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We derive a general expression for the electromagnetic field radiated by a relativistic charged
particle with arbitrary periodic orbit, in the form of multi-pole expansion of the Liénard—Wiechert
potential, which explicitly includes the charged particle motion. Using this expression, we discuss
the orbital angular momentum radiated from a relativistic charged particle. It has recently been
indicated that the radiation emitted by circularly orbiting charged particles carries well-defined
orbital angular momentum. We show that, even for the general cases of arbitrary periodic orbits,
the radiation field possesses well-defined orbital angular momentum.

Subject Index AQ0, AO01

1. Introduction

Electromagnetic waves carry not only energy and linear momentum but also angular momentum.
In particular, it is well known that electromagnetic waves carry spin angular momentum, which is
associated with circular polarization. However, it is less well known that they also carry orbital angular
momentum. In 1992, Allen et al. showed that an electromagnetic wave in Laguerre—Gaussian modes
carries well-defined orbital angular momentum, distinct from spin angular momentum [1]. Such
light waves have spiral wavefronts and are called optical vortices, photons carrying orbital angular
momentum, or twisted photons. Since this pioneering work, optical vortices have been investigated
not only from the scientific but also the technological viewpoint [2—4]. Some methods for artificially
modifying the wavefront structure from a plane to a spiral by using spiral phase plates or numerically
designed holograms have been established [2], and various applications of their unique features have
been discussed. For example, optical vortices can be used to manipulate micrometer-sized objects
by using their torque [5], and can be made useful for future high-capacity communications owing to
the orthogonality between their different spiral modes [4]. Another attractive application of optical
vortices may be for astronomical observations. It has been indicated that much more information can
be obtained from electromagnetic wave signals from the universe by considering their spiral modes
rather than conventional plane-wave spectrum channels [4,6-8]. However, there have only been a
few discussions on the generation of optical vortices in nature [6,9].

It has recently been indicated that the radiation emitted by circularly orbiting charged particles
exhibits spiral wavefronts and carries well-defined orbital angular momentum [10]. This process
forms the basis for various important radiation processes in plasma physics and astrophysics, such
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as cyclotron radiation, synchrotron radiation, and Compton scattering of circularly polarized light.
Therefore, this radiation has been well investigated in the literature [11,12]; however, its angular
momentum has not been discussed explicitly until recently [13—15].

In this paper, we discuss the angular momentum of the radiation field emitted by a relativistic
charged particle in more general cases, using a multi-pole expansion of the Liénard—Wiechert fields
[16,17]. The multi-pole expansion of electromagnetic fields has been discussed in textbooks in the
context of angular momentum [18-21]. However, in these textbooks, the authors consider electro-
magnetic radiation fields that are solutions of the homogeneous Helmholtz equation. This means that
they examine electromagnetic waves propagating in free space without considering their source. In
contrast, here, we treat the radiation field by explicitly including the motion of the charged particle.

2. Multipole expansion of Liénard—Wiechert fields

In this section, we briefly review the multi-pole expansion of Liénard—Wiechert fields [16,17]. The
Liénard—Wiechert potentials, which are general expressions for the electromagnetic field produced
by a relativistic charged particle, are given as follows:

q 1
,X) = R 1
p(t,x) F760 R(t) — Rr) 2 (1)
At,x) = —2 ¥() 2)

4meoc? R(v) — R(v)- X2’

where ¢ is the electric charge of the particle, g is the dielectric constant, c is the velocity of light
in vacuum, R(t) = x — s(t), R(t) = |R(7)|,s(?) is the charged particle trajectory, and v(¢) = $§(¢)
is the particle velocity. The right-hand sides of Egs. (1) and (2) should be evaluated at the retarded
time t, which is defined by the following recursive causality relation:

x —s(o)]
=220 3)
c
The Fourier expansion of the potentials are expressed as follows:
00 b . ®
w expiin(wt —o — % |x —s(0)|); ¢
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0o b . %)
wgq exp {in (ot —o — 2 |x —s(0)1)}
Alt,x) = ———— d , 5
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where w is the angular frequency of the original electron motion and ¢ = wt is the phase of the
periodic motion. Then, by employing the well-known formula [20]

oo !
=—ik Y > @+ D(=D"hP (kr)js(ke' )P (cos 0)P; ™ (cos 0')e ™) (6)
=0 m=—1

e—ik|x—x/|

Ix — x|
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and replacing x’ by s(0), Egs. (4) and (5) can be rewritten as

wlt%) = o — ( m)/ doe™ = “>Z Z(21+1)( H”
=0 m=—1I
x h® (ngr)jl(n gr(a))P;” (c0s )P ™ (cos B (ar))e M @=# @) 7
A(t,x) = 8n2 e Z( m)f dav( 9) gintat— ">Z Z(21+1)( 1"
n=—00 1=0 m=—1
x K2 (1211 (nZr(0) PP (cos 0)P; ™ (cos (o) e ™M@=, 8)
C C

where r, 6, and ¢ are the spherical coordinates, and hgz) (x),j1(x), and P;” (x) are the spherical Hankel
function of the second type, the spherical Bessel function, and the associated Legendre function,
respectively. If we introduce the spherical harmonic functions [20]

2141 = m) .
n0.6) = [~ El_i_Z;'le(cosQ)e’md’, )

20411 —m)!

— (_1\m m —im¢
Y -m0,9) = (=1) e (l+m)!P, (cosf)e™ ™, (10)
Egs. (7) and (8) can be expressed as
p(t,x) = Z( mw)e’”“”Zh@(n r) Z M) Yi-m(0. ), (11)
n=-—00 m=—I
Atx)= Y (- mw)el"wah‘”(n —7) ZanmYI (0. 9), (12)
n=—00 m=—I

where

27 [+ ! . .
M, = &T%cz/o \/477(21—1— 1)21 - Zi‘jl(ngr(a))Pl_m(cose(o))e’”"e’m‘p(")da, (13)

27
My = > / \/4 @ +1>(l+m) @z(n r(0))P; " (cosf(0))e " ™) dg.
8n £oc m)!

(14)

are definite integrals with respect to ¢ = wt over the period of the particle motion; these have
constant values in Cartesian coordinates (.Q:, », ?,)

In accordance with convention [19,20], we interpret Eqgs. (11) and (12) as the (/ — m) multi-pole
expansions of the Liénard—Wiechert potential fields and Egs. (13) and (14) as their components.

3. Linear and angular momenta of Liénard—Wiechert multipole fields

In this section, we evaluate the linear and angular momenta of the Liénard—Wiechert fields. For this
purpose, it is convenient to express the multi-pole expansion of the Liénard—Wiechert potentials in
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spherical coordinates (i', 0, qAS) [10]. While Eq. (12) is already written in spherical coordinates,

Eq. (14) needs to be transformed from Cartesian to spherical coordinates, as follows:

Mnlm = (_l)m 21 (= m)'Mnlm = (_l)m 2 o, (Mx

“4x (Hm)!
=M

n,l,m

2
MY, = g QI+ (=" 0

n,l.m

x + Mn,l,my + Mn, _Mr

n,l,m

n,l,m

4 (I+m)! x+Mylmy+ nlm) ,
0, 9)F + MY, (0,00 + M7, (©0.6)¢
(15)

V‘(“)] (n r(a)) "(cos B (0))e " M0 i

M,f,m:gﬂcz(zlﬂ)( 1y 0 T 2D (n2r(0) )Py (cos Bo e e g, (16)
Mz, = g QL+ DD [57202 (n2r(a) )Py (cos B1(0))e ™7 ) do

nlm(@ ¢) = sin6 cos¢M" +sin05in¢Mil +0059MZ
nlm(9 ¢) = cos b cos qux + cos 4 sin ¢M;)1},l, — sin QM;lm . (17)
nlm(¢) —sin ¢M2‘J’m + cos qﬁMfl}J’m

The vector M, ; ,, in Eq. (12) has a constant value in Cartesian coordinates, but depends on 6, ¢ in
spherical coordinates. From Eq. (17), we find the following relations between the components of

Mn,l,m:

oMy, .(6,9)

o = M, (6.0, (18)
MY, (9)
T = nlm(ﬁb), (19)
aM?, (0,
% = cosOM?,  (9), (20)
oM, .0, ¢)
la—q) =sin6M?, (¢). @1)

In spherical coordinates, the multi-pole expansion of the Liénard—Wiechert potentials (11) and (12)
is

%) o) l
o)=Y (minw)e™ Y Y cM,?,th)(n r)P, (cos 6)e"™®, (22)

n=—00 1=0 m=—1

A = Y (—inw)e™ Y Z MR s )<n r)Pi(cose)e™™, (23)

n=—00 1=0 m=—1I

Ayt x) = Y (=inw)e™ " Z ¢ 1m(@,(p)hEZ)(n%r)P}"(cos@)e_im‘p, (24)

n=—o0 =0 m=—1
A,(t,x) = Z (—ma))e’"w’Z Z 0 @ (n=r ) PP (cos 0)e 2. (25)
C
n=-—00 =0 m=—I
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Accordingly, the electromagnetic field components in the far field corresponding to Egs. (22)—(25)
can be expressed approximately as follows (Appendix A):

E™ (1, x)
1] X o I e in%r cN\2i
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Now, we shall calculate the radiation power emitted by the ultra-relativistic charged particle:

= / dt f Erad Hrad ndS = — f dt f <Erad B‘”ad> - ndS, (32)

where T = <% is the perlod of the particle motion, n is a unit vector normal to the surface S, and
the surface 1ntegral dS = r? sin 0dfd¢ is calculated for a spherical surface with a sufficiently large
radius compared to the charged particle motion region. Considering that only the terms of order % in
Egs. (26)—(31) contribute to Eq. (32), we only need to consider the second terms of Egs. (27), (28),
and (30) and the first term of Eq. (31). Substituting these terms into Eq. (32), we obtain

2
d* d d* d
d[ MOT/ dtf d¢/ 12 sin 040 Era B — R g
c 2w
=——/ dt/ d¢>/ #* sin 0d6
mo T Jo 0 0

o in2r
e ¢ - _
< 1| D (minw) Y > (—i)Mf’,’m(Q,@)*P}"(cos@)(i”l)*—r e~ (nt=m¢)

n=—00 1=0 m=—1
in’%r , )
x Z (—in w)z Z iMY )06, DVPY (cos )il T1 S it er=m'9)
r
—00 =0 m'=—1

( o© in%r
. 0 J+1x€ ¢ i _
—| > ine) Y D (=M, ()P (cos 0) (i ) ——e Hnowt=md)

n=—00 =0 m=—1

_in @

x Z (—zna))z Z (=DM, (®)P} (cosO)i 1 eI 33

—o0 '=0m'==0

and carrying out the integral with respect to ¢ over the period 7, we arrive at

. . 9 ) l o0 14
E:_ d(p/ sin 640 Z(HW)ZZZZ

Ko n=—o0 1=0 m=—1I'=0 m'=—1I'

i1 (M,f im0 8 ME, L O.0) + M, ()M, ,(¢)) Pl"(cos )Pl (cos §)e! "9
(34)
Note that the orthogonal formulas relating to spherical harmonics,
d , 2 (I+|m]!
m m —
/0 P (cos0)P)'(cos ) sin0d = TR Ll (35)
2w ) ,
/0 e—z(m—m )¢d¢ — 2778m,m’a (36)

cannot be used for Eq. (34) since Mi Im ©,9), MZ’I (@) depend on 0, ¢. In Egs. (35) and (36), 6,,m
denotes the Kronecker delta. B

Next we shall calculate the angular momentum of the radiated fields. We consider its projection
onto an arbitrary axis. As a matter of convenience, we shall call it the z-axis. The z-component of
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the radiated angular momentum,

T
aL. = l cdt F X l (Erad* X Hrad) -zdS
dt T Jo S c?

_ L /S {(r Brad) Erd s _ (r. Erad*)Brad -z}ds, (37)

wo cT

can be expressed in spherical coordinate as follows:

dL .
dtz = 7 / dt / Brad (cos OE™Y — sin gERY ) — rE™d <cos 6B — sin GBg“d)} ds
Hnoc

27

- / dt / do / rsin 0 Erad Brd _ prad” Brad) 2 sin 06, (38)
wocT

This means that we only need to consider terms of order in the integrands of Eq (38). Since the

r-components of the electric (26) and magnetic (29) ﬁelds are at least of order - -z, we only need to

consider the second terms of Egs. (27) and (30). Similarly to Eq. (33), substituting these terms into

Eq. (38) and carrying out the integral with respect to ¢ over the period 7, we obtain the following:

dL 1 T 2 T " "
= T / dt / de f 73 sin2 0 (E;ad prad _ prad Biad) do

oo I oo

- d¢/ d6 Z (na))zzzz Z €18 Gin 6 (i)

I=0m=—1I'=0m'=
 (sin0P} (cos )M, (6,6)")
20

+iPj'(cos ) (melm(qﬁ) — %(@)} ' m (PP} (cos@)

0 <sin HP;',’/ (cos 9))
00

o MYy O.0)\
+1i mMn’,,,m/(0,¢)+zT Py (cosO) ¢ |. (39)

+ Pl (cos )M, (0,)* M2, (@)

The first, second, and third terms of Eq. (26) have been neglected in Eq. (39) due to the order r%
requirement. The summations of the first and third terms of Eq. (39) disappear in the integral with
respect to 6 and we finally obtain the following equation:

dLZ a? [T )
— d¢/ sin 0d6 Z(na)) ZZZ Z o

di "~ o n=—o0 1=0 m=—11'=
i ’{mM,f’,mw)*Mf,, @)+ 1ML 0.6) MY, 0. ) (40)
oM, @ oM, 0.9\ » P
—i TMH v (@) — n,m(9 o)* T P (cos0)P} (cosB)e
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If we assume, e.g., that the charged particle motion is axis-symmetric with respect to the z-axis on
average over the period of the particle motion, meaning that M, (6, ¢), M 9 (9 b), M? . (@) are
independent of ¢, then

aMlz,l/,m’ (9’ (ﬂ)
L)
0
M@0
d¢ ’
a‘]‘/[r(tpl m((p) .
ap B

=0

(41)

the third and fourth terms of Eq. (40) become zero, and we can carry out the integral with respect to
¢ by simply using the orthogonal relation (36), yielding

A = Lox [Tsingdo Y. () Y. > Z

n=—00 =0 m=—11'= . (42)
xil =1 (MY, MY+ MY, O)M, (9)) P (cos 0)P!" (cos 0)

In addition, Eq. (34) becomes

_: 1271f0 sin 6d0 Z (nw)22 Z ZC

n=—o0 =0 m=—11'= : (43)
xil =1 (M, MP, , + MY, 0 M] (9))P;"(cos9)P7(cos9)

nl',m

From Egs. (42) and (43), we obtain

& !
Jo sin0do Y (nw)? il =

I'=0
a\ (MM MO M, (9)) PI"(cos )P (cos 6)
dt /) nim o sin6d6 Z(na)) ci’ Mnlm My,

+M91m(9)*Mj,, (©)) P! (cos )P} (cos )

m mh
= — = (44)
nw  h(nw)

for the (n-I-m) multi-pole components. We can infer from Eq. (44) that the radiation fields emitted by
the ultra-relativistic charged particle carry angular momenta of m# per A(nw) photons for each nth
time harmonic and (/-m)th multi-pole if the charged particle motion is axis-symmetric with respect
to the z-axis on average over the period of the particle motion, as in Eq. (41).

Another interesting case is when the charged particle motion has the following rotational symmetry:

nlm(e ¢) nlm(9)6_1a¢
nlm(g ¢) nlm(e)e_w[(p

nlm(d)) nlm —i(X(P (45)
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In this case, the integrand of Eq. (40) becomes

(M2 (@) MY, @) + M, (6,0 M, (6,0))

¢ * 0
oM, (¢) omM?, (8, )
. A, ¢ 6 J,
—i (— 9o Mura (@) = My 0.9 —=0—— ).
— (m+ a)MZl’m*M}fl/’m, + (' + )My, O MY, O) (46)

In a similar way, using the orthogonal relation (36), the relation (44) can be extended to

% m+a (m+a)h

= = (47)
au nw h(nw)
dt / nilm

for the (n-I-m) multi-pole components.
For the general case, after tedious calculations (Appendix B), the relation between the momentum
and angular momentum of the multi-pole components of the radiation fields can be expressed in the

dL,
dt _ m—+ anal:m (48)
d_U o nw ’

n,l,m

where «;,;, is a constant value, which must be determined for each (n-/-m) multi-pole component
(see Eq. (B7)).

The relation (44) between the momentum and angular momentum of the multi-pole components
of the radiation fields emitted by ultra-relativistic charged particles is in agreement with discussions

following form, similar to Eq. (47):

of general multi-pole fields in Refs. [18-21]. These discussions assume that the radiation fields
are homogeneous and governed by the homogeneous Helmholtz equation, corresponding to the
case where M,:J’m(e,¢),M3J,m(9,¢),MZ l,m(qb) in Eq. (17) are either unity or constant, and the
relation (44) was obtained. The above discussion tells us that Eq. (44) is extended to Eq. (48) for the
Liénard—Wiechert fields.

4. Synchrotron radiation

As a typical example of radiating charged particle motion, we apply here the above discussion
to circular motion at constant velocity, as shown in Fig. 1. The charged particle’s motion can be
described as

s(t) =acos wtx + asin wty, (49)
ds(t) . . N . A A
v(t) = 7k —aw sin wiX + aw cos wty = —v sin wtx + v cos wty, (50)
where v = aw is the velocity of the particle. This motion can be expressed in spherical coordinates
as
s =(r0, 00, ¢0)=(a 5 o), (51
v(t) = (—v sin 0 sin(wt — @), —vcosf sin(wt — @), vcos(wt — go)). (52)
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A

(1)) r

observation po;}<('r, 0, (0)

0
7

Fig. 1. Circular motion of a charged particle

Substituting Eq. (51) and (52) into Egs. (15) and (16) yields

MO = 49 2] +1 H™ o : aw P (0)e "0 oMo g
nlm = g2 2( + DD Ji\n / (0)e e o
T2e0c 0 c
q m: (.Y p—m
= 5@+ D" (n2) P 080, (53)
TEYC c

q Iy w o
X m : ] —m —Ilnoc _Imo
Miim = graea @+ DD /0 — sin(o) (nza) P7™(0)e ™ ¢ do

q LV, (VY __

= 21 1—1'"——(—)1)'"03 — Sum_1), 54

47'[8()02( + D(=1) zc]l nC / ( )( n,m+1 n,m 1) ( )

q 2 v w ) )
M, i = Grzea Q1+ DD /0 = cos(@)ji (n=a) Py ()" " do

q lv. /vy

- 20+ (=12 (n2) P7"(0) (6 Snm1), 55

47”3002( + D(=D 2c]l nc / ( )( nm+1 T+ Onm 1) ( )

i =0 (56)

o
In this case, only two harmonics # = m £ 1 exist in the summation )  of Eq. (12) for each I-m
n=—00

multi-pole due to the Kronecker delta:

Mfz:m-i—l,l,m = (iMlj_m Ml—,i_m O)’ (57)
Mfz:m—l,l,m = (_iMl,_m Ml,_m O)’ (58)
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where Mffm = i+ D(=D™3Yj; ((m £ 1)¥) P;™(0). For Egs. (57) and (58), Eq. (17)
becomes

My, 1 n(0,¢) =sinb (cos OM,_ 11 T SID @Mizmﬂ’l’m) +cosOM,, = isin QMZ'me—iaﬁ
M1 (6 ®) = €080 (COSOML_,, 1, +SINGMI_,. ) = SINOME, , = icos oM e~
¢ _ : Y — At i
Mn=m+1,1,m (¢) = —Ssm ¢Mr)f=m+1,l,m + cos ¢Mn=m+1,1,m - Ml,me @
(59)
Mrf:m_l,l,m(é’,(p) =sinf <cos ¢Mr):=m—l,l,m + sin ¢Ms:m—1,l,m> + cos QM;J’m = —isin QMljme"‘i5
Mf:m_l’l’m 0,¢) = cosb (cos oMy, +sin ¢Ml)1}=m—l,l,m) —sinOM;, = —icos QML_me"‘p .
¢ : y — i
Mn:m—l,l,m (d)) = —sn d)M;::m—l,l,m + cos ¢Mn:m—l,l,m = Ml,mel¢
(60)
Applying Egs. (45), (46), and (47) to Egs. (59) and (60), we can obtain
(%) Cm+l om4l 1 1)
du - - W
G ) nemstim nw m+Do o
4, m—1 m—1 1
Spami g - (62)
au nw m—-—1Dow o
dt / n=m—1,I,m

which agree with the result in Ref. [10].

5. Numerical examples

Finally, numerically calculated examples of Eq. (48) are given. Two numerical examples, circular
and helical motion of the charged particle (see Fig. 2), are considered. The values of «,,—20,,, for
the circular motion (Fig. 2(a), radius ¢ = 1.0 x 10~* m, charged particle energy £ = 1.2 GeV,
harmonics n = 20) are depicted in Fig. 3(a). We can make sure that the results of Eqgs. (61) and
(62), i.e., &y 1,m, have non-zero values of £1 only for m = n¥1. In Fig. 3(b), values of o,—2¢,; » for
the helical motion (Fig. 2(b), radius @ = 1.0 x 10~% m, pitch length L = 3.14 x 10~* m, charged
particle energy £ = 1.2 GeV, harmonics n = 20) are depicted. There are no more simple relations
as in the circular motion (53)—(56), and o,—20,,,» has non-zero values for various sets of / and m.
Most of a,—20,/,» has an approximate value of —1, and some much bigger values appear depending
on the original charged particle motion.

6. Conclusions

In this paper, we have generalized the discussion on the orbital angular momentum carried by the
radiation field from a charged particle in circular motion [10] to arbitrary trajectories, by using a multi-
pole expansion of the Liénard—Wiechert fields. The expression that we have derived is applicable to
arbitrary charged particle motion with periodic orbit. We have shown that when the particle motion
has an axis of symmetry, the field carries a well-defined angular momentum along the symmetry
axis and that this expression for the angular momentum can be extended to the general case.

11/18

610z Jequeldag /(0 Uo Jasn ydleasay Jeajony Joy uoneziuebiQ ueadoing - NYID Aq ZE09YSS/Z0VERD/S/6 1L 0ZAdRIISqe-9[01Ee/da)d/woo dnoolwapede//:sdily woly papeojumoq



PTEP 2019, 083A02 H. Kawaguchi and M. Katoh

(a) (b) :

—
j v T 3
charged particle L charged particle
H"-h‘-——r
X
v

circular motion helical motion

Fig. 2. Circular and helical motion of a charged particle

(a) (b)

-200€00

circular motion helical motion

Fig. 3. Values of o5, for circular and helical motion of a charged particle

A. Appendix A
First, substituting Egs. (22)—(25) into the Lorentz condition clz %—‘f +V -4 = Oinspherical coordinates,

1dp  19024,) 1 d(sinddg) 1 ddy
2ot rr or rsind 90 rsin@ d¢

0, (A1)
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yields the following relation for the multi-pole components:

2 d
mcwh(2) (n “r) Pl (cos )M, + (?hﬁz) (nr) + et <”%r>> Frcos Wi

dr
: 0
) ad (sm O P/ (cos Q)Mn,l,m)
+ ——n (n r)

rsinf c a0

1 oMm?

: ( mlm _ imM;,’l) n? (n9r> PP (cos0) = 0. (A2)
7sin 6 o " c

The electromagnetic fields corresponding to Egs. (22)—(25) then become the following:

—a 04,
Eyt,x) = —2
or ot
Z (lna))z Z A md’)Pm(COSQ)
1=0 m=—1
d 0 @) (P
(drh (ncr> cM,y;,, + inwh, (n;r) nlm(& ®) |, (A3)
—19¢p 04y
Eo(t,x) = —— — —
o(,%) 90 ot
00 [e'9) ! . »
= Z (ina))z Z e’("wt_m¢)h§2) (n—r)
n=—00 1=0 m=—1 ¢
ldle(cose) 0
“\o— g © i T inoP] (cos )M’ (0.9 ), (A4)
-1 9 04
Egt) = —— 2 2%
rsinf d¢ at
- 2
l nw m ( )
=n;oo(ma))12(;m21 et =m@) p; (n r) P/ (cos@)( necMnlm—i-mwM lm(¢))
(A5)
1 9(sinfA 1 04
Bt = —— S0 1 0o
rsinf a6 rsinf d¢
—1 8(s1n9Pm(cos9))
_ (nwt—me) 1 (2)
= Z (ma))lzgm;le’"w m h, (n r)r {sm@ 30 nlm(¢)
1 oMy, .0, 9)
o (—zmMelm(O P) + % PJ'(cos6) ¢, (A6)
1 04 19(rd
By(t,x) = 04, _ 190dy)

rsinf d¢ r Or

- )
= Z (lna))z Z Hneot =mep) {—r siri@h;m (nc ) (—lmM 1@, ®) + —1845 )

=0 m=—I
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+ (%hl@ <n%r> + C%hgb (”%0) nlm(qb)} P (cosb), (A7)
p 1 8(rA9) 104,
oX) = T T e
- Z (zna))z Z e/ (not=me) {( h(z)( . )— %h;z) (nc )) (cosG)Mgzm(G ®)
n=—o0 =0 m=—1
o <P’”(cos oM, (6, ¢))
h (n . r) - . (A8)

Now, we focus our discussion on the far field, where the spherical Bessel function of the second kind
can be approximated by the asymptotic forms

) c e in%r
]’l( ) (I’l ; I"> l+1 an, (A9)
and
d i 1 W
d_rh(Z) (n cr) i ( pa nca) r2> e el (A10)

Substituting Egs. (A9) and (A10) into the Lorentz condition (A2)’ yields

m 0 el r

. m 0 - ¢>
il 8<sm9P (cosO)M,, (O, ¢)> +Pl (cos@)i( nlm(¢)+ ml,m(@) _o,

nw rsin 6 206 rsinf nw 0
(A11)
and the »-component of the far electric field can be approximated as
00 00 / e_,-ngr
d . J+1 ¢ inwt—
E3(t,x) = Z (inw) Z Z i Te’(”“” ")
n=—00 1=0 m=—1

1
x {— (i + i—) ot ieML, 6, (p)}Pl (cos6). (A12)

nor

Substituting the first and third terms of Eq. (A11) into the first and third terms of Eq. (A12), we
obtain the following:

00 00 /
1
EPx) = o= 3 ) Y Y ci { (—Pp(cosOIMY,, + P (cosOIM;,,,(6.0))

n=—00 1=0 m=—1

+9 (sin 0P} cos )M, (0, ) )

sin 600
¢ —in®
P (cos @) (M, () Jere e i
+— < ”aq’: —imM?, () i =), (A13)

14/18

610z Jequeldag /(0 Uo Jasn ydleasay Jeajony Joy uoneziuebiQ ueadoing - NYID Aq ZE09YSS/Z0VERD/S/6 1L 0ZAdRIISqe-9[01Ee/da)d/woo dnoolwapede//:sdily woly papeojumoq



PTEP 2019, 083A02 H. Kawaguchi and M. Katoh

Substituting the first and third terms of Eq. (A11) into the first and second terms of Eq. (A13) once
more,

1q O

Erad(t X) = — Z (mw)z Z Cll-i—le et ol (nwt—me) {_ (i)zr |:( (COSQ)Mrlm(Q ¢)>

1=0 m=—1
L0 (sm 6P} (cos )M, (0, (p))

+sin9 a6
¢
! oM?, (@) )
+@le(cos 9) (T lmMnlm((b)

3 (sm 0P} (cos OIM?, (6, (p))

c 1
new sin 6 36
aM?, () ’
+P;"(cos ) T imM,;  ($) ) (A14)

All other electromagnetic field components can now be calculated straightforwardly.

B. Appendix B
Substituting Eq. (17) into the integrand of Eq. (34) yields

MY @) M?, L (9)+ M, O.0)M],,60.¢)

_ . X * Y *

= (— sm¢MnJ’m +cosopM, ;. ) (— smd)M T cos oM nl’ ,)

+ <cos 0 cospM,; ,* + cos B sin ¢M;l t—sinoM,; >

(cos@ cos pM,, ; ., + cos 0 sin ¢M o —SID OM,il/’m)

= (sin2 OM,; ) "My — sing cos My M’);l/ , — sin ¢ cos ¢My1m*M,’f’l,’m/
+COSZ¢My *Mnl/ ’>+COS 9<COS ¢ nlm>|< nl'm , + sin¢ cos M, nlm*Mr)l)l’ /

. y -2 Y o4

+5in ¢ c0s MY, MYy + sin M, MY, )

; X kpgz ; Vo kpgz
—cosfsinf (COS ¢Mn,l,m Mn,l/,m/ ~+ Sin ¢Mn,l,m Mn,l/,m/

+COS¢) nlm nl’ /+Sln¢ nlmM

nl',m

) I OME M (B1)
Multiplying Eq. (B1) by e/™~")¢ gives

( O @M @)+ MY 0. 9)ME, 6, ¢)) im—n)g

_1 ((2 olm=m¢ _ im+2—m)p _ ei(m—Z—m’)d)) M,

* 10X
4 Mn,l’,m/
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1 (ei(m+27m/)¢ _ ei(mfom/)qﬁ) X ok M:l’ i ( Plm+2=mg _ ei(mfom/)qS) Mo

n,l,m mlm " nlm

*My

n,l’,m’)

+ % {00529 ((2ei(m—m’)¢> 4 imt2-mg ei(m—Z—m’)¢> X kg

n,l,m nl' m’'

+ <2 Gm=mg 4 im+2=n)¢ | ei(m—2—m/)¢) M

n,l,m

!/ /
n,l.m nl',m’ n,l.m nl',m

i (ei(m+2—m/)¢ N ei(m—2—m/)¢) X kg Y i (ei(m+2—m/)¢ _ ei(m—Z—m/)¢) M OEME

! /
nl',m )

— 2cosfsinf ((ef<m+lfm/>¢ n ei(mﬂ—m/)aa) x oy

n,l,m nl',m'

4 (2 olm=m)p _ i(m+2—m)¢ _ ei(m—Z—m/)qb) M

n,l.m

'’ /
n,l,m nl',m

i (ei(m+1—m/)¢ _ ei(m—l—m/yp) M M
+<ei(m+1—m’)¢+ei(m—1—m’)¢> zwpyE /_l-<ei(m+l—m’)¢_ei(m—l—m’)¢> z )

!
nlm nl' m nlm "l m

+ 4 Sil’l2 Qei(m_m/)qu;’l,m* rf,l’,m/ }, (Bz)

and carrying out the integral with respect to ¢ and the summation with respect to m’ in Eq. (34) in
order to use Eq. (B2), we obtain

! 2
1 o
LnalamJ/(g) = § : E[) (M:il,m(¢)*Mrfl’,m’(¢) +M5’l,m*(9, ¢)Mn€,l/,m/(9, ¢)) el(m m)¢d¢
m'=—1

_ l IME K ME _oAgxX kX _AgxX kX
- 4 n,l.m nl'.m n,l.m nl’ ;m+2 nl.m nl’ ,m—2
+ M~ <MY —iME, MY
n,l.m nl’ m+2 n,l,m ', m—2
A gV kA X AqY *rx Y ok gV
+ an,l,m nl',m+2 an,l,m nl' ;m—2 + 2]Mn,l,m Mn,l/,m
AN WA 4 SN Wa 4
+Mn,l,m Mn,l’,m+2 + Mn,l,m Mn,l’,mfZ)

nl',m—2

1 *
2 X X X kX X kX
+ Z {COS 0 (2Mn,l,m nl'.m + Mn,l,m nl' . m+2 + Mn,l,m

— MY, M

n,l,m nl’ m+2

+ iMﬁ,l,m*Mn,l/,md-

A gV kA X AqY *rx Y ok gV
—iM n,l' ,m+2 + an,l,m nl' ,m—2 + 2]Mn,l,m M,

!
n,l.m nl'.m

N WAl AN W
n,l,m nl m+2 Mn,l,m n,l’,mfZ)

—20059sin9( oM 1+M2‘,l,m*MZ

n,l,m nl’ m+ nl’,m—1

—iM>

kA qZ a1V Ve
n,l,m nl’ m+1 + an,l,m

nl' ,m—1
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zZ X z X Afz *q 1V
+ M, n,lm Mn,l/,m—l-l + Mnlm nl'm—1 an,l,m Mn,l/,m-{—

. y
1 + let,l,m*Mn,l/,m—l>
asin® omtz Mz L (B3)

In a similar way, the integrand of Eq. (40) is

/ 2
1
> z_f [ melm«b) nl/ (@) +m' MY, 50, 0MY (0, ¢))
, 27 Jo

(M), (@)* i @ON o
—1 (g—qu’?l/ (P) — lm (0, ¢)la—¢> } ell % de

= an,l,m,l/ ) + Nn,l,m,l/ 0) (B4)

where N, ;,, 7 (0) is defined as

Nn,l,m,l/ 0=
eos2e MY MY — MM M) M MY, MY
4 n,l’,m+2 nl’ ,m—2 —1 nl' ,m+2 -1 n,l,m nl’ ,m—2
Y kg S WAEE Y Ve A VAl AN S Va4
_an Lm nl m+2 T an,l,m nl'm=2 " Mn,l,m Mn,l’,m-‘rZ + Mn,l,m Mn,l/,m—2> — 2cost

: X XAz X kpAqz gy kpgz AqY  kprgz
sm@( n,l,m n,l’,m+1_Mn,l,m n,l’,mfl_an,l,m n,l’,m+1_an,l,m n,l’,mfl)}

1
X ok *q gV
+ Z {(_Mn,l,m n, l’ ,m+2 + M n, l’ m—2 + ZZM n l’ +iM n, l m Mn,l/,m+2
AqX kg Y xpgx AqY kX VA Vo
My g My g = 20M MGy M MG o MG M s
NS WAl O N V4 2 X kg Y kX
+Mn,l,m Mn,l’,m+2 - Mn,l,m Mn,l/,m—2> + cos™ 6 <21Mn,l,m Mn,l’, 21Mnlm n,l’,m)}'

(BS)

From this, we finally obtain the following for the relation between the momentum and angular
momentum as follows:

o0 ’
( dL. ) Jo sin0do Y (1) il = (mLy g (0) + Nygmy (0)) P (cos )Py (cos )
dar I'=0
n,l.m

o0
Josin0do Y- (nw)2ci’ 'Ly 1 1y ()P (cos O) Pl (cos )
I'=0

_m + U im ’ (B6)
nw

where ay, /,, 1s defined by

x 4
Jo© 3= "INy (0) P (cos )P (cos 0) sin Od6
I'=0
A lm = , (B7)

o0
Joo > 'Ly 1y (0) P (cos 0) Pl (cos 0) sin 0dO
=0

which is a constant for each multi-pole.
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