricas de trés variaveis, ndo se dispoe
de um método simples para obter uma solugéo global como a das equacoes (2.14) em
que se agrupam as solucoes segundo a regido de convergéncia. A dificuldade de anali-
sar séries hipergeométricas de mais de duas variaveis é uma das grandes limitacoes
do NDIM.

A segunda restricéo de (2.27) que sera considerada é a que consiste em fazer todas
as massas nulas (m; = mo = m3 = 0). Este caso ndo massivo é relativamente facil
de analisar fazendo m = 0 nas solugdes F\ .. da primeira restricdo. A partir da
tabela 2.2, se deduz que as solugoes ]:{31, ~ que resistem a restricdo m = 0 so as que
correspondem a N = 2,3,6,9,10,15,16; e portanto o nimero total de solugées para
o tridngulo ndo massivo é doze. Dado o alto degrau de simetria do tridngulo néo
massivo, estas doze solugoes podem ser classificadas em apenas trés formas basicas,

a) [ P1,P2,P V2),\V3), o
ff()(123;D>:(4(2)(3) (p%)x

Ti. D
Vi,V2,V3 7T)2(—0')20_+Q
2

Fy <—U,I/1;1—V2—U,l—Vg—O’;%,%%); (2.37)

X

B [ P1,P2,D3 (V2) _g_au, (V3) _s_o, ) . ot
f““i(')< A ;D>: e ) ) )
V1,V2,V3

B P1,P2,D3 (’/1)1/272 (’/2)2721/2 ot .y
T ( ;D) = )T ()
vi,V2,V3

2 2
Iy (%—VQ,V3;1—U—V2,1+U+1/2;%,§—§). (2.39)

O conjunto completo de doze solugoes é extraido de permutacoes adequadas das so-
lugdes (2.37-2.39) nos momentos p; e nos expoentes v;,. Conforme a regido de con-
vergéncia da funcdo de Appell Fj, a solucdo do diagrama triangular ndo massivo
divide-se em trés solucdes diferentes, cada uma conectada com a outra através de
continuacdo analitica. A solugdo em diferentes regies é entéo,

7:51,1 _ ftlji(.a) ( P1,P2,P3 ;D) +f£i(.b) ( P1,P2,P3 ;D) +}-£'(c) ( P1,P2,P3 ;D)

1.
vi,V2,V3 Vi,V2,V3 vi,V2,V3

N[

1
2% 2
P2 P
=S| +|=%

3

< 1; (2.40)

tri.

_H__B(c) ( P2,P1,P3 ;D) . para

V1,V3,V2

—7:51,11 _ 7:51(.(1) ( P1,P3,P2 ;D) +7:1;B‘(b) ( P1,P3,P2 ;D> +}-tB(c) ( P1,P3,P2 ;D)

Ti. Ti.
Vs, V2,V] V3, V2,V] V3, V2,1

1 1
2|5 2|5
pi|2 P32
2 2
5

_|_

—|—ftB(C) ( DP3, D1, D2 ’D> , para < 1, (241)

Ti.
V3, Vi,V
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Tabela 2.3: Solugées para o diagrama tipo tridngulo, segunda parte.

N AN (n1,n2,n3)
D
1 (?_Vi?)ng(V3)n1+n3(VQ)”1+7L2(Vl)n2+"3(_a)”1+"2+"3
2)
D (2 ni+ng+n (V1+V2)"1+2”2+n3
2 (17‘77?)713(”1)”14'”2(771/3)712(70)"1*"24'”3
D
(I_VS_O')n2+7L3(1_1/2_0)”1+"4(5_V3)n2*"3
3 (1 U_f) (1 V1—vo— 20)n1+n2+2n3(_U)n1+”2+"3(y3)"1+”2
(1- Vl_V2 20)n1+n2+n3(1_yl_0)” +"3(1_V2_U)n1+n2
4 (1+20'+V1+V2)2n3—n17n2(§_V3)n3(l’3)n1+n2
(1+2g+y1+u2)n3_n1_n2(1+o+u2)n3_n1(]:1)+0+V1)n3—n2(V3)n1+n2—n3
5 (V3)n1+n3(’/1)n1+n2(?_y3 no -
(1+0’+l/3)n3—n2(1+V3*V2)n3+n1—n2(V1+V27V3)2"2_”3(?7V3)”2*"3
D D D
6 (5_V2)n3+n17n2(y3)"1+n3(1_0'_5)”2(1_0-_5)2"27"3
D
(1+U+V3)n37n2(1_0_V2)n1+"2(1_0_7)712*”3
7 (1+V1_V2)2n3+n17712 (Vl)n1+n3 (V3)n1+n2D
(]_+1/171/2)n3+n1_73(1*1/2*0)1134—711 (1+0’+I/1)n3—n2(?71/1)n2—n3
8 (53) D)y 2y
(1+0'+V1)n37n2(1+V1_V3)n3+nlf7l2 (VZ)nlJranng,(Q_Vl)anng
D D
9 (l—o—yg)n1+7l2+n3(Vl)n1+n3(5—”2)n1+n3—n2(1 0'—7)712
(1+U+DV1)n3*n2FD(1_U_V2)n1+"3(1_V2_o—)n1+n2
10 (Vl)nlJrn3(5_V3)nl(7_1/?’)711+713*1:;12(1_a_7 n2
(1+O’+Vl)n3_n2(17‘771/3)n1 +ng (?71}3)711—712
D
11 (1+U+V1)n2+n3—n1(?7V1)n2+n1—n3(?7us)”2
D
(IHo4v2)n, p, (I+o+v1)p, p (AHo+v1), ) (E_Vl)m”%
12 (1—0’—1/2)n1+n3+n2(1+I/1+l/3—l/2)2n1+2n3+n2 (Vg)n1+n2(1/1)n1+n3
D
(03] 07 g
13 (Z78), /0y 4 (V102 7V8)0n; ny
(1+V17V3)n1+n3—n2(1+U+V3)n2—n1(%71}3)711—7@(V1+l/27y3)2”1_n2
D
14 (V3)n 4y (?7V1)n1+n2—n3 (v2+v3=V1) a0, fng—ng
D
(L43=11) 0 gy ng (LHT+V1) nl(5—V1)nlin3(V2+V3_V1)2n1+712*2n3
D D
15 (1_?—0)711(1_5 )2nrn2( n3+”2 1
(1+U+V3)n2—n1(1+‘7+V1)n3—"1( )n1—"2( Sz )2”1_"2_n3
Doy oy (130, (B02)
16 ng+ng 2 nq 2 v3 ng+nog—mnq
(1)n2+n37’n1(1 o— )an g (1—‘1—0’—}—1/2)”37”1(1+0’+V1)n27’n1
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ft?i.[[] = Fr® ( P2 ;D> +]:tB'(b) ( b b2 b1 ;D> +]:f-(c) ( b b2y ;D)

tri. Ti. Ti.
va,V1,V3 Va,V1,V3 va,Vi1,V3

1 1
p%? 2
o2

p <1 (2.42)

2
b3
V)
i

+
p

tri.

—I-fB(C) < Pp2,P3,P1 ,D) . para

v2,V3,V1
Embora néo seja comprovado explicitamente aqui; a grande similaridade das regides
de convergéncia precedentes com aquelas da solugdo (2.14) sugerem que a superficie
de Landau do diagrama tipo triangulo ndo massivo possui uma equacio idéntica a
(2.26) mas com m e my sustituido por ps e p;.

A dultima restricdo de (2.27) que sera analisada é o caso em que m; = m3g = m,
mo = 0 mas com as pernas externas p; e ps sobre a camada de massa (on-shell), ou
seja, p3 = p2 = —m?. Este resultado obtém-se mais facilmente aplicando o NDIM
desde o inicio mas lembrando a otimizacédo descrita no caso da primeira restricdo

]-'t‘;‘i.. A solugdao maximamente simplificada é,

7O _ (1_0_%""”3)71/3 Z F'l—vy)T'(1—vo) T (14 ng+nyg)
tri. (_471_)% i F'np+1)...T(ng+1)
(mQ)”l (p%)n2 5"24‘”3,—1/15n2+n4,—l/26n1+n2,a . (243)

A partir de (2.43) surgem quatro solucées diferentes, ou seja, uma para cada indice.
A solucédo para o indice ns é,
(m?)7 (0 + %)

C _ —v3 . vitvs ldvidvs. —P3
Ftri.[ = 2 (Co)p 3F> (Vl,V27 —O0 Ty, Ty 4m2> . (2.44)
(4m) V3

A solucédo para o indice n; é,
o) ),
tri ] (477)% (=0 20+2

2—D—20+2v3 4—D—20+2 —4m?
3F5 <—U7 G, T V?’;l—U—V171—0—V2;T%n>(2-45)

A solucao para o indice ng3 é,

2\ —V1 2\o+v1
p m
Py = 2 (g) (va)y,-g (0 5)

[ns] (47r) v3—5 V3

3Fy (v, M=, 201 g 1y — 0 =0) L (246)

~ .. o
A solucéo para o indice n4 tem a mesma forma que }"tri.[ns

] exceto que sob a permutacéo
v1 < vo. Segundo a regido de convergéncia, as solugdes com respeito a ni, ng e ny
serdo somadas como combinacgdo linear para quando {4m2‘ < ‘pg‘ A solugédo com

respeito a ny sera deixada sozinha na regido cinematica: |p3| < |[4m?|.

2.3 Diagrama tipo por de sol

Até agora foram considerados diagramas a um loop que envolviam s6 vértices triplos,
os quais corresponderiam a correcoes radiativas de primeira ordem de uma teoria
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de campos escalares, com possiveis massas diferentes, cuja densidade lagrangiana
contém um termo de interacéo do tipo ¢*. Mas também é possivel considerar diagra-
mas que envolvam vértices quadruplos, como os de uma teoria escalar com interacéo
do tipo ¢*. Em esta teoria, a primeira correcéo radiativa ao propagador aparece a dois
loops, e corresponde ao diagrama tipo por de sol (sunset diagram) que se ilustra na
figura 2.4. Por razées de simplicidade, ndo se comecara com o caso em que as trés li-
nhas internas tém massas diferentes e ndo nulas. Os valores particulares das massas
foram escolhidos pela importancia que a integral associada a eles tém para ser apli-
cada a outros diagramas e outras teorias. Por exemplo, diagramas complexos como
o loop master (importante em correcoes radiativas de polarizacdo do vacuo) podem
ser decompostos em diagramas mais simples pelo método de integracdo por partes
e o sunset diagram da figura 2.4 esta presente nessa decomposicédo [13, pp. 7-9]. A
integral que sera resolvida é,

dq dga 1
F (pvvavyl)_/ / v3 -
sun (27T)D (27T)D [q% i mz] v [q% + mﬂ” [(p - qz)Z} 3

(2.47)

4

—_—

Figura 2.4: Sunset diagram ou por de sol.

Para achar a representagao de Schwinger de (2.47), a notacdo de matrizes intro-
duzida na equacio (1.22) resulta util,

d d
Feun, = / n / Eh / Dz exp {—qTAq+ 2pBq — w3p® — (1 + 22) m?}, (2.48)
(2) (2m)

onde q = , A= ),eBz(azg T3 ).Semterquepassar

q2 —z3 T2+ 23
pelos detalhes algébricos, rapidamente pode-se aplicar a féormula (1.27) e simplificar

q1 ( r1 + 23 —Z3
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até obter,
2
_ T1X2T3p

1
Fsun. = /Dff W exp{ T — (1 + x2) m2} , (2.49)

onde ¢ = det A = x1x9 + xox3 + x371. Apls a expansdo das exponencias e a aplicacdo
do NDIM otimizado chega-se a solugéo,

Z D(1—v1)T(1—v3)D(1—v3)T (1—n1 — 2 )0 (1+n2+n4) (p2)m (m2)n2A(n D):

1
Fsun. = W T(1+n1)- T (1+75)

N1,...,NG
(2.50)
onde desta vez A (n,, D) representa os vinculos',
ny+ns+ns = -1
ny+ns+ng = —vo
ny+ng = —U3
ny+ny = o
ns+ng = n9o -+ ng.

Da equacgéo (2.50) surgem 5 solucdes diferentes, correspondendo aos seis indices
ns com excecdo de ng. A solugéo para n; €,

(m3)7” (3)_, (=),

Feun. =
sun.[n1] (47T>D (1/1)%4}3 (VZ)%*VS
D D 2
—0,V3,V1 +V3 — 5,V + V3 — 3 p
F. 2 2=, 2.51
onde é usada a notacéo ,,,F, <gi%:,z) = nE(a1,...am;By,..., 8, 2). A solucao
para ns é,
Fsun.fna) (v)" W)z, V2) 29, (3)5ayy
sun.|n
’ (47T)D (_U %—&-20
D 1—v3— 2—v3— 2
4F3 —0'71—0'_57 23 J? 23 = _ﬂ ] (252)
1—V3—O',1+V1—%,1+V2—% p2
A solucédo para n4 é,
2\ V3 2\0+V3
(p?) ™ (m?)
fsun.[nd (47T)D (Vl),% (VQ),% X
JFs v3, 1 +v3— % 1+V23+Uv 2+V23+U .74m2 (2.53)
1+U+V3,1—|—%—V1,1—|—%—V2’ p?
A solucgédo para nj é,
D_y—v D_y _D
PR () it U Kl S A ) e Lo Y
sun.[ns] — D D D
(47T) (7 - V1)2V17§ (7 B 1/3)2113 %

4F3 vi+vs+ g1 - vy — o, T Fsre - 4m? . (2.54)
1+1/1—%71+V3_%71+g_y2

fNeste caso ¢ = D — v; — vy — va. Note-se que em cada diagrama tem se usado uma definicdo de
o diferente. Porém, pode induzir-se a férmula geral o = L% — Zj vj, onde L é o nimero de loops do
diagrama e D a dimens3o.
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Finalmente, Fyp [ € igual a Fyyy ;) mas com a permutagéo v; < vz. Segundo a
regido de convergéncia das séries hipergeométricas, a solugdo geral do diagrama por
de sol é,

2

Fsuns = fsunl[nz} + fsun.[m;] + Fsun.[n5] + Fsun.[n(g]a ‘4%

» < 1;

> 1. (2.55)

2
— p
Fsun.r1 = fsun.[n1}7 )W

O caso ndo massivo do diagrama poér de sol é particularmente simples pois ndo en-
volve nenhuma funcéo hipergeométrica. Ele é extraido facilmente da solugéo Fyyn [n,),
que é a unica que sobrevive ao limite m — 0,

e 07 200, 02)5 0, 95,

n.[ng] = (2.56)
sun.[no] (4m)P (_U)gwo

2.4 Diagrama triangular a dois loops

Quando é possivel misturar vértices triplos e vértices quadruplos, a teoria é auten-
ticamente do tipo ¢® @ ¢*. O diagrama a trés pontos e dois loops da figura 2.5 é um
exemplo dessa mistura de vértices. Para evitar complicacoes prolongadas, tal como
ja foi visto em alguns dos exemplos precedentes, assume-se que o diagrama é nio
massivo. Portanto, a integral que sera calculada é,

d'q / d'qa 1
(QW)D (2”)D [Q%]Vl [(fh - p1)2r2 [(fh +q2 — PQ)Q]

v3

Forr. (pis D, v;) :/ : 2}1,4-
a3
(2.57)

Figura 2.5: Diagrama triangular a dois loops.

Poderia aplicar-se o NDIM ilustrado nos exemplos precedentes para solucionar
(2.57). Mas esta integral tem uma forma de solucdo bastante mais simples [16].
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Ao examinar a estrutura do denominador, nota-se que a integral com respeito a g
sozinha envolve uma integral tipo bolha nao massiva, tal como na equacédo (2.23),
mas com p = ps — ¢1. Dessa forma tem-se,

(V3)§—V3—1/4 (1/4)%_113_”4

Foe (pi; D,vi) = 5 X
(47T) 2 (V3 trs— %)%—QV;;—QVA;

d'q 1
5. (2.58)
/(QW)D [q%]m {(ql —pl)ﬂ va |:(q1 —p2)2:| vatrg—L2

Mas aqui encontra-se de novo uma forma conhecida. Trata-se da integral triangular

a um loop ndo massiva, tal como nas equactes (2.40-2.42), mas com o expoente v3
modificado e a permutacdo p; < p». Em conclusao, a solucéo de (2.57) é,
(V4)§—2u4 (V3)§—2u3

Fprr (pi; D,vi) = D D X
(4m)=2 (V3 + vy — 7)

%721/3721/4

T (01 < p2,psivi,va, vs + vy — 2:D). (2.59)

Em concluséo, ha 12 solugdes diferentes, pois essa é a multiplicicade da solugées no
triangulo a um loop nédo massivo.

Se o NDIM completo fosse utilizado, apds a integragao nos momentos internos da
representacdo de Schwinger de (2.57) se chegaria a,

F D ) = ﬂ _ 41 2 2 2
b1 (Pis D, vi) = 4 )D (bg exp { o [$19€2 (z3 + 74) pT + T17374P5 + 962363904193} } ;
T 2
(2.60)

com ¢ = (1 + x2) (x3 + x4) + z4x3. A solucdo em série otimizada de (2.57) através do
NDIM seria entéo,

_ 'l—v1)..T'A—vg) T (1 +n1+n9) T (1+ng9+ns)
N {4\-D 1 1 1+ ng 9+ 15
Foa (pis Dovi) = (=4m) mzng T(1+mn)...T(1+ns) -

)™ (3)"™ (#3)™ A (ns, D), (2.61)

onde A (ng, D) representa os sete vinculos,

ny+mng+ng = —V1
ni+ng+ny = —vy
Nog +n3+ns+ng = —v3
ng+ng+ns+ng = —vy
ny+ng+n3 = 0
neg+ny = ng
ng+mng = nj+ng. (2.62)

O sistema de equacdes lineares precedente oferece exatamente 12 solugoes diferentes
e nao nulas e todas coincidem com as doze solugdes implicitas na formula (2.59). A
completa igualdade entre as solugées (2.59) e (2.61) é um bom exemplo da coeréncia
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interna do NDIM. Alias, o diagrama triangular a dois loops ndo massivo é também
uma ilustracdo dramatica da vantagem de usar o NDIM otimizado. Sem o proce-
dimento da fatorizacdo dos parametros de Schwinger, o NDIM oferece 81 solugdes
néo triviais, muitas delas em termos de funcdes hipergeométricas de trés e quatro
variaveis [7]. A otimizacdo do método reduz os resultados a 12 solugoes em termos de
funcées de Appel de duas variaveis.
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Capitulo 3

Aplicacao a QED a um loop

Como aplicacdo simples de algumas das integrais achadas no capitulo anterior va-
mos considerar as integrais a um loop que aparecem no processo de renormalizacdo
da eletrodindmica quantica (QED). O numerador das integrais na QED costuma ter
estrutura tensorial e para a sua manipulacéo é 1til considerar a algebra das matrizes
de Dirac em uma dimensio generalizada,

(V1) = 20,15 (3.1)
de onde surgem as identidades,
Yy, = 0ty =2w;
Y = 2(0—w)r;
Yy = 4 4 2(w - 2) v
YAy, = 2(2—w)y*yyP — 298 (3.2)

Também é util considerar as identidades dos tragos,

TI' (f)/afyﬁ) = 20.1,,7“]/;
Tr (’YarYﬂrYV) = O,
Tr (r)/aryﬁfyl/ry,u) = 2¢ [naﬁnzxu ~ Nav3u + naunﬁy] . (3.3)

Neste capitulo serdo usadas as integrais gaussianas,

dsz —Q2 1
_— = N 3.4:
/(27r)2w€ (47'[')“), ( a)
2w
/ (C; )gie“y b= (3.4b)
s
d2wQ Ry n,m/

Durante o processo de regularizacdo dimensional da QED costuma-se escrever
ep?~* em vez de e para fazer que a constante de acoplamento seja adimensional inde-
pendentemente do parametro de dimenséo w. A variavel u chama-se fator de massa
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e é um parametro que indica a energia a qual esta sendo testada a teoria. Neste
capitulo este fator de massa sera negligenciado na maioria das expressoes. Em geral,
as integrais serdo feitas no espaco euclidiano mas os sinais estdo calibrados de tal
forma que para voltar aos resultados finais no espaco de Minkowski s6 se precisam
fazer as transformacées inversas a (1.9a-1.9c¢).

3.1 Autoenergia do elétron

A primeira integral divergente é a autonenergia do elétron,
o Jd*qyuli(yp—7-q) —m]y*

Y(p,2w) = Ta (3.5)
(p ) (27T)2w [qz]yl [(p—q)2+m2

onde a dimensao é parametrizada como D = 2w e os expoentes dos propagadores estdo
generalizados, embora se saiba que v7; = v = 1. A integral apresentada corresponde
ao diagrama da figura 3.1. O denominador tem claramente a estrutura da integral
do diagrama tipo bolha no caso especial -7:1511): Contudo, o0 numerador tem que ser
levado a conta durante o processo de integracdo com respeito aos momentos internos
tal como se mostra na equacéo (1.25). De fato, aplicando a formula (1.25) tem-se,

_ III2P2

faq [,
em® ] 7 @ e
e li(rp (1= 525) — @ +22) 2 9-Q) —m|4". (36)

Usando (3.4a) e (3.4b),a solugéo neste caso é somente,

)Y (pa QW) = _62

_ (L'IIL'QpQ

2 o —Xam
¥ (p, 2w) = _e/Da—g %7 [W'p (1 _ % ) _ m} A, (8.7)
’ (47r)w (1'1 +$2)w © T1+x2

O tnico termo que é diferente com respeito a integral escalar normal é o quociente

xlmjm. Mas ele tem uma interpretacdo simples de acordo com a representacdo de
vo—1

Schwinger. Ao lembrar que na abreviagdo [DZ existe um fator 52", o fator x5 no

numerador pode ser visto somente como uma mudancga no expoente (v — v+ 1). Por
outro lado, visto que ha um fator (x; + x2) “ na representacdo da integral escalar
normal, o fator (z; + x2) no denominador sugere que se trata da mesma integral
escalar mas com a dimensdo aumentada w — w + 1*. Desta forma, e tal como foi
antecipado na secéo 1.5, a integral tensorial foi reduzida a uma combinacéo linear de
integrais escalares, todas elas com a mesma estrutura no denominador mas com os
expoentes e a dimensio diferentes. A combinacio linear é,

62
z<p,2w>=(;)w{[i(l—w)v-p—mw]fl—i(l—m-pfz}, 3.8)

onde foi usada uma das formulas (3.2) e f; e f; representam as integrais escalares,
fi = @Am)*FB, (pm;vi =1,v9=1,D = 2uw); (3.92)
fo = (4m)¥tt FBy (p,mivy =1,vg =2,D =2w+2). (3.9b)

*Contudo, deve ser lembrado que no simbolo Dz estdo contidas fungdes gamma dependentes das
v;. Por isso, devem ser introduzidos fatores do tipo (v;), por cada fator z; no interior da integral.
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Por simplicidade, escolhe-se a regido de convergéncia de fﬁlb' ;7 de (2.22) para obter,

fi(p,2w) = (mz)w_2 W o1 (1, 2 — w;w; —p2/m2) : (3.10a)
fo(p,2w) = (mQ)w72 T(2w—w) oF1 (1,2 —wjw+ 1 —p2/m2) . (3.10b)
q,.
W

P=q

Figura 3.1: Diagrama a um loop da correcéo ao propagador do elétron.

No esquema de renormalizacgio usual [20], costuma-se exprimir (3.8) como,
E(p,2w) = A(w) + (ip-v+m) B(w) + 3¢ (p, 2w) , (3.11)

onde espera-se que os termos A (w) e B (w) independam de p e sejam os tnicos que
contenham divergéncias ultravioletas. O subindice no termo >’ 7 (p,2w) indica que
é finito com respeito as divergéncias ultravioletas, mas pode conter ainda eventuais
divergéncias infravermelhas. Para extrair os termos A (w) e B (w) enxerga-se (3.8)
como uma série de Taylor com respeito a iy ao redor de ip = —m, e s6 se precisa
encontrar os dois primeiros termos da série. Desta forma,

Aw) = X(p,2w)|

iyp=—m
2e2m
- W |:f1|i7'p:—m - (1 - w) f2|i’y-p:—m ) (3.12)
e,
_ 22w
Bw) = —5 R

2¢2

= W [(W —-1) (f1|i'y'p=*m - f2|iv'p=*m> +

+m(w—1) Y

a(uﬁ) (3.13)
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Deve lembrar-se que #> = p? e que nas derivadas ﬁ = —2@']153%2. Com isto em mente
e aplicando (C.12) e (C.14), obtém-se,
4 (2-w)
_ 2w—4 .
fl‘iry.p:_m - m (2(,() _ 3) 9
4 (2—-w)
_ 2w—4 .
fZ‘Z»y.p:_m - m (2(,() _ 2) 9
Af1 - m2w—5F (2 — CU) .
8(1’;15) B 2w-3) 7
2w—5
Af2 _ m F(2—w)(w—2) (3 14)
o (i) S (w—1) (2w —3)
Que ao serem introduzidos em (3.12) e (3.13) chega-se a,
e?m? 3 (2w — 1)
A = I'2-— 1
@) =7 e—3 L« (3.15)
e,
2., 2w—4 _
Blw)= S " Qw=Dpg oy (3.16)

(4m)° (2w — 3)
E interessante conferir em que sentido X (p,2w) é finito. Para isso, utilizam-se
os resultados precendentes, combinando (3.8), (3.10a) e (3.10b); chegando-se a ex-

pressao,
 e2m2o3T(2-w) 2H, 2w—-1)Hy 2w-—1
by 2 = a _
7 (p,20) (4m) [<w1+ w 2w —3 +
@tm) (o 2w-DH 2w-1 ’ (3.17)
m w 2w —3

onde H; e H, representam as fungoes hipergeométricas em f; e f> respectivamente.
Em particular,

H = 1+H<"f)+(2_w)w("f)2+o[(;f’§>3];

w m w(w+1) m

_ _ _ 2 3
o = e () e () o[ GR)]

Percebe-se que se a ordem zero é ignorada, existe sempre um fator (2 — w) acom-
panhando os termos das séries hipergeométricas H; e Hy. Se fosse possivel fatorizar
este (2 —w) fora dos parénteses, ele ficaria multiplicando a funcéo I' (2 — w). Visto
que perto do valor da dimenséo fisica de interesse (w — 2), a divergéncia sé existe
na funcéo I' (2 — w); a férmula (C.2) indica que a fatorizacdo de (2 — w) faria que a
expressao fosse finita no limite w = 2; isto é, X ficaria renormalizado. Para saber
se a fatorizacdo é possivel, s6 deve ser analisada a ordem zero nas séries H, e Ho. A
ordem zero de (3.17) é,

2m2e-3ra—w | (2 —w) (2w — 3w + 3)
Ef (p7 20:.)) = - (47r)ww(2§)—3)) [ w—1 -
(@ +m) (20% — 5w + 6)] +0 (‘m—pf) : (3.18)
m
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Deste resultado conclui-se que a fatorizacédo de (2 — w) s6 é possivel no termo que
independe de (i +m). Este termo corresponde a parte de ¥; renormalizada por
A (w). O termo que depende de (i + m) corresponde a parte renormalizada por B (w).
Esta parte néo ficou finita devido a uma divergéncia infravermelha causada pelo fato
de que a linha interna que corresponde ao féton tem massa nula. Todos estes resulta-
dos (inclusive a localizacdo da divergéncia infravermelha) concordam perfeitamente
com os obtidos na referéncia [20] onde este exemplo foi resolvido pelos métodos usuais
de integracdo usando a representacéo de Feynman.

3.2 Polarizacao do vacuo

A segunda integral divergente a um loop da QED é a polarizacéo do vacuo,

2w I~ . () — 1~ - —_ —
Jd 4 (iv-g—m) v, [iv- (a—p) VQm} | (3.19)
T [+ m2™ (g —p)* + m?

I1,,, (p2; Qw) =—¢*Tr

A topologia do diagrama continua sendo do tipo bolha; mas desta vez a estrutura do
denominador revela-se como a do caso F};‘lb.’ cuja solucdo esta nas equacgoes (2.15-
2.17). O numerador tem que ser levado a conta de novo. Antes da integracdo com

respeito a ¢,

2w o2
H,uz/ (p2;2w) — 2fd Q /D ¢2w zllfo —(:r:1+x2)m26_Q2 y

Tr ’m [w - (¢Q + ¢*xap) —m] v, [iv - (¢6Q — ¢*z1p) —m] (3.20)

onde ¢ = (21 + 1‘2)7%. Apés um pouco de manipulagédo com as formulas (3.3) tem-se,

2 JdQ SR (e m?
ZE
(2m)> (21 + 22)”
2¢ [(252 (77 yQ2 - 2Q;LQV) + ¢4$2$1 (zpupu - p277 y) + m277,uy] )
w I

_ N2
eQx

IL,., (p2; 2w) =

onde foram ignorados os termos lineares com respeito a ) pois eles sdo nulos segundo
(3.4b). Dadas (3.4a-3.4c) , tem-se finalmente,
2

—e
I, (p%2w) = P {n [m*f1 + (w = 1) fo] + (2pupy — p°n,) 3} (3.21)

onde,
fi = (4n)" ‘7:bub (pymyvy =1,ve=1,D = 2w); (3.22a)
fo = @n)T FL (pmivi = 1Lva=1,D = 2w +2); (3.22b)
f3 = (47r)w+2 flﬁlb. (p,myvy =2,v9=2,D =2w+4). (3.22¢)

Visto que na renormalizacéo interessa o limite p — 0, toma-se a regido de con-
vergéncia de flﬁlb. ;7 tal como é mostrada em (2.18),

i = (M) T(2-w) oF <1,2 ,5’,4’,22), (3.23a)
foo= (m 2)‘”1 (1-w) 2R (11w i) (3.23b)
fio= Fm)* T @-w) oF (22 -widigh). (3.23¢)
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qg—p

Figura 3.2: Diagrama da polarizacdo do vacuo a um loop.

Segundo um analise que pode ser feito entre func¢ées hipergeométricas contiguas [32,
p. 103], pode mostrar-se que,
—p2 _ 2 2 .2
2Py (L2-widi7) = o (L1-widi i) =2 (3%) 2R (22— wi 355 ) . B.29)

o qual é equivalnte a dizer que m?f; + (w — 1) fo = —p?f3. Isto simplifica o resultado
a expressio compacta,

I, (p%2w) = I(p*;2w) (00, — Pupy)

e? (m2)w_2 r2-w)
3(2m)”

2
o (2, 2 — w; 3 ﬁ) (p277,w — Puby) -

A possibilidade de fatorizar o tensor (p®7,, — pup,) que independe do pardmetro
regularizador w é uma vantagem notavel do método da regularizacdo dimensional.
Esta fatorizacdo corresponde a transversalidade do féton (invarianca de Gauge do
tensor de polarizacdo) e é uma simetria que a RD conserva. Com este ressultado,
a identidade invariante-Gauge p*Il,, (p*;2w) = 0 é vélida independentemente da
regularizacdo. O fato de que estas simetrias se conservem apéds a regularizacéo (e
ap6s a renormalizacdo) garante a unitariedade da matriz de espalhamento termo por
termo na expansio perturbativa. No momento de renormalizar s6 sera necessario
introduzir um contratermo II (0, 2w) na parte escalar,

Iy (p?; 2w) = 1T (p?; 2w) — I (0; 2) (3.25)

A finitude de II; para qualquer valor de w é facil de conferir, inclusive o limite w — 2
néo envolve nenhuma divergéncia. As divergéncias infravermelhas estdo descartadas
pois o diagrama da fig. 3.2 ndo contém linhas internas de massa nula. De novo, os
resultados concordam com aqueles obtidos na referéncia [20].

3.3 Correcao ao vértice

A 1ltima e mais complexa correcdo a um loop da QED é a correcédo ao vértice cujo
diagrama é mostrado na figura 3.3. Este diagrama costuma ser calculado com as
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pernas externas p; e p3 on-shell, satisfazendo-se as equagoes de Dirac (em espaco
euclidiano),
u (p3) (i3 +m) = (i +m)u(p1) = 0. (3.26)
A integral correspondente é entéo,
A" (pa, m; 2w) = _62/ d2w2q u(p3) v [i (@ — p2) - v — m]y* [1512 v —m] fya%?j(pl)?
@O g2 [(a-p2)’ + | [ 1))

(3.27)
cujo denominador é o caso particular -7:51. em (2.43). Devido a complexidade da inte-
gral, desde o inicio é util antecipar a estrutura da solucdo. Usando argumentos de
covarianca de Lorentz, e inclusive a identidade Gordon,

a (ps) (P +p5) u(pr) = @ (p3) [5 By — ") + 2imnH] u (1), (3.28)

espera-se que A* possa ser exprimida segundo os famosos fatores de forma [23, 22],
A (pa, m;2w) = u (p3) [7“F1 (p%, m; Qw) — 5 (p2), 0" Fy (p%,m; 2w)] u(pr), (3.29)

onde o = % [v*,7"], e F1 e F» sao funcgoes escalares.

Apesar de saber ja a estrutura final de A#, ainda fica um caminho arduo para obter
os fatores de forma a partir da integral (3.27). Apés a parametrizacdo de Schwinger e
a mudanca de variavel ¢ = ¢Q+xopo+x3p1, € possivel realizar a integracao gaussiana
com respeito a (), e o numerador adquire a forma,

N = a(ps)” [—%ézvﬁv‘% — ¢" (w33 — w10) V" (wathy + w3hy) +
+im¢? (z1ho7" — m3hay — 22y By — 23y h1) + M Y] vou (p1),  (3.30)

onde ¢ = (z1 + x2 + .Tg)_%. Como nos casos precedentes, é claro que foi obtida uma
combinacéo linear de integrais escalares (neste caso do tipo .7-"31.) com os parametros
de dimensédo w e os expoentes v; modificados.

O seguinte passo envolve uma intrincada manipulacdo algébrica do numerador;
incluindo a algebra das matrizes de Dirac, e as equacgées (3.26) e (3.28). Também é
muito importante aproveitar a simetria do diagrama, a qual permite identificar os
produtos dos parametros de Schwinger, ¢’z = ¢*xs, ¢ zsr; = d*rszs. Igualmente
é 1til considerar as identidades 1 = ¢? (x1 + 22 + x3), d*x3 = ¢t (x1 + 22 + x3). Se
estas simplificacGes ndo fossem levadas a conta, o nimero de integrais escalares di-
ferentes mostradas no numerador pareceria ascender a nove; mas com as simetrias
este namero se reduz a cinco. Portanto, a partir de (2.44) escolhem-se as seguintes
cinco funcgoes particulares,

Al = (m)* m P (L3 - B 7).
R#7) = (m)* F@(jj‘;; P (L2-w 7).
@] = (m*)*7 m 2 F1 (1,3 —w; 3; %) ;
falo*mim] = (%) 2 (QWF_(?;)_(;Z —3) 2b1 (1’ 3w %) ;
o3 T(3—w)

fs [P*zixa] = (m?)

’ 29 4m?2

2
o (23 - wi 37 )
(2w —2)6 2" “

40



Figura 3.3: Diagrama de correcéo ao vértice da QED a um loop.

onde nos paranteses quadrados foi indicada a combinacéo de pardmetros de Feynman
que altera a integral escalar original. Depois de que toda a tediosa manipulacéo
algébrica é feita, o fator de forma F fica,

8m2e2

[
e2m? =4 (10 — 4w)

= — _ 3. P
= T (w—3) '—w) 2F (1,3 w; 2,4m2>_ (8.31)

Fy (p3,m;2w) = 2-w) fa+ (w—1) fi

. 2 A . ~

O valor particular F; (p3 = 0,2w = 4) = £5 = 5= é muito famoso por ser a corregéo a

primeira ordem da razdo giromagnética que explica 0 momento anémalo do elétron.

Este fator de forma permanece finito independentemente da dimenséo. Pelo contrario,

o fator de forma F; contém divergéncias tanto infravermelhas como ultravioletas,
2¢?

o= e U om* 08) = s 2o )m® 28] +

fa2w—-1)m? + (w—1)p3fs — (1 —w)® fz} : (3.32)

Na expressao anterior s6 existem divergéncias quando w — 2 nas fungées f; e fo.
Todavia, cada uma delas tem um carater diferente. A divergéncia em f5 pode ser
eliminada substraindo um contratermo do tipo ﬁ (ev*) e é devida a uma di-
vergéncia ultravioleta. Esta divergéncia ultravioleta coincide com o valor encontrado
na literatura. A divergéncia em f; é do tipo infravermelho e esta associada a massa
nula do féton.

A solucdo geral de (3.27) encontrada nesta secéo é dificil de comparar através dos
resultados de outros autores pois néo foi possivel encontrar na literatura uma ex-
pressdo completa da integral com a dimensio generalizada tal como é apresentada
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aqui. Contudo, sdo conhecidas expressdes para limites particulares dos argumen-
tos. O fato de ter-se encontrado a correcdo adequada a razio giromagnética e o con-
tratermo a divergéncia ultravioleta correto ja é um indicio da validez dos resultados.
Também poderia comparar-se com o limite de transferéncia nula (¢, = p3 = 0),

22w '(2—w)(2w—1)
(2w — 3) ’

a

pp (3.33)

AP (phy = 0;2w) = 13 (p3) Y'ur (p1) — (4mp®/m?)
onde foi incluido o fator de massa i. No limite em que ¢ = 2 — w — 0, e usando a
expanséo (C.2), obtém-se,

3
A (g = 05€) = us (p3) YHu1 (p1) % - +4—-3vg+3n (471',u2/mQ) +0((e)|. (3.34)

Do termo divergente %, dois tercos correspondem a divergéncia infravermelha é s6
um terco corresponde a divergéncia ultravioleta. Este é o mesmo resultado obtido na
referéncia [22, p. 373].

3.4 Renormalizacao

Até o momento pode ser dito que foram calculados alguns diagramas da QED a um
loop com os pardmetros nus. Estes parametros precisam ser vestidos para eles ab-
sorverem as divergéncias ultravioletas no processo conhecido como renormalizacio.
Antes de prosseguir é util resumir as divergéncias ultravioletas (no espago de Min-
kowski e com ¢ = 2 — w) encontradas nas integrais precedentes,

0}

Yuv(pie) = p (= +4m); (3.352)
v «

My (€)= = 5— (Pupv = PNy 5 (3.35hb)

Ay (pre) = 7"4%6- (3.35¢)

Aigualdade dos fatores - em (3.35a) e (3.35¢) é conseqiiéncia da identidade de Ward

a um loop,
o

Ip,’

e mostra de novo que a regularizacido dimensional preserva a simetria de Gauge da

A (p1r =p3) = (3.36)

QED ordem por ordem na perturbacao. As partes divergentes (3.35a-3.35¢) coincidem
com as que sdo encontradas amplamente na literatura, como por exemplo em [26, p.
337]. Arenormalizacéo é efetuada comparando a densidade lagrangiana nua da QED,

Lp= —%FWFW + 9 (10 — m)p — e{b’y#wA“, (3.37)
quando sdo somados a ela os contratermos,
Leounter. = & (1528 - 6m) 7/] - %53}7‘””}7#’/ - elf&l{ﬁryud}Am (3.38)

onde ¢ é a carga renormalizada. As variaveis ¢; e J,,, reescalam os parametros da den-
sidade lagrangiana (massa, constante de acoplamento e constantes de normalizacao
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dos campos fermionicos e foténicos) de tal forma que eles absorvem as divergéncias ul-
travioletas e deixam as integrais das sec¢des precedentes renormalizadas (isto é, livres
de divergéncias UV). Isto acontece porque os contratermos geram diagramas adi-
cionais que contarrestam os infinitos. Os primeiros parametros que podem ser com-
parados diretamente entre (3.38) e (3.35a-3.35¢) sdo as constantes de normalizacéo,

ou seja,
by =~ (3.39)
4me
3 = ———. (3.40)
3me

Depois, define-se o rescalamento da carga nua eg como,
es (14 62) (1+65)% = eps (14 61), (3.41)

para assim comparar diretamente com (3.35¢) e obter,

by =0y = — 2 (3.42)

dme’

Com isto tem-se que a correcéo da carga a primeira ordem é,
(6%
- ,617).02. 3.43
e e(ue)u<+67T6 + O (a?) (3.43)

855 = 0); desta forma, pode calcular-se a

Por definicdo, a carga nua independe de p (

fungéo 3 (1; ),
(6
3r

De forma similar pode ser definido o rescalamento da massa nua,

B (use) = ,ugz = —ee + + 0O (63) . (3.44)

(1+02)mp =m—+ op, (3.45)
com,
— (3.46)
s

Com isto, a correcdo a carga a primeira ordem é,

mp=m <1 — 30[) +0 (63) ) (3.47)

4me
Com isto conclui-se a renormalizacdo da QED a um loop. Todos estes resultados sédo
bem conhecidos e nesta secdo s6 se teve que reproduzir a metodologia padrédo. A
novidade reside em que eles foram obtidos a partir de integrais achadas pelo NDIM,
o qual caracteriza-se por néo precisar das aproximacéo tradicionais quando se tenta
integrar segundo os parametros de Feynman. Em particular, resultados tdo gerais
como (3.31) e (3.32) néo sdo encontrados na literatura.
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Capitulo 4

Discussao

O NDIM é aplicavel em geral a qualquer diagrama de Feynman escalar indepen-
dentemente da sua topologia ou do nimero de massas internas. Contudo, a possivel
complexidade dos resultados finais faz com que nem sempre seja otimamente vanta-
joso usa-lo. Um exemplo disso sdo os resultados Fé‘i mostrados nas tabelas 2.2-a e
2.2-b, os quais, apesar de mostrar solu¢ées exatas da integral, ndo sdo muito uteis
enquanto ndo se tenha uma classificacdo das solugbes em regides de convergéncia
(tarefa que resulta muito dificil). Isto significa que uma das dificuldades do NDIM se
apresenta quando aparecem nas solugoes funcgoes hipergeométricas de mais de duas
variaveis; quanto mais variaveis houver na funcio hipergeométrica, mais complexos
serdo os resultados. Outra fonte de dificuldade no método é o nimero de solugdes
independentes extraidos de diferentes escolhas do conjunto de indices livres {n;} na
expansao em série (1.35); quanto maior for esse nimero de solucdes diferentes, mais
dificil sera a sua classificacéo e mais tediosa sera a construcio da solugédo final. Final-
mente, uma ultima fonte de dificuldades é o nimero total de simbolos de Pochhammer
néo redutiveis na série hipergeométrica final, assim como no coeficiente externo da
solucdo; por exemplo, uma funcéo do tipo F  (a), 2F} é evidentemente mais simple
do que uma do tipo F  (a), (c),; 3F». Para poder avaliar a utilidade e a pertinéncia do
NDIM é necessario revisar o seu algoritmo completo e examinar sob quais condi¢coes
surgem estas complicac¢oes. O algoritmo do NDIM resume-se em:

1. Encontra-se a parametrizacédo de Schwinger (1.20) da integral de Feynman geral
(1.1) no caso escalar (V{#} = 1) e de preferéncia apés a rotacdo de Wick. O dia-
grama de Feynman correspondente se caracteriza por ter M massas diferentes
nas suas linhas internas, E linhas externas, N linhas internas e L loops. Em
geral M < N.

2. Apoés a integracdo nos momentos internos (1.27), minimiza-se o nimero de ter-
mos no argumento da exponencial procurando que esta fique na forma,

N R () N
T 2| _ r\Tj) ;2 2
exp{ p Dp—ijmj = exp _;det (A)kr —Jz::lx]mj , 4.1)

Jj=1
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= N(N-1 . )
onde os k. sdo R = % combinacoes lineares independentes dos momentos

externos p; e os K, (z;) sdo multinomios dos pardmetros de Feynman de grau
L + 1. Com isto se deduz que o numero de escalas de energia envolvidas no
diagrama é R+ M. Na referéncia [14] expoe-se um método recursivo para achar
os coeficientes K, (z;).

3. Através de fatorizacoes adequadas nos multinémios W, e no determinante det (A),
é encontrada uma expanséo em série otimizada da exponencial (1.35) que en-
volve S indices de soma ns. Durante o processo sdo feitas expansdes em multi-
regides do tipo (B.8). Por cada uma dessas expansodes aparece um vinculo linear
nos indices {n,}. Seja Y o nimero total dessas expansées. A otimizacéo resume-
se em minimizar S e maximizar Y.

4. Usa-se a formula (1.38) para integrar com respeito aos parametros de Schwinger.
Este processo deixa um vinculo linear sobre os indices {ns} por cada linha ex-
terna do diagrama. Portanto, o nimero total de vinculos lineares sobre os {n,}
éY + N.

5. Procuram-se solugoes em forma de série hipergeométrica para cada uma das
combinacdes de indices livres {n;} C {n,}. O nimero total de indices livres (e
portanto o nimero de variaveis na série hipergeométrica) é U = S—Y — N e por-

P s e . . S o S! ~ .
tanto havera em principio V = ( S_y_ N) = TEM(EV= solucoes diferentes.
Dado que o numero de escalas de energia envolvidas é R+ M e que as variaveis
das fun¢oes hipergeométricas sdo quocientes entre estas escalas, espera-se que
o numero de variaveis das fungoes hipergeométricas satisfaca a desigualdade,

U=S-Y-N>R+M-—1.

Se diz que o NDIM ¢é aplicdvel de maneira 6tima se a desigualdade anterior vira
uma igualdade [15]. O ntumero de simbolos de Pochhammer presentes tanto na
funcao hipergeométrica como no coeficiente externo pode estimar-se segundo o
numero de func¢ées gamma néo independentes no denominador de (1.37); esse
numeroé W =Y + N.

6. Finalmente, as solucoes sdo agrupadas segundo a regido de convergéncia das
séries hipergeométricas fazendo combinagdes lineares de solugoes linearmente
independentes por cada uma das regides cinematicas definidas. Estas regides
surgem naturalmente dos limites impostos pela superficie de Landau tal como
é ilustrado na figura 2.2.

Na parte 5 do algoritmo precedente levam-se em conta as possiveis formas de
complexidade nas solucées fornecidas pelo NDIM discutidas no inicio do capitulo.
Estas complicagoes sdo condensadas nos trés nameros U, V e W. Para falar apro-
priadamente, estes nimeros definem cotas superiores da complexidade das solugdes
pois, tal como foi visto no capitulo 2, sempre existe a possibilidade de que eventual-
mente a solucdo final seja mais simples: algum dos indices n; pode acabar sendo de-
pendente ou definindo uma func¢éo hipergeométrica redutivel, o nimero de solugoes
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relevantes pode ser significativamente menor que V, as fungbes gamma no nume-
rador de (1.37) podem ser tais que nio é necessario adicionar termos no coeficiente
externo, etc. Contudo, estes parametros ilustram a grosso modo como o tipo de dia-
grama afeta a complexidade das solugdes obtidas pelo NDIM. Uma das conclusoes
mais surpreendentes que podem ser extraidas da analise precedente é que o niimero
de loops L do diagrama pode ser relativamente irrelevante para a complexidade dos
resultados do NDIM. Certamente o nimero de loops afeta o grau e a extensdo dos
multinémios W, e det (A) (isto pode aumentar os parametro S e Y), mas sempre que
estiverem dadas as condi¢oes de aplicabilidade 6tima o nimero U permanecera in-
alterado e o nimero V resultara minimamente afetado. Outra concluséo curiosa é
que se observa é uma espécie de compensacdo da minimizacdo dos nameros U e V
com respeito ao numero W. Isto significa que parte da complexidade removida pelo
método de otimizacdo do NDIM é transferida ao nimero de simbolos de Pochhammer
na funcdo hipergeométrica. Essa transferéncia é todavia vantajosa enquanto é mais
facil manipular fungdes hipergeométricas de menos variaveis embora elas envolvam
mais simbolos de Pochhammer.

(a) (b) () L (@)

Figura 4.1: Diversas topologias de diagramas de Feynman a um loop. Os diagramas
(a), (b) e (c) permitem a aplicacédo 6tima do NDIM [15]. O loop master em (d) é um
exemplo classico para o qual ndo é possivel a aplicdo 6tima do NDIM [13](para ele
S=13eY = 3).

Para completar a analise da aplicabilidade do NDIM falta ainda um elo referente
as condicgdes sob as quais 0o NDIM é aplicavel de maneira 6tima. Até o momento néo se
conhece uma resposta geral e a priori de como surgem S e Y a partir de um diagrama
especifico; sabe-se somente que estes numeros dependem profundamente da topolo-
gia do diagrama (veja-se figura 4.1). Apesar de que néo se saiba em geral quando
um diagrama podera ser resolvido de maneira 6tima pelo NDIM, existem algumas
tendéncias gerais sobre a extendibilidade do método a outros diagramas a partir de
um diagrama nfo massivo que se sabe que é 6timo para o NDIM. Um exemplo é a
possibilidade de adicionar mais loops ao diagrama de tal forma que estes loops séo
ainda redutiveis (veja-se figura 4.2). O diagrama da sec¢éo 2.4 foi um exemplo dessa
redutibilidade. A outra opgéo é a de adicionar massas ao diagrama. A adi¢do de uma
variavel de massa em uma ou varias linhas do diagrama supde em principio aumen-
tar o namero de escalas de energia em uma unidade. Contudo, isso ndo garante que
a multiplicidade U das solugdes aumente na mesma quantidade a menos que o dia-
grama mantenha a aplicabilidade 6tima do NDIM. Como regra geral, sabe-se que a
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aplicabilidade 6tima é conservada s6 se a massa é adicionada as linhas de um unico
loop [15]. Se a mesma massa é adicionada a linhas de loops diferentes, a aplicabi-
lidade 6tima é quebrada. Em definitiva, o NDIM é vantajoso para diagramas com
poucas linhas externas (ou varias destas linhas on-shell), com poucos parametros de
massa internos e de determinadas topologias. Agora que ja se sabem as limitacgoes,
cabe perguntar: quais séo, no final, as vantagens do NDIM? Algumas das vantagens
mais destacaveis séo,

e O NDIM permite resolver integrais de Feynman escalares com a sua dimenséo e
expoentes nos propagadores generalizados. Isto significa que é particularmente
util nas aplicacoes da regularizacdo dimensional e também permite a sua ex-
tensdo direta a integrais com estrutura tensorial enquanto estas sdo sempre re-
dutiveis a uma combinacéao linear de integrais escalares. Vale a pena esclarecer
que o NDIM néo faz nenhuma aproximacio no momento de obter resultados em
dimensoes gerais e por isso resulta util para comparar teorias com densidades
lagrangianas equivalentes mas com dimensdes espaciais diferentes.

e Deixando do lado a justificacédo relativamente técnica do calculo fraccional, a
matematica envolvida no método (integrais gaussianas, manipulagéo algébrica
de séries de poténcias e polinémios, funcdo gamma, sistemas lineares de equa-
coes) é relativamente elementar. Além disso, os passos do método sdo notavel-
mente gerais e diretos como para permitir que varias de suas fases sejam pro-
gramaveis computacionalmente. O mesmo carater elementar das matematicas
envolvidas faz com que as ferramentas computacionais necessarias sejam am-
plamente accessiveis.

e Os resultados finais em termos de func¢es hipergeométricas sdo analiticamente
confortaveis. Por exemplo, estas funcées séo de facil diferenciacdo. Também, a
sua apresentacdo em forma de séries de poténcias basicas facilita o seu calculo
numérico pois a convergéncia costuma ser rapida. Igualmente, no caso em que
U < 2, as fungoes hipergeométricas que se apresentam estdo muito bem estu-
dadas matematicamente (muito melhor que por exemplo os dilogaritmos usa-
dos em outros métodos [18]). Também nZo é desprezivel o fato que o método
recolhe intrinsicamente fenémenos da estrutura formal das integrais de Feyn-
man como a sua ramificacdo através de superficies de Landau e a extendibi-
lidade analitica. Isto permite mais seguranca no momento de aplicar o re-
sultado adequado em cada uma das regides cinemaéticas envolvidas. Contudo,
as funcoes hipergeométricas néo sdo absolutamente confortaveis. Por exemplo,
reducoes destas funcgdes como (C.18) e (C.19) contém sutilezas, assim como uma
soma do tipo (3.24). De qualquer forma, ja se conhecem maneiras de passar da
representacio em fungoes hipergeométricas a outras representacoes [19].

A vantagem com respeito a extendibilidade do NDIM a integrais com estrutura
tensorial precisa de um comentario a mais. No capitulo 3 observou-se que as inte-
grais tensorias envolvidas podem ser bastante mais complicadas do que as integrais
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@ (b)

Figura 4.2: Diagramas redutiveis loop por loop baseados em uma topologia basica
para a qual o NDIM é aplicavel otimamente. O diagrama (a) esta baseado no dia-
grama tipo burbulha. O diagrama (b) basea-se no diagrama (c¢) da figura 4.1.

escalares subjacentes. Estas complicagdes parecem depender muito do tipo de teoria
de campos que esta sendo analizada e néo fica claro até que ponto a busca de uma
solucdo completa e exata continua sendo razoavel. Também néo parece existir uma
forma simples de fazer a decomposicio de integrais tensoriais em escalares quando

se supera o nivel de um loop (L = 1); pelo menos ndo da mesma forma do capitulo 3.
o)
(/\ I?Q)k

Os termos do tipo
e A\ = det (A)).

em (1.25) sdo néo triviais quando L > 2 (para um loop O = 1
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Capitulo 5

Conclusao e perspectivas futuras

Neste trabalho foi explicado o método de integracdo em dimensdo negativa desde o
contexto da parametrizacio de Schwinger e a expansio em série de Taylor-Riemann
(B.6). O NDIM caracteriza-se por ser um método que soluciona integrais de Feyn-
man em funcdo de combinagdes lineares de séries hipergeométricas definidas em
dominios cinematicos especificos. Cada solucdo definida em um dominio esta rela-
cionada com as outras solugbes por meio de continuacées analiticas. Outra carac-
teristica notavel do NDIM é que o método permite resolver as integrais com a di-
menséo e os expoentes dos propagadores generalizados; propriedade util para a sua
extendibilidade a integrais com estrutura tensorial. Também foram explicados de-
talhes da estrutura analitica das integrais de Feynman como a forma de tratar as
divergéncias no integrando e a extendibilidade analitica das solugdes. Com respeito
a esta ultima analise, foi incluida uma discusséo sobre a possivel ramificacdo das
integrais de Feynman a través das superficies de Landau e mostrou-se como estas
propriedades aparecem naturalmente no NDIM nas regides cinematicas definidas
pelas regides de convergéncia das séries hipergeométricas. Foram calculadas varias
integrais de Feynman particulares a um e dois loops. Apesar de certas sutilezas no
momento de reduzir func¢bées hipergeométricas, mostrou-se que muitos casos parti-
culares das integrais (massas iguais ou nulas, pernas externas on-shell) sdo relati-
vamente faceis de encontrar a partir dos resultados gerais e que o método preserva
uma grande coeréncia nesse processo. Alguns resultados particulares ilustraram a
vantagem da otimizacdo do NDIM proposta em [15]. Provou-se a aplicabilidade do
NDIM a estrutura das integrais divergentes da QED a um loop. Esta aplicacéo ilus-
trou também a extendibilidade do NDIM a integrais com estrutura tensorial. Os
resultados correspondentes a correcéo ao vértice destacam por néo estarem expostos
na literatura com a generalidade e exatitude com que foram apresentados neste tra-
balho. Finalmente, foi feita uma discussao das limitacdes e as vantagens do NDIM
desde um enfoque atualizado. Com vista nestes resultados, propéem-se as seguintes
extensoes e complementos em trabalhos futuros:

e O NDIM esta muito limitado pela dificuldade de manipular func¢ées hipergeo-
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métricas de mais de duas variaveis. Todavia, seria interessante analisar este
tipo de resultados apesar das complicacdes e avaliar quantas propriedades van-
tajosas ainda sobrevivem a estes casos dificeis. Também é importante examinar
se é possivel sistematizar a construcio e classificacdo desses resultados.

e Em uma direcdo diferente, se deve consolidar a utilizacdo harmoénica do NDIM
(iniciada na referéncia [13]) com outros métodos de integracao (tais como a
integracdo por partes e a representacio de Mellin Barnes) que sobrelevem as
dificuldades intrinsecas de NDIM. Também é necessario provar a possibilidade
concreta de decompor integrais tensorias em escalares quando se passa do nivel
de um loop.

e O NDIM possui uma linha de processos quase completamente algoritmica. Isto
sugere que é provavel que NDIM seja automatizavel computacionalmente na
sua totalidade e seria muito importante avaliar esta possibilidade. Talvez para
conseguir este objetivo terdo que ser conseguidos resultados nas linhas expli-
cadas anteriormente.

e Precisa-se extender a aplicabilidade do NDIM a casos mais complexos em teo-
rias quinticas de campos de alta importiancia fisica como a cromodinidmica
quéntica (QCD) e inclusive a mesma QED a niveis de mais de um loop. Em vista
dos resultados do capitulo 3, também seria 1til observar como as divergéncias
infravermelhas (as quais nédo sdo controladas pela regularizacdo dimensional)
sdo realmente inofensivas nos resultados achados por NDIM*. Novamente, é
possivel que o progresso destes objetivos dependa parcialmente das perspecti-
vas precedentes.

e Finalmente, deve mencionar-se a procura de aplicacoes do NDIM a integrais
diferentes as contempladas neste trabalho. Inclusive pode ser que existam
aplicacoes além do processo de integracdo. Em este sentido deve ressaltar-se
uma grande omisdo que foi feita neste trabalho. Ja existe uma boa quantidade
de resultados muito prometedores que exploram a aplicabilidade do NDIM a
integrais de Feynman nos Gauges néo covariantes; especialmente o cone-de-luz

[9].

*Nos exemplos do capitulo 3 foi relativamente facil separar as divergéncias infravermelhas porque
eram conhecidas com antecedéncia. Ainda permanece a pergunta de como reconhecé-las sem acudir a
este tipo de conhecimentos prévios.
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Apéndice A

Continuacao analitica

Uma funcio (real ou complexa) f é analitica em um ponto 2, se existe uma vizinhanca
que contém zy na qual é possivel representar a funcédo f como uma série de Taylor ao
redor de zp. Em analise matematica de uma ou varias variaveis complexas, esta pro-
priedade é equivalente a ser diferenciavel numa vizinhanca ao redor de z, (holomorfa
ou regular), o que também implica infinita diferenciabilidade. Para provar que uma
funcéo de varias variaveis complexas é analitica basta provar que a funcéo é analitica
em cada uma das suas variaveis mantendo as demais fixas. Estas relacbes néo séo
validas na andlise de variaveis reais e demonstram o grande alcance da analise com-
plexa. A técnica de continuacio analitica se baséia no seguinte teorema [30], no qual
o termo dominio é usado no sentido topolégico de um conjunto aberto e conexo:

Teorema 1 Seja uma fung¢do complexa w; (z) analitica em um dominio G, € C. Seja
também uma funcgdo ws (z) analitica em outro dominio Go. Suponha-se que a inter-
seccgdo G1 N G é conexa e ndo vazia. Se existe um conjunto aberto ndo vdzio S que
pertence a G1 NGy tal que as fungoes wy e wy coincidemem S (z € S = wy (2) = we (2)),
entdo as funcdes wy e wo restritas a interseccdo G1 N Go tém que ser equivalentes
(z € G1NGy = wi (2) = wa (2)). Além disso, a extensdo™ dessas fungées no dominio ex-
tendido G1 UG5 é a tinica extensdo possivel que é analitica em todo o dominio G1 U Go.
Esta tnica extensdo é conhecida como continuacao analitica.

O teorema é igualmente valido no caso de func¢oes de varias variaveis complexas,
mas nesse caso entende-se z e (G; respectivamente como um ponto e um dominio do
espaco C". A continuacéo analitica é especialmente 1util quando se possuim desen-
volvimentos em série ou representagoes integrais de uma funcao. Tanto as séries
como as representacées integrais costumam ter um dominio restrito no qual elas tém
um bom comportamento e representam fungées analiticas. A pergunta fundamental
é se é possivel extender esse dominio no qual a funcgéo é analitica. O dominio maximo
em que a funcéo pode ser continuada analiticamente é conhecido como dominio natu-
ral . As integrais de Feynman sdo no fundo representacées integrais de termos per-

*Por extenséo da funcédo entende-se a fungéo que em cada dominio particular G; coincide com w;.
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turbativos no calculo de amplitudes de probabilidade da matriz de espalhamento. Em
conseqiiéncia, o problema da continuacio analitica emerge naturalmente no calculo
dessas integrais. Por outro lado, o caso da rotacdo de Wick ou a regularizacédo di-
mensional proporcionam outra forma de aplicar a continuacédo analitica nas inte-
grais de Feynman. Se uma expressio apresenta um comportamento dificil de ana-
lisar (como no caso das integrais de Feynman no espaco de Minkowski) ou inclu-
sive patolégico (como os diagramas divergentes que precisam de regularizacio), a
continuacdo analitica serve como uma ferramenta na qual se procura uma extenséo
adequada dos pardmetros da expressdo até um dominio no qual as dificuldades néo
se apresentem. Devido a unicidade da extensio, os resultados no novo dominio e
o caminho de volta ao dominio original de interesse estdo garantidos. Contudo, as
condicdes nas quais a extenséo é possivel devem ser entendidas.

A continuacédo analitica de uma func¢éo desde um dominio G; até outro dominio G5
chama-se direta se ela é feita através da intersecc¢éo conexa nédo vazia G; N G2 na qual
os dominios coincidem. Também é possivel fazer uma continuacéo analitica indireta
no sentido de que sdo usados varios dominios sucessivos G1, G, ... para os quais ex-
iste uma continuacdo direta entre um dominio e o seguinte. Alids, dada uma funcéo
analitica f em um dominio G, se diz que f tem uma continuacfo analitica direta em
um ponto p € JG na fronteira de G se existe um dominio que contém p para o qual
f tem uma continuacéo direta desde G até G,. O caso da extendibilidade de funcdes
definidas por séries de poténcias é especial para a continuacéo analitica pois a analiti-
cidade é justamente definida segundo a existéncia de tais series. O dominio das séries
de poténcias costuma ser definido através do seu disco (ou poli-disco) de convergéncia.
Define-se um elemento da funcdo f a tripla f (z, K)onde f é representada através de
uma série de poténcias cujo disco de convergéncia é o disco aberto K com centro em
z. Dado que os discos abertos formam uma base topolégica, a continuacéo analitica
estuda-se facilmente através de elementos de funcdo. Em particular, é especialmente
importante estudar a continuacdo analitica ao longo de uma curva. Um elemento de
funcao fy (20, Ko) tem continuacgéo analitica ao longo de uma curva ~ : [0,1] — C” se
para todo ¢ € [0, 1]: existe um elemento de funcéo f; (z;, K;) com z; = (), e existe um
aberto néo vazio B (t,e;) = {t' € [0,1] : [t = t'| < et Ay (t') € K;} tal que se t’ € B (t, ;)
entao as funcoes f; e fi coincidem em K; N K. Na figura A.1 ilustra-se esse conceito.
A continuacio analitica ao longo de uma curva é unica no sentido que se existem dois
conjuntos de dominios e fun¢des intermédias ( f;, K;) e (g¢, J;) definindo a continuacao
analitica ao longo de v, as fungdes f; e g1 coincidirdo em K; N J;. Essa unicidade é o
conteudo fundamental do teorema de monodromia:

Teorema 2 Seja uma funcao f definida inicialmente num disco aberto U. Se ex-
iste um dominio W D U simplesmente conexo no qual a func¢do pode ser continuada
analiticamente ao longo de toda curva v : [0,1] — W, entdo existe uma tinica extensdo
da funcdo f em todo W tal que a funcdo é analitica em todo o seu dominio.

Do teorema surge uma pergunta ébvia: O que acontece se o dominio W é multi-
plamente conexo? A pergunta sé é interessante se W é extendido suficientemente, no
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sentido de que existe um conjunto fechado ndo vazio S, disjunto com respeito a W,
tal que S U W forma um dominio simplesmente conexo, mas para o qual ndo exis-
te continuacéo analitica ao longo de uma curva que va desde o elemento de funcéo
definido por f e U até qualquer ponto da fronteira de S. O conjunto S merece o
nome de conjunto singular’. Os tipos possiveis de conjunto singular dependem pro-
fundamente da dimensionalidade complexa n (ao falar do espago C"). Para o caso
n > 2, os conjuntos singulares ndo podem ser compactos (limitados e fechados), resul-
tado conhecido como lema de Hartogs. Nas condigdes assim descritas, a continuacéo
analitica ao longo de curvas no interior de um dominio W multiplamente conexo pode
dar lugar ao que se conhece como ramificacdo e as confusamente chamadas funcades
multivaloradas. Isto significa que a funcéo na vizinhanca do ponto final ~ (1) pode
depender da curva v (t) e de como ela rodeia o conjunto singular S. Se diz que a
funcdo é multivalorada no sentido de que se v fosse um laco fechado (v (0) = ~ (1)),
apés a continuacdo analitica o fendomeno de ramificacdo poderia resultar em uma
funcéo totalmente diferente na vizinhanca do ponto inicial. Devido ao fenomeno de
ramificacéo, o dominio natural das functes obtidas por continuacédo analitica costuma
ser estudado através de uma variedade complexa n-dimensional e ndo através de um
conjunto aberto de C". Dentro da variedade complexa, os elementos de func¢io ex-
traidos por continuacdo analitica ao longo das curvas séo juntados apesar de que eles
podem representar funcoes complexas diferentes na vizinhan¢a de um mesmo ponto,
como se a variedade complexa fosse um dominio complexo de C" com varios andares.

Figura A.1: Tlustracdo da continuacao analitica ao longo de uma curva.

Contudo, é possivel que haja um conjunto singular néo vazio S ao redor do qual
néo ha ramificacdo. Um exemplo tipico dessa situacdo acontece em uma variavel
complexa quando em todo o dominio multiplamente conexo W C C a funcéo f é
analitica (e portanto univalorada) e S é um conjunto discreto composto de singula-

fNote-se que na definicdo de conjunto singular néo se requereu que existisse propriamente uma
funcéo f analitica em todo o dominio multiplamente conexo . O importante aqui é a possibilidade de
continuacéo analitica do elemento de funcéo (f,U).
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ridades isoladas s; € S, tal que para cada s; existe uma vizinhancga U; que contém s;
eU; — {s;} € W, isto é, U; pertence a W com a exce¢do do ponto s;. Os pontos s; sdo
conhecidos como singularidades isoladas. Ao redor dos s; néo é possivel representar
a funcdo como uma série de Taylor, mas ao redor delas sempre é possivel representar
a funcéo como uma série de Laurent. Se a série de Laurent tem um ndamero finito de
termos ndo nulos com poténcias negativas, a singularidade é um polo. Se o niimero
de termos néo nulos com poténcia negativa é infinito, a singularidade isolada chama-
se essencial. Se dentro de um dominio U de uma variavel complexa a funcao s6 tem
pontos onde é analitica ou tem polos entéo a fungdo chama-se meromorfica em U. Fi-
nalmente, se o conjunto S é um ponto isolado (mas ndo uma singularidade isolada)
de C tal que ao redor dele a funcéo néo pode ser univalorada, entéo a singularidade é
chamada ponto de ramificacdo. Os pontos de ramificacdo sio classificados de acordo
com a multiplicidade que toma a fungéo ao redor deles; se a multiplicidade é finita o
ponto de ramificacéo é algébrico, se néo, logaritmico.

A classificacdo dos conjuntos singulares é muito mais dificil no caso de varias
variaveis complexas. De fato, o lema de Hartogs garante que néo existem singular-
idades isoladas para o caso n > 2. Contudo, no caso de integrais de Feynman, ao
analisar a representacdo (1.4), o fisico soviético Lev Landau encontrou uma condi¢édo
necessaria para que aconteca a ramificacéo [37, 22]. O dnico comportamento grave do
integrando em (1.4) acontece quando o caminho de integracéo definido pelas variaveis
{qf: , a:j} encontra a hipersuperficie {2 na qual o denominador,

N
T = a;[r}(p,q) — m]] +ie, (A1)
=1

é zero. Esse comportamento néo é suficientemente grave a menos que a hipersu-
perficie forme um ponto de belisco (pinch point) no caminho de integra¢do. O ponto
de belisco pode ser pensado da seguinte forma: Imagine-se que é escolhida uma das
variaveis em {qZ ,xj} e é designada como (, e todas as demais variaveis (incluidas
as m; e pl') séo codificadas na variavel z. Sendo assim, o possivel comportamento
patolégico de (1.4) ao longo do caminho de integracéo de { se reduz a analise de uma
integral da forma,

d¢

I(2)= /C FCo) (A.2)
onde F'((,z) é um polindmio com respeito a { cujo grau maximo é dois, e C' é um
contorno que vai desde ( = (4 até ( = (5. Em estas condicdes, se descarta a possibili-
dade de que F ((, z) independa de ¢ pois isso significaria que o contorno C' é tangente a
hiper-superficie {2 e portanto um pequeno deslocamento nas outras variaveis poderia
para evitar o comportamento singular e a ramificacéo (o caminho de ¢ poderia rodar
analiticamente ao redor de (2). Daqui se deduz que a interseccédo de €2 com o plano ¢
consiste basicamente dos zeros de F'((, z) (para z fixo, 0 nimero maximo de zeros é
dois) que, possivelmente, se deslocam continuamente ao longo de uma curva no plano
¢ segundo as variacoes de z. Chame-se a estes zeros (; (z) e {5 (z). Se cada uma das

curvas (; (z) e (, (z) cortasse separadamente o contorno C' néo haveria ramificacio
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pois a unicidade seria ainda possivel através de deformacgoes adequadas do contorno
C. S6 pode acontecer ramificacdo se os zeros cortam o contorno C simultaneamente
ou passam pelos pontos extremos do contorno (Veja-se figura A.2). Em tal caso se
produz o ponto de belisco pois o contorno fica encerrado por 2. Sabendo ja o que sig-
nifica um ponto de belisco se procedera a examinar a possibilidade que ele surja em
uma integral como (1.4). O denominador (A.1) depende de ¢} s6 se existe um j' para
o qual z;; # 0. Para todo z;; # 0 o fato de estar em (2 significa que a linha ;' devera
estar on-shell (r?, = m?,) a menos que a analise tenha que ser feita no contorno de
z;. Nestas condi¢es, para que a integral de contorno em ¢!’ fique encarcerada em 2,
precisa-se que as raizes da equagéo quadratica com respeito a g}’ no denominador 7
tenha os seus zeros degenerados. Isto se garante se,

or

_ _ . 2 _ 2,
(qu_zz:gjkxjry_o, jeJ=ri=mi (A.3)

j
jeJ

onde o conjunto J corresponde as linhas internas no loop & que estédo on-shell. Para
qualquer linha que estiver off-shell, a inica condi¢éo possivel é que x; = 0,

7“]2 #* m? =z; =0. (A.4)

As equacgbes (A.3) e (A.4) chamam-se equacées de Landau. Elas definem uma pro-
funda restricdo em (2 que termina definindo uma hipersuperficie nas variaveis ex-
ternas m; e p; conhecida como superficie de Landau através da qual pode haver

ramificacdo (mas néo é necessario que seja assim pois se trata de uma condicéo
necessaria mas néo suficiente).

Figura A.2: Tlustracdo da formacdo de um ponto de belisco (pinch point) no contorno
C. (1) Se o ponto singular corta o contorno separadamente sempre é possivel evitar a
singularidade através de uma deformacao infinitesimal do contorno. A singularidade
nédo é evitavel se: (ii) dois pontos singulares cortam C simultaneamente ou (iii) o
ponto singular toca um extremo de C.
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Apéndice B

Fundamentos matematicos do NDIM

Neste apéndice procura-se justificar a interpretacdo da equacio (1.30) e em espe-
cial a natureza da expansao em série (1.29). A validez da deducdo do NDIM requer
que os indices n na somatoéria possam tomar valores negativos e inclusive, para que
haja consisténcia com a regularizacao dimensional, eles deveriam poder ser numeros
complexos perto de um numero inteiro. Como ja foi dito, as técnicas do calculo frac-
cional sdo as que justificam estas condi¢ées. O calculo fraccional come¢a como uma
extensdo do procedimento de achar a integral indefinida de uma fung¢éo de variavel
real. Comece-se entdo com a integral fraccional de Riemann-Liouville, a qual néo é
mais que uma extensio da formula integral de Cauchy,

a IS S A A O
DYt o) = o | e e ®B.1)

onde ¢ € R e « pode ser qualquer nimero complexo com Re {a} < 0. Para os inte-
resses particulares desta secéo, basta considerar a integral fraccional de Liouville ou
de Weyl, que corresponde ao limite ¢ — —oco, e daqui para frente sera escrito sim-

plesmente DS em vez de DS

- Pode provar-se que quando « é um inteiro negativo a

formula (B.1) corresponde ao processo de integrar repetidas vezes a funcéo f (z). Em-
bora (B.1) néo esteja definida adequadamente para quando Re {a} > 0, existe uma
forma de fazer uma continuacéo analitica para todo o plano complexo de o sempre
que a funcao f (z) seja bem comportada. Se o € (0,00), o operador D¢ é conhecido
como derivada fraccional. O operador geral D¢ é conhecido como difer-integral. Na
semi-reta real positiva, a € [0, 00), este operador se resume na seguinte expressao,

D () = ﬁ%[D?*af(as)] 0§m—1§a<m,m€Z'
‘ A7 f (x) a€Z, a>0

dx™

(B.2)

Naturalmente, se percebe que quando @ = 0 o operador difer-integral ndo é mais
do que a identidade (DY = 1). As difer-integrais de Liouville (ou de Weyl) sdo tteis
para a justificacdo do NDIM porque apresentam a seguinte formula simples para a
difer-integral da exponencial [27, 28],

D¢ exp (Bx) = %exp (Bx) . (B.3)
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Os métodos do calculo fraccional séo diretamente extensiveis a fungdes complexas,
de tal forma que os niimeros c e z em (B.1) podem ser complexos e a integral é en-
tendida ao longo da curva reta que conecta ¢ com z. A expansdo em série usada no
NDIM, conhecida como expanséo de Taylor-Riemann, baseia-se no seguinte teorema
devido a Osler [29],

Teorema 3 Seja f(z2) = (2 —0)7h(z), onde 0 > —1, e h(z) é uma fung¢do que é
analitica em certo dominio U que contém o disco D com centro em zy e raio r > Q.
Suponha-se que b € D. Se z # b pertence ao circulo C = {z € C:|z—b| = |z — 2|}
entdo, para todo o € R, a seguinte expansdo em série existe e é tinica,
00 [Dn+a (Z)]
— z—b 2=20 _ n+ao B.4
Fe= 3 e e ®

n=—oo

_l’_

Onde no lado direito se escolhe o ramo de (z — zp)""* no qual arg (b — 29) < arg (z — z0) <

arg (b — a) + 27 e fixa-se arg (b — a) € [—m, 7).

Quando o teorema é extendido é aplicado a func¢éo exponencial, obtém-se a ex-
panséo de Taylor-Riemann,

> n+a

exp (x) = Z [Dp+ exp <m)]x:0 Tl :c

TA+nta) (B5)

n=—oo

onde « pode ser qualquer ndmero complexo no disco unidade, « € C A |a| < 1. Apli-
cando o resultado (B.3) e mudando um pouco os indices de somatoria, chega-se a,

oo+ n
exp (z) = _Z+ ﬁ (B.6)

que é o resultado necessario para justificar o NDIM. Observe-se que o indice n agora
pode ter os valores que se precisavam, ou seja, n nessa expansio pode ser um numero
complexo ao redor de um numero inteiro. A série de Taylor usual é recuperada na

transformacéo,
oo+ 0
m > —3. (B.7)
n=—oo+a n=0

Quando o NDIM é aplicado e deduzido neste trabalho, o simbolo Zm significa
fundamentalmente o lado esquerdo de (B.7). Em termos algébricos e de manipulacao,
a diferenca é uma simples sutileza; mas conceitualmente eliminam-se as objecoes
que podem ser tiradas do método. Além das ja mencionadas, a diferenca na expanséo
explica por que sdo usadas fungdes I" (1 + n) e ndo simbolos de fatoriais n!, ou o porqué
da manipulacdo dos simbolos de Pochhammer apesar de que formulas como (C.8)
exigem que n seja inteiro mas x nao seja inteiro.

A expansdo em série de Taylor-Riemann é também fundamental no momento de
entender a expansao de polindomios em multi-regices. Isto significa usar a identidade,
3 I'(1—N)
F{GG+1)C(e+1)...'(I, + 1)

l1,l2,..ln

(Al +Ag+...+A4,) N = AT AR Al S0, hy 0
(B.8)
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onde 0 (l;,n) = N+ >, l; e N pode ser inclusive complexo. Esta identidade funda-
menta-se na representacio de Schwinger,

; (B.9)

1 oo "
(A]_ + A2 + ...+ An)iN == W /O dx LUVil [H €xp (_xAS)
s=1

que, apos expandir cada exponencial em uma série de Taylor-Riemann, e aplicar
a formula (1.38), desemboca em (B.8)*. Isto significa, que o tipo de simbolo so-
matorio presente na formula de expansdo em multi-regides, também é analogo ao

lado esquerdo de (B.7). Chama-se expansido em multi-regides porque em (B.8) exis-

N
1

para a regido do espaco dos {A;} na qual |A;| > |A;| para todo i # k.

tem ( ) = N formas diferentes de escolher o indice somatério I, cada um adequado

O NDIM baseia-se tanto nas expansoes de Taylor-Riemann, que I. Gonzalez e
I. Schmidt propuseram que o nome Método de Integracdo por Expansao Fraccional
(IBFE pelas siglas em inglés) seria mais apropriado [15].

*Nao esta se fazendo nenhum argumento circular no momento de usar (1.38) para justificar (B.8).
Pois (1.38) pode ser obtida sem usar (B.8), partindo somente da parametrizagio de Schwinger, as séries
de Taylor Riemann, e as integrais gaussianas.
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Apéndice C

Funcoes hipergeométricas

Neste apéndice ilustram-se as defini¢oes e formulas matematicas usadas neste tra-
balho relacionadas com as func¢ées hipergeométricas. O ponto de partida é a funcéo
gamma I (x), que satisfaz a relacao funcional I' (x + 1) = 2T (z) e o valor particular
I'(n+ 1) =n! paran € Z". A representacgio integral usual da funcéo I (z) é,

I'(z)= /00 t*te~tdt, Re{z} > 0. (C.1)
0

Com esta representacéo integral basica e a equacéo funcional ' (z +1) = zI'(z), a
funcao gamma pode ser extendida para todo o plano complexo com a excecdo dos
pontos em que x é um inteiro no positivo, nos quais ela forma polos simples. Dessa
forma a funcéo I' vira um exemplo de fun¢do meromorfa em todo C. Os polos simples
sdo definidos facilmente pela expanséo em serie de Laurent ao redor de ¢ — 0,

F(e):%—vE—l—(’)(e), (C.2)

onde v; é um numero irracional conhecido como constante de Euler-Mascheroni.

Também é util a representacéo integral da funcdao beta,

I'(z)T(y)

B(x,y):/ 14TV dt =
0

As funcgoes hipergeométricas explicam-se melhor com a notacdo de simbolos de

Pochhammer definidos como,

(@)= ©4)
Uma das propriedades da funcdo I' (x) é a formula de reflexdo de Euler,
sin(rz) L (x) T (1 —z)=sin(ny) T (y) T(1—y)=m, z,y¢&Z. (C.5)
Esta formula pode ser escrita como,
T (y) _Tr (1 + ) sin (—mz) (C.6)

I'(-z) T(l-y) sin(my)’
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ou usando os simbolos de Pochhammer,

B sin (—mx)
(_x)y+a: - (1 y)y+x Sin (Wy)
— (1_ ) Sin[ﬂy—ﬂ(y—l—l‘)]
yto sin (7y)
— -y, sin (my) cos [7 (y + x)] — cos (my) sin [7 (y + )] e
v sin (7y)
Se y + x = n € Z obtém-se,
(=y)p=(=D"0+y—n),. (C.8)
Também, a partir de,
['(2)T (24 3) =2'72*V/7l (22), (C.9)
tem-se as formulas de duplicacéo,
n (7T z+1
(), = 4 (§)n ( 5 >n (C.10a)
_ o241l (T r+1
(®)op1 = 2 Q)m1<2 >; (C.10Db)
A série hipergeométrica generalizada de uma variavel define-se como,
(1), ... (), x°
mFn (@1, o By, By ) = e i (C.11)
(o e i) = 2 (G5 ),
A derivada desta funcéo é,
0 1. as
— P (ag; By ) = =2— 2 (as +1; 8, +1;1). (C.12)
g (05 02) = TG0 mFu (@5 41504 1)
Em particular, é muito importante a func¢édo hipergeométrica de Gauss,
2F1 (a,b;¢;2) = Z (@) (0), @ (C.13)

—~ (), nl’

a qual converge para |z| < 1 e no circulo unidade |z| = 1 se Re{c—a —b} > 0. Um
resultado muito especial desta funcgéo é,

)T (c—a—0)
I'(c—a)T (c—b)’

2F1 (a,b;¢,1) = Re{c—a—b} > 0. (C.14)

A funcéo hipergeométrica de duas variaveis conhecida como das quatro fungées
de Appell F} é,

Fy (a, o B, x,y) = Z (a)%j;;(((fy)):jmiﬂi,, (C.15)

m,n

cuja regido de convergéncia esta definida por,

]2 + |y|? < 1. (C.16)
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A funcao de Appel F; pode ser vista como o produto de dois fung¢oes hipergeométricas
de Gauss,

Fy (o, os8,7;m,y) = Zm)m;
_ ZWﬁgFl(aer,a’er;%y)- (C.17)

Um caso particular de F; acontece quando y = 1. Usando (C.17) e (C.14) conclui-se
que,

Fi (0,3 i, 1) = LT =0 = 00) 5 (003 (0, (L 0 =3y, (1 o/ = ), (2/4)",

— — o It It |
Fy—a)l(v=a) = () (1+a+2a v) (2+a+2a 5 )m m!
(C.18)
Outra opgcéo é que x = y. A ”"deducdo’deste caso particular explica-se com certa

m

extensdo. Apos a transformacédo de indices M =m +ne N = n,

g . _ () pr (@) M
Fy (o, o5 8,5 m,2) = ]\/[Z’N(/B)M]W—N(VZ;INF(M_N‘FUF(N-FU
_ (@)p (@) 2™ (M =N +8)y (M—N+1)y
- %:(B)MF(MH)%: (") y (N +1)
_ (@ (@)™ ~ (A== M)y (=M)y
a %:(/B)MF(M+1)%: (VyT (N +1)
_ @ @ 2™ et
- %(mMr(MH)“( B M, =M;i1)
_ Z(a)M(a’)M I(YL(y+B+2M—1) oM
—~ Bu TO+FMT(+5+M—1)M!
_ Z (@)pr (@)pr (Y + 8= Doy 2™
I (B ar Nar (v +B—=1)y, MV

e em conclusdio,

Fy (04,0/;5,7;95,35) _ Z (a)M (O/)M (%/H)M <#>M (4$)M

M By My (v +8—=1), M (C.19)

As formulas (C.18) e (C.19) tem que ser olhadas com certa precaucdo. A formula (C.14)
foi aplicada de forma muito ingénua, sem contar com a restricdo Re{c —a — b} > 0.
Estas formulas de reducéo possivelmente sao validas s6 para casos particulares dos
valores o, o/, 3,7. O estudo dessas condigdes nédo é trivial [33] e esta fora do alcance
deste trabalho. Porém, dada a coeréncia dos resultados, parece ser que o uso destas
formulas neste trabalho esta dentro do seu marco de validade.
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