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Abstract

We discuss the calculation of Sommerfeld enhancements on the neutralino LSP relic abundance calculation for
heavy neutralino dark matter including co-annihilations of nearly mass-degenerate neutralino and chargino states. A
newly developed EFT framework enables us to consider for the first time all (off)-diagonal potential and annihilation
matrices including P- and next-to-next-to-leading order S -wave effects for a generic MSSM parameter space point,
and to treat effects from heavy states perturbatively.
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1. Introduction

The search for Dark Matter (DM) is one of the major
efforts in particle physics today. Its existence is mainly
inferred from its gravitational effects on visible mat-
ter, but its composition is still unknown. If dark mat-
ter has a particle nature, its characterization will be de-
cisive towards unveiling the broader picture of physics
beyond the Standard Model. Amongst the many DM
candidates proposed, Weakly Interacting Massive Parti-
cles (WIMPs) provide a simple and compelling expla-
nation for this complex physical phenomenon. WIMPs
are massive particles produced in the hot early Universe
that couple to ordinary matter via a weak-scale interac-
tion, and with a lifetime longer than the age of the Uni-
verse in order to have survived until today. WIMPs have
the virtue of naturally achieving the correct DM relic
density and arise naturally in theories that extend the
Standard Model of particle physics. The best motivated
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candidates are those that arise in models constructed to
solve the electroweak symmetry breaking problem, and
certainly the most studied is the neutralino lightest su-
persymmetric particle (LSP) in the minimal supersym-
metric standard model (MSSM). The increasing preci-
sion in the measurement of the DM relic abundance
and of the indirect searches that look for the annihila-
tion products of DM particles, can be thus used to place
strong bounds on the MSSM parameter space, comple-
mentary to those from colliders and direct detection. For
heavy neutralino LSP, given that the LHC and current
direct detection experiments does not constrain the neu-
tralino and charging sector much, the astrophysics ob-
servations indeed provide the most stringent limits.

Both the current DM density and hence the sig-
nals in indirect-detection observations are controlled by
the rate at which DM particles annihilate into Stan-
dard Model final states. The annihilation cross sections
for the nonrelativistic DM have been typically com-
puted with perturbative methods at the leading order
in most of the work in the literature, which was jus-
tified given the limited accuracy of the observational
data collected for the relic density and cosmic rays sig-
natures in the past years. With the increasing preci-
sion on these measurements, specially for the DM relic
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density, whose value is extracted nowadays with few
percent level accuracy [1], several studies have been
performed to refine the theoretical calculations at a
level comparable with the experimental uncertainties.
In the context of supersymmetric DM, the one-loop
radiative corrections to the annihilation cross section
have been computed in some scenarios: for neutralino
co-annihilations with nearly mass-degenerate charginos
and sfermions, the complete next-to-leading order QCD
contributions [2, 3, 4, 5, 6], as well as an important part
of the electroweak ones [7, 8, 9], are already known.

For heavy neutralino DM there is a well-known class
of radiative corrections that can become larger than
naively expected by the weak nature of the interaction.
The so-called Sommerfeld effect, first pointed out in
the annihilation (wino- or higgsino-like) neutralino DM
into two photons [10], arises when the mutual interac-
tion between the non-relativistic DM particles signifi-
cantly distorts their wave function, such that they have
a larger probability to undergo annihilation. In terms of
Feynman diagrams the effect arises from the exchange
of the electroweak gauge bosons between the DM par-
ticles, which contributes a factor MDMg2/MW , such that
each additional exchanged particle is not suppressed by
g2 when the DM mass is much larger than the mediator
mass, eventually requiring a resummation of diagrams
to all orders in g2 in order to correctly calculate the an-
nihilation cross section.

Sommerfeld corrections to the relic density and to in-
direct signals cosmic have been studied extensively in
the pure-wino and Higgsino limits [11, 12, 13, 14, 15,
16], providing important constraints to the neutralino
masses. To be able to answer the question of which
region of the MSSM parameter space around the wino
and higgsino limits is excluded by the available data, the
analysis must allow for the neutralino LSP to be in an ar-
bitrary admixture of the electroweak gauginos and hig-
gsinos (work in this direction was initiated in [17, 18]).

In Refs. [19, 20, 21] we have developed an effective
field theory formalism that allows to calculate the en-
hanced radiative corrections to the pair-annihilation of
non-relativisitic neutralinos and charginos in the general
MSSM with neutralino LSP with arbitrary composition.
Our method builds upon the non-relativistic nature of
the pair of annihilating particles and separates the short-
distance annihilation process (taking place at distances
∼ 1/mLSP) from the long-distance interactions charac-
terized by the Bohr radius ∼ 1/mLSPg2, responsible for
the Sommerfeld effect, in analogy to the NRQCD treat-
ment of quarkonium annihilation [22]. However, in the
MSSM co-annihilation effects of the LSP with heavier
neutralino and chargino species have to be accounted

for in regions where mass degeneracies are generic.
Dealing with many nearly mass-degenerate scattering
states (channels) requires an extension of the conven-
tional NRQCD setup, which is briefly described next.
For details we refer the reader to [19, 20, 21].

2. Effective theory approach

The non-relativistic MSSM (NRMSSM) is designed
to describe the dynamics of charginos and neutrali-
nos which are off-shell by an amount of the order of
(mLSPv)2, where mLSP is the mass of the lightest neu-
tralino and v a typical non-relativistic velocity. The
framework allows one to compute the inclusive anni-
hilation rates of pairs of charginos and neutralinos mov-
ing at small velocities including their mutual interac-
tion in a systematic expansion in the coupling constant
and the velocity. The NRMSSM can account for several
non-relativistic particle species, namely those neutrali-
nos and charginos whose masses are nearly degenerate
with mLSP, and includes potential interactions generated
by massive gauge bosons (i.e. Yukawa-like potentials)
and Coulomb-like potentials. The structure of the EFT
Lagrangian reads [19]:

LNRMSSM = Lkin +Lpot + δLann + . . . (1)

Lkin contains the bilinear terms in the two-component
spinor fields ξi and ψ j = η j, ζ j that represent the non-
relativistic neutralinos (χ0

i ) and charginos (χ−j and χ+j ),
respectively. For n0 ≤ 4 non-relativistic neutralino
species and n+ ≤ 2 non-relativistic chargino species,
Lkin is given by

Lkin =

n0∑
i=1

ξ†i

⎛⎜⎜⎜⎜⎜⎝i∂t − (mi − mLSP) +
	∂ 2

2mLSP

⎞⎟⎟⎟⎟⎟⎠ ξi

+
∑
ψ=η,ζ

n+∑
j=1

ψ†j

⎛⎜⎜⎜⎜⎜⎝i∂t − (mj − mLSP) +
	∂ 2

2mLSP

⎞⎟⎟⎟⎟⎟⎠ψ j (2)

In order to have a consistent power-counting in the
amplitudes describing transitions between two-particle
states formed from the neutralino and chargino species
included in the EFT we need that the mass differ-
ences (mi − mLSP) are formally considered of order
mLSPv2 [19]. This implies that heavier neutralinos and
charginos (as well as further heavy SUSY particles and
higher mass Higgs) are not among the degrees of free-
dom of the effective theory, and their virtual effects can
only appear as short-distance corrections to the opera-
tors in LNRMSSM. In the same way, the hard modes as-
sociated to the SM and light Higgs-particle produced in
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neutralino and chargino pair-annihilations are encoded
in the Wilson coefficients of four-fermion operators in
δLann, which are local in space-time because the an-
nihilation takes place at short-distances ∼ O(1/mLSP),
as compared to the characteristic range ∼ O(1/mLSPv)
of the non-relativistic interactions between the chargino
and neutralino pairs.

The termLpot accounts for the exchange of SM gauge
bosons and Higgs particles between the two-particle
states χe1χe2 and χe4χe3 (χei = χ

0
ei
, χ±ei

). For small rela-
tive velocity vrel in the two-particle system, such interac-
tions become instantaneous but spatially non-local, and
are described in the EFT by 4-fermion operators whose
matching coefficients are Yukawa- and Coulomb poten-
tials depending on the relative distance r in the two-
body system. In our work we account for O(v2

rel) effects
in the (co-)annihilation of neutralino and chargino pairs
coming from the short-distance part of the annihila-
tion but ignore O(v2

rel) contributions from the long-range
part. Consequently, only the leading-order Coulomb-
and Yukawa potential interactions need to be considered
inLpot. A leading-order potential contribution in the ba-
sis of total spin (S = 0, 1) and in coordinate space has
the form

V{e1e2}{e4e3}(r) =
(
ae1e2e4e3 − (3 − 4S ) be1e2e4e3

) e−mXr

r

for the case of the exchange of a boson with mass mX ,
among the χχ pairs. Compact analytic expressions for
all the potential interactions among the chargino and
neutralino pairs in the general MSSM have been derived
in [21]. For leading-order scalar boson and photon ex-
change, the coefficient be1e2e4e3 vanishes. For Z- and W-
boson exchange the spin-dependent part of the potential
arises from the axial-vector coupling.

The short-distance annihilation of the chargino and
neutralino pairs into SM and light Higgs final states is
reproduced in the EFT by local four-fermion operators
contained in δLann. The Wilson coefficients of these op-
erators can be determined by matching the MSSM am-
plitudes for the process χe1χe2 → χe4χe3 with SM and
light Higgs intermediate states with the tree-level matrix
element of the EFT operators. For the computation of
the neutralino and chargino inclusive annihilation rates
the matching can be done for the absorptive part of the
amplitude only. At lowest order in the S U(2)L gauge
coupling g2, the contributions to the Wilson coefficients
arise from the absorptive part of χe1χe2 → XAXB →
χe4χe3 1-loop diagrams with two SM or light Higgs par-
ticles in the intermediate state, XAXB, and are of O(α2

2),
where α2 = g2

2/4π. The leading-order terms in δLann
are given by dimension-6 four-fermion operators, that

describe leading-order S -wave neutralino and chargino
annihilation processes χe1χe2 → χe4χe3 . They read [19]

δLd=6
ann =

∑
ei

1
4

f χχ→χχ{e1e2}{e4e3}
(

2S+1S S

)
Oχχ→χχ{e4e3}{e2e1}

(
2S+1S S

)

(3)

where f χχ→χχ{e1e2}{e4e3}
(

2S+1S J

)
are the corresponding Wil-

son coefficients, which will be often abbreviated as
f
(

2S+1S J

)
. The explicit form of the dimension-6 S -

wave operators with S = 0, 1 is

Oχχ→χχ{e4e3}{e2e1}
(

1S 0

)
= χ†e4

χc
e3
χc†

e2
χe1

(4)

Oχχ→χχ{e4e3}{e2e1}
(

3S 1

)
= χ†e4

σiχc
e3
χc†

e2
σiχe1

(5)

The sum in (3) is taken over all neutralino and chargino
scatering reactions χe1χe2 → χe4χe3 , and spin S = 0, 1.
At O(v2

rel) in the non-relativistic expansion in momenta
and mass differences, dimension-8 four-fermion opera-
tors contribute to δLann, which reproduce P-wave and
v2

rel-suppressed S -wave annihilations. The absorptive
parts of the Wilson coefficients, f̂

(
2S+1LJ

)
, have been

calculated for the dimension-6 and dimension-8 opera-
tors in the MSSM at O(α2

2) in [19] and [20], respec-
tively. A master formula and necessary ingredients to
obtain the contributions to f̂

(
2S+1LJ

)
from individual

states XAXB in analytic form can be found therein.

2.1. Sommerfeld-corrected cross section

The spin-averaged center-of-mass frame χiχ j annihi-
lation cross section summed over all accessible light fi-
nal states is given by the imaginary part of the forward-
scattering amplitude χiχ j → χiχ j by virtue of unitarity,
see Fig. 1. In the non-relativistic effective theory, in-
cluding up to O(v 2

rel) corrections, this observable is ob-
tained as

σχiχ j→ light vrel =

(1
4

∑
si,s j

)
2 Im 〈χiχ j| δLann |χiχ j〉 (6)

with vrel = |	vi − 	v j| the relative velocity of the an-
nihilating particles in the cms frame. The matrix-
elements of four-fermion operators in (6) account for
the long-distance interactions between the annihilating
pair, while the short-distance annihilation into light par-
ticles is described by the Wilson coefficients.

It is well-known from quarkonium physics that
matrix-elements of four-fermion operators analogous to
those in (6) can be expressed in terms of non-relativistic
wave functions and their derivatives evaluated at the ori-
gin. For instance, the matrix element of the operator
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σij |�vi − �vj | =

∫
dPSAB

( ∑
e1,e2

i

j

e1

e2

XA

XB

) ( ∑
e3,e4

i

j

e4

e3

XA

XB

)∗

= 2�
( ∑

e1,...e4

i

j

e1

e2

i

j

e4

e3

XA

XB

)

Figure 1: Diagrammatic relation among the annihilation amplitude
and the absorptive part of the corresponding forward scattering ampli-
tude in the presence of long-range potential interactions.

Oχe1χe2→χe4χe3 (1S 0) can be written as

〈χiχ j| χ†e4
χc

e3
|0〉 〈0|χc†

e2
χe1
|χiχ j〉

=
[
〈ξc†

j ξi〉 (ψ(0,0)
e4e3,i j + ψ

(0,0)
e3e4,i j
)]∗ 〈ξc†

j ξi〉 (ψ(0,0)
e1e2,i j + ψ

(0,0)
e2e1,i j
)

where ψ(L,S )
e1e2, i j is the χe1χe2 -component of the scattering

wave function for an incoming χiχ j state with orbital
quantum number L and total spin S , evaluated for zero
relative distance and normalized to the free scattering
solution. The symbols ξi, ξ j denote the Pauli spinor of
the incoming particles χi and χ j. The multi-component
wave function 	ψ (L,S )

i j accounts for the potential interac-
tions of the incoming χiχ j state with all possible inter-
mediate two-body chargino and neutralino states with
the same charge and identical spin and partial-wave con-
figuration. Both wave-function components e1e2 and
e2e1 are generated by the matrix-element of operator
χc†

e2χe1
; for an operator with quantum numbers L and S ,

there is a relative sign (−1)L+S between the two com-
ponents. The lowest-order perturbative result for the
matrix-elements of four-fermion operators is obtained
by replacing ψ(L,S )

eaeb, i j → δeai δeb j.

We define for an incoming state χiχ j with cms en-
ergy

√
s the Sommerfeld enhancement factor associ-

ated to a generic Wilson coefficient, f̂ , describing the
short-distance annihilation of χχ states with spin S and
orbital-momentum L as the ratio

S i j[ f̂ (2S+1LJ)] =

[
ψ(L,S )

e4e3, i j

]∗
f̂ χχ→χχ{e1e2}{e4e3}(

2S+1LJ)ψ(L,S )
e1e2, i j

f̂ χχ→χχ{i j}{i j} (2S+1LJ)|LO

(7)
A sum over all two-particle states χe1χe2 and χe4χe3 that
have the same charge as the incoming χiχ j pair is un-
derstood in (7). The Sommerfeld factors are functions
of
√

s or, equivalently, of the relative velocity vrel in
the incoming state, which parametrize the long-distance
corrections to the annihilation rate of the state χiχ j. In
terms of the Sommerfeld factors, the spin-averaged an-

nihilation cross section (6) acquires a simple form:

σχiχ j→ light vrel

= S i j[ f̂h(1S 0)] f̂{i j}{i j}(1S 0) + S i j[ f̂h(3S 1)] 3 f̂{i j}{i j}(3S 1)

+
	p 2

i j

M2
i j

(
S i j[ĝκ(1S 0)] ĝ{i j}{i j}(1S 0)+S i j[ĝκ(3S 1)] 3 ĝ{i j}{i j}(3S 1)

+ S i j

[ f̂ (1P1)
M2

]
f̂{i j}{i j}(1P1) + S i j

[ f̂ (3PJ )
M2

]
f̂{i j}{i j}(3PJ )

)
,

(8)

where 	pi j = 2μi j(
√

s − Mi j) + O(	p 4
i j) is the relative mo-

mentum of particles χi, χ j in their cms frame, and Mi j,
μi j are the total and reduced mass, respectively, of the
two-particle system. The exact meaning of the vari-
ous Wilson coefficients appearing in (8) is explained
in [21]. The pure tree-level annihilation rate with no
long-distance corrections is readily recovered by setting
all the Sommerfeld factors in (8) to one. The tree-level
annihilation cross section thus obtained depends only
on the diagonal entry of the Wilson coefficients corre-
sponding to channel χiχ j.

The non-relativistic matrix elements that define
ψ(L,S )

e1e2, i j receive large quantum corrections, which have
to be summed to all orders. Diagramatically, the en-
hancement originates from the potential loop momen-
tum region of ladder diagrams, whose resummation can
be related to the solution of a multi-channel Schrödinger
equation. For angular momentum L = 0 and L = 1 one
can prove that

ψ(0,S )
e1e2, i j = [ψE(0)]e1e2, i j , 	pψ

(1,S )
e1e2, i j = −i [	∇ψE(0)]e1e2, i j

where [ψE(	r )]a,i j is the coordinate-space scattering
wave-function, which carries two compound indices re-
ferring to two-particle states. The second, i = i j,
refers to the incoming two-particle state with energy√

s = 2mLSP + E in the cms frame of the annihilation.
The first, e = e1e2, specifies that only the component of
the wave-function proportional to the two-particle state
e for this incoming state is picked out by the annihila-
tion operator χc†

e2χe1
that defines ψ(L,S )

e1e2, i j. The scattering
solutions [ψE(	r )]a,i j can be obtained directly from the
matrix-Schrödinger equation
⎛⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎢⎣−

	∇ 2

2μa
− E + Ma − 2mLSP

⎤⎥⎥⎥⎥⎥⎦ δab + Vab(r)

⎞⎟⎟⎟⎟⎟⎠ [ψE(	r )]b,i = 0

(9)
The dependence on the initial scattering state appears
only in the initial condition for the solution as indicated
by the subscript i of [ψE(	r )]bi, but not in the equation it-
self. We can solve the matrix-Schrödinger equation for
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the Sommerfeld factors (i.e. for the values of [ψE(r)]a,i

and its derivative at the origin) following closely the
method described in [23]. The relevant quantity is the
matrix T [23, 21] which can be expressed as the inverse
of a matrix built from the large-r behaviour of the regu-
lar linear independent solutions [uL(r)]ai of (9). This is
explained in detail in [21].

The procedure works well when all N states included
in the multi-channel Schrödinger equation are degen-
erate to a high degree. This is the case in MSSM pa-
rameter regions where the Sommerfeld enhancement is
most effective, such as the wino or Higgsino limit for
the neutralino, and when the other states not related to
the wino or Higgsino electroweak multiplet are decou-
pled and ignored. However, we wish to compute the
Sommerfeld-enhanced radiative corrections in a larger
part of the MSSM parameter space, when the mass split-
tings become larger than in the wino or Higgsino limit.
In this case the method outlined above encounters se-
vere numerical problems and fails to provide accurate
results for the Sommerfeld factors. The numerical in-
stability originates from the presence of kinematically
closed two-particle states (Mb >

√
s) in the intermediate

stage of the annihilation process. The solution for the
closed channel involves an exponentially growing com-
ponent proportional to eκbr where κ2

b = mLSP(Mb − √s).
Eventually, when mass-splittings become larger than
m2

W/MDM, the open-channel solutions inherit the ex-
ponential growth from the closed channels due to the
off-diagonal potentials that mediate the channel mixing,
and the formally linearly independent solutions [uL]ai

for the open channels become degenerate. The matrix
inversion to obtain T can no longer be done in prac-
tice for r large enough such that the asymptotic regime
is reached, which causes numerical instabilities. Since
typically mLSP 
 mW for the DM scenarios of interest,
this situation is generic unless all two-particle states in-
cluded in the computation are very degenerate within a
few GeV or less.

In [21] we provide an alternative method that solves
this problem by reformulating the Schrödinger prob-
lem directly for the entries of the matrix T that yield
the Sommerfeld factors, instead of solving for the
wave functions. The improved method is an adapta-
tion of the modified variable phase method introduced
in [24]. Leaving aside limitations related to the CPU
time needed to solve a system of many coupled differen-
tial equations, this method allows to compute the Som-
merfeld factors reliably also when many non-degenerate
two-particle channels are present. For details on the im-
plementation of the method and examples of its perfor-
mance we refer the reader to [21].

As an illustration of the general use and potential of
our framework, we discuss next the Sommerfeld en-
hancements in the relic abundance calculation within
a realistic wino-like scenario. The investigation of the
effect on the relic abundance in other well-motivated
MSSM benchmarks with heavy neutralino LSP is the
subject of a forthcoming publication [25].

3. Example: Wino-like χ0
1

Wino-like χ0
1 DM arranges into an approximate

S U(2)L fermion triplet together with the two chargino
states χ±1 . All states χ0

1, χ
±
1 share the same O(TeV)

mass scale, characterised by the wino mass parameter,
mχ ∼ |M2|. The tree-level mass splitting between the
neutral and the charged components of the triplet hap-
pens to be very small, O(m4

W/m
3
SUSY), and the one-loop

radiative corrections dominate this mass difference.
A realistic pMSSM scenario with wino-like χ0

1 is pro-
vided by the SUSY spectrum with model ID 2392587 in
[26]. For the latter scenario, the χ0

1 constitutes a rather
pure wino, |ZN 21|2 = 0.999, with a mass mLSP ≡ mχ0

1
=

1650.664 GeV. The mass of the chargino partner χ±1 is
such that δm = mχ+1

− mχ0
1
= 0.155 GeV. In addition,

in the pMSSM model 2392587, the bino-like χ0
2 is only

about 8% heavier than the χ0
1. Hence the χ0

2 is a poten-
tially relevant co-annihilating particle as well. Sommer-
feld enhancements on the co-annihilation rates are taken
into account by including in the multi-state Schrödinger
equation all χχ two-particle states with mass smaller
than Mmax = 2 mχ0

1
+mχ0

1
v2

max, where we set vmax = 1/3.
This choice is motivated by the fact that vmax roughly
corresponds to the χ0

1’s mean velocity around freeze-
out, hence these states are potentially relevant for co-
annihilation processes. The remaining heavier two-
particle states with mass above Mmax are included in
the computation of the Sommerfeld enhancement of the
lighter states in the last loop before the annihilation, fol-
lowing the method developed in [21]. The χχ-channels
whose long-distance interactions are treated exactly in a
pure-wino DM scenario are χ0

1χ
0
1, χ+1χ

−
1 in the neutral

sector, and χ0
1χ
±
1 and χ±1χ

±
1 in the single-charged and

double-charged sectors, respectively. In the pMSSM
scenario, and in accordance with the rule above that de-
fines the channels which enter the Schrödinger equation,
we have to add in addition those states where χ0

1 is re-
placed by χ0

2, i.e. χ0
1χ

0
2 and χ0

2χ
±
1 . Since χ0

2 is a bino-
like neutralino, essentially neither couples to the wino-
like particles nor to gauge bosons, and because sfermion
states are rather heavy, potential interactions as well
as tree-level annihilation reactions involving the bino-
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annihilation cross sections for Snowmass model 2392587.

like χ0
2 are strongly suppressed with respect to the cor-

responding interactions with wino-like particles χ0
1, χ
±
1 .

As a consequence, χ0
2 plays essentially no role for Som-

merfeld enhancements, and we can focus the discussion
on the channels built from the wino-like χ0

1 and χ±1 states
only.

In Fig. 2 we plot the enhancement (σS Fv)/(σpertv)
of annihilation rates including long-range interactions,
σS Fv, with respect to the perturbative tree-level result,
σpertv, for the two-particle states χ0

1χ
0
1 and χ+1χ

−
1 as a

function of the velocity vLSP of the incoming χ0
1’s in

their cms frame, defined by
√

s = 2mχ0
1
+ mχ0

1
v2

LSP.
The tree-level annihilation rates σpertv are calculated
from (8) setting all Sommerfeld factors to one, whereas
in case of the Sommerfeld-enhanced rates σSFv each
partial wave contribution gets multiplied by an enhance-
ment factor related to the two-particle wave-function
of the respective incoming state. As there is a small
mass splitting between the χ0

1 and the χ±1 , the threshold
for the on-shell production of the heavier neutral state
χ+1χ

−
1 opens at vLSP/c � 0.014. Well below this thresh-

old, the enhancement for the χ0
1χ

0
1 system is velocity-

independent and of O(10). This saturation effect is
characteristic for Yukawa-type interactions in the kine-
matic regime where the relative momentum of the in-
coming state is well below the mass scale of the medi-
ator. At velocities vLSP just below the χ+1χ

−
1 threshold,

resonances in the χ0
1χ

0
1 channel can be observed. While

the main plot in Fig. 2 displays a curve smoothed over
this region, we show in the small sub-figure a close-up
of the resonance pattern. At larger velocities, the en-
hancement in the χ0

1χ
0
1 channel approaches one as we

depart from the non-relativistic regime. Turning to the
enhancement in the χ+1χ

−
1 channel, it shows quite a dif-
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Figure 3: Effective annihilation rate 〈σeffv〉 as a function of the scaled
inverse temperature x = mχ0

1
/T for Snowmass model 2392587.

ferent behaviour right above its threshold: instead of
approaching a constant value, the enhancement factor
for χ+1χ

−
1 rises increasingly as the velocities of the χ±1

get smaller. Such a behaviour is expected in the pres-
ence of long-range Coulomb interactions, where the en-
hancement does not saturate because the mediator is
massless. The dotted (black) curve in Fig. 2 displays
the enhancement factor in the χ+1χ

−
1 system arising from

Coulomb photon exchange only. The true enhancement
curve, that involves all potential interactions affecting
the χ+1χ

−
1 system asymptotically reaches this Coulomb-

like behaviour for velocities directly above the χ+1χ
−
1

threshold. For larger velocities in the χ+1χ
−
1 system the

presence of the Yukawa potentials leads to a larger en-
hancement than in case of Coulomb interactions only.

The dashed curves in Fig. 2 show the enhancements
for the χ0

1χ
0
1 and χ+1χ

−
1 states when off-diagonal terms in

the annihilation matrices are (incorrectly) left out. This
can lead to a � 30% underestimation of the actual en-
hancement in the χ0

1χ
0
1 channel. The effect is less pro-

nounced for the χ+1χ
−
1 channel, as in this case the cross

section also gets significant contributions from 3S 1 an-
nihilations, which are purely diagonal (the χ0

1χ
0
1 pair

cannot build a 3S 1 state), and not just from 1S 0 ones.
The quantity that enters the Boltzmann equation for

the neutralino number density is the thermally averaged
effective annihilation rate 〈σeffv〉 [27, 28]. Fig. 3 shows
〈σeffv〉 as defined in [21] as a function of the inverse
scaled temperature x = mχ0

1
/T . The lower solid (blue)

curve represents the perturbative (tree-level) annihila-
tion rates while the upper solid (red) and the dashed
(gray) lines refer to Sommerfeld-enhanced cross sec-
tions including and neglecting off-diagonal annihilation
rates, respectively. Let us first note that for x � 10 the
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depicted behaviour of 〈σeffv〉 is unphysical. The mean
velocity of the annihilating particles in the plasma scales
as
√

1/x and hence is no longer non-relativistic for x<∼10
while the results of our framework strictly apply only to
non-relativistic χχ pair-annihilations, i.e. for x � 10.
Around x ∼ 20 the annihilation rates of χ0

1 and χ+1 can
no longer maintain chemical equilibrium and the parti-
cles start to decouple from the thermal plasma. Hence
only the region above x ∼ 20 is important for the calcu-
lation of the relic abundance. Around x � 104 the num-
ber densities of the χ±1 are so strongly Boltzmann sup-
pressed with respect to the χ0

1 number density, despite
the small mass splitting, that the rates of the charginos
basically play no role in the effective rate 〈σeffv〉. Af-
ter χ±1 decoupling, 〈σeffv〉 including the Sommerfeld en-
hancements becomes constant, which we can infer from
the constant enhancement factor for the χ0

1χ
0
1 system for

very low velocities shown in Fig. 2. Before χ±1 decou-
pling, 〈σeffv〉 including the Sommerfeld enhancements
rises with increasing x due to the contributions from
the charginos but also due to the velocity-dependent
enhancement on the χ0

1χ
0
1 system itself for larger rela-

tive velocities. On the contrary, the perturbatively de-
termined 〈σeffv〉 shows a constant behaviour before and
after χ±1 decoupling with a rise only around the decou-
pling region; the contributions that dominate the pertur-
bative cross sections in the non-relativistic regime are
the velocity-independent leading-order S -wave terms.

Fig. 3 also compares 〈σeffv〉 as calculated from
the wino-like pMSSM scenario and from a pure-wino
S U(2)L triplet minimal DM model with the same χ0

1
mass. While the rates for χ0

1χ
0
1 annihilations agree at

permille level, the cross sections involving χ±1 are gener-
ically larger by factors of O(1) in the pure-wino model
as compared to the pMSSM wino-like model. This can
be mainly traced back to the destructive interference be-
tween t-channel sfermion and s-channel Z (and Higgs-
boson) exchange amplitudes in χ+1χ

−
1 → f f annihila-

tions in the pMSSM scenario case, while the t-channel
sfermion exchange amplitudes are absent in the pure-
wino model. In addition the pure-wino case neglects all
final state masses which in particular gives rise to larger
annihilation rates into the tt and electroweak gauge bo-
son final states as compared to the pMSSM scenario,
where the non-vanishing masses of all SM particles are
taken into account. This accounts for the deviation be-
tween the curves in Fig. 3 before χ±1 decoupling.

Finally we consider the yield Y = n/s, defined as
the ratio of the number density n of all co-annihilating
particle species divided by the entropy density s in the
cosmic co-moving frame. The dependence of the yield
on the scaled inverse temperature x = mχ0

1
/T is gov-
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Figure 4: The ratios of the yield Y/Ypert as a function of x = mχ0
1
/T .

erned by a Boltzmann equation and the χ0
1 relic abun-

dance is obtained from the calculated yield today. In
Fig. 4 we show the ratio of the yield Y calculated
from Sommerfeld-enhanced cross sections in both the
pMSSM and the pure-wino model to the correspond-
ing results using perturbative cross sections, Ypert, as a
function of x. The denominator Ypert in the ratio Y/Ypert
differs for the pMSSM and the pure-wino model, which
is a consequence of the different effective rates 〈σeffv〉,
see Fig. 3. Further, in case of the pMSSM scenario
we show results corresponding to a calculation of Y in-
cluding (solid blue line) and neglecting (dashed black
line) off-diagonal annihilation rates. Around x ∼ 20
the yields with Sommerfeld enhancements start to de-
part from the corresponding perturbative results; the en-
hanced rates delay the freeze-out of interactions, which
leads to a reduction of the yield Y compared to the
perturbative result Ypert. The most drastic reduction in
Y/Ypert occurs between x ∼ 20 and x ∼ 103. In this re-
gion the enhancement factors on the cross sections are
of O(10) (and not yet O(102) as for very large x), lead-
ing to Y/Ypert values that deviate from 1 by a few 10%.
For x � 105 the fraction Y/Ypert stays constant, mean-
ing that at these temperatures the particle abundances in
both the perturbative and Sommerfeld-enhanced calcu-
lation are frozen in. In case of the wino-like model we
find that the relic densities calculated from the yield to-
day read Ωperth2 = 0.112 and ΩSFh2 = 0.066. Hence
taking into account the Sommerfeld effect leads to a
reduction of the calculated relic abundance of around
40%. On the other hand, neglecting the off-diagonal an-
nihilations in the calculation of Sommerfeld-enhanced
rates overestimates the relic density by 15% compared
to the correct ΩSFh2. Due to overall larger hard annihi-
lation rates in the pure-wino model, the calculated relic
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density including Sommerfeld-enhanced rates turns out
to be ΩSF

pure-wh2 = 0.034, while the corresponding per-
turbative result is Ωpert

pure-wh2 = 0.056.
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