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1 Introduction

Observations done by the Wilkinson Microwave Anisotropy Probe (WMAP) and the Planck

observatory indicate that the extent of the Baryon Asymmetry of the Universe (BAU)

amounts to [1, 2]

ηCMB
B = 6.104 ± 0.058 × 10−10. (1.1)

Hence, explaining the observed BAU has been one of the central themes of Particle Cosmology

for decades. The existence of this non-zero BAU is one of the greatest pieces of evidence for

physics beyond the Standard Model (SM). In the SM, the neutrinos are strictly massless,
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and so this runs contrary to the observations of neutrino oscillations [3–5], which only exist

for massive neutrinos. A minimal resolution to this problem will be to include additional

heavy neutrinos which are singlets under the SM gauge group: SU(3)c × SU(2)L × U(1)Y .

These additional neutrinos are permitted to have large masses due to the inclusion of a

Majorana mass term which violates lepton number, L, by two units. They also provide a

mechanism to render the SM neutrinos massive, whilst ensuring that the generated mass

is small in scale through the famous seesaw mechanism [6–9]. On the other hand, the

spacetime expansion of the FRW Universe provides a macroscopic arrow of cosmic time t, as

well as Sakharov’s necessary out-of-thermal equilibrium condition [10] needed to potentially

generate a large lepton-number asymmetry. This asymmetry is then rapidly converted into

a baryon asymmetry through (B + L)-violating sphaleron transitions while the temperature

of the Universe remains above the temperature Tsph ≈ 132 GeV, after which these sphaleron

transitions become exponentially suppressed. This mechanism is commonly referred to

as leptogenesis [11].

A particularly interesting framework of leptogenesis is Resonant Leptogenesis (RL) [12,

13], which permits Majorana mass scales far lower than those that occur in typical Grand

Unified Theory (GUT) models of leptogenesis [11, 14]. In RL models, the CP violation

generated is greatly enhanced through the mixing of nearly degenerate heavy Majorana

neutrinos Nα, provided
∣∣∣mNα − mNβ

∣∣∣ ∼
ΓNα,β

2
,

where mNα and ΓNα are the masses and the decay widths of Nα, respectively. This mass

arrangement in turn permits the generation of appreciable BAU at sub-TeV masses [12, 15],

in agreement with neutrino oscillation parameters [13, 16].

In this paper we study a class of leptogenesis models that may naturally include three

nearly degenerate heavy Majorana neutrinos which can strongly mix with one another and

have mass differences comparable to their widths. We compute the leptonic CP asymmetries

generated in such a tri-resonant heavy neutrino system, to find that their size is further

enhanced in comparison to those that were naively determined in the usually considered

bi-resonant approximation. Accordingly, this enhanced mechanism of leptogenesis will be

called Tri-Resonant Leptogenesis (TRL). In the context of models realising TRL, our aim is

to find neutrino Yukawa couplings whose size lies much higher than the one expected from

a typical seesaw scenario, whilst still achieving the observed BAU. To this end, we solve

the Boltzmann equations (BEs) that describe the evolution of heavy neutrino and lepton-

asymmetry number densities before the sphaleron freeze-out temperature, after including

decay and scattering collision terms. An important novelty of the present study is to assess

the significance of the temperature dependence of the relativistic degrees of freedom (dofs)

in the plasma. Finally, we analyse observables of charged Lepton Flavour Violation (cLFV)

that could be tested in current and projected experiments, such as µ → eee at Mu3e [17],

µ → eγ at MEG [18, 19], coherent µ → e conversion at COMET [20] and PRISM [21], as

well as matching the observed light neutrino mass constraints [3–5].

In our analysis we will not specify the origin of the structure of the Majorana-mass and

the neutrino Yukawa matrices. But we envisage a high-scale SO(3)-symmetric mass spectrum
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for the heavy Majorana neutrinos, possibly of the order of GUT scale [22, 23], which is

broken by renormalisation-group (RG) and new-physics threshold effects. Following a less

constrained approach to model-building, we also assume an approximate Z6-symmetric

texture for the entries of the neutrino Yukawa matrix. Such a construction enables

the generation of the observed small neutrino masses, without imposing the expected

seesaw suppression on the neutrino Yukawa parameters for heavy neutrino masses at the

electroweak scale.

The layout of the paper is as follows. In section 2 we describe the minimal extension

of the SM that we will be studying, and introduce the flavour structure of its leptonic

Yukawa sector. In section 3 we specify the light neutrino mass spectrum for our analysis,

and present the cLFV observables one may expect to probe in this model, such as µ → eγ,

µ → eee, and coherent µ → e conversion in nuclei. In section 4 we explore the different

aspects of leptogenesis, notably the CP violation generated in RL and TRL scenarios and

derive the relevant set of BEs, upon which our numerical estimates are based. This set of

BEs is solved including contributions from chemical potentials while crucially preserving

the temperature dependence of the key parameter, denoted later as heff(T ), that describes

the variation of the relativistic dofs with T . In section 5 we present approximate solutions

to the BEs, which will help us to shed light on the attractor properties of our fully-fledged

numerical estimates. In section 6 we give a summary of our numerical results, including

evolution plots for the BAU and comparisons with observable quantities. Finally, section 7

summarises our conclusions and discusses possible future directions. Some technical aspects

of our study have been relegated to appendices A, B and C.

2 Seesaw extension of the Standard Model

We adopt the framework of the conventional seesaw extension of the SM. This extension

requires the addition of n ≥ 2 right-handed neutrinos, which are singlets under the SM

gauge group, and have lepton number LνR
= 1. Given this particle content and quantum

number assignments, the Lagrangian of the right-handed neutrino sector reads:

LνR
= iνR /∂νR −

(
L h

νΦ̃ νR +
1

2
νC

R mM νR + H.c.

)
. (2.1)

Here, Li = (νiL, eiL)T, with i = 1, 2, 3, denote the left-handed lepton doublets, while ναR,

with α = 1, . . . , n, are the right-handed neutrino fields. The matrices h
ν and mM are the

neutrino Yukawa and the Majorana mass matrices, respectively, and Φ̃ is the weak isospin

conjugate of the Higgs doublet Φ. Note that we reserve bold face for matrices in flavour

space, and assume the implicit contraction of flavour space indices.

Without loss of generality, we assume that the Majorana mass matrix is diagonal, in

which case we may recast the Lagrangian eq. (2.1) in the unbroken phase as

LνR
= iN /∂N −

(
L h

νΦ̃ PRN + H.c.
)

− 1

2
N mM N, (2.2)

where PR/L = 1
2 (14 ± γ5) is the right-/left- chiral projector, 1n is the n × n identity matrix,

mM = diag(mN1
, . . . , mNn), and Nα = ναR + νC

αR are the mass-eigenstate Majorana spinors

associated to the right-handed neutrinos.
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In the broken phase, this picture changes by the mixing between singlet and left-

handed neutrinos. The mass eigenstates are particular combinations of the weak eigenstate

neutrinos, given by

PR

(
ν

N

)
=

(
UννC

L
UννR

UNνC
L

UNνR

)(
νC

L

νR

)
, (2.3)

where ν1,2,3 are the light neutrino mass eigenstates and U is a (3 + n) × (3 + n) unitary

matrix that diagonalises the neutrino mass matrix (see section 2.1). The subscripts, νC
L

and νR, on its sub-blocks indicate the possible components of the right-handed chirality

projection of each mass eigenstate, represented here as vector columns ν and N . Following

the notation of [24], we may then write the Lagrangian for the charged current interaction

of the heavy neutrinos as

LW
int = − gw√

2
W −

µ eiLBiαγµPLNα + H.c. , (2.4)

where gw is the gauge coupling associated to the SU(2)L group, and

Biα ≃ ξiα =
(
mDm

−1
M

)
iα

(2.5)

is the light-to-heavy neutrino mixing at first order in the expansion of the matrix-valued

parameter ξ [24]. In the following, we assume that the charged lepton Yukawa matrix is

diagonal, and hence Biα = (UννR
)iα. At first order in ξ, the effective light neutrino mass

matrix, m
ν , follows the well-known seesaw relation [7]

m
ν = −mDm

−1
M m

T

D , (2.6)

where mD = h
νv/

√
2 is the Dirac mass matrix, and v ≃ 246 GeV is the vacuum expectation

value (VEV) of the Higgs field. By virtue of this relation, it is apparent that a Dirac mass

matrix at a scale

||mD|| ≡
√

Tr
[
m

†
DmD

]
≈ v , (2.7)

would in principle require GUT scale heavy neutrinos, which means that any impact of the

singlet neutrino sector on experimental signatures would be beyond the realm of observation.

This motivates the search for new model building strategies to explain sub-eV light neutrinos,

whilst maintaining agreement with light neutrino data and other low energy experiments.

2.1 Neutrino flavour model

In order to explain the smallness of neutrino masses, we investigate scenarios where the

neutrino mass matrix is naturally small, preferably arising from the subtle breaking of a

symmetry. When this symmetry is exact, eq. (2.6) vanishes identically, given by the 3 × 3

null matrix, 03, i.e.

mD m
−1
M m

T

D = 03 . (2.8)
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If we consider a singlet neutrino sector with a nearly degenerate mass spectrum, this is

approximately equivalent to require that prior to the breaking of the symmetry the leading

Yukawa matrix, h
ν
0 , satisfies the condition

h
ν
0 h

νT

0 = 03 . (2.9)

Considering a model with three right-handed neutrinos, this motivates the following structure

for the leading neutrino Yukawa matrix:

h
ν
0 =




a a ω a ω2

b b ω b ω2

c c ω c ω2


 , (2.10)

where the parameters a, b, and c are in general real, and ω is the generator of the Z6

group, ω = exp(πi/3). We remark that this choice is not unique, and the vanishing of the

light neutrino mass matrix may be realised through other constructions of the neutrino

Yukawa matrix. For example, one could replace the Z6 element ω with the Z3 element

ω′ = exp(−2πi/3). However, for concreteness, we select the Z6-symmetry realisation for

our analysis.

Evidently, the flavour structure of eq. (2.10) has to be perturbed in order to reproduce

the observed neutrino oscillation phenomenon, which requires massive neutrinos. Even

though h
ν
0 as given by eq. (2.10) is rank one, a perturbation δh

ν such that rank(δh
ν) ≥ 2

is sufficient to explain neutrino oscillations, as long as the following condition is enforced:

(hν
0 + δh

ν) m
−1
M (hν

0 + δh
ν)T =

2

v2
m

ν , (2.11)

where m
ν is a 3 × 3 complex and symmetric matrix. Taking a, b, c, and the singlet neutrino

spectrum as input parameters, eq. (2.11) defines a set of 12 constraints for the entries of

the perturbation matrix δh
ν . The solutions to eq. (2.11) have to satisfy a further condition,

which is |δh
ν
ij |/|(hν

0)kl| ≪ 1, with i, j, k, l = 1, 2, 3. More generally, the zero mass condition

of eq. (2.9) can be enforced when the Majorana mass matrix mM is not proportional to

the identity, or even in the case when loop corrections to the tree-level seesaw relation

of eq. (2.6) are considered. This gives us complete control over the loop corrections to

the light-neutrino mass matrix at all orders. For example, we can incorporate one-loop

corrections to m
ν [24] by modifying the tree-level zero mass condition as follows [25]:

h
ν
0

[
m

−1
M − αw

16πM2
W

m
†
M f

(
mM m

†
M

)]
h

νT

0 = 03 , (2.12)

where

f
(
mM m

†
M

)
=

M2
H

mM m
†
M − M2

H13

ln

(
mM m

†
M

M2
H

)
+

3M2
Z

mM m
†
M − M2

Z13

ln

(
mM m

†
M

M2
Z

)
.

(2.13)

In the above, αw ≡ g2
w/(4π)2 is the electroweak-coupling parameter, and MW , MZ , and

MH are the masses of the W , Z, and Higgs bosons, respectively. Redefining the quantity
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inside the square brackets in eq. (2.12) as an effective inverse Majorana mass, m
−1
M , the

restrictions can be recast as

h
ν
0m

−1
M h

νT

0 = 03 . (2.14)

This can be further simplified by rescaling the columns of the Yukawa matrix using the

definition

H
ν
0 = h

ν
0 m

−1/2
M , (2.15)

which leads to

H
ν
0 H

ν
0

T = 03 . (2.16)

This results in the same condition of eq. (2.9) but this time for a rescaled Yukawa matrix,

H
ν
0 , with dimensions of (mass)−1/2. This shows that even for appreciable mass splittings

between the singlet neutrinos and with the inclusion of loop corrections to the neutrino

mass matrix, the Yukawa matrix can always be chosen in such a way that the neutrinos are

massless by taking

H
ν
0 =




ℓ1 ℓ1 ω ℓ1 ω2

ℓ2 ℓ2 ω ℓ2 ω2

ℓ3 ℓ3 ω ℓ3 ω2


 , (2.17)

where ℓ1,2,3 are real parameters. The dimensionless Yukawa matrix, h
ν
0 , can be found

using eq. (2.15), and as explained previously, its structure can then be perturbed to

reproduce the observed neutrino mass matrix m
ν . Here we will not address the origin of

the texture of the neutrino Yukawa matrix h
ν
0 , but it can be the subject of future studies

on model building.

It is worthy to mention that the neutrino mass matrix is model dependent, and its

relation to the observable parameters measured in neutrino oscillation experiments is

given by

m
ν = UT

PMNS m̂
νUPMNS , (2.18)

where UPMNS is the PMNS lepton mixing matrix [26, 27] and m̂
ν = diag(m1, m2, m3),

in which m1,2,3 are the light neutrino masses. The matrix UPMNS performs the Takagi

factorisation [28, 29] when applied to the light neutrino mass matrix. If the Yukawa matrix

of the charged leptons is assumed to be diagonal, UPMNS parameterises the flavour mixing

in charged current interactions of the leptonic sector. The experimental values of the

parameters involved in eq. (2.18) are discussed in the next section.

3 Low energy observables

The observation of flavour neutrino oscillations at Super-Kamiokande [5] and the Sudbury

Neutrino Observatory [3, 4] provides definite evidence of their massive nature. The resulting
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neutrino oscillation parameters offer strong constraints on the neutrino model parameters,

which we discuss in this section. In addition, we present the formulae for the rates of

selected charged cLFV processes, namely µ → eγ, µ → eee and coherent µ → e conversion

in nuclei, which can be distinctive signatures of Majorana neutrino models, and are crucially

dependent on the light-to-heavy neutrino mixing parameter presented in eq. (2.5).

3.1 Neutrino oscillation data

In order to incorporate the neutrino mass constraints into our model, we follow the procedure

outlined in section 2.1. We neglect the non-unitarity effects that arise due to light-to-heavy

neutrino mixing, and without loss of generality, we assume that the charged lepton Yukawa

matrix, h
ℓ, is diagonal. With the first assumption in mind, the matrix UPMNS can be

parameterised as follows [30, 31]:

UPMNS =




c12c13 s12c13 s13e−iδ

−s12c23−c12s23s13eiδ c12c23−s12s23s13eiδ s23c13

s12c23−c12c23s13eiδ −c12s23−s12c23s13eiδ c23c13


×diag

(
eiα1/2,eiα2/2,1

)
,

(3.1)

where cij = cos θij and sij = sin θij are the cosines and sines of the neutrino mixing angles,

δ is the so-called Dirac phase, and α1,2 are the Majorana phases. Together with the neutrino

squared mass differences ∆m2
21 ≡ m2

2 − m2
1 and ∆m2

31 ≡ m2
3 − m2

1, these angles and the

Dirac phase comprise the light neutrino oscillation data.

The values of these parameters are experimentally bounded with the exception of the

absolute neutrino mass scale, characterised by min(m1,3), and the sign of ∆m2
31 ≡ m2

3 − m2
1,

which requires the distinction between the normal (∆m2
31 > 0) and inverted (∆m2

31 < 0)

ordering hypotheses. For our numerical estimates, we use the latest best fit values for the

neutrino oscillation parameters [32]:

∆m2
21 ≡ m2

2 − m2
1 = 7.50 × 10−5 (eV)2, ∆m2

31 ≡ m2
3 − m2

1 = 2.55 × 10−3 (eV)2,

(3.2)

θ12 = 34.3◦, θ23 = 49.26◦, θ13 = 8.58◦, δ = 194◦. (3.3)

Since the experimental data allows a massless neutrino, for definiteness we work under

the hypothesis that m1 = 0 and the light neutrino spectrum follows normal ordering.

Likewise, for the unconstrained Majorana phases, we set α1,2 = 0. For relevant tri-resonant

benchmarks, we provide the relevant δh
ν values, which reproduce the light neutrino data in

appendix C.

3.2 Lepton flavour violation

In the seesaw extension of the SM, the leading order contributions to cLFV processes appear

at the one-loop level [33]. For the radiative decays of our interest, the expressions for the
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Nucleus (A
ZX) V (p) V (n) D Γcapt (106 s−1)

27
13Al 0.0161 0.0173 0.0362 13.45

48
22Ti 0.0396 0.0468 0.0864 2.59

197
79 Au 0.0974 0.146 0.189 13.07

Table 1. Overlap integrals and muon capture rates for the nuclei of the elements used in the

relevant experiments.

branching ratios are given by [34]

BR(µ → eγ) =
α3

ws2
w

256π2

m4
µ

M4
W

mµ

Γµ

∣∣∣Gµe
γ

∣∣∣
2

, (3.4)

BR(µ → eee) =
α4

w

24576π3

m4
µ

M4
W

mµ

Γµ

{
2

∣∣∣∣
1

2
F µeee

Box + F µe
Z − 2s2

w

(
F µe

Z − F µe
γ

)∣∣∣∣
2

+4s4
w

∣∣∣F µe
Z − F µe

γ

∣∣∣
2

+ 16s2
w ℜe

[(
F µe

Z +
1

2
F µeee

Box

)
Gµe∗

γ

]
(3.5)

−48s4
w ℜe

[(
F µe

Z − F µe
γ

)
Gµe∗

γ

]
+ 32s4

w

∣∣∣Gµe
γ

∣∣∣
2
[
ln

(
m2

µ

m2
e

)
− 11

4

]}
,

where sw ≡ sin θw is the sine of the weak angle, me is the mass of the electron, and mµ and

Γµ are the muon mass and width. The form factors are defined in appendix B. It is worth

mentioning that other cLFV decays involving τ leptons are also allowed, but we ignore

them in the discussion of our results since the experimental bounds that apply to those

processes are far weaker in the parameter space of interest to us.

The rate for the µ → e conversion in an atomic nucleus A
ZX is given by [35]

RX
µ→e =

2G2
F α2

wm5
µ

16π2Γcapt

∣∣∣∣∣4V (p)
(
2F̃ µe

u + F̃ µe
d

)
+ 4V (n)

(
F̃ µe

u + 2F̃ µe
d

)
+

s2
w

2e
Gµe

γ D

∣∣∣∣∣

2

, (3.6)

where GF is Fermi’s constant, e = gwsw is charge of the electron, Γcapt is the nuclear

capture rate, and V (p), V (n), D are numerical estimations of the overlap integrals involved

in the calculation of the conversion rate [36]. For the nuclei of our interest, table 1 presents

the numerical values of these parameters. The form factors F̃ µe
q (q = u, d) in eq. (3.6) are

defined as

F̃ µe
q = Qqs2

wF µe
γ +

(
Iq

3

2
− Qqs2

w

)
F µe

Z +
1

4
F µeqq

Box , (3.7)

where Qu = 2/3, Qd = −1/3 refer to the electric charges of up- and down-type quarks, and

Iu
3 = 1/2, Id

3 = −1/2 denote the third component of their weak isospin. The corresponding

form factors can be found in appendix B.

The search for cLFV is a prominent experimental endeavour, and there are several

facilities that operate with the aim of finding a conclusive hint for this class of transitions.

Despite the non-observation of these signals, experimental efforts have lead to stringent
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bounds on the parameter space of Majorana neutrino models, which are reflected by the

current upper limits

BR(µ → eγ) < 4.2 × 10−13 MEG [18] ,

BR(µ → eee) < 1.0 × 10−12 SINDRUM [37] , (3.8)

RAu
µ→e < 7.0 × 10−13 SINDRUM [38] .

These limits are expected to be improved by a few orders of magnitude in the near future.

There is a new generation of experiments that are either starting to take data, under

construction, or in the proposal/design stage. Among them, we should mention MEG-II,

COMET, Mu3e, Mu2e and PRISM, with the following projected sensitivities:

BR(µ → eγ) < 6 × 10−14 MEG II [19],

BR(µ → eee) < 10−16 Mu3e [17],

RAl
µ→e < 3 × 10−17 Mu2e [39], (3.9)

RAl
µ→e < 10−17 COMET [20],

RTi
µ→e < 10−18 PRISM [21].

These projections will be compared with the cLFV rates as predicted by our leptogenesis

model to assess its testability in the foreseeable future.

3.2.1 Non-zero leptonic CP phases in cLFV processes

Here we examine the impact of leptonic CP phases on cLFV processes for our class of

seesaw models. It was argued in [40] that the existence of non-zero leptonic CP phases may

have a substantive impact on the rate of cLFV processes through the interference terms

involving the mixing Bℓα. Following a procedure similar to [40], we write the elements of

Biα as a magnitude siα and a phase εiα. Thus, the terms that appear in the observable

quantities are
3∑

α=1

BiαB∗
jα =

3∑

α=1

siαsjαei(εiα−εjα) =
3∑

α=1

siαsjαei∆ij
α , (3.10)

where we have introduced the CP phases ∆ij
α = εiα − εjα. These CP phases are expected

to be small and can easily be extracted by taking the ratio of imaginary to real parts of the

mixing, i.e.

ℑm
{

BiαB∗
jα

}

ℜe
{

BiαB∗
jα

} = tan
(
∆ij

α

)
≈ ∆ij

α . (3.11)

For the model introduced in section 2, the heavy neutrino masses are nearly degenerate

and the elements of the mixing matrix are all of similar scale. Therefore, the observable

quantities may be approximated by taking the masses to be exactly degenerate and letting

siα ≈ si1 for all α. Under these simplifications, the variations in the cLFV observables are

captured in the value of
∣∣∣∣∣

3∑

α=1

BiαB∗
jα

∣∣∣∣∣

2

≈ s2
i1s2

j1

3∑

α,β=1

cos
(
∆ij

α − ∆ij
β

)
. (3.12)
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Then, the observed deviation due to the existence of non-zero leptonic CP phases may be

written as

Dij = 1 −

∣∣∣
∑3

α=1 BiαB∗
jα

∣∣∣
2

∣∣∣
∑3

α=1 BiαB∗
jα

∣∣∣
2

∆i=0

≈ 1 − 1

9

3∑

α,β=1

cos
(
∆ij

α − ∆ij
β

)
. (3.13)

In the case of small leptonic CP phases, it can be seen that the deviation in the rate of

cLFV processes away from the CP conserving rate may be given by

Dij ≈ 1

9

[(
∆ij

1 − ∆ij
2

)2
+
(
∆ij

1 − ∆ij
3

)2
+
(
∆ij

2 − ∆ij
3

)2
]

, (3.14)

and so the observed deviation is itself a small effect.

In the context of the Z6 motivated model we have presented, the quantity BiαB∗
jα is

completely real at lowest order, and therefore the leptonic CP phases are identically zero.

Therefore, in order to have non-zero leptonic CP phases, we need to include the symmetry

breaking term δh
ν . It is then easy to verify that up to leading order in the perturbations,

δh
ν , the relevant leptonic CP phases are given by

∆ij
α ≈

ℑm

{(
h

ν
0m

−1
M

)
iα

(
δh

ν
m

−1
M

)∗

jα
+
(
δh

ν
m

−1
M

)
iα

(
h

ν
0m

−1
M

)∗

jα

}

(
hν

0m
−1
M

)
iα

(
hν

0m
−1
M

)∗

jα

. (3.15)

Hence, |∆ij
α | ∼ ||δh

ν ||/||hν
0 || ≪ 1. We may therefore expect the deviation away from the CP

conserving cLFV observables to be very small in magnitude, Dij ∼ ||δh
ν ||2/

(
9||hν

0 ||2
)
. For

the generic scenarios listed in appendix C, one finds a deviation of Dij ∼ 10−3, so any CP

effect will be difficult to observe for the TRL models under study.

4 Tri-resonant leptogenesis

4.1 Leptonic asymmetries

In leptogenesis, the CP violating effects that lead to the generation of a net baryon

asymmetry come from the difference between the decay rate of heavy neutrinos into Higgs

and leptons, and their charge-conjugate processes. In RL models, the absorptive part of the

wavefunction contribution to the decay rate [41] is central to capture the resonance effects

that arise in models with nearly degenerate singlet neutrino masses, and that result in the

enhancement of CP violation [42]. To facilitate the presentation of the analytic results

for the CP asymmetry in heavy neutrino decays within this framework, we introduce the

coefficients [13, 16]

Aαβ =
3∑

l=1

h
ν
lαh

ν∗
lβ

16π
=

(hν†
h

ν)∗
αβ

16π
, (4.1)

Vlα =
3∑

k=1

∑

γ 6=α

h
ν∗
kαh

ν
kγh

ν
lγ

16π
f

(
m2

Nγ

m2
Nα

)
, (4.2)
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which pertain to the absorptive transition amplitudes for the propagator and vertex,

respectively. Here f(x) =
√

x
[
1 − (1 + x) ln

(
1+x

x

)]
is the Fukugita-Yanagida one-loop

function [11].

A full and consistent resummation of the CP-violating loop corrections, including

three Majorana neutrino mixing, generates the following effective LΦ̃N Yukawa cou-

plings [13, 16, 22]:

(h̄ν
+)lα = h

ν
lα + iVlα − i

3∑

β,γ=1

|εαβγ | h
ν
lβ

× mNα (Mααβ + Mββα) − iRαγ [Mαγβ (Mααγ + Mγγα) + Mββγ (Mαγα + Mγαγ)]

m2
Nα

− m2
Nβ

+ 2im2
Nα

Aββ + 2i ℑmRαγ

(
m2

Nα
|Aβγ |2 + mNβ

mNγ ℜeA2
βγ

) ,

(4.3)

where ǫαβγ is the anti-symmetric Levi-Civita symbol, Mαβγ ≡ mNαAβγ and

Rαβ ≡
m2

Nα

m2
Nα

− m2
Nβ

+ 2im2
Nα

Aββ
. (4.4)

The corresponding CP-conjugate effective Yukawa coupling, which is associated to the

LCΦ̃∗N interaction, is denoted by (h̄ν
−)lα, and it can be found through the replacement

of h
ν
lα with (hν

lα)∗ in eq. (4.3). Notably, this resummed Yukawa coupling captures all

possible degrees of resonance between the contributions to the CP asymmetry from the

mixing between the singlet neutrinos, which includes the bi-resonant and tri-resonant

cases. We should clarify here that the bi-resonant case implies maximally enhanced CP

asymmetries through the mixing of two singlet neutrinos, and the tri-resonant implies

maximally enhanced CP asymmetries through the mixing of all three singlet neutrinos.

Moreover, in this formalism CP violation comes from the difference between the resummed

Yukawa couplings (h̄ν
−)lα and (h̄ν

+)lα, as it can be seen by calculating the heavy neutrino

decay rates and scattering amplitudes with the help of eq. (4.3). Note that for a model

with two right-handed neutrinos (or equivalently, for a model utilising the bi-resonant

approximation), the resummed Yukawa matrices are found by setting Rαβ to zero in eq. (4.3).

Using these effective Yukawa couplings, the partial decay widths of the heavy neutri-

nos read

Γ(Nα → LlΦ) =
mNα

8π

∣∣∣(h̄ν
+)lα

∣∣∣
2

, Γ(Nα → LC
l Φ†) =

mNα

8π

∣∣∣(h̄ν
−)lα

∣∣∣
2

. (4.5)

In turn, these decay rates can be used to find the size of the CP asymmetries for each

lepton family, which for a given right-handed neutrino Nα are defined as

δαl ≡
Γ (Nα → LlΦ) − Γ

(
Nα → LC

l Φ†
)

∑
k=e,µ,τ Γ (Nα → LkΦ) + Γ

(
Nα → LC

k Φ†
) =

∣∣∣
(
h̄

ν
+

)
lα

∣∣∣
2

−
∣∣∣
(
h̄

ν
−

)
lα

∣∣∣
2

(
h̄

ν†
+ h̄ν

+

)
αα

+
(
h̄

ν†
− h̄ν

−

)
αα

. (4.6)

We also define the total CP asymmetry, δα, associated with each heavy neutrino species:

δα ≡
∑

l=e,µ,τ

δαl . (4.7)
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In particular, a non-vanishing δα may only be generated in models, for which the flavour-

and rephasing-invariant CP-odd quantity

∆CP = ℑm
{

Tr
[
(hν)†

h
ν
m

†
M mM m

†
M (hν)T (hν)∗

mM

]}
(4.8)

=
∑

α<β

mNαmNβ

(
m2

Nα
− m2

Nβ

)
ℑm

[(
h

ν†
h

ν
)2

βα

]
(4.9)

is non-zero [12, 13, 43, 44]. For the model presented in section 2, this CP-odd quantity may

be expressed as

∆CP ≈
(
a2 + b2 + c2

)2 ∑

α<β

mNαmNβ

(
m2

Nα
− m2

Nβ

)
ℑm

(
ω2(α−β)

)
. (4.10)

When all heavy neutrino masses are exactly degenerate, the CP-odd invariant ∆CP vanishes.

However, with the inclusion of mass differences, ∆CP is proportional to the imaginary part

of the Z6 element ω2 only.

Several applications of the RL formalism (e.g. [45–51]) exploit the bi-resonant en-

hancement of CP violating effects due to the mixing of two Majorana neutrinos, while the

contribution to the CP asymmetry due a third singlet neutrino is either absent due to

the neutrino mass model choice, or negligible when compared to the one generated in the

decays of the resonating pair. However, in a model with three right-handed neutrinos, in

the region where the masses of the heavy neutrinos satisfy the resonance condition

|mNα − mNβ
| ≃

ΓNα,β

2
(α 6= β), (4.11)

effects of constructive interference generated by a third resonating neutrino can further

enhance CP violation as compared to the case when only two neutrinos are in resonance.

Figure 1 shows the behaviour of the CP asymmetries in the decays of N1, N2, and N3, as

well as the total CP asymmetry δT =
∑

α δα, plotted against mN3
. In this figure, the mass

of N2 is fixed at the value mN2
= mN1

+ΓN1
/2, therefore it fulfills the bi-resonant condition.

On the left panel, it can be seen that when mN3
= mN2

, the total CP asymmetry (solid red

line) vanishes due to the destructive interference effect of N3, while at mN3
= mN2

+ ΓN2
/2,

|δT | reaches a maximum that is more than 35% higher than in a model where the mass of the

third singlet neutrino lies outside the resonance region (i.e., high mN3
). In this tri-resonant

point, one has δ1 ≈ δ3, while δ2 is the dominant contribution to δT . Furthermore, we

find that the values of δ1,2,3 are independent of the mass scale, mN1
, provided that the

tri-resonant condition is satisfied. Thus, the enhancement of δ2 is pervasive throughout the

tri-resonant parameter space. The middle panel of figure 1 shows the impact of the proper

three-neutrino mixing resummation on the asymmetry δ2 by comparing the asymmetry

calculated by considering three Majorana neutrino mixing (δ
(3)
2 ) with the two-neutrino

mixing case (δ
(2)
2 ). When mN3

lies in the resonance region, it can be seen that the mixing

with N3 becomes important, and there is a sizeable difference between the two- and three-

neutrino mixing scenarios, where the latter has a sizeable enhancement effect on δ2. The

right panel of figure 1 shows that the inclusion of three-neutrino mixing also affects the

size of the maximum magnitude of the asymmetry in the decays of N3, although to a

lesser extent.
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Figure 1. Left panel: CP asymmetries in the decays of N1, N2 and N3, together with the total

CP asymmetry δT =
∑

α δα, as a function of the mass of N3. Centre panel: CP asymmetry in

the decay of N2 vs. mN3
as calculated in a model that considers two-neutrino mixing (δ

(2)
2 ) and

three-neutrino mixing (δ
(3)
2 ). Right panel: CP asymmetry in the decay of N3 vs. mN3

calculated in a

model that considers two-neutrino mixing (δ
(2)
3 ) and three-neutrino mixing (δ

(3)
3 ). In all three panels,

the vertical dashed lines indicate, from left to right, the values of mN1
, mN2

and the tri-resonant

value of mN3
(for details, see text).

Overall, figure 1 showcases a resonant enhancement of the total CP asymmetry of the

model when the three heavy neutrinos are in successive resonance, a scenario that we have

described as tri-resonant, in contrast to the bi-resonant approximation commonly studied in

the literature. We identify a particular tri-resonant structure which generates appreciable

BAU and maximises the scale of CP asymmetry within a model with three singlet neutrino

mixing. In the literature, there also exist studies which consider the mixing effects of three

singlet neutrinos [22, 23, 52–55]. These studies utilise a flavour structure different to the

Z6 structure we have adopted, and in the case of [53], it is more similar to that proposed

in [56]. Hence, the flavour structure presented in these studies cannot be mapped onto the

discrete flavour symmetries we have used here, so as to enable some meaningful comparison.

Finally, we must point out that our approximate Z6-symmetric flavour structure provides

both light neutrino masses, and the origin for CP violation.

4.2 Boltzmann equations

The conditions for generating a BAU, dictated by [10], require not only a violation of the

CP symmetry, but also a departure from thermal equilibrium and baryon number violation.

Here, we introduce the set of Boltzmann equations that describe the out-of-equilibrium

dynamical generation of a lepton asymmetry in the early Universe, and assume that it is

reprocessed into a net baryon number through equilibrium (B + L)-violating sphaleron

transitions [57].

At temperatures, T , pertinent to leptogenesis, the Universe is assumed to be radiation

dominated, with an energy and entropy density given by

ρ(T ) =
π2

30
geff(T ) T 4 , (4.12)

s(T ) =
2π2

45
heff(T ) T 3 , (4.13)

– 13 –



J
H
E
P
1
1
(
2
0
2
2
)
0
6
5

respectively. Here geff and heff are the relativistic dofs of the SM plasma that correspond

to ρ and s, respectively. For our numerical results, we use the tabulated data1 for the

relativistic dofs as calculated in [59].2

The evolution of the heavy neutrino and lepton asymmetry number densities are

described by their respective BEs in terms of the dimensionless parameter zα = mNα/T , for

α = 1, 2, 3. In line with previous conventions, we use z = z1. These BEs are presented in [16],

and due to the approximate democratic structure of the neutrino Yukawa matrix in our TRL

models, we sum over lepton flavours, which leaves us with four coupled evolution equations.

Following the conventions of [16], we normalise all number densities with the photon

number density

nγ(zα) =
2ζ(3)T 3

π2
=

2ζ(3)

π2

(
mNα

zα

)3

, (4.14)

which for a given particle species i, gives us the ratio

ηi(zα) =
ni(zα)

nγ(zα)
. (4.15)

In addition, we define the departure from equilibrium for the heavy-neutrino density as

δηNα(zα) =
ηNα(zα)

ηeq
Nα

(zα)
− 1 , (4.16)

where ηeq
Nα

denotes ηNα in thermal equilibrium, for which we use the approximate expression

ηeq
Nα

(zα) ≈ z2
α

2ζ(3)
K2(zα). (4.17)

Here, ζ(3) ≈ 1.202 is Apéry’s constant, and Kn(z) is a modified Bessel function of the

second kind. In the BEs, we have also included terms which depend on the parameter

δh(zα) = 1 − 1

3

d ln heff

d ln zα
, (4.18)

since we allow heff to vary with T .3

Considering decay terms, ∆L = 1 and ∆L = 2 scattering processes, and the running of

the dof parameters, the BEs can be written as4

dδηNα

d lnzα
=− δh (zα)

H (zα) ηeq
Nα

(zα)

[
δηNα

(
ΓD(α)+Γ

S(α)
Y +Γ

S(α)
G

)
+

2

9
ηL δα

(
Γ̃D(α)+Γ̂

S(α)
Y +Γ̂

S(α)
G

)]

+(δηNα +1)

[
zα

K1 (zα)

K2 (zα)
−3(δh (zα)−1)

]
, (4.19)

1We have extracted the corresponding data file from the source code of MicrOMEGAs [58].
2From [59] we choose the equation of state model labeled as C.
3In fact, in the data file we have extracted from MicrOMEGAs, the relativistic dofs are not constant even

at temperatures well above 100 GeV. This unexpected behaviour arises from combined lattice [60] and

perturbative QCD [61] considerations to the equation of state of the plasma, leading to deviations from the

ideal gas assumption at high temperatures [59].
4In order to solve the system of equations eqs. (4.19) and (4.20), we employ the implementation of

RODASPR2 [62] provided in NaBBODES [63]. We have checked that other methods [64, 65] as well as the ones

provided by scipy [66] produce the same results. The relativistic dofs of the plasma are interpolated using

SimpleSplines [67] and the various integrals needed for the collision terms are evaluated using LAInt [68].

Finally, all figures are made using the versatile visualization library matplotlib [69].
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dηL

d lnz
=− δh (z)

H (z)

{
3∑

α=1

δηNαδα

(
ΓD(α)+Γ

S(α)
Y +Γ

S(α)
G

)

+
2

9
ηL

[
3∑

α=1

(
Γ̃D(α)+Γ̃

S(α)
Y +Γ̃

S(α)
G +Γ

W (α)
Y +Γ

W (α)
G

)
+Γ∆L=2

]

+
2

27
ηL

3∑

α=1

δ2
α

(
Γ

W (α)
Y +Γ

W (α)
G

)}
−3ηL (δh (z)−1) , (4.20)

where

H(zα) =

√
4π3geff(zα)

45

m2
Nα

MPl

1

z2
α

(4.21)

is the Hubble parameter, and MPl ≈ 1.221 × 1019 GeV is the Planck mass. Since the BEs

are not identical to the ones utilised in the literature due to the non-trivial T -dependence of

heff , we show how they are obtained in appendix A. The various collision terms are defined

in the literature [16] as

ΓD(α) =
1

nγ
γNα

LΦ , (4.22)

Γ̃D(α) =

(
1+

12

21

)
ΓD(α), (4.23)

Γ
S(α)
Y =

1

nγ

[
γNαL

QuC +2γNαuC

LQC

]
, (4.24)

Γ̃
S(α)
Y =

1

nγ

[(
δηNα +1+

12

21

)
γNαL

QuC +

(
2+

98

159
(δηNα +2)

)
γNαuC

LQC

]
, (4.25)

Γ̂
S(α)
Y =

1

nγ

[(
−(δηNα +1)+

12

21

)
γNαL

QuC +

(
2− 98

159
δηNα

)
γNαuC

LQC

]
, (4.26)

Γ
S(α)
G =

1

nγ

[
γ

NαVµ

LΦ +γNαL
VµΦ† +γNαΦ†

LVµ

]
, (4.27)

Γ̃
S(α)
G =

1

nγ

[(
1+

12

21

)
γ

NαVµ

LΦ +

(
δηNα +1+

12

21

)
γNαL

VµΦ† +

(
1+(δηNα +1)

12

21

)
γNαΦ†

LVµ

]
, (4.28)

Γ̂
S(α)
G =

1

nγ

[(
1+

12

21

)
γ

NαVµ

LΦ +

(
−(δηNα +1)+

12

21

)
γNαL

VµΦ† +

(
1−(δηNα +1)

12

21

)
γNαΦ†

LVµ

]
,

(4.29)

Γ
W (α)
Y =

1

nγ

[(
2+

12

21

)
γNαL

QuC +

(
2+

12

7

)
γNαuC

LQC

]
, (4.30)

Γ
W (α)
G =

1

nγ

[(
1+

12

21

)
γ

NαVµ

LΦ +

(
2+

12

21

)
γNαL

VµΦ† +

(
1+

24

21

)
γNαΦ†

LVµ

]
, (4.31)

Γ∆L=2 =
2

nγ

(
1+

12

21

)[
γ′LΦ

LCΦ† +γLL
Φ†Φ†

]
, (4.32)

where γX
Y are CP-conserving collision terms for the process X → Y . The latter is defined as

γX
Y ≡ γ (X → Y ) + γ

(
X → Y

)
, (4.33)
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Figure 2. The δηNα
independent collision terms are defined in (4.32) for |hν

ij | ≈ 3 × 10−3 and

mN1
= 500 GeV. The wash-out terms, ΓW

Y,G, are uniformly different by a factor of two compared to

their source (ΓS
Y,G) counterparts.

where the bar denotes CP conjugation. The pertinent analytical expressions of the collision

terms and scattering cross sections can all be found in [16].5 Note that the primed terms

correspond to collision terms with subtracted real intermediate states (RIS), which can take

negative values due to the lack of an on-shell contribution to the squared amplitude.

The typical dependence of the various collision terms on z = mN1
/T is shown in figure 2,

for |hν
ij | ≈ 3 × 10−3 and mN1

= 500 GeV. The other two masses obey the tri-resonant

condition, which results in a sizeable ∆L = 2 rate. It is noteworthy that the collision term

that describes the decays and the RIS parts is larger than Γ∆L=2, as also observed in [13].

For this figure, the relevant perturbation matrix, δh
ν , needed to match the neutrino data

may be found in appendix C under Benchmark A.

During leptogenesis, part of the lepton asymmetry that is generated in the processes

described above is partially converted into a baryon asymmetry by (B + L)-violating

sphaleron transitions which become exponentially suppressed below the temperature Tsph ≃
132 GeV [71]. In order to compare the generated BAU at T = Tsph to its value at the

recombination epoch, we assume that there are no considerable entropy releasing processes,

and hence the entropy density remains approximately constant as the Universe cools. Using

entropy conservation and the relation s(T ) ∼ heff(T ) T 3, it can be shown that the BAU at

Tsph is related to the BAU at Trec by

ηrec
B =

heff(Trec)

heff(Tsph)

nB(Tsph)

nγ(Tsph)
= f

nB(Tsph)

nγ(Tsph)
. (4.34)

5For the gauge and Yukawa mediated cross section, we use the lepton thermal mass, as infra-red

regulator [70].
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For the dilution factor, f , we use the approximate value 1/27 [13, 72], while for the conversion

factor between lepton and baryon number above the sphaleron temperature, we use the

equilibrium relation given by [73]

ηB = −28

51
ηL . (4.35)

5 Approximate solutions to Boltzmann equations

In this section we discuss the solution of the BEs eqs. (4.19) and (4.20) in order to understand

the production of a lepton asymmetry in the early Universe. As a first approach, we consider

a simplified version of these equations, where we ignore the “back-reaction” (i.e. the second

term of eq. (4.19)), the variation of the relativistic dofs, and only take into account the

decay and RIS terms. Moreover, we assume that mN1
≈ mN2

≈ mN3
.

5.1 Approximation for δηNα

We begin by solving the equation for δηNα , which takes the form

dδηNα

dz
=

K1(z)

K2(z)

[
1 +

(
1 − z

ΓNα

H(z = 1)

)
δηNα

]
. (5.1)

Initially (at z ≪ 1), right-handed neutrinos are taken to be in thermal equilibrium, so

δηNα = 0. Therefore, at early times, we expect the second term of eq. (5.1) to vanish.

Moreover, at such high temperatures, we may approximate K1(z)/K2(z) ≈ z/2, so

δηNα ≈ z2

4
, for z ≪ 1 . (5.2)

As the temperature drops, δηNα increases, and at some point the second term starts to

become comparable to the first. So, δηNα continues to increase until both terms become

equal. We denote this point as z = ẑ, and assuming ẑ ≫ H(z = 1)/ΓNα , it is estimated as

ẑ ≈
(

4 H(z = 1)

ΓNα

)1/3

. (5.3)

For z ≈ ẑ, we observe that the r.h.s. of eq. (5.1) stays close to zero. That is, δηNα ≈ H(z =

1)/ΓNαz−1, since any increase (decrease) with respect to this behaviour pushes δηNα to

negative (positive) values. Consequently, we find that for z ≫ ẑ,

δηNα ≈ H(z = 1)

ΓNαz
. (5.4)

Notice that this result does not depend on the initial condition. Also, we should point out

that at late times, namely z ≫ 1, eq. (5.4) solves eq. (5.1) up to terms O(1/z2).

5.1.1 The neutrino Boltzmann equation as an autonomous system

The independence from the initial conditions has been previously highlighted in the literature

(e.g. [16, 22]). However, it would be helpful to analyse its attractor properties. We begin

by noting that eq. (5.1) can be written in the form of an autonomous system

dr

dt
= V (z(t), δηNα(t)) , (5.5)
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Figure 3. The solution of (5.1) for ΓNα
= 100 H(z = 1) with initial conditions δηNα

(z → 0) = 0

(black) and δηNα
(z → 0) = 1 (dashed red). The arrows show the direction of V, while the colour

gradient encodes the size of δηNα
, with light grey (black) for low (high) values of |dδηNα

/dz|. The

vertical grey line shows the value of ẑ as estimated by (5.3).

with r = (z, δηNα)T and

V (z(t), δηNα(t)) =




1

K1(z(t))

K2(z(t))

[
1 +

(
1 − z(t)

ΓNα

H(z = 1)

)
δηNα(t)

]


 . (5.6)

Here, the vector field V represents the flow of eq. (5.1), which helps to demonstrate how r

reaches the stable solution, independently of the initial conditions. In figure 3, we show the

evolution of δηNα for ΓNα = 100 H(z = 1) and for two different initial conditions. Along

with the two curves, we show the direction of V, which indicates at each point the tendency

of r. Moreover, darker arrows imply higher values of |dδηNα/dz|. As both curves merge

at z & ẑ, δηNα ends up becoming ignorant of the initial condition. This feature is also

imprinted in the direction of V. The normalised vector, V, is parallel to the z-axis for

z . ẑ, while it points towards the solution for z & ẑ.

5.2 Approximation for ηL

The corresponding equation for the lepton asymmetry, assuming that δηNα ∼ 1/z, can be

written as

dηL

dz
=

δT

2ζ(3)
K1(z) z2

(
1 − z

2kL

3δT
ηL

)
, (5.7)

where δT =
∑

α δα and kL =
∑

a

ΓNα

H(z = 1)
.
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