
Prog. Theor. Exp. Phys. 2019, 083A02 (18 pages)
DOI: 10.1093/ptep/ptz059

Orbital angular momentum of Liénard–Wiechert
fields

H. Kawaguchi1,∗ and M. Katoh2

1Department of Electronic and Electrical Engineering, Muroran Institute of Technology,27-1, Mizumoto-cho,
Muroran 050-8585, Japan
2Hiroshima Synchrotron Radiation Center, Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima,
Hiroshima 739-0046, Japan
∗E-mail: kawa@mmm.muroran-it.ac.jp

Received April 15, 2019; Revised May 21, 2019; Accepted May 23, 2019; Published August 11, 2019

... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We derive a general expression for the electromagnetic field radiated by a relativistic charged
particle with arbitrary periodic orbit, in the form of multi-pole expansion of the Liénard–Wiechert
potential, which explicitly includes the charged particle motion. Using this expression, we discuss
the orbital angular momentum radiated from a relativistic charged particle. It has recently been
indicated that the radiation emitted by circularly orbiting charged particles carries well-defined
orbital angular momentum. We show that, even for the general cases of arbitrary periodic orbits,
the radiation field possesses well-defined orbital angular momentum.
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1. Introduction

Electromagnetic waves carry not only energy and linear momentum but also angular momentum.
In particular, it is well known that electromagnetic waves carry spin angular momentum, which is
associated with circular polarization. However, it is less well known that they also carry orbital angular
momentum. In 1992, Allen et al. showed that an electromagnetic wave in Laguerre–Gaussian modes
carries well-defined orbital angular momentum, distinct from spin angular momentum [1]. Such
light waves have spiral wavefronts and are called optical vortices, photons carrying orbital angular
momentum, or twisted photons. Since this pioneering work, optical vortices have been investigated
not only from the scientific but also the technological viewpoint [2–4]. Some methods for artificially
modifying the wavefront structure from a plane to a spiral by using spiral phase plates or numerically
designed holograms have been established [2], and various applications of their unique features have
been discussed. For example, optical vortices can be used to manipulate micrometer-sized objects
by using their torque [5], and can be made useful for future high-capacity communications owing to
the orthogonality between their different spiral modes [4]. Another attractive application of optical
vortices may be for astronomical observations. It has been indicated that much more information can
be obtained from electromagnetic wave signals from the universe by considering their spiral modes
rather than conventional plane-wave spectrum channels [4,6–8]. However, there have only been a
few discussions on the generation of optical vortices in nature [6,9].

It has recently been indicated that the radiation emitted by circularly orbiting charged particles
exhibits spiral wavefronts and carries well-defined orbital angular momentum [10]. This process
forms the basis for various important radiation processes in plasma physics and astrophysics, such
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as cyclotron radiation, synchrotron radiation, and Compton scattering of circularly polarized light.
Therefore, this radiation has been well investigated in the literature [11,12]; however, its angular
momentum has not been discussed explicitly until recently [13–15].

In this paper, we discuss the angular momentum of the radiation field emitted by a relativistic
charged particle in more general cases, using a multi-pole expansion of the Liénard–Wiechert fields
[16,17]. The multi-pole expansion of electromagnetic fields has been discussed in textbooks in the
context of angular momentum [18–21]. However, in these textbooks, the authors consider electro-
magnetic radiation fields that are solutions of the homogeneous Helmholtz equation. This means that
they examine electromagnetic waves propagating in free space without considering their source. In
contrast, here, we treat the radiation field by explicitly including the motion of the charged particle.

2. Multipole expansion of Liénard–Wiechert fields

In this section, we briefly review the multi-pole expansion of Liénard–Wiechert fields [16,17]. The
Liénard–Wiechert potentials, which are general expressions for the electromagnetic field produced
by a relativistic charged particle, are given as follows:

ϕ(t, x) = q

4πε0

1

R(τ ) − R(τ )· v(τ )
c

, (1)

A(t, x) = q

4πε0c2

v(τ )

R(τ ) − R(τ )· v(τ )
c

, (2)

where q is the electric charge of the particle, ε0 is the dielectric constant, c is the velocity of light
in vacuum, R(τ ) = x − s(τ ), R(τ ) = |R(τ )| , s(t) is the charged particle trajectory, and v(t) = ṡ(t)
is the particle velocity. The right-hand sides of Eqs. (1) and (2) should be evaluated at the retarded
time τ , which is defined by the following recursive causality relation:

τ = t − |x − s(τ )|
c

. (3)

The Fourier expansion of the potentials are expressed as follows:

ϕ(t, x) = ωq

8π2ε0c

∞∑
n=−∞

∫ b

a

exp
{
in
(
ωt − σ − ω

c |x − s(σ )|)}
|x − s(σ )|

c

ω
dσ , (4)

A(t, x) = ωq

8π2ε0c2

∞∑
n=−∞

∫ b

a

exp
{
in
(
ωt − σ − ω

c |x − s(σ )|)}
|x − s(σ )| ds(σ ), (5)

where ω is the angular frequency of the original electron motion and σ = ωt is the phase of the
periodic motion. Then, by employing the well-known formula [20]

e−ik|x−x′|
|x − x′| = −ik

∞∑
l=0

l∑
m=−l

(2l + 1)(−1)mh(2)
l (kr)jl(kr′)Pm

l (cos θ)P−m
l (cos θ ′)e−im(ϕ−ϕ′), (6)
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and replacing x′ by s(σ ), Eqs. (4) and (5) can be rewritten as

ϕ(t, x) = ωq

8π2ε0c

∞∑
n=−∞

(−in)

∫ 2π

0
dσein(ωt−σ)

∞∑
l=0

l∑
m=−l

(2l + 1)(−1)m

× h(2)
l (n

ω

c
r)jl(n

ω

c
r(σ ))Pm

l (cos θ)P−m
l (cos θ(σ ))e−im(φ−φ(σ)), (7)

A(t, x) = ωq

8π2ε0c2

∞∑
n=−∞

(−in)

∫ 2π

0
dσ

v(σ )

c
ein(ωt−σ)

∞∑
l=0

l∑
m=−l

(2l + 1)(−1)m

× h(2)
l (n

ω

c
r)jl(n

ω

c
r(σ ))Pm

l (cos θ)P−m
l (cos θ(σ ))e−im(φ−φ(σ)), (8)

where r, θ , and ϕ are the spherical coordinates, and h(2)
l (x), jl(x), and Pm

l (x) are the spherical Hankel
function of the second type, the spherical Bessel function, and the associated Legendre function,
respectively. If we introduce the spherical harmonic functions [20]

Yl,m(θ , φ) ≡
√

2l + 1

4π

(l − m)!
(l + m)!P

m
l (cos θ)eimφ , (9)

Yl,−m(θ , φ) ≡ (−1)m

√
2l + 1

4π

(l − m)!
(l + m)!P

m
l (cos θ)e−imφ , (10)

Eqs. (7) and (8) can be expressed as

ϕ(t, x) =
∞∑

n=−∞
(−inω)einωt

∞∑
l=0

h(2)
l (n

ω

c
r)

l∑
m=−l

cM̃ 0
n,l,mYl,−m(θ , φ), (11)

A(t, x) =
∞∑

n=−∞
(−inω)einωt

∞∑
l=0

h(2)
l (n

ω

c
r)

l∑
m=−l

M̃ n,l,mYl,−m(θ , φ), (12)

where

M̃ 0
n,l,m = q

8π2ε0c2

∫ 2π

0

√
4π(2l + 1)

(l + m)!
(l − m)! jl(n

ω

c
r(σ ))P−m

l (cos θ(σ ))e−inσ eimϕ(σ)dσ , (13)

M̃ n,l,m = q

8π2ε0c2

∫ 2π

0

√
4π(2l + 1)

(l + m)!
(l − m)!

v(σ )

c
jl(n

ω

c
r(σ ))P−m

l (cos θ(σ ))e−inσ eimφ(σ)dσ .

(14)

are definite integrals with respect to σ = ωt over the period of the particle motion; these have

constant values in Cartesian coordinates
(

x̂, ŷ, ẑ
)

.
In accordance with convention [19,20], we interpret Eqs. (11) and (12) as the (l − m) multi-pole

expansions of the Liénard–Wiechert potential fields and Eqs. (13) and (14) as their components.

3. Linear and angular momenta of Liénard–Wiechert multipole fields

In this section, we evaluate the linear and angular momenta of the Liénard–Wiechert fields. For this
purpose, it is convenient to express the multi-pole expansion of the Liénard–Wiechert potentials in
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spherical coordinates
(

r̂, θ̂ , φ̂

)
[10]. While Eq. (12) is already written in spherical coordinates,

Eq. (14) needs to be transformed from Cartesian to spherical coordinates, as follows:

M n,l,m = (−1)m
√

2l+1
4π

(l−m)!
(l+m)!M̃ n,l,m = (−1)m

√
2l+1
4π

(l−m)!
(l+m)!

(
M̃ x

n,l,mx̂ + M̃ y
n,l,mŷ + M̃ z

n,l,mẑ
)

≡ M x
n,l,mx̂ + M y

n,l,mŷ + M z
n,l,mẑ≡M r

n,l,m(θ , φ)r̂ + M θ
n,l,m(θ , φ)θ̂ + Mφ

n,l,m(θ , φ)φ̂
,

(15)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
M x

n,l,m = q
8π2ε0c2 (2l + 1)(−1)m

∫ 2π

0
vx(σ )

c jl
(

nω
c r(σ )

)
P−m

l (cos θ(σ ))e−inσ eimφ(σ)dσ

M y
n,l,m = q

8π2ε0c2 (2l + 1)(−1)m
∫ 2π

0
vy(σ )

c jl
(

nω
c r(σ )

)
P−m

l (cos θ(σ ))e−inσ eimφ(σ)dσ

M z
n,l,m = q

8π2ε0c2 (2l + 1)(−1)m
∫ 2π

0
vz(σ )

c jl
(

nω
c r(σ )

)
P−m

l (cos θ(σ ))e−inσ eimφ(σ)dσ

, (16)

⎧⎪⎨⎪⎩
M r

n,l,m(θ , φ) = sin θ cos φM x
n,l,m + sin θ sin φM y

n,l,m + cos θM z
n,l,m

M θ
n,l,m(θ , φ) = cos θ cos φM x

n,l,m + cos θ sin φM y
n,l,m − sin θM z

n,l,m

Mφ

n,l,m(φ) = − sin φM x
n,l,m + cos φM y

n,l,m

. (17)

The vector M n,l,m in Eq. (12) has a constant value in Cartesian coordinates, but depends on θ , φ in
spherical coordinates. From Eq. (17), we find the following relations between the components of
M n,l,m:

∂M θ
n,l,m(θ , φ)

∂θ
= −M r

n,l,m(θ , φ), (18)

∂2Mφ

n,l,m(φ)

∂φ2 = −Mφ

n,l,m(φ), (19)

∂M θ
n,l,m(θ , φ)

∂φ
= cos θMφ

n,l,m(φ), (20)

∂M r
n,l,m(θ , φ)

∂φ
= sin θMφ

n,l,m(φ). (21)

In spherical coordinates, the multi-pole expansion of the Liénard–Wiechert potentials (11) and (12)
is

ϕ(t, x) =
∞∑

n=−∞
(−inω)einωt

∞∑
l=0

l∑
m=−l

cM 0
n,l,mh(2)

l

(
n
ω

c
r
)

Pm
l (cos θ)e−imφ , (22)

Ar(t, x) =
∞∑

n=−∞
(−inω)einωt

∞∑
l=0

l∑
m=−l

M r
n,l,m(θ , ϕ)h(2)

l

(
n
ω

c
r
)

Pm
l (cos θ)e−imϕ , (23)

Aθ (t, x) =
∞∑

n=−∞
(−inω)einωt

∞∑
l=0

l∑
m=−l

M θ
n,l,m(θ , ϕ)h(2)

l

(
n
ω

c
r
)

Pm
l (cos θ)e−imϕ , (24)

Aϕ(t, x) =
∞∑

n=−∞
(−inω)einωt

∞∑
l=0

l∑
m=−l

Mφ

n,l,m(φ)h(2)
l

(
n
ω

c
r
)

Pm
l (cos θ)e−imφ . (25)
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Accordingly, the electromagnetic field components in the far field corresponding to Eqs. (22)–(25)
can be expressed approximately as follows (Appendix A):

Erad
r (t, x)

= 1

2π

∞∑
n=−∞

(inω)

∞∑
l=0

l∑
m=−l

cil+1 e−in ω
c r

r2 ei(nωt−mφ)

{
−
( c

nω

)2 i

r

[(
Pm

l (cos θ)M r
n,l,m(θ , φ)

)

+ 1

sin θ

∂
(

sin θPm
l (cos θ)M θ

n,l,m(θ , φ)
)

∂θ
+ 1

sin θ
Pm

l (cos θ)

(
∂Mφ

n,l,m(φ)

∂φ
− imMφ

n,l,m(φ)

)⎤⎦
+ c

nω

1

sin θ

⎡⎣∂
(

sin θPm
l (cos θ)M θ

n,l,m(θ , φ)
)

∂θ
+ Pm

l (cos θ)

(
∂Mφ

n,l,m(φ)

∂φ
− imMφ

n,l,m(φ)

)⎤⎦⎫⎬⎭,

(26)

Erad
θ (t, x) =

∞∑
n=−∞

(inω)

∞∑
l=0

l∑
m=−l

cil+1 e−in ω
c r

r
ei(nωt−mφ)

×
(

c

nω

1

r

dPm
l (cos θ)

dθ
M 0

n,l,m + iPm
l (cos θ)M θ

n,l,m(θ , φ)

)
, (27)

Erad
φ (t, x) =

∞∑
n=−∞

(inω)

∞∑
l=0

l∑
m=−l

cil+1 e−in ω
c r

r
ei(nωt−mφ)

(
c

nω

−im

r sin θ
M 0

n,l,m + iMφ

n,l,m(φ)

)
Pm

l (cos θ),

(28)

Brad
r (t, x) =

∞∑
n=−∞

(inω)

∞∑
l=0

l∑
m=−l

il+1 e−in ω
c r

r2 ei(nωt−mφ)

× c

nω

1

sin θ

{
−∂

(
sin θPm

l (cos θ)
)

∂θ
Mφ

n,l,m(φ)

+
(

∂M θ
n,l,m(θ , φ)

∂φ
− imM θ

n,l,m(θ , φ)

)
Pm

l (cos θ)

}
, (29)

Brad
θ (t, x) =

∞∑
n=−∞

(inω)

∞∑
l=0

l∑
m=−l

il+1 e−in ω
c r

r
ei(nωt−mφ)

×
{

−1

r sin θ

c

nω

(
∂M r

n,l,m(θ , φ)

∂φ
− imM r

n,l,m(θ , φ)

)
− iMφ

n,l,m(φ)

}
Pm

l (cos θ), (30)

Brad
φ (t, x) =

∞∑
n=−∞

(inω)

∞∑
l=0

l∑
m=−l

il+1 e−in ω
c r

r
ei(nωt−mφ)

×
⎧⎨⎩iPm

l (cos θ)M θ
n,l,m(θ , φ) + 1

r

c

nω

d
(

Pm
l (cos θ)M r

n,l,m(θ , φ)
)

dθ

⎫⎬⎭. (31)
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Now, we shall calculate the radiation power emitted by the ultra-relativistic charged particle:

dU

dt
= 1

T

∫ T

0
dt
∫

S

(
Erad∗ × H rad

)
· ndS = 1

T

∫ T

0
dt
∫

S

(
Erad∗ × 1

μ0
Brad

)
· ndS, (32)

where T = 2π
ω

is the period of the particle motion, n is a unit vector normal to the surface S, and
the surface integral dS = r2 sin θdθdφ is calculated for a spherical surface with a sufficiently large
radius compared to the charged particle motion region. Considering that only the terms of order 1

r in
Eqs. (26)–(31) contribute to Eq. (32), we only need to consider the second terms of Eqs. (27), (28),
and (30) and the first term of Eq. (31). Substituting these terms into Eq. (32), we obtain

dU

dt
= 1

μ0

1

T

∫ T

0
dt
∫ 2π

0
dφ

∫ π

0
r2 sin θdθ

(
Erad∗

θ Brad
φ − Erad∗

ϕ Brad
θ

)
= c

μ0

1

T

∫ T

0
dt
∫ 2π

0
dφ

∫ π

0
r2 sin θdθ

×
⎧⎨⎩
⎛⎝ ∑

n=−∞
(−inω)

∞∑
l=0

l∑
m=−l

(−i)M θ
n,l,m(θ , �)∗Pm

l (cos θ)(il+1)∗ ein ω
c r

r
e−i(nωt−mφ)

⎞⎠
×
⎛⎝ ∑

n′=−∞
(−in′ω)

∞∑
l′=0

l′∑
m′=−l′

iM θ
n′,l′,m′(θ , �)Pm′

l′ (cos θ)il
′+1 e−in′ ω

c r

r
ei(n′ωt−m′φ)

⎞⎠
−
⎛⎝ ∑

n=−∞
(−inω)

∞∑
l=0

l∑
m=−l

(−i)M θ
n,l,m(�)∗Pm

l (cos θ)(il+1)∗ ein ω
c r

r
e−i(nωt−mφ)

⎞⎠
×
⎛⎝ ∑

n′=−∞
(−in′ω)

∞∑
l′=0

l′∑
m′=−l′

(−i)M θ
n′,l′,m′(�)Pm′

l′ (cos θ)il
′+1 e−in′ ω

c r

r
ei(n′ωt−m′φ)

⎞⎠ (33)

and carrying out the integral with respect to t over the period T , we arrive at

dU

dt
= c

μ0

∫ 2π

0
dϕ

∫ π

0
sin θdθ

∞∑
n=−∞

(nω)2
∞∑

l=0

l∑
m=−l

∞∑
l′=0

l′∑
m′=−l′

× il′−l
(

M θ
n,l,m(θ , φ)∗M θ

n,l′,m′(θ , φ) + Mφ

n,l,m(φ)∗Mφ

n,l′,m′(φ)
)

Pm
l (cos θ)Pm′

l′ (cos θ)ei(m−m′)φ

(34)

Note that the orthogonal formulas relating to spherical harmonics,∫ π

0
Pm

l (cos θ)Pm
l′ (cos θ) sin θdθ = 2

2l + 1

(l + |m|)!
(l − |m|)!δl,l′ , (35)∫ 2π

0
e−i(m−m′)φdφ = 2πδm,m′ , (36)

cannot be used for Eq. (34) since M θ
n,l,m(θ , φ), Mφ

n,l,m(φ) depend on θ , φ. In Eqs. (35) and (36), δn,m

denotes the Kronecker delta.
Next we shall calculate the angular momentum of the radiated fields. We consider its projection

onto an arbitrary axis. As a matter of convenience, we shall call it the z-axis. The z-component of
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the radiated angular momentum,

dLz

dt
= 1

T

∫ T

0
cdt

∫
S

{
r × 1

c2

(
Erad∗ × H rad

)}
· ẑdS

= 1

μ0

1

cT

∫ T

0
cdt

∫
S

{(
r · Brad

)
Erad∗ · ẑ −

(
r · Erad∗)

Brad · ẑ
}

dS, (37)

can be expressed in spherical coordinate as follows:

dLz

dt
= 1

μ0cT

∫ T

0
dt
∫

S

{
rBrad

r

(
cos θErad∗

r − sin θErad∗
θ

)
− rErad∗

r

(
cos θBrad

r − sin θBrad
θ

)}
dS

= 1

μ0cT

∫ T

0
dt
∫ 2π

0
dφ

∫ π

0
r sin θ

(
Erad∗

r Brad
θ − Erad∗

θ Brad
r

)
r2 sin θdθ . (38)

This means that we only need to consider terms of order 1
r3 in the integrands of Eq. (38). Since the

r-components of the electric (26) and magnetic (29) fields are at least of order 1
r2 , we only need to

consider the second terms of Eqs. (27) and (30). Similarly to Eq. (33), substituting these terms into
Eq. (38) and carrying out the integral with respect to t over the period T , we obtain the following:

dLz

dt
= 1

μ0cT

∫ T

0
dt
∫ 2π

0
dφ

∫ π

0
r3 sin2 θ

(
Erad∗

r Brad
θ − Erad∗

θ Brad
r

)
dθ

= 1

μ0

∫ 2π

0
dφ

∫ π

0
dθ

∞∑
n=−∞

(nω)2
∞∑

l=0

l∑
m=−l

∞∑
l′=0

l′∑
m′=−l′

c

nω
il

′−lei(m−m′)φ sin θ(−i)

×
⎡⎣⎧⎨⎩∂

(
sin θPm

l (cos θ)M θ
n,l,m(θ , φ)∗

)
∂θ

+ iPm
l (cos θ)

(
mMφ

n,l,m(φ)∗ − i
∂Mφ

n,m,l(φ)∗

∂φ

)}
Mφ

n,l′,m′(φ)Pm′
l′ (cos θ)

+ Pm
l (cos θ)M θ

n,l,m(θ , φ)∗
⎧⎨⎩∂

(
sin θPm′

l′ (cos θ)
)

∂θ
Mφ

n,l′,m′(φ)

+ i

(
m′M θ

n,l′,m′(θ , φ) + i
∂M θ

n,l′,m′(θ , φ)

∂φ

)
Pm′

l′ (cos θ)

}]
. (39)

The first, second, and third terms of Eq. (26) have been neglected in Eq. (39) due to the order 1
r3

requirement. The summations of the first and third terms of Eq. (39) disappear in the integral with
respect to θ and we finally obtain the following equation:

dLz

dt
= α2

μ0

∫ 2π

0
dφ

∫ π

0
sin θdθ

∞∑
n=−∞

(nω)2
∞∑

l=0

l∑
m=−l

∞∑
l′=0

l′∑
m′=−l′

c

nω

× il
′−l
{

mMφ

n,l,m(φ)∗Mφ

n,l′,m′(φ) + m′M θ
n,l,m(θ , φ)∗M θ

n,l′,m′(θ , φ) (40)

−i

(
∂Mφ

n,l,m(φ)∗

∂φ
Mφ

n,l′,m′(φ) − M θ
n,l,m(θ , φ)∗

∂M θ
n,l′,m′(θ , φ)

∂φ

)}
Pm

l (cos θ)Pm′
l′ (cos θ)ei(m−m′)φ
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If we assume, e.g., that the charged particle motion is axis-symmetric with respect to the z-axis on
average over the period of the particle motion, meaning that M r

n,l,m(θ , φ), M θ
n,l,m(θ , φ), Mφ

n,l,m(φ) are
independent of φ, then

∂M r
n,l′,m′(θ , ϕ)

∂φ
= 0

∂M θ
n,l′,m′(θ , ϕ)

∂φ
= 0,

∂Mϕ

n,l,m(ϕ)

∂ϕ
= 0 (41)

the third and fourth terms of Eq. (40) become zero, and we can carry out the integral with respect to
φ by simply using the orthogonal relation (36), yielding

dLz
dt = 1

μ0
2π
∫ π

0 sin θdθ
∞∑

n=−∞
(nω)2

∞∑
l=0

l∑
m=−l

∞∑
l′=0

c
nω

m

×il
′−l
(

Mφ

n,l,m
∗Mφ

n,l′,m + M θ
n,l,m(θ)∗M θ

n,l′,m(θ)
)

Pm
l (cos θ)Pm

l′ (cos θ)

. (42)

In addition, Eq. (34) becomes

dU
dt = 1

μ0
2π
∫ π

0 sin θdθ
∞∑

n=−∞
(nω)2

∞∑
l=0

l∑
m=−l

∞∑
l′=0

c

×il
′−l
(

Mφ

n,l,m
∗Mφ

n,l′,m + M θ
n,l,m(θ)∗M θ

n,l′,m(θ)
)

Pm
l (cos θ)Pm

l′ (cos θ)

. (43)

From Eqs. (42) and (43), we obtain

(
dLz
dt

dU
dt

)
n,l,m

=

∫ π

0 sin θdθ
∞∑

l′=0
(nω)2 cm

nω
il

′−l(
Mφ

n,l,m
∗Mφ

n,l′,m + M θ
n,l,m(θ)∗M θ

n,l′,m(θ)
)

Pm
l (cos θ)Pm

l′ (cos θ)∫ π

0 sin θdθ
∞∑

l′=0
(nω)2cil′−l

(
Mφ

n,l,m
∗Mφ

n,l′,m

+M θ
n,l,m(θ)∗M θ

n,l′,m(θ)
)

Pm
l (cos θ)Pm

l′ (cos θ)

= m

nω
= m�

�(nω)
(44)

for the (n-l-m) multi-pole components. We can infer from Eq. (44) that the radiation fields emitted by
the ultra-relativistic charged particle carry angular momenta of m� per �(nω) photons for each nth
time harmonic and (l-m)th multi-pole if the charged particle motion is axis-symmetric with respect
to the z-axis on average over the period of the particle motion, as in Eq. (41).

Another interesting case is when the charged particle motion has the following rotational symmetry:

M r
n,l,m(θ , φ) = M r

n,l,m(θ)e−iαφ

M θ
n,l,m(θ , φ) = M θ

n,l,m(θ)e−iαφ .

Mφ

n,l,m(φ) = Mφ

n,l,me−iαφ (45)
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In this case, the integrand of Eq. (40) becomes(
mMφ

n,l,m(φ)∗Mφ

n,l′,m′(φ) + m′M θ
n,l,m(θ , φ)∗M θ

n,l′,m′(θ , φ)
)

− i

(
∂Mφ

n,l,m(φ)∗

∂φ
Mφ

n,l′,m′(φ) − M θ
n,l,m(θ , φ)∗

∂M θ
n,l′,m′(θ , φ)

∂φ

)
.

= (m + α)Mφ

n,l,m
∗Mφ

n,l′,m′ + (m′ + α)M θ
n,l,m(θ)∗M θ

n,l′,m′(θ) (46)

In a similar way, using the orthogonal relation (36), the relation (44) can be extended to(
dLz
dt

dU
dt

)
n,l,m

= m + α

nω
= (m + α)�

�(nω)
(47)

for the (n-l-m) multi-pole components.
For the general case, after tedious calculations (Appendix B), the relation between the momentum

and angular momentum of the multi-pole components of the radiation fields can be expressed in the
following form, similar to Eq. (47): (

dLz
dt

dU
dt

)
n,l,m

= m + αn,l,m

nω
, (48)

where αn,l,m is a constant value, which must be determined for each (n-l-m) multi-pole component
(see Eq. (B7)).

The relation (44) between the momentum and angular momentum of the multi-pole components
of the radiation fields emitted by ultra-relativistic charged particles is in agreement with discussions
of general multi-pole fields in Refs. [18–21]. These discussions assume that the radiation fields
are homogeneous and governed by the homogeneous Helmholtz equation, corresponding to the
case where M r

n,l,m(θ , φ), M θ
n,l,m(θ , φ), Mφ

n,l,m(φ) in Eq. (17) are either unity or constant, and the
relation (44) was obtained. The above discussion tells us that Eq. (44) is extended to Eq. (48) for the
Liénard–Wiechert fields.

4. Synchrotron radiation

As a typical example of radiating charged particle motion, we apply here the above discussion
to circular motion at constant velocity, as shown in Fig. 1. The charged particle’s motion can be
described as

s(t) =a cos ωtx̂ + a sin ωtŷ, (49)

v(t) = ds(t)
dt

= −aω sin ωtx̂ + aω cos ωtŷ = −v sin ωtx̂ + v cos ωtŷ, (50)

where v = aω is the velocity of the particle. This motion can be expressed in spherical coordinates
as

s(t) =
(

r(t), θ(t), φ(t)
)

=
(

a, π
2 , ωt

)
, (51)

v(t) =
(
−v sin θ sin(ωt − ϕ), −v cos θ sin(ωt − ϕ), v cos(ωt − ϕ)

)
. (52)
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Fig. 1. Circular motion of a charged particle

Substituting Eq. (51) and (52) into Eqs. (15) and (16) yields

M 0
n,l,m = q

8π2ε0c2 (2l + 1)(−1)m
∫ 2π

0
jl
(

n
aω

c

)
P−m

l (0)e−inσ eimσ dσ

= q

4πε0c2 (2l + 1)(−1)mjl
(

n
v

c

)
P−m

l (0)δn,m, (53)

M x
n,l,m = q

8π2ε0c2 (2l + 1)(−1)m
∫ 2π

0

−v

c
sin(σ )jl

(
n
ω

c
a
)

P−m
l (0)e−inσ eimσ dσ

= q

4πε0c2 (2l + 1)(−1)m i

2

v

c
jl
(

n
v

c

)
P−m

l (0)
(
δn,m+1 − δn,m−1

)
, (54)

M y
n,l,m = q

8π2ε0c2 (2l + 1)(−1)m
∫ 2π

0

v

c
cos(σ )jl

(
n
ω

c
a
)

P−m
l (0)e−inσ eimσ dσ

= q

4πε0c2 (2l + 1)(−1)m 1

2

v

c
jl
(

n
v

c

)
P−m

l (0)
(
δn,m+1 + δn,m−1

)
, (55)

M z
n,l,m = 0. (56)

In this case, only two harmonics n = m ± 1 exist in the summation
∞∑

n=−∞
of Eq. (12) for each l-m

multi-pole due to the Kronecker delta:

M z
n=m+1,l,m =

(
iM+

l,m M+
l,m 0

)
, (57)

M z
n=m−1,l,m =

(
−iM−

l,m M−
l,m 0

)
, (58)
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where M±
l,m = q

4πε0c2 (2l + 1)(−1)m 1
2

v
c jl
(
(m ± 1) v

c

)
P−m

l (0). For Eqs. (57) and (58), Eq. (17)
becomes

⎧⎪⎪⎨⎪⎪⎩
M r

n=m+1,l,m(θ , φ) = sin θ
(
cos φM x

n=m+1,l,m + sin ϕM y
n=m+1,l,m

)
+ cos θM z

n,l,m = i sin θM+
l,me−iφ

M θ
n=m+1,l,m(θ , φ) = cos θ

(
cos φM x

n=m+1,l,m + sin φM y
n=m+1,l,m

)
− sin θM z

n,l,m = i cos θM+
l,me−iφ

Mφ

n=m+1,l,m(φ) = − sin φM x
n=m+1,l,m + cos φM y

n=m+1,l,m = M+
l,me−iφ

,

(59)⎧⎪⎪⎨⎪⎪⎩
M r

n=m−1,l,m(θ , φ) = sin θ
(
cos φM x

n=m−1,l,m + sin φM y
n=m−1,l,m

)
+ cos θM z

n,l,m = −i sin θM−
l,meiφ

M θ
n=m−1,l,m(θ , φ) = cos θ

(
cos φM x

n=m−1,l,m + sin φM y
n=m−1,l,m

)
− sin θM z

n,l,m = −i cos θM−
l,meiφ

Mφ

n=m−1,l,m(φ) = − sin φM x
n=m−1,l,m + cos φM y

n=m−1,l,m = M−
l,meiφ

.

(60)

Applying Eqs. (45), (46), and (47) to Eqs. (59) and (60), we can obtain

(
dLz
dt

dU
dt

)
n=m+1,l,m

= m + 1

nω
= m + 1

(m + 1)ω
= 1

ω
, (61)

(
dLz
dt

dU
dt

)
n=m−1,l,m

= m − 1

nω
= m − 1

(m − 1)ω
= 1

ω
, (62)

which agree with the result in Ref. [10].

5. Numerical examples

Finally, numerically calculated examples of Eq. (48) are given. Two numerical examples, circular
and helical motion of the charged particle (see Fig. 2), are considered. The values of αn=20,l,m for
the circular motion (Fig. 2(a), radius a = 1.0 × 10−4 m, charged particle energy E = 1.2 GeV,
harmonics n = 20) are depicted in Fig. 3(a). We can make sure that the results of Eqs. (61) and
(62), i.e., αn,l,m, have non-zero values of ±1 only for m = n∓1. In Fig. 3(b), values of αn=20,l,m for
the helical motion (Fig. 2(b), radius a = 1.0 × 10−4 m, pitch length L = 3.14 × 10−4 m, charged
particle energy E = 1.2 GeV, harmonics n = 20) are depicted. There are no more simple relations
as in the circular motion (53)–(56), and αn=20,l,m has non-zero values for various sets of l and m.
Most of αn=20,l,m has an approximate value of −1, and some much bigger values appear depending
on the original charged particle motion.

6. Conclusions

In this paper, we have generalized the discussion on the orbital angular momentum carried by the
radiation field from a charged particle in circular motion [10] to arbitrary trajectories, by using a multi-
pole expansion of the Liénard–Wiechert fields. The expression that we have derived is applicable to
arbitrary charged particle motion with periodic orbit. We have shown that when the particle motion
has an axis of symmetry, the field carries a well-defined angular momentum along the symmetry
axis and that this expression for the angular momentum can be extended to the general case.
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circular motion  helical motion

charged particle charged particleL

x

y

z

x

y

z

a v a
v

(a) (b)

Fig. 2. Circular and helical motion of a charged particle

Fig. 3. Values of αn=20,l,m for circular and helical motion of a charged particle

A. Appendix A

First, substituting Eqs. (22)–(25) into the Lorentz condition 1
c2

∂ϕ
∂t +∇ ·A = 0 in spherical coordinates,

1

c2

∂ϕ

∂t
+ 1

r2

∂(r2Ar)

∂r
+ 1

r sin θ

∂(sin θAθ )

∂θ
+ 1

r sin θ

∂Aφ

∂φ
= 0, (A1)
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yields the following relation for the multi-pole components:

inω

c
h(2)

l

(
n
ω

c
r
)

Pm
l (cos θ)M 0

n,l,m +
(

2

r
h(2)

l

(
n
ω

c
r
)

+ d

dr
h(2)

l

(
n
ω

c
r
))

Pm
l (cos θ)M r

n,l,m

+ 1

r sin θ
h(2)

l

(
n
ω

c
r
) ∂

(
sin θPm

l (cos θ)M θ
n,l,m

)
∂θ

+ 1

r sin θ

(
∂Mϕ

n,l,m

∂ϕ
− imM nl

φm

)
h(2)

l

(
n
ω

c
r
)

Pm
l (cos θ) = 0. (A2)

The electromagnetic fields corresponding to Eqs. (22)–(25) then become the following:

Er(t, x) = −∂ϕ

∂r
− ∂Ar

∂t

=
∞∑

n=−∞
(inω)

∞∑
l=0

l∑
m=−l

ei(nωt−mφ)Pm
l (cos θ)

×
(

d

dr
h(2)

l

(
n
ω

c
r
)

cM 0
n,l,m + inωh(2)

l

(
n
ω

c
r
)

M r
n,l,m(θ , ϕ)

)
, (A3)

Eθ (t, x) = −1

r

∂ϕ

∂θ
− ∂Aθ

∂t

=
∞∑

n=−∞
(inω)

∞∑
l=0

l∑
m=−l

ei(nωt−mφ)h(2)
l

(
n
ω

c
r
)

×
(

1

r

dPm
l (cos θ)

dθ
cM 0

n,l,m + inωPm
l (cos θ)M θ

n,l,m(θ , ϕ)

)
, (A4)

Eϕ(t, x) = −1

r sin θ

∂ϕ

∂φ
− ∂Aϕ

∂t

=
∞∑

n=−∞
(inω)

∞∑
l=0

l∑
m=−l

ei(nωt−mφ)h(2)
l

(
n
ω

c
r
)

Pm
l (cos θ)

( −im

r sin θ
cM 0

n,l,m + inωMφ

n,l,m(φ)

)
,

(A5)

Br(t, x) = 1

r sin θ

∂(sin θAφ)

∂θ
− 1

r sin θ

∂Aθ

∂φ

=
∞∑

n=−∞
(inω)

∞∑
l=0

l∑
m=−l

ei(nωt−mφ)h(2)
l

(
n
ω

c
r
) 1

r

{
−1

sin θ

∂
(
sin θPm

l (cos θ)
)

∂θ
Mφ

n,l,m(φ)

+ 1

sin θ

(
−imM θ

n,l,m(θ , φ) + ∂M θ
n,l,m(θ , φ)

∂φ

)
Pm

l (cos θ)

}
, (A6)

Bθ (t, x) = 1

r sin θ

∂Ar

∂φ
− 1

r

∂(rAφ)

∂r

=
∞∑

n=−∞
(inω)

∞∑
l=0

l∑
m=−l

ei(nωt−mφ)

{
−1

r sin θ
h(2)

l

(
n
ω

c
r
)(

−imM r
n,l,m(θ , φ) + ∂M r

n,l,m(θ , φ)

∂φ

)
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+
(

1

r
h(2)

l

(
n
ω

c
r
)

+ d

dr
h(2)

l

(
n
ω

c
r
))

Mφ

n,l,m(φ)

}
Pm

l (cos θ), (A7)

Bϕ(t, x) = 1

r

∂(rAθ )

∂r
− 1

r

∂Ar

∂θ

=
∞∑

n=−∞
(inω)

∞∑
l=0

l∑
m=−l

ei(nωt−mφ)

{(−1

r
h(2)

l

(
n
ω

c
r
)

− d

dr
h(2)

l

(
n
ω

c
r
))

Pm
l (cos θ)M θ

n,l,m(θ , φ)

+1

r
h(2)

l

(
n
ω

c
r
) d

(
Pm

l (cos θ)M r
n,l,m(θ , φ)

)
dθ

⎫⎬⎭. (A8)

Now, we focus our discussion on the far field, where the spherical Bessel function of the second kind
can be approximated by the asymptotic forms

h(2)
l

(
n
ω

c
r
)∼= il+1 c

nω

e−in ω
c r

r
, (A9)

and

d

dr
h(2)

l

(
n
ω

c
r
)∼= il+1

(−i

r
− c

nω

1

r2

)
e−in ω

c r . (A10)

Substituting Eqs. (A9) and (A10) into the Lorentz condition (A2)’ yields

−Pm
l (cos θ)M 0

n,l,m +
(

i
c

nω

1

r
+ 1

)
Pm

l (cos θ)M r
n,l,m(θ , φ)

+ c

nω

i

r

1

sin θ

∂
(

sin θPm
l (cos θ)M θ

n,l,m(θ , φ)
)

∂θ
+ Pm

l (cos θ)

r sin θ

c

nω

(
mMφ

n,l,m(φ) + i
∂Mφ

n,l,m(φ)

∂φ

)
= 0,

(A11)

and the r-component of the far electric field can be approximated as

Erad
r (t, x) =

∞∑
n=−∞

(inω)

∞∑
l=0

l∑
m=−l

il+1 e−in ω
c r

r
ei(nωt−mϕ)

×
{
−
(

i + c

nω

1

r

)
cM 0

n,l,m + icM r
n,l,m(θ , ϕ)

}
Pm

l (cos θ). (A12)

Substituting the first and third terms of Eq. (A11) into the first and third terms of Eq. (A12), we
obtain the following:

Erad
r (t, x) = 1

2π

∞∑
n=−∞

(inω)

∞∑
l=0

l∑
m=−l

c
c

nω

{(
−Pm

l (cos θ)M 0
n,l,m + Pm

l (cos θ)M r
n,l,m(θ , φ)

)
+∂

(
sin θPm

l (cos θ)M θ
n,l,m(θ , ϕ)

)
sin θ∂θ

+Pm
l (cos θ)

sin θ

(
∂Mφ

n,l,m(φ)

∂φ
− imMφ

n,l,m(φ)

)}
il+1 e−in ω

c r

r2 ei(nωt−mφ). (A13)
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Substituting the first and third terms of Eq. (A11) into the first and second terms of Eq. (A13) once
more,

Erad
r (t, x) = 1

2π

∞∑
n=−∞

(inω)

∞∑
l=0

l∑
m=−l

cil+1 e−in ω
c r

r2 ei(nωt−mϕ)

{
−
( c

nω

)2 i

r

[(
Pm

l (cos θ)M r
n,l,m(θ , φ)

)

+ 1

sin θ

∂
(

sin θPm
l (cos θ)M θ

n,l,m(θ , ϕ)
)

∂θ

+ 1

sin θ
Pm

l (cos θ)

(
∂Mφ

n,l,m(φ)

∂φ
− imMφ

n,l,m(φ)

)]

+ c

nω

1

sin θ

⎡⎣∂
(

sin θPm
l (cos θ)M θ

n,l,m(θ , ϕ)
)

∂θ

+Pm
l (cos θ)

(
∂Mφ

n,l,m(φ)

∂φ
− imMφ

n,l,m(φ)

)]}
. (A14)

All other electromagnetic field components can now be calculated straightforwardly.

B. Appendix B

Substituting Eq. (17) into the integrand of Eq. (34) yields

Mφ

n,l,m(φ)∗Mφ

n,l′,m′(φ) + M θ
n,l,m

∗(θ , φ)M θ
n,l′,m′(θ , φ)

=
(
− sin φM x

n,l,m
∗ + cos φM y

n,l,m
∗) (− sin φM x

n,l′,m′ + cos φM y
n,l′,m′

)
+
(

cos θ cos φM x
n,l,m

∗ + cos θ sin φM y
n,l,m

∗ − sin θM z
n,l,m

∗)
(

cos θ cos φM x
n,l′,m′ + cos θ sin φM y

n,l′,m′ − sin θM z
n,l′,m′

)
=
(

sin2 φM x
n,l,m

∗M x
n,l′,m′ − sin φ cos φM x

n,l,m
∗M y

n,l′,m′ − sin φ cos φM y
n,l,m

∗M x
n,l′,m′

+ cos2 φM y
n,l,m

∗M y
n,l′,m′

)
+ cos2 θ

(
cos2 φM x

n,l,m
∗M x

n,l′,m′ + sin φ cos φM x
n,l,m

∗M y
n,l′,m′

+ sin φ cos φM y
n,l,m

∗M x
n,l′,m′ + sin2 φM y

n,l,m
∗M y

n,l′,m′
)

− cos θ sin θ
(

cos φM x
n,l,m

∗M z
n,l′,m′ + sin φM y

n,l,m
∗M z

n,l′,m′

+ cos φM z
n,l,m

∗M x
n,l′,m′ + sin φM z

n,l,m
∗M y

n,l′,m′
)

+ sin2 θM z
n,l,m

∗M z
n,l′,m′ . (B1)

Multiplying Eq. (B1) by ei(m−m′)φ gives(
Mφ

n,l,m(φ)∗Mφ

n,l′,m′(φ) + M θ
n,l,m

∗(θ , φ)M θ
n,l′,m′(θ , φ)

)
ei(m−m′)φ

= 1

4

((
2ei(m−m′)φ − ei(m+2−m′)φ − ei(m−2−m′)φ

)
M x

n,l,m
∗M x

n,l′,m′
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+ i
(

ei(m+2−m′)φ − ei(m−2−m′)φ
)

M x
n,l,m

∗M y
n,l′,m′ + i

(
ei(m+2−m′)φ − ei(m−2−m′)φ

)
M y

n,l,m
∗M x

n,l′,m′

+
(

2ei(m−m′)φ + ei(m+2−m′)φ + ei(m−2−m′)φ
)

M y
n,l,m

∗M y
n,l′,m′

)
+ 1

4

{
cos2 θ

((
2ei(m−m′)φ + ei(m+2−m′)φ + ei(m−2−m′)φ

)
M x

n,l,m
∗M x

n,l′,m′

− i
(

ei(m+2−m′)φ − ei(m−2−m′)φ
)

M x
n,l,m

∗M y
n,l′,m′ − i

(
ei(m+2−m′)φ − ei(m−2−m′)φ

)
M y

n,l,m
∗M x

n,l′,m′

+
(

2ei(m−m′)φ − ei(m+2−m′)φ − ei(m−2−m′)φ
)

M y
n,l,m

∗M y
n,l′,m′

)
− 2 cos θ sin θ

((
ei(m+1−m′)φ + ei(m−1−m′)φ

)
M x

n,l,m
∗M z

n,l′,m′

− i
(

ei(m+1−m′)φ − ei(m−1−m′)φ
)

M y
n,l,m

∗M z
n,l′,m′

+
(

ei(m+1−m′)φ + ei(m−1−m′)φ
)

M z
n,l,m

∗M x
n,l′,m′ − i

(
ei(m+1−m′)φ − ei(m−1−m′)φ

)
M z

n,l,m
∗M y

n,l′,m′
)

+ 4 sin2 θei(m−m′)φM z
n,l,m

∗M z
n,l′,m′

}
, (B2)

and carrying out the integral with respect to φ and the summation with respect to m′ in Eq. (34) in
order to use Eq. (B2), we obtain

Ln,l,m,l′(θ) ≡
l′∑

m′=−l′

1

2π

∫ 2π

0

(
Mφ

n,l,m(φ)∗Mφ

n,l′,m′(φ) + M θ
n,l,m

∗(θ , φ)M θ
n,l′,m′(θ , φ)

)
ei(m−m′)φdφ

= 1

4

(
2M x

n,l,m
∗M x

n,l′,m − M x
n,l,m

∗M x
n,l′,m+2 − M x

n,l,m
∗M x

n,l′,m−2

+ iM x
n,l,m

∗M y
n,l′,m+2 − iM x

n,l,m
∗M y

n,l′,m−2

+ iM y
n,l,m

∗M x
n,l′,m+2 − iM y

n,l,m
∗M x

n,l′,m−2 + 2M y
n,l,m

∗M y
n,l′,m

+ M y
n,l,m

∗M y
n,l′,m+2 + M y

n,l,m
∗M y

n,l′,m−2

)
+ 1

4

{
cos2 θ

(
2M x∗

n,l,mM x
n,l′,m + M x

n,l,m
∗M x

n,l′,m+2 + M x
n,l,m

∗M x
n,l′,m−2

− iM x
n,l,m

∗M y
n,l′,m+2 + iM x

n,l,m
∗Mn,l′,m−2.

− iM y
n,l,m

∗M x
n,l′,m+2 + iM y

n,l,m
∗M x

n,l′,m−2 + 2M y
n,l,m

∗M y
n,l′,m

− M y
n,l,m

∗M y
n,l′,m+2 − M y

n,l,m
∗M y

n,l′,m−2

)
− 2 cos θ sin θ

(
M x

n,l,m
∗M z

n,l′,m+1 + M x
n,l,m

∗M z
n,l′,m−1

− iM y
n,l,m

∗M z
n,l′,m+1 + iM y

n,l,m
∗M z

n,l′,m−1
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+ M z
n,l,m

∗M x
n,l′,m+1 + M z

n,l,m
∗M x

n,l′,m−1 − iM z
n,l,m

∗M y
n,l′,m+1 + iM z

n,l,m
∗M y

n,l′,m−1

)
+4 sin2 θmM z

n,l,m
∗M z

n,l′,m

}
. (B3)

In a similar way, the integrand of Eq. (40) is

l′∑
m′=−l′

1

2π

∫ 2π

0

{(
mMφ

n,l,m(φ)∗Mφ

n,l′,m′(φ) + m′M θ
n,l,m

∗(θ , φ)M θ
n,l′,m′(θ , φ)

)

−i

(
∂Mφ

n,l,m(φ)∗

∂φ
Mφ

n,l′,m′(φ) − M θ
n,l,m

∗(θ , φ)
∂M θ

n,l′,m′(θ , φ)

∂φ

)}
ei(m−m′)φdφ

= mLn,l,m,l′(θ) + Nn,l,m,l′(θ) (B4)

where Nn,l,m,l′(θ) is defined as

Nn,l,m,l′(θ)≡
1

4

{
cos2 θ

(
M x

n,l,m
∗M x

n,l′,m+2 − M x
n,l,m

∗M x
n,l′,m−2 − iM x

n,l,m
∗M y

n,l′,m+2 − iM x
n,l,m

∗M y
n,l′,m−2

−iM y
n,l,m

∗M x
n,l′,m+2 − iM y

n,l,m
∗M x

n,l′,m−2 − M y
n,l,m

∗M y
n,l′,m+2 + M y

n,l,m
∗M y

n,l′,m−2

)
− 2 cos θ

sin θ
(

M x
n,l,m

∗M z
n,l′,m+1 − M x

n,l,m
∗M z

n,l′,m−1 − iM y
n,l,m

∗M z
n,l′,m+1 − iM y

n,l,m
∗M z

n,l′,m−1

)}
+ 1

4

{(
−M x

n,l,m
∗M x

n,l′,m+2 + M x
n,l,m

∗M x
n,l′,m−2 + 2iM x

n,l,m
∗M y

n,l′,m + iM x
n,l,m

∗M y
n,l′,m+2

+ iM x
n,l,m

∗M y
n,l′,m−2 − 2iM y

n,l,m
∗M x

n,l′,m + iM y
n,l,m

∗M x
n,l′,m+2 + iM y

n,l,m
∗M x

n,l′,m−2

+M y
n,l,m

∗M y
n,l′,m+2 − M y

n,l,m
∗M y

n,l′,m−2

)
+ cos2 θ

(
2iM x

n,l,m
∗M y

n,l′,m − 2iM y
n,l,m

∗M x
n,l′,m

)}
.

(B5)

From this, we finally obtain the following for the relation between the momentum and angular
momentum as follows:

(
dLz
dt

dU
dt

)
n,l,m

=
∫ π

0 sin θdθ
∞∑

l′=0
(nω)2 c

nω
il′−l

(
mLn,l,m,l′(θ) + Nn,l,m,l′(θ)

)
Pm

l (cos θ)Pm
l′ (cos θ)

∫ π

0 sin θdθ
∞∑

l′=0
(nω)2cil′−lLn,l,m,l′(θ)Pm

l (cos θ)Pm
l′ (cos θ)

= m + αn,l,m

nω
, (B6)

where αn,l,m is defined by

αn,l,m =
∫ π

0

∞∑
l′=0

il′−lNn,l,m,l′(θ)Pm
l (cos θ)Pm

l′ (cos θ) sin θdθ

∫ π

0

∞∑
l′=0

il′−lLn,l,m,l′(θ)Pm
l (cos θ)Pm

l′ (cos θ) sin θdθ

, (B7)

which is a constant for each multi-pole.
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