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Universidade Estadual Paulista
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Resumo

Este trabalho é uma revisão do método de integração em dimensão negativa como
uma ferramenta poderosa no cálculo das correções radiativas presentes na teoria
quântica de campos perturbativa. Este método é aplicável no contexto da regulariza-
ção dimensional e permite obter soluções exatas de integrais de Feynman onde tanto
o parâmetro de dimensão como os expoentes dos propagadores estão generalizados.
As soluções apresentam-se na forma de combinações lineares de funções hipergeomé-
tricas cujos domı́nios de convergência estão relacionados com a estrutura analı́tica
da integral de Feynman. Cada solução definida por seu domı́nio de convergência está
conectada com as outras através de continuações analı́ticas. Além de apresentar e
discutir o algoritmo geral do método com detalhe, mostram-se aplicações concretas a
integrais escalares de um e dois loops e à renormalização da eletrodinâmica quântica
(QED) a um loop.

Palavras Chaves: Correções radiativas; integral de Feynman; regularização dimen-
sional; continuação analı́tica; dimensão negativa.

Áreas do conhecimento: Ciências Exatas e da Terra; Fı́sica; Fı́sica Teórica; Teoria
de Campos.
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Abstract

This work is a review of the Negative Dimension Integration Method as a pow-
erful tool for the computation of the radiative corrections present in Quantum Field
Perturbation Theory. This method is applicable in the context of Dimensional Reg-
ularization and it provides exact solutions for Feynman integrals with both dimen-
sional parameter and propagator exponents generalized. These solutions are pre-
sented in the form of linear combinations of hypergeometric functions whose domains
of convergence are related to the analytic structure of the Feynman Integral. Each
solution is connected to the others trough analytic continuations. Besides presenting
and discussing the general algorithm of the method in a detailed way, we offer con-
crete applications to scalar one-loop and two-loop integrals as well as to the one-loop
renormalization of Quantum Electrodynamics (QED).
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3 Aplicação à QED a um loop 34
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Introdução

Desde o nascimento da teoria quântica de campos, os métodos perturbativos têm
demonstrado ser extremamente úteis (possı́velmente os mais úteis) para obter pre-
dições na fı́sica de partı́culas. Com a chegada dos diagramas de Feynman, pôde-se
levar em conta as correções perturbativas ordem por ordem de uma maneira simples
e elegante. Contudo, ao passar da ordem zero de perturbação, em direção ao que
se conhece como correções radiativas, aparecem diagramas que envolvem integrais
sobre os 4-momentos (diagramas com loops) e algumas destas integrais são even-
tualmente divergentes. Dado que os diagramas ao nı́vel de árvore só reproduzem as
predições da teoria clássica, a potência geral da teoria quântica de campos perturba-
tiva depende radicalmente da possibilidade de calcular e manipular essas integrais,
inclusive se são divergentes. Enquanto a precisão das medidas experimentais con-
tinuar aumentando e as predições da teoria quântica de campos continuarem depen-
dendo tão profundamente das correções radiativas, a necessidade de explorar e testar
novas formas de calcular e manipular integrais de Feynman permanecerá em vigor.

Neste trabalho expõe-se uma técnica matemática para encontrar soluções ana-
lı́ticas exatas de integrais de Feynman conhecida como método de integração em
dimensão negativa (NDIM). Esta técnica foi inicialmente proposta por Halliday e
Ricotta em 1987 [1] e desde então tem sido aplicada com sucesso a diversos casos
[2]-[16]. O método tem mostrado ser uma ferramenta poderosa para resolver diagra-
mas que envolvem loops e em certos casos pôde-se comprovar a sua equivalência com
outros métodos [12, 13]. Um progresso relativamente recente aconteceu quando I.
González e I. Schmidt encontraram em 2007 uma significativa otimização do método
além de proporcionar um novo fundamento matemático da técnica com base na pa-
rametrização de Schwinger e a expansão em série de Taylor-Riemann [15]. Este fato
convida a reexaminar alguns dos resultados obtidos antes da otimização e a procurar
uma panorâmica renovada do NDIM. Esta dissertação está dentro desse espı́rito, e
o seu principal objetivo é explicar o NDIM desde um enfoque atualizado, procurando
um equı́librio entre o detalhe, a claridade e a concisão. Devido a que o tema central
é uma ferramenta de cálculo, a grande maioria deste trabalho foi dedicada a expor
aspectos matemáticos e manipulações formais. Contudo, procurou-se não perder de
vista a motivação fı́sica que está por trás.

A ordem de exposição será a seguinte. O capı́tulo 1 começa apresentando o marco
geral em que está inscrito o NDIM. Partindo de uma tı́pica integral de Feynman no
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espaço de Minkowski, explica-se a utilidade de pensar estas integrais como funções
de variável complexa e são expostos os vários conceitos que permitem o controle exato
das suas eventuais divergências. Depois, resume-se em forma geral os passos envolvi-
dos para solucionar estas integrais segundo o NDIM, partindo da representação de
Schwinger. O capı́tulo 2 é um pequeno compêndio de aplicações do NDIM a integrais
escalares em um e dois loops. Os primeiros casos são bastante conhecidos na literatu-
ra mas foram escolhidos porque a sua simplicidade é ideal para ilustrar o método. Al-
guns dos resultados posteriores podem ser considerados originais em vários sentidos;
em especial porque alguns deles reexaminam casos explorados antes da otimização
encontrada por González e Schmidt. O capı́tulo 3 é uma manifestação do interesse
fı́sico que subjaz a este trabalho; nele ilustra-se como o NDIM pode ser aplicado a
uma teoria de campos fisicamente relevante. Escolheu-se analisar a renormalização
a primeira ordem da eletrodinâmica quântica (QED) a partir de alguns dos resultados
do capı́tulo 2. Esta escolha está muito bem justificada na importância histórica dos
resultados e o amplo tratamento que tem esse caso na literatura; isto facilita enorme-
mente o trabalho de comparação. Apesar de ser um caso tão conhecido, alguns dos
resultados do capı́tulo 3 podem ser considerados novidades (e não só no sentido de que
foram achados pelo NDIM). O capı́tulo 4 é uma crı́tica das limitações e as vantagens
do NDIM desde a perspectiva atual; é justifı́cavel adiar esta discussão até este ponto
devido a que os capı́tulos precedentes lhe oferecem uma base concreta. Finalmente,
no capı́tulo 5 são apresentadas as conclusões e as perspectivas futuras. Além disso,
os apêndices merecem menção própria. Eles foram tirados do corpo principal deste
trabalho somente porque são de um conteúdo profundamente matemático; porém,
eles explicam conceitos essenciais ao NDIM e nenhuma exposição do método estaria
realmente completa sem eles.
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Capı́tulo 1

Considerações Preliminares

1.1 Forma geral de uma integral com L loops

Os objetos de estudo básicos deste trabalho são integrais da forma,

F{µt} (pi,mj) =

(
L∏
k=1

∫
d4qk

(2π)4

) N∏
j=1

1[
r2
j −m2

j + iε
]
N {µt} (pi, ql;mj) , (1.1)

com,

rj =
L∑
k=1

ξjkqk +
E∑
i=1

χjipi. (1.2)

A integral (1.1) representa um diagrama de Feynman amputado com L loops, N li-
nhas internas, e E linhas externas. Os rj representam os momentos das linhas in-
ternas e as mj suas massas respetivas. As matrizes ξjk e χji só podem ter entradas
0 e ±1; dado que os pi representam os E momentos externos, os qk representam os L
momentos internos independentes, e aplica-se a conservação do 4-momento em cada
vértice do diagrama. O numerador N {µt} é um tensor com ı́ndices µt (t = 1, . . . , T )
que pode ser expresso como um polinômio de produtos diretos de 4 -vetores pµi e qµl , a
métrica de Minkowski ηµν , e eventualmente as matrizes de Dirac γµ. No último caso,
N {µt} seria um tensor de matrizes que agem sobre spinores de Dirac. O polinômio
tensorial N {µt} terá coeficientes associados às constantes de acoplamento envolvi-
das nos vértices do diagrama, aspectos combinatórios, assim como eventuais fatores
associados à dimensão do espaço-tempo no qual a teoria se desenvolve. Os fatores
combinatórios dos diagramas não vão ser levados a conta. O termo iε nos denomi-
nadores corresponde à prescrição usual que assegura que tal propagador de Feynman
no espaço de momento tem a forma adequada ao voltar ao espaço de posições quando
ε→ 0+.

Embora as variáveis pi,mj , qk na fórmula (1.1) sejam no final números reais; é
conveniente pensar nelas como números complexos. De fato, a presença da prescrição
+iε é já uma justificativa de que a perspectiva de variável complexa faz-se necessária.
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No caso de números complexos, as integrais com respeito às variáveis
{
qµk
}

significam
integrais de contorno no espaço C4L. A perspectiva de variável complexa é o primeiro
passo para empregar amplamente uma das técnicas mais poderosas da análise com-
plexa: a continuação analı́tica. No apêndice A explicam-se com mais detalhe os fun-
damentos desta técnica.

1.2 Rotação de Wick

Uma das primeiras aplicações da continuação analı́tica no cálculo de integrais de
Feynman acontece no procedimento conhecido como rotação de Wick. Este procedi-
mento é usado para qualquer diagrama e se faz necessário devido a que na integral
(1.1) o denominador poderia cancelar-se quando r2

j = −m2
j se não fosse pelo termo

+iε; em outras palavras, o integrando diverge nos polos dos propagadores. Apesar
do termo +iε controlar estas divergências, não fica claro como esta prescrição deve
ser aplicada para obter respostas sem ambigüidades. A rotação de Wick permite en-
contrar estas respostas calculando primeiro as integrais quando as energias externas
pi,0 estão no eixo imaginário. As integrais para outros valores dos pi,0 poderão ser
achadas por continuação analı́tica.

Para entender melhor a rotação de Wick, é conveniente usar a parametrização de
Feynman,

N∏
j=1

1
A
νj
j

=
Γ
(∑N

j=1 νj

)
∏N
j=1 Γ (νj)

 N∏
j=1

∫ 1

0
dxj x

νj−1
j

 δ
(

1−
∑N

j=1 xj

)
[∑N

j=1 xjAj

]∑
j νj

; (1.3)

onde cada Aj representaria um propagador cujo expoente e νj . Desta forma, pode se
exprimir (1.1) como,

F{µt} (pi,mj) =

(
L∏
k=1

∫
d4qk

(2π)4

) N∏
j=1

∫ 1

0
dxj

 Γ (N) δ
(

1−
∑N

j=1 xj

)
N {µt} (pi, ql;mj)[∑N

j=1 xjr
2
j −

∑N
j=1 xjm

2
j + iε

]N .

(1.4)
Agora, defina-se uma nova função G{µt} (pi,mj , θ) onde todas as energias internas e
externas estejam rodadas, pi,0 → eiθpi,0 qi,0 → eiθqi,0,

G{µt} (pi,mj , θ) =

(
L∏
k=1

eiθ
∫
dqk,0

∫
d3qk

(2π)4

) N∏
j=1

∫ 1

0
dxj

Γ (N) δ

1−
N∑
j=1

xj

×
N {µt}

(
eiθpi,0,pi, eiθql,0,ql;mj

)[
e2iθ

∑N
j=1 xjr

2
j,0 −

∑N
j=1 xj

(
|rj |2 +m2

j

)
+ iε

]N . (1.5)

Sobre esta função, no intervalo θ ∈
[
0, π2

]
, se pode dizer:

1. G{µt} (pi,mj , 0) = F{µt} (pi,mj), ou seja, a integral (1.1) é obtida para um dos
possı́veis valores de θ.
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2. Enquanto a integral em geral for convergente, a função G{µt} (pi,mj , θ) é uma
função analı́tica da variável θ no intervalo

[
0, π2

]
independentemente dos valores

das outras variáveis. A única possibilidade para ela não ser analı́tica seria que
o denominador se anulasse. Mas isto não é possivel porque a parte imaginária
do denominador é sempre definida positiva graças ao termo iε. Desta forma, a
prescrição +iε faz possı́vel uma continuação analı́tica com respeito à variável θ
no intervalo

[
0, π2

]
.

3. O caso G{µt}
(
pi,mj ,

π
2

)
merece especial atenção. Enquanto no caso θ = 0 os

produtos do tipo pi · pj estão definidos segundo a métrica (pseudo-riemanniana,
sem sinal definido) de Minkowski,

(p1 · p2)θ=0 = (p1 · p2)M = pi,0pj,0 − pi · pj ,

no caso θ = π
2 estes produtos estão definidos como,

(pi · pj)θ=π
2

= − (pi · pj)E = − (pi,0pj,0 + pi · pj) ,

onde o subı́ndice E indica que se trata da métrica euclidiana. A grande van-
tagem de trabalhar com uma métrica riemanniana autêntica como a métrica
euclidiana é que todos os produtos internos adquirem sinal definido, o qual fa-
cilita enormemente os cálculos subseqüentes. Além disso, observe-se que se
as energias pi,0 na continuação analı́tica fossem energias fı́sicas (ou seja, se
tivessem valores reais, pi,0 ∈ R), o caso θ = π

2 significaria que se está assumindo
que os pi,0 são imaginários puros.

O item (3) merece ainda mais explicação. Assuma-se que os pi,0 na integral (1.1)
são efetivamente imaginarios puros (pi,0 = iPi,0, Pi,0 ∈ R). Pode-se provar (através de
um procedimento idêntico ao da seção 1.5) que existe uma transformação ortogonal
seguida de uma translação, equivalente a uma mudança nas variáveis de integração
qk,0 → Qk,0, que deixa a integral (1.1) como,

F{µt} (Pi,0,pi,mj) =

(
L∏
k=1

∫
dQk,0

∫
d3qk

(2π)4

) N∏
j=1

∫ 1

0
dxj

Γ (N) δ

1−
N∑
j=1

xj

 N {µt}

[det A]
1
2

×

 N∑
j=1

Q2
k,0 −

E∑
i=1

Bi (ξ, χ, x)P 2
i,0 −

N∑
j=1

xj

(
|rj |2 +m2

j

)
+ iε

−N . (1.6)

A expressão (1.6) oferece outra forma de enxergar a rotação de Wick. Esta outra
perspectiva aparece após uma nova mudança de variáveis para passar das variáveis
Qk,0 à sua versão em coordenadas esféricas generalizadas,

F{µt} (Pi,0,pi,mj) =
∫ ∞

0
dQ

∫
dΩQ

(
L∏
k=1

∫
d3qk

(2π)4

) N∏
j=1

∫ 1

0
dxj

Γ (N) δ

1−
N∑
j=1

xj

×
N {µt}

[det A]
1
2

Q2 −
E∑
i=1

BiP
2
i,0 −

N∑
j=1

xj

(
|rj |2 +m2

j

)
+ iε

−N . (1.7)
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Em tal caso, o denominador pode ser visto basicamente sob a forma
[
Q2 −∆2 + iε

]N
e portanto só há polos quando Q = ± (∆− iε). Apesar de que as expressões (1.6) e
(1.7) não contêm o fator eiθ nas energias internas como em (1.5), a variável θ pode ser
vista agora como um verdadeiro ângulo de rotação pelo qual se muda o caminho de
integração da variável Q. Isto é ilustrado na figura 1.1. Graças ao termo iε, a região
encerrada pelo caminho na figura 1.1 não contém polos. Desta forma, o caminho
rodado 1 → 3 é igualmente válido como caminho de integração enquanto o arco 2− 3
é desprezı́vel no limite em que seu raio é infinito. Quando θ = π

2 obtém-se um caso
idêntico a G{µt}

(
pi,mj ,

π
2

)
exceto por alguns fatores do tipo in, n ∈ Z.

Figura 1.1: Ilustração da rotação de Wick como uma mudança no caminho de
integração da variável Q.

Os resultados desta seção podem ser resumidos da seguinte forma. Em vez de ten-
tar calcular a integral minkowskiana (1.1) de difı́cil manipulação, pode-se em câmbio
trabalhar com a integral euclidiana,

F{µt}E (pi,mj) =

(
L∏
k=1

∫
d4qk

i (2π)4

) N∏
j=1

1[(
r2
j

)
E

+m2
j

]
N {µt}E (pi, ql;mj) , (1.8)

onde o termo +iε pode ser omitido dado que a ambigüidade no propagador já foi es-
clarecida∗. Porém, o numerador N {µt}E (pi, ql;mj) precisa de uma explicação. Para que
a rotação de Wick seja coerente, o numerador N {µt}E precisa conter as mudanças do
fator eiπ/2. Estas se resumem nas seguintes regras básicas de transformação com
respeito ao numerador não rodado (Minkowski),

(pi2 · pi1)M −→ − (pi2 · pi1)E ; (1.9a)

( /p)M −→ −i ( /p)E ; (1.9b)

(ηµν)M −→ (ηµν)E . (1.9c)

∗Isto é, no eixo imaginário o caminho de integração fica longe dos polos dos propagadores.
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Desta maneira, fórmulas como {γµ, γν} = 2ηµν ou ( /p)2 = p2 permanecem intactas;
assim como toda a álgebra das matrizes de Dirac. Uma vez que a integral (1.8) estiver
resolvida, o único que se precisa fazer é usar as regras inversas e assim obter ,

F{µt} (pi,mj) = (−1)−N
[
F{µt}E (pi,mj)

]
E−→M

. (1.10)

A justificação deste mêtodo baseia-se na continuação analı́tica. Contudo, a análise do
item (2) assumiu que as integrais convergiam. Sabe-se que este não é sempre o caso
e faz-se necessária uma forma de sobrelevar esta dificuldade.

1.3 Regularização dimensional

Como já foi dito, as integrais de Feynman precisam ser manipuladas controladamente
apesar de que algumas delas são de fato divergentes. O artifı́cio matemático que con-
segue este controle conhece-se como regularização. A regularização consiste basica-
mente em utilizar um ou vários parâmetros regularizadores adicionais na integral
para que a divergência apareça como um limite singular em um determinado valor
desses parâmetros. Entre os vários métodos de regularização (cut-off direto, Pauli-
Villars, etc.) existe um que é freqüentemente preferido na literatura atual conhecido
como regularização dimensional (RD) [38]. A razão desta preferência é que a RD con-
serva extensamente as simetrias do problema inicial ao longo de todo o processo de
manipulação matemática, exceto alguns casos muito especiais onde podem acontecer
anomalias [20]. A RD é especialmente preferida devido a que preserva as simetrias
de boa parte das teorias de Gauge, sendo este tipo de simetrias as que parecem sub-
jazer à dinâmica interna das partı́culas fundamentais.

A RD consiste na continuação analı́tica do valor da dimensionalidade das inte-
grais de Feynman para valores complexos. Sem precisar explicar o que poderia sig-
nificar um espaço com dimensão complexa, a RD aproveita certas identidades formais
que expressam uma integral especı́fica para um número arbitrário de dimensões D.
No caso de dimensões inteiras positivas (D ∈ Z+), essas identidades coincidem com as
expressões especı́ficas da teoria nessa dimensão. A vantagem consiste em que essas
identidades podem extender-se a um valor complexo onde as divergências aparecem
como polos simples em valores inteiros positivos de D. Dessa forma, as divergências
podem ser controladas mediante uma expansão em série de Laurent ao redor do polo.

Existem várias maneiras de enxergar a RD. Para ilustrá-las, tome-se como exem-
plo a integral euclidiana,

j
(
m2, D

)
=
∫
dDk

(
k2 +m2

)−1
, (1.11)

a qual é evidentemente divergente quando D ≥ 2. Para analizar a dependência
analı́tica de j

(
m2, D

)
com respeito a D, insira-se a unidade dentro da integral de

(1.11) mediante a representação,

1 =
1
D

D∑
m=1

[
∂

∂km
km

]
, (1.12)
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e, ao integrar por partes†, observa-se que∫
dDk

(
k2 +m2

)−1 =
1
D

D∑
m=1

∫
dDk

[
∂

∂km
km

] (
k2 +m2

)−1

=
2
D

D∑
m=1

∫
dDkk2

m

(
k2 +m2

)−2

=
2
D

∫
dDkk2

(
k2 +m2

)−2

=
2
D

[∫
dDk

(
k2 +m2

)−1 −m2

∫
dDk

(
k2 +m2

)−2
]
.

Portanto,

j
(
m2, D

)
= −m2

(
2

D − 2

)∫
dDk

(
k2 +m2

)−2
. (1.13)

Ao repetir o procedimento,∫
dDk

(
k2 +m2

)−2 =
∫
dDk

[
∂

∂km
km

] (
k2 +m2

)−2

=
4
D

D∑
m=1

∫
dDkk2

m

(
k2 +m2

)−2

=
4
D

[∫
dDk

(
k2 +m2

)−2 −m2

∫
dDk

(
k2 +m2

)−3
]
,

obtém-se que, ∫
dDk

(
k2 +m2

)−2 = −m2

(
4

D − 4

)∫
dDk

(
k2 +m2

)−3
. (1.14)

Juntando (1.13) e (1.14) conclui-se que,

j
(
m2, D

)
= m4

[
8

(D − 2) (D − 4)

] ∫
dDk

(
k2 +m2

)−3
. (1.15)

Dado que a integral na direita de (1.15) é finita para D < 6, encontra-se uma estru-
tura de polos simples para D = 2 e D = 4.

Por outro lado, a estrutura de polos simples em (1.11) pode ser vista usando coor-
denadas esféricas generalizadas e outras identidades. Dado que,∫

dDk
(
k2 +m2

)−s =
∫
dΩD−1

∫ ∞
0

dk kD−1
(
k2 +m2

)−s
=

DπD/2

Γ
(
D
2 + 1

) (m2
)D

2
−s
∫ ∞

0
d
(
k
m

) (
k
m

)D−1
[(

k
m

)2
+ 1
]−s

=
DπD/2

2Γ
(
D
2 + 1

) (m2
)D

2
−s
∫ ∞

0
dy y

D
2
−1 [y + 1]−s ;

onde dΩD−1 é o elemento de ângulo hiper-esférico. Usando a representação integral
(C.3), obtém-se, ∫

dDk
(
k2 +m2

)−s = πD/2
(
m2
)D

2
−s Γ

(
s− D

2

)
Γ (s)

; (1.16)

†Para que isto seja válido, assume-se provisoriamente que todas as integrais envolvidas são conver-
gentes, ou seja, que se trabalha em uma região adequada do valor de D.
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em particular,
j
(
m2, D

)
= πD/2

(
m2
)D

2
−1 Γ

(
1− D

2

)
. (1.17)

Da mesma forma que (1.15), a equação (1.17) mostra de novo uma estrutura de polos
simples para valores pares de D. Mediante uma extensão deste argumento, pode-se
mostrar que para o caso geral de L loops a estrutura de polos com respeito à dimensão
continua se apresentando [21]. Desde o ponto de vista da regularização dimensional,
desaparecem as dificuldades encontradas na seção anterior para completar a rotação
de Wick em integrais divergentes. Mudando a integral para o caso de dimensão geral,
a continuação analı́tica envolvida na rotação de Wick será válida para valores de D
onde não houver divergências. Todo comportamento singular restringe-se a certos
valores isolados de D.

1.4 Parametrização de Schwinger e integrais com estru-
tura tensorial

No contexto geral da RD e de integrais euclidianas, a parametrização de Feynman
de (1.4) não é a técnica mais adequada [14, 20]. Nestes casos, faz-se uso de outra
parametrização (associada a J. Schwinger) que aproveita a possibilidade de resolver
integrais gaussianas em dimensões genéricas. Antes de continuar, é preferı́vel fazer
uma generalização dos expoentes dos propagadores em (1.8) além da dimensão D

generalizada,

F{µt}E (pi,mj ; νj , D) =

(
L∏
k=1

∫
dDqk

(2π)D

) N∏
j=1

1[
r2
j +m2

j

]νj
N {µt} (pi, ql;mj) . (1.18)

A justificativa desta generalização será apreciada mais na frente. A parametrização
de Schwinger começa representando cada propagador (denotado aqui com a variável
A) como,

1
Aν

=
1

Γ (ν)

∫ ∞
0

xν−1e−xAdx, Re {ν} > 0, (1.19)

para assim exprimir (1.18) como,

F{µt}E (pi,mj ; νj , D) =

(
L∏
k=1

∫
dDqk

(2π)D

)∫
D~xN {µt} (pi, ql;mj)×

exp

−
N∑
j=1

xj
(
r2
j +m2

j

) ; (1.20)

onde o sı́mbolo
∫
D~x é uma abreviação,∫

D~x ≡
N∏
j=1

∫ ∞
0

dxj
x
νj−1
j

Γ (νj)
. (1.21)

Defina-se p e q como matrizes E × 1 e L× 1 ‡ respectivamente cujas entradas (p)i
e (q)j são os 4-vetores pi e qj respectivamente. Sabendo que segundo (1.2) os rj estão

‡Os números E e S estão definidos na seção 1.1.
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definidos de acordo com cada vértice no diagrama, pode ver-se que a integral (1.20)
pode ser expresa como

F{µt}E (pi,mj ; νj , D) =

(
L∏
k=1

∫
dDqk

(2π)D

)∫
D~xN {µt} (p,q;mj)×

exp

−qTAq + 2pTBq− pTCp−
N∑
j=1

xjm
2
j

 , (1.22)

onde A, B e C são matrizes de ordem L×L, E×L e E×E respectivamente. Devido às
matrizes ξjk e χji em (1.2), cada uma das entradas destas matrizes tem a forma geral∑N

j=1 αjxj com αj = ±1, 0. As matrizes A e C são simétricas e não singulares, de fato
constituem formas quadráticas definidas positivas. O argumento da exponencial em
(1.22) pode ser simplificado através de um método análogo a completar o quadrado
que aproveita a invariança translacional do denominador. Usando a identidade,

−qTAq + 2pTBq = −
(
q−A−1BTp

)T
A
(
q−A−1BTp

)
+ pTBA−1BTp, (1.23)

e após uma translação nas variáveis de integração q, obtém-se,

F{µt}E (pi,mj ; νj , D) =

(
L∏
k=1

∫
dDqk

(2π)D

)∫
D~xN {µt} (p, qk + p̃k;mj)×

exp

−qTAq + pTDp−
N∑
j=1

xjm
2
j

 , (1.24)

onde D = BA−1BT − C e p̃k =
(
A−1BTp

)
k
. Após uma transformação ortogonal,

q = Oq′, que diagonaliza o primeiro termo da exponencial§ e uma nova mudança de
variáveis, Qk = λ

1/2
k q′k, chega-se finalmente a,

F{µt}E (pi,mj ; νj , D) =

(
L∏
k=1

∫
dDQk

(2π)D

)∫
D~xN {µt}

(
p,

(OQ)k
λ

1/2
k

+p̃k;mj

)
×

1

[det A]D/2
exp

−QTQ + pTDp−
N∑
j=1

xjm
2
j

 . (1.25)

Se não fosse pelo numerador, a integral respeito aos Qk já estaria resolvida pela
fórmula de uma integral gaussiana generalizada,(

L∏
k=1

∫
dDqk

(2π)D

)
e−qTq =

(
1

(4π)D/2

)L
. (1.26)

Afortunadamente, a presença do numerador em uma integral de Feynman não é um
grande problema dado que, independentemente de sua estrutura tensorial, sempre
existe uma forma de reduzir a integral a uma soma de integrais escalares acom-
panhadas de coeficientes tensoriais extraidos da métrica e os momentos externos
§(qO)T AOq = q′TΛq′ com Λ = diag (λ1, . . . , λL) a matriz diagonal de valores próprios.
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[34, 35]. Estas novas integrais escalares costumam ter outros expoentes nos propa-
gadores (diferentes de νj = 1) e a dimensão delas também pode estar mudada (au-
mentada em algum número par). Para o caso de um só loop, a redução das integrais
tensoriais a integrais escalares pode ser feita diretamente através da fórmula (1.25),
pois nesse caso A será simplesmente um número (matriz 1 × 1). Em geral, a estru-
tura do denominador das novas integrais escalares não muda, e é por isso que é tão
conveniente tentar resolver a versão escalar (N {µt} = 1) da integral na equação (1.18)
com a dimensão e os expoentes generalizados. Esta integral, após a parametrização
de Schwinger e a integração dos loops, está definida como,

F{µt}E (pi,mj ; νj , D) =
∫
D~x

1[
(4π)L det A

]D/2 exp

pTDp−
N∑
j=1

xjm
2
j

 . (1.27)

Em resumo, o problema foi reduzido a calcular integrais com relação aos parâmetros
de Schwinger xj . É nesse momento em que a técnica de integração em dimensão
negativa, o tema central deste trabalho, resulta útil.

1.5 Método de integração em dimensão negativa

A técnica de integração em dimensão negativa (NDIM) deve o seu nome ao fato que,
dentro do contexto da regularização dimensional, efetua uma continuação analı́tica
para valores negativos do parámetro D. Nesse sentido, o conceito de dimensão nega-
tiva não é particularmente mais surpreendente que o conceito de dimensão complexa
envolvido na regularização dimensional. Em ambos os casos não se esta definindo
um autêntico espaço geométrico com dimensão D exótica, senão que são expressões
formais que exprimem as integrais em uma dimensão arbitrária D. Analiticamente
estas expressões podem fazer sentido inclusive para valores negativos de D; embora
não se tenha um significado geométrico sobre isso. O NDIM foi originalmente conce-
bido na consideração da seguinte integral gaussiana,∫

dDq e−λq
2

=
(π
λ

)D
2
. (1.28)

Se a exponencial fosse expandida segundo a usual série de McLaurin, e se invertesse
a ordem da somatória com a integral, se teria uma identidade do tipo,

∞∑
n=0

(−1)n
λn

Γ (n+ 1)

∫
dDq

(
q2
)n =

(π
λ

)D
2 ; (1.29)

o que poderia significar que, ao comparar os expoentes de λ em ambos lados da igual-
dade, ∫

dDq
(
q2
)n = (−1)n π

D
2 Γ (n+ 1) δn+D

2
,0. (1.30)

Dado que expansão da exponencial só cobre valores de n positivos, a dedução da iden-
tidade (1.30) só faria sentido se a dimensão D for negativa; daı́ a origem do nome da
técnica.
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A dedução da identidade (1.30) contém em essência o NDIM geral [2]. Para re-
solver uma integral escalar (N {µt} = 1) geral como (1.18) começa-se com uma integral
gaussiana do tipo,

IG =

(
L∏
k=1

∫
dDqk

(2π)D

)
exp

− N∑
j=1

xj
[
r2
j +m2

j

] , (1.31)

onde rj está definido segundo (1.2). Através do método de completar o quadrado,
explicado nas equações (1.22-1.26), encontra-se que,

IG =
1[

(4π)L det A
]D/2 exp

pTDp−
N∑
j=1

xjm
2
j

 . (1.32)

Por outro lado, expandindo a exponencial em (1.31),

IG =

(
L∏
k=1

∫
dDqk

(2π)D

) ∑
a1,a2,...,aN

 N∏
j=1

(−1)aj

Γ (aj + 1)
(
r2
j +m2

j

)aj xajj
 , (1.33)

e invertendo a ordem entre a integral e a somatória, obtém-se,

IG =
∑

a1,a2,...,aN

 N∏
j=1

(−1)aj

Γ (aj + 1)
x
aj
j

F{µt}E (pi,mj ; νj = −aj , D) . (1.34)

Através da expansão em série da função exponencial e certas expansões multinomiais
¶, existe sempre uma maneira de expandir (1.32) como uma série múltipla respeito
às variáveis xj ,

IG =
1[

(4π)L det A
]D/2 exp

pTDp−
N∑
j=1

xjm
2
j


=

∑
n1,...,ns,...,nS

F (ns, D, L)[∏S
σ=1 Γ (nσ + 1)

] ( R∏
r=1

(
k2
r

)αr) N∏
j=1

(
m2
j

)βj×
 N∏
j=1

x
θj
j

 ∆̃ (ns, D) , (1.35)

onde as αr (ns), βj (ns) e θj (ns) são funções lineares dos ı́ndices ns; os kr (pi) são

combinações lineares adequadas dos momentos externos; e ∆̃ (ns, D) representa um
conjunto de vı́nculos lineares relacionados com as expansões multinomiais que res-
tringem a independência dos ı́ndices ns. Comparando os expoentes das xj na ex-
pansão de (1.34) com aqueles de (1.35), conclui-se finalmente que a solução geral da
integral de Feynman (1.18) escalar é,

F{µt}E (pi,mj ; νj , D) =
∑

n1,...,ns,...,nS

F (ns, D, L)[∏S
σ=1 Γ (nσ + 1)

] ( R∏
r=1

(
k2
r

)αr) N∏
j=1

(
m2
j

)βj×
 N∏
j=1

(−1)νj Γ (1− νj) δθj+νj ,0

 ∆̃ (ns, D) . (1.36)

¶Veja-se a equação (B.8).
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Dado que existem vı́nculos lineares nos ı́ndices ns presentes em ∆̃ (ns, D) e δθj+νj ,0,
o número de ı́ndices da somatória é menor do que o original S. Em geral, a ex-
pansão (1.36) poderá ser exprimida como uma série hipergeométrica generalizada de
uma ou várias variáveis. Este resultado do NDIM é compartilhado com o método
de integração por Mellin-Barnes, o qual permite uma fácil comparação entre os dois
métodos [12]. Espera-se que apareçam diversas possı́veis séries hipergeométricas,
segundo os ı́ndices ns que se deixarem idependentes após aplicar os vı́nculos. As dife-
rentes séries hipergeométricas terão possı́velmente regiões de convergência distintas,
que correspondem a regiões cinemáticas distintas no espaço de momentos externos
{pi} e as massas {mj}.

Se as equações (1.27) e (1.35) são comparadas atentamente, percebe-se que pode-
riamos afirmar que,

F{µt}E (pi,mj ; νj , D) =
∑

n1,...,ns,...,nS

F (ns, D, L)[∏S
σ=1 Γ (nσ + 1)

] ( R∏
r=1

(
k2
r

)αr) N∏
j=1

(
m2
j

)βj×
 N∏
j=1

∫ ∞
0

dxj
x
νj−1
j

Γ (νj)

 ∆̃ (ns, D) . (1.37)

Ao observar (1.37) e (1.36), conclui-se que, após a parametrização de Schwinger (1.20),
a solução da integral gaussiana múltipla (1.27), e a expansão em série múltipla (1.35),
o NDIM poderia resumir-se na equivalência formal,∫ ∞

0
dx xν+θ−1 ≡ (−1)ν Γ (ν) Γ (1− ν) δθ+ν,0. (1.38)

Contudo, ficam algumas dúvidas razoáveis com respeito à dedução anterior. Embo-
ra seja completamente possı́vel que D tome valores negativos na regularização di-
mensional, em um sentido rigoroso só se está interessado no caso em que D → 4.
Nesse caso não há como fazer sentido ao resultado (1.30) enquanto n for positivo. A
situação se complica ainda mais quando se lembra que, no caso de integrais diver-
gentes, D toma um valor complexo na vizinhança de D = 4 para que a integral possa
ser expandida como uma série de Laurent. Neste último caso, n na fórmula (1.30)
não poderia ser nem sequer inteiro. Uma crı́tica semelhante vale para o resultado
geral (1.36) pois na comparação de expoentes das xajj apareceria de novo o dilema
dos possı́veis valores das aj na expansão em série da exponencial. Baseados nes-
tas dúvidas, I. Schmidt e I. Gonzalez encontraram que a autêntica fundamentação
matemática do NDIM residia na área da matemática conhecida como cálculo frac-
cional [15]. No apêndice B explicam-se melhor os conceitos pelos quais a anterior
manipulação algébrica das expansões em série está bem fundamentada.
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Capı́tulo 2

Integrais escalares em 1 e 2 loops

O algoritmo descrito no capı́tulo anterior baseou-se em expressões de integrais de
Feynman assaz gerais que dificultam a compreensão do seu conteúdo exato. Neste
capı́tulo oferece-se uma explicação mais concreta do NDIM por meio de alguns exem-
plos de integrais escalares que surgiriam em uma teoria do tipo φ3⊕ φ4. Esclarece-se
que o interesse fı́sico dessas integrais transcende o alcance de um possı́vel modelo
fı́sico com campos escalares do tipo φ3⊕φ4. Dada a possibilidade de reduzir integrais
tensoriais a escalares [34], alguns dos resultados deste capı́tulo poderão ser usados no
capı́tulo 3 onde será analizada uma teoria com integrais tensoriais: a eletrodinâmica
quântica (QED). Outra extensão da aplicabilidade dos resultados deste capı́tulo re-
side em que algumas das integrais escalares resolvidas podem ser importantes no
cálculo de outras integrais escalares mais complexas. Os exemplos deste capı́tulo
começam desde os casos mais simples, aumentando progressivamente em complexi-
dade.

2.1 Diagrama tipo bolha

Um dos exemplos mais simples possı́veis de integral de Feynman é o que surge do
diagrama ilustrado na figura 2.1. Este diagrama corresponde a correções radiativas
de primeira ordem do propagador escalar. Sem levar a conta fatores de proporciona-
lidade, a integral euclidiana envolvida com este diagrama é,

Fbub. (p,mi; νi, D) =
∫

dDq (2π)−D[
q2 +m2

1

]ν1
[
(q − p)2 +m2

2

]ν2
, (2.1)

onde se está supondo o caso mais geral possı́vel de duas linhas internas massivas e
com massas diferentes. A parametrização de Schwinger correspondente é,

Fbub. =
∫

d4q

(2π)D

 2∏
j=1

∫∞
0 dxj x

νj−1
j

Γ (νj)

 e−x1q2−x2(q−p)2−x1m2
1−x2m2

2 , (2.2)
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que, após o procedimento descrito pelas equações (1.22)-(1.26) para resolver integrais
gaussianas, resulta sendo∗,

Fbub. =
∫
D~x

exp
{
− x1x2
x1+x2

p2 − x1m
2
1 − x2m

2
2

}
(4π)

D
2 (x1 + x2)

D
2

. (2.3)

Figura 2.1: Diagrama tipo bolha.

Após a expansão em múltiplas séries de potências das exponenciais obtém-se,

Fbub. = (4π)−
D
2

∫
D~x

∑
n1,n2,n3

(−1)n1+n2+n3 xn1+n2
1 xn1+n3

2 (x1 + x2)−n1−D2

Γ (n1 + 1) Γ (n2 + 1) Γ (n3 + 1)
×(

p2
)n1
(
m2

1

)n2
(
m2

2

)n3 , (2.4)

que expandida segundo a fórmula de expansão binomial em multiregiões resulta em,

Fbub. = (4π)−
D
2

∫
D~x

∑
n1,...,n5

(−1)n1+n2+n3 Γ
(
1− n1 − D

2

)
xn1+n2+n4

1 xn1+n3+n5
2

Γ (n1 + 1) . . .Γ (n5 + 1)
×(

p2
)n1
(
m2

1

)n2
(
m2

2

)n3 δn1+n4+n5+D
2
,0. (2.5)

A equação (2.5) é um caso particular da fórmula (1.35), onde podem identificar-se
θ1 (ns) = n1 + n2 + n4 e θ2 (ns) = n1 + n3 + n5. Pelo NDIM, resumido na identidade
(1.38), as integrais com respeito aos parâmetros de Schwinger podem ser feitas e
assim surge a solução,

Fbub. = (4π)−
D
2

∑
n1,...,n5

(−1)n1+n2+n3+ν1+ν2
Γ (1− ν1) Γ (1− ν2) Γ

(
1− n1 − D

2

)
Γ (n1 + 1) . . .Γ (n5 + 1)

×(
p2
)n1
(
m2

1

)n2
(
m2

2

)n3 ∆ (ns, D) , (2.6)

onde ∆ (ns, D) significa o conjunto de vı́nculos lineares,

n1 + n2 + n4 = −ν1 = θ1 (ns) ,

n1 + n3 + n5 = −ν2 = θ2 (ns) ,

n1 + n4 + n5 = −D
2 . (2.7)

∗Lembre-se a abreviação (1.21).
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Dado que segundo (2.7) ficam dois ı́ndices somatórios ns independentes em (2.6), a
multiplicidade de opcões para escolher dois ı́ndices entre os cinco seria em princı́pio:(

5
2

)
= 5!

2!(5−2)! = 10. Porém, nem todos estes pares de ı́ndices são independentes entre
si (pois n2 − n5 = D

2 − ν1 e n3 − n4 = D
2 − ν2), e portanto só existem oito opções

diferentes. A dedução da primeira solução será explicada com detalhe e as outras só
serão apresentadas.

Seja a primeira solução à somatória de (2.6) segundo os ı́ndices n1 e n2. Neste
caso a solução do sistema linear de equações (2.7) é,

n3 = D
2 − ν2 − ν1 − n1 − n2;

n4 = −ν1 − n1 − n2;

n5 = ν1 −
D

2
+ n2. (2.8)

Substituindo (2.8) em (2.6) obtém-se,

Fbub.[n1,n2] = (−4π)−
D
2
(
m2

2

)D
2
−ν1−ν2

∑
n1,n2

Γ(1−ν1)Γ(1−ν2)Γ(1−n1−D2 )
Γ(1+σ−n1−n2)Γ(1−ν1−n1−n2)Γ(1+ν1−D2 +n2) ×(

p2/m2
2

)n1

Γ (n1 + 1)

(
m2

1/m
2
2

)n2

Γ (n2 + 1)
. (2.9)

onde σ = D
2 − ν2 − ν1. Multiplicando e dividindo por termos que envolvem funções

gamma,e comparando com (C.4), completam-se quatro sı́mbolos de Pochhammer na
somatória. Portanto,

Fbub.[n1,n2] = (−4π)−
D
2
(
m2

2

)D
2
−ν1−ν2 Γ(1−D

2 )Γ(1−ν2)

Γ(1+σ)Γ(1+ν1−D2 ) ×∑
n1,n2

(1−ν1−n1−n2)n1+n2
(1+σ−n1−n2)n1+n2

(1−D
2
−n1)n1

(1+ν1−D2 )
n2

(
p2/m2

2

)n1

Γ (n1 + 1)

(
m2

1/m
2
2

)n2

Γ (n2 + 1)
.(2.10)

Usando a identidade (C.8), tem-se,

Fbub.[n1,n2] = (−4π)−
D
2
(
m2

2

)D
2
−ν1−ν2

(
1 + ν1 − D

2

)
σ(

1− D
2

)
D
2

+σ

×

∑
n1,n2

(ν1)n1+n2
(ν2+ν1−D2 )

n1+n2

(D2 )
n1

(1+ν1−D2 )
n2

(
−p2/m2

2

)n1

Γ (n1 + 1)

(
m2

1/m
2
2

)n2

Γ (n2 + 1)
, (2.11)

que ao ser comparado com (C.15) acaba sendo,

Fbub.[n1,n2] = (4π)−
D
2
(
m2

2

)D
2
−ν1−ν2 (ν2)σ

(−σ)D
2

+σ

×

F4

(
ν1, ν2 + ν1 − D

2 ; D2 , 1 + ν1 − D
2 ;−p2/m2

2,m
2
1/m

2
2

)
. (2.12)

De uma forma similar, calculam-se as outras sete soluções. As oito soluções estão
expostas na tabela 2.1, elas possuem a forma geral,

Fbub. (p,mi; νi, D)[m,n] = (4π)−
D
2 G F4

(
α, α′;β, γ;x, y

)
. (2.13)

Observa-se uma grande similaridade entre os pares de soluçõesFbub.[n1,n2] eFbub.[n1,n3],
o par Fbub.[n1,n4] e Fbub.[n1,n5]; e o par Fbub.[n2,n4] e Fbub.[n3,n5]. A similaridade resume-se
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em que uma solução do par é equivalente à outra mas com a permutação 1 ↔ 2. A
solução Fbub.[n4,n5] merece um comentário a mais. O termo G dela contém no denomi-
nador um fator Γ

(
1− D

2

)
que não pode ser compensado com outro no numerador para

assim formar um sı́mbolo de Pochhammer. Esse termo faz que, independentemente
do valor de D, no final o coeficiente G tenda sempre a anular-se. Desta forma, essa
solução não deve ser considerada [6].

A função hipergeométrica de Appell tem uma região de convergência dada por
(C.16) e depende dos seus argumentos x e y. Na tabela 2.1 evidencia-se que estes ar-
gumentos, ao serem comparados com a região de convergência, definem três regiões
cinemáticas diferentes das variáveis p2, m2

1 e m2
2. Contudo, algumas das soluções

contêm a mesma região cinemática. Ao serem comparados os resultados pelo NDIM
com os de outros métodos [12, 13], conclui-se que nestes casos somam-se todos os
resultados linearmente independentes correspondentes à mesma região cinemática.
Desta forma, o resultado final do diagrama tipo bolha é, segundo as três regiões
cinemáticas,

Fbub. I = Fbub.[n2,n3] + Fbub.[n2,n4] + Fbub.[n3,n5],
∣∣∣m2

1
p2

∣∣∣ 12 +
∣∣∣m2

2
p2

∣∣∣ 12 < 1;

Fbub. II = Fbub.[n1,n2] + Fbub.[n1,n5],
∣∣∣ p2m2

1

∣∣∣ 12 +
∣∣∣m2

2

m2
1

∣∣∣ 12 < 1;

Fbub. III = Fbub.[n1,n3] + Fbub.[n1,n4],
∣∣∣ p2m2

2

∣∣∣ 12 +
∣∣∣m2

1

m2
2

∣∣∣ 12 < 1. (2.14)

A origem dessas regiões cinemáticas reside em um fenômeno conhecido como rami-
ficação na continuação analı́tica e é explicada no apêndice A.

Existem vários casos particulares da integral (2.1) que são interessantes em si
mesmos. Através do NDIM, estes resultados particulares podem ser extraidos de
duas formas diferentes. Por um lado, pode ser a partir de uma integral mais particu-
lar que (2.1) e então aplica-se todo o procedimento. Por outro lado, podem ser usados
os resultados adequados da tabela 2.1 restringindo-os ao caso particular. Aprovei-
tando a generalidade da integral inicial, se tentará usar esta segunda via.

Em primeiro lugar, suponha-se que as duas massas são iguais (m1 = m2 = m).
Nesse caso, apresentam-se duas formas de reduzir a função de Appel F4 explicadas
nas fórmulas (C.18) e (C.19). A primeira aplica-se às soluções desde Fbub.[n1,n2] até
Fbub.[n1,n5], e a segunda aplica-se às outras três. Quando a fórmula (C.18) é aplicada,
obtém-se o mesmo resultado para as quatro soluções iniciais,

FAbub.[n1,n2] = (4π)−
D
2
(
m2

2

)σ (D
2
− σ

)
−D

2

×

3F2

(
ν1, ν2,−σ; ν1+ν2

2 , ν1+ν2+1
2 ;− p2

4m2

)
, (2.15)

onde foi usado um caso particular da função hipergeométrica generalizada (C.11).
Quando a fórmula (C.19) é aplicada, obtém-se resultados diferentes para cada uma
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das soluções. A primeira solução é,

FAbub.[n2,n3] = (4π)−
D
2
(
p2
)σ (ν1)σ (ν2)σ

(−σ)2σ+D
2

×

3F2

(
−σ, 2−2σ−D

4 , 4−2σ−D
4 ; 1 + ν1 − D

2 , 1 + ν2 − D
2 ;−4m2

p2

)
, (2.16)

onde o superı́ndice A indica que as massas são iguais. A segunda solução é,

FAbub.[n2,n4] = (4π)−
D
2

Γ (−j −D/2)
Γ (−j)

(
m2
)σ+ν1

(p2)ν1
(ν2)−D

2
×

3F2

(
ν1,

ν1−ν2+1
2 , ν1−ν2+2

2 ; 1 + ν1 − ν2, 1 + D
2 − ν2;−4m2

p2

)
, (2.17)

e a terceira (FAbub.[n3,n5]) é equivalente à segunda após a permutação 1↔ 2. Seguindo a
filosofia de separar as soluções nas regiões cinemáticas onde a função hipergeométrica
é convergente, e evitando somar soluções degeneradas (linearmente dependentes),
obtêm-se dois domı́nios de convergência,

FAbub.I = FAbub.[n2,n3] + FAbub.[n2,n4] + FAbub.[n3,n5],
∣∣∣4m2

p2

∣∣∣ < 1;

FAbub.II = FAbub.[n1,n2],
∣∣∣ p24m2

∣∣∣ < 1. (2.18)

Outro caso particular de (2.1) aparece quando uma das duas massas é zero. De-
vido à simetria sob a permutação 1 ↔ 2 só é necessário considerar um dos casos:
m1 = 0 ou m2 = 0. Escolha-se o primeiro caso e defina-se m2 = m. Também terá
que ser lembrado que o ı́ndice ν1 corresponderá àquele de massa nula. Algumas das
soluções da tabela 2.1 não são aplicáveis porque contêm nos argumentos da função
hipergeométrica variáveis com denominadorm2

1. Nestas condições, encontram-se três
soluções não nulas e diferentes. A primeira é,

FBbub.[n1,n2] = (4π)−
D
2
(
m2
)σ (ν2)σ

(−σ)D
2

+σ
2F1

(
ν1,−σ; D2 ;− p2

m2

)
; (2.19)

a segunda é,

FBbub.[n2,n3] = (4π)−
D
2
(
p2
)σ (ν1)σ (ν2)σ

(−σ)2σ+D
2

2F1

(
1− σ − D

2 ,−σ; 1 + ν2 − D
2 ;−m2

p2

)
; (2.20)

e a terceira é,

FBbub.[n2,n4] = (4π)−
D
2
(
p2
)σ (m2

)σ+ν1

(p2)ν1
(ν2)−D

2
2F1

(
1 + ν1 − D

2 , ν1; 1 + D
2 − ν2;−m2

p2

)
.

(2.21)
A separação em regiões cinemáticas para esta restrição nas massas é,

FBbub.I = FBbub.[n2,n4] + FBbub.[n2,n3],
∣∣∣m2

p2

∣∣∣ < 1;

FBbub.II = FBbub.[n1,n2],
∣∣∣ p2m2

∣∣∣ < 1. (2.22)
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Finalmente, o resultado (2.20) permite achar o caso quando as duas massas são nulas,
o qual é simplesmente,

FCbub. = (4π)−
D
2
(
p2
)σ (ν1)σ (ν2)σ

(−σ)2σ+D
2

. (2.23)

Todos os resultados do diagrama tipo bolha apresentados aqui já eram conheci-
dos através de métodos distintos ao NDIM [17]; contudo, este exemplo foi uma das
primeiras provas que o NDIM era de fato confiável. Por causa disso, o diagrama tipo
bolha é um exemplo recorrente na hora de explicar o NDIM [6, 15]. Aproveita-se este
momento para esclarecer certas convenções usadas nesta dissertação que diferem
da forma de apresentar os resultados em outros trabalhos sobre o NDIM. Aqui são
expostas soluções para integrais euclidianas com propagadores (com expoentes posi-
tivos) no denominador; tal como é mostrado na equação (1.18). Outros textos mostram
os resultados das integrais no espaço de Minkowski (o qual gera certos fatores iniciais
e muda o sinal dos produtos pi · pj) ou põem os propagadores como numeradores cujos
expoentes podem ser negativos.

Para completar a discussão sobre o diagrama tipo bolha se fará a análise das suas
equações de Landau, as quais explicam a ramificação em regiões cinemáticas das
soluções (veja-se apêndice A). O caso particular do denominador (A.1) é então,

Tbub. = x1q
2 + x2 (q − p)2 − x1m

2
1 − x2m

2
2, (2.24)

com a restrição x1+x2 = 1 presente na delta de Dirac da parametrização de Feynman.
Devido a topologia do diagrama, a única possibilidade para que exista a superfı́cie de
Landau é que todas as linhas estejam on-shell, e portanto as equações de Landau são,

x1q − x2 (p− q) = 0; (2.25a)

q2 = m2
1; (2.25b)

(q − p)2 = m2
2. (2.25c)

Manipulando adequadamente estas equações chega-se a seguinte representação da
superfı́cie de Landau,

p4 − 2p2m2
1 − 2p2m2

2 +
(
m2

1 −m2
2

)2 = 0. (2.26)

Quando esta equação é resolvida em termos das variáveis x =
∣∣∣ p2m2

1

∣∣∣ 12 e y =
∣∣∣ p2m2

2

∣∣∣ 12 ,
as quais definem as regiões de convergência das funções hipergeométricas encon-
tradas na solução da integral Fbub., conclui-se que a superfı́cie de Landau define
exatamente três regiões cinemâticas accessı́veis por continuação analı́tica e que elas
coincidem com aquelas achadas pelo NDIM. A figura 2.2 mostra como a superfı́cie
de Landau separa estas três regiões. Também pode observar-se que os casos particu-
lares em que m1 = m2 (FAbub.) e m1 = 0 (FBbub.) encontram seu ponto de ramificação
exatamente onde as curvas respectivas cortam a superfı́cie de Landau.
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Tabela 2.1: Soluções do diagrama tipo bolha.
m,n G α, α′;β, γ x, y

n1, n2

(
m2

2

)σ (ν2)σ
(−σ)D

2 +σ

ν1,−σ; D2 , 1 + ν1 − D
2 − p2

m2
2
,
m2

1

m2
2

n1, n3

(
m2

1

)σ (ν1)σ
(−σ)D

2 +σ

ν2,−σ; D2 , 1 + ν2 − D
2 − p2

m2
1
,
m2

2

m2
1

n1, n4
(m2

2)
σ+ν1

(m2
1)
ν1 (ν2)−D

2
ν1,

D
2 ; D2 , 1 + D

2 − ν2 − p2

m2
1
,
m2

2

m2
1

n1, n5
(m2

1)
σ+ν2

(m2
2)
ν2 (ν1)−D

2
ν2,

D
2 ; D2 , 1 + D

2 − ν1 − p2

m2
2
,
m2

1

m2
2

n2, n3

(
p2
)σ (ν1)σ(ν2)σ

(−σ)
2σ+D

2

1− σ − D
2 ,−σ; 1 + ν1 − D

2 , 1 + ν2 − D
2 −m2

1
p2
,−m2

2
p2

n2, n4
(m2

2)
σ+ν1

(p2)ν1
(ν2)−D

2
1 + ν1 − D

2 , ν1; 1 + ν1 − D
2 , 1 + D

2 − ν2 −m2
1

p2
,−m2

2
p2

n3, n5
(m2

1)
σ+ν2

(p2)ν2
(ν1)−D

2
1 + ν2 − D

2 , ν2; 1 + ν2 − D
2 , 1 + D

2 − ν1 −m2
2

p2
,−m2

1
p2

n4, n5
(m2

1)
σ+ν2(m2

2)
σ+ν1

(p2)
D
2

(ν1)−D2
(ν2)−D2

Γ(1−D
2 ) 1, D2 ; 1 + D

2 − ν1, 1 + D
2 − ν2 −m2

1
p2
,−m2

2
p2

Figura 2.2: Regiões de convergência da integral Fbub.. A superfı́cie de Landau está
indicada com uma linha sólida. Também ilustram-se os casos particulares FAbub. e
FBbub. que correspondem a x = y e x→∞ respectivamente.
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2.2 Diagrama tipo triângulo

Na escala de complexidade, a seguinte integral a 1-loop corresponde ao diagrama
mostrado na figura 2.3. Este diagrama contribuiria para a correção radiativa a
primeira ordem da função de correlação de 3-pontos. Esta integral logo revela uma
riqueza muito maior que aquela do diagrama tipo bolha. Ignorando de novo constan-
tes de proporcionalidade, a integral de Feynman neste caso é,

Ftri. (pi,mi;D, νi) =
∫

dDq (2π)−D[
q2 +m2

1

]ν1
[
(q − p2)2 +m2

2

]ν2
[
(q − p1)2 +m2

3

]ν3
. (2.27)

Antes de aplicar a expansão em série da representação de Schwinger, a integral (2.27)
aparece como,

Ftri. =
∫
D~x

exp
{
−x1x3p21+x1x2p22+x2x3p23

x1+x2+x3
−
∑3

j=1 xjm
2
j

}
(4π)

D
2 (x1 + x2 + x3)

D
2

; (2.28)

e após a expansão da exponecial e a expansão multinomial tem-se,

Ftri. =
∫
D~x

(4π)
D
2

∑
n1,...,n9

(−1)n1+...+n6
xn1+n2+n4+n7

1 xn2+n3+n5+n8
2 xn1+n3+n6+n9

3

Γ (n1 + 1) . . .Γ (n9 + 1)
δΘ(ns,D),0 ×

Γ
(
1− n1 − n2 − n3 − D

2

) (
p2

1

)n1
(
p2

2

)n2
(
p2

3

)n3
(
m2

1

)n4
(
m2

2

)n5
(
m2

3

)n6 , (2.29)

onde,
Θ (ns, D) = n1 + n2 + n3 + n7 + n8 + n9 + D

2 . (2.30)

Após usar o NDIM, a solução de (2.27) é,

Ftri. = (−4π)−
D
2

∑
n1,...,n9

Γ (1− ν1) Γ (1− ν2) Γ (1− ν3) Γ
(
1− n1 − n2 − n3 − D

2

)
Γ (n1 + 1) . . .Γ (n9 + 1)

×(
p2

1

)n1
(
p2

2

)n2
(
p2

3

)n3
(
m2

1

)n4
(
m2

2

)n5
(
m2

3

)n6 ∆ (ns, D) , (2.31)

onde ∆ (ns, D) significa os quatro vı́nculos lineares,

n1 + n2 + n4 + n7 = −ν1,

n2 + n3 + n5 + n8 = −ν2,

n1 + n3 + n6 + n9 = −ν3,

n1 + n2 + n3 + n4 + n5 + n6 = σ, (2.32)

e neste caso σ = D
2 − ν1 − ν2 − ν3.

Em princı́pio, o número de soluções diferentes da integral geral (2.27) ascenderia
a
(

9
5

)
= 126. Mas devido ao sistema de equações não existe solução para 45 esco-

lhas dos ı́ndices da somatória e outras 12 soluções cancelam-se em forma similar à
solução Fbub.[n4,n5]. Neste trabalho não serão expostas as 69 soluções restantes, as
quais estão presentes nas referências [11] e [13]. Estas soluções são em geral séries
hipergeométricas de cinco variáveis e a forma delas, dada a simetria do diagrama, se
repete segundo as 6 permutações possı́veis dos ı́ndices j ∈ {1, 2, 3} nas massas mj ,
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Figura 2.3: Diagrama tipo triângulo.
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os momentos pj e os expoentes νj . Esta seção se limitará a apresentar resultados da
integral (2.27) para valores restritos nas massas e nos momentos.

A primeira restrição de (2.27) que será considerada é quando duas massas são
idênticas (m1 = m2 = m) e a terceira é nula (m3 = 0). Com essa restrição, a
representação de Schwinger (2.28) se reduz a,

FAtri. =
∫
D~x

(4π)
D
2

(x1 + x2 + x3)−
D
2 exp

{
−x1x3p21+x1x2p22+x2x3p23

x1+x2+x3
− (x1 + x2)m2

}
. (2.33)

Este é o momento adequado de explicar a otimização do NDIM feita por I. González e
I. Schmidt [15]. A otimização minimiza o número de ı́ndices ni na expansão de mul-
tiregiões e ao mesmo tempo maximiza o número de vı́nculos. Esta melhora consiste
em manter os multinômios que se repetem dentro da exponencial da representação
de Schwinger até que eles se juntarem em um só termo, e só depois disso se procede a
expandi-los. Se a otimização não for feita, a solução consistiria em fazer nulo o ı́ndice
n6 nos vı́nculos (2.32) pois ele corresponde à massa nula m3. Isto daria um sistema
com oito ı́ndices e quatro vı́nculos, deixando outros quatro vı́nculos independentes e
em princı́pio uma multiplicidade de

(
8
4

)
= 70 soluções. O número real de soluções pelo

método não otimizado é 32 [13]. Pelo contrário, após a otimização obtém-se a solução,

FAtri. =
1

(−4π)
D
2

∑
n1,...,n8

Γ
(

1−D2 −n1−n2−n3

)
Γ(1+n4+n5)Γ(1−ν1)Γ(1−ν2)Γ(1−ν3)

Γ(n1+1)...Γ(n8+1) ×(
p2

1

)n1
(
p2

2

)n2
(
p2

3

)n3
(
m2
)n4 ∆ (ns, D) , (2.34)

com ∆ (ns, D) asinalando os vı́nculos,

n1 + n2 + n7 = −ν1,

n2 + n3 + n8 = −ν2,

n1 + n3 + n6 = −ν3,

n1 + n2 + n3 + n4 = σ,

n4 + n5 − n7 − n8 = 0. (2.35)

O número de ı́ndices continua sendo oito, mas o número de vı́nculos aumentou a
cinco e em princı́pio a multiplicidade diminuiu a

(
8
5

)
= 56. Na verdade, o número total

de soluções diferentes é 28. Nas tabelas 2.2e 2.3 mostram-se os argumentos de certas
soluções, as quais têm a forma geral,

FAtri.N =
GN

(4π)
D
2

∑
n1,n2,n3

AN (n1, n2, n3)
zn1

1

n1!
zn2

2

n2!
zn3

2

n3!
, (2.36)

com N ∈ {1, 2, . . . , 16}. Não foram mostradas as soluções que podem ser obtidas pela
permutação p1 ↔ p3, ν1 ↔ ν2; assim que as outras doze soluções diferentes podem
ser extraidas permutando estes momentos e expoentes na solução com N = 2 e as
que vão desde N = 5 até N = 15. A melhora nesta solução respeito à da referência
[13] não consiste somente em que diminuiu o número de soluções, mas também em
que se obtiveram séries hipergeométricas de apenas três variáveis. A grande maioria
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Tabela 2.2: Soluções para o diagrama tipo triângulo, primeira parte.
N GN z1, z2, z3

1
(
m2
)σ (D

2

)
−ν3

(ν1 + ν2)ν3−D2
−p21
m2 ,

−p22
m2 ,

−p23
m2

2
(
p2

3

)σ (ν2)σ (ν3)σ
(
σ + D

2

)
−2σ−D

2

p21
p23
,
p22
p23
, m

2

p23

3
(
p2

2

)σ (ν1)σ (ν2)σ
(
σ + D

2

)
−2σ−D

2

p21
p22
,
p23
p22
, −m

2

p22

4
(
m2
)σ+D

2
−ν3

(
p2

2

)ν3−D2 3 (ν3)D
2
−2ν3

(ν2)−σ−2ν2
(ν1)−σ−2ν1

p21
m2 ,

p23
m2 ,

m2

p23

5
(
p2

3

)−ν3
(
m2
)σ+ν3 (ν2 − ν3)ν1

(ν2)ν1−D2
p21
p23
,
−p22
m2 ,

−m2

p23

6
(
p2

2

)σ+ν3
(
p2

3

)−ν3
(
σ + D

2

)
ν2−D2

(ν1)ν2−D2
(ν2)D

2
−2ν2

p21
p23
, −m

2

p22
,
p22
p23

7
(
p2

2

)−ν1
(
m2
)σ+ν1 (ν2)σ

(
D
2 − ν1

)
−D

2
−σ

p21
p22
,
p23
m2 ,

m2

p22

8
(
p2

1

)−ν1
(
m2
)σ+ν1

(
D
2 − ν1

)
ν3−D2

(ν2)ν3−D2
(ν3)D

2
−2ν3

p22
p21
,
−p23
m2 ,

−m2

p21

9
(
p2

2

)−ν1
(
p2

3

)σ+ν1
(
D
2 + σ

)
−σ−ν2

(ν2)σ (ν3)ν2−D2
p21
p22
, −m

2

p23
,
p23
p22

10
(
p2

1

)−ν1
(
p2

3

)σ+ν1 (ν2)ν3−D2

(
D
2 + σ

)
−ν3−σ (ν3)σ

p22
p21
, m

2

p23
,
p23
p21

11
(
p2

1

)σ+ν2
(
p2

2

)ν3−D2
(
m2
)σ+ν1 (ν1)−σ−2ν1

(ν2)−σ−2ν2
(ν3)D

2
−2ν3

p23
m2 ,

p21
p22
, m

2

p21

12
(
p2

2

)−ν1
(
p2

3

)−ν3
(
m2
)σ+ν1+ν3 (ν2)−D

2

m2p21
p23p

2
2
, −m

2

p23
, −m

2

p22

13
(
p2

1

)−ν1
(
p2

3

)ν1−ν3
(
m2
)σ+ν3 (ν2)ν1−D2

(ν3)−ν1

−p22p23
p21m

2 ,
−m2

p23
,
p23
p21

14
(
p2

1

)−ν3
(
p2

2

)ν3−ν1
(
m2
)σ+ν1 (ν2)ν3−D2

(ν1)−ν3

−p23p22
p21m

2 ,
p22
p21
, −m

2

p22

15
(
p2

1

)ν2−D2
(
p2

2

)σ+ν3
(
p2

3

)σ+ν1 (ν1)−σ−2ν1
(ν3)−σ−2ν3

(ν2)D
2
−2ν2

−m2p21
p22p

2
3
,
−p22
p21
,
−p23
p21

16
(
p2

1

)σ+ν2
(
p2

2

)ν3−D2
(
p2

3

)σ+ν1 (ν1)−σ−2ν1
(ν2)−σ−2ν2

(ν3)D
2
−2ν3

−p22m2

p21p
2
3
,
−p23
p22
,
−p21
p22
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das soluções em [13] são funções hipergeométricas de quatro variáveis. Infortunada-
mente, inclusive no caso de funções hipergeométricas de três variáveis, não se dispõe
de um método simples para obter uma solução global como a das equaçoes (2.14) em
que se agrupam as soluções segundo a região de convergência. A dificuldade de anali-
sar séries hipergeométricas de mais de duas variáveis é uma das grandes limitações
do NDIM.

A segunda restrição de (2.27) que será considerada é a que consiste em fazer todas
as massas nulas (m1 = m2 = m3 = 0). Este caso não massivo é relativamente fácil
de analisar fazendo m = 0 nas soluções FAtri.N da primeira restrição. A partir da
tabela 2.2, se deduz que as soluções FAtri.N que resistem à restrição m = 0 são as que
correspondem a N = 2, 3, 6, 9, 10, 15, 16; e portanto o número total de soluções para
o triângulo não massivo é doze. Dado o alto degrau de simetria do triângulo não
massivo, estas doze soluções podem ser classificadas em apenas três formas básicas,

FB(a)
tri.

(
p1, p2, p3

ν1, ν2, ν3

;D

)
=

(ν2)σ (ν3)σ
(4π)

D
2 (−σ)2σ+D

2

(
p2

3

)σ ×
F4

(
−σ, ν1; 1− ν2 − σ, 1− ν3 − σ; p

2
1

p23
,
p22
p23

)
; (2.37)

FB(b)
tri.

(
p1, p2, p3

ν1, ν2, ν3

;D

)
=

(ν2)−σ−2ν2
(ν3)−σ−2ν3

(4π)
D
2
(
D
2 − ν1

)
2ν1−D2

(
p2

3

)ν1−D2
(
p2

2

)σ+ν3
(
p2

1

)σ+ν2 ×

F4

(
σ + D

2 ,
D
2 − ν1; 1 + σ + ν2, 1 + σ + ν3; p

2
1

p23
,
p22
p23

)
; (2.38)

FB(c)
tri.

(
p1, p2, p3

ν1, ν2, ν3

;D

)
=

(ν1)ν2−D2
(ν2)D

2
−2ν2

(4π)
D
2 (σ + ν2)D

2
−ν2

(
p2

2

)σ+ν3
(
p2

3

)−ν3 ×

F4

(
D
2 − ν2, ν3; 1− σ − ν2, 1 + σ + ν2; p

2
1

p23
,
p22
p23

)
. (2.39)

O conjunto completo de doze soluções é extraido de permutações adequadas das so-
luções (2.37-2.39) nos momentos pi e nos expoentes νi. Conforme à região de con-
vergência da função de Appell F4, a solução do diagrama triangular não massivo
divide-se em três soluções diferentes, cada uma conectada com a outra através de
continuação analı́tica. A solução em diferentes regiões é então,

FBtri.I = FB(a)
tri.

(
p1, p2, p3

ν1, ν2, ν3

;D

)
+ FB(b)

tri.

(
p1, p2, p3

ν1, ν2, ν3

;D

)
+ FB(c)

tri.

(
p1, p2, p3

ν1, ν2, ν3

;D

)

+FB(c)
tri.

(
p2, p1, p3

ν1, ν3, ν2

;D

)
, para

∣∣∣p21p23 ∣∣∣ 12 +
∣∣∣p22p23 ∣∣∣ 12 < 1; (2.40)

FBtri.II = FB(a)
tri.

(
p1, p3, p2

ν3, ν2, ν1

;D

)
+ FB(b)

tri.

(
p1, p3, p2

ν3, ν2, ν1

;D

)
+ FB(c)

tri.

(
p1, p3, p2

ν3, ν2, ν1

;D

)

+FB(c)
tri.

(
p3, p1, p2

ν3, ν1, ν2

;D

)
, para

∣∣∣p21p22 ∣∣∣ 12 +
∣∣∣p23p22 ∣∣∣ 12 < 1; (2.41)
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Tabela 2.3: Soluções para o diagrama tipo triângulo, segunda parte.
N AN (n1, n2, n3)

1
(D2 −ν3)n2

(ν3)n1+n3
(ν2)n1+n2

(ν1)n2+n3
(−σ)n1+n2+n3(

D
2

)
n1+n2+n3

(ν1+ν2)n1+2n2+n3

2
(1−σ−D

2 )
n3

(ν1)n1+n2
(D2 −ν3)n2

(−σ)n1+n2+n3

(1−ν3−σ)n2+n3
(1−ν2−σ)n1+n4

(D2 −ν3)n2−n3

3
(1−σ−D

2 )
n3

(1−ν1−ν2−2σ)n1+n2+2n3
(−σ)n1+n2+n3

(ν3)n1+n2

(1−ν1−ν2−2σ)n1+n2+n3
(1−ν1−σ)n2+n3

(1−ν2−σ)n1+n2

4
(1+2σ+ν1+ν2)2n3−n1−n2

(D2 −ν3)n3
(ν3)n1+n2

(1+2σ+ν1+ν2)n3−n1−n2
(1+σ+ν2)n3−n1

(1+σ+ν1)n3−n2
(ν3)n1+n2−n3

5
(ν3)n1+n3

(ν1)n1+n2
(D2 −ν3)n2

(1+σ+ν3)n3−n2
(1+ν3−ν2)n3+n1−n2

(ν1+ν2−ν3)2n2−n3
(D2 −ν3)n2−n3

6
(D2 −ν2)n3+n1−n2

(ν3)n1+n3
(1−σ−D

2 )
n2

(1−σ−D
2 )

2n2−n3

(1+σ+ν3)n3−n2
(1−σ−ν2)n1+n2

(1−σ−D
2 )

n2−n3

7
(1+ν1−ν2)2n3+n1−n2

(ν1)n1+n3
(ν3)n1+n2

(1+ν1−ν2)n3+n1−n2
(1−ν2−σ)n3+n1

(1+σ+ν1)n3−n2
(D2 −ν1)n2−n3

8
(D2 −ν3)n1

(ν1)n1+n3
(ν2)n1+n2

(1+σ+ν1)n3−n2
(1+ν1−ν3)n3+n1−n2

(ν2)n1+n2−n3
(D2 −ν1)n2−n3

9
(1−σ−ν2)n1+n2+n3

(ν1)n1+n3
(D2 −ν2)n1+n3−n2

(1−σ−D
2 )

n2
(1+σ+ν1)n3−n2

Γ(1−σ−ν2)n1+n3
(1−ν2−σ)n1+n2

10
(ν1)n1+n3

(D2 −ν3)n1
(D2 −ν3)n1+n3−n2

(1−σ−D
2 )

n2

(1+σ+ν1)n3−n2
(1−σ−ν3)n1+n2

(D2 −ν3)n1−n2

11
(1+σ+ν1)n2+n3−n1

(D2 −ν1)n2+n1−n3
(D2 −ν3)n2

(1+σ+ν2)n2−n3
(1+σ+ν1)n3−n1

(1+σ+ν1)n2−n1
(D2 −ν1)n1−n3

12
(1−σ−ν2)n1+n3+n2

(1+ν1+ν3−ν2)2n1+2n3+n2
(ν3)n1+n2

(ν1)n1+n3

(1+D
2
−ν2)n1+n2+n3

(1−σ−ν2)n1+n3
(1+ν1+ν3−ν2)2n1+n3+n2

13
(D2 −ν3)n1

(ν1)n1+n3
(ν1+ν2−ν3)2n1+n3−n2

(1+ν1−ν3)n1+n3−n2
(1+σ+ν3)n2−n1

(D2 −ν3)n1−n2
(ν1+ν2−ν3)2n1−n2

14
(ν3)n1+n2

(D2 −ν1)n1+n2−n3
(ν2+ν3−ν1)2n1+n2−n3

(1+ν3−ν1)n1+n2−n3
(1+σ+ν1)n3−n1

(D2 −ν1)n1−n3
(ν2+ν3−ν1)2n1+n2−2n3

15
(1−D

2
−σ)

n1
(1−D

2
−σ)

2n1−n2
(D2 −ν2)n3+n2−n1

(1+σ+ν3)n2−n1
(1+σ+ν1)n3−n1

(1−D
2
−σ)

n1−n2
(1−D

2
−σ)

2n1−n2−n3

16
(1)n2+n3

(1−D
2
−σ)

n1
(D2 −ν3)n3+n2−n1

(1)n2+n3−n1
(1−σ−D

2 )
2n1−n2−n3

(1+σ+ν2)n3−n1
(1+σ+ν1)n2−n1
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FBtri.III = FB(a)
tri.

(
p3, p2, p1

ν2, ν1, ν3

;D

)
+ FB(b)

tri.

(
p3, p2, p1

ν2, ν1, ν3

;D

)
+ FB(c)

tri.

(
p3, p2, p1

ν2, ν1, ν3

;D

)

+FB(c)
tri.

(
p2, p3, p1

ν2, ν3, ν1

;D

)
, para

∣∣∣p22p21 ∣∣∣ 12 +
∣∣∣p23p21 ∣∣∣ 12 < 1. (2.42)

Embora não seja comprovado explicitamente aqui; a grande similaridade das regiões
de convergência precedentes com aquelas da solução (2.14) sugerem que a superfı́cie
de Landau do diagrama tipo triángulo não massivo possui uma equação idêntica a
(2.26) mas com m1 e m2 sustituido por p3 e p1.

A última restrição de (2.27) que será analisada é o caso em que m1 = m3 = m,
m2 = 0 mas com as pernas externas p1 e p3 sobre a camada de massa (on-shell), ou
seja, p2

1 = p2
3 = −m2. Este resultado obtém-se mais facilmente aplicando o NDIM

desde o inı́cio mas lembrando a otimização descrita no caso da primeira restrição
FAtri.. A solução maximamente simplificada é,

FCtri. =

(
1− σ − D

2 + ν3

)
−ν3

(−4π)
D
2

∑
n1,...,n4

Γ (1− ν1) Γ (1− ν2) Γ (1 + n3 + n4)
Γ (n1 + 1) . . .Γ (n4 + 1)

×(
m2
)n1
(
p2

2

)n2 δn2+n3,−ν1δn2+n4,−ν2δn1+n2,σ . (2.43)

A partir de (2.43) surgem quatro soluções diferentes, ou seja, uma para cada ı́ndice.
A solução para o ı́ndice n2 é,

FCtri.[n2] =

(
m2
)σ

(4π)
D
2

(
σ + D

2

)
−ν3

(−σ)D
2
−ν3

3F2

(
ν1, ν2,−σ; ν1+ν2

2 , 1+ν1+ν2
2 ; −p

2
2

4m2

)
. (2.44)

A solução para o ı́ndice n1 é,

FCtri.[n1] =

(
p2

2

)σ
(4π)

D
2

(ν1)σ (ν2)σ
(−σ)2σ+D

2

×

3F2

(
−σ, 2−D−2σ+2ν3

2 , 4−D−2σ+2ν3
2 ; 1− σ − ν1, 1− σ − ν2; −4m2

p22

)
.(2.45)

A solução para o ı́ndice n3 é,

FCtri.[n3] =

(
p2

2

)−ν1
(
m2
)σ+ν1

(4π)
D
2

(ν2)ν3−D2

(
σ + D

2

)
−ν3
×

3F2

(
ν1,

1+ν1−ν2
2 , 2+ν1−ν2

2 ; 1 + σ + ν1, 1 + ν1 − ν2; −4m2

p22

)
. (2.46)

A solução para o ı́ndice n4 tem a mesma forma queFCtri.[n3] exceto que sob a permutação
ν1 ↔ ν2. Segundo a região de convergência, as soluções com respeito a n1, n3 e n4

serão somadas como combinação linear para quando
∣∣4m2

∣∣ < ∣∣p2
2

∣∣. A solução com
respeito a n2 será deixada sozinha na região cinemática:

∣∣p2
2

∣∣ < ∣∣4m2
∣∣.

2.3 Diagrama tipo pôr de sol

Até agora foram considerados diagramas a um loop que envolviam só vértices triplos,
os quais corresponderiam a correções radiativas de primeira ordem de uma teoria
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de campos escalares, com possı́veis massas diferentes, cuja densidade lagrangiana
contém um termo de interação do tipo φ3. Mas também é possı́vel considerar diagra-
mas que envolvam vértices quádruplos, como os de uma teoria escalar com interação
do tipo φ4. Em esta teoria, a primeira correção radiativa ao propagador aparece a dois
loops, e corresponde ao diagrama tipo pôr de sol (sunset diagram) que se ilustra na
figura 2.4. Por razões de simplicidade, não se começará com o caso em que as três li-
nhas internas têm massas diferentes e não nulas. Os valores particulares das massas
foram escolhidos pela importância que a integral associada a eles têm para ser apli-
cada a outros diagramas e outras teorias. Por exemplo, diagramas complexos como
o loop master (importante em correções radiativas de polarização do vácuo) podem
ser decompostos em diagramas mais simples pelo método de integração por partes
e o sunset diagram da figura 2.4 está presente nessa decomposição [13, pp. 7-9]. A
integral que será resolvida é,

Fsun. (p,m;D, νi) =
∫

dq1

(2π)D

∫
dq2

(2π)D
1[

q2
1 +m2

]ν1
[
q2

2 +m2
]ν2
[
(p− q1 − q2)2

]ν3
.

(2.47)

Figura 2.4: Sunset diagram ou pôr de sol.

Para achar a representação de Schwinger de (2.47), a notação de matrizes intro-
duzida na equação (1.22) resulta útil,

Fsun. =
∫

dq1

(2π)D

∫
dq2

(2π)D

∫
D~x exp

{
−qTAq + 2pBq− x3p

2 − (x1 + x2)m2
}
, (2.48)

onde q =

(
q1

q2

)
, A =

(
x1 + x3 −x3

−x3 x2 + x3

)
, e B =

(
x3 x3

)
. Sem ter que passar

pelos detalhes algébricos, rapidamente pode-se aplicar a fórmula (1.27) e simplificar
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até obter,

Fsun. =
∫
D~x

1

φ
D
2 (4π)D

exp
{
−x1x2x3p

2

φ
− (x1 + x2)m2

}
, (2.49)

onde φ = det A = x1x2 + x2x3 + x3x1. Após a expansão das exponencias e a aplicação
do NDIM otimizado chega-se à solução,

Fsun. =
1

(−4π)D
∑

n1,...,n6

Γ(1−ν1)Γ(1−ν3)Γ(1−ν3)Γ(1−n1−D2 )Γ(1+n2+n4)

Γ(1+n1)...Γ(1+n6)

(
p2
)n1
(
m2
)n2 ∆ (ns, D) ;

(2.50)
onde desta vez ∆ (ns, D) representa os vı́nculos†,

n1 + n3 + n5 = −ν1

n1 + n3 + n6 = −ν2

n1 + n4 = −ν3

n1 + n2 = σ

n5 + n6 = n2 + n4.

Da equação (2.50) surgem 5 soluções diferentes, correspondendo aos seis ı́ndices
ns com exceção de n3. A solução para n1 é,

Fsun.[n1] =

(
m2
)σ

(4π)D

(
D
2

)
−ν3

(−σ)−ν3

(ν1)D
2
−ν3

(ν2)D
2
−ν3

×

4F3

(
−σ, ν3, ν1 + ν3 − D

2 , ν2 + ν3 − D
2

D
2 ,

ν3−σ
2 , ν3−σ+1

2

;− p2

4m2

)
, (2.51)

onde é usada a notação mFn

(
α1,...αm
β1,...,βn

; z
)
≡ mFn (α1, . . . αm;β1, . . . , βn; z). A solução

para n2 é,

Fsun.[n2] =

(
p2
)σ

(4π)D
(ν1)D

2
−2ν1

(ν2)D
2
−2ν2

(ν3)D
2
−2ν3

(−σ)D
2

+2σ

×

4F3

(
−σ, 1− σ − D

2 ,
1−ν3−σ

2 , 2−ν3−σ
2

1− ν3 − σ, 1 + ν1 − D
2 , 1 + ν2 − D

2

;−4m2

p2

)
. (2.52)

A solução para n4 é,

Fsun.[n4] =

(
p2
)−ν3

(
m2
)σ+ν3

(4π)D
(ν1)−D

2
(ν2)−D

2
×

4F3

(
ν3, 1 + ν3 − D

2 ,
1+ν3+σ

2 , 2+ν3+σ
2

1 + σ + ν3, 1 + D
2 − ν1, 1 + D

2 − ν2

;−4m2

p2

)
. (2.53)

A solução para n5 é,

Fsun.[n5] =

(
p2
)D

2
−ν1−ν3

(
m2
)D

2
−ν2

(4π)D

(
1 + σ + ν2 − D

2

)
D
2
−2σ−2ν2

(ν2)−D
2(

D
2 − ν1

)
2ν1−D2

(
D
2 − ν3

)
2ν3−D2

×

4F3

(
ν1 + ν3 + D

2 , 1− ν2 − σ, 1+ν1−ν2
2 , 2+ν1−ν2

2

1 + ν1 − D
2 , 1 + ν3 − D

2 , 1 + D
2 − ν2

;−4m2

p2

)
. (2.54)

†Neste caso σ = D − ν1 − ν2 − ν2. Note-se que em cada diagrama tem se usado uma definição de
σ diferente. Porém, pode induzir-se a fórmula geral σ = LD

2
−
∑
j νj , onde L é o número de loops do

diagrama e D a dimensão.
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Finalmente, Fsun.[n6] é igual a Fsun.[n5] mas com a permutação ν1 ↔ ν2. Segundo a
região de convergência das séries hipergeométricas, a solução geral do diagrama por
de sol é,

Fsun.I = Fsun.[n2] + Fsun.[n4] + Fsun.[n5] + Fsun.[n6],
∣∣∣4m2

p2

∣∣∣ < 1;

Fsun.II = Fsun.[n1],
∣∣∣ p24m2

∣∣∣ > 1. (2.55)

O caso não massivo do diagrama pôr de sol é particularmente simples pois não en-
volve nenhuma função hipergeométrica. Ele é extraido facilmente da solução Fsun.[n2],
que é a única que sobrevive ao limite m→ 0,

Fm=0
sun.[n2] =

(
p2
)σ

(4π)D
(ν1)D

2
−2ν1

(ν2)D
2
−2ν2

(ν3)D
2
−2ν3

(−σ)D
2

+2σ

. (2.56)

2.4 Diagrama triangular a dois loops

Quando é possı́vel misturar vértices triplos e vértices quádruplos, a teoria é auten-
ticamente do tipo φ3 ⊕ φ4. O diagrama a três pontos e dois loops da figura 2.5 é um
exemplo dessa mistura de vértices. Para evitar complicações prolongadas, tal como
já foi visto em alguns dos exemplos precedentes, assume-se que o diagrama é não
massivo. Portanto, a integral que será calculada é,

FD.Tr. (pi;D, νi) =
∫

d4q1

(2π)D

∫
d4q2

(2π)D
1[

q2
1

]ν1
[
(q1 − p1)2

]ν2
[
(q1 + q2 − p2)2

]ν3 [
q2

2

]ν4
.

(2.57)

Figura 2.5: Diagrama triangular a dois loops.

Poderia aplicar-se o NDIM ilustrado nos exemplos precedentes para solucionar
(2.57). Mas esta integral tem uma forma de solução bastante mais simples [16].
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Ao examinar a estrutura do denominador, nota-se que a integral com respeito a q2

sozinha envolve uma integral tipo bolha não massiva, tal como na equação (2.23),
mas com p = p2 − q1. Dessa forma tem-se,

FD.Tr. (pi;D, νi) =
(ν3)D

2
−ν3−ν4

(ν4)D
2
−ν3−ν4

(4π)
D
2
(
ν3 + ν4 − D

2

)
3D
2
−2ν3−2ν4

×

∫
d4q1

(2π)D
1[

q2
1

]ν1
[
(q1 − p1)2

]ν2
[
(q1 − p2)2

]ν3+ν4−D2
. (2.58)

Mas aqui encontra-se de novo uma forma conhecida. Trata-se da integral triangular
a um loop não massiva, tal como nas equações (2.40-2.42), mas com o expoente ν3

modificado e a permutação p1 ↔ p2. Em conclusão, a solução de (2.57) é,

FD.Tr. (pi;D, νi) =
(ν4)D

2
−2ν4

(ν3)D
2
−2ν3

(4π)
D
2
(
ν3 + ν4 − D

2

)
3D
2
−2ν3−2ν4

×

FBtri.
(
p1 ↔ p2, p3; ν1, ν2, ν3 + ν4 − D

2 ;D
)
. (2.59)

Em conclusão, há 12 soluções diferentes, pois essa é a multiplicicade da soluções no
triángulo a um loop não massivo.

Se o NDIM completo fosse utilizado, após a integração nos momentos internos da
representação de Schwinger de (2.57) se chegaria a,

FD.Tr. (pi;D, νi) =
∫
D~x

(4π)D φ
D
2

exp
{
−φ−1

[
x1x2 (x3 + x4) p2

1 + x1x3x4p
2
2 + x2x3x4p

2
3

]}
,

(2.60)
com φ = (x1 + x2) (x3 + x4) + x4x3. A solução em série otimizada de (2.57) através do
NDIM seria então,

FD.Tr. (pi;D, νi) = (−4π)−D
∑

n1,...,n9

Γ (1− ν1) . . .Γ (1− ν4) Γ (1 + n1 + n9) Γ (1 + n9 + n5)
Γ (1 + n1) . . .Γ (1 + n8)

×(
p2

1

)n1
(
p2

2

)n2
(
p2

3

)n3 ∆ (ns, D) , (2.61)

onde ∆ (ns, D) representa os sete vı́nculos,

n1 + n2 + n6 = −ν1

n1 + n3 + n7 = −ν2

n2 + n3 + n5 + n8 = −ν3

n2 + n3 + n5 + n4 = −ν4

n1 + n2 + n3 = σ

n6 + n7 = n9

n8 + n4 = n1 + n9. (2.62)

O sistema de equações lineares precedente oferece exatamente 12 soluções diferentes
e não nulas e todas coincidem com as doze soluções implı́citas na fórmula (2.59). A
completa igualdade entre as soluções (2.59) e (2.61) é um bom exemplo da coerência
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interna do NDIM. Aliás, o diagrama triangular a dois loops não massivo é também
uma ilustração dramática da vantagem de usar o NDIM otimizado. Sem o proce-
dimento da fatorização dos parámetros de Schwinger, o NDIM oferece 81 soluções
não triviais, muitas delas em termos de funções hipergeométricas de três e quatro
variáveis [7]. A otimização do método reduz os resultados a 12 soluções em termos de
funções de Appel de duas variáveis.
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Capı́tulo 3

Aplicação à QED a um loop

Como aplicação simples de algumas das integrais achadas no capı́tulo anterior va-
mos considerar as integrais a um loop que aparecem no processo de renormalização
da eletrodinâmica quântica (QED). O numerador das integrais na QED costuma ter
estrutura tensorial e para a sua manipulação é útil considerar a álgebra das matrizes
de Dirac em uma dimensão generalizada,{

γµ, γν
}

= 2ηµνI; (3.1)

de onde surgem as identidades,

γµγµ = ηµµ = 2ω;

γµγαγµ = 2 (1− ω) γα;

γµγαγβγµ = 4ηαβ + 2 (ω − 2) γαγβ;

γµγαγνγβγµ = 2 (2− ω) γαγνγβ − 2γβγνγα. (3.2)

Também é útil considerar as identidades dos traços,

Tr
(
γαγβ

)
= 2ωηµν ;

Tr
(
γαγβγν

)
= 0;

Tr
(
γαγβγνγµ

)
= 2ω

[
ηαβηνµ − ηανηβµ + ηαµηβν

]
. (3.3)

Neste capı́tulo serão usadas as integrais gaussianas,∫
d2ωQ

(2π)2ω e
−Q2

=
1

(4π)ω
; (3.4a)∫

d2ωQ

(2π)2ω e
−Q2

Qµ = 0; (3.4b)∫
d2ωQ

(2π)2ω e
−Q2

QµQν =
ηµν

2 (4π)ω
. (3.4c)

Durante o processo de regularização dimensional da QED costuma-se escrever
eµ2−ω em vez de e para fazer que a constante de acoplamento seja adimensional inde-
pendentemente do parâmetro de dimensão ω. A variável µ chama-se fator de massa
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e é um parâmetro que indica a energia à qual está sendo testada a teoria. Neste
capı́tulo este fator de massa será negligenciado na maioria das expressões. Em geral,
as integrais serão feitas no espaço euclidiano mas os sinais estão calibrados de tal
forma que para voltar aos resultados finais no espaço de Minkowski só se precisam
fazer as transformações inversas a (1.9a-1.9c).

3.1 Autoenergia do elétron

A primeira integral divergente é a autonenergia do elétron,

Σ (p, 2ω) = −e2

∫
d2ωq

(2π)2ω

γµ [i (γ · p− γ · q)−m] γµ

[q2]ν1

[
(p− q)2 +m2

]ν2
, (3.5)

onde a dimensão é parametrizada comoD = 2ω e os expoentes dos propagadores estão
generalizados, embora se saiba que ν1 = ν2 = 1. A integral apresentada corresponde
ao diagrama da figura 3.1. O denominador tem claramente a estrutura da integral
do diagrama tipo bolha no caso especial FBbub.. Contudo, o numerador tem que ser
levado a conta durante o processo de integração com respeito aos momentos internos
tal como se mostra na equação (1.25). De fato, aplicando a fórmula (1.25) tem-se,

Σ (p, 2ω) = −e2

∫
d2ωQ

(2π)2ω

∫
D~x

e−
x1x2p

2

x1+x2
−x2m2

(x1 + x2)ω
e−Q

2

γµ

[
i
(
γ · p

(
1− x2

x1+x2

)
− (x1 + x2)−

1
2 γ ·Q

)
−m

]
γµ. (3.6)

Usando (3.4a) e (3.4b),a solução neste caso é somente,

Σ (p, 2ω) =
−e2

(4π)ω

∫
D~x

e−
x1x2p

2

x1+x2
−x2m2

(x1 + x2)ω
γµ

[
iγ · p

(
1− x2

x1+x2

)
−m

]
γµ. (3.7)

O único termo que é diferente com respeito à integral escalar normal é o quociente
x2

x1+x2
. Mas ele tem uma interpretação simples de acordo com a representação de

Schwinger. Ao lembrar que na abreviação
∫
D~x existe um fator xν2−1

2 , o fator x2 no
numerador pode ser visto somente como uma mudança no expoente (ν2 → ν2 +1). Por
outro lado, visto que há um fator (x1 + x2)−ω na representação da integral escalar
normal, o fator (x1 + x2) no denominador sugere que se trata da mesma integral
escalar mas com a dimensão aumentada ω → ω + 1∗. Desta forma, e tal como foi
antecipado na seção 1.5, a integral tensorial foi reduzida a uma combinação linear de
integrais escalares, todas elas com a mesma estrutura no denominador mas com os
expoentes e a dimensão diferentes. A combinação linear é,

Σ (p, 2ω) =
−2e2

(4π)ω
{[i (1− ω) γ · p−mω] f1 − i (1− ω) γ · pf2} , (3.8)

onde foi usada uma das fórmulas (3.2) e f1 e f2 representam as integrais escalares,

f1 = (4π)ω FBbub. (p,m; ν1 = 1, ν2 = 1, D = 2ω) ; (3.9a)

f2 = (4π)ω+1FBbub. (p,m; ν1 = 1, ν2 = 2, D = 2ω + 2) . (3.9b)
∗Contudo, deve ser lembrado que no sı́mbolo

∫
D~x estão contidas funções gamma dependentes das

νj . Por isso, devem ser introduzidos fatores do tipo (νj)s por cada fator xsj no interior da integral.
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Por simplicidade, escolhe-se a região de convergência de FBbub.II de (2.22) para obter,

f1 (p, 2ω) =
(
m2
)ω−2 Γ (2− ω)

ω − 1 2F1

(
1, 2− ω;ω;−p2/m2

)
; (3.10a)

f2 (p, 2ω) =
(
m2
)ω−2 Γ (2− ω)

ω
2F1

(
1, 2− ω;ω + 1;−p2/m2

)
. (3.10b)

Figura 3.1: Diagrama a um loop da correção ao propagador do elétron.

No esquema de renormalização usual [20], costuma-se exprimir (3.8) como,

Σ (p, 2ω) = A (ω) + (ip · γ +m)B (ω) + Σf (p, 2ω) , (3.11)

onde espera-se que os termos A (ω) e B (ω) independam de p e sejam os únicos que
contenham divergências ultravioletas. O subı́ndice no termo

∑
f (p, 2ω) indica que

é finito com respeito às divergências ultravioletas, mas pode conter ainda eventuais
divergências infravermelhas. Para extrair os termos A (ω) e B (ω) enxerga-se (3.8)
como uma série de Taylor com respeito a i /p ao redor de i /p = −m, e só se precisa
encontrar os dois primeiros termos da série. Desta forma,

A (ω) = Σ (p, 2ω)|iγ·p=−m

=
2e2m

(4π)ω
[
f1|iγ·p=−m − (1− ω) f2|iγ·p=−m

]
, (3.12)

e,

B (ω) =
∂Σ (p, 2ω)
∂ (i /p)

∣∣∣∣
iγ·p=−m

=
2e2

(4π)ω
[
(ω − 1)

(
f1|iγ·p=−m − f2|iγ·p=−m

)
+

m ∂f1

∂
(
i /p
)
∣∣∣∣∣
iγ·p=−m

+m (ω − 1) ∂f2

∂
(
i /p
)
∣∣∣∣∣
iγ·p=−m

 . (3.13)
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Deve lembrar-se que /p2 = p2 e que nas derivadas ∂

∂
(
i /p
) = −2i /p ∂

∂p2
. Com isto em mente

e aplicando (C.12) e (C.14), obtém-se,

f1|iγ·p=−m = m2ω−4 Γ (2− ω)
(2ω − 3)

;

f2|iγ·p=−m = m2ω−4 Γ (2− ω)
(2ω − 2)

;

∂f1

∂
(
i /p
)
∣∣∣∣∣
iγ·p=−m

=
m2ω−5Γ (2− ω)

(2ω − 3)
;

∂f2

∂
(
i /p
)
∣∣∣∣∣
iγ·p=−m

=
m2ω−5Γ (2− ω) (ω − 2)

(ω − 1) (2ω − 3)
. (3.14)

Que ao serem introduzidos em (3.12) e (3.13) chega-se a,

A (ω) =
e2m2ω−3 (2ω − 1)

(4π)ω (2ω − 3)
Γ (2− ω) , (3.15)

e,

B (ω) =
e2m2ω−4 (2ω − 1)

(4π)ω (2ω − 3)
Γ (2− ω) . (3.16)

É interessante conferir em que sentido Σf (p, 2ω) é finito. Para isso, utilizam-se
os resultados precendentes, combinando (3.8), (3.10a) e (3.10b); chegando-se à ex-
pressão,

Σf (p, 2ω) = e2m2ω−3Γ(2−ω)
(4π)ω

[(
2H1

ω − 1
+

2 (ω − 1)H2

ω
− 2ω − 1

2ω − 3

)
+

(i /p+m)
m

(
2H1 −

2 (ω − 1)H2

ω
− 2ω − 1

2ω − 3

)]
, (3.17)

onde H1 e H2 representam as funções hipergeométricas em f1 e f2 respectivamente.
Em particular,

H1 = 1 +
2− ω
ω

(
−p2
m2

)
+

(2− ω) (3− ω)
ω (ω + 1)

(
−p2
m2

)2
+O

[(
−p2
m2

)3
]

;

H2 = 1 +
2− ω
ω + 1

(
−p2
m2

)
+

(2− ω) (3− ω)
(ω + 1) (ω + 2)

(
−p2
m2

)2
+O

[(
−p2
m2

)3
]
.

Percebe-se que se a ordem zero é ignorada, existe sempre um fator (2− ω) acom-
panhando os termos das séries hipergeométricas H1 e H2. Se fosse possı́vel fatorizar
este (2− ω) fora dos parênteses, ele ficaria multiplicando à função Γ (2− ω). Visto
que perto do valor da dimensão fı́sica de interesse (ω → 2), a divergência só existe
na função Γ (2− ω); a fórmula (C.2) indica que a fatorização de (2− ω) faria que a
expressão fosse finita no limite ω = 2; isto é, Σf ficaria renormalizado. Para saber
se a fatorização é possı́vel, só deve ser analisada a ordem zero nas séries H1 e H2. A
ordem zero de (3.17) é,

Σf (p, 2ω) = − e2m2ω−3Γ(2−ω)
(4π)ωω(2ω−3)

[
(2− ω)

(
2ω2 − 3ω + 3

)
ω − 1

+

(i /p+m)
m

(
2ω2 − 5ω + 6

)]
+O

(
−p2
m2

)
. (3.18)
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Deste resultado conclui-se que a fatorização de (2− ω) só é possı́vel no termo que
independe de (i /p+m). Este termo corresponde à parte de Σf renormalizada por
A (ω). O termo que depende de (i /p+m) corresponde à parte renormalizada por B (ω).
Esta parte não ficou finita devido a uma divergência infravermelha causada pelo fato
de que a linha interna que corresponde ao fóton tem massa nula. Todos estes resulta-
dos (inclusive a localização da divergência infravermelha) concordam perfeitamente
com os obtidos na referência [20] onde este exemplo foi resolvido pelos métodos usuais
de integração usando a representação de Feynman.

3.2 Polarização do vácuo

A segunda integral divergente a um loop da QED é a polarização do vácuo,

Πµν

(
p2; 2ω

)
= −e2 Tr

∫
d2ωq

(2π)2ω

γµ (iγ · q −m) γν [iγ · (q − p)−m]

[q2 +m2]ν1

[
(q − p)2 +m2

]ν2
. (3.19)

A topologia do diagrama continua sendo do tipo bolha; mas desta vez a estrutura do
denominador revela-se como a do caso FAbub., cuja solução está nas equações (2.15-
2.17). O numerador tem que ser levado a conta de novo. Antes da integração com
respeito a q,

Πµν

(
p2; 2ω

)
= −e2

∫
d2ωQ

(2π)2ω

∫
D~x φ2ωe−

x1x2p
2

x1+x2
−(x1+x2)m2

e−Q
2 ×

Tr γµ
[
iγ ·

(
φQ+ φ2x2p

)
−m

]
γν
[
iγ ·

(
φQ− φ2x1p

)
−m

]
(3.20)

onde φ = (x1 + x2)−
1
2 . Após um pouco de manipulação com as fórmulas (3.3) tem-se,

Πµν

(
p2; 2ω

)
= −e2

∫
d2ωQ

(2π)2ω

∫
D~x

e−
x1x2p

2

x1+x2
−(x1+x2)m2

(x1 + x2)ω
e−Q

2 ×

2ω
[
φ2
(
ηµνQ

2 − 2QµQν
)

+ φ4x2x1

(
2pµpν − p2ηµν

)
+m2ηµν

]
,

onde foram ignorados os termos lineares com respeito a Q pois eles são nulos segundo
(3.4b). Dadas (3.4a-3.4c) , tem-se finalmente,

Πµν

(
p2; 2ω

)
=
−e2

(2π)ω
{
ηµν

[
m2f1 + (ω − 1) f2

]
+
(
2pµpν − p2ηµν

)
f3

}
; (3.21)

onde,

f1 = (4π)ω FAbub. (p,m; ν1 = 1, ν2 = 1, D = 2ω) ; (3.22a)

f2 = (4π)ω+1FAbub. (p,m; ν1 = 1, ν2 = 1, D = 2ω + 2) ; (3.22b)

f3 = (4π)ω+2FAbub. (p,m; ν1 = 2, ν2 = 2, D = 2ω + 4) . (3.22c)

Visto que na renormalização interessa o limite p → 0, toma-se a região de con-
vergência de FAbub.II tal como é mostrada em (2.18),

f1 =
(
m2
)ω−2 Γ (2− ω) 2F1

(
1, 2− ω; 3

2 ; −p
2

4m2

)
; (3.23a)

f2 =
(
m2
)ω−1 Γ (1− ω) 2F1

(
1, 1− ω; 3

2 ; −p
2

4m2

)
; (3.23b)

f3 = 1
6

(
m2
)ω−2 Γ (2− ω) 2F1

(
2, 2− ω; 5

2 ; −p
2

4m2

)
. (3.23c)

38



Figura 3.2: Diagrama da polarização do vácuo a um loop.

Segundo um análise que pode ser feito entre funções hipergeométricas contiguas [32,
p. 103], pode mostrar-se que,

2F1

(
1, 2− ω; 3

2 ; −p
2

4m2

)
− 2F1

(
1, 1− ω; 3

2 ; −p
2

4m2

)
= 2

3

(
−p2
4m2

)
2F1

(
2, 2− ω; 5

2 ; −p
2

4m2

)
, (3.24)

o qual é equivalnte a dizer que m2f1 + (ω − 1) f2 = −p2f3. Isto simplifica o resultado
à expressão compacta,

Πµν

(
p2; 2ω

)
= Π

(
p2; 2ω

) (
p2ηµν − pµpν

)
=

e2
(
m2
)ω−2 Γ (2− ω)
3 (2π)ω 2F1

(
2, 2− ω; 5

2 ; −p
2

4m2

) (
p2ηµν − pµpν

)
.

A possibilidade de fatorizar o tensor
(
p2ηµν − pµpν

)
que independe do parámetro

regularizador ω é uma vantagem notável do método da regularização dimensional.
Esta fatorização corresponde à transversalidade do fóton (invariança de Gauge do
tensor de polarização) e é uma simetria que a RD conserva. Com este ressultado,
a identidade invariante-Gauge pµΠµν

(
p2; 2ω

)
= 0 é válida independentemente da

regularização. O fato de que estas simetrias se conservem após a regularização (e
após a renormalização) garante a unitariedade da matriz de espalhamento termo por
termo na expansão perturbativa. No momento de renormalizar só será necessario
introduzir um contratermo Π (0, 2ω) na parte escalar,

Πf

(
p2; 2ω

)
= Π

(
p2; 2ω

)
−Π (0; 2ω) . (3.25)

A finitude de Πf para qualquer valor de ω é fácil de conferir, inclusive o limite ω → 2
não envolve nenhuma divergência. As divergências infravermelhas estão descartadas
pois o diagrama da fig. 3.2 não contém linhas internas de massa nula. De novo, os
resultados concordam com aqueles obtidos na referência [20].

3.3 Correção ao vértice

A última e mais complexa correção a um loop da QED é a correção ao vértice cujo
diagrama é mostrado na figura 3.3. Este diagrama costuma ser calculado com as
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pernas externas p1 e p3 on-shell, satisfazendo-se as equações de Dirac (em espaço
euclidiano),

ū (p3) (i /p3 +m) = (i /p1 +m)u (p1) = 0. (3.26)

A integral correspondente é então,

Λµ (p2,m; 2ω) = −e2

∫
d2ωq

(2π)2ω

ū (p3) γα [i (q − p2) · γ −m] γµ [iq · γ −m] γαu (p1)

[q2 +m2]ν1

[
(q − p2)2 +m2

]ν2
[
(q − p1)2

]ν3
,

(3.27)
cujo denominador é o caso particular FCtri. em (2.43). Devido à complexidade da inte-
gral, desde o inı́cio é útil antecipar a estrutura da solução. Usando argumentos de
covariança de Lorentz, e inclusive a identidade Gordon,

ū (p3) (pµ1 + pµ3 )u (p1) = ū (p3)
[

1
2 ( /p2γ

µ − γµ /p2) + 2imγµ
]
u (p1) , (3.28)

espera-se que Λµ possa ser exprimida segundo os famosos fatores de forma [23, 22],

Λµ (p2,m; 2ω) = ū (p3)
[
γµF1

(
p2

2,m; 2ω
)
− m

2 (p2)ν σ
µνF2

(
p2

2,m; 2ω
)]
u (p1) , (3.29)

onde σµν = i
2 [γµ, γν ], e F1 e F2 são funções escalares.

Apesar de saber já a estrutura final de Λµ, ainda fica um caminho árduo para obter
os fatores de forma a partir da integral (3.27). Após a parametrização de Schwinger e
a mudança de variável q = φQ+x2p2+x3p1, é possı́vel realizar a integração gaussiana
com respeito a Q, e o numerador adquire a forma,

N = ū (p3) γα
[
−1

2φ
2γβγµγβ − φ4 (x3 /p3 − x1 /p2) γµ (x2 /p2 + x3 /p1) +

+imφ2 (x1 /p2γ
µ − x3 /p3γ

µ − x2γ
µ /p2 − x3γ

µ /p1) +m2γµ
]
γαu (p1) , (3.30)

onde φ = (x1 + x2 + x3)−
1
2 . Como nos casos precedentes, é claro que foi obtida uma

combinação linear de integrais escalares (neste caso do tipo FCtri.) com os parâmetros
de dimensão ω e os expoentes νj modificados.

O seguinte passo envolve uma intrincada manipulação algébrica do numerador;
incluindo a álgebra das matrizes de Dirac, e as equações (3.26) e (3.28). Também é
muito importante aproveitar a simetria do diagrama, a qual permite identificar os
produtos dos parâmetros de Schwinger, φ2x1 ≡ φ2x2, φ4x3x1 ≡ φ4x3x2. Igualmente
é útil considerar as identidades 1 = φ2 (x1 + x2 + x3), φ2x3 = φ4x3 (x1 + x2 + x3). Se
estas simplificações não fossem levadas a conta, o número de integrais escalares di-
ferentes mostradas no numerador pareceria ascender a nove; mas com as simetrias
este número se reduz a cinco. Portanto, a partir de (2.44) escolhem-se as seguintes
cinco funções particulares,

f1 [1] =
(
m2
)ω−3 Γ (3− ω)

(2ω − 4) 2F1

(
1, 3− ω; 3

2 ; −p
2
2

4m2

)
;

f2

[
φ2
]

=
(
m2
)ω−2 Γ (2− ω)

(2ω − 2) 2F1

(
1, 2− ω; 3

2 ; −p
2
2

4m2

)
;

f3

[
φ2x1

]
=

(
m2
)ω−3 Γ (3− ω)

2 (2ω − 3) 2F1

(
1, 3− ω; 3

2 ; −p
2
2

4m2

)
;

f4

[
φ2x1x3

]
=

(
m2
)ω−3 Γ (3− ω)

2 (2ω − 2) (2ω − 3) 2F1

(
1, 3− ω; 3

2 ; −p
2
2

4m2

)
;

f5

[
φ2x1x2

]
=

(
m2
)ω−3 Γ (3− ω)

(2ω − 2) 6 2F1

(
2, 3− ω; 5

2 ; −p
2
2

4m2

)
;
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Figura 3.3: Diagrama de correção ao vértice da QED a um loop.

onde nos parânteses quadrados foi indicada a combinação de parâmetros de Feynman
que altera a integral escalar original. Depois de que toda a tediosa manipulação
algébrica é feita, o fator de forma F2 fica,

F2

(
p2

2,m; 2ω
)

=
8m2e2

(4π)ω
[(2− ω) f3 + (ω − 1) f4]

=
e2m2ω−4

(4π)ω
(10− 4ω)
(2ω − 3)

Γ (3− ω) 2F1

(
1, 3− ω; 3

2 ; −p
2
2

4m2

)
. (3.31)

O valor particular F2

(
p2

2 = 0, 2ω = 4
)

= e2

8π2 = α
2π é muito famoso por ser a correção a

primeira ordem da razão giromagnética que explica o momento anómalo do elétron.
Este fator de forma permanece finito independentemente da dimensão. Pelo contrário,
o fator de forma F1 contêm divergências tanto infravermelhas como ultravioletas,

F1 = − 2e2

(4π)ω
{
f1

(
2m2 + p2

2

)
− f3

[
2 (ω + 1)m2 + 2p2

2

]
+

f4

[
2 (ω − 1)m2

]
+ (ω − 1) p2

2f5 − (1− ω)2 f2

}
. (3.32)

Na expressão anterior só existem divergências quando ω → 2 nas funções f1 e f2.
Todavia, cada uma delas tem um caráter diferente. A divergência em f2 pode ser
eliminada substraindo um contratermo do tipo α

4π(2−ω) (eγµ) e é devida a uma di-
vergência ultravioleta. Esta divergência ultravioleta coincide com o valor encontrado
na literatura. A divergência em f1 é do tipo infravermelho e está associada à massa
nula do fóton.

A solução geral de (3.27) encontrada nesta seção é difı́cil de comparar através dos
resultados de outros autores pois não foi possı́vel encontrar na literatura uma ex-
pressão completa da integral com a dimensão generalizada tal como é apresentada
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aqui. Contudo, são conhecidas expressões para limites particulares dos argumen-
tos. O fato de ter-se encontrado a correção adequada à razão giromagnética e o con-
tratermo à divergência ultravioleta correto já é um indı́cio da validez dos resultados.
Também poderia comparar-se com o limite de transferência nula ( /p2 = p2

2 = 0),

Λµ ( /p2 = 0; 2ω) = ū3 (p3) γµu1 (p1)
α

4π
(
4πµ2/m2

)2−ω Γ (2− ω) (2ω − 1)
(2ω − 3)

, (3.33)

onde foi incluido o fator de massa µ. No limite em que ε = 2 − ω → 0, e usando a
expansão (C.2), obtém-se,

Λµ ( /p2 = 0; ε) = ū3 (p3) γµu1 (p1)
α

4π

[
3
ε

+ 4− 3γE + 3 ln
(
4πµ2/m2

)
+O (ε)

]
. (3.34)

Do termo divergente 3
ε , dois terços correspondem à divergência infravermelha é só

um terço corresponde à divergência ultravioleta. Este é o mesmo resultado obtido na
referência [22, p. 373].

3.4 Renormalização

Até o momento pode ser dito que foram calculados alguns diagramas da QED a um
loop com os parâmetros nus. Estes parâmetros precisam ser vestidos para eles ab-
sorverem as divergências ultravioletas no processo conhecido como renormalização.
Antes de prosseguir é útil resumir as divergências ultravioletas (no espaço de Min-
kowski e com ε ≡ 2− ω) encontradas nas integrais precedentes,

ΣUV (p; ε) =
α

4πε
(− /p+ 4m) ; (3.35a)

Πµν
UV (p; ε) = =

α

3πε
(
pµpν − p2ηµν

)
; (3.35b)

ΛµUV (p; ε) = γµ
α

4πε
. (3.35c)

A igualdade dos fatores α
4π em (3.35a) e (3.35c) é conseqüência da identidade de Ward

a um loop,

Λµ (p1 = p3) =
∂Σ
∂pµ

, (3.36)

e mostra de novo que a regularização dimensional preserva a simetria de Gauge da
QED ordem por ordem na perturbação. As partes divergentes (3.35a-3.35c) coincidem
com as que são encontradas amplamente na literatura, como por exemplo em [26, p.
337]. A renormalização é efetuada comparando a densidade lagrangiana nua da QED,

LB = −1
4FµνF

µν + ψ̄ (i /∂ −m)ψ − eψ̄γµψAµ, (3.37)

quando são somados a ela os contratermos,

Lcounter. = ψ̄ (iδ2 /∂ − δm)ψ − 1
4δ3FµνF

µν − eµεδ1ψ̄γ
µψAµ, (3.38)

onde e é a carga renormalizada. As variáveis δi e δm reescalam os parâmetros da den-
sidade lagrangiana (massa, constante de acoplamento e constantes de normalização
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dos campos fermiônicos e fotônicos) de tal forma que eles absorvem as divergências ul-
travioletas e deixam as integrais das seções precedentes renormalizadas (isto é, livres
de divergências UV). Isto acontece porque os contratermos geram diagramas adi-
cionais que contarrestam os infinitos. Os primeiros parâmetros que podem ser com-
parados diretamente entre (3.38) e (3.35a-3.35c) são as constantes de normalização,
ou seja,

δ2 = − α

4πε
; (3.39)

δ3 = − α

3πε
. (3.40)

Depois, define-se o rescalamento da carga nua eB como,

eB (1 + δ2) (1 + δ3)1/2 = eµε (1 + δ1) , (3.41)

para assim comparar diretamente com (3.35c) e obter,

δ3 = δ2 = − α

4πε
. (3.42)

Com isto tem-se que a correção da carga a primeira ordem é,

eB = e (µ, ε)µε
(

1 +
α

6πε

)
.+O

(
α2
)
. (3.43)

Por definição, a carga nua independe de µ (∂eB∂µ = 0); desta forma, pode calcular-se a
função β (µ; e),

β (µ; e) = µ
∂e

∂µ
= −εe+

α

3π
+O

(
e3
)
. (3.44)

De forma similar pode ser definido o rescalamento da massa nua,

(1 + δ2)mB = m+ δm, (3.45)

com,
δm = − α

πε
. (3.46)

Com isto, a correção à carga a primeira ordem é,

mB = m

(
1− 3α

4πε

)
+O

(
e3
)
. (3.47)

Com isto conclui-se a renormalização da QED a um loop. Todos estes resultados são
bem conhecidos e nesta seção só se teve que reproduzir a metodologia padrão. A
novidade reside em que eles foram obtidos a partir de integrais achadas pelo NDIM,
o qual caracteriza-se por não precisar das aproximação tradicionais quando se tenta
integrar segundo os parâmetros de Feynman. Em particular, resultados tão gerais
como (3.31) e (3.32) não são encontrados na literatura.
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Capı́tulo 4

Discussão

O NDIM é aplicável em geral a qualquer diagrama de Feynman escalar indepen-
dentemente da sua topologia ou do número de massas internas. Contudo, a possı́vel
complexidade dos resultados finais faz com que nem sempre seja otimamente vanta-
joso usá-lo. Um exemplo disso são os resultados FAtri. mostrados nas tabelas 2.2-a e
2.2-b, os quais, apesar de mostrar soluções exatas da integral, não são muito úteis
enquanto não se tenha uma classificação das soluções em regiões de convergência
(tarefa que resulta muito difı́cil). Isto significa que uma das dificuldades do NDIM se
apresenta quando aparecem nas soluções funções hipergeométricas de mais de duas
variáveis; quanto mais variáveis houver na função hipergeométrica, mais complexos
serão os resultados. Outra fonte de dificuldade no método é o número de soluções
independentes extraidos de diferentes escolhas do conjunto de ı́ndices livres {ni} na
expansão em série (1.35); quanto maior for esse número de soluções diferentes, mais
difı́cil será a sua classificação e mais tediosa será a construção da solução final. Final-
mente, uma última fonte de dificuldades é o número total de sı́mbolos de Pochhammer
não redutı́veis na série hipergeométrica final, assim como no coeficiente externo da
solução; por exemplo, uma função do tipo F ∝ (a)b 2F1 é evidentemente mais simple
do que uma do tipo F ∝ (a)b (c)d 3F2. Para poder avaliar a utilidade e a pertinência do
NDIM é necessário revisar o seu algoritmo completo e examinar sob quais condições
surgem estas complicações. O algoritmo do NDIM resume-se em:

1. Encontra-se a parametrização de Schwinger (1.20) da integral de Feynman geral
(1.1) no caso escalar (N {µ} = 1) e de preferência após a rotação de Wick. O dia-
grama de Feynman correspondente se caracteriza por ter M massas diferentes
nas suas linhas internas, E linhas externas, N linhas internas e L loops. Em
geral M ≤ N .

2. Após a integração nos momentos internos (1.27), minimiza-se o número de ter-
mos no argumento da exponencial procurando que esta fique na forma,

exp

pTDp−
N∑
j=1

xjm
2
j

 = exp

−
R∑
r=1

Kr (xj)
det (A)

k2
r −

N∑
j=1

xjm
2
j

 , (4.1)
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onde os kr são R = N(N−1)
2 combinações lineares independentes dos momentos

externos pi e os Kr (xj) são multinômios dos parámetros de Feynman de grau
L + 1. Com isto se deduz que o número de escalas de energia envolvidas no
diagrama é R+M . Na referência [14] expõe-se um método recursivo para achar
os coeficientes Kr (xj).

3. Através de fatorizações adequadas nos multinômiosWr e no determinante det (A),
é encontrada uma expansão em série otimizada da exponencial (1.35) que en-
volve S ı́ndices de soma ns. Durante o processo são feitas expansões em multi-
regiões do tipo (B.8). Por cada uma dessas expansões aparece um vı́nculo linear
nos ı́ndices {ns}. Seja Y o número total dessas expansões. A otimização resume-
se em minimizar S e maximizar Y .

4. Usa-se a fórmula (1.38) para integrar com respeito aos parâmetros de Schwinger.
Este processo deixa um vı́nculo linear sobre os ı́ndices {ns} por cada linha ex-
terna do diagrama. Portanto, o número total de vı́nculos lineares sobre os {ns}
é Y +N .

5. Procuram-se soluções em forma de série hipergeométrica para cada uma das
combinações de ı́ndices livres {nf} ⊆ {ns}. O número total de ı́ndices livres (e
portanto o número de variáveis na série hipergeométrica) é U = S−Y −N e por-
tanto haverá em prı́ncipio V =

(
S

S−Y−N
)

= S!
(Y+N)!(S−Y−N)! soluções diferentes.

Dado que o número de escalas de energia envolvidas é R+M e que as variáveis
das funções hipergeométricas são quocientes entre estas escalas, espera-se que
o número de variáveis das funções hipergeométricas satisfaça a desigualdade,

U = S − Y −N ≥ R+M − 1.

Se diz que o NDIM é aplicável de maneira ótima se a desigualdade anterior vira
uma igualdade [15]. O número de sı́mbolos de Pochhammer presentes tanto na
função hipergeométrica como no coeficiente externo pode estimar-se segundo o
número de funções gamma não independentes no denominador de (1.37); esse
número é W = Y +N .

6. Finalmente, as soluções são agrupadas segundo a região de convergência das
séries hipergeométricas fazendo combinações lineares de soluções linearmente
independentes por cada uma das regiões cinemáticas definidas. Estas regiões
surgem naturalmente dos lı́mites impostos pela superfı́cie de Landau tal como
é ilustrado na figura 2.2.

Na parte 5 do algoritmo precedente levam-se em conta as possı́veis formas de
complexidade nas soluções fornecidas pelo NDIM discutidas no inı́cio do capı́tulo.
Estas complicações são condensadas nos três números U , V e W . Para falar apro-
priadamente, estes números definem cotas superiores da complexidade das soluções
pois, tal como foi visto no capı́tulo 2, sempre existe a possibilidade de que eventual-
mente a solução final seja mais simples: algum dos ı́ndices ns pode acabar sendo de-
pendente ou definindo uma função hipergeométrica redutı́vel, o número de soluções
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relevantes pode ser significativamente menor que V , as funções gamma no nume-
rador de (1.37) podem ser tais que não é necessário adicionar termos no coeficiente
externo, etc. Contudo, estes parâmetros ilustram a grosso modo como o tipo de dia-
grama afeta a complexidade das soluções obtidas pelo NDIM. Uma das conclusões
mais surpreendentes que podem ser extraidas da análise precedente é que o número
de loops L do diagrama pode ser relativamente irrelevante para a complexidade dos
resultados do NDIM. Certamente o número de loops afeta o grau e a extensão dos
multinômios Wr e det (A) (isto pode aumentar os parâmetro S e Y ), mas sempre que
estiverem dadas as condições de aplicabilidade ótima o número U permanecerá in-
alterado e o número V resultará minimamente afetado. Outra conclusão curiosa é
que se observa é uma espécie de compensação da minimização dos números U e V
com respeito ao número W . Isto significa que parte da complexidade removida pelo
método de otimização do NDIM é transferida ao número de sı́mbolos de Pochhammer
na função hipergeométrica. Essa transferência é todavia vantajosa enquanto é mais
fácil manipular funções hipergeométricas de menos variáveis embora elas envolvam
mais sı́mbolos de Pochhammer.

Figura 4.1: Diversas topologias de diagramas de Feynman a um loop. Os diagramas
(a), (b) e (c) permitem a aplicação ótima do NDIM [15]. O loop master em (d) é um
exemplo clássico para o qual não é possı́vel a aplição ótima do NDIM [13](para ele
S = 13 e Y = 3).

Para completar a análise da aplicabilidade do NDIM falta ainda um elo referente
às condições sob as quais o NDIM é aplicável de maneira ótima. Até o momento não se
conhece uma resposta geral e a priori de como surgem S e Y a partir de um diagrama
especı́fico; sabe-se somente que estes números dependem profundamente da topolo-
gia do diagrama (veja-se figura 4.1). Apesar de que não se saiba em geral quando
um diagrama poderá ser resolvido de maneira ótima pelo NDIM, existem algumas
tendências gerais sobre a extendibilidade do método a outros diagramas a partir de
um diagrama não massivo que se sabe que é ótimo para o NDIM. Um exemplo é a
possibilidade de adicionar mais loops ao diagrama de tal forma que estes loops são
ainda redutı́veis (veja-se figura 4.2). O diagrama da seção 2.4 foi um exemplo dessa
redutibilidade. A outra opção é a de adicionar massas ao diagrama. A adição de uma
variável de massa em uma ou várias linhas do diagrama supõe em princı́pio aumen-
tar o número de escalas de energia em uma unidade. Contudo, isso não garante que
a multiplicidade U das soluções aumente na mesma quantidade a menos que o dia-
grama mantenha a aplicabilidade ótima do NDIM. Como regra geral, sabe-se que a
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aplicabilidade ótima é conservada só se a massa é adicionada às linhas de um único
loop [15]. Se a mesma massa é adicionada a linhas de loops diferentes, a aplicabi-
lidade ótima é quebrada. Em definitiva, o NDIM é vantajoso para diagramas com
poucas linhas externas (ou várias destas linhas on-shell), com poucos parâmetros de
massa internos e de determinadas topologias. Agora que já se sabem as limitações,
cabe perguntar: quais são, no final, as vantagens do NDIM? Algumas das vantagens
mais destacáveis são,

• O NDIM permite resolver integrais de Feynman escalares com a sua dimensão e
expoentes nos propagadores generalizados. Isto significa que é particularmente
útil nas aplicações da regularização dimensional e também permite a sua ex-
tensão direta a integrais com estrutura tensorial enquanto estas são sempre re-
dutı́veis a uma combinação linear de integrais escalares. Vale a pena esclarecer
que o NDIM não faz nenhuma aproximação no momento de obter resultados em
dimensões gerais e por isso resulta útil para comparar teorias com densidades
lagrangianas equivalentes mas com dimensões espaciais diferentes.

• Deixando do lado a justificação relativamente técnica do cálculo fraccional, a
matemática envolvida no método (integrais gaussianas, manipulação algébrica
de séries de potências e polinômios, função gamma, sistemas lineares de equa-
ções) é relativamente elementar. Além disso, os passos do método são notavel-
mente gerais e diretos como para permitir que várias de suas fases sejam pro-
gramáveis computacionalmente. O mesmo caráter elementar das matemáticas
envolvidas faz com que as ferramentas computacionais necessárias sejam am-
plamente accessı́veis.

• Os resultados finais em termos de funções hipergeométricas são analı́ticamente
confortáveis. Por exemplo, estas funções são de fácil diferenciação. Também, a
sua apresentação em forma de séries de potências básicas facilita o seu cálculo
numérico pois a convergência costuma ser rápida. Igualmente, no caso em que
U ≤ 2, as funções hipergeométricas que se apresentam estão muito bem estu-
dadas matematicamente (muito melhor que por exemplo os dilogaritmos usa-
dos em outros métodos [18]). Também não é desprezı́vel o fato que o método
recolhe intrinsicamente fenômenos da estrutura formal das integrais de Feyn-
man como a sua ramificação através de superfı́cies de Landau e a extendibi-
lidade analı́tica. Isto permite mais segurança no momento de aplicar o re-
sultado adequado em cada uma das regiões cinemâticas envolvidas. Contudo,
as funções hipergeométricas não são absolutamente confortáveis. Por exemplo,
reduções destas funções como (C.18) e (C.19) contêm sutilezas, assim como uma
soma do tipo (3.24). De qualquer forma, já se conhecem maneiras de passar da
representação em funções hipergeométricas a outras representações [19].

A vantagem com respeito a extendibilidade do NDIM a integrais com estrutura
tensorial precisa de um comentário a mais. No capı́tulo 3 observou-se que as inte-
grais tensorias envolvidas podem ser bastante mais complicadas do que as integrais
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Figura 4.2: Diagramas redutı́veis loop por loop baseados em uma topologia básica
para a qual o NDIM é aplicável otimamente. O diagrama (a) está baseado no dia-
grama tipo burbulha. O diagrama (b) basea-se no diagrama (c) da figura 4.1.

escalares subjacentes. Estas complicações parecem depender muito do tipo de teoria
de campos que está sendo analizada e não fica claro até que ponto a busca de uma
solução completa e exata continua sendo razoável. Também não parece existir uma
forma simples de fazer a decomposição de integrais tensoriais em escalares quando
se supera o nı́vel de um loop (L = 1); pelo menos não da mesma forma do capı́tulo 3.
Os termos do tipo (OQ)k

λ
1/2
k

em (1.25) são não triviais quando L ≥ 2 (para um loop O = 1

e λk = det (A)).
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Capı́tulo 5

Conclusão e perspectivas futuras

Neste trabalho foi explicado o método de integração em dimensão negativa desde o
contexto da parametrização de Schwinger e a expansão em série de Taylor-Riemann
(B.6). O NDIM caracteriza-se por ser um método que soluciona integrais de Feyn-
man em função de combinações lineares de séries hipergeométricas definidas em
domı́nios cinemáticos especı́ficos. Cada solução definida em um domı́nio está rela-
cionada com as outras soluções por meio de continuações analı́ticas. Outra carac-
terı́stica notável do NDIM é que o método permite resolver as integrais com a di-
mensão e os expoentes dos propagadores generalizados; propriedade útil para a sua
extendibilidade a integrais com estrutura tensorial. Também foram explicados de-
talhes da estrutura analı́tica das integrais de Feynman como a forma de tratar as
divergências no integrando e a extendibilidade analı́tica das soluções. Com respeito
a esta última análise, foi incluida uma discussão sobre a possı́vel ramificação das
integrais de Feynman a través das superfı́cies de Landau e mostrou-se como estas
propriedades aparecem naturalmente no NDIM nas regiões cinemáticas definidas
pelas regiões de convergência das séries hipergeométricas. Foram calculadas várias
integrais de Feynman particulares a um e dois loops. Apesar de certas sutilezas no
momento de reduzir funções hipergeométricas, mostrou-se que muitos casos parti-
culares das integrais (massas iguais ou nulas, pernas externas on-shell) são relati-
vamente fáceis de encontrar a partir dos resultados gerais e que o método preserva
uma grande coerência nesse processo. Alguns resultados particulares ilustraram a
vantagem da otimização do NDIM proposta em [15]. Provou-se a aplicabilidade do
NDIM à estrutura das integrais divergentes da QED a um loop. Esta aplicação ilus-
trou também a extendibilidade do NDIM a integrais com estrutura tensorial. Os
resultados correspondentes à correção ao vértice destacam por não estarem expostos
na literatura com a generalidade e exatitude com que foram apresentados neste tra-
balho. Finalmente, foi feita uma discussão das limitações e as vantagens do NDIM
desde um enfoque atualizado. Com vista nestes resultados, propõem-se as seguintes
extensões e complementos em trabalhos futuros:

• O NDIM está muito limitado pela dificuldade de manipular funções hipergeo-
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métricas de mais de duas variáveis. Todavia, seria interessante analisar este
tipo de resultados apesar das complicações e avaliar quantas propriedades van-
tajosas ainda sobrevivem a estes casos difı́ceis. Também é importante examinar
se é possı́vel sistematizar a construção e classificação desses resultados.

• Em uma direção diferente, se deve consolidar a utilização harmônica do NDIM
(iniciada na referência [13]) com outros métodos de integração (tais como a
integração por partes e a representação de Mellin Barnes) que sobrelevem as
dificuldades intrı́nsecas de NDIM. Também é necessário provar a possibilidade
concreta de decompôr integrais tensorias em escalares quando se passa do nı́vel
de um loop.

• O NDIM possui uma linha de processos quase completamente algorı́tmica. Isto
sugere que é provável que NDIM seja automatizável computacionalmente na
sua totalidade e seria muito importante avaliar esta possibilidade. Talvez para
conseguir este objetivo terão que ser conseguidos resultados nas linhas expli-
cadas anteriormente.

• Precisa-se extender a aplicabilidade do NDIM a casos mais complexos em teo-
rias quânticas de campos de alta importância fı́sica como a cromodinâmica
quântica (QCD) e inclusive a mesma QED a nı́veis de mais de um loop. Em vista
dos resultados do capı́tulo 3, também seria útil observar como as divergências
infravermelhas (as quais não são controladas pela regularização dimensional)
são realmente inofensivas nos resultados achados por NDIM∗. Novamente, é
possı́vel que o progresso destes objetivos dependa parcialmente das perspecti-
vas precedentes.

• Finalmente, deve mencionar-se a procura de aplicaçoes do NDIM a integrais
diferentes às contempladas neste trabalho. Inclusive pode ser que existam
aplicações além do processo de integração. Em este sentido deve ressaltar-se
uma grande omisão que foi feita neste trabalho. Já existe uma boa quantidade
de resultados muito prometedores que exploram a aplicabilidade do NDIM a
integrais de Feynman nos Gauges não covariantes; especialmente o cone-de-luz
[9].

∗Nos exemplos do capı́tulo 3 foi relativamente fácil separar as divergências infravermelhas porque
eram conhecidas com antecedência. Ainda permanece a pergunta de como reconhecé-las sem acudir a
este tipo de conhecimentos prévios.
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Apêndice A

Continuação analı́tica

Uma função (real ou complexa) f é analı́tica em um ponto z0 se existe uma vizinhança
que contém z0 na qual é possı́vel representar a função f como uma série de Taylor ao
redor de z0. Em análise matemática de uma ou várias variáveis complexas, esta pro-
priedade é equivalente a ser diferenciável numa vizinhança ao redor de z0 (holomorfa
ou regular), o que também implica infinita diferenciabilidade. Para provar que uma
função de várias variáveis complexas é analı́tica basta provar que a função é analı́tica
em cada uma das suas variáveis mantendo as demais fixas. Estas relações não são
válidas na análise de variáveis reais e demonstram o grande alcance da análise com-
plexa. A técnica de continuação analı́tica se baséia no seguinte teorema [30], no qual
o termo domı́nio é usado no sentido topológico de um conjunto aberto e conexo:

Teorema 1 Seja uma função complexa w1 (z) analı́tica em um domı́nio G1 ∈ C. Seja
também uma função w2 (z) analı́tica em outro domı́nio G2. Suponha-se que a inter-
seccção G1 ∩ G2 é conexa e não vazia. Se existe um conjunto aberto não vázio S que
pertence a G1∩G2 tal que as funções w1 e w2 coincidem em S (z ∈ S ⇒ w1 (z) = w2 (z)),
então as funções w1 e w2 restritas à intersecção G1 ∩ G2 têm que ser equivalentes
(z ∈ G1 ∩G2 ⇒ w1 (z) = w2 (z)). Além disso, a extensão∗ dessas funções no domı́nio ex-
tendido G1∪G2 é a única extensão possı́vel que é analı́tica em todo o domı́nio G1∪G2.
Esta única extensão é conhecida como continuação analı́tica.

O teorema é igualmente válido no caso de funções de várias variáveis complexas,
mas nesse caso entende-se z e Gi respectivamente como um ponto e um domı́nio do
espaço Cn. A continuação analı́tica é especialmente útil quando se possuim desen-
volvimentos em série ou representações integrais de uma função. Tanto as séries
como as representações integrais costumam ter um domı́nio restrito no qual elas têm
um bom comportamento e representam funções analı́ticas. A pergunta fundamental
é se é possı́vel extender esse domı́nio no qual a função é analı́tica. O domı́nio máximo
em que a função pode ser continuada analiticamente é conhecido como domı́nio natu-
ral . As integrais de Feynman são no fundo representações integrais de termos per-
∗Por extensão da função entende-se a função que em cada dominio particular Gi coincide com wi.
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turbativos no cálculo de amplitudes de probabilidade da matriz de espalhamento. Em
conseqüência, o problema da continuação analı́tica emerge naturalmente no cálculo
dessas integrais. Por outro lado, o caso da rotação de Wick ou a regularização di-
mensional proporcionam outra forma de aplicar a continuação analı́tica nas inte-
grais de Feynman. Se uma expressão apresenta um comportamento difı́cil de ana-
lisar (como no caso das integrais de Feynman no espaço de Minkowski) ou inclu-
sive patológico (como os diagramas divergentes que precisam de regularização), a
continuação analı́tica serve como uma ferramenta na qual se procura uma extensão
adequada dos parâmetros da expressão até um domı́nio no qual as dificuldades não
se apresentem. Devido à unicidade da extensão, os resultados no novo domı́nio e
o caminho de volta ao domı́nio original de interesse estão garantidos. Contudo, as
condições nas quais a extensão é possı́vel devem ser entendidas.

A continuação analı́tica de uma função desde um domı́nio G1 até outro domı́nio G2

chama-se direta se ela é feita através da intersecção conexa não vazia G1∩G2 na qual
os domı́nios coincidem. Também é possı́vel fazer uma continuação analı́tica indireta
no sentido de que são usados vários domı́nios sucessivos G1, G2, . . . para os quais ex-
iste uma continuação direta entre um domı́nio e o seguinte. Aliás, dada uma função
analı́tica f em um domı́nio G, se diz que f tem uma continuação analı́tica direta em
um ponto p ∈ ∂G na fronteira de G se existe um domı́nio que contém p para o qual
f tem uma continuação direta desde G até Gp. O caso da extendibilidade de funções
definidas por séries de potências é especial para a continuação analı́tica pois a analiti-
cidade é justamente definida segundo a existência de tais series. O domı́nio das séries
de potências costuma ser definido através do seu disco (ou poli-disco) de convergência.
Define-se um elemento da função f à tripla f (z,K) onde f é representada através de
uma série de potências cujo disco de convergência é o disco aberto K com centro em
z. Dado que os discos abertos formam uma base topológica, a continuação analı́tica
estuda-se fácilmente através de elementos de função. Em particular, é especialmente
importante estudar a continuação analı́tica ao longo de uma curva. Um elemento de
função f0 (z0,K0) tem continuação analı́tica ao longo de uma curva γ : [0, 1] → Cn se
para todo t ∈ [0, 1]: existe um elemento de função ft (zt,Kt) com zt = γ (t), e existe um
aberto não vazio B (t, εt) = {t′ ∈ [0, 1] : |t− t′| < εt ∧ γ (t′) ∈ Kt} tal que se t′ ∈ B (t, εt)
então as funções ft e ft′ coincidem em Kt ∩Kt′ . Na figura A.1 ilustra-se esse conceito.
A continuação analı́tica ao longo de uma curva é única no sentido que se existem dois
conjuntos de domı́nios e funções intermédias (ft,Kt) e (gt, Jt) definindo a continuação
analı́tica ao longo de γ, as funções f1 e g1 coincidirão em Kt ∩ Jt. Essa unicidade é o
conteúdo fundamental do teorema de monodromia:

Teorema 2 Seja uma função f definida inicialmente num disco aberto U . Se ex-
iste um domı́nio W ⊃ U simplesmente conexo no qual a função pode ser continuada
analı́ticamente ao longo de toda curva γ : [0, 1]→W , então existe uma única extensão
da função f em todo W tal que a função é analı́tica em todo o seu domı́nio.

Do teorema surge uma pergunta óbvia: O que acontece se o domı́nio W é multi-
plamente conexo? A pergunta só é interessante se W é extendido suficientemente, no
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sentido de que existe um conjunto fechado não vazı́o S, disjunto com respeito a W ,
tal que S ∪ W forma um domı́nio simplesmente conexo, mas para o qual não exis-
te continuação analı́tica ao longo de uma curva que vá desde o elemento de função
definido por f e U até qualquer ponto da fronteira de S. O conjunto S merece o
nome de conjunto singular†. Os tipos possı́veis de conjunto singular dependem pro-
fundamente da dimensionalidade complexa n (ao falar do espaço Cn). Para o caso
n ≥ 2, os conjuntos singulares não podem ser compactos (limitados e fechados), resul-
tado conhecido como lema de Hartogs. Nas condições assim descritas, a continuação
analı́tica ao longo de curvas no interior de um domı́nio W multiplamente conexo pode
dar lugar ao que se conhece como ramificação e às confusamente chamadas funções
multivaloradas. Isto significa que a função na vizinhança do ponto final γ (1) pode
depender da curva γ (t) e de como ela rodeia o conjunto singular S. Se diz que a
função é multivalorada no sentido de que se γ fosse um laço fechado (γ (0) = γ (1)),
após a continuação analı́tica o fenômeno de ramificação poderia resultar em uma
função totalmente diferente na vizinhança do ponto inicial. Devido ao fenômeno de
ramificação, o domı́nio natural das funções obtidas por continuação analı́tica costuma
ser estudado através de uma variedade complexa n-dimensional e não através de um
conjunto aberto de Cn. Dentro da variedade complexa, os elementos de função ex-
traidos por continuação analı́tica ao longo das curvas são juntados apesar de que eles
podem representar funções complexas diferentes na vizinhança de um mesmo ponto,
como se a variedade complexa fosse um domı́nio complexo de Cn com vários andares.

Figura A.1: Ilustração da continuação analı́tica ao longo de uma curva.

Contudo, é possı́vel que haja um conjunto singular não vazio S ao redor do qual
não há ramificação. Um exemplo tı́pico dessa situação acontece em uma variável
complexa quando em todo o domı́nio multiplamente conexo W ⊂ C a função f é
analı́tica (e portanto univalorada) e S é um conjunto discreto composto de singula-
†Note-se que na definição de conjunto singular não se requereu que existisse propriamente uma

função f analı́tica em todo o domı́nio multiplamente conexo W . O importante aqui é a possibilidade de
continuação analı́tica do elemento de função (f, U).
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ridades isoladas si ∈ S, tal que para cada si existe uma vizinhança Ui que contém si

e Ui − {si} ⊂ W , isto é, Ui pertence a W com a exceção do ponto si. Os pontos si são
conhecidos como singularidades isoladas. Ao redor dos si não é possı́vel representar
a função como uma série de Taylor, mas ao redor delas sempre é possı́vel representar
a função como uma série de Laurent. Se a série de Laurent tem um número finito de
termos não nulos com potências negativas, a singularidade é um polo. Se o número
de termos não nulos com potência negativa é infinito, a singularidade isolada chama-
se essencial. Se dentro de um domı́nio U de uma variável complexa a função só tem
pontos onde é analı́tica ou tem polos então a função chama-se meromórfica em U . Fi-
nalmente, se o conjunto S é um ponto isolado (mas não uma singularidade isolada)
de C tal que ao redor dele a função não pode ser univalorada, então a singularidade é
chamada ponto de ramificação. Os pontos de ramificação são classificados de acordo
com a multiplicidade que toma a função ao redor deles; se a multiplicidade é finita o
ponto de ramificação é algébrico, se não, logarı́tmico.

A classificação dos conjuntos singulares é muito mais difı́cil no caso de várias
variáveis complexas. De fato, o lema de Hartogs garante que não existem singular-
idades isoladas para o caso n ≥ 2. Contudo, no caso de integrais de Feynman, ao
analisar a representação (1.4), o fı́sico soviético Lev Landau encontrou uma condição
necessária para que aconteça a ramificação [37, 22]. O único comportamento grave do
integrando em (1.4) acontece quando o caminho de integração definido pelas variáveis{
qµk , xj

}
encontra à hipersuperfı́cie Ω na qual o denominador,

T =
N∑
j=1

xj
[
r2
j (p, q)−m2

j

]
+ iε, (A.1)

é zero. Esse comportamento não é suficientemente grave a menos que a hipersu-
perfı́cie forme um ponto de belisco (pinch point) no caminho de integração. O ponto
de belisco pode ser pensado da seguinte forma: Imagine-se que é escolhida uma das
variáveis em

{
qµk , xj

}
e é designada como ζ, e todas as demais variáveis (incluidas

as mj e pµi ) são codificadas na variável z. Sendo assim, o possı́vel comportamento
patológico de (1.4) ao longo do caminho de integração de ζ se reduz à análise de uma
integral da forma,

I (z) =
∫
C

dζ

F (ζ, z)
, (A.2)

onde F (ζ, z) é um polinômio com respeito a ζ cujo grau máximo é dois, e C é um
contorno que vai desde ζ = ζA até ζ = ζB. Em estas condições, se descarta a possibili-
dade de que F (ζ, z) independa de ζ pois isso significaria que o contorno C é tangente à
hiper-superfı́cie Ω e portanto um pequeno deslocamento nas outras variáveis poderia
para evitar o comportamento singular e a ramificação (o caminho de ζ poderia rodar
analı́ticamente ao redor de Ω). Daqui se deduz que a intersecção de Ω com o plano ζ
consiste basicamente dos zeros de F (ζ, z) (para z fixo, o número máximo de zeros é
dois) que, possı́velmente, se deslocam continuamente ao longo de uma curva no plano
ζ segundo as variações de z. Chame-se a estes zeros ζ1 (z) e ζ2 (z). Se cada uma das
curvas ζ1 (z) e ζ2 (z) cortasse separadamente o contorno C não haveria ramificação
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pois a unicidade seria ainda possı́vel através de deformações adequadas do contorno
C. Só pode acontecer ramificação se os zeros cortam o contorno C simultaneamente
ou passam pelos pontos extremos do contorno (Veja-se figura A.2). Em tal caso se
produz o ponto de belisco pois o contorno fica encerrado por Ω. Sabendo já o que sig-
nifica um ponto de belisco se procederá a examinar a possibilidade que ele surja em
uma integral como (1.4). O denominador (A.1) depende de qµk só se existe um j′ para
o qual xj′ 6= 0. Para todo xj′ 6= 0 o fato de estar em Ω significa que a linha j′ deverá
estar on-shell (r2

j′ = m2
j′) a menos que a análise tenha que ser feita no contorno de

xj′ . Nestas condições, para que a integral de contorno em qµk fique encarcerada em Ω,
precisa-se que as raı́zes da equação quadrática com respeito a qµk no denominador T
tenha os seus zeros degenerados. Isto se garante se,

∂T

∂qµk
= 2

∑
j∈J

ξjkxjr
µ
j = 0, j ∈ J ⇒ r2

j = m2
j ; (A.3)

onde o conjunto J corresponde às linhas internas no loop k que estão on-shell. Para
qualquer linha que estiver off-shell, a única condição possı́vel é que xj = 0,

r2
j 6= m2

j ⇒ xj = 0. (A.4)

As equações (A.3) e (A.4) chamam-se equações de Landau. Elas definem uma pro-
funda restrição em Ω que termina definindo uma hipersuperfı́cie nas variáveis ex-
ternas mj e pi conhecida como superfı́cie de Landau através da qual pode haver
ramificação (mas não é necessário que seja assim pois se trata de uma condição
necessária mas não suficiente).

Figura A.2: Ilustração da formação de um ponto de belisco (pinch point) no contorno
C. (i) Se o ponto singular corta o contorno separadamente sempre é possı́vel evitar a
singularidade através de uma deformação infinitesimal do contorno. A singularidade
não é evitável se: (ii) dois pontos singulares cortam C simultaneamente ou (iii) o
ponto singular toca um extremo de C.
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Apêndice B

Fundamentos matemáticos do NDIM

Neste apêndice procura-se justificar a interpretação da equação (1.30) e em espe-
cial a natureza da expansão em série (1.29). A validez da dedução do NDIM requer
que os ı́ndices n na somatória possam tomar valores negativos e inclusive, para que
haja consistência com a regularização dimensional, eles deveriam poder ser números
complexos perto de um número inteiro. Como já foi dito, as técnicas do cálculo frac-
cional são as que justificam estas condições. O cálculo fraccional começa como uma
extensão do procedimento de achar a integral indefinida de uma função de variável
real. Comece-se então com a integral fraccional de Riemann-Liouville, a qual não é
mais que uma extensão da fórmula integral de Cauchy,

Dα
x−cf (x) =

1
Γ (−α)

∫ x

c
dt

f (t)
(x− t)1+α , (B.1)

onde c ∈ R e α pode ser qualquer número complexo com Re {α} < 0. Para os inte-
resses particulares desta seção, basta considerar a integral fraccional de Liouville ou
de Weyl, que corresponde ao limite c → −∞, e daqui para frente será escrito sim-
plesmente Dα

x em vez de Dα
x+∞. Pode provar-se que quando α é um inteiro negativo a

fórmula (B.1) corresponde ao processo de integrar repetidas vezes a função f (x). Em-
bora (B.1) não esteja definida adequadamente para quando Re {α} ≥ 0, existe uma
forma de fazer uma continuação analı́tica para todo o plano complexo de α sempre
que a função f (x) seja bem comportada. Se α ∈ (0,∞), o operador Dα

x é conhecido
como derivada fraccional. O operador geral Dα

x é conhecido como difer-integral. Na
semi-reta real positiva, α ∈ [0,∞), este operador se resume na seguinte expressão,

Dα
xf (x) =

{
1

Γ(m−α)
dm

dxm [Dm−α
x f (x)] 0 ≤ m− 1 ≤ α < m, m ∈ Z

dm

dxm f (x) α ∈ Z, α ≥ 0
. (B.2)

Naturalmente, se percebe que quando α = 0 o operador difer-integral não é mais
do que a identidade (D0

x = 1). As difer-integrais de Liouville (ou de Weyl) são úteis
para a justificação do NDIM porque apresentam a seguinte fórmula simples para a
difer-integral da exponencial [27, 28],

Dα
x exp (βx) = βα exp (βx) . (B.3)
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Os métodos do cálculo fraccional são diretamente extensı́veis a funções complexas,
de tal forma que os números c e x em (B.1) podem ser complexos e a integral é en-
tendida ao longo da curva reta que conecta c com x. A expansão em série usada no
NDIM, conhecida como expansão de Taylor-Riemann, baseia-se no seguinte teorema
devido a Osler [29],

Teorema 3 Seja f (z) = (z − b)σ h (z), onde σ > −1, e h (z) é uma função que é
analı́tica em certo domı́nio U que contém o disco D com centro em z0 e raio r > 0.
Suponha-se que b ∈ D. Se z 6= b pertence ao cı́rculo C = {z ∈ C : |z − b| = |z − z0|}
então, para todo α ∈ R, a seguinte expansão em série existe e é única,

f (z) =
∞∑

n=−∞

[
Dn+α
z−b f (z)

]
z=z0

Γ (1 + n+ α)
(z − z0)n+α . (B.4)

Onde no lado direito se escolhe o ramo de (z − z0)n+α no qual arg (b− z0) < arg (z − z0) <
arg (b− a) + 2π e fixa-se arg (b− a) ∈ [−π, π).

Quando o teorema é extendido é aplicado à função exponencial, obtém-se a ex-
pansão de Taylor-Riemann,

exp (x) =
∞∑

n=−∞

[
Dn+α
x exp (x)

]
x=0

xn+α

Γ (1 + n+ α)
, (B.5)

onde α pode ser qualquer número complexo no disco unidade, α ∈ C ∧ |α| < 1. Apli-
cando o resultado (B.3) e mudando um pouco os ı́ndices de somatória, chega-se a,

exp (x) =
∞+α∑

n=−∞+α

xn

Γ (1 + n)
, (B.6)

que é o resultado necessário para justificar o NDIM. Observe-se que o ı́ndice n agora
pode ter os valores que se precisavam, ou seja, n nessa expansão pode ser um número
complexo ao redor de um número inteiro. A série de Taylor usual é recuperada na
transformação,

lim
α→0

∞+α∑
n=−∞+α

−→
∞∑
n=0

. (B.7)

Quando o NDIM é aplicado e deduzido neste trabalho, o sı́mbolo
∑

ni
significa

fundamentalmente o lado esquerdo de (B.7). Em termos algébricos e de manipulação,
a diferença é uma simples sutileza; mas conceitualmente eliminam-se as objeções
que podem ser tiradas do método. Além das já mencionadas, a diferença na expansão
explica por que são usadas funções Γ (1 + n) e não sı́mbolos de fatoriais n!, ou o porquê
da manipulação dos sı́mbolos de Pochhammer apesar de que fórmulas como (C.8)
exigem que n seja inteiro mas x não seja inteiro.

A expansão em série de Taylor-Riemann é também fundamental no momento de
entender a expansão de polinômios em multi-regiões. Isto significa usar a identidade,

(A1 +A2 + . . .+An)−N =
∑

l1,l2,...,ln

Γ (1−N)
Γ (l1 + 1) Γ (l2 + 1) . . .Γ (ln + 1)

Al11 A
l2
2 . . . A

ln
n δθ(li,N),0 ,

(B.8)
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onde θ (li, n) = N +
∑n

s=1 ls e N pode ser inclusive complexo. Esta identidade funda-
menta-se na representação de Schwinger,

(A1 +A2 + . . .+An)−N =
1

Γ (N)

∫ ∞
0

dx xν−1

[
n∏
s=1

exp (−xAs)

]
, (B.9)

que, após expandir cada exponencial em uma série de Taylor-Riemann, e aplicar
a fórmula (1.38), desemboca em (B.8)∗. Isto significa, que o tipo de sı́mbolo so-
matório presente na fórmula de expansão em multi-regiões, também é análogo ao
lado esquerdo de (B.7). Chama-se expansão em multi-regiões porque em (B.8) exis-
tem

(
N
1

)
= N formas diferentes de escolher o ı́ndice somatório lk, cada um adequado

para a região do espaço dos {Ai} na qual |Ak| > |Ai| para todo i 6= k.

O NDIM baseia-se tanto nas expansões de Taylor-Riemann, que I. González e
I. Schmidt propuseram que o nome Método de Integração por Expansão Fraccional
(IBFE pelas siglas em inglês) seria mais apropriado [15].

∗Não está se fazendo nenhum argumento circular no momento de usar (1.38) para justificar (B.8).
Pois (1.38) pode ser obtida sem usar (B.8), partindo somente da parametrização de Schwinger, as séries
de Taylor Riemann, e as integrais gaussianas.
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Apêndice C

Funções hipergeométricas

Neste apêndice ilustram-se as definições e fórmulas matemáticas usadas neste tra-
balho relacionadas com as funções hipergeométricas. O ponto de partida é a função
gamma Γ (x), que satisfaz a relação funcional Γ (x+ 1) = xΓ (x) e o valor particular
Γ (n+ 1) = n! para n ∈ Z+. A representação integral usual da função Γ (x) é,

Γ (x) =
∫ ∞

0
tx−1e−tdt, Re {x} > 0. (C.1)

Com esta representação integral básica e a equação funcional Γ (x+ 1) = xΓ (x), a
função gamma pode ser extendida para todo o plano complexo com a exceção dos
pontos em que x é um inteiro não positivo, nos quais ela forma polos simples. Dessa
forma a funcão Γ vira um exemplo de função meromorfa em todo C. Os polos simples
são definidos facilmente pela expansão em serie de Laurent ao redor de ε→ 0,

Γ (ε) =
1
ε
− γE +O (ε) , (C.2)

onde γE é um número irracional conhecido como constante de Euler-Mascheroni.
Também é útil a representação integral da função beta,

B (x, y) =
∫ ∞

0
tx−1 (1 + t)−y−x dt =

Γ (x) Γ (y)
Γ (x+ y)

, Re {x} > 0,Re {y} > 0. (C.3)

As funções hipergeométricas explicam-se melhor com a notação de sı́mbolos de
Pochhammer definidos como,

(x)y ≡
Γ (x+ y)

Γ (x)
. (C.4)

Uma das propriedades da função Γ (x) é a fórmula de reflexão de Euler,

sin (πx) Γ (x) Γ (1− x) = sin (πy) Γ (y) Γ (1− y) = π, x, y 6∈ Z. (C.5)

Esta fórmula pode ser escrita como,

Γ (y)
Γ (−x)

=
Γ (1 + x)
Γ (1− y)

sin (−πx)
sin (πy)

, (C.6)
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ou usando os sı́mbolos de Pochhammer,

(−x)y+x = (1− y)y+x

sin (−πx)
sin (πy)

= (1− y)y+x

sin [πy − π (y + x)]
sin (πy)

= (1− y)y+x

sin (πy) cos [π (y + x)]− cos (πy) sin [π (y + x)]
sin (πy)

. (C.7)

Se y + x = n ∈ Z obtém-se,

(−y)n = (−1)n (1 + y − n)n . (C.8)

Também, a partir de,
Γ (z) Γ

(
z + 1

2

)
= 21−2z√πΓ (2z) , (C.9)

tem-se as fórmulas de duplicação,

(x)2n = 4n
(x

2

)
n

(
x+ 1

2

)
n

(C.10a)

(x)2n+1 = 22n+1
(x

2

)
n+1

(
x+ 1

2

)
n

. (C.10b)

A série hipergeométrica generalizada de uma variável define-se como,

mFn (α1, . . . , αm;β1, . . . , βn;x) =
∑
s

(α1)s . . . (αm)s
(β1)s . . . (βn)s

xs

s!
. (C.11)

A derivada desta função é,

∂

∂x
mFn (αs;βt;x) =

∏
s αs∏
t βt

mFn (αs + 1;βt + 1; 1) . (C.12)

Em particular, é muito importante a função hipergeométrica de Gauss,

2F1 (a, b; c;x) =
∑
n

(a)n (b)n
(c)n

xn

n!
, (C.13)

a qual converge para |x| < 1 e no cı́rculo unidade |x| = 1 se Re {c− a− b} > 0. Um
resultado muito especial desta função é,

2F1 (a, b; c; 1) =
Γ (c) Γ (c− a− b)
Γ (c− a) Γ (c− b)

, Re {c− a− b} > 0. (C.14)

A função hipergeométrica de duas variáveis conhecida como das quatro funções
de Appell F4 é,

F4

(
α, α′;β, γ;x, y

)
=
∑
m,n

(α)m+n (α′)m+n

(β)m (γ)n

xm

m!
yn

n!
, (C.15)

cuja região de convergência está definida por,

|x|
1
2 + |y|

1
2 < 1. (C.16)
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A função de Appel F4 pode ser vista como o produto de dois funções hipergeométricas
de Gauss,

F4

(
α, α′;β, γ;x, y

)
=

∑
m

(α)m (α′)m
(β)m

xm

m!

∑
n

(α+m)n (α′ +m)n
(γ)n

yn

n!

=
∑
m

(α)m (α′)m
(β)m

xm

m! 2F1

(
α+m,α′ +m; γ; y

)
. (C.17)

Um caso particular de F4 acontece quando y = 1. Usando (C.17) e (C.14) conclui-se
que,

F4

(
α, α′;β, γ;x, 1

)
=

Γ (γ) Γ (γ − α− α′)
Γ (γ − α) Γ (γ − α′)

∑
m

(α)m (α′)m (1 + α− γ)m (1 + α′ − γ)m
(β)m

(
1+α+α′−γ′

2

)
m

(
2+α+α′−γ′

2

)
m

(x/4)m

m!
.

(C.18)
Outra opção é que x = y. A ”dedução”deste caso particular explica-se com certa
extensão. Após a transformação de ı́ndices M = m+ n e N = n,

F4

(
α, α′;β, γ;x, x

)
=

∑
M,N

(α)M (α′)M
(β)M−N (γ)N

xM

Γ (M −N + 1) Γ (N + 1)

=
∑
M

(α)M (α′)M xM

(β)M Γ (M + 1)

∑
N

(M −N + β)N (M −N + 1)N
(γ)N Γ (N + 1)

=
∑
M

(α)M (α′)M xM

(β)M Γ (M + 1)

∑
N

(1− β −M)N (−M)N
(γ)N Γ (N + 1)

=
∑
M

(α)M (α′)M xM

(β)M Γ (M + 1) 2F1 (1− β −M,−M ; γ; 1)

=
∑
M

(α)M (α′)M
(β)M

Γ (γ) Γ (γ + β + 2M − 1)
Γ (γ +M) Γ (γ + β +M − 1)

xM

M !

=
∑
M

(α)M (α′)M (γ + β − 1)2M

(β)M (γ)M (γ + β − 1)M

xM

M !
,

e em conclusão,

F4

(
α, α′;β, γ;x, x

)
=
∑
M

(α)M (α′)M
(
γ+β−1

2

)
M

(
γ+β

2

)
M

(β)M (γ)M (γ + β − 1)M

(4x)M

M !
. (C.19)

As fórmulas (C.18) e (C.19) tem que ser olhadas com certa precaução. A fórmula (C.14)
foi aplicada de forma muito ingênua, sem contar com a restrição Re {c− a− b} > 0.
Estas fórmulas de redução possivelmente são válidas só para casos particulares dos
valores α, α′, β, γ. O estudo dessas condições não é trivial [33] e está fora do alcance
deste trabalho. Porém, dada a coerência dos resultados, parece ser que o uso destas
fórmulas neste trabalho está dentro do seu marco de validade.
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