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Abstract

While quantum key distribution (QKD) is a theoretically secure way of growing
quantum-safe encryption keys, many practical implementations are challenged due
to various open attack vectors, resulting in many variations of QKD protocols. Side
channels are one such vector that allows a passive or active eavesdropper to obtain
QKD information leaked through practical devices. This paper assesses the feasibility
and implications of extracting the raw secret key from far-field radiated emissions
from the single-photon avalanche diodes used in a BB84 QKD quad-detector receiver.
Enhancement of the attack was also demonstrated through the use of deep-learning
model to distinguish radiated emissions due to the four polarized encoding states. To
evaluate the severity of such side-channel attack, multi-class classification based on
raw-data and pre-processed data is implemented and assessed. Results show that
classifiers based on both raw-data and pre-processed features can discern variations
of the electromagnetic emissions caused by specific orientations of the detectors
within the receiver with an accuracy higher than 90%. This research proposes
machine learning models as a technique to assess EM information leakage risk of QKD
and highlights the feasibility of side-channel attacks in the far-field region, further
emphasizing the need to utilise mechanisms to avoid electromagnetic radiation
information leaks and measurement-device-independent QKD protocols.

Keywords: Quantum key distribution; Quantum communication; Single-photon
avalanche diode; Single-photon detector; Information leakage; Electromagnetic
security; Side channel attack

1 Introduction

Quantum key distribution (QKD) is a quantum communication protocol that allows two
parties to grow a quantum-safe encryption key [1-3]. While theoretically secure, practical
implementations of QKD have loopholes due to the use of real hardware and processes.
A review of practical security aspects of QKD is presented in [4]. One such loophole is
from side-channel attacks, which are intrusions that use fundamental characteristics of
the practical system to extract secret information. Side-channels of QKD include power
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consumption [5], light emission [6], degrees of freedom of photons [7, 8] or side-band
modulation [9].

One relatively unexplored side channel is electromagnetic (EM) emanations of elec-
tronic components used in QKD systems. In previous studies on single-photon avalanche
diode (SPAD), it was shown that SPADs in Geiger mode produce pulsed-like radio-
frequency (RF) radiated emanations that can be used to determine the time of photon
detection [10]. These emissions are given by breakdown current pulses in the avalanche
diode at each detection of a photon [11] or even at each dark count [12]. These studies
show that radiated emissions can be used to remotely detect individual SPAD triggering;
however, research on the amount of data leakage and the vulnerability of a QKD receiver
terminal have not been conducted.

Studies of EM side-channel attacks on QKD have shown that deep learning techniques
and neural networks can be used to recover raw secret key from EM emanations of QKD
senders [13] and SPADs [11]. In [11], near-field emissions of two separated SPADs (i.e.
20-cm separation) measured between 30 MHz and 300 MHz at a 2-m distance in a non-
anechoic environment were used to show the feasibility of this kind of attack. Although
high accuracy rates of data extraction have been achieved from emanations in the near
field (i.e. higher than 99%), no key extraction has been proven from far-field emissions
[13]. In addition, accuracy is the only parameter used to assess the algorithm’s perfor-
mance, which does not reveal possible characteristics of the attack, such as over-fitting or
imbalanced classification.

Advanced QKD protocols have sought to remove issues from single-photon detector
side-channel attacks [14] (measurement-device independent (MDI-QKD) protocols) or
all side-channel attacks [15] (device-independent (DI-QKD) protocols). MDI-QKD pro-
tocol design [16] and implementation breakthroughs have enabled QKD to be transmitted
over 1000 km using ultra-low loss fibre [17] in research environments. However, since both
MDI- and DI-QKD protocols still have implementation challenges, commercial systems
in the first generation of QKD networking will be non-MDI or DI protocols, meaning
there is a need to evaluate and mitigate side-channel attacks from single-photon detec-
tors. This research emphasizes how current scientific and commercial space-QKD im-
plementations, which are based on prepare-and-measure protocols, are susceptible to
measurement-device side-channel attacks.

This paper studies the feasibility of retrieving secret keys from far-field radiated emis-
sions of a quantum receiver designed for free space and satellite QKD. Emissions from
a compact quad-detector free-space polarization-based BB84 QKD quasi-receiver were
measured in a semi-anechoic chamber to guarantee the repeatability of EM measure-
ments. Radio-frequency (RF) emissions of four SPADs (different positions and orienta-
tions) were measured and analysed using antennas in both vertical and horizontal po-
larizations. The potential risk of raw key extraction was assessed using machine learning
classification methods.

This work generated a dataset with 1200 records of 2500 samples classified into 4 la-
bels available in a repository along with machine learning models. Additionally, a novel
approach to understanding and measuring the potential risks associated with raw key
extraction using machine learning classification methods is introduced. This approach
allows us to measure the system’s vulnerability based on evaluation metrics of machine
learning models. This paper highlights the EM information leakage risk of free-space and
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Figure 1 Framework to assess the system vulnerability risk to advanced EM leakage information attack using
data pre-processing and machine-learning classifiers

satellite QKD receivers and proposes machine-learning models to assess these vulnerabil-
ities.

The vulnerability risk evaluation approach is summarized in Fig. 1. Experimental data
containing time-domain far-field radiated EM emissions were measured using a dual-
polarization receiver. Measured data is then pre-processed and labelled to generate two
classification datasets. The dataset V; is based on windowing the raw data, while the
dataset F; is based on spectral and statistical properties of the captured signals. Finally,
artificial intelligence models were used to determine encoding states from the classifica-
tion datasets. The risk assessment is quantified using model performance metrics. Details
of the experimental data collection and pre-processing procedure are presented in Sect. 2.
Artificial intelligence modelling is described in Sect. 3. Results, security analysis, and con-
clusions are presented in Sects. 4, 5, 6 respectively.

2 Experimental setup and data collection
2.1 Quantum receiver module and attacker setup
QKD is based on encoding encryption key data on a quantum state. Polarization is typ-
ically used as the “degree of freedom” in free-space transmission due to the negligible
impact of atmospheric propagation on the encoding and on the quantum bit error rate
(QBER) [18]. In the decoy-state BB84 QKD protocol [19], Alice (transmitter) generates
a sequence of four non-orthogonal polarization quantum states using two randomly se-
lected bases and multiple intensity levels and transmits to Bob (receiver) to detect the
quantum states, which typically contains four independent SPADs [20]. In the free-space
implementation of the decoy-state BB84 protocol, the optical interface for the SPADs can
be direct free-space or multimode fibre. If in free-space, the SPADs will typically be orien-
tated to ensure a short distance between the QKD receiver and the detector. If multimode
fibre is coupled, the SPADs can be positioned away from the optical system and stacked
together, however, long path will result in performance degradation at high operational
frequencies due to modal dispersion [21].

To demonstrate the side-channel attack, the optical system was composed of a quasi-
QKD transmitter and quasi-QKD receiver, presented in Fig. 2. The transmitter and re-
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Figure 2 Diagram of experimental setup to test the quasi-quantum key distribution receiver. The transmitter
created single-photon-level optical pulses from a gain-switched laser source, a variable optical attenuator
(VOA), and two 99/1 fibre optic beamsplitters. The quasi-quantum key distribution receiver is composed of
four single-photon avalanche diodes (SPAD)s and three 50/50 fibre-optic beamsplitters. Radiated emissions
from the quasi-quantum key distribution receiver are measured using horizontal and vertical polarised
antennas and a 1.5 GHz oscilloscope in a semi-anechoic chamber

ceiver were constructed of single-mode fibre components, and the “optical channel” was
a single-mode fibre connection.

The quasi-QKD transmitter created single-photon-level optical pulses using a gain-
switched laser with a wavelength of 940 nm. The laser driver was triggered by a pulse
pattern generator that delivered 1-ns pulses at a clock frequency of 100 MHz. Optical at-
tenuation provided by a variable optical attenuator (VOA) and two 99/1 fibre optic beam-
splitters enabled adjustment of the average number of photons per pulse to 0.001. The low
mean photon number meant there was a low probability of two SPADs measuring events.
The transmitter was kept outside of the semi-anechoic chamber. The quasi-QKD receiver,
within the semi-anechoic chamber, comprised three passive 50:50 beamsplitters and four
independent silicon-based SPADs, as shown in Fig. 2. The SPADs were connected to a
time-correlated single-photon counting unit with four channels that recorded time-of-
arrival events with respect to a synchronisation channel from the pulse pattern generator.
The time-tag events were used to correlate the information measured with other equip-
ment. The detector layout of the quasi-QKD receiver was based on a free-space QKD
receiver design, which had free-space optical interfaces to the SPADs. In our quasi-QKD
receiver, the system is single-mode fibre coupled, but the SPAD layout is the same as it
would be with free-space optical components. As shown in Fig. 3, physical orientations of
SPADs’ body are horizontal for SPADs number 1, 3, and 4, and vertical for SPAD num-
ber 2. In addition, SPADs number 3 and 4 are attached to the same face of the quantum

receiver.

2.2 Radiated emissions of a quantum receiver

The radiated emissions from the quasi-QKD receiver were measured using two double-
ridge antennas. Measurements were performed in a semi-anechoic dark chamber to re-
duce external electromagnetic interference and avoid unintended reflections. Two anten-
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Figure 3 Experimental setup to study the polarization dependency of the radiated emissions from the
quasi-quantum key distribution receiver. The SPADs are individually identified with numbers from 1-4
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Figure 4 Spectrum of radiated emissions of a quasi-quantum receiver with 4 SPADs measured by two
antennas in (a) vertical and (b) horizontal polarization

nas captured horizontal and vertical polarized emissions at a 3-m distance. The received
signals were amplified and measured with a 1.5-GHz bandwidth oscilloscope. The quasi-
QKD receiver was located on a non-conductive table at 80 cm height.

The spectrum of typical signals radiated by the four SPADs in the quasi-QKD receiver
are shown in Fig. 4. It is shown that the received emissions from SPADs with different
physical orientations have different frequency components. These differences in the spec-
trum for each SPAD are due to variability in the avalanche breakdown process, resonances
in the assembly, and variation of paths and loads of connections such as power cable leads
[22, 23]. The frequency components radiated by the quasi-QKD receiver can be used to
individually identify each SPAD; however, SPADs with the same physical orientation and
close position (i.e. SPADs 3 and 4 as shown in Fig. 3) produce frequency components in
the same frequency range. In this case, these SPADs are indistinguishable based only on
frequency value for most of the configurations. For this reason, a more advanced attack

based on machine learning summarized in Fig. 1 is discussed in the next section.
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Figure 5 Example of signals measured in horizontal and vertical polarization to generate the dataset
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Figure 6 Main spectral component from 600 radiated-emissions records of the quasi-QKD receiver measured
by (a) vertically and (b) horizontally polarized antenna

2.3 Dataset

The dataset contains 600 measurements per antenna of radiated signals of the quasi-QKD
receiver. That is a total of 1200 measurements. Time-domain signals captured by both
antennas, as shown in Fig. 5, and the 20-MHz reference clock from the pulse generator
were acquired. Each record is a vector of 2500 samples of the amplitude measured by the
oscilloscope that ranges between —10 and 10 mV. The records are either noise or a signal
carrying the emission radiated by one of the four SPADs in the quasi-QKD receiver during
each acquisition. Finally, each record was associated with one SPAD or noise with a label.
Records tagged as noise were discarded and not included in the analysis with machine-
learning models.

Figure 6 shows the amplitude and frequency of the highest spectral component of each
measurement. It is shown that measurements are grouped in 4 data groups for the vertical
antenna, which would allow for a way of classification. On the other hand, only three clus-
ters can be identified for the horizontal antenna, which indicates that two SPADs (SPADs

3 and 4) present similar spectral components.



Pantoja et al. EPJ Quantum Technology (2024) 11:78 Page 7 of 14

3 Classification modeling

3.1 Pre-processing data

Based on the dataset, two signal classification scenarios were studied. First, the raw signal
was sub-sectioned and applied to a deep neural network (DNN) model. Second, features
based on statistical and spectral measures were applied to the decision tree model.

For the first signal recognition approach, subsections were extracted from each record.
The size of those subsections, which correspond to observation windows, were selected
in a range from 937 to 1875 data points (i.e. time windows from -25 to 50 ns). Using
this data, a feature vector, V;, given by equation (1) is constructed by randomly selecting
the starting position and window size, m, to store the amplitude values v,;. This process
samples each signal using moving windows of a specified size. Finally, each feature vector
was augmented with the corresponding label, ;, indicating the SPAD that generated the
signal.

Vi=[ViiVair Vi v oo Vimis Li] (1)

A total of 487 records per antenna with a ratio of 60% for training and 40% for testing
was used. The training dataset was built with 292 records from the original dataset, while
the test dataset included 195 records to have a representative sample with 95% confidence
and a margin of error of 5%. After sampling, 20000 and 5000 observation windows for
training and testing were obtained, respectively. In constructing both the training and
validation datasets, the choice of records for sampling was also randomized, ensuring that
the validation data remained distinct from the training data. This way, the rule of using
60% of the data for training and 20% for validation is used. The data set was the input of
the DNN model discussed in Sect. 3.2.

For the second recognition approach, descriptive statistical and spectral features were
calculated from the 600 records measured for each antenna and used to train a deci-
sion tree model. Statistical measures considered here were mean mi;, standard deviation
sd;, and RMS value rms;. On the other hand, considered spectral features are the fre-
quency and magnitude of the 6 highest peaks of the fast-Fourier transform; respectively,
[fiirfair - - -foil and [pkis, pkaj, . . . pkei]. Again, each feature vector is augmented with the cor-
responding label L; as shown in equation (2). A total of 15 features per antenna were ob-
tained with this approach. The performance of a decision tree classifier with this set of
features is analysed in Sect. 3.2.

F; = [m;, sd;, rms;, fiis fois - - Soir PK1i» Phois - - . PKeir Li] (2)

3.2 Artificial intelligence models

Multi-class classifiers were used to analyze the far-field radiated emissions from the quasi-
QKD receiver as part of a side-channel attack strategy. A DNN model with a tailored archi-
tecture was employed to capture the complex patterns and relationships in the subsections
of the signals contained in V;. The implemented model is described in Appendix 6. Other
multi-class classifiers, such as gradient-boosted trees and random forest, were also im-
plemented, but a low performance (i.e. accuracy lower than 80%) was obtained, showing
that more robust techniques such as DNN are required. For the second signal recognition
approach based on the feature vector F;, a simple decision tree with 100 maximum splits
produced acceptable results.
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Table 1 Comparison of classifier models based on pre-processed features and raw data

Input data Classifier Accuracy Number Feature Prediction Overall
(%) of calculation speed speed
features (obs/ms) (obs/ms) (obs/ms)
Raw data: V; DNN 96.0 938/2500 N/A 0.6* 0.6%
Pre-processed data: f; Tree 99.4 30/30 20 6.3 1.5

*Speed for single evaluation. Batch evaluation speed is 67.5 obs/ms.

Table 2 Confusion matrix of SPAD prediction obtained with the DNN applied to V;

Predicted SPAD
1 2 3 4 Total
Actual SPAD 1 715 10 8 16 749
2 4 1236 7 14 1261
3 3 5 1372 28 1408
4 2 18 83 1479 1582
Total 724 1269 1470 1537

Table 3 Confusion matrix of SPAD prediction obtained with the Tree Classifier applied to F;

Predicted SPAD
1 2 3 4 Total
Actual SPAD 1 114 0 0 0 114
2 0 138 1 0 139
3 0 0 156 0 156
4 0 0 0 131 131
Total 114 138 157 131

Table 1 presents a comparison between models based on moving windows (V;) and pre-
processed signal features (F;). The accuracy and processing speed on a 10-core Intel i5
processor are included in the table. The confusion matrices of both approaches are shown
in Tables 2 and 3. The Tree classifier based on pre-processed signal features has higher
accuracy and overall prediction speed than the classifier based on raw data. These results
show that if proper data pre-processing is performed, basic models can be used as classi-
fiers with superior accuracy. In terms of processing speed, results show that the processing
speed can increase up to 100 times if batch evaluation instead of single evaluation is ap-
plied.

An accuracy of 96.0% was obtained with the DNN model. As shown in Table 2, this
high accuracy means that there is a low loss (4.0%) of the raw key retrieved from the EM
emanations. In particular, errors in classification are given when predicting SPADs 3 and 4.
Errors in classification for SPAD 4 can be explained by the close physical location of SPADs
3 and 4, which leads to similar radiated emissions, and to the partial shielding provided by
the metal body of the QKD receiver.

4 Results

The system vulnerability against information leakage can be quantified with the accuracy
of the multi-class classifiers to show the general risk of the attack. However, other metrics
can be used to understand the severity of the risk. In this section, we show vulnerability risk

metrics based on other parameters of the multi-class classifiers’ performances to get more
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Figure 7 Vulnerability risk metrics of DNN model as a function of the moving window size

insights into the effects. In addition to Accuracy, we have considered Recall, F1 Score, and
Specificity as assessment metrics. Recall quantifies the classification performance for each
individual SPAD, while Specificity measures the proportion of other SPADs which are
correctly identified by the model. F1 Score, on the other hand, shows a balance between
precision and recall.

Figure 7 shows the selected vulnerability risk metrics for the DNN model for different
window sizes. As the time window is higher, the vulnerability increases since more infor-
mation from the radiated emission is collected by the eavesdropper. A window over 40 ns
is required to exceed 90% accuracy. For shorter windows, the parameters quickly degrade
the performance. These results show that this attack, as implemented in this example, is
unsuitable for high key rates and or fast clock frequencies in which short acquisition times
would be required. 90% accuracy is obtained for a key rate of 25 Mb/s. For higher key rates,
accuracy, recall, and F1 score are degraded. For illustration, a key rate of 125 Mb/s, where
an observation window size of 8 ns is available, these three metrics are below 52%.

Figure 8 shows the vulnerability risk metrics as a function of the number of training
records used in the DNN model. In general, the figure shows that the accuracy depends
on the number of training records. All cases show an accuracy higher than 90%. However,
if the other metrics are considered, a degradation of the model performance in predicting
SPAD 1 and 4 is shown as the number of records is reduced. Since the performance is
reduced with 2 SPADs, probably due to confusion in the prediction, the best parameter to
see the trend is F1 Score and Recall. More than 100 training records are required to have
at least 80% recall and F1 Score in all the SPADs.

5 Security analysis

Experimental results show that the data from the raw secret key received by the quasi-
QKD receiver can be extracted from its far-field radiated emissions with an accuracy of
99.6%. This highlights a possible vulnerability risk in unprotected SPAD-based QKD im-
plementations where the raw secret key can be used for single-trace attacks without re-
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Figure 8 Vulnerability risk metrics of DNN model as a function of number of training records per antenna

vealing the eavesdropper since the quantum channel is not altered. From a security per-
spective, this profiled attack [13] assumes the following conditions:

+ The attacker has access to the physical perimeter of the QKD receiver and is able to
measure the radiated emissions. In these measurements, 3-m standard distance and
general-purpose instruments were used; however, longer distances can be achieved
with specialized receivers as discussed in [24].

» The attacker has a copy of the victim’s device [13] or particular knowledge about the
victim’s set-up to characterize the expected radiated emissions in a controlled
environment and train and test the classifier model or a dataset with enough amount
of labelled signals.

« The attacker can access the classical public channel to perform and/or monitor the
public discussion, including basis set reconciliation to perform key sifting, QBER
estimation, error correction, and privacy amplification. As a result, the attacker is able
to obtain the shared secret key.

It is important to note that the synchronization signal was not used to classify the radi-
ated emissions, whereas, in other attacks, it has been needed [13, 25]. The synchronization
signal and other auxiliary signals from the classical public channel may be used in scenar-
ios with a high signal-to-noise ratio or with multiple reflections.

Security proofs have been studied using practical light sources in QKD transmitters. An
example is the method proposed in [26], where the security of QKD protocols is guar-
anteed when the fidelity between the side-channel-affected states and the ideal emitted
states is known. However, security proofs considering side-channel attacks on the QKD
receiver terminal have not been sufficiently established. For this reason, countermeasures
to reduce the vulnerability of EM attacks are advised [27].

Countermeasures for the side-channel attack discussed here include attenuating the
EM fields using shielding barriers and distance, as detailed in [24]. Also, a specific design
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of low-EM-emissions receivers dedicated to QKD is advisable. As explained in Sect. 2.2
and shown in Fig. 6, radiated emissions are easily distinguishable if SPADs have differ-
ent physical orientations and longer separations. Therefore, limiting the distance between
the SPADs and circuits would be beneficial, for example, integrating all circuitry onto one
board. In this case, the risk of information leakage is reduced; however, advanced pro-
cessing may still be used to retrieve the raw key from the circuit’s near-field emissions
[13]. More sophisticated countermeasures applicable for critical infrastructure include
jamming and reducing transients in the detectors [28]. One alternative is the use of su-
perconducting nano-wire single photon detectors (SNSPD) [29, 30] that operate at lower
voltages than SPADs [31] and, as a consequence, produce lower-amplitude radiated emis-
sions. The use of MDI-QKD or DI-QKD protocols would also mitigate the EM single-
photon detector side-channel attack, as they were designed to close the loophole to de-
tector side-channel issues.

6 Conclusions

While QKD may be theoretically secure (within the bounds of the security analysis), real-
world implementation results in loopholes that need to be addressed for the practical im-
plementation to also be secure. One common group of loopholes is side channels, which
a passive or active eavesdropper can use to gain partial or all secret key information in
QKD.

EM side channels are relatively unexplored. Within this paper, we analyze in more detail
an EM side-channel attack based on far-field radiated emissions from the single-photon
detectors in a quad-detector quasi-QKD receiver, which does not have shielding. Results
show that the raw secret key received by a quasi-QKD receiver can be extracted from
its far-field radiated emissions with an accuracy of 99.6%. Experimental results show that
variations in the physical location and orientation of single-photon detectors in the quan-
tum receiver produce variations in the waveform and frequency components of their ra-
diated emissions which can be used to identify the activation of individual detectors.
Here, it was shown that SPADs’ radiated emissions can be used to recover the raw key
in polarization-based QKD protocol.

It is worth noting that the EM emissions used in this work to retrieve the secret raw key
were measured in the far-field region of the quasi-QKD receiver. Emissions radiated in the
far field region propagate through the media, decreasing its amplitude with the inverse
of the distance. Consequently, this attack can be done at distances longer than the 3-m
measurement distance used here using an RF receiver with higher sensitivity, as discussed
in [24]. Signals from an unshielded and unprotected QKD receiver could be detected at a
distance of up to 50 m with a basic receiver [12], which highlights the need for shielding
to prevent significant emissions from being detected.

As shown in this paper, machine-learning classifiers can take advantage of any informa-
tion leak. Radiated emissions used in this study to retrieve the raw secret key do not dis-
criminate statistical descriptors. Emissions have noise and overlapped amplitudes and fre-
quency components due to different encoding states. To guarantee secure communication
systems, the identification of side-channel attacks and the inclusion of countermeasures
are necessary from the design stage. It is important to mention that the tests conducted
here were performed with CE-marked and metal-enclosed components, which means that
normal electromagnetic compatibility (EMC) testing does not avoid information leakage
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through EM channels. Our demonstration shows that artificial intelligence tools can be
used by attackers to enhance eavesdropping capabilities in actual scenarios.

The risk assessment framework proposed here may be used to assess side-channel at-
tacks on quantum communication systems and quantify the risk using vulnerability met-
rics for pre-compliance testing and for preparation for security certification. This paper
introduced the use of machine-learning metrics as vulnerability risk metrics. It was shown
that using machine-learning metrics to assess vulnerabilities allows the identification of
the prediction and generalization capabilities that a model can achieve from information
leakage. Specific metrics, such as recall that determine vulnerabilities in individual detec-
tors that could not be identified with the model accuracy give important information for
implementing countermeasures to reduce the effectiveness of the attack.

These results highlight the need for further measurement of side channels and standard-
ization of EM side channel test procedures for first-generation QKD systems and a move
to MDI-QKD or DI-QKD protocols for future generations to overcome EM side channel

attacks.

Appendix: Deep neural network model
A batch norm classifier was employed as multi-class classifier. This model is a neural net-
work designed for classification tasks. It begins with a fully connected layer with 1000
units, followed by batch normalization to stabilize training. The network then applies ac-
tivation functions (Ramp and Sigmoid) before processing through another fully connected
layer with 4 units. The final output is passed through a Softmax layer, which converts the
predictions into probabilities for four distinct classes. The architecture, shown in Table 4,
comprises the following layers:
+ Linear Layer: A fully connected layer with 1000 units
« Batch normalization layer: A layer that normalizes the activation to improve training
stability.
«+ Element-wise layer: A layer that applies the Sigmoid activation function element-wise.
« Linear layer: A fully connected layer with 4 units, which serves as the final layer before
the output.
+ Softmax layer: A layer that applies the Softmax function to the output, converting the
network’s predictions into probabilities for each class.
The network is configured with an input size defined by the input vector size and outputs
are decoded using NetDecoder[Class’, 1., 2., 3., 4.], which means the output is classified

into one of four possible classes.

Table 4 Deep neural network architecture

Parameter Type Size
Input vector 1000
Linear layer vector 1000
Batch normalization ~ vector 1000
Ramp layer vector 1000
Element-wise layer vector 1000
Linear layer vector 4
Softmax layer vector 4

Output class 4
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