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ABSTRACT: We study a class of leptogenesis models where the light neutrinos acquire their
observed small masses by a symmetry-motivated construction. This class of models may
naturally include three nearly degenerate heavy Majorana neutrinos that can strongly mix
with one another and have mass differences comparable to their decay widths. We find that
such a tri-resonant heavy neutrino system can lead to leptonic CP asymmetries which are
further enhanced than those obtained in the usual bi-resonant approximation. Moreover, we
solve the Boltzmann equations by paying special attention to the temperature dependence of
the relativistic degrees of freedom of the plasma. The latter results in significant corrections
to the evolution equations for the heavy neutrinos and the lepton asymmetry that have
been previously ignored in the literature. We show the importance of these corrections to
accurately describe the dynamical evolution of the baryon-to-photon ratio np for heavy
neutrino masses at and below 100 GeV, and demonstrate that successful leptogenesis at
lower masses can be significantly affected by the variation of the relativistic degrees of
freedom. The parameter space for the leptogenesis model is discussed, and it could be
probed in future experimental facilities searching for charged lepton flavour violation and
heavy neutrinos in future Z-boson factories.
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1 Introduction

Observations done by the Wilkinson Microwave Anisotropy Probe (WMAP) and the Planck
observatory indicate that the extent of the Baryon Asymmetry of the Universe (BAU)
amounts to [1, 2]

n$MB = 6.104 4+ 0.058 x 10710, (1.1)

Hence, explaining the observed BAU has been one of the central themes of Particle Cosmology
for decades. The existence of this non-zero BAU is one of the greatest pieces of evidence for
physics beyond the Standard Model (SM). In the SM, the neutrinos are strictly massless,



and so this runs contrary to the observations of neutrino oscillations [3-5], which only exist
for massive neutrinos. A minimal resolution to this problem will be to include additional
heavy neutrinos which are singlets under the SM gauge group: SU(3). x SU(2)z x U(1)y.
These additional neutrinos are permitted to have large masses due to the inclusion of a
Majorana mass term which violates lepton number, L, by two units. They also provide a
mechanism to render the SM neutrinos massive, whilst ensuring that the generated mass
is small in scale through the famous seesaw mechanism [6-9]. On the other hand, the
spacetime expansion of the FRW Universe provides a macroscopic arrow of cosmic time ¢, as
well as Sakharov’s necessary out-of-thermal equilibrium condition [10] needed to potentially
generate a large lepton-number asymmetry. This asymmetry is then rapidly converted into
a baryon asymmetry through (B + L)-violating sphaleron transitions while the temperature
of the Universe remains above the temperature Ty, ~ 132 GeV, after which these sphaleron
transitions become exponentially suppressed. This mechanism is commonly referred to
as leptogenesis [11].

A particularly interesting framework of leptogenesis is Resonant Leptogenesis (RL) [12,
13], which permits Majorana mass scales far lower than those that occur in typical Grand
Unified Theory (GUT) models of leptogenesis [11, 14]. In RL models, the CP violation
generated is greatly enhanced through the mixing of nearly degenerate heavy Majorana

neutrinos N, provided
I'n,.s
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where my, and 'y, are the masses and the decay widths of N, respectively. This mass
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arrangement in turn permits the generation of appreciable BAU at sub-TeV masses [12, 15],
in agreement with neutrino oscillation parameters [13, 16].

In this paper we study a class of leptogenesis models that may naturally include three
nearly degenerate heavy Majorana neutrinos which can strongly mix with one another and
have mass differences comparable to their widths. We compute the leptonic CP asymmetries
generated in such a tri-resonant heavy neutrino system, to find that their size is further
enhanced in comparison to those that were naively determined in the usually considered
bi-resonant approximation. Accordingly, this enhanced mechanism of leptogenesis will be
called Tri-Resonant Leptogenesis (TRL). In the context of models realising TRL, our aim is
to find neutrino Yukawa couplings whose size lies much higher than the one expected from
a typical seesaw scenario, whilst still achieving the observed BAU. To this end, we solve
the Boltzmann equations (BEs) that describe the evolution of heavy neutrino and lepton-
asymmetry number densities before the sphaleron freeze-out temperature, after including
decay and scattering collision terms. An important novelty of the present study is to assess
the significance of the temperature dependence of the relativistic degrees of freedom (dofs)
in the plasma. Finally, we analyse observables of charged Lepton Flavour Violation (cLFV)
that could be tested in current and projected experiments, such as p — eee at Mu3e [17],
pw — ey at MEG [18, 19], coherent 1 — e conversion at COMET [20] and PRISM [21], as
well as matching the observed light neutrino mass constraints [3-5].

In our analysis we will not specify the origin of the structure of the Majorana-mass and
the neutrino Yukawa matrices. But we envisage a high-scale SO(3)-symmetric mass spectrum



for the heavy Majorana neutrinos, possibly of the order of GUT scale [22, 23], which is
broken by renormalisation-group (RG) and new-physics threshold effects. Following a less
constrained approach to model-building, we also assume an approximate Zg-symmetric
texture for the entries of the neutrino Yukawa matrix. Such a construction enables
the generation of the observed small neutrino masses, without imposing the expected
seesaw suppression on the neutrino Yukawa parameters for heavy neutrino masses at the
electroweak scale.

The layout of the paper is as follows. In section 2 we describe the minimal extension
of the SM that we will be studying, and introduce the flavour structure of its leptonic
Yukawa sector. In section 3 we specify the light neutrino mass spectrum for our analysis,
and present the cLF'V observables one may expect to probe in this model, such as u — ey,
u — eee, and coherent y — e conversion in nuclei. In section 4 we explore the different
aspects of leptogenesis, notably the CP violation generated in RL and TRL scenarios and
derive the relevant set of BEs, upon which our numerical estimates are based. This set of
BEs is solved including contributions from chemical potentials while crucially preserving
the temperature dependence of the key parameter, denoted later as heg(7T), that describes
the variation of the relativistic dofs with 7T'. In section 5 we present approximate solutions
to the BEs, which will help us to shed light on the attractor properties of our fully-fledged
numerical estimates. In section 6 we give a summary of our numerical results, including
evolution plots for the BAU and comparisons with observable quantities. Finally, section 7
summarises our conclusions and discusses possible future directions. Some technical aspects
of our study have been relegated to appendices A, B and C.

2 Seesaw extension of the Standard Model

We adopt the framework of the conventional seesaw extension of the SM. This extension
requires the addition of n > 2 right-handed neutrinos, which are singlets under the SM
gauge group, and have lepton number L,,, = 1. Given this particle content and quantum
number assignments, the Lagrangian of the right-handed neutrino sector reads:

— = 1
EVR = ipRaVR — (L h"®vp + 5?% my Vg + HC) . (21)

Here, L; = (v;,e;1)7, with i = 1,2,3, denote the left-handed lepton doublets, while v,g,
with « = 1,...,n, are the right-handed neutrino fields. The matrices h” and mj; are the
neutrino Yukawa and the Majorana mass matrices, respectively, and ® is the weak isospin
conjugate of the Higgs doublet ®. Note that we reserve bold face for matrices in flavour
space, and assume the implicit contraction of flavour space indices.

Without loss of generality, we assume that the Majorana mass matrix is diagonal, in
which case we may recast the Lagrangian eq. (2.1) in the unbroken phase as

_ _ ~ 1
Ly, =iNGN — (Lh'® PpN + Hee.) - SV mu N, (2.2)

where Pp/j, = % (14 £ 7v5) is the right-/left- chiral projector, 1, is the n x n identity matrix,
my; = diag(mp,,...,mp, ), and Ny = vor+ I/SR are the mass-eigenstate Majorana spinors
associated to the right-handed neutrinos.



In the broken phase, this picture changes by the mixing between singlet and left-
handed neutrinos. The mass eigenstates are particular combinations of the weak eigenstate

U Uwv ¢
P (;) _ (UWf R) <VL> , (2.3)
Nv¢ Unvp ) \VR

where v 23 are the light neutrino mass eigenstates and U is a (3 +n) x (3 + n) unitary

neutrinos, given by

matrix that diagonalises the neutrino mass matrix (see section 2.1). The subscripts, v¢
and v, on its sub-blocks indicate the possible components of the right-handed chirality
projection of each mass eigenstate, represented here as vector columns v and N. Following
the notation of [24], we may then write the Lagrangian for the charged current interaction
of the heavy neutrinos as

Line = _%Wu_éz‘LBia'Y'uPLNa +H.c., (2.4)

where g,, is the gauge coupling associated to the SU(2) group, and

Bia ~ &ia = (mDmX/[1> (2.5)

(1e%
is the light-to-heavy neutrino mixing at first order in the expansion of the matrix-valued
parameter ¢ [24]. In the following, we assume that the charged lepton Yukawa matrix is
diagonal, and hence B, = (U,up,)ia- At first order in &, the effective light neutrino mass
matrix, m”, follows the well-known seesaw relation [7]

m’ = —mpm,; mj},, (2.6)
where mp = h”v/4/2 is the Dirac mass matrix, and v ~ 246 GeV is the vacuum expectation
value (VEV) of the Higgs field. By virtue of this relation, it is apparent that a Dirac mass

matrix at a scale
i

[mp| = /Tr [m}mp| ~ o, (2.7)
would in principle require GUT scale heavy neutrinos, which means that any impact of the
singlet neutrino sector on experimental signatures would be beyond the realm of observation.
This motivates the search for new model building strategies to explain sub-eV light neutrinos,
whilst maintaining agreement with light neutrino data and other low energy experiments.

2.1 Neutrino flavour model

In order to explain the smallness of neutrino masses, we investigate scenarios where the
neutrino mass matrix is naturally small, preferably arising from the subtle breaking of a
symmetry. When this symmetry is exact, eq. (2.6) vanishes identically, given by the 3 x 3
null matrix, 03, i.e.

mpmj; m}, = 03. (2.8)



If we consider a singlet neutrino sector with a nearly degenerate mass spectrum, this is
approximately equivalent to require that prior to the breaking of the symmetry the leading
Yukawa matrix, hg, satisfies the condition

hy hi" = 03. (2.9)

Considering a model with three right-handed neutrinos, this motivates the following structure
for the leading neutrino Yukawa matrix:

a aw CLOJ2

hf = |bbw buw? |, (2.10)

C CWw cw2

where the parameters a, b, and ¢ are in general real, and w is the generator of the Zg
group, w = exp(7wi/3). We remark that this choice is not unique, and the vanishing of the
light neutrino mass matrix may be realised through other constructions of the neutrino
Yukawa matrix. For example, one could replace the Zg element w with the Zs element
W' = exp(—2mi/3). However, for concreteness, we select the Zg-symmetry realisation for
our analysis.

Evidently, the flavour structure of eq. (2.10) has to be perturbed in order to reproduce
the observed neutrino oscillation phenomenon, which requires massive neutrinos. Even
though h{ as given by eq. (2.10) is rank one, a perturbation éh” such that rank(dh”) > 2
is sufficient to explain neutrino oscillations, as long as the following condition is enforced:

2
(hf + 6h”)m};} (hf + 6h")" = S m"”, (2.11)
v

where m” is a 3 X 3 complex and symmetric matrix. Taking a, b, ¢, and the singlet neutrino
spectrum as input parameters, eq. (2.11) defines a set of 12 constraints for the entries of
the perturbation matrix dh”. The solutions to eq. (2.11) have to satisfy a further condition,
which is [h};|/[(hf)x| < 1, with 4,7, k, 1 = 1,2,3. More generally, the zero mass condition
of eq. (2.9) can be enforced when the Majorana mass matrix mys is not proportional to
the identity, or even in the case when loop corrections to the tree-level seesaw relation
of eq. (2.6) are considered. This gives us complete control over the loop corrections to
the light-neutrino mass matrix at all orders. For example, we can incorporate one-loop
corrections to m” [24] by modifying the tree-level zero mass condition as follows [25]:

_ [0 T
h{ [li - mmbf (mMm}L\/[ﬂ hy' =03, (2.12)
where
+ M? mMmJr 3M2 mMrnJr
f(mMmM>: 7 L In 2M + 7 Z In 2M .
mMmM_M[%rl?) M mMmM—M%L; Mz

(2.13)

In the above, a,, = ¢2,/(47)? is the electroweak-coupling parameter, and My, My, and
My are the masses of the W, Z, and Higgs bosons, respectively. Redefining the quantity



inside the square brackets in eq. (2.12) as an effective inverse Majorana mass, ﬁ;j, the
restrictions can be recast as

him, hf" =0;. (2.14)

This can be further simplified by rescaling the columns of the Yukawa matrix using the
definition

HY = h{m,;/*, (2.15)
which leads to
H HYT =0;. (2.16)

This results in the same condition of eq. (2.9) but this time for a rescaled Yukawa matrix,

~1/2 This shows that even for appreciable mass splittings

H{, with dimensions of (mass)
between the singlet neutrinos and with the inclusion of loop corrections to the neutrino
mass matrix, the Yukawa matrix can always be chosen in such a way that the neutrinos are

massless by taking

fl £1 w fl w2
Hg = 52 ng 52 OJ2 5 (2.17)
Eg ng €3 OJ2

where /23 are real parameters. The dimensionless Yukawa matrix, hg, can be found
using eq. (2.15), and as explained previously, its structure can then be perturbed to
reproduce the observed neutrino mass matrix m”. Here we will not address the origin of
the texture of the neutrino Yukawa matrix h{, but it can be the subject of future studies
on model building.

It is worthy to mention that the neutrino mass matrix is model dependent, and its
relation to the observable parameters measured in neutrino oscillation experiments is
given by

m” = U yns M Uppins (2.18)

where Uppng is the PMNS lepton mixing matrix [26, 27] and m” = diag(mq,ma, m3),
in which my 23 are the light neutrino masses. The matrix Upnns performs the Takagi
factorisation [28, 29] when applied to the light neutrino mass matrix. If the Yukawa matrix
of the charged leptons is assumed to be diagonal, Upyng parameterises the flavour mixing
in charged current interactions of the leptonic sector. The experimental values of the
parameters involved in eq. (2.18) are discussed in the next section.

3 Low energy observables

The observation of flavour neutrino oscillations at Super-Kamiokande [5] and the Sudbury
Neutrino Observatory [3, 4] provides definite evidence of their massive nature. The resulting



neutrino oscillation parameters offer strong constraints on the neutrino model parameters,
which we discuss in this section. In addition, we present the formulae for the rates of
selected charged cLFV processes, namely @ — ey, i — eee and coherent p — e conversion
in nuclei, which can be distinctive signatures of Majorana neutrino models, and are crucially
dependent on the light-to-heavy neutrino mixing parameter presented in eq. (2.5).

3.1 Neutrino oscillation data

In order to incorporate the neutrino mass constraints into our model, we follow the procedure
outlined in section 2.1. We neglect the non-unitarity effects that arise due to light-to-heavy
neutrino mixing, and without loss of generality, we assume that the charged lepton Yukawa
matrix, h’, is diagonal. With the first assumption in mind, the matrix Upyng can be
parameterised as follows [30, 31]:

€12€13 $12€13 size” "
UpMNS = | —S12¢23 —C12523513€" 12023 —s12503513€"  sp3c13 | X diag (e¢a1/2761a2/27 1) ;

S$12C23—C12C23513€"  —C12823—S12C23513€™ Ca3013
(3.1)
where ¢;; = cos0;; and s;; = sin §;; are the cosines and sines of the neutrino mixing angles,
0 is the so-called Dirac phase, and a1 2 are the Majorana phases. Together with the neutrino
squared mass differences Am3; = m3 — m? and Am3; = m3 — m2, these angles and the

Dirac phase comprise the light neutrino oscillation data.

The values of these parameters are experimentally bounded with the exception of the
absolute neutrino mass scale, characterised by min(m; 3), and the sign of Amgl = mg - m%,
which requires the distinction between the normal (Am3; > 0) and inverted (Am3; < 0)
ordering hypotheses. For our numerical estimates, we use the latest best fit values for the

neutrino oscillation parameters [32]:

Am3, =m3 —m} =7.50 x 107° (eV)?, Am2, =m2 —m?3 =255 x 1073 (eV)?,
(3.2)

015 = 34.3°, g3 =49.26°, 613 =8.58°,  §=194°. (3.3)

Since the experimental data allows a massless neutrino, for definiteness we work under
the hypothesis that m; = 0 and the light neutrino spectrum follows normal ordering.
Likewise, for the unconstrained Majorana phases, we set a2 = 0. For relevant tri-resonant
benchmarks, we provide the relevant dh” values, which reproduce the light neutrino data in
appendix C.

3.2 Lepton flavour violation

In the seesaw extension of the SM, the leading order contributions to cLFV processes appear
at the one-loop level [33]. For the radiative decays of our interest, the expressions for the



Nucleus (4X) Vv® v D Teapt (106 s71)

AL 0.0161 0.0173 0.0362 13.45
35Ti 0.0396 0.0468 0.0864 2.59
B7Au 0.0974 0.146  0.189 13.07

Table 1. Overlap integrals and muon capture rates for the nuclei of the elements used in the
relevant experiments.

branching ratios are given by [34]

3.2 4

QLS m m
BR(pu — ey) = 5562 M4 —£ ‘G“e , (3.4)
O[fu mﬁ mu peee e 2 e e 2
BR(j — eee) = 5= T 2 FBOX + FY° =282 (FY° — FL)
+4st ]Fg —F¢€ + 1652 Re <F56+ Fg§§€> Gg‘e*] (3.5)

—a8sh, Re [(F5° — Fre) Gue] + 3251, |Ge

()5}

where s,, = sin 0,, is the sine of the weak angle, m, is the mass of the electron, and m, and
', are the muon mass and width. The form factors are defined in appendix B. It is worth
mentioning that other cLFV decays involving 7 leptons are also allowed, but we ignore
them in the discussion of our results since the experimental bounds that apply to those
processes are far weaker in the parameter space of interest to us.

The rate for the 1 — e conversion in an atomic nucleus 4X is given by [35]

2

_ 2G3a
RX FOw . (3.6)

—e
# 167T capt

V@) (2Fpe 4 FY) + 4V (Fle 4 2F1€) + Z%GﬁeD

where G'r is Fermi’s constant, e = g5, is charge of the electron, I'capt is the nuclear
capture rate, and V® V() D are numerical estimations of the overlap integrals involved
in the calculation of the conversion rate [36]. For the nuclei of our interest, table 1 presents
the numerical values of these parameters. The form factors Fq‘w (¢ = u,d) in eq. (3.6) are
defined as

~ I 1
Pl = Qqsa, Pl + (23 - Qqsi,) Ff + Pl (3.7)

where Q,, = 2/3, Q4 = —1/3 refer to the electric charges of up- and down-type quarks, and
I¥ =1/2, I$ = —1/2 denote the third component of their weak isospin. The corresponding
form factors can be found in appendix B.

The search for cLFV is a prominent experimental endeavour, and there are several
facilities that operate with the aim of finding a conclusive hint for this class of transitions.
Despite the non-observation of these signals, experimental efforts have lead to stringent



bounds on the parameter space of Majorana neutrino models, which are reflected by the
current upper limits

BR(u — ey) <42x 1071 MEG [18],

BR(y — eee) < 1.0 x 10712 SINDRUM [37], (3.8)
RA < 70x107®  SINDRUM [38].

u—e

These limits are expected to be improved by a few orders of magnitude in the near future.
There is a new generation of experiments that are either starting to take data, under
construction, or in the proposal/design stage. Among them, we should mention MEG-II,
COMET, Mu3e, Mu2e and PRISM, with the following projected sensitivities:

BR(p — ey) < 6 x 1071 MEG II [19],

BR(u — eee) < 10716 Mu3e [17],
RO, <3x1077 MuZ2e [39], (3.9)
R, <107'7 COMET [20],
R, <107 PRISM [21].

These projections will be compared with the cLF'V rates as predicted by our leptogenesis
model to assess its testability in the foreseeable future.

3.2.1 Non-zero leptonic CP phases in cLFV processes

Here we examine the impact of leptonic CP phases on cLFV processes for our class of
seesaw models. It was argued in [40] that the existence of non-zero leptonic CP phases may
have a substantive impact on the rate of cLF'V processes through the interference terms
involving the mixing By,. Following a procedure similar to [40], we write the elements of
B,, as a magnitude s;, and a phase €;,. Thus, the terms that appear in the observable
quantities are

3 3 3 -
* i(g: 0 —E s ‘AZ]
Y BiaBly =Y siasjac T = 3" si0850e' 0 (3.10)
a=1 a=1 a=1

where we have introduced the CP phases AY = g, — €ja- These CP phases are expected
to be small and can easily be extracted by taking the ratio of imaginary to real parts of the
mixing, i.e.
Sm{BiaBj, |
Re {Bia B}, }

For the model introduced in section 2, the heavy neutrino masses are nearly degenerate

= tan (Ag) ~ AY (3.11)

and the elements of the mixing matrix are all of similar scale. Therefore, the observable

quantities may be approximated by taking the masses to be exactly degenerate and letting

Sia = 8;1 for all ao. Under these simplifications, the variations in the cLF'V observables are

captured in the value of

2 3

R~ 3?1331 Z cos (Afj — Ag) . (3.12)
a,f=1

3
a=1



Then, the observed deviation due to the existence of non-zero leptonic CP phases may be
written as

‘Zi:l Bi&B;a
331 BiaBj,

DY =1—

cos (Ag - Ag) . (3.13)

a 1

4

[y

|
O =
e

A;=0

In the case of small leptonic CP phases, it can be seen that the deviation in the rate of
cLFV processes away from the CP conserving rate may be given by

D~ [(Agj — a9 (A - aP) 1 (oY - A?)Q} : (3.14)

and so the observed deviation is itself a small effect.

In the context of the Zg motivated model we have presented, the quantity BiaBj, is
completely real at lowest order, and therefore the leptonic CP phases are identically zero.
Therefore, in order to have non-zero leptonic CP phases, we need to include the symmetry
breaking term dh”. It is then easy to verify that up to leading order in the perturbations,
0h”, the relevant leptonic CP phases are given by

o { (i), (nemst), + (v, (i)}
(B ), (ngei) |

Hence, |A¥| ~ |6h”|/|h4| < 1. We may therefore expect the deviation away from the CP
conserving cLFV observables to be very small in magnitude, D% ~ |§h”|?/ (9]|h§|?). For

AY ~ (3.15)

the generic scenarios listed in appendix C, one finds a deviation of D¥ ~ 1073, so any CP
effect will be difficult to observe for the TRL models under study.

4 Tri-resonant leptogenesis

4.1 Leptonic asymmetries

In leptogenesis, the CP violating effects that lead to the generation of a net baryon
asymmetry come from the difference between the decay rate of heavy neutrinos into Higgs
and leptons, and their charge-conjugate processes. In RL models, the absorptive part of the
wavefunction contribution to the decay rate [41] is central to capture the resonance effects
that arise in models with nearly degenerate singlet neutrino masses, and that result in the
enhancement of CP violation [42]. To facilitate the presentation of the analytic results
for the CP asymmetry in heavy neutrino decays within this framework, we introduce the
coefficients [13, 16]

hi by (h'Th);

A .= — op 4.1

o ; 167r T (4.1)

hgghv h” my, Lo

%3 | (42)
k=1~v#a Nao

~10 -



which pertain to the absorptive transition amplitudes for the propagator and vertex,
respectively. Here f(z) = /x {1 —(14+2)ln (HTIH is the Fukugita-Yanagida one-loop
function [11].

A full and consistent resummation of the CP-violating loop corrections, including
three Majorana neutrino mixing, generates the following effective LON Yukawa cou-
plings [13, 16, 22]:

3
(hi)la = h;/a +iVig — i Z |5aﬂv| h;/ﬂ
By=1
o T'Na (Maag + Mppa) — iRay [Mays (Maoy + Myra) + Mppy (Maya + Myar )]

mi, — m%\,ﬁ + 2im3, App + 2i SmRay (m?\/a | Apy|2 + mNBmM?ReA%V)

)

(4.3)
where €,3+ is the anti-symmetric Levi-Civita symbol, Mg, = mxy, Ag, and
2
mNa
Raﬂ = 2 .2 . . (44)

The corresponding CP-conjugate effective Yukawa coupling, which is associated to the
LEC®*N interaction, is denoted by (h” );o, and it can be found through the replacement
of hy, with (h; )* in eq. (4.3). Notably, this resummed Yukawa coupling captures all
possible degrees of resonance between the contributions to the CP asymmetry from the
mixing between the singlet neutrinos, which includes the bi-resonant and tri-resonant
cases. We should clarify here that the bi-resonant case implies maximally enhanced CP
asymmetries through the mixing of two singlet neutrinos, and the tri-resonant implies
maximally enhanced CP asymmetries through the mixing of all three singlet neutrinos.
Moreover, in this formalism CP violation comes from the difference between the resummed
Yukawa couplings (h”);, and (fli)la, as it can be seen by calculating the heavy neutrino
decay rates and scattering amplitudes with the help of eq. (4.3). Note that for a model
with two right-handed neutrinos (or equivalently, for a model utilising the bi-resonant
approximation), the resummed Yukawa matrices are found by setting R,z to zero in eq. (4.3).

Using these effective Yukawa couplings, the partial decay widths of the heavy neutri-
nos read

m — 2
I'(Ny — L,®) = 8]7\:1 (0 )ia| - (4.5)

(h)1a

2
. T(N — Lot = L;Za

In turn, these decay rates can be used to find the size of the CP asymmetries for each
lepton family, which for a given right-handed neutrino N, are defined as

[(No— L®) T (N, = Lfef) ‘(Bi)la\z - ‘(Bi)mf

Ol = == —
" Siepur T (Vo Li®) + T (No — LE®T)  (hy) 4 (010

(4.6)

ax o

We also define the total CP asymmetry, d,, associated with each heavy neutrino species:

ba= D Oal- (4.7)

l=e,p,7

- 11 -



In particular, a non-vanishing d, may only be generated in models, for which the flavour-
and rephasing-invariant CP-odd quantity

Acp = Sm {Tr [(hV)T h“m|,mym!, (h*)T (h*)* mM]} (4.8)
= (;ﬁmNamNﬁ (m?va - m?\;6> Sm [(h”Thy>2a} (4.9)

is non-zero [12, 13, 43, 44]. For the model presented in section 2, this CP-odd quantity may
be expressed as

Acp ~ (a2 +b% + C2>2 Z MN, TN, (m%va - m%\,ﬂ> %m(wQ(a_m) : (4.10)
a<f
When all heavy neutrino masses are exactly degenerate, the CP-odd invariant Acp vanishes.
However, with the inclusion of mass differences, Acp is proportional to the imaginary part
of the Zg element w? only.

Several applications of the RL formalism (e.g. [45-51]) exploit the bi-resonant en-
hancement of CP violating effects due to the mixing of two Majorana neutrinos, while the
contribution to the CP asymmetry due a third singlet neutrino is either absent due to
the neutrino mass model choice, or negligible when compared to the one generated in the
decays of the resonating pair. However, in a model with three right-handed neutrinos, in
the region where the masses of the heavy neutrinos satisfy the resonance condition

I'ngs
2

(a # B), (4.11)

lmn, — mNB] ~

effects of constructive interference generated by a third resonating neutrino can further
enhance CP violation as compared to the case when only two neutrinos are in resonance.
Figure 1 shows the behaviour of the CP asymmetries in the decays of N1, No, and N3, as
well as the total CP asymmetry d7 = )_, dq, plotted against my,. In this figure, the mass
of Ny is fixed at the value my, = my, +I'n, /2, therefore it fulfills the bi-resonant condition.
On the left panel, it can be seen that when mpy, = my,, the total CP asymmetry (solid red
line) vanishes due to the destructive interference effect of N3, while at my, = mn, +I'n,/2,
|d7| reaches a maximum that is more than 35% higher than in a model where the mass of the
third singlet neutrino lies outside the resonance region (i.e., high my,). In this tri-resonant
point, one has ¢; = d3, while 5 is the dominant contribution to ép. Furthermore, we
find that the values of 0123 are independent of the mass scale, my,, provided that the
tri-resonant condition is satisfied. Thus, the enhancement of J, is pervasive throughout the
tri-resonant parameter space. The middle panel of figure 1 shows the impact of the proper
three-neutrino mixing resummation on the asymmetry do by comparing the asymmetry
calculated by considering three Majorana neutrino mixing ((5&3)) with the two-neutrino
mixing case ((552)). When my, lies in the resonance region, it can be seen that the mixing
with N3 becomes important, and there is a sizeable difference between the two- and three-
neutrino mixing scenarios, where the latter has a sizeable enhancement effect on d5. The
right panel of figure 1 shows that the inclusion of three-neutrino mixing also affects the
size of the maximum magnitude of the asymmetry in the decays of N3, although to a
lesser extent.

- 12 —
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Figure 1. Left panel: CP asymmetries in the decays of N;, No and N3, together with the total
CP asymmetry o7 = > 0q, as a function of the mass of N3. Centre panel: CP asymmetry in
the decay of Ny vs. my, as calculated in a model that considers two-neutrino mixing (552)) and

three-neutrino mixing ((553)). Right panel: CP asymmetry in the decay of N3 vs. my, calculated in a

model that considers two-neutrino mixing (5:(52)) and three-neutrino mixing (5?()3)). In all three panels,

the vertical dashed lines indicate, from left to right, the values of my,, my, and the tri-resonant
value of mp, (for details, see text).

Overall, figure 1 showcases a resonant enhancement of the total CP asymmetry of the
model when the three heavy neutrinos are in successive resonance, a scenario that we have
described as tri-resonant, in contrast to the bi-resonant approximation commonly studied in
the literature. We identify a particular tri-resonant structure which generates appreciable
BAU and maximises the scale of CP asymmetry within a model with three singlet neutrino
mixing. In the literature, there also exist studies which consider the mixing effects of three
singlet neutrinos [22, 23, 52-55]. These studies utilise a flavour structure different to the
Zg structure we have adopted, and in the case of [53], it is more similar to that proposed
in [56]. Hence, the flavour structure presented in these studies cannot be mapped onto the
discrete flavour symmetries we have used here, so as to enable some meaningful comparison.
Finally, we must point out that our approximate Zg-symmetric flavour structure provides
both light neutrino masses, and the origin for CP violation.

4.2 Boltzmann equations

The conditions for generating a BAU, dictated by [10], require not only a violation of the
CP symmetry, but also a departure from thermal equilibrium and baryon number violation.
Here, we introduce the set of Boltzmann equations that describe the out-of-equilibrium
dynamical generation of a lepton asymmetry in the early Universe, and assume that it is
reprocessed into a net baryon number through equilibrium (B + L)-violating sphaleron
transitions [57].

At temperatures, 7', pertinent to leptogenesis, the Universe is assumed to be radiation
dominated, with an energy and entropy density given by

7.(.2

p(T) = 55 9e(T) T, (4.12)
s(T) = iﬁheg(T) T3, (4.13)
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respectively. Here gog and heg are the relativistic dofs of the SM plasma that correspond
to p and s, respectively. For our numerical results, we use the tabulated data' for the
relativistic dofs as calculated in [59].2

The evolution of the heavy neutrino and lepton asymmetry number densities are
described by their respective BEs in terms of the dimensionless parameter z, = my., /7T, for
a =1,2,3. In line with previous conventions, we use z = z1. These BEs are presented in [16],
and due to the approximate democratic structure of the neutrino Yukawa matrix in our TRL
models, we sum over lepton flavours, which leaves us with four coupled evolution equations.

Following the conventions of [16], we normalise all number densities with the photon
number density

20313 2¢(3) (m,\?
n’Y(Za) - 2 - 72 ( 2 > ’ (414)
which for a given particle species i, gives us the ratio
ni(za)
; = . 4.15
i (ZOC) n'y(zoz) ( )

In addition, we define the departure from equilibrium for the heavy-neutrino density as

1N, (%a)
N, (2a) = s — 1, 4.16
n ( Oé) 77;3\(71& (Za) ( )
where n?\?a denotes 1y, in thermal equilibrium, for which we use the approximate expression
2
5 (20) & 522 Ko (%) (4.17)
« 2¢(3)

Here, ((3) ~ 1.202 is Apéry’s constant, and K, (z) is a modified Bessel function of the
second kind. In the BEs, we have also included terms which depend on the parameter

1dIn he
Sn(za) = 1 1 foff

" 3dlnz, ’ (4.18)

since we allow heg to vary with 7.3

Considering decay terms, AL = 1 and AL = 2 scattering processes, and the running of

the dof parameters, the BEs can be written as?

donn, On (2a) { D(a) | 1S(@) | pS(@)) , 2 “D(a) | fS(@) | pS(a) }
< =— r=«’4r r — r~ear T
dlnz, H (24) 03 (2a) 577Na( +ly “t+lg )+9?7L5a< +ly "+lg )
K (Za)
e e R GICRE I (119)

1We have extracted the corresponding data file from the source code of MicrOMEGAs [58].

2From [59] we choose the equation of state model labeled as C.

3In fact, in the data file we have extracted from MicrOMEGAs, the relativistic dofs are not constant even
at temperatures well above 100 GeV. This unexpected behaviour arises from combined lattice [60] and
perturbative QCD [61] considerations to the equation of state of the plasma, leading to deviations from the
ideal gas assumption at high temperatures [59].

“In order to solve the system of equations eqs. (4.19) and (4.20), we employ the implementation of
RODASPR2 [62] provided in NaBBODES [63]. We have checked that other methods [64, 65] as well as the ones
provided by scipy [66] produce the same results. The relativistic dofs of the plasma are interpolated using
SimpleSplines [67] and the various integrals needed for the collision terms are evaluated using LAInt [68].
Finally, all figures are made using the versatile visualization library matplotlib [69].
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dnr 0 (2) [ & (@) L 1S@) , S(@)
dlnz__ (2) {Z(va Oa ( Hy “+lg )

a=1

3
[Z (PP 5 4 £E0) Ll @)y Pt @) _‘_FALQ]

a=1

-
27% 252 (ry g @) }—3nL (6n (2)—1), (4.20)

where

A3 ge(za) MA, 1
45 Mpy Za

is the Hubble parameter, and Mp; ~ 1.221 x 10" GeV is the Planck mass. Since the BEs

are not identical to the ones utilised in the literature due to the non-trivial T-dependence of

H(zo) =

(4.21)

hesr, we show how they are obtained in appendix A. The various collision terms are defined
in the literature [16] as

1
PO = s (4.22)
Ty
f%)_( 12>FD(a) (4.23)
21
S(a)_i NauC
= a2 |, (4.24)
=S(a) _ 1 12 08 e
I'y —nﬁy _(577Na+1+21 ’YQUC+ 159(577Na+2) L6 | (4.25)
s L[ 1 TR
PY _n'y _( (677Na+1) 21 ’yQuC—i_ g(ST]Na ’YLQC , (426)
S 1 N,V
Y
ps)_ L[ 12 Ny, 12\ noz 12\ yoo
g ~ <1+21 Voo |t 577Na+1+21 Vot T 1+(577Na+1)21 LV, , (4.28)
as@) 1[0 12\ Nv. 12 12\ na
' T _<1+21 Yoo T+ (577Na+1)+21 7V<I>T+ (577N&+1)21 v, |
(4.29)
W _ 1[5 12 N.r 12 N uC
by T ny _<2+21)7Qu0+(2+7 YLge |» (4.30)
we) _ L[/ 12\ Ny, 12\ oz 24\ .ot
te Ny _(1+21 Yoo " T\ 2t 57 ) Wiet T\ oy )L | (4.31)
2 12
AL=2 Lo LL
g :m<1+21) [7/L0‘1>*+7¢T<1>T]> (4.32)

where 'y{f are CP-conserving collision terms for the process X — Y. The latter is defined as

W=1X =2Y)+7(X>7), (4.33)
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Figure 2. The 07y, independent collision terms are defined in (4.32) for [h| ~ 3 x 10~% and
mpy, = 500 GeV. The wash-out terms, F}VZ o, are uniformly different by a factor of two compared to
their source (T'{, ;) counterparts.

where the bar denotes CP conjugation. The pertinent analytical expressions of the collision
terms and scattering cross sections can all be found in [16].° Note that the primed terms
correspond to collision terms with subtracted real intermediate states (RIS), which can take
negative values due to the lack of an on-shell contribution to the squared amplitude.

The typical dependence of the various collision terms on z = my;, /7" is shown in figure 2,
for [hy;| ~ 3 x 1073 and my, = 500 GeV. The other two masses obey the tri-resonant
condition, which results in a sizeable AL = 2 rate. It is noteworthy that the collision term
that describes the decays and the RIS parts is larger than T'2L=2 as also observed in [13].
For this figure, the relevant perturbation matrix, dh”, needed to match the neutrino data
may be found in appendix C under Benchmark A.

During leptogenesis, part of the lepton asymmetry that is generated in the processes
described above is partially converted into a baryon asymmetry by (B + L)-violating
sphaleron transitions which become exponentially suppressed below the temperature Typp, ~
132 GeV [71]. In order to compare the generated BAU at T' = Ty, to its value at the
recombination epoch, we assume that there are no considerable entropy releasing processes,
and hence the entropy density remains approximately constant as the Universe cools. Using
entropy conservation and the relation s(T) ~ heg(T) T3, it can be shown that the BAU at
Tspn is related to the BAU at Ty by

rec __ heft (Trec) NB (Tsph)

e — nB(Tsph)
b Dt (TSph) n’Y(TSPh)

1y (Teph)

= (4.34)

5For the gauge and Yukawa mediated cross section, we use the lepton thermal mass, as infra-red
regulator [70].
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For the dilution factor, f, we use the approximate value 1/27 [13, 72|, while for the conversion
factor between lepton and baryon number above the sphaleron temperature, we use the
equilibrium relation given by [73]

28

_ 8 A
nB 1L (4.35)

5 Approximate solutions to Boltzmann equations

In this section we discuss the solution of the BEs egs. (4.19) and (4.20) in order to understand
the production of a lepton asymmetry in the early Universe. As a first approach, we consider
a simplified version of these equations, where we ignore the “back-reaction” (i.e. the second
term of eq. (4.19)), the variation of the relativistic dofs, and only take into account the
decay and RIS terms. Moreover, we assume that my, ~ mpy, =~ mny;.

5.1 Approximation for dnn,

We begin by solving the equation for ény,, which takes the form

= g [ (e o] e

Initially (at z < 1), right-handed neutrinos are taken to be in thermal equilibrium, so

dnn, = 0. Therefore, at early times, we expect the second term of eq. (5.1) to vanish.
Moreover, at such high temperatures, we may approximate Ki(z)/Ks(z) = 2z/2, so

2

z
Inn, ~ e for z < 1. (5.2)
As the temperature drops, dny, increases, and at some point the second term starts to
become comparable to the first. So, dny, continues to increase until both terms become

equal. We denote this point as z = 2, and assuming 2 > H(z = 1)/I'y,, it is estimated as

AH(z=1)\"3

i | ——— . 5.3
: < I'n, ) (5:3)

For z ~ 2, we observe that the r.h.s. of eq. (5.1) stays close to zero. That is, onn, ~ H(z =

1)/Tn, 271, since any increase (decrease) with respect to this behaviour pushes 7y, to

negative (positive) values. Consequently, we find that for z > 2,

H(z=1)

I'n.z

e

(57]]\[{x ~ (5.4)

Notice that this result does not depend on the initial condition. Also, we should point out
that at late times, namely z > 1, eq. (5.4) solves eq. (5.1) up to terms O(1/22).

5.1.1 The neutrino Boltzmann equation as an autonomous system

The independence from the initial conditions has been previously highlighted in the literature
(e.g. [16, 22]). However, it would be helpful to analyse its attractor properties. We begin
by noting that eq. (5.1) can be written in the form of an autonomous system

dr

dt =V (Z(t>7 0NN, (t)) ’ (5'5)
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Figure 3. The solution of (5.1) for I'y, = 100 H(z = 1) with initial conditions dny_(z — 0) =0
(black) and dnn, (z — 0) =1 (dashed red). The arrows show the direction of V, while the colour
gradient encodes the size of dny,, with light grey (black) for low (high) values of |ddny, /dz|. The
vertical grey line shows the value of £ as estimated by (5.3).

with r = (z,0ny,)" and

1

V (=), v, (1) = | K, (2()) (5.6)

et 1 (120552 y) w0

Here, the vector field V represents the flow of eq. (5.1), which helps to demonstrate how r
reaches the stable solution, independently of the initial conditions. In figure 3, we show the
evolution of dny, for I'y, = 100 H(z = 1) and for two different initial conditions. Along
with the two curves, we show the direction of V, which indicates at each point the tendency
of r. Moreover, darker arrows imply higher values of |ddny, /dz|. As both curves merge
at z 2 Z, énn, ends up becoming ignorant of the initial condition. This feature is also
imprinted in the direction of V. The normalised vector, V, is parallel to the z-axis for
z < 2, while it points towards the solution for z 2 2.

5.2 Approximation for nr,

The corresponding equation for the lepton asymmetry, assuming that dny, ~ 1/z, can be

written as
d?]L (ST 2 ( 2]€L )
— = ——K l—z—— 5.7
dz  2¢(3) 1(2)2 “300 1) (5:7)
I'n,

where 7 = >, 0o and kp, = Z

a

H(z=1)
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