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Résumé

L’on considére l’assemblage des blocs magnétiques
rectilignes utilisé dans le montage de la machine et I’on
caicule la déviation de Porbite fermée ainsi que la réper-
cussion sur cosu résultant de cette disposition.

Introduction

Bien que le synchrotron a protons se présente essentiel-
lement sous forme d’une machine circulaire, le projet
de l'aimant ne comporte pas [’utilisation d’éléments
courbes. En fait, des blocs magnétiques rectilignes sont
assemblés «en éventail » (fig. 1) pour former des unités
magnétiques. Le rapport entre la longueur d’un bloc et le
rayon de la machine étant trés faible, on pourrait admettre
que les écarts par rapport aux conditions idéales (éléments
magnétiques circulaires) sont également faibles. 11 a
semblé toutefois indiqué de procéder & une analyse plus
détaillée de la situation réelle de maniére a pouvoir chif-
frer les effets.

Par suite du remplacement des unités magnétiques cir-
culaires par un assemblage de blocs rectilignes les parti-
cules seront soumises & une perturbation du type n:
en effet, le chemin parcouru par une particule différera
en longueur du chemin idéal et en outre, le gradient du
champ ne sera plus perpendiculaire & 1’orbite mais plutdt
au bloc considéré. Les particules subiront également une
perturbation du type f due au fait que les blocs sont loca-
lement déplacés et inclinés par rapport a [’orbite idéale.

Equations du mouvement

(a) Dans un bloc rectiligne

L’axe des abscisses sera pris suivant 1’axe magnétique
du bloc défini par B, = B,, By = 0. L’origine des
coordonnées sera placée & I’extrémité du bloc. Seul, le
plan horizontal sera considéré.

Les équations cartésiennes du mouvement seront alors

X =eB, y/m (D

* Cette communication n’a pas figuré au programme des discussions.

Fig. 1.

-}; =-¢eB, )}/m ,
le champ étant donné par
B, = B, (1 + n-y/ry) ¢))

ol 1y est le rayon magnétique de la machine.

En prenant x comme variable indépendante et en uti-
lisant le principe de la conservation de I’énergie on trouve
pour I’équation du mouvement dans un bloc rectiligne

ry” + (1 +y®H¥ (1 4+ n y/ry) =0, €))
n étant positif dans un bloc focalisant et négatif dans un

bloc défocalisant.

(b) Dans la région de transition entre dzux blocs

Nous admettrons que dans le coin formé par deux blocs
adjacents le champ magnétique posséde une symétrie

Fig. 2,
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cylindrique dont P’axe coincide avec I'intersection des
faces terminales des blocs. Un systétme de coordonnées
curvilignes R, ¢ (fig. 2) parait indiqué ici pour exprimer
d’une maniére simple les conditions de passage et la forme
du champ. Celui-ci s’écrit en effet

n R‘a) @

Fo

B, = B, (14

Dans le systeme de coordonnées considéré, 1’équation du
mouvement est

mi'{=mRtL2—eRnLBz ®)]
En prenant ¢ comme variable indépendante et en écrivant
encore la conservation de 1’énergie on trouve pour 1’équa-

tion différentielle de la trajectoire dans la région de transition
entre deux blocs

2——R+———<1+R’2 o (1 +n

6

n sera encore pris positif dans la région située entre deux
blocs focalisants et négatif dans le coin compris entre deux
blocs deéfocalisants. La région de transition se trouvant
entre un bloc focalisant et un bloc défocalisant sera
partagée en une moitié focalisante et une moitié défoca-
lisante.

Equations des trajectoires

(@) Dans un bloc rectiligne

L’équation (3) peut étre intégrée complétement a 1’aide
de fonctions elliptiques. Si I’on néglige toutefois y'2 (qui
est de 1’ordre de 10-% dans la machine du CERN) par
rapport a unité, I’équation linéaire qui subsiste

ey 4+nl4i1=0 o)
To

peut étre résolue trés facilement et I’on trouve

To Vix 1, +/nx
+ —¥, sin + — | cos

nx 1
T, \/' Iy n Io - )
®

¥ = ¥oC08

pour un bloc focalisant et

\/ﬁx_i_ Io

To _ pV/nx
o f”“‘ (1 ch )(9)

pour un bloc défocalisant.

y = yoch

(b) Dans la région de transition

1l ne parait pas possible de résoudre I’équation (6) dans
le cas général.

En posant (fig. 2)
R=a+y (10)
nous la mettrons sous la forme

2y @ + v y: e
2 ety b L
Yoy ety To [ +(a+y)2:|

><(1+nrz):0 (11

et essaierons de représenter la solution par un dévelop-
pement en série.

On trouve alors en se limitant aux termes du second
ordre

1
2(a + yo)

@ 3oy,
To

Y=Y+ ¥ ¥+ {2 Yo? + (@ + yo)?

+n f—)} ® a2

La nécessité de pousser la solution jusqu’au second ordre
résulte du fait qu’en négligeant le terme en ¢? dans I’équa-
tion (12) le champ et son gradient disparaitraient de la
solution, ce qui conduirait a des absurdités.

Dans I’équation (12) les dérivées sont prises par rapport
a ¢ tandis que dans les formules (8) et (9) donnant le vec-
teur vy a la sortic d’un bloc en fonction de ses valeurs a
I’entrée, les dérivées sont prises par rapport a x.

Pour n’avoir affaire qu’a une seule variable, nous uti-
liserons la transformation

dy

+¥) = 13
a = (a ) 13

En substituant dans (12) on trouve pour le vecteur y
représentant 1’excursion de la trajectoire a la sortie de la
région de transition en fonction des données a 1’entrée

a+ye a4y Yo. Tl
: [1 - (1+nro):|<p

y=Yo+@+Yo) Ve +

(14)

Y =y + [1—"‘1”“(1 +n?)]q> (15)
1]

[

Ici les dérivées sont prises par rapport 4 x si bien que le
passage du bloc magnétique au coin intermédiaire peut
se faire immédiatement. Dans les relations (14) et (15)
nous avons négligé y’? par rapport a 1’unité comme nous
I’avons déja fait dans le cas du bloc rectiligne.
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Déviation de ’orbite fermée

Considérons un espace formé par la moitié d’un coin de
transition et la moitié d’un bloc magnétique. Une tra-
jectoire qui a l’incidence et a 1’émergence est paralléle
4 l’axe de l’espace considéré peut constituer une portion
de l'orbite fermée. Nous allons donc introduire ces
conditions dans les équations des trajectoires.

Si I’espace considéré est focalisant nous avons, en portant
la condition y,/ = O dans (14) et (15) et en remplagant
Yo par yy (valeur a ’entrée)

a+ a+
Yoz =Yg + g Ye [1 YE YE)] (16)
, a+
Yols = %[l——“(l +ny—E):|<p a7
Te Ty

¢ étant 'ouverture angulaire de la région de transition.

Ces quantités constituant les valeurs initiales pour un
demi-bloc focalisant, nous avons en vertu de (8) et (9)

Y Tt , .Y T, ¥
Ys = Yo/2 €08 = + ﬁymsmi—k ﬁ(cosi—l) (18)

2
v/n y 1 . v
= - —s C —sin= 19
Vs Vo2 o in— —}—yi,/2 os2 vnSInz (19)
21
Ici I’indice S se rapporte a la sortie, y = vn et 217

To

représente la longueur d’un bloc.

La condition y;’ = 0 devient alors

P
{I+(l+_)—\_/; cot ~ +[§—4—r0( +2—ro):| }

o Vn v 2na 1n
Z | XY—cot-— 1 2 o v 32 —
+r0[2002 2+ )]yE 20" @

2
cotf-2% -y (20
2 Iy

T To, 2 eVn
SR+ 2= .

Ty

C’est une équation de la forme

(I+oe+Be?) y 4+ (Yo +3¢%) y* + e9%® = a + be + ce?
@n

dont la solution s’écrit, en négligeant les termes en ¢
d’ordre supérieur 3 2,

y=a+ (b-ax-a’y) ¢ + [c-bx + a(a?-B)-a?(3-ay)-
2ay (b-ax-a%) - ex®] ¢? (22)

En remplagant les coefficients, on trouve,

Ve = rn[ 4+ B0 ‘/_ I (1-r")<1+2cot2—)cp]
@3)
_L[_,, ®vn - Y
ya = [ 4 5o+ 2 g con )] @4)

pour l’excursion d’une orbite paralléle a 1’axe a ’entrée
et 4 la sortie de ’espace considéré.

Si I’on considére un espace défocalisant, un calcul
analogue conduit aux relations

Y =

= 25
?[1—?\2/n°°‘h g+ )(1—200th2‘)<{>( )

To [1 N e vn a

s = © 2sh v/2

2
_To +_na o coth I):l (26)
n 2

24/n 1,

Le projet de la machine comporte 5 blocs par demi-unité
et les données numériques sont r, = 7007.89 cm, n = 282,
e = 2 =/1000, a = 123.75 cm. La relation entre / (demi-
longueur d’un bloc) et ¢ est donnée par (fig. 3).

1 27
ro—a-1%/4r,

tg

N8

On trouve [ = 21.62 c¢m.

En portant ces données dans les équations précé-
dentes on trouve pour un espace focalisant y; = 0.06 cm,
¥s = 0.10 cm et pour un espace défocalisant y; = 0.07 cm,
yg = 0.11cm.

Pour que P’orbite soit réellement fermée il faut que les
quantités y, correspondant a un espace focalisant et
défocalisant soit égales. Ceci ne peut avoir lieu que pour

Fig. 3.
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une particule dont la quantité de mouvement est légérement
différente de la quantité de mouvement de la particule
cheminant le long de I’orbite idéale d’une machine com-
posée d’éléments courbes. Pour trouver la quantité
de mouvement correspondant a [’orbite fermée nous
remplacerons dans toutes les relations qui précedent —
a l’exception de (27) qui représente la géométrie intrin-
séque de la machine — la quantité r, par p, et nous
écrirons que pour cette valeur p, les deux quantités y,
tirées de (23) et (25) sont égales. On est alors conduit
a I’équation transcendante

,_2yn
2

Y Y, ¢°
t — th 2y 2
(co > + co 2) >

Y ot Y - ™ o ¥ 2x]=
X l:l + cot > coth 2 o (cot 5 + coth 2) 0

(28)

dont la solution est p, = 7010.10 cm. La différence relative

y A -,

de la quantité de mouvement est donc P _ Bo~To
p To

~ 3.1 X 107* et I'on trouve alors y; = 0.07 cm., vy,

= 0.10 cm. Ce sont ces quantités qui représentent la
déviation de 'orbite fermée par rapport a 1’orbite fermée
d’une machine composée d’éléments courbes.

Dans un projet comportant 1 bloc par dem-unité magné-
tique, on aurait ¢ = w/100, a = 85.55 cm, / = 108.74 cm
et ’on trouverait pour la déviation de I’orbite fermée
0.5 cm.

Lyv/n

L’adjonction de sections sans champ ne modifiec pas ce
résultat.

Calcul de cosy

Pour le calcul de cosp nous utiliserons les eq. (14) et (15)
sous leur forme simplifiée

y = Yo + ap.yo (29)

’ 1 a ' a
y=-—(0+n=-)e.¥ +y +U-—)e (30)
To Ty

To

Si ’on désigne maintenant par S la matrice de transfert

d’une région sans champ, par M(l\_/l) la matrice de transfert
d’un bloc focalisant (défocalisant) et par m (i) la matrice
de transfert d’un espace angulaire focalisant (défocalisant),
la matrice de transfert pour la période totale s’écrit

M = $V2 (M m)-! M m ¥2m 2 M (mM)-1 §¥/2 (31)

k étant le nombre de blocs par demi-unité.

Dans le cas général les calculs sont longs et fastidieux.
Nous nous bornerons ici au cas ol une unité est composée
de deux blocs.

L’¢q. (31) devient alors
M=S2MmY2mY2MS§ vz (32)

et I’on trouve pour cosy 1'expression

2 . L%n .
cosp = cos2ych2y + - cosychy (cosyshy-sinychy) + o (cosyshy — sinychy)?
Lo

o

ay/n . 1
+[ v (cos2ysh2y - sin2ych2y) — 7 (cos2ysh2y -+ sin2vych 2y):| P
n

Io

an . 1 L
+ [r_z (ch2y - cos2y - 2sin2ysh2y) - = (ch2y + cos2y + 2005270h2y):| 3‘"1
(1) [+

an 1 .
+ (1'_2 sinyshy -+ = cosychy) (sinychy — cosyshy)
o

0

L3/n (33)

¢
Iy

Ceci est & comparer a la valeur de cosu que I’on trouve pour une machine composée d’éléments strictement circulaires :

2Lyv/n

[

COSio = c0s2Och2® +

cos@ch® (cosPsh® - sin®ch®) +

L2n .
33 {cos Psh®-sin Och ®)? (34)
(]
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En prenant r, = 7007.89 cm, n = 282, ¢ = /100,
a = 8555cm, [ =108.74cm, L = 160cm et ® =+/n 9,
on trouve

cosy, = 0.7207

cosp = 0.7219

Conclusion

Une machine du type envisagé ici et dans laquelle on
remplacerait une unité magnétique entiére par un seul
bloc rectiligne conduirait 4 une perte d’ouverture radiale
de plus d’un centimétre.

Les avantages que procurerait un projet de ce genre ne
semblent pas justifier son adoption.

Une machine ou une demi-unité est constituée par un
bloc rectiligne sera affectée d’un déplacement de 1'orbite
fermée de S mm.

Le projet de la machine du CERN comporte cing blocs
rectilignes par demi-unité magnétique; cette solution
permet pratiquement de maintenir 'orbite fermée a sa
position idéale.

Enfin, effet sur cosw résultant de I’utilisation d’élé-
ments non courbes reste faible.

Des discussions avec les membres de la section théorique
et particulitrement avec M. A. Schoch ont facilité la
rédaction de ce travail.

Les calculs numériques ont été effectués par Miss Ann
Beard en collaboration avec Miss Monica Haney.
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DISCUSSION

G. Ahier : Jusqu’a présent, il semble bien que les non-
linéarités sont surtout considérées comme génératrices
de phénoménes parasites. Ce n’est pas étonnant puisque
les théories ont toujours été établies en vue de réalisations
de machines comportant des champs magnétiques linéaires
(index n constant). Tout écart a la loi linéaire est donc
une cause de perturbation, généralement défavorable.

On peut cependant se placer a4 un autre point de vue et
chercher délibérément a provoquer de fortes non-linéarités.
Par ce fait, on espére concentrer des forces de rappel dans
un domaine restreint en lequel la particule serait puis-
samment rappelée. On pourrait ainsi diminuer les ouver-
tures des chambres des entrefers et partant les dimensions
des machines elles-mémes, D’autre part, on est en droit
de penser que les petites non-linéarités qui s’introduisent
involontairement de facon parasitaire seraient négligeables
vis-a-vis de celles que ’on a volontairement introduites.
Comme contre-partie, il est facile de démontrer que dans
le cas d’un mouvement linéaire, si ce mouvement est
stable, il est stable dans toutes les régions accessibles du
plan; par contre, si un mouvement est non-linéaire, il
sera trés stable dans certaines régions du plan et absolu-
ment instable dans d’autres.

Certes, le probléeme parait difficile a aborder dans toute
sa généralité puisque, si les équations linéaires constituent
une classe bien définie d’équations, par contre, les équa-
tions non-linéaires forment 1’ensemble infini de toutes les
autres équations. Cependant quelques restrictions doi-
vent étre formulées :

a) Le champ magnétique doit obéir aux équations de
Maxwell.

b) Un certain nombre de conditions sont imposées par
la symétrie : celle-ci est pratiquement cylindrique, il n’y
a pas de composante azimutale du champ, il y a une sur-
face médiane d’antisymétrie qui en premiére approxima-
tion est plane.

¢) Pour un synchrotron a protons dm/dt =0 et le
rayonnement est négligeable.

d) On peut supposer que 1’énergie s’accroit adiabati-
quement et qu’on peut ainsi supposer que durant un
nombre appréciable de tours elle est constante, ceci pour
I’étude des oscillations bétatroniques. Enfin, pour com-
mencer par le cas le plus simple, on peut considérer le
cas d’un cosmotron conventionel et parfaitement cir-
culaire. L’équation du mouvement d/dt (mv) = eyxB
rapportée a un triedre mobile entrainé par la particule de
référence se déplagant sur le cercle médian se décompose
en

d?z x B dzz B
@ (I n g 0 g0 O
0

Ty 0

En dehors des sources du champ, B, et B, sont des
fonctions entieres de x et de z, qui ne sont pas absolument

indépendantes d’ailleurs car
rotB=0etdivB=20 )
Les équations (1) peuvent donc s’écrire

S d%/d6* = o (x,2)  d’z/dO = ¢ (x,2) €)]
ou les fonctions entiéres ¢ et ¢ sont développables en
séries entieres de (x, z) dont tous les coefficients a; et b;
ne sont pas absolument indépendantes en vertu de (2).
On peut cependant disposer de ceux qui restent arbitraires
pour faire en sorte que les équations

ox,20=0 et Yx2 =0 C))

aient des solutions communes réelles (xy, Z;,) (X3 Zo)...
(X, Zx). Dans I’espace des phases si aux points (Xx, Zx)
ont fait & lorigine (Xx)g = 0 et (z")o =0 (5) on a
affaire a une particule qui d’aprés (3) et (4) n’est soumise
a aucune force, de sorte que d’aprés (5) elle décrit une
droite d’univers (géodésique) dans (I’espace-phase, temps).
Les particules P, qui obéissent & (4) et (5) (et il y en a
toujours d’aprés nos hypothéses sur les a; et b;) ont donc
pour images des points fixes dans ’espace des phases. Les
particules voisines des Py vont soit osciller autour des Py,
soit s’en éloigner peu A peu. Les Py seront des points fixes
stables ou instables: leur voisinage dans 1’espace des phases
sera entouré par des courbes fermées et ouvertes selon le
cas et qui représentent 1’évolution des particules voisines
des Py.. Siles @ et  sont des séries infinies, il y aura une
infinité de points fixes. Si ce sont des polyndmes, il n’y
en aura qu’un nombre fini. De toutes fagons, ’espace
des phases sera morcellé en régions de stabilité ou d’ins-
tabilité. C’est ainsi que ’on pourra s’efforcer de disposer

Q

—
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\
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Fig. 1.
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des a; et b; de telle fagon qu’au voisinage de 1’origine on
observe dans toute coupure de I’espace des phases une
figure telle que ci-contre (exemple non limitatif) ou I’ori-
gine est instable et ol 4 points fixes sont stables. Tl
existe une courbe limite qui enclot une aire de stabilité
a ceci prés que les particules peuvent permuter si elles
passent par ’origine. On s’efforcera de rendre ce domaine
aussi petit que possible. On aura alors 4 faisceaux trés
rapprochés dans un domaine qui peut étre plus ramassé
que celui qui correspondrait a un champ linéaire “analo-
gue”. Les sections droites et le G.A. compliquent le
probléme mais le laissent abordable. On peut se fixer
a priori une distribution de ce genre dans ’espace des
phases, en déduire les a; et b; donc le champ magnétique,
donc le potentiel et finalement le profil au moins approxi-
matif des piéces polaires, lesquelles peuvent, il est vrai,
présenter alors des formes trés compliquées ou nécessiter
I’emploi d’enroulements correcteurs trés spéciaux.

Mais on nous a, depuis le début de ce Symposium pré-
senté des formes de piéces déja si tourmentées, que, main-
tenant, je ne doute plus de rien !

J. D. Lawson: The phenomenon of a “locked in”
orbit described by Courant could also be seen very
clearly on the weak focusing 30 Mev synchrotron built
at Malvern by the A.E.R.E. group in 1948 V). At the end
of the accelerating cycle the radio-frequency accelerating
field was switched off, and the increasing magnetic field
caused the particles to spiral in and strike an internal
target. A pulse of X-rays was observed at the expected
time after the turn off of the radio-frequency, but there also
appeared another pulse earlier than was expected. This
was interpreted as a locked in orbit closing after two turns,
lying partly inside and partly outside the normal circular
orbit, which would clearly strike the target earlier when
its radius began to shrink. The conditions for the occur-
rence of such an orbit certainly existed in this machine,
viz. n ~ + 75, a very non-linear field, and azimuthal per-
turbations. Varying the latter altered the relative sizes
of the two pulses, and perturbations could be found which
would make either disappear. This phenomenon is
described in more detail in 2,

V.1 Veksler : Inthe Moscow 30 Mev synchrotron a similar
beam splitting was observed and explained in the same way.

J.B. Adams : Experimental confirmation of the results ob-
tained with the CERN mechanical analogue can be supple-
mented by Baldwin’s experiments in the States. He
introduced non-linear field variations and non-linear
perturbations in a conventional synchrotron and also
observed subresonances. (As is known a C.G. machine
behaves in this respect very much like an A.G. machine.)

R. Widerde: We have had similar experience with
betatrons and synchrotrons.

W. McFarlane : We have also obtained two y-ray bunches
on the 300 Mev synchrotron at Glasgow University,

G. K. Green: The half-integral lock shown on
Courant’s slide represents 20,000 revolutions with no
other loss than that caused by gas scattering.

V. V. Viadimirski : Studies of non-linear motions have
been carried out in our laboratories with the aim to use
non-linearities to limit the build-up of amplitudes. We
have not been successful however. Has anybody else?

T. A. Welton :
to this question.

Ahier’s paper might give some answer

B. D. McDaniel: The old Cornell synchrotron had
two beams but the new one has only one.

L. Osborne: The MIT synchrotron shows two beams
in the betatron phase and one in the synchrotron phase.

V. I. Veksler (to L. Osborne) :
non-linearity of the field?

Did you measure the

L. Osborne: Very small non-linearities suffice to give
rise to two orbits. Our method of measurement was not
sensitive enough to detect with safety non-linearities of
this order.

E. D. Courant: Most classical machines work near
n = 0.75 and the beam would be destroyed quickly if
there were no non-linearities in the magnetic field.

D, W. Kerst: 1 agree with Courant; about two
dozen betatrons are working on the n = 3/, (half integral)
resonance region which is supposed to be very unstable.
In all these beams, except for very fine grain effects, there
is another strange effect e.g. the beam seems to remember
its history.

If there are two acceptance points at injection, the orbits
can remain separated and two pulses come out. This
was observed on the 300 Mev betatron.

G. K. Green: In the Cosmotron the magnetic field
changes relatively slowly with time and one can study
those phenomena in greater detail than in the electron
synchrotrons.

The magnetic field of the Cosmotron is quite non-linear
at injection and saturation. Yet no non-linear effects
were observed, but the non-linearity can shift the Q value
into a linear resonance. The Cosmotrons weeps at least
through three higher order resonances with no blow-up
of the beam. Even at n = 3/, the beam width does not
increase by more than 109 as was measured by means of
a paddle.

N. F. Verster: 1 understand from the lectures, that
difference resonance should not be harmful. Still in the
cyclotron one generally loses the beam at the point n = 0.2
where we have 2 Qy - Qx = 0. Is this some other kind
of resonance?

J. B. Adams: This is not an instability but transfer
of energy from the horizontal oscillations to the vertical
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oscillation. The increased vertical amplitude causes par-
ticles to hit the upper and lower surfaces of the dee.

T. A. Welton (to K. R. Symon) : The resonance occurs
at Q, = 2 Q.

Your plot showed a line at Q. = 3 Q,, but off axis,
hence off a median plane one can see immediately that
nothing happens on this line.

K. R. Symon: Tagree. As soon as we took more data
it was obvious that the line Q, = 2 Q, gives the trouble.

E. D. Courant ; 1Is the difficulty you find for Qr = 2 Qy
a real instability or a blow-up expected from non-linear
theory?

K. R. Symon: L. J. Laslett has not yet finished the
numerical check. He found that for Q, = 2 Q. and with
the smallest amplitude of r and z-oscillation that the
digital computer can accept, the z amplitude becomes
bigger than the biggest number the computer can give
but the x amplitude does not change. There are however
some cases where the z component grew exponentially
and started oscillations around some big value of z. Even
if it is not a theoretical instability it is a practical one.

R. L. Walker: Would Symon give some nume-
rical figures for the amplitude of the oscillations that can
be held in the machine?

K. R. Symon: Kerst is in a better position to
answer this. The general situation is as follows. We
use small models, where the vertical aperture is a larger
fraction of the radius than in the full-size machines. If
we chose the parameters without special regard to the
instability, the stability boundaries are small. Losing
somewhat on the other parameters, we can however obtain
a machine with very satisfactory stability boundaries.

D. W. Kerst : 1 shall discuss this problem in the lecture
of tomorrow morning.

J. B. Adams (to K. R. Symon): Did you make your
calculation for a machine with or without non-linear per-
turbation? In the CERN machine one could allow 209
non-linearity if the machine were perfect and still have
a stable system but only for 2% non-linearity if there are
non-linear perturbations present.

K. R. Symon: All cases reported apply to perfect
machines with large inherent non-linearities. Few com-
putations exist for imperfect machines. They show that
the stability boundaries are smaller but still reasonable.

J. B. Adams: Are you satisfied with the tolerances you
find now from the engineering point of view?

R. L. Walker: From the calculations for a 20 Gev
machine it appears that the amplitude of the radial oscil-
lation can become 1 c¢m. before the instability occurs.
Have you made numerical computations that agree with
this result?

D. W. Kerst: One model was run realistically on a
digital computer, putting in reasonable errors. Various
field shapes were considered. For a sinusoidal machine
the stability limits and the mechanical tolerance seem to
be good.

R. L. Walker : Comparing this type of machine with the
calculations made for a 20 Gev machine the tolerances
seem to be tighter.

K. R. Symon: From my approximate formula one sees
that a decrease of the flutter factor requires an increase
of Q;. The larger Q,, the more serious are the non-linear
effects. We think that the separate sector type gives
larger flutter factors with smaller spiral angles and increase
in stability limits.

A. A. Kolomenski: What value do you obtain for the
circumference factor in a machine of the radial sector type?

K. R. Symon: It is at least 5 if the number of sectors
is large.

A. A. Kolomenski: A circumference factor of about
2 should be possible if one does not work in the inter-
section of first stability regions, but in the intersection of
the first and the second stability regions.

L. W. Jones: One could indeed get a circumference
factor of 1.5-2 but there the spacing of the resonance lines
in terms of n is much smaller.

A. A. Kolomenski: What is the tolerance on n?

L. W. Jones: About a factor 10-100 times worse than
in the ordinary A.G. machine.

A. A. Kolomenski : 1 think that in some cases it may be
10-20 times only.

L. W. Jones: We have given up this machine (which
we called incidentally Mark III) and now concentrate on
Mark V that has spiral sectors.

A. A. Kolomenski: Why do you consider only the
variant with transition energy? This introduces additional
complications, that could be avoided.

K. R. Symon: Crossing the transition energy can be
avoided easily in the radial sector type but not in the spiral
sector type. This crossing is not more difficult in a fixed
field machine however, than in a pulsed field machine
perhaps even easier.

H. Bruck : Ts the condition g, + g, = 4 to be consider-
ed as particularly dangerous in a machine with some azy-
muthal symmetry, e.g. in a machine with four straight
sections as the Cosmotron and the Saclay machine?

R. Hagedorn: Not the equation g, + g, = 4 produces
any danger, but rather the equation g; Qx + g. Qy = 4.
That is the case if you have some structure in the machine
exhibiting a strong fourth Fourier component as for
instance the machine with four straight sections. In a
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conventional machine this might happen since Q. and Qy
are of the order of unity, This however, because Qy and
Q, both are less than one can be fulfilled only with g, 4
g, > 4, which according to theory will generally not
lead to instabilities.

A. A. Kolomenski: Two remarks concerning Symon’s
paper on FFAG accelerators (radial sector type).

1. I should like to emphasize several advantages pre-
sznted by a magnet system with a decreasing orbit radius

(o < 0), namely the absence of transition energy and better
conditions for the more important vertical focusing.

2. If we get more strict tolerances for magnetic field,
we could avoid increasing the radius 5 to 6 times. For
instance if the working cell (on the stability diagram) is
chosen not at the intersection of the first stability region
(as is usually done in a synchrotron), but, say, at the inter-
section of the first and second regions, then this factor
decreases approximately to 2.
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