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Résumé 

L'on considère l'assemblage des blocs magnétiques 
rectilignes utilisé dans le montage de la machine et l'on 
calcule la déviation de l'orbite fermée ainsi que la réper­
cussion sur cosμ résultant de cette disposition. 

Introduction 
Bien que le synchrotron à protons se présente essentiel­

lement sous forme d'une machine circulaire, le projet 
de l'aimant ne comporte pas l'utilisation d'éléments 
courbes. En fait, des blocs magnétiques rectilignes sont 
assemblés «en éventail» (fig. 1) pour former des unités 
magnétiques. Le rapport entre la longueur d'un bloc et le 
rayon de la machine étant très faible, on pourrait admettre 
que les écarts par rapport aux conditions idéales (éléments 
magnétiques circulaires) sont également faibles. Il a 
semblé toutefois indiqué de procéder à une analyse plus 
détaillée de la situation réelle de manière à pouvoir chif­
frer les effets. 
Par suite du remplacement des unités magnétiques cir­

culaires par un assemblage de blocs rectilignes les parti­
cules seront soumises à une perturbation du type n : 
en effet, le chemin parcouru par une particule différera 
en longueur du chemin idéal et en outre, le gradient du 
champ ne sera plus perpendiculaire à l'orbite mais plutôt 
au bloc considéré. Les particules subiront également une 
perturbation du type f due au fait que les blocs sont loca­
lement déplacés et inclinés par rapport à l'orbite idéale. 

Equations du mouvement 

(a) Dans un bloc rectiligne 
L'axe des abscisses sera pris suivant l'axe magnétique 

du bloc défini par Bz = B0, By = 0. L'origine des 
coordonnées sera placée à l'extrémité du bloc. Seul, le 
plan horizontal sera considéré. 
Les équations cartésiennes du mouvement seront alors 

= e Bz /m (1) 

Fig. 1. 

= - e Bz /m , 
le champ étant donné par 

Bz = B0(1+n•y/r0) (2) 
où r0 est le rayon magnétique de la machine. 
En prenant x comme variable indépendante et en uti­

lisant le principe de la conservation de l'énergie on trouve 
pour l'équation du mouvement dans un bloc rectiligne 

r0y" + (1 + )3/2 (1 + n • y/r0) = 0, (3) 

n étant positif dans un bloc focalisant et négatif dans un 
bloc défocalisant. 
(b) Dans la région de transition entre deux blocs 
Nous admettrons que dans le coin formé par deux blocs 

adjacents le champ magnétique possède une symétrie 

Fig. 2. 

* Cette communication n'a pas figuré au programme des discussions. 
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cylindrique dont l'axe coincide avec l'intersection des 
faces terminales des blocs. Un système de coordonnées 
curvilignes R, ψ (fig. 2) paraît indiqué ici pour exprimer 
d'une manière simple les conditions de passage et la forme 
du champ. Celui-ci s'écrit en effet 

Bz = B0 (1 + n R-a ) (4) Bz = B0 (1 + n r0 
) (4) 

Dans le système de coordonnées considéré, l'équation du 
mouvement est 

m = m R ψ2 - e R ψ Bz (5) 

En prenant ψ comme variable indépendante et en écrivant 
encore la conservation de l'énergie on trouve pour l'équa­
tion différentielle de la trajectoire dans la région de transition 
entre deux blocs 

R"-2 R
2 
- R + 

R'2 
(1 + 

R'2 )3/2(1+n• R-a 

)=0; (6) 
R"-2 R - R + rG (1 + R2 

)3/2(1+n• 
r0 

)=0; (6) 

n sera encore pris positif dans la région située entre deux 
blocs focalisants et négatif dans le coin compris entre deux 
blocs défocalisants. La région de transition se trouvant 
entre un bloc focalisant et un bloc défocalisant sera 
partagée en une moitié focalisante et une moitié défoca­
lisante. 

Equations des trajectoires 

(a) Dans un bloc rectiligne 

L'équation (3) peut être intégrée complètement à l'aide 
de fonctions elliptiques. Si l'on néglige toutefois y'2 (qui 
est de l'ordre de 10~8 dans la machine du CERN) par 
rapport à l'unité, l'équation linéaire qui subsiste 

r. y" + n y + 1 = 0 (7) r. y" + n 
r0 

+ 1 = 0 (7) 

peut être résolue très facilement et l'on trouve 

y = y0cos 
√nx 

+ r0 0 sin 
√nx (cos √nX -1) (8) y = y0cos r0 

+ 
√n 0 sin r0 

(cos 
r0 -1) (8) 

pour un bloc focalisant et 

y = y0ch 
√nx + r0 sh √nx (1-ch √nx ) (9) y = y0ch Ir0 

+ 
√n 

sh r0 
(1-ch r

0 ) (9) 

pour un bloc défocalisant. 

(b) Dans la région de transition 

II ne paraît pas possible de résoudre l'équation (6) dans 
le cas général. 
En posant (fig. 2) 

R = a + y (10) 
nous la mettrons sous la forme 

-
2 y'2 - (a + y) + (a + y)2 

[1+ y'2 3/2 
- a + y - (a + y) + r0 [1+ (a + y)2 

3/2 

x (1 + n y ) = 0 (11) x (1 + n 
r0 
) = 0 (11) 

et essaierons de représenter la solution par un dévelop­
pement en série. 
On trouve alors en se limitant aux termes du second 

ordre 

y = y0 + y0' + + 
1 {2 y0'2 + (a + y0)2 y = y0 + y0' + + 2(a+y0) 

{2 y0'2 + (a + y0)2 

- [(a + y0)2 + y0'2] 3/2 (1 + n y0 )ψ2 (12) - r0 
(1 + n 

r0 
)ψ2 (12) 

La nécessité de pousser la solution jusqu'au second ordre 
résulte du fait qu'en négligeant le terme en ψ2 dans l'équa­
tion (12) le champ et son gradient disparaîtraient de la 
solution, ce qui conduirait à des absurdités. 
Dans l'équation (12) les dérivées sont prises par rapport 

à ψ tandis que dans les formules (8) et (9) donnant le vec­
teur y à la sortie d'un bloc en fonction de ses valeurs à 
l'entrée, les dérivées sont prises par rapport à x. 
Pour n'avoir affaire qu'à une seule variable, nous uti­

liserons la transformation 

dy = (a + y) dy (13) dψ = (a + y) dx (13) 

En substituant dans (12) on trouve pour le vecteur y 
représentant l'excursion de la trajectoire à la sortie de la 
région de transition en fonction des données à l'entrée 

y = y0 + (a + y0) y0'9 + a +y 0 [1- a + y0 (1 + n y0 )]φ2 

(14) 

y = y0 + (a + y0) y0'9 + 2 [1- r0 
(1 + n r0 )]φ

2 

(14) 

y' = y0' + [1-
a + y0 (1 + n; y0 )φ (15) y' = y0' + [1- r0 

(1 + n; r0 )φ (15) 

Ici les dérivées sont prises par rapport à x si bien que le 
passage du bloc magnétique au coin intermédiaire peut 
se faire immédiatement. Dans les relations (14) et (15) 
nous avons négligé y'2 par rapport à l'unité comme nous 
l'avons déjà fait dans le cas du bloc rectiligne. 
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Déviation de l'orbite fermée 

Considérons un espace formé par la moitié d'un coin de 
transition et la moitié d'un bloc magnétique. Une tra­
jectoire qui à l'incidence et à l'émergence est parallèle 
à l'axe de l'espace considéré peut constituer une portion 
de l'orbite fermée. Nous allons donc introduire ces 
conditions dans les équations des trajectoires. 

Si l'espace considéré est focalisant nous avons, en portant 
la condition y0' = 0 dans (14) et (15) et en remplaçant 
y0 par yE (valeur à l'entrée) 

yφ/2 = yE + a +y E [1-a +y E (l-n )]φ2 (16) yφ/2 = yE + 8 [1- r0 
(l-n )]φ2 (16) 

y'φ/2 = [1 -a + yE (1+n yE )] φ (17) y'φ/2 = [1 - r0 
(1+n 

r0 )] φ (17) 

φ étant l'ouverture angulaire de la région de transition. 
Ces quantités constituant les valeurs initiales pour un 

demi-bloc focalisant, nous avons en vertu de (8) et (9) 

ys = yφ/2cos γ + r0 y'φ/2 sin γ r0 (cos γ -1) (18) ys = yφ/2cos 2 + √n y'φ/2 sin 2 n (cos 2 -1) (18) 

ys' = - yφ/2 
√n 

sin γ + y'φ/2 cos γ 1 sin (19) ys' = - yφ/2 r0 
sin 2 + y'φ/2 cos 2 √n sin (19) 

Ici l'indice S se rapporte à la sortie, γ = 2l√n et 2l Ici l'indice S se rapporte à la sortie, γ = r0 et 2l 

représente la longueur d'un bloc. 

La condition ys' = 0 devient alors 

{1 +(1 + na ) φ cot γ +[ 1 - a 
(1 + 

na )]φ2}yE {1 +(1 + 
r0 
) 2√n 

cot 2 
+[ 8 - 4r0 (1 + 2r0 )]φ2}yE 

+ [ √n cot γ - γ (1 + 2n a )]yE2- 1 n yE3 92 = + [ 2 cot 2 - 8 (1 + r0 )]yE
2- 8 r02 yE3 92 = 

- + 
r0 (1-

a 
)) 

φ√n cot γ - aφ2 
) (20) - + n (1- r0 )) 2 cot 2 

-
8 ) (20) 

C'est une équation de la forme 

(1 + αφ + βφ2) y + ( + ) y2 + = a + + 
(21) 

dont la solution s'écrit, en négligeant les termes en 9 
d'ordre supérieur à 2, 

y = a + (b - aα - a2γ) φ + [c - bα + a (α2 - β)-a2 (δ-αγ)-
2 aγ (b - aα - a2γ) - εα3] φ2 (22) 

En remplaçant les coefficients, on trouve, 

yE = r0 [-1 + cot γ + 1 (1-an, ) (1+2 cot2 γ )φ2] 
(23) 

yE = n [-1 + 2 cot 2 + 8 (1-r0 ) (1+2 cot
2 
2 )φ2] 

(23) 

ys = r0 [- 1 +  9\/n (1 + r0-na 9 cot γ )1 (24) ys = n [- 1 +  2sinγ/2 (1 + 2√nr0 9 cot 2 )1 (24) 

pour l'excursion d'une orbite parallèle à l'axe à l'entrée 
et à la sortie de l'espace considéré. 

Si l'on considère un espace défocalisant, un calcul 
analogue conduit aux relations 

yE = r0 [1- coth γ - 1 (1 + na ) (1 - 2 coth2 γ 
(25) 

)φ2 yE = n [1- 2 coth 2 - 8 (1 + r0 ) (1 - 2 coth
2 
2 
(25) 

)φ2 

ys = 
r0 [1-φ√n 0- r0 + na 9 coth Y )] (26) ys = n [1-2sh γ/2 0- 2 √ n r0 

9 coth 2 )] (26) 
Le projet de la machine comporte 5 blocs par demi-unité 
et les données numériques sont r0 = 7007.89 cm, n = 282, 
φ = 2π/1000, a = 123.75 cm. La relation entre l (demi-
longueur d'un bloc) et φ est donnée par (fig. 3). 

tg φ = 
l (27) 

tg 2 = r 0 - a - l 2 / 4 r 0 

(27) 

On trouve l = 21.62 cm. 

En portant ces données dans les équations précé­
dentes on trouve pour un espace focalisant yE = 0.06 cm, 
ys = 0.10 cm et pour un espace défocalisant yE = 0.07 cm, 
ys = 0.11 cm. 

Pour que l'orbite soit réellement fermée il faut que les 
quantités yE correspondant à un espace focalisant et 
défocalisant soit égales. Ceci ne peut avoir lieu que pour 

Fig. 3. 
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une particule dont la quantité de mouvement est légèrement 
différente de la quantité de mouvement de la particule 
cheminant le long de l'orbite idéale d'une machine com­
posée d'éléments courbes. Pour trouver la quantité 
de mouvement correspondant à l'orbite fermée nous 
remplacerons dans toutes les relations qui précèdent — 
à l'exception de (27) qui représente la géométrie intrin­
sèque de la machine — la quantité r0 par ρ0 et nous 
écrirons que pour cette valeur ρ0 les deux quantités yE 
tirées de (23) et (25) sont égales. On est alors conduit 
à l'équation transcendante 

2- φ√n (cot γ + coth γ ) - φ2 2- 2 (cot 2 + coth 2 ) - 2 

x [ + cot2 γ - coth2 γ (cot2 γ + coth2 γ 

(28) 

x [ + cot2 2 - coth
2 
2 (cot2 2 + coth

2 
2 

(28) 

dont la solution est ρ0 = 7010.10 cm. La différence relative 

de la quantité de mouvement est donc ∆p = 

ρ0-r0 
P 

= 

r0 
≈3.1 × 10-4 et l'on trouve alors yE = 0.07 cm., ys 
= 0.10 cm. Ce sont ces quantités qui représentent la 
déviation de l'orbite fermée par rapport à l'orbite fermée 
d'une machine composée d'éléments courbes. 

Dans un projet comportant 1 bloc par dem-unité magné­
tique, on aurait φ = π/100, a = 85.55 cm, l = 108.74 cm 
et l'on trouverait pour la déviation de l'orbite fermée 
0.5 cm. 

L'adjonction de sections sans champ ne modifie pas ce 
résultat. 

Calcul de cosμ. 

Pour le calcul de C0Sμ nous utiliserons les eq. (14) et (15) 
sous leur forme simplifiée 

y = y0 + aφ. y0' (29) 

y' = -
1 (1 + n a ) φ.y0 + y0' + (1 -a )φ (30) y' = - r0 
(1 + n r0 ) φ.y0 + y0' + (1 -r0 )φ (30) 

Si l'on désigne maintenant par S la matrice de transfert 
d'une région sans champ, par M ( ) la matrice de transfert 
d'un bloc focalisant (défocalisant) et par m ( ) la matrice 
de transfert d'un espace angulaire focalisant (défocalisant), 
la matrice de transfert pour la période totale s'écrit 

M = S½ ( )k-1 ½ M ½ M(mM)k-1 S½ (31) 

k étant le nombre de blocs par demi-unité. 

Dans le cas général les calculs sont longs et fastidieux. 
Nous nous bornerons ici au cas où une unité est composée 
de deux blocs. 

L'éq. (31) devient alors 

M = S½ ½ m½ M S½ (32) 

et l'on trouve pour cosμ l'expression 

cosμ = cos2γch2γ + 2L√n cosγchγ (cosγshγ-sinγchγ) + L
2n (cosγshγ - sinγchγ)2 cosμ = cos2γch2γ + 

r0 
cosγchγ (cosγshγ-sinγchγ) + 2r02 

(cosγshγ - sinγchγ)2 

+[ a√n (cos2γsh2γ - sin2γch2γ) - 1 (cos2γsh2γ + sin2γch2γ)]φ +[ r0 (cos2γsh2γ - sin2γch2γ) - √n (cos2γsh2γ + sin2γch2γ)]φ 

+[ an (ch2γ - cos2γ - 2sin2γsh2γ) - 1 (ch2γ + cos2γ + 2cos2γch2γ) Lφ +[ r02 (ch2γ - cos2γ - 2sin2γsh2γ) - r0 (ch2γ + cos2γ + 2cos2γch2γ) 2 

+ ( an sinγshγ cosγchγ) (sinγchγ - cosγshγ) L
2√n φ (33) + ( r

0
2 
sinγshγ cosγchγ) (sinγchγ - cosγshγ) 

r0 
φ (33) 

Ceci est à comparer à la valeur de cosμ que l'on trouve pour une machine composée d'éléments strictement circulaires: 

cosμ0 = cos2Φch2Φ + 2L√n cosΦchΦ (cosΦshΦ - sinΦchΦ + L
2n (cosΦshΦ-sinΦclΦ)2 (34) cosμ0 = cos2Φch2Φ + 

0 
cosΦchΦ (cosΦshΦ - sinΦchΦ + 2r02 

(cosΦshΦ-sinΦclΦ)2 (34) 
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En prenant r0 = 7007.89 cm, n = 282, φ = π/100, 
a = 85.55 cm, l = 108.74 cm, L = 160 cm et Φ = √nφ, 
on trouve 

cosμ0 = 0.7207 
cosμ = 0.7219 

Conclusion 

Une machine du type envisagé ici et dans laquelle on 
remplacerait une unité magnétique entière par un seul 
bloc rectiligne conduirait à une perte d'ouverture radiale 
de plus d'un centimètre. 
Les avantages que procurerait un projet de ce genre ne 

semblent pas justifier son adoption. 

Une machine où une demi-unité est constituée par un 
bloc rectiligne sera affectée d'un déplacement de l'orbite 
fermée de 5 mm. 
Le projet de la machine du CERN comporte cinq blocs 

rectilignes par demi-unité magnétique; cette solution 
permet pratiquement de maintenir l'orbite fermée à sa 
position idéale. 
Enfin, l'effet sur cosμ. résultant de l'utilisation d'élé­

ments non courbes reste faible. 
Des discussions avec les membres de la section théorique 

et particulièrement avec M. A. Schoch ont facilité la 
rédaction de ce travail. 
Les calculs numériques ont été effectués par Miss Ann 

Beard en collaboration avec Miss Monica Haney. 
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DISCUSSION 

G. Ahier : Jusqu'à présent, il semble bien que les non-linéarités 
sont surtout considérées comme génératrices 
de phénomènes parasites. Ce n'est pas étonnant puisque 
les théories ont toujours été établies en vue de réalisations 
de machines comportant des champs magnétiques linéaires 
(index n constant). Tout écart à la loi linéaire est donc 
une cause de perturbation, généralement défavorable. 
On peut cependant se placer à un autre point de vue et 

chercher délibérément à provoquer de fortes non-linéarités. 
Par ce fait, on espère concentrer des forces de rappel dans 
un domaine restreint en lequel la particule serait puis­
samment rappelée. On pourrait ainsi diminuer les ouver­
tures des chambres des entrefers et partant les dimensions 
des machines elles-mêmes. D'autre part, on est en droit 
de penser que les petites non-linéarités qui s'introduisent 
involontairement de façon parasitaire seraient négligeables 
vis-à-vis de celles que l'on a volontairement introduites. 
Comme contre-partie, il est facile de démontrer que dans 
le cas d'un mouvement linéaire, si ce mouvement est 
stable, il est stable dans toutes les régions accessibles du 
plan; par contre, si un mouvement est non-linéaire, il 
sera très stable dans certaines régions du plan et absolu­
ment instable dans d'autres. 
Certes, le problème paraît difficile à aborder dans toute 

sa généralité puisque, si les équations linéaires constituent 
une classe bien définie d'équations, par contre, les équa­
tions non-linéaires forment l'ensemble infini de toutes les 
autres équations. Cependant quelques restrictions doi­
vent être formulées : 
a) Le champ magnétique doit obéir aux équations de 

Maxwell. 
b) Un certain nombre de conditions sont imposées par 

la symétrie : celle-ci est pratiquement cylindrique, il n'y 
a pas de composante azimutale du champ, il y a une sur­
face médiane d'antisymétrie qui en première approxima­
tion est plane. 
c) Pour un synchrotron à protons dm/dt = 0 et le 

rayonnement est négligeable. 
d) On peut supposer que l'énergie s'accroît adiabati-quement 

et qu'on peut ainsi supposer que durant un 
nombre appréciable de tours elle est constante, ceci pour 
l'étude des oscillations bétatroniques. Enfin, pour com­
mencer par le cas le plus simple, on peut considérer le 
cas d'un cosmotron conventionel et parfaitement cir­
culaire. L'équation du mouvement d/dt (mv) = evxB 
rapportée à un trièdre mobile entraîné par la particule de 
référence se déplaçant sur le cercle médian se décompose 
en 

d2z -r0(1-
x -Bz ) = 0 et d

2z -r0 
Br = 0 (1) dθ2 -r0(1- r0 

-B0 ) = 0 et dθ62 -r0 B0 = 0 (1) 

En dehors des sources du champ, Bz et Br sont des 
fonctions entières de x et de z, qui ne sont pas absolument 

indépendantes d'ailleurs car 

rot B = 0 et div B = 0 (2) 

Les équations (1) peuvent donc s'écrire 
d2x/dθ2 = φ (x,z) d2z/dθ = ψ(x,z) (3) 

où les fonctions entières φ et ψ sont développables en 
séries entières de (x, z) dont tous les coefficients ai et bi 
ne sont pas absolument indépendantes en vertu de (2). 
On peut cependant disposer de ceux qui restent arbitraires 
pour faire en sorte que les équations 

φ(x, z) = 0 et ψ(x,z) = 0 (4) 

aient des solutions communes réelles (x1, zx,) (x2 z2)... 
(xk, zk). Dans l'espace des phases si aux points (xk, zk) 
ont fait à l'origine (xk')0 = 0 et (zk')0 = 0 (5) on a 
affaire à une particule qui d'après (3) et (4) n'est soumise 
à aucune force, de sorte que d'après (5) elle décrit une 
droite d'univers (géodésique) dans (l'espace-phase, temps). 
Les particules Pk qui obéissent à (4) et (5) (et il y en a 
toujours d'après nos hypothèses sur les ai et bi) ont donc 
pour images des points fixes dans l'espace des phases. Les 
particules voisines des Pk vont soit osciller autour des Pk, 
soit s'en éloigner peu à peu. Les Pk seront des points fixes 
stables ou instables ; leur voisinage dans l'espace des phases 
sera entouré par des courbes fermées et ouvertes selon le 
cas et qui représentent l'évolution des particules voisines 
des Pk. Si les φ et ψ sont des séries infinies, il y aura une 
infinité de points fixes. Si ce sont des polynômes, il n'y 
en aura qu'un nombre fini. De toutes façons, l'espace 
des phases sera morcellé en régions de stabilité ou d'ins­
tabilité. C'est ainsi que l'on pourra s'efforcer de disposer 

Fig. 1. 
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des ai et bi de telle façon qu'au voisinage de l'origine on 
observe dans toute coupure de l'espace des phases une 
figure telle que ci-contre (exemple non limitatif) où l'ori­
gine est instable et où 4 points fixes sont stables.II 
existe une courbe limite qui enclot une aire de stabilité 
à ceci près que les particules peuvent permuter si elles 
passent par l'origine. On s'efforcera de rendre ce domaine 
aussi petit que possible. On aura alors 4 faisceaux très 
rapprochés dans un domaine qui peut être plus ramassé 
que celui qui correspondrait à un champ linéaire "analo­
gue". Les sections droites et le G.A. compliquent le 
problème mais le laissent abordable. On peut se fixer 
à priori une distribution de ce genre dans l'espace des 
phases, en déduire les ai et bi donc le champ magnétique, 
donc le potentiel et finalement le profil au moins approxi­
matif des pièces polaires, lesquelles peuvent, il est vrai, 
présenter alors des formes très compliquées ou nécessiter 
l'emploi d'enroulements correcteurs très spéciaux. 
Mais on nous a, depuis le début de ce Symposium pré­

senté des formes de pièces déjà si tourmentées, que, main­
tenant, je ne doute plus de rien ! 

J. D. Lawson : The phenomenon of a "locked in" 
orbit described by Courant could also be seen very 
clearly on the weak focusing 30 Mev synchrotron built 
at Malvern by the A.E.R.E. group in 1948 1). At the end 
of the accelerating cycle the radio-frequency accelerating 
field was switched off, and the increasing magnetic field 
caused the particles to spiral in and strike an internal 
target. A pulse of X-rays was observed at the expected 
time after the turn off of the radio-frequency, but there also 
appeared another pulse earlier than was expected. This 
was interpreted as a locked in orbit closing after two turns, 
lying partly inside and partly outside the normal circular 
orbit, which would clearly strike the target earlier when 
its radius began to shrink. The conditions for the occur­
rence of such an orbit certainly existed in this machine, 
viz. n ~ • 75, a very non-linear field, and azimuthal per­
turbations. Varying the latter altered the relative sizes 
of the two pulses, and perturbations could be found which 
would make either disappear. This phenomenon is 
described in more detail in 2). 

V.I. Veksler : In the Moscow 30 Mev synchrotron a similar 
beam splitting was observed and explained in the same way. 

J.B. Adams : Experimental confirmation of the results ob­
tained with the CERN mechanical analogue can be supple­
mented by Baldwin's experiments in the States. He 
introduced non-linear field variations and non-linear 
perturbations in a conventional synchrotron and also 
observed subresonances. (As is known a C.G. machine 
behaves in this respect very much like an A.G. machine.) 

R. Wideröe : We have had similar experience with 
betatrons and synchrotrons. 

W. McFarlane : We have also obtained two γ-ray bunches 
on the 300 Mev synchrotron at Glasgow University. 

G. K. Green : The half-integral lock shown on 
Courant's slide represents 20,000 revolutions with no 
other loss than that caused by gas scattering. 
V. V. Vladimirski : Studies of non-linear motions have 

been carried out in our laboratories with the aim to use 
non-linearities to limit the build-up of amplitudes. We 
have not been successful however. Has anybody else? 
T. A. Welton : Ahier's paper might give some answer 

to this question. 
B. D. McDaniel: The old Cornell synchrotron had 

two beams but the new one has only one. 
L. Osborne : The MIT synchrotron shows two beams 

in the betatron phase and one in the synchrotron phase. 
V. I. Veksler (to L. Osborne) : Did you measure the 

non-linearity of the field ? 
L. Osborne : Very small non-linearities suffice to give 

rise to two orbits. Our method of measurement was not 
sensitive enough to detect with safety non-linearities of 
this order. 
E. D. Courant: Most classical machines work near 

n = 0.75 and the beam would be destroyed quickly if 
there were no non-linearities in the magnetic field. 
D. W. Kerst : I agree with Courant; about two 

dozen betatrons are working on the n = 3/4 (half integral) 
resonance region which is supposed to be very unstable. 
In all these beams, except for very fine grain effects, there 
is another strange effect e.g. the beam seems to remember 
its history. 
If there are two acceptance points at injection, the orbits 

can remain separated and two pulses come out. This 
was observed on the 300 Mev betatron. 
G. K. Green: In the Cosmotron the magnetic field 

changes relatively slowly with time and one can study 
those phenomena in greater detail than in the electron 
synchrotrons. 
The magnetic field of the Cosmotron is quite non-linear 

at injection and saturation. Yet no non-linear effects 
were observed, but the non-linearity can shift the Q value 
into a linear resonance. The Cosmotrons weeps at least 
through three higher order resonances with no blow-up 
of the beam. Even at n = 3/4 the beam width does not 
increase by more than 10% as was measured by means of 
a paddle. 
N. F. Verster : I understand from the lectures, that 

difference resonance should not be harmful. Still in the 
cyclotron one generally loses the beam at the point n = 0.2 
where we have 2 Qy - Qx = 0. Is this some other kind 
of resonance ? 
J. B. Adams: This is not an instability but transfer 

of energy from the horizontal oscillations to the vertical 
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oscillation. The increased vertical amplitude causes par­
ticles to hit the upper and lower surfaces of the dee. 
T. A. Welton (to K. R. Symon) : The resonance occurs 

at Qr = 2 Qv. 
Your plot showed a line at Qr = 3 Qv, but off axis, 

hence off a median plane one can see immediately that 
nothing happens on this line. 
K. R. Symon : I agree. As soon as we took more data 

it was obvious that the line Qr = 2 Q v gives the trouble. 
E. D. Courant : Is the difficulty you find for Qr = 2 Q v 

a real instability or a blow-up expected from non-linear 
theory ? 
K. R. Symon: L. J. Laslett has not yet finished the 

numerical check. He found that for Qr = 2 Q v and with 
the smallest amplitude of r and z-oscillation that the 
digital computer can accept, the z amplitude becomes 
bigger than the biggest number the computer can give 
but the x amplitude does not change. There are however 
some cases where the z component grew exponentially 
and started oscillations around some big value of z. Even 
if it is not a theoretical instability it is a practical one. 
R. L. Walker: Would Symon give some nume­

rical figures for the amplitude of the oscillations that can 
be held in the machine ? 
K. R. Symon : Kerst is in a better position to 

answer this. The general situation is as follows. We 
use small models, where the vertical aperture is a larger 
fraction of the radius than in the full-size machines. If 
we chose the parameters without special regard to the 
instability, the stability boundaries are small. Losing 
somewhat on the other parameters, we can however obtain 
a machine with very satisfactory stability boundaries. 
D. W. Kerst : I shall discuss this problem in the lecture 

of tomorrow morning. 
J. B. Adams (to K. R. Symon) : Did you make your 

calculation for a machine with or without non-linear per­
turbation? In the CERN machine one could allow 20% 
non-linearity if the machine were perfect and still have 
a stable system but only for 2 % non-linearity if there are 
non-linear perturbations present. 
K. R. Symon : All cases reported apply to perfect 

machines with large inherent non-linearities. Few com­
putations exist for imperfect machines. They show that 
the stability boundaries are smaller but still reasonable. 
J. B. Adams : Are you satisfied with the tolerances you 

find now from the engineering point of view? 
R. L. Walker: From the calculations for a 20 Gev 

machine it appears that the amplitude of the radial oscil­
lation can become 1 cm. before the instability occurs. 
Have you made numerical computations that agree with 
this result? 

D. W. Kerst: One model was run realistically on a 
digital computer, putting in reasonable errors. Various 
field shapes were considered. For a sinusoidal machine 
the stability limits and the mechanical tolerance seem to 
be good. 
R. L. Walker : Comparing this type of machine with the 

calculations made for a 20 Gev machine the tolerances 
seem to be tighter. 
K. R. Symon : From my approximate formula one sees 

that a decrease of the flutter factor requires an increase 
of Q1. The larger Q1, the more serious are the non-linear 
effects. We think that the separate sector type gives 
larger flutter factors with smaller spiral angles and increase 
in stability limits. 
A. A. Kolomenski: What value do you obtain for the 

circumference factor in a machine of the radial sector type ? 
K. R. Symon : It is at least 5 if the number of sectors 

is large. 
A. A. Kolomenski: A circumference factor of about 

2 should be possible if one does not work in the inter­
section of first stability regions, but in the intersection of 
the first and the second stability regions. 
L. W. Jones: One could indeed get a circumference 
factor of 1.5-2 but there the spacing of the resonance lines 
in terms of n is much smaller. 
A. A. Kolomenski : What is the tolerance on n? 
L. W. Jones : About a factor 10-100 times worse than 

in the ordinary A.G. machine. 
A. A. Kolomenski : I think that in some cases it may be 

10-20 times only. 
L. W. Jones: We have given up this machine (which 

we called incidentally Mark III) and now concentrate on 
Mark V that has spiral sectors. 
A. A. Kolomenski: Why do you consider only the 

variant with transition energy ? This introduces additional 
complications, that could be avoided. 
K. R. Symon: Crossing the transition energy can be 

avoided easily in the radial sector type but not in the spiral 
sector type. This crossing is not more difficult in a fixed 
field machine however, than in a pulsed field machine 
perhaps even easier. 
H. Bruck : Is the condition g1 + g2 = 4 to be consider­

ed as particularly dangerous in a machine with some azy-muthal 
symmetry, e.g. in a machine with four straight 
sections as the Cosmotron and the Saclay machine? 
R. Hagedorn : Not the equation g1 + g2 = 4 produces 

any danger, but rather the equation g1 Q x + g2 Q y = 4. 
That is the case if you have some structure in the machine 
exhibiting a strong fourth Fourier component as for 
instance the machine with four straight sections. In a 
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conventional machine this might happen since Q x and Qy 
are of the order of unity. This however, because Q x and 
Q y both are less than one can be fulfilled only with g1 + 
g4 > 4, which according to theory will generally not 
lead to instabilities. 
A. A. Kolomenski: Two remarks concerning Symon's 

paper on FFAG accelerators (radial sector type). 
1. I should like to emphasize several advantages pre­

sented by a magnet system with a decreasing orbit radius 

(α < 0), namely the absence of transition energy and better 
conditions for the more important vertical focusing. 
2. If we get more strict tolerances for magnetic field, 

we could avoid increasing the radius 5 to 6 times. For 
instance if the working cell (on the stability diagram) is 
chosen not at the intersection of the first stability region 
(as is usually done in a synchrotron), but, say, at the inter­
section of the first and second regions, then this factor 
decreases approximately to 2. 
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