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Resumo

Utilizando a simetria quiral, calculamos a contribui¢cdo dominante ao potencial nucleon-
nucleon (NN) devido a troca de trés pions ndo correlacionados. Esta contribuicéo é
isovetorial com as componentes pseudoescalar e axial. A pseudoescalar é dominante,
tem um alcance de 1.0 fm e contribui no canal do pion.

No mesmo contexto, estudamos a producéo de um pion na interagdo nucleon-nucleon
devida a troca de dois pions. O termo dominante do kernel da producéo é construido a
partir da mesma interacdo bésica usada no potencial NN devido a troca de trés pions.
Relacionamos este termo a componente central do potencial NN devido a troca de dois
pions e mostramos que esta, por sua vez, € dominada pelo fator de forma escalar pion-
nucleon. O kernel obtido foi aplicado para o limiar da producéo e na construgdo de um
potencial de trés nucleons. Os resultados foram generalizados para um potencial NN
central qualquer e comparados ao potencial de Argonne e aquele devido a troca de um
méson escalar ..cticio.

Palavras Chave: interacdo nucleon-nucleon; producdo de pion; simetria quiral.

NUmeros PACS: 13.75.Cs; 13.60.Le; 13.75.Gx; 12.39.F¢; 11.30.Rd.



Abstract

Using the chiral symmetry, we calculated the dominant contribution to the nucleon-
nucleon (NN) potential due to the exchange of three non-correlated pions (3%). This
contribution is isovetor with pseudoscalar and axial components. The pseudoscalar
component is dominant, it has a range of 1.0 fm and it contributes in the pion channel.

In the same context, we studied the pion production in the nucleon-nucleon inter-
action due to the exchange of two pions (2%). The dominant term of the production
kernel is built from the same basic interaction used in the 3%-exchange NN potential.
We related this term to the central component of the 2%-exchange NN potential and
we showed that the latter, on its turn, is dominated by the pion-nucleon scalar form
factor. The obtained kernel was applied at the threshold and in the construction of a
three-nucleon potential. The results were generalized for a central NN potential of any
kind and compared to the potentials of Argonne and to that due to the exchange of one
..ctitious scalar meson.

Key words: nucleon-nucleon interaction; pion production; chiral symmetry.
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Capitulo 1

Introducéao

A cromodinamica quantica (QCD) ¢é a teoria fundamental das interacdes fortes. A liberdade
assintotica dos quarks, proveniente do carater ndo abeliano da QCD, restringe o uso da teoria de
perturbacéo a energias altas. Em energias baixas, métodos nédo perturbativos, tais como calculos na
rede e regras de soma, podem ser empregados em casos como espectroscopia hadronica e larguras
de decaimento. Uma outra forma de contornar esta di..culdade é usar teorias de campos efetivas,
em que os estados ligados de quarks sdo tratados como hadrons, barions ou mesons.

Atualmente séo conhecidos seis quarks, mas nas interac0es hadronicas a baixas energias e,
em particular, nas forcas nucleares os quarks mais leves dominam. Estes quarks leves, o u (up) e o
d (down), ttm massas da ordem de 10 MeV, muito menores que a escala da QCD, ©gcp = 1 GeV.
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InteracGes de férmions sem massa foram inicialmente estudadas no contexto das interacoes
fracas, no qual se percebeu que as lagrangianas apropriadas sdo invariantes pelo grupo de trans-
formacdes quirais. Por isso, € natural pensar que o setor da QCD envolvendo os quarks leves u
e d seja aproximadamente invariante por transformac6es quirais SU(2) — SU(2). Este fato € da
maior relevancia para a construcdo de uma teoria de campos efetiva (EFT). O propdsito de uma
teoria efetiva da QCD ¢ substituir os detalhes microscdpicos das interagdes de quarks e glions por
processos macroscopicos mais simples. Logo, para que a teoria efetiva seja aceitavel, € preciso que
ela partilhe as simetrias da teoria fundamental. Isso deve acontecer tanto com as simetrias de
Poincaré, associadas as propriedades do espaco-tempo, quanto para as simetrias dindmicas, como
isospin e simetria quiral. No caso de sistemas de nucleons e pions, portanto, € muito importante
descrever a dinamica por meio de lagrangianas efetivas aproximadamente invariantes pelo grupo
quiral SU(2) — SU(2).

A simetria quiral € realizada no modo de Nambu-Goldstone e o vacuo, prenchido com um
condensado, permite excitagdes de estados coletivos sem massa, identi..cados com os pions. A quebra
da simetria, devida as massas dos quarks no nivel fundamental, é associada as massas pequenas dos
pions nas teorias efetivas. Por isso, o calculo de amplitudes em energias baixas requer o emprego
de uma teoria que trate as intera¢es hadronicas como sendo aproximadamente invariantes por
transformacgfes quirais. Existem varias maneiras de construir lagrangianas com simetria quiral,
mas duas delas séo especialmente importantes, porque retetem pontos de vista diferentes para o
signi..cado da simetria. Uma delas é a realizacdo linear do modelo sigma e a outra é a realizacéo
nao-linear, com o acoplamento pion-nucleon derivativo.

A formulacdo sistemética de uma teoria de campos efetiva para as interacbes fortes, que
incorpore a simetria quiral, depende da expansdo da lagrangiana em relagdo ao campo do pion.
No caso das interacdes pion-nucleon, esta expansao produz uma amplitude na forma de uma série
convergente em poténcias dos trimomentos externos e da massa do pion [ Wei 79]. A simetria quiral
faz com que, em energias baixas, o termo dominante desta série seja determinado por f,,, a constante
de decaimento do pion, e por ga, 0 elemento de matriz nuclebnico da carga axial. A formulacéo
sistemética da EFT é conhecida como teoria da perturbacdo quiral (ChPT) [ GL 84] [ GL 85].
Em processos envolvendo somente mésons, o tratamento relativistico fornece um procedimento de
contagem de poténcias bem de..nido. Quando béarions também estéo presentes, a contagem quiral de
poténcias torna-se problematica [ GSS 88]. Um modo de superar esta di..culdade consiste em supor
gue os nucleons sdo muito pesados em comparac¢ao aos momentos envolvidos e efetuar a aproximagao
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nao-relativistica do setor baridnico das lagrangianas [ Wei 90] [ Wei 91] [ JM 91]. Neste caso, a
expansao da lagrangiana quiral é feita, também, em poténcias do inverso da massa do barion. Esta
abordagem, conhecida como teoria de perturbacéo quiral para barions pesados (HBChPT), produz
bons resultados para muitos processos, embora a convergéncia da série que representa a amplitude
ndo seja assegurada. Recentemente, foi proposta uma abordagem alternativa para o problema,
totalmente relativistica, que assegura a contagem quiral de poténcias para processos que envolvem
barions [ BL 99].

Para sistemas contendo apenas um nucleon, as duas abordagens sdo consistentes somente se
a escala da regularizacdo dimensional for ..xada igual a massa do nucleon [ BKKM 92]. Ja com dois
nucleons, os dois procedimentos parecem ndo ser consistentes. No espalhamento nucleon-nucleon
devido a troca de dois pions, as predi¢es dos calculos relativisticos para a contribuicdo dominante
diferem de 25% dos baseados no HBChPT em primeira ordem. A introducéo de correcdes de ordem
superior diminui esta diferenca, mas ndo consegue elimina-la totalmente [ Rob 01].

A importancia da simetria quiral depende fortemente do processo considerado. Nos proces-
sos puramente mesonicos, como o espalhamento pion-pion (%Y%) [ GL 84] [ BCEGS 97], os termos
dominantes da amplitude sdo determinadas pela simetria quiral. Nos processos méson-nucleon, a
acdo da simetria parece depender do nimero de pions envolvidos. No espalhamento pion-nucleon
(N) [ OO 75] [ GSS 88] [ Pup 95] [ FMS 98], ela da origem a cancelamentos entre os diagramas, de
modo que a amplitude %N se anula no limite quiral, quando a massa do pion tende a zero. Ja para
a producdo de um pion no espalhamento %N [ OT 68] [ Ber 92] [ BKM 94], a simetria quiral ndo
contribui para o termo dominante da amplitude. Na fotoproducéo de pions [ NL 90] [ BKLM 94]
[ Pup 94], ela é dominante apenas para a produgdo de dois pions. No caso de processos envolvendo
dois nucleons, tais como o espalhamento nucleon-nucleon eléstico ou a producgéo de pions, a avali-
acdo da importancia da simetria se torna mais complicada, pois as interacdes envolvem estados
intermediarios com diferentes nimeros de pions, em que a simetria quiral pode ou néo ser relevante.
Como esses estados intermediarios geralmente estéo associados a distancia entre os nucleons, o papel
da simetria pode, também, ser relacionado com esta distancia.

No espalhamento NN, a atuacdo da simetria quiral € bem entendida apenas nas trocas
de um e dois pions. A troca de um pion, responsavel pela parte de longo alcance da interacéo,
independe da simetria quiral, pois todas as lagrangianas, simétricas ou ndo, produzem o mesmo
vértice basico %N . Isso mostra que a simetria quiral é compativel e, a0 mesmo tempo, irrelevante
para esse processo. Na troca de dois pions, por outro lado, a simetria é crucial, pois o potencial NN
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desaparece no limite quiral. Essa importancia decorre de ela gerar cancelamentos nas amplitudes
YiN intermediarias, que descrevem o0s acoplamentos entre o sistema de dois pions e um nucleon.
O proximo passo para o entendimento da interacdo NN a menores disténcias, seria determinar
a intensidade da troca de trés pions e a relevancia da simetria quiral neste processo. Apesar
desse passo ser, em principio, “natural”, ele somente foi dado em 1999, quando da publicacdo de
um trabalho de nossa autoria [ PR 99]. A troca de trés pions relativistica é descrita no capitulo
4, para uma classe de diagramas baseados nos resultados de Olsson e Turner para 0 pProcesso
YN ¥ Y%Y%N [ OT 68][ OT 69] [ OT 77]. Atualmente, extensdes deste calculo estao sendo realizados
em HBChPT [ Kai 01].

No caso da producéo de um pion no espalhamento NN, a importancia da simetria quiral
ainda ndo esta bem estabelecida. Espera-se que a contribuicdo de longo alcance seja descrita pela
simples emissdo de um pion, conhecida como aproximacao de impulso, e pelo reespalhamento do
pion trocado entre os nucleons. A simetria quiral é relevante apenas no segundo caso, pois o reespal-
hamento envolve a amplitude %N eléstica. Entretanto, calculos efetuados apenas com os termos
de impulso e de reespalhamento subestimam os dados experimentais [ CFMK 96] [ KMR 96]. A
inclusdo dos deltas no termo de reespalhamento também produz contribui¢des pequenas [ RMK 99]
[ PRS 99]. A explicagdo dos resultados experimentais deve estar associada a troca de mais pions.
Esta idéia foi confirmada com o estudo da contribuicdo de um méson escalar quiral ..cticio [ CPR 95]
[ MR 99], que simula a componente escalar-isoescalar da troca de dois pions. Contudo, calculos real-
izados com HBChPT [ DKMS 99] e ChPT [ BKM 99] mostraram que cancelamentos também estao
presentes na troca de dois pions. Para tentar compreender este problema, estudamos, no capitulo 5,
a producdo devida a troca de dois pions nédo correlacionados. Inicialmente, consideramos apenas a
componente dominante do potencial NN, em seguida, estabelecemos a relagdo desta interacdo com
0 processo de producédo. Deste modo, identi..camos com mais transparéncia a dinamica quiral da
contribuicdo dominante da producdo devido a troca de dois pions. Essa relacdo, apresentada num
trabalho de nossa autoria [ MPR 00], € nova e ndo trivial uma vez que a dindmica da producéo é
mais complexa, envolve mais cancelamentos e ndo pode ser reduzida a dindmica do espalhamento
NN.

No capitulo 5, também demos atengdo ao potencial de trés nucleons devido a troca de trés
pions, que envolve a amplitude de producdo como um processo intermediario do espalhamento de
trés nucleons. A realizacdo desta contribuigdo através da dindmica quiral € uma novidade entre os
potenciais existentes. Este resultado permite, também, compreender a diferenca entre os poten-
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ciais de Tucson-Melbourne [ CSB 75] [ CSMBBM 79] [ CG 81] e do Brasil [ CDR 83] [ RICD 85]
[ RC 86].

Este trabalho consiste de seis capitulos e trés apéndices. No capitulo 2, introduzimos alguns
conceitos do formalismo lagrangiano e das simetrias unitarias. Mostramos a relacdo entre estas
simetrias e leis de conservagéo neste formalismo. Apresentamos a simetria quiral e suas realizagdes
linear e ndo-linear. Mostramos as regras de Feynman, decorrentes de tais realizagdes, necessarias
para o calculo das amplitudes dos processos estudados neste trabalho. No capitulo 3, estudamos trés
processos intermediarios do espalhamento nucleon-nucleon, %% ¥ %%, %N ¥ %N e %N ¥ Y%N.
No capitulo 4, calculamos o potencial NN devido a troca de trés pions ndo correlacionados. No
capitulo 5, obtemos o kernel da producdo de um pion no espalhamento NN devido a troca de dois
pions ndo correlacionados. Finalmente, no capitulo 6, apresentamos nossas conclus@es e possiveis
extensdes deste trabalho. Os apéndices sdo dedicados a notagdo, calculos de sanduiches spinoriais

e de integrais.



Capitulo 2

Simetrias e Lagrangianas

A teoria de campos quanticos costuma ser escrita no formalismo lagrangiano. Uma das
grandes vantagens desse formalismo é a existéncia de quantidades conservadas devido as simetrias
da lagrangiana. Nesse formalismo, por exemplo, as conservacgdes total da corrente vetorial e parcial
da corrente axial nas interacdes fortes decorre de uma simetria aproximada da QCD, a simetria
quiral. Embora esta simetria seja exata apenas no limite em que as massas dos quarks desaparecem,
ela pode ser considerada aproximada nas interagdes fortes envolvendo os quarks leves up e down,
pois suas massas de 2 a 15 MeV séo consideravelmente menores que a escala de energia hadronica
de 200 MeV. Outra grande vantagem deste formalismo é a construcdo de amplitudes de uma forma
muito mais simples e intuitiva, através das regras de Feynman derivadas da lagrangiana.
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2.1 Formalismo Lagrangiano

A formulagéo lagrangiana fornece um procedimento conveniente e sistemético para a obtencéo
de equacOes de movimento.

Na mecanica classica, a lagrangiana L de um sistema, em coordenadas generalizadas g;(t), é
dada pela diferenca entre as energias cinética T e potencial V,
L@;a) =T i V; (2.1)
onde g; denota a derivada temporal de g;.*

O comportamento do sistema é dado pelas equagdes de movimento de Euler-Lagrange
a Mo el

- — — = 0; 2.2
dt @g ' Qg 22
obtidas através do principio variacional de Hamilton, que consiste na variacdo da agéo
Z,,
A = dtL(qi; di) ; (2.3)

t1
de modo que esta tenha um valor estacionario sobre um caminho arbitrario g;(t) com £g; ¥ 0 em
t; e t; [ Gol 80]. A hamiltoniana H do sistema é introduzida pela transformada de Legendre de
L(9i; i),

X
H(gi; ) = Pidi i L(0i;q); (2.4)

i
onde p; € 0 momento generalizado conjugado a g,

_ oL

Ppi = @_q. (2.5)

Na mecénica quantica, cada observavel fisico torna-se um operador hermitiano no espaco de
Hilbert. A quantizacdo do sistema € obtida fazendo com que os operadores g;(t) e p;j(t) obedecam
as relacdes candnicas de comutacéo,

[); Py (o=t = ii5 e [60);q)]e=c = [Pi();p;(t)]e=c = O: (2.6)

Na teoria de campos classicos, a lagrangiana é de..nida como uma extensdo da expressao
(2.1), no limite em que o namero de graus de liberdade torna-se in..nito e continuo [ Sak 67]. A

1L é um escalar de Lorentz.
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lagrangiana ¢é dada pela integral de uma funcé@o L, a densidade de lagrangiana, que depende dos
campos A;(x;t) e das suas derivadas @.A;, isto &,

Z
L = dxL(A; 0:A); (2.7)
onde
L=T j V: (2.8)
O principio variacional torna-se
Z : Z % . Y
oL . oL < oL . (0] I
tA =0 d4X —'iAi+ —+ 1Ai =0 d4x _'iAi = 0. ) iAi :0'
2 BR M aAy B =02 AL TN
(2.9)

onde a integracdo por partes no Gltimo termo é possivel desde que +A; ¥ 0 em xi e x;. Com isso,
as equacOes de movimento tomam a forma

oL * _ @L

@4+ 0@A) i— =0: (2.10)

A hamitoniana também passa a ser a integral de uma densidade de hamiltoniana, de..nida
por

HA; %) = %0GHACGY i L(A;0:A); (2.11)

onde %;(x; t) sdo os momentos conjugados a A;(x; t),

oL
6A,

1/zli:

(2.12)

Em teoria de campos sempre trabalhamos com densidades de lagrangiana ou hamiltoniana
e, daqui em diante, vamos omitir a palavra densidade, deixando-a implicita nestas expressoes.

2.2 Simetria Unitaria e Lei de Conservacao

Na fisica, e especialmente na fisica de particulas, as simetrias tém papel muito importante.
Em muitos casos, existem leis de conservagdo que podem ser atribuidas aos principios de simetria.
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Segundo Lee [ Lee 81], as simetrias de maior importancia na fisica podem ser agrupadas
em quatro tipos: permutacdo, discretas, continuas externas e continuas internas. As simetrias de
permutacdo sdo baseadas nas estatisticas de Bose-Einstein e de Fermi-Dirac, as discretas, nas invar-
iancias por conjugacdo de carga, refexao espacial (ou operacdo de paridade) e reverséo temporal, as
continuas externas, nas invariancias por transformacoes de translacéo, de rotacéo, de Lorentz e de
Poincaré (translacdo, rotacdo e mudangas de referencial) e as continuas internas, nas invariancias
por transformacdes de fase, de isospin, quiral, de sabor, de cor.

As simetrias de permutacdo, as continuas externas e algumas das continuas internas, como
a de fase e, talvez, a de cor, parecem ser exatas, enquanto que as demais parecem ser quebradas.

As simetrias continuas estdo associadas as invariancias de um sistema sob transformacdes
continuas que preservam a norma dos vetores de estado. As matrizes com parametros reais e
continuos que realizam estas transformacdes ou sdo ortogonais (A = Ail), quando os vetores sdo
reais, ou unitarias (AY = A1il), quando os vetores sdo complexos. O determinante dessas matrizes
tem uma fase arbitraria, det A = e'*, que pode ser .xada impondo-se p = 0. Neste caso, as
matrizes sao ditas unimodulares ou especiais. As matrizes n £ n unimodulares ortogonal e unitaria
formam, respectivamente, os grupos de Lie SO(n) e SU(n). Estes grupos sdo compactos, pois seus
parametros variam em intervalos fechados, [0; %] para O(n) e [0; 2%] para SU(n). Um grupo de Lie
compacto pode ser representado por operadores unitarios na forma exponencial complexa

U(,) = eil-afe; (2.13)

onde _, sdo os parametros reais e continuos das transformacdes e F, sdo operadores que geram
0 grupo matematico, pois de..nem a algebra do grupo [ Arf 85]. A relacdo dos pardmetros das
transformac6es com o espaco-tempo divide as simetrias continuas internas em dois niveis: global
e local. Quando _, ndo depende de X, temos uma simetria global, pois estamos supondo que 0
sistema € transformado pela mesma quantidade em diferentes pontos do espaco-tempo. Para uma
escolha mais geral, .5, = . a(X), 0 sistema sO € transformado pela mesma quantidade num mesmo
ponto do espaco-tempo, ou seja, a simetria € local.

A algebra de um grupo de Lie compacto consiste nas relagdes de comutacéo de seus geradores,
sendo representada genericamente por

[Fa; Fb] = 1Canc Fc; (2.14)

cujas constantes de estrutura c,,. S80 coe..cientes reais totalmente antissimétricos. A condicao
de unitariedade da transformacdo faz com que esses geradores sejam hermitianos (F¥ = F) e a
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imposicdo det A = 1 faz com que tenham trago nulo (tr F = 0). O numero de geradores é igual ao
namero de parametros independentes no grupo, assim, temos n(n j 1) =2 geradores para SO(n) e
2§ 1 para SU(n).

No formalismo lagrangiano da teoria de campo, as simetrias de um sistema sdo relacionadas
as leis de conservacao pelo teorema de Noether. Neste teorema, a invariancia da lagrangiana sob um
grupo de transformagcdes continuas corresponde a uma quantidade conservada [ Sak 64]. No caso
de uma simetria continua interna, a quantidade conservada é, como veremos a seguir, a densidade
de corrente.

A acdo de um grupo de transformacdes in..nitesimais (., ¥ £_) sobre os campos, sem
translacéo e rotacdo (xx = 0), é dada por

Ax) = UVAKU 2 (1+iz_.F) AKX (1jit,aF) = AKX +£AX); (2.15)
onde
tA, = it .[FuA]l + O(:.D: (2.16)

Estas modi..cacdes nos campos geram a seguinte variacao in..nitesimal da lagrangiana:

L(AL: @A) 2 L(A;0:A) + £L; (2.17)
onde
oL oL
tL = tA; + A 2.18
oA ) 0+(xA): (2.18)
Usando a equacdo de movimento (2.10), podemos reescrever esta expressao como
e . 6L e
tL = @2 ——— fA + A, — A 2.19
bRy N aeR Y T B geay ™ @19
Explicitando as varia¢Ges dos campos, temos que
eL . . oL e oL
tL = (0 — 1 [Fa; A2 =02 1 — [Fa; A;] £ Fa; A, t.a): (2.20
@ @(@1A|) [ a I] a @ @(@1A|)[ a I] @(@1A)[ a ]@ ( a) ( )
De..nindo as densidades de corrente do sistema pelos quadrivetores
_2 . 0L ]
X) =1 — [Fa; Al 2.21
Ja( ) @(@1AI)[ a I] ( )

podemos reescrever essa variagao in..nitesimal como

= @uja t.a + Ja 02 (t.0): (2.22)
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Comparando-a com a variacao in..nitesimal geral

_ OLAGGA) |, OL(ALB:A)
B @,a el @(@1,a)

e usando o fato de a variacéo in..nitesimal comutar com a quadridivergéncia, podemos expressar

£l + (02 4) (2.23)

tanto as densidades de corrente do sistema como as suas quadridivergéncias através das derivadas
parciais
. _ OL(A}0:A) OL(A}; B2A) .

Ja = —@ @) e 0+j, = —@,a : (2.24)

conhecidas como equacdes de Gell-Mann e Lévy [ GL 60].

Se a variacdo in..nitesimal da lagrangiana for nula (tL = 0) e as transformacdes forem globais
(., = cte), a equacdo (2.22) se reduz as equacdes de conservacdo das densidades de corrente,

@.j, = O: (2.25)
Integrando essas equacOes sobre todo o espago e usando o Teorema de Gauss, temos
Z Z Z Z
Bx@j, =0  dEx @y, +rtj)=0) 0 dx%h,+ dsntj,=0; (2.26)
\% \% \% S

onde %? sdo as densidades de carga e j? as densidades de corrente-vetor. A integral de superficie
corresponde a um Fuxo através da fronteira de todo o espago. Logo, esta integral pode ser desprezada

para correntes vetoriais que caiam su..cientemente rapidas no in..nito, isto e,
z
SIl!rn1 Sds ntja = 0: (2.27)

Assim, a expressao (2.26) restringe-se as conservacdes das cargas

0:Qa =0 D> Qi = cte; (2.28)
onde as cargas
-z z oL z
Qa = y d*x ¥, (x) = i | d3x 8EA) [Fa; Ai()] =i ' d®x %i(x) [Fa; Ai(X)] (2.29)
correspondem aos geradores do grupo (Qa ~ F.), pois
Z
[Qa; A =i , X[ () [Fa; Aj O] A(X)]
Z
=i i) 5 £ i X) [Fas Aj O] = [Fas AX)]: (2.30)

\
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As simetrias continuas internas globais manifestam-se de dois modos diferentes na natureza:
Wigner-Weyl e Nambu-Goldstone.

No modo de Wigner-Weyl, as particulas formam multipletos que correspondem as represen-
tacOes do grupo de simetria da lagrangiana. Em particular, o auto-estado mais baixo da hamiltoni-
ana, 0 Vacuo, é invariante sob o grupo de simetria. Um exemplo tipico deste modo é a simetria de
isospin SU(2). No limite em que essa simetria € exata, a comutacdo da hamiltoniana com as cargas
de isospin - geradores do grupo SU(2) - permite a classi..cacdo do espectro dos estados em multi-
pletos de mesma massa, que correspondem as representacfes desse grupo. Assim, na simetria de
isospin, o proton e o néutron com aproximadamente a mesma massa formam um dupleto de isospin,
a representacdo fundamental do grupo SU(2), e os pions um tripleto de isospin, a representacao
adjunta do grupo SU(2).

No modo de Nambu-Goldstone, as particulas formam multipletos que correspondem as rep-
resentacfes de um unico subgrupo do grupo de simetria da lagrangiana. Neste caso, 0 vacuo é
invariante sob o subgrupo, mas ndo sob o grupo todo. Sob as transformacfes de simetria restantes,
gue nao formam subgrupo, o vacuo associa-se aos bdsons sem massa e com spin zero, conhecidos
como bésons de Goldstone [ Gol 61]. Este modo é referido algumas vezes como quebra espontanea
da simetria ou simetria escondida. Um exemplo importante deste modo € a simetria quiral associ-
ada ao grupo SU(2). — SU(2)r, que se manifesta na natureza somente através de multipletos de
isospin, uma vez que multipletos de paridade ndo sdo encontrados. No limite em que a simetria
quiral SU(2). — SU(2)r € exata, 0s pions sdo os bdsons de Goldstone.

2.3 Simetria Quiral

Apesar da simetria quiral, nos dias de hoje, desempenhar um papel fundamental no entendi-
mento das interaces hadrénicas, sua idéia surgiu nos anos 50 no contexto das interacdes fracas.

No comego dos anos 30, a interacdo fraca restringia-se ao decaimento- , descrito pelo processo
n % p+ei +9; (2.31)

O primeiro passo para a formulacdo de uma teoria para o decaimento- foi dado por Fermi em
1934. Baseando-se na existéncia do neutrino, postulada por Pauli em 1931, Fermi propds que o
decaimento- seria uma interacdo puntiforme de quatro férmions similar a interacdo eletromagnética
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sem mediacdo de fétons. A lagrangiana de interacdo para o decaimento- seria, entao, o acoplamento
vetorial de duas correntes uma associada a transicdo do néutron em proton e outra associada a
criagdo do elétron e do antineutrino, isto é,

Lint = Cv J;admnica leptdnica; (2-32)

onde o0 coe.ciente Cy de dimensdo [M]*? é a medida da intensidade do acoplamento entre as
correntes fracas

J;adrOnica = Ap°1'5‘n € jeptonica — AeolAo : (2.33)

Em seguida, essa lagrangiana foi generalizada para todos os acoplamentos invariantes de
Lorentz, por reversdo temporal, conjugacao de carga e retexdo espacial (paridade). Assim,

X LG ¢
Line =  Ce A i%A, AcikAo (2.34)
k=1

onde Cy sdo as constantes de acoplamento de cada invariante de Lorentz e j representa as possiveis
interagdes da tabela (2.1).

Tabela 2.1: Estruturas de Lorentz de uma interagio.

Invariantes de Lorentz Kk i
escalar S 1
pseudoescalar PS °g
vetorial \V4 ot
pseudovetorial (axial) PV (A) oo
tensorial T ¥,

No decaimento- de um nucleo, a aproximacédo nao relativistica é razoavel, porque 0os mo-
mentos dos nucleons sdo normalmente muito pequenos. Nesta aproximagao, restam apenas duas
transi¢Oes permitidas [ Gas 66]: a de Fermi, associada a Cs e Cy, e a de Gamow-Teller, associada
a Ca e Cr. O termo proporcional a Cp desaparece e 0s termos cruzados em cada uma dessas tran-
sicBes sdo praticamente nulos (CsCy 2 0 e CACt 2 0), pois possuem uma forte dependéncia com a
energia, que nao é observada experimentalmente. Os primeiros resultados experimentais revelaram
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gue os acoplamentos da transicdo de Fermi, denotados genericamente por Gg eram proximos aos
da transicdo de Gamow-Teller, denotados genericamente por Ggr,

iGorj = (1:2805) jGej : (2.35)

Esta proximidade levou a idéia da universalidade das interaces fracas, ou seja, de que a forma e as
constantes de acoplamento da lagrangiana (2.34) seriam as mesmas para os diversos decaimentos.

As descobertas do muon em 1936 e do pion em 1947 reforcaram esta idéia. Tanto o decai-
mento do muon

10 el +2 +0, (2.36)
e sua captura nuclear
1i 4+ (Z;A) ¥ (Z i 1A) + O (2.37)
como os decaimentos do pion
Yt 0 el + @ e i 1 1o (2.38)

podiam ser descritos por uma interac¢do similar e com aproximadamente a mesma intensidade a do

decaimento- , isto é, por uma lagrangiana de interacao universal
X i ¢ i ¢
Line = G Ki“A' WA AP, (2.39)
k=1
onde os indices 1 e 2 distinguem os pares fermionicos.
Embora houvesse boas evidéncias da conservacdo da paridade nas interacOes fortes e eletro-
magneticas, nenhum experimento tinha sido realizado, até ent&o, para testar esta conservagdo nas
interacdes fracas. Em 1956, Lee e Yang [ LY 56] propuseram a ndo conservacao da paridade nas

interacgdes fracas, para resolver o paradoxo y-¢,, onde [ e ¢ seriam particulas com 0s mesmos nimeros
guanticos, mas que decaiam nos diferentes processos

us 1 8 4 yP e (80 US4+ 0. (2.40)
Atraveés do estudo do decaimento do pion seguido do decaimento do muon em cadeia

yi W 1i 4o, (2.41)

J! ei +Qe+01
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sugeriram que a ndo conservacdo da paridade poderia ser veri..cada correlacionando-se a helicidade
do muon, medida no decaimento do pion, com a helicidade do elétron, medida no decaimento
do muon. Se houvesse conservagdo da paridade, existiriam dois esquemas para estes decaimentos
compativeis com as conservacoes da carga elétrica, do momento angular e do niumero lepténico: o
esquema (a) da ..gura (2.1) e, sua retexao espacial, o esquema (b) da mesma ..gura. Os experimentos
mostraram que somente 0 esquema (@) acontece na natureza, negando, assim, a conservacido da
paridade. Medidas de outros decaimentos con..rmaram a inexisténcia de neutrinos com helicidade
positiva e antineutrinos com helicidade negativa, indicando também a ndo conservacédo da paridade.

= 0D | Eo =
Oz O =) | LEG

(a) espelho (b)

Figura 2.1: Possiveis esquemas do decaimento de %2, impostos pela conservagdo da paridade. As
helicidades das particulas, representadas pelas setas, devem ser sempre as mesmas para conservar
0 momento angular.

Os neutrinos sdo particulas que obedecem a equacdo de Dirac sem massa. No espaco dos
momentos, esta equagdo tem a forma

e u(p) = 0; (2.42)
cuja solucéo e o spinor
M l M |
o 1 E+m ;. _ P— l e
up) = lim P=== 7, ' AL = 0P g, Al (2.43)
onde
. P
limE = lim "~ p>+m? = jpj: (2.44)
m?¥Y¥O0 m?b¥¥o0

O spinor de um neutrino com helicidade negativa
K |
pf | § 3%¢ N
w®) = IR gt AT (2.45)
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e 0 spinor de um antineutrino com helicidade positiva
]

podem ser obtidos a partir do operador helicidade
M il
2 %ep O :
§= T, o b (2.47)
impondo-se
SuL(p) = iuP) e  8ur() = +ur(p): (2.48)
Alternativamente, a partir do operador quiralidade
M 01 11
°g = | o0 (2.49)
pode-se obter
1 1
wP) = @i YuP) e ur(P) = 5@+ )u(p); (2.50)
de modo que
°suL(p) = iuL(p) e °sUR(P) = +Ur(P): (2.51)

A coincidéncia entre os operadores de helicidade, equacéo (2.48), e os operadores de quirali-
dade, equacdo (2.51), resulta do fato dos neutrinos terem helicidade bem de..nida, pois, movendo-se
com a velocidade da luz, a projecdo do spin do neutrino ao longo da direcdo do seu movimento é
independente do referencial. No caso de férmions massivos, esses operadores deixam de ser coinci-
dentes, pois a helicidade passa a depender do referencial, enquanto a quiralidade permanece bem
de..nida.

Para incorporar a ndo conservacao da paridade na lagrangiana de interacao de Fermi, equacio
(2.34), é necessério discriminar a quiralidade nos campos dos neutrinos e antineutrinos, lembran-
do que &(p) = W(p)°, e T°y; °sg = 0. O uso dessas combinacdes de..ne, automaticamente, a

quiralidade do lépton associado a este neutrino, pois

A ikA. = Az icAg = 0 para k=1;2;5 (2.52)
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No caso do decaimento 1i ¥ ei + @, + ©, veri.cou-se que a interacdo direta corrente-
corrente produzia melhores resultados. Assim, a lagrangiana generalizada de Fermi foi restringida
a

_ o letronica .
Line = Ga Jmudnica b |ca' (2-54)
. P,
onde o coe..ciente G= = Gg= 2 é a constante de acoplamento entre as correntes fracas

‘Jnc;uOnica = Arlleutrinooo Arﬂmon = Aneutrino(1+ 05)00(1 i c>5) Amden

_ %kneutrinogo xm@lon . xNeutrinogos % mfon
= e AT A 2.5
v° A

eletronica — j}elfitrongo z neutrino _ % elftron o \o© - o \ Aneutrino
NE = Al A = AT+ 25)° (i °5)A

el§trongo % neutrino - el§trongo X neutrino .
_ o° & Kelftronooo & , 2.56
ATy T A (2:59)
Vo AO

ambas compostas de uma parte vetorial V e outra axial A.

A estrutura dessa lagrangiana, conhecida como V-A, foi estendida para o decaimento- |,
supondo que a parte hadronica tivesse a mesma estrutura da parte leptonica. Deste modo, a
lagrangiana de Fermi para o decaimento n ¥ p +ei + 2, assumiu a forma

Lint = [CvV° i CaAlugronica [G2 (Vo i Ao)]'POMe (2.57)

onde as correntes hadrénicas sdo

Ve = Aprﬂtonoo Anéutron e A° = Apfﬂtono°o5 Anéutron (2.58)
e as correntes leptonicas
— Adﬂtmﬂoo A neutrino — Ael&tron 0%0 Zneutrino .
Vo = A e Ao= A : (2.59)

A constante de acoplamento vetorial

Cv 2 1:01 £10%°=m] g0n (2.60)
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é determinada através do decaimento do O em N** e a axial
Ca 2 j126Cy (2.61)

a partir do tempo de vida do néutron [ Cam 78].

A con..rmacao dessa extensdo, obtida de detalhadas medidas de polarizacdo, indicou que as
interacOes fracas envolvendo hadrons também podem ser descritas por lagrangianas com estrutura
V-A e, inesperadamente, que Cy = Ga. Esta igualdade mostra que a constante de acoplamento
vetorial é a mesma para hadrons e léptons, analogamente ao que acontece com a constante de
acoplamento eletromagnética e. Essa igualdade sugeriu, entdo, que a corrente fraca associada a Cy
deveria ser conservada,

@V° = 0; (2.62)

em analogia a corrente eletromagnética associada a e. Além disso, a corrente vetorial hadrénica no
decaimento- , expressao (2.58), seria a corrente de isospin do espalhamento elétron-nucleon. Essas
duas caracteristicas levaram a hipotese da conservacdo da corrente vetorial (CVC) nas interagdes
fracas [ FG 58]. Nesta hipdtese, a corrente vetorial hadronica fraca é identi..cada como sendo a
corrente de isospin, conservada nas interacdes fortes e cujas componentes carregadas sdo dadas
pelas combinagdes

o o o o o o

V, =V +V, 5 Vo=V iV, e Vo= Vg (2.63)

Por outro lado, a constante de acoplamento axial Ca ndo é exatamente a mesma para hadrons
e léptons, como mostra a expressao (2.61). Essa pequena diferenca levou a idéia de que a corrente
fraca associada a Cx seria parcialmente conservada,

@ A° 2 0: (2.64)

A formalizacao desta idéia foi realizada por Gell-Mann e Lévy em 1960 através do decaimento
do pion negativo [ GL 60],

i 1 1i 4o, - (2.65)
gue poder ser descrito pelo elemento de matriz

hQ 1i ij 1/4 i - hOj \Jﬁadronj 1/4 i amﬂjon oo(l i 05) Vneutrino , (266)
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onde o pion que tem paridade negativa esta ligado ao vacuo que tem paridade positiva. Devido a
conservacgao de paridade nas interacdes fortes, somente a corrente axial pode contribuir para o setor
hadrdnico deste decaimento. A invariancia de Lorentz e a auséncia de spin no pion fazem com que
este elemento de matriz deva ser da forma

N0jAL(0)j (k)i = i4ak® i (2.67)

onde o k° é o quadrimomento do pion, f, é a constante do seu decaimento, a e b sdo indices de
isospin. No espaco dos momentos, a divergéncia de uma corrente equivale multiplica-la por “j i”
e pelo quadrimomento transferido, 0 que nos permite escrever

h0j@o A2(0)j¥%o(K)i = §ikeNOjAI(0)j%(K)i = Fy12tg; (2.68)

onde * é a massa do pion. Assim, o decaimento do pion implica na ndo conservacao da corrente
axial, pois sua quadridivergéncia esta relacionada a massa do pion e a constante que descreve 0 seu
decaimento.

Como o pion tem massa muito pequena quando comparada com a de qualquer outro hadron,
0 resultado acima sugere a conservacao parcial da corrente axial (PCAC). Esta hipotese pode ser
reescrita através da identidade de operadores

@oAz = 'l:l/4 12 Yia : (269)

E de se esperar, entdo, que exista uma simetria global interna aproximada nas interacdes
fracas, para guiar a construcdo de lagrangianas com a estrutura V-A, de modo que produzam
PCAC e CVC via teorema de Noether. A simetria que cumpre este papel é a simetria quiral, que
corresponde a invariancia de um sistema sob o grupo de transformac6es quirais SU(2). — SU(2)r.
Essas transformac6es sdo implementadas por operadores unitarios da forma

UV (®) = el® e UAC) = e aa; (2.70)
de modo que as variagdes quirais in..nitesimais dos campos dividem-se em vetoriais e axiais, respec-
tivamente

A = i@ [QA] e tPA = i QAL (2.71)

onde
Z Z

QY = XVt e QY = dBxAX1): (2.72)
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Segundo a hipdtese de CVC, as cargas associadas as corrente vetoriais sdo os geradores das
transformacdes de isospin, que satisfazem a algebra de Lie do grupo SU(2),

[QY: Q)] = 22 QY ; (2.73)

idéntica a relacdo de comutacdo dos operadores do momento angular. As cargas associadas as
correntes axiais transformam-se como vetores sob rotaces de isospin, 0 que leva as relacBes de
comutacao

[QX ; Q't/)_\] = 124 Qé\ : (2.74)

O fechamento deste grupo quiral foi proposto por Gell-Mann [ Gel 62] [ Gel 64], sem introduzir
novas cargas, através das relaces de comutagao

[QF QE1 = 2 Qs : (2.75)

As relacbes de comutagdo, dadas pelas expressdes (2.73, 2.74 e 2.75), descrevem implicita-
mente a algebra do grupo SU(2). — SU(2)r. A primeira relacdo descreve a algebra do subgrupo
SU(2) de isospin e as demais ndo descrevem independentemente a algebra de qualquer subgrupo.

De...nindo as combinagdes
Lol v AA R » 1.y Ay .
Qa - E(Qa IQa) e a — E(Qa +Qa)l (276)

as relacbes de comutacéo das cargas, equacdes (2.73), (2.74) e (2.75), passam a explicitar, concomi-
tantemente, dois grupos de simetria independentes,

[Qai Qb1 7= i2ac Q' [Q& Q8 = i %ac Qi e Qi Q1= @.77)
SU@2)L SU(2)r desacoplamento

Essas relacfes de comutacgéo descrevem explicitamente a &lgebra de Lie do grupo SU (2),. — SU (2)g,
denominado grupo quiral, devido a simetria direita-esquerda.

A versdo diferencial das relacbes de comutacdo das cargas, conhecida como algebra de cor-



22 2 Simetrias e Lagrangianas

rentes, corresponde a

[V ()i Vi, (Nlxo=yo = 12abe Ve (£(X i Y);

V2 ()5 Ay Mlxomye = 12 Ac () £ (X i Y);
(2.78)

[AZ00); Vo xo=yo = 12ac AL £2(X i ¥);

[AS09); A (N)xo=yo = i 2ane Vo () £2(X T Y);

onde os termos de Schwinger foram omitidos. Sua estrutura pode ser vista como um refexo da
simetria quiral aproximada nas interagdes fracas.

A viabilidade dessa simetria no mundo real foi reforcada pela validade empirica da relagéo
de Goldberger-Treiman [ GT 58], que relaciona a constante de acoplamento pion-nucleon g as con-
stantes de acoplamento axial Cx e vetorial Cy do decaimento- através de

gf, 2 mga; (2.79)

onde m é a massa do nucleon, f,, € a constante de decaimento do pion e ga = jCa=Cyj. Esta relacao
decorre naturalmente da idéia de PCAC e da dominancia do pdlo do pion, na qual as intera¢des
envolvendo correntes axiais sdo sempre mediadas por pions com quadrimomento pequeno.

Os valores atuais de g séo 13:4 8 0:1 para o grupo de Karlsruhe [ KA 85], 13:18 8 0:12 para
Matsinos [ Mat 97] e 13:13 8 0:03 para o grupo de Virginia [ SP 98]. Para as demais constantes, ha
um certo consensu, ga = 1:26, m = 938:27 MeV, T, = 92:4 MeV e 1 = 139:57 MeV.

A conservacado da corrente de isospin tanto nas interagdes fortes como nas fracas indica que a
corrente axial, parcialmente conservada nas interacdes fracas, também deve sé-la nas fortes. Todas
essas “‘conservacdes” estao relacionadas pelo teorema de Noether a simetria quiral aproximada nessas
interacoes.

Embora as primeiras tentativas de incluir essa idéia tenham sido formuladas em termos de
lagrangianas, a que obteve maior destaque no inicio dos anos 60 foi um método nao perturbativo que
combinava as formulas de redugdo de Lehmann, Symanzik e Zimmermann [ LSZ 55] com a &lgebra
de correntes e a hipdtese de PCAC. Excetuando o modelo de Skyrme [ Sky 62], o formalismo
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lagrangiano esta vinculado a linguagem perturbativa que parecia ndo funcionar para as interacfes
hadronicas, uma vez que suas constantes de acoplamento séo grandes.

Supondo apenas que o pion é mole (g =0e* ¥ 0), compativel com o fato da massa do pion
ser muito pequena na escala hadrdnica, o método da algebra de correntes gerou, sem usar qualquer
teoria das interagOes fortes, um conjunto de vinculos Uteis para espalhamentos de pions perto do
limiar sobre um alvo hadronico. Esses vinculos, usualmente conhecidos como teoremas de baixas
energias, concordaram muito bem com os experimentos e até hoje representam uma referéncia para
muitas descricBes tedricas da fisica hadrénica [ AFFR 73]. Assim, o conhecimento dessa “algebra”
permite-nos derivar “teoremas” a baixas energias sem o conhecimento dos detalhes da dinamica de

um Processo.

Apesar da vantagem desse método ndo envolver teoria de perturbacdo, na pratica ele é
restrito aos espalhamentos de poucos pions moles por um hadron qualquer, pois o procedimento
torna-se muito trabalhoso a medida que o nimero de pions moles emitidos e absorvidos aumenta.
Além disso, por ser essencialmente algebrico, este método di..culta o entendimento da dinamica da
interacdo. Para remediar isso, WWeinberg sugeriu em 1967 [ Wei 67] o uso do formalismo lagrangiano
apenas para o nivel arvore, através da construcao de lagrangianas efetivas com simetria quiral, que
reproduzissem os resultados na forma ditada pela algebra de correntes. Com essas lagrangianas,
as implicacdes dinamicas de um processo seriam explicitas e os teoremas a baixas energias seriam
obtidos via diagramas de Feynman de uma forma mais intuitiva e simples.

As lagrangianas quirais efetivas podem ser divididas quanto a maneira de realizar a simetria.
No modelo sigma-linear, a simetria é realizada inteiramente por meio de transformagdes lineares.
Isto é conseguido com a introducdo de uma particula com 0s mesmos nimeros quanticos do VAacuo,
denominada sigma. Nos modelos ndo-lineares, esta particula é substituida por uma funcéo néo-linear
do campo do pion, de modo que as transformac@es axiais passam, também, a ser ndo-lineares.

2.4 Realizacao Linear

O primeiro modelo para hadrons que incorporou a simetria quiral foi denominado sigma-
linear, devido a introducdo de um méson, denominado sigma, e as propriedades lineares de transfor-
macoes dos campos. Este modelo, desenvolvido muito antes da QCD ser estabelecida como a teoria
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fundamental das interacdes fortes, € o exemplo mais simples de uma lagrangiana quiral efetiva. Ele
foi criado por Schwinger em 1957 [ Sch 57] e formulado no contexto de PCAC trés anos mais tarde,
por Gell-Mann and Lévy [ GL 60], incorporando os dogmas da algebra de correntes.

Sua lagrangiana é construida com simetria quiral global, de modo a reproduzir, via o teorema
de Noether, as hipoteses de CVC e PCAC. Isto é feito, de..nindo o comportamento dos campos sob
as transformacOes desta simetria. No caso dos pions, usa-se 0 isomor..smo entre o grupo quiral
SU(2)L — SU(2)r e o de rotacbes no espaco euclidiano quadridimensional O(4), o que nos permite

escrever

V 1

Qi = izwcle © Q= Llw paraabc=123; (2.80)

onde Lj; (Lij = i LjietrL =0, comi = 1;2;3;4) séo os geradores do grupo O(4). A maneira
mais simples de introduzir o pion neste grupo interno, é considerar o quadrivetor P; = (%; Y4), em
gue % representa um campo escalar extra e %, as trés componentes de isospin do pion, (Viy; %;; Yi3).
Usando a algebra do grupo O(4),

[Lij; Pel = 1 (Pitjk i Pjzik) ; (2.81)

e as igualdades de (2.80), determinamos as relacfes de comutacéo das cargas vetoriais e axiais com
0S campos mesdnicos

[QX;%]=0; [Qg;l/“b]: iizabcl/“c;
(2.82)
[QR; %] = i¥a; [Q2: Y] = § i£ap%:
Com isso, as variagdes quirais in..nitesimais dos campos, dadas em (2.71), séo lineares,
+V9% =0 V1, = +®@ N Y,
(2.83)
Y =+ (Y Y= jt Y%
O termo cinético da lagrangiana mesonica deve ser
1 a 1
T (%) = 5 (@%87% + 0240 0™%) ; (2.84)

para que a equacdo de movimento de cada bdson, equacdo de Euler-Lagrange (2.10), seja uma
equacao de Klein-Gordon. Sob transformac@es quirais, temos

V _ iV ¢ 1 iV ¢ 1 _ 1 _
T =02 £'% @ %+02 2% (0 %=>E®N0Y)t0 % =0 (2.85)
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AT =@ iiA%¢ 0% + @2 iiA1/4¢ (O™ Y%=+ ¢(0:%0"% j 02%0"%)=0: (2.86)
Ja o termo potencial da lagrangiana pode ser escrito através das combinacdes
&2 + VA" ; (2.87)
gue também sdo invariantes sob transformaces quirais,

- ¢
292 Y2 = 2%V 2v VY = 2Vt (2@ A Ye) = 0 (2.88)

- ¢ . .
A2 Y2 = 0y A 2 A = 2 (Ut Ve Yatt %) =0: (2.89)

No modelo %-linear simétrico, o potencial é dado por

£ ¢ .o
V%) = = 92 +v2 G2 %5 et (2.90)

~

onde , > 0 é a constante de acoplamento e ¢ uma constante a ser determinada. A con..guracao de
menor energia € determinada pelo sistema de equacdes

d¥%

dv
MZO D L (EE+Y% §A)%=0

8
= Mooy @+ Au=0

: (2.91)
=

onde % = 1Y4).

Para c¢® - 0, esse potencial corresponde ao paraboléide da ..gura (2.2.a) com um Unico estado
de menor energia, onde os valores esperados dos campos sdo iguais a zero. Para c¢2 > 0, ao sombrero
da ..gura (2.2.b), onde a circunferéncia formada pelo vale corresponde a estados degenerados de

menor energia.

Como vimos na segdo anterior, o PCAC retete a ocorréncia do decaimento do pion na
natureza. Para reproduzir o PCAC, acrescentamos um termo nesse potencial que quebre sutilmente
a simetria quiral. A forma mais simples ¢é

Vsg = i "¥%; (2.92)
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(a) (b)

Figura 2.2: Potencial do modelo %-linear simétrico: (a) ¢ - 0 e (b) ¢ > 0.

onde a constante pequena " > 0 é o parametro que regula a intensidade da quebra. Com isso, 0
potencial passa a ser dado por

Ei 2 2¢ "2 4
V(¥ %) = i YBe+Ys jC iic i (2.93)
Esse termo de quebra produz, através da equacdo (2.24), uma corrente axial que ndo é

conservada, isto e,
@AY = "Yy: (2.94)
Comparando este resultado com a expressdo (2.69) do PCAC, veri..camos que
"7 OfA2 (2.95)

Isto vincula a quebra explicita da simetria quiral a massa do pion e ao seu decaimento.

O vacuo, o estado fundamental do sistema, corresponde a con..guracdo de menor energia,
com paridade positiva e todos os nimeros quanticos nulos. Logo, o valor esperado do campo do pion
no vacuo ¢é igual a zero, pois ele tem paridade negativa e isospin ndo-nulo. Por outro lado, como o
sigma tem paridade positiva e todos os demais nameros quanticos nulos, o seu campo pode ter um
valor esperado no vacuo diferente de zero. Portanto, a minimizagdo do potencial, expressao (2.93),
restringe-se a solucdo da primeira equagdo do sistema dado em (2.91) com a adi¢do da constante ",

dv
E:O > Vvjcvij's, =0; (2.96)

E3

onde v é o valor de % nos pontos extremos.
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As solucgdes aproximadas em torno de " = 0 séo dadas por

V+:C+ﬁ+:::;
v0:?+:::; (2.97)
V; = ic+—2 C2+::::

EY

A escolha ¢® - 0 corresponde a ..gura (2.3.a) com
VO;vp) = 0 +:::; (2.98)
onde o vacuo é dado pelo ponto
(=0; %=vp): (2.99)

Neste caso, a simetria quiral manifesta-se através de multipletos de isospin e de paridade, modo
Wigner-Weyl. Como multipletos de paridade ndo séo encontrados na natureza, esta escolha néo
tem respaldo fenomenoldgico.

A escolha ¢? > 0 esta associada a ..gura (2.3.b) com

V(O;ve) = j2ctj e+,

4
V(O;vo) =0+:::; (2.100)
V(O;v;) =i ic4+"c+::: ;
onde o0 vacuo ¢é dado pelo ponto 2
(h=0; %=vy): (2.101)

Esta con..guracdo corresponde a quebra “esponténea” da simetria quiral, pois este vacuo ndo é
invariante quiral. Para distingui-lo do vacuo trivial jOi, ele é denotado por jvi. Nesta situacéo, a
simetria quiral manifesta-se no modo Nambu-Goldstone com os pions sendo os bdsons de Goldstone.
No limite em que a simetria quiral é exata (" = 0), o pion tem massa nula, pois a futuacédo
pseudoescalar do vacuo (pequenas oscilagdes ao longo do vale) ndo custa qualquer energia.

ZNa linguagem mais fundamental da QCD, um estado com h0j%jOi & 0 corresponde a um condensado escalar
quark-antiquark, h0jqdjoi.
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" c
(a) (b)

Figura 2.3: Potencial do modelo %-linear simétrico sem (linha continua) e com quebra explicita da
simetria quiral (linha pontilhada): (a) ¢ - 0 e (b) ¢ > 0.

Quando h& quebra esponténea de simetria, é conveniente reexpressar o campo do sigma pela
soma

%= s 4 Ve (2.102)

onde s representa a futuacdo escalar do vacuo, ou seja, pequenas oscilagdes na dire¢éo do eixo %,
de modo que

hvjsjvi = 0: (2.103)

Com isso, 0 potencial passa a ser escrito na forma

i ¢ i ¢
V(% s+vy) = i ‘22?4 %m;sz + %121/42 + vy R +Y2 s +V(0; VL) (2.104)
onde 3
2 - i o 2¢ )
2 I 2 2¢ 2 2
my =, 3vijc =2 vi+?1 (2.106)
e
. ;>i2-2¢2--- PV
V(0; vy) = 7 Vi iC T itVai ZC : (2.107)

3Como podemos observar, a quebra explicita da simetria quiral gera a massa do pion e, consequentemente,
aumenta a do sigma.
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Comparando as expressdes (2.105) e (2.95), observamos que
Ve 'fl/4 . (2108)

Desta forma, ..xamos

2 = 12 2 - 212
_ My i 2 » My i 317

= == =f : 2.1
> 21:1/24 € c Ya ms% i 12 ( 09)

Assim, o setor mesonico da lagrangiana que incorpora CVC e PCAC pode ser escrito como

l a a 2-
LM = 2 (@:50™% + 8% 08 1/4)+>2‘f !

¢ i ¢
WAy 2 92 + 12 7 4 £212, (2.110)
ou, alternativamente, como

i, . ¢ 1 y ¢ i ¢ i ¢
LM = 2 '8250"s j m2s? +5 [EAT R EL7 IR AT j'sz+1/42 SR CALED

Na segunda versdo, os dois primeiros termos sao associados aos meésons livres e os dois ultimos, as
suas interagdes. O termo V(0; v..) é constante e foi eliminado, por ndo infuir na dinamica.

Podemos ampliar a lagrangiana mesonica, de..nindo os comportamentos de outras particu-
las sob as transformacfes da simetria quiral. No caso dos nucleons, isso é feito em analogia aos
neutrinos, equacao (2.50). Caracterizando os nucleons pelo campo,

N = N_ + Ng: (2.112)
onde
NLGO = (i PING) e Nr() = 21+ °)N(); (2.113)

e usando as de..ni¢des das cargas esquerda e direita (2.76), desacoplamos as relagdes de comutacao
entre cargas e campos, produzindo expressdes idénticas as do grupo de isospin SU (2),

[QL:N.] = i%NL; [QR:Ng] = i%NR e [QXN] = [QL:Ng] = 0:  (2.114)

Com isso, deduzimos que as relacbes de comutagdo das cargas vetoriais e axiais com 0S campos

nuclednicos sdo dadas por

QNI = i &N e [QMN] = £2°N: (2.115)
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Logo, as variagdes quirais in..nitesimais dos campos, dadas em (2.71), sdo lineares,

iVN=ii®¢%N iVI\]l=ii|\]li®¢%
; (2.116)

AN = jit ¢%°5N AN = iI\]l°5i_¢%

onde usamos Nl = NY°, e f°,; °sg = 0.

Segundo essas variacOes quirais, a lagrangiana nuclebnica simétrica restringe-se ao termo

cinético
iN@N; (2.117)
pois
Vliken =i NeN +iRgLN :I\]li®¢%@N i Nl@(i@)m%l\l =0 (2.118)
€

AlilgN' = i+AN N + N @+AN =|\“1°51_¢%@N +|\“1@(¢_)¢'§°5N =0; (2.119)

ol

onde utilizamos a notacdo ® = °* @. e a relacdo de anticomutacdo entre °. e
5

Um termo de massa, da forma “j m N N”, quebra a simetria quiral. Este termo é invariante

pela transformacéo vetorial,
+ RN =J_rVI\]IN+NIJ_rVN:iil\]|i®¢%N+il\]li®¢%N=0; (2.120)
mas ndo o ¢ pela transformacéo axial,

N=jiNz t;°N: (2.121)

1+

i ¢ ) . . . . .
AINN = *NN+N#N=jiNt ¢%°5Ni||€1°5 ¢%
Por isso, no modelo linear com simetria quiral, o nucleon ndo pode ter massa.

e . Ci ¢
A variacao axial acima mostra que o quadrivetor &; = iN¢ °sN; N N é um elemento
do grupo SO(4). Logo, se o multiplicarmos escalarmente pelo quadrivetor P; = (%; %), obtemos o
escalar

agp = NN¥% + iNg ° N t%; (2.122)
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invariante sob transformacdes quirais. Entdo, admitindo que o acoplamento do pion com o0 nucleon
seja o usual, a parte da lagrangiana geral que descreve a interacdo entre sigma, pions e nucleons é
dada por

ig2¢P = jgN B+ic t%°)N = jgva NN jgN (s+i¢ t%°) N; (2.123)
onde g é a constante de acoplamento méson-nucleon e o sinal € negativo por convencao.

O termo de interagdo entre o vacuo e o campo nuclebnico pode ser identi..cado com o termo
de massa do nucleon,

m = g Vs ; (2.124)
0 que corresponde a relacdo de Goldberger-Treiman (2.79) com a aproximacao ga = 1.

Esta identi..cacdo permite interpretar a massa do nucleon como

m 2 m+ tm, ; (2.125)
onde m corresponde & massa decorrente da quebra espontanea da simetria quiral,
m=gc; (2.126)
e tm,, ao acréscimo de massa decorrente da quebra explicita da simetria quiral [ Cam 78],
" 12
Mgy = 7 =gty m ; (2.127)

Medidas provenientes do espalhamento pion-nucleon [ Hoh 83] levam a crer que este acréscimo,
conhecido como termo sigma pion-nucleon, deve ser de 35 8 5 MeV, o que implicaria numa massa
de aproximadamente 829 MeV para 0 méson %.

Assim, a lagrangiana para o sistema pion-nucleon pode ser expressa por duas formas alter-
nativas

LN = iN@N j gN@+i¢ t%°)N (2.128)
ou
LN = N@{@®im)N j gN(s+i¢t%°)N: (2.129)

Na ultima expressdo, 0 primeiro termo esta associado ao nucleon livre, com a massa gerada di-
namicamente, e o segundo, a interacdo entre os campos, com o0 acoplamento %N pseudoescalar
(PS).
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A lagrangiana geral, L = LN+ LM, reproduz as hipoteses de CVC e PCAC, pois as quadridi-
vergéncias das correntes vetoriais e axiais, obtidas da segunda igualdade de (2.24) com as variacoes
in..nitesimais (2.83) e (2.116), correspondem a

V' = i%gw) =0 e @A"= .%f%o) = 12f,Y,: (2.130)
As correntes vetoriais,
V' o= i%‘ig“;) = I\]l°1%N RN =Y (2.131)
e axiais,
A" = i%“jf/;o) = NI°1°5%N + Y@ % j %O Ve (2.132)

sdo obtidas da primeira igualdade de (2.24).

Além disso, com a contagem de poténcias ou com a simples constatacdo de que g € adi-
mensional, mostra-se que a lagrangiana geral é renormalizavel para todas as ordens em teoria de
perturbacéo.

2.5 Realizacao Nao-Linear

Para se obter uma lagrangiana quiral sem a discutivel particula sigma do modelo %-linear é
necessario rede..nir o campo %, de modo que a transformac&o axial do novo campo pibnico A seja
nao-linear. A forma mais simples de realizar isso é através da troca do %, nas lagrangianas (2.110)

P .
e (2.128), pela funcdo ndo-linear = f2 § A® [ GL 60]. Assim,

H g — q . T a .
0. f2 i A%@" f2iA’+@:At0°A +f,2* 2 A? (2.133)

LM =

N| =

Hg il
LN=iN@N jgN f2jA*+i;,tA°; N: (2.134)

. . P . i
Com esse procedimento, as fungbes  f2 j A° e A transformam-se do mesmo modo que 0s campos
% e Y4 do modelo linear, mas com um grau de liberdade a menos, pois a futuacéo escalar do vacuo
é eliminada.
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Pe—7e

2 i em torno de A? = 0, o modelo ¥%-ndo-linear corresponde, ento, as

Expandindo
lagrangianas

i T S T S e ¢
LM =2 0A0A § AT+ AR § AT+ (B ARAY § A

8f?2 16F7}
(2.135)
e
N =N N oo L s AL AT
= i H = °_; —+ =+ + — 4+ i .
L (8 i mMN i igRese NIA+ RN AT oo+ o : (2.136)

onde m = g T, e as reticéncias indicam termos de ordem mais alta no campo do pion. O modelo
quiral construido com esta realizacdo tem, como conteddo principal, a capacidade de relacionar
processos envolvendo diferentes nimeros de pions.

A generalizacdo deste modelo foi feita por Weinberg. Em 1967, ele prop6s uma aproximacao
dindmica para a algebra de correntes, baseada na rede..ni¢cdo dos campos do modelo %-linear. Com
esta rede..ni¢do, a transformacéo axial do novo campo pidnico passou a ser ndo-linear e o acopla-
mento %N, pseudovetorial (PV) [ Wei 67].

Um ano mais tarde, Weinberg elaborou uma realizacdo ndo-linear generalizada da simetria
quiral, de..nindo um novo comportamento dos campos sob transformacgdes axiais. Nesta realizacéo,
a simetria € assegurada pela introducédo de derivadas covariantes, que resultam num acoplamento
YN pseudovetorial (PV) [ Wei 68].

Nesta abordagem, as relagdes de comutacdo das cargas vetoriais com 0s campos piénico e
nuclednico sdo as mesmas da realizacdo linear. Denotando o campo do pion por A(x) e do nucleon
por A(X), tem-se

. " ~ ba
QA= itA e [QuAl=iSA; (2.137)

onde t, € a representacdo 3 £ 3 dos geradores do grupo SU(2) 4. Com isso, as variagdes vetoriais

sao dadas por

-+
<
>
[l
I+
@
>
pr

(2.138)

I+

)
-

2

(2.139)

N | =

“Na forma matricial, temos (ta)sc = i i 2anc-
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Para as variag@es axiais ndo-lineares dos campos, Weinberg prop0s as relagdes de comutagao °

[QR: Al =it F(A%) + 1A, A, g(A%) (2.140)
e
[Q5; Al = i v(A?) Zabc%AcA; (2.141)

onde f(A?) é uma funcéo real arbitréria,

; 1+ 2f(A?) (A2
g(A%) = —— _( ?2 E 3 (2.142)
F(AY) j 2ATI(AY)
e
A2\ — 1 .
V(A®) = — g—: (2.143)
f(AH)+ T2(A%) + A?
As variagOes axiais dos campos sao, entdo, dadas por

AA=FAH: + g(A)+ (AA (2.144)
e

AR = %v(A?-‘) ST AA)A | (2.145)

Na abordagem ndao-linear, é impossivel construir lagrangianas quirais envolvendo apenas o
campo do pion. Contudo, invariantes podem ser construidos com o auxilio da derivada covariante

deste campo, com a forma geral
2 3
1 A fUAY) + v(AH=2 .

D:-A=K4g— (. _ 2~ A@.A%5 ; 2.146
“fZ(A2)+A2 'ORA) + A ¢ ( )

onde K é uma constante. Deste modo, as rela¢es de comutagdo das cargas com esta derivada
covariante passam a ser semelhantes as do campo nuclednico, isto é,

[QV:D.Al= jt,D-A e [Q2; D:A] = § V(A 24t A, DA (2.147)

50 comutador entre a carga axial e o campo pi6nico (nuclenico) tem paridade positiva (negativa), porque, como
visto na secdo 2.2, a carga axial muda a paridade.
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e as variacdes in..nitesimais tomam a forma

+/ (D.A) = j +t®~D-A +A(D2A) = v(A?) ( ~"A)~D-LA | (2.148)

Assim, por construcao, o escalar

1

2
ED1A¢D1A: L

2 £2(0)
é invariante sob transformacfes quirais. Para que o campo do pion tenha a normalizacdo usual,
toma-se K = 1(0).

@.ACQ A + ::: (2.149)

A massa do pion provém de um termo na lagrangiana que quebra a simetria quiral, dado
por uma funcdo h(A?), de modo que o segundo coe..ciente da série de Taylor desta funcdo resulte
no termo de massa, isto é,

L = Lae. (2.150)
d(A%) s2—p 2
Através da equacdo (2.24), temos que a divergéncia da corrente axial em A% = 0 é dada por
) £ I I ]
0A T = i2 - CfA)+AGA) A =12F(0)A: (2.151)
d(A%) A2=0

Comparando com a hipotese de PCAC, temos

£(0) = f, (2.152)

No caso do nucleon, as variagdes quirais (2.139) e (2.145) fazem com que o termo de massa,
i mAA; (2.153)

passe a ser um invariante quiral, pois

S R S D S S o )
SUAR =R A+AYA :%Ai®¢(‘,A ; %Ai@“A:O (2.154)
e
Ai ~¢ iA ¢~ iA~¢ i A2 — A A i A2 — A e
A RA = AR A+ A AA =i§v(A)A¢ ¢(¢AA)A+§v(A)A¢ t(c "A)A=0:
(2.155)

Para assegurar a simetria quiral do termo cinético, é preciso trocar a derivada comum do
campo nuclednico por uma derivada covariante. Neste caso, a escolha particular
v(A?)

A (2.156)
A? + F2(A?)

DlA : @1/5\ + 2ijk %Aj @1Ak <
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leva a
[QY:D:A] = j “Z—aolA e [QAD:A]= jv(A?) zabc%Ac D.A: (2.157)

0 que implica em

£V (DaA) = %i®¢(‘, DA e +AD:A) = %v(A2) 0@ NA) DaA | (2.158)

A substituicdo da derivada comum no termo cinético por esta derivada covariante produz o
invariante quiral

A@{p jm)A; (2.159)
gue inclui o nucleon livre,
A@G®im)A; (2.160)
e a interacdo do nucleon com um ndmero par de pions ©,
i V(A?)

—ge——=_— A" At (ANE.A) : (2.161)
2 fz(AZ) +A2

A interacdo entre um namero impar de pions e o nucleon, no entanto, é dada pelo invariante
quiral ’

0a
2f1/4

Aeoro. o AtDaA: (2.162)

Além das interagdes ja mencionadas, é possivel obter muitas outras, através das derivadas
covariantes, como, por exemplo, a interacao isoescalar entre um nimero par de pions e o nucleon.
Ela é obtida multiplicando-se dois invariantes: o termo de massa do nucleon e o termo cinético do
pion,

GAAD.AtD*A; (2.163)

onde G é a constante de acoplamento isoescalar.

60 acoplamento, neste caso, é isovetorial e vetorial (V).
"0 acoplamento, neste caso, é isovetorial e pseudovetorial (PV).
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Em geral, os resultados ndo devem depender da forma de (A?), [ Haa 58] e [ CWZ 69]. Por
isto, neste trabalho, adotamos a forma correspondente ao modelo %-n&o-linear,

q
fAAY) = 2 j (2.164)

que torna g(A%) = 0 e, consequentemente, +*A =+~ f(A?).

Com isso, a derivada covariante do nucleon, equacao (2.156), resume-se a

D:A=@A+_—3 o ~ i t(AN@A) A (2.165)
21:1/4 fl/4 + f2 i /A\2

e a do pion, equacéo (2.146), a
. . 1 P .
D.A = @A + 3 P —— A@.A%: (2.166)
2 f1/ | A -I:l/4 1:1/?1 i A2

Neste caso, a expressao (2.149) corresponde ao termo cinético usual e as interacdes entre nimeros

pares de pions do modelo %-ndo-linear com simetria quiral, isto é,

q q
D-A(D*A=0.At0"A+0@. F2jA*Q" f2j A% (2.167)

A forma mais simples para o termo de quebra da simetria quiral, que satisfaz a equacdo

(2.151) com esta escolha de f(A?), é

q
h(A*) = f,2% 7§ A%; (2.168)

gue é idéntico ao do modelo ¥%-n&o-linear.

Logo, temos duas alternativas para lagrangianas nao-lineares:

LPS = M + N e LPY = LM + LA; (2.169)
onde
M oa — q . 0 a
Ly =5 @ f2§ A20" f2§ A2+@AQ0°A +F212 2 1A (2.170)
Hq il
Ly =iN@N jgN 2 A%+is tA°, N; (2.171)
=K (D im) A+ 2 koo ; AtD.A: (2.172)

21y,
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Nos espalhamentos %Y, 4N e NN, nas fotoproducdes de um e dois pions no nivel arvore
[ Pup 94], assim como no espalhamento %N com um loop [ PR 97] e no espalhamento NN devido
a troca de dois pions [ Roc 93], veri..cou-se explicitamente que, para ga = 1, 0s dois modelos
nao-lineares sdo equivalentes. No caso ga & 1, a equivaléncia entre as duas abordagens requer
modi..cacdes na lagrangiana (2.171).

Em 1979, Weinberg [ Wei 79] postulou que a lagrangiana efetiva mais geral, que incluisse
todos os termos consistentes com analiticidade, unitariedade e simetrias da teoria, produziria via
regras de Feynman e numa dada ordem de teoria de perturbacéo a amplitude mais geral consistente
com as simetrias assumidas. Com isso, ele retirou a necessidade dos pions serem moles, estendendo
a teoria de campos efetiva para além da algebra de correntes. O desenvolvimento mais rigoroso
dessa proposi¢do para 0os mesons, realizado por Leutwyler em 1994 [ Leu 94], deu origem a moderna
teoria de perturbacdo quiral (ChPT). Recentemente ele estendeu a ChPT para os barions [ BL 99].

2.6 Regras de Feynman

Na linguagem perturbativa, a amplitude de transi¢cdo de um processo consiste na série mono-
tonicamente convergente

T=TO+TD + 7@ 4+:::4+ 7O 411 (2.173)

onde T ¢ a amplitude de ordem n, relacionada com um conjunto de diagramas, conhecidos como
diagramas de Feynman, que representa a dindmica do processo nesta ordem. Esta amplitude é
dada, entéo, pela soma

TO = 7O 4+ 7™ 4 7O 4004 T, (2.174)

onde TV ¢ a amplitude do diagrama m do conjunto de ordem n. No contexto da simetria quiral,
estes conjuntos sdo formados por grupos de diagramas de Feynman.

Os diagramas de Feynman séo divididos em trés componentes basicas: linhas externas, linhas
internas e vértices. Essas componentes sdo relacionadas as expressdes matematicas por meio de um
conjunto de prescri¢gdes no espaco dos momentos, denominadas regras de Feynman, que permitem
obter as amplitudes desses diagramas de uma forma prética e intuitiva.
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As linhas externas e internas representam, respectivamente, particulas reais e virtuais. As
particulas reais correspondem as solugdes das equacdes de movimento e as virtuais as propagacoes
dessas solugdes, sendo, por isso, chamadas também de propagadores. Em geral, as lagrangianas
livres sdo as mesmas em todos os modelos e isto também acontece com as expressdes matematicas
associadas as linhas externas e internas.

Os vértices representam as interacdes entre as particulas. Suas expressdes matematicas sao
derivadas da lagrangiana de interacéo e, portanto, dependem do modelo empregado.

Neste trabalho, os pions sdo representados por linhas tracejadas e os nucleons, por linhas
continuas.

1. Linhas Externas:

P ¢
L % "0 AL A § 12A2
H ka
. 1
'I"IHb
0.
k%@ 1
©
La; Ln A6 im)A; N(G{6imN
. 91 il
H p:s s _ 1 E+m ~
Hiyp uwp) = E+m Yalp As

I gl : i
PoF | ¥E) =P AL E M%)




2 Simetrias e Lagrangianas

2. Linhas Internas:

P ) ¢
L % '0.ALQ*A § 12A2
. _ i
o — b l¢(k)—m
K
Lx; Ln A@i®im)A; N6 im)N
. i . ®+m
h_Tb |S(p)—6)im |p2im2
3. Vértices:
1 i c0r142 . 42 4%
L 812 0.A%0"A% j 12 At
i
@ ; iEfiabicd[(k+q)¢(k0+q0)+12]
ka @ i ke "
@bi + factng [(K + K ¢ (g + ¢°) + 22
i
13
W @ d.d + tagtne [(K + 00 ¢ (g + K + 1] g
i @




2.6 Regras de Feynman

Lx gff\/ Koro s AtA
k:a | g
L6 i 2fA1/ ia &%y
1 goon 5k - %
LA i4f2A° ¢ AC(AN@.A)
1/4
@ i 1
kia @ v kib i mzabcéc &i &)
— @ni — s
Lx §$3A°1°5<;MA@1A2
Yy
q;b
@ | i
kia@ le m g;c i LY [teoia @+@") +£acin @1 &) + 2paic @i &)] °5
— @hi — Aty




2 Simetrias e Lagrangianas
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Capitulo 3

Processos Intermediarios

A dinamica da interagdo NN, mediada pela troca de pions virtuais ndo correlacionados, pode
ser analisada por meio de subprocessos basicos. As trocas de um, dois e trés pions no espalhamento
NN sdo baseadas nas interacbes N ¥ %N, N ¥ YN e %N ¥ %Y%N. J& a producdo de um pion
na interacdo NN devida as trocas de um e dois pions depende, respectivamente, das combinagdes
de N ¥ %N com %N ¥ %N e de 4N ¥ YN com “N ¥ ¥%N. Essas composices facilitam
os calculos, pois as amplitudes desses processos intermediarios sdo tomadas como subamplitudes e
usadas como vertices em regras de Feynman compostas.

Uma parte da dindmica do processo %N ¥ %Y%N estd associada ao espalhamento %Y elastico
e, por isso, é conveniente considerar também a amplitude deste espalhamento como sendo um vértice
efetivo nas regras de Feynman.

43
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3.1 Espalhamento Pion-Pion

O espalhamento de pions é o processo mais basico da QCD a baixas energias. Ele € ideal para
estudar o mecanismo de quebra espontanea da simetria quiral pois, como envolve somente bdsons
de Goldstone pseudoescalares, espera-se que a expansao de sua amplitude convirja rapidamente.

O espalhamento ¥:¥: elastico consiste no processo %a(K) Y, (q) ¥ Y. (k%) ¥%q(q"), onde os indices
romanos representam as terceiras componentes de isospin e 0s quadrimomentos obedecem a conser-
vagédo de energia-momento

k+q = kK'+q': (3.1)

A forma geral da amplitude de transicéo ¢é
Tacka = tapted A(S) + tactpg A(t) + tagtpc A(U); (3.2)
onde A é uma funcéo escalar, dependente das variaveis de Mandelstam
s=(k+0)" = (K +0)°; t=(kik) = i u=kid)’=Kiag" @3
com o vinculo s + t + u = 412, para pions na camada de massa.

Uma vez que o momento angular e o isospin totais, J (= L) e I, sdo conservados, é conveniente
a analise dos dados experimentais em ondas parciais com isospin bem de..nido. A decomposicdo da
amplitude em ondas parciais permite expressa-la em termos de defasagens reais e, perto do limiar
(s 2 412 ¢ t 2 y 2 0), em termos do comprimento de espalhamento e do alcance efetivo. A
conservacgao do isospin possibilita reescrever a amplitude no canal s como

> | 1
Tdcba = T Pdcba; (34)
1=0;1;2
onde
0 1 . 1 1 - . 2 1 - 1
Pdcba = 3 tabted Picba = 5 (*actvd i *adtne) 7 Pdoha = 3 (tactbd + fadtnc) i 3 tabted (3.5)
sdo os operadores de projecdo de isospin e
TO = 3A(s) + A(t) + A(u) ; T =A®M i AQ); T2 = A(t) + A(u) (3.6)

sdo as amplitudes para cada canal de isospin.
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Figura 3.1: Dinamica do espalhamento %% para os modelos ndo-lineares no nivel arvore.

Nos modelos quirais ndo-lineares, a dinamica da interacdo %%, em primeira ordem de per-
turbacéo, é descrita por apenas um diagrama de Feynamn do tipo arvore, o da ..gura (3.1). A
amplitude resume-se ao Vvértice de quatro pions dado no capitulo 2,

1© £ 0 0 ZEJ £ 0 0 2EJ
Tdcba = iﬁ iabicd (ikiQ)¢(k+Q)+1 +iacibd (ik+k)¢(iq+Q)+1
1/4
£ pa
+ fagtnc (i k+ qO) ¢ (i q + ko) + 12 : (3-7)

Usando as equagdes (3.1) e (3.3) na expressao (3.2), obtemos
- ¢ - q: -
AO = 5'si? T AD = ='ti? e AW = o

1 ¢
i 1?2 3.8
f1/24 f4 ui (3.8)

RN
Sh -

COMPORTAMENTO A BAIXAS ENERGIAS

A amplitude T' em primeira ordem, expressdo (3.6) com (3.8), corresponde aos valores do
comprimento de espalhamento e alcance efetivo preditos por Weinberg para pions moles [ Wei 67],

7 1 L
agzzlL; B =21L; a3 = i 5L g =il e aizgl'—? (3.9)
onde
.1 0:089
= >

é o comprimento de espalhamento universal. Estes resultados reproduzem os da algebra de corrente
[ Wei 66b], com apenas dois parametros livres, f, e 1.

Na tabela (3.1), vemos que esses resultados séo menores do que os valores experimentais,
principalmente para a onda S com isospin nulo (a3). Esses parametros sdo particularmente sensiveis
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a quebra explicita da simetria quiral na QCD, pois todos desaparecem no limite quiral (* ¥ 0). A
expansao quiral até segunda ordem, realizada por Gasser e Leutwyler [ GL 83b] [ GL 84], corrige o
valor de a3 em 25% e adiciona quatro novos parametros livres, por causa da ndo renormalizibilidade
da lagrangiana. Os trabalhos atuais em ChPT [ BGS 94] [ KMSF 96] [ BCEGS 97] [ Wan 97] en-
volvem mais seis parametros livres, decorrentes da expansao quiral em 2 loops, mas ndo obtem uma
correcdo signi..cativa. Resultados equivalentes sdo obtidos no programa de unitarizacdo da &lgebra
de correntes [ Bor 84] [ BBT 98].

Tabela 3.1: Parametros do limiar em unidades de * [ BCEGS 97].

Arvore 1 Loop 2 Loops Experimento
ajuste 1  ajuste 2 [ KA 82]

aj 0:16 0:20 0:217 0:206 0:26 8 0:05
b3 0:18 0:25 0:275 0:249 0:2580:03
a3 j 0:045 j0:042 0:0413  0:0443  0:028 §0:012
b3 i 0:091 ;0073 0:072 i 0:080 i 0:082 8 0:008
al 0:03 0:037 0:040 0:038 0:038 & 0:002
bl 0 0:0048 0:0079 0:0054 —
ad 0 0:0018 0:0027 input 0:0017 & 0:003
as 0 0:00021  0:00023 input  0:00013 8 0:0003

3.2 Espalhamento Pion-Nucleon

O espalhamento pion-nucleon (%:N) é dado pelo processo %a(K)N(p) ¥ %y (k")N (p"), onde os
indices a e b representam o isospin dos pions e os quadrimomentos obedecem & relagdo de conservagado

de energia-momento,

p+k = p'+k: (3.11)

As variaveis de Mandelstam deste espalhamento sao
s=(p+k)?= (" +K)% t=(k iKY =0"ip) u=@ik)Y?=0"ik* (312

Além destas variaveis, € conveniente o uso das combinacdes antissimetrica

sju +p) ek + Kk
o= 21U _ (p p)mf ) (3.13)
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e simétrica

2m? jsiju t 212 k ¢k
s = 4Im == Zlm 1 om (3.14)

A amplitude de transicdo pode ser separada, quanto a troca dos indices a e b, em uma parte
simétrica T * e uma antissimétrica T ¥,

Toa = tap T7 + 12550 TV (3.15)

A conservacao do isospin total, por sua vez, produz

Toa = T2 tU) P’ + T32(s;u) P (3.16)

onde
prz = Lo via P32 = Lion iz 3.17
ba — §(—ba | bac(,c) e ba — g( Tha i | bac(,c) ( . )

sao os operadores de projecdo de isospin e
T™(situ) = T +2T o Tty =T T! (3.18)

sao as amplitudes nos canais de isospin.

As conservagdes de paridade e energia-momento, para nucleons na camada de massa, fornecem
a estrutura geral

TS = a() A%+ E+8)BT u(); (319)

onde AS e BS sfo fungbes escalares das variaveis de Mandelstam. Pela decomposicio de Gordon,
podemos reescrever as amplitudes T & na forma alternativa

i . .
TS = a(p’) D% i, [6,6&]B° u(p); (3.20)
onde D8 = AS +°BS, A expressio (3.19) pode, também, ser escrita como
- M T T 2
AY AS+1BS| j%tkBS E+m A
8 — 0 . =3 0 1

A conservagdo do momento angular total J (= L + S), neste caso, implica na existéncia
de duas amplitudes para cada autovalor de L, que descrevem os espalhamentos com e sem troca
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de sentido de spin do nucleon emergente, relativamente ao incidente. Com isso, as defasagens, 0s
comprimentos de espalhamento e os alcances efetivos sdo expressos em termos de | 8 1=2.

Nos célculos teoricos, as amplitudes invariantes AS e BS sdo determinadas a partir da
dindmica do espalhamento. Em ordem mais baixa de perturbacéao e segundo os modelos quirais néo-
lineares do capitulo 2, esta dindmica € descrita pelos diagramas da ..gura (3.2), que correspondem
a realizacdo minima da simetria nesta ordem.

@1/4 Yy ' . . . . .
Ry~ b @k a Kib kia @ L Kib a@ka Kib
_1/2@}/4 — @r — i — — i— @r — — @i —
ey p;s s ph s’ pbs  u  pls p;s ph s’
iN I\% ) ) ) 1 ) 1

Figura 3.2: Dinamica do espalhamento %N para os modelos ndo-lineares no nivel arvore.

No modelo ndo-linear com acoplamento %N pseudovetorial (PV), temos

; +& j M P& im,
Toa = fT’z%H i(;b(;aﬁ‘]@Si—'Wﬁica(;bﬁﬁai—r'nzﬁO u
1
+ 757 8L 2acec @+E)]u: (3.22)
Ya

Simpli..cando a parte spinorial por meio da expressao (3.11) e da equacgdo de Dirac, podemos
reescrever a amplitude como

M 1 M il M 1.
Tba - mgA & iba 1i ﬁ + & +i2bac(',c 1 ﬁ i ﬁ u
fy, m sSim? uijm? Sijm2 " ujm?
251
| = % e 6] u: (3.23)
l/4

Nesta expressao, percebemos que os diagramas com propagadores nuclebnicos no modelo PV contém,
além das contribuicdes do pdlo do nucleon, termos parecidos aos produzidos por diagramas de
contato.

O calculo da amplitude %N no contexto do modelo com acoplamento PS é totalmente analogo
e produz um sanduiche spinorial idéntico ao primeiro da expressdo (3.23), multiplicado por g2 ao

invés de (mga=Ff,,)>. Com a ajuda da relacdo de Goldberger-Treiman podemos, entdo, escrever

X M€ _es .
mga T i, .0 _
f%A % + 03 il *Tha: (3.24)

Tha =
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O termo 1=m na parte isosescalar da expressao (3.23) corresponde a uma interacéo de contato
e, no modelo ndo-linear PS, é derivado da fungdo f = (f2 j A?)'2. Portanto, este termo representa a
assinatura da simetria quiral e, para estudar o seu papel em outras amplitudes, passamos a rotula-lo
por um paréametro, o %.

A comparacao entre as expressoes (3.23) e (3.15) fornece

'A\+_MrngA1T2 3/_4. Bt = IJ.rngAT[2 |J'- 1 + 1 1 _ mg,zb\ °© .
T f, m’ Ty 'simzuim? T fZ2 95 o2
(3.25)
H o TH l
Ai=Q: Bi = mga i - 1 - 1 _OAil — mga % _GAil.
' 1 'simtuim ' 2R f2 02 oz ' "of7

COMPORTAMENTO A BAIXAS ENERGIAS

Considerando os pions na camada de massa e tomando o referencial no centro de massa do
sistema (cm), temos

p= (E:K); KE (155 K); P’ = (EiK); KE@ik) (326

s =(E+1)%; t=i2jkj’Qix; u=ijsijt+2m?+21%  (3.27)

onde X = cosp = k ¢ k"=k?.
Neste caso, é conveniente escrever a expressao (3.21) na forma

P

i ¢
TS = gy s 'AVFSA ; com F3 = G3 + i%utnHS; (3.28)

onde
£ ip_ ¢ _no £ iD_ ¢ _n
G =(E+m) A§+Ipsim BS j (E im) A§i'ps+m BS cosy;

(3.29)
ip

£ _ ¢ _no
H®= i (Eim) ASj "s+m BS siny

e = (K "K)=(K2sin p).
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O limiar (k" ¥ 0), no espalhamento %N, corresponde a p§ 2 (M+1),° 210, 2
i 12=2m. Neste limite, temos que HS =0,

o = ngAﬂZZHB/ _4m? il . i ngAﬂin 4am? L+ iﬂ- (3.30)
Oy ame g 12 T Of, m ommgett gz W
A expansio de G8, em torno de " = 1=m, fornece
H T - R H P R
+ — mga 3 = - }||2+... i— mga i"+l"3+"' .
G f, 2(% § 1) i 5 L e G f, g%\ 1 Ll (3.31)

Estes resultados indicam que, no limiar, a auséncia da simetria quiral, representada por % = 0,
produz um termo dominante em G* que é cerca de 200 vezes maior do que o da ordem seguinte.
Por outro lado, a simetria ndo afeta Gi e HE no limiar.

Os valores do comprimento de espalhamento e do alcance efetivo para 0 modelo PV no nivel
arvore com % = 1, derivados de G& no limiar, e um loop na abordagem HBChPT, dados na refer-
éncia [ FMS 98], sédo apresentados na tabela (3.2). Os trés conjuntos de valores empiricos deve-se a
dependéncia de hipoteses tedricas usadas nas analises dos dados experimentais. Além de principios
teoricos gerais, como causalidade, unitariedade, invariancias de Lorentz, retexdo temporal, conju-
gacdo de carga e paridade, empregam-se também a analiticidade de Mandelstam e a invariancia de
isospin.

Nesta tabela, é possivel constatar que as previsdes para o canal positivo sdo ruins, mas
que os resultados podem melhorar sensivelmente com um loop pidnico ou, simplesmente, com a
inclusdo do termo sigma e das ressonancias € e % no nivel arvore [ Men 85]. O papel da simetria
quiral é fundamental no espalhamento %N, pois a sua auséncia total implicaria na inexisténcia do
diagrama de contato do modelo PS e, consequentemente, em A* = 0, mudando o comprimento de
espalhamento por um fator de 200.

A informacéo experimental do espalhamento %N pode ser extendida para a regido abaixo do
limiar via relagfes de dispersdo. Usando as propriedades de unitariedade, analiticidade e simetria
de cruzamento (s $ u) da amplitude de espalhamento, as partes reais e imaginarias das amplitudes
invariantes AS e BE podem ser relacionadas pelo teorema de Cauchy,
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Tabela 3.2: Parametros do limiar das ondas S e P em unidades de 10i21i! [ FMS 98].

Arvore 1 Loop Experimento Experimento Experimento
ajuste 1 ajuste 2 ajuste 3 [ KA 85] [ Mat 97] [ SP 98]
ay i 1.03 i 0:97 0:49 0:25 i 0:83 0:41 8 0:09 0:080:1
bo 1:20 i 477 i 523 j 6:33 i 440 i 446 i 48380:10
al 0:08 9:05 7:72 8:72 9:17 7:7380:06  8:83§0:07
bd i 2:10 1:26 1:62 0:82 0:77 1:56 0:07 & 0:07
afi j 10:57 j 552 j 5:38 i 490 i 5:53 i 54680:10 5:3380:17
ar. 5:29 13:97 13:66 14:21 13:27 13:1380:13 13:6 80:1
af, i 4:65 i 1:36 il:25 i 0:98 i1:13 i 1:1980:08 j 1:.0080:10
al, j 4.66 i 844 i 8:40 i 8:16 i 813 i 8228007 j7:4780:13
1 A B 1 il
8/0. — 0 80ol.
Re A (°,t)—Z P ) d°" ImA=(°% 1) 5 5 §00+o
th
M | Z M (3:52)
2 1
S04y — Y 1 .1 1 0 §(0l. 1 .. 1 .
ReB (o,t)_ﬁ 5,36 o, to +%PO d°” ImB=(°";t) oo oiyo
th

onde °;, = T + t=(4m). Os integrandos podem ser calculados através dos dados experimentais
disponiveis, pois o intervalo de integracdo esta restrito ao dominio fisico de © (° > ©y). Como
essas relacOes de dispersdo sdo validas para quaisquer © e t, as amplitudes invariantes podem ser
extrapoladas para o dominio nao fisico de © (0 < © < ©) [ Hoh 83]. Retirando das amplitudes T &
as contribuicdes do p6lo do nucleon T3, obtemos amplitudes restantes T§ gue variam suavemente

nessa regido sublimiar, isto €,

TS =T + T8 ; (3.33)

com
1 : 1 :
TS = & A,§,+§(ﬁ°+ﬁ) BSu e TS =u¢ A§+§(ﬁ°+ﬁ) BS u; (3.34)

de modo que A§ e B§ possam ser expandidas em torno do ponto da simetria de cruzamento

(° =t =0). Devido a simetria de cruzamento, essas expansdes podem ser escritas como
1/2 3/4

> AL BX .
X(©;t) = Xpmn ©2Mt"; para X2 A%, R, -R.Bi : (3.35)

o' o'’
m;n

Os valores empiricos dos coe..cientes Xmn, obtidos por Hohler, Jakob e Strauss [ HIS 72], sdo mostra-
dos na tabela (3.3).
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Tabela 3.3: Coe..cientes HJS em unidades de 1, com g = 13:4, * = 139:57 MeV e m = 6:72271.

(m; n) (0;0) (0;1) (0;2) (1;0) (1;1) (2;0)
ar, i1:4680:10 1:1480:02 0:03680:003 4:66 i 0:01 1:2080:02
brn  13:5480:06 0:1880:01 j0:01 i 1:0080:02 0:0880:01 §0:3180:02

al, i8:8380:10 j0:3780:02 {0:01580:002 {1:2580:05 0:01380:006 0:3380:02
bl 8:3780:10 0:2480:01 0:02580:002 1:0880:05 j0:05580:005 0:2980:02

3.3 Producédo de Um Pion

A producdo de um pion no espalhamento %N consiste no processo %a(K)N(p) ¥ %u(q)
%e(q")N (p%), onde o isospin dos pions sdo representados pelos indices romanos e os quadrimomentos
sdo relacionados por

p+k = p+q+0': (3.36)

Nesse processo, existem nove variaveis de Mandelstam,

s=(p+Kk)?; s'= (' +0)*; = (' + )%
t=(" i p?; t'=(q i k)?; "= (" i k)?; (3.37)
u= (i k)?; uw=(piaq); u’=(p i q°)°:

Partindo das conservagdes de paridade e energia-momento, a amplitude de transi¢céo tem a
seguinte estrutura ® :

Teba = FncéaTA + 2acio T + *paicTc i 12malD; (3.38)
com
T = i [8(p") °5 (Ac+6 B+ C,+86 &' Dy) u(p)l ; (3.39)

onde os coe..cientes Ay, By, Cx e Dy sdo funcdes escalares das variaveis de Mandelstam. A re-
lacdo das amplitudes Ty com 0s processos especi..cos € dada na tabela (3.4). Cinco sdo acessiveis
experimentalmente, mas somente quatro canais de isospin sdo independentes.

1Esta estrutura ¢ idéntica as das referéncias [ Ber 92] e [ JM 97].
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Tabela 3.4: Processos “sN ¥ Y%N especi..cos com 0 isospin

total do sistema %N inicial e o isospin do sistema %% ..nal.
Reacéo Iy N by, i Applitude

Yip ¥ Y*Y,in 1=2 0 T=_2(Ta+Tg)

Yip ¥ %%%0n 1=2 0 T= 2Ta

Vip B %O%ip 1=2 1 T=Tg+Tp

Yrp ¥ Yty 3=2 1 T = EF +To

YWrp @YY n 3=2 2 2(Tg +T¢)

Em ordem mais baixa de perturbacdo, a realizacdo minima da simetria quiral no modelo

PV é representada pelos quatorze diagramas do tipo arvore indicados na ..gura (3.3). No modelo

nao-linear PS, temos os mesmos diagramas exceto o ultimo, o de contato de trés pions.

Ya

[
Yo . % Ghy - -
@ e i 6 (,C k;a ;b = dbc -
F‘E®3/I/4i?> _k—_ _Ii’_ = @ ) 1 ' 1 b
2 a -d gc) it i
1/41/4|\| /4 | ’ -+ —+
_:n_/2(§_/4L L — — @ — i — i — §P %
& p;s pt s’ p;s pt s a- -C
_ _ g;b
eka ub 5 dc; kiag dtc 5 o:b; o am ekia | dic;
+ B it T + @i 11 + , @ 6 &
— @ui-— i - — d-—@u — a %= ¢ — @k —
p;s p’ s’ p;s p’s’ p;s ph s’
Figura 3.3: Dinamica do processo %N ¥ %%N para o modelo n&o-linear PV no nivel arvore.
O primeiro diagrama corresponde a contribucao do pdlo do pion,
Yo — & ga Td/dl;4 o £ . .
Tl = P .sz B g & u; (3.40)
onde
Yille 1 n h 0y2 2i £ 0 2 2° £ 2 2;10
Taoa = 35 Fadtee (Q+ ) 17 +facthd (@ T K) 12 +iaptg @i K 1 1 (341

i

=
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Substituindo o quadrimomento K por (p i p’) na amplitude T.i e usando a equagdo de Dirac,

obtemos
7o i %
. m £ g £ 1
Tcﬁa = '% *heéa (q+q) 12 + facéb (q0 i k)2 i 12 +iaic (0 i k)2 i 12 “712 B°su:
l/4
(3.42)
Este resultado relaciona-se ao do modelo néo-linear PS por
H ﬂ 1, PS
. m T Vs
Tl = DA da (3.43)
f1/4 g

Baseados apenas na unitariedade, Dashen e Weinstein [ DW 69] mostraram que, no canal t,
o0 residuo do termo do pdlo do pion deve fatorar no produto da amplitude do espalhamento Y% na
camada de massa pela fungéo do vértice %%%NN. Com isso, a amplitude T, pode ser relacionada
diretamente as defasagens do espalhamento Y%, apesar do pion trocado no primeiro diagrama da
..gura (3.3) estar fora da camada de massa.

O calculo dos demais diagramas produz

p+@+m 6+6& im

fan = i1 8% aioia
coa 5 cehoa s¥ j m?2 uo mz

81:1/4 a

& i ¢ciaih
Pi&+m Hiqim
uijm? u’ j m?
pr@+m i€

p+a+m _H+6 i m
imz(j S j m? &
GSirm 6igim .

0.
E&+@) i lzabdc,d(,c(ﬁ"'ﬁ)6 19

u® § m2

i abcin & G i ibicia

0
ﬁ i cachic®

i (',b(',a(',ca

B4+ @'+ m
s? § m2

NP
+ i 8f1/4 B §i%paicid@

ﬁ
¢4+ q-+m : @iGim

p— €+8) i i%cacaio @+8) e @
0=
i i2bcd&a6d86u? m(ﬁ 6) i i%caiaia@i a)ﬁfmzmﬁ
i
i 2tmia @+8") i 2tacio @i 8) i 2thaic @i &) u: (3.44)

i 12acdéned@

A amplitude Ty, pode ser simpli..cada através do cancelamento entre os quadrimomentos
presentes nos vértices “sN e os propagadores nuclednicos. Usando a equacao (3.36) no vértice central,
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a equacdo de Dirac e a relagdo de anticomutagdo entre as matrizes °* e °, obtemos

s . M
mga R ' &=m 6&=m § & GG
Toa = i1 f, "o rm T im @ im)Gsim) & mW i m)
€ . && _ a¢ &g
@imWim?)  im)simd)  (§im)U im?) (Ui mAul § m?)
"oem  em 6 & _ Gl
FTracih Vg 50 o b T s v - 2y b 7l s 0 s 2
ssim2 U im2 " (S §gmA)(sim?) " (i mH)U i m?)
., &§  §& _ a¢ &g
@imWim) @ im)simd) ' mU i m?) " U mUE § m?
L., To@=m @em  qe _ ¢ q
Tl bgiimz 'yt m2 o (S0 mA)Gsim?) (s m)@U § m2)
€ @& . a¢ &g "
"eimETm) P Eimsim) P E T md) U m)W § me)
V1
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STimd(sime) (T imAW i md) (Ui m)Ul§ md
. e&  a§ &g T
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gA 2 S T mm S im2 wim? S im2 Ul m?

M
v+, :1:8, 6G& . &4 6§64 _ 6q
Tecth M T me Yy me Vs g me e me
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abéc 'm'sim2 ugm2 Ve im2tu g me

I,
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O termo proporcional a (mga=F.,)* corresponde & amplitude do modelo n&o-linear PS, com (mga=F,)*

no lugar de g3. Assim, temos

8] M3 aes .
m T i ¢
-Fcba = fiA 5261 + g,i il £Tea: (3.46)

No modelo PS, os termos provenientes dos diagramas com o vértice %%NN, derivado da
fungdo f = (f2 j A?)72_ correspondem a assinatura da simetria quiral e, como na secéo anterior,
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sao rotulados com %. Com isso, os coe..cientes dinamicos da equacéo (3.39) podem ser expressos
na forma compacta

#
2 . - - - -
N — % (+1;0;0;0)M + (0:+1;0;0)M + (0;0;+1;0)wzll2
AB.C.D 3 tj 12 tj 12 tj 12 !
Y — Y — Yy —
BA;B;C;D _CA;B;C;D - DA;B;C;D =0 (3'47)
e
115 -
J mga (+2000) | (+20:00) Gy ines+2 (@2 + 2q0p7) . Grit+ninla® i 29t(p i )]
B L sim?  ujim? (sim?)(sim) (uim?)@im?)
+ (iL+1iL50) [q02 + 2q0¢(p0+ Q)] + (i1;+1;§1;+1) (qoz i 2q0¢p) + (i1;+1;+1;41) (2q¢q0) }
(s i m?)(s” i m?) (uim?)@U”im?) (s i m?) (U i m?)
: igz ; 1¢ MIA  ©inin+y 4 O+LiLil) (9% + 2qtp°) 4 @i+ (9”2 § 29%tp)
A 2F3 S j m2 uj m2
4+ (FLOiL+1) (2q¢q") + (L L0+ (2q¢9") > |
u' § m2 s? § m2 :
K 3., ° s i
B _ Mga " GLo0 | (11000 |, (0100 | ©+100) |g2 . 1¢ mgAh(+1;a1;o;0)'.
ABCGD Ty, m sijm? ujm? sim?z2 ujm? 1 oA 2f3 m ’
M 3, " PO i
é _ Mga " ¥ (51000 4+ (G100:0) | (00:+1:0) | (0:0:+1:0) . 'gz . q:mgAh(+l;O;i1;0)l.
ABCGD T, m sim? ujm?z2 stijm2 uljm? 1ol 213 m ’
S 15 -
Bascp = mga (iLiL+1+1) + (+1; i L,+1;+1) + (+1;+1; i 1;,+1)
B fy, (sim?)@E'im?) (sim)@Eim?)  (uim)im?d)
(iL+Li1+1) *FLiliili+1) (iL+1+1+1) ’
Uim)@™im?) S im)@im?) (s"im?)u®im?)
n igz . 1¢ MIA  ©@iL+li+D) | O+Lil+]) | GLO+L+D) | (10§ L+1) | (+LiL0i+1) (i L+10+1)
Al 213 Sjm? uj m? st m2 u’ § m? s¥ § m2 u® § m?
(3.48)

Como podemos ver, somente 0s coe...cientes BA;B;C;D e éA;B;C;D estdo relacionadas com a assinatura
da simetria quiral.
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APROXIMACAO DE OLSSON E TURNER

No contexto da lagrangiana néo-linear PV, Olsson e Turner [ OT 68] [ OT 69] [ OT 77]
[ OMKB 95] mostraram que, préximo do limiar, a contribuicdo dominante de T, vem do diagrama
de contato de trés pions, o ultimo da ..gura (3.3). Este diagrama de contato gera a amplitude
h i

Tot = i gA @o, —cb(,a(a+a)++aCCb(2m|G)++ba<’C(2m|G) u,; (3.49)

cha 4f 1/34

ultima linha da equacéo (3.44), que corresponde aos coe..cientes dinamicos

MQga (0:§1;51,0) . 0A (i1;+1,0,0) JA (i1;0;+1,0)

t t . t —

ACABCD 3 —2 ) B,%\BCD 3 = 2 ' CABCD T3 — 2 ) DCA;B;C;D =0
i v v

(3.50)
muito mais simples do que os coe..cientes (3.48).

Usando a equacéo (3.39), obtemos as contribui¢cfes dominantes das amplitudes de isospin

T/S;CD = TK;B;C;D + T,g\t;B;C;D; (3.51)
onde
v o omga . KH2KIP I P) e
Ta = 1 2 1+ TE [&°5u] ; (3.52)
v Mga . R i2qPip) .
Tg = | 2 1+ TES [G°su]; (3.53)
wo_ mga . 2 i2q%@ip) L. .
=it 1w a2 [@°.u] ; (3.54)
Ty = 0 (3.55)
e
ct — mgA 1 o +
T f1/34 am [@°5 @+6") u]; (3.56)
mg 1/21 1 7
t — A o - o .
Te = i 2 5[9 sU] i m[a s Gu] (3.57)
mg 1/21 1 7
ct — - A = o - = o 0 .
T = il 2 [@°5u] i m [@°5 6 u] ; (3.58)

T8 = 0: (3.59)
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COMPORTAMENTO A BAIXAS ENERGIAS

Se considerarmos 0s pions na camada de massa, a producdo de um pion tem um limiar de
energia para ocorrer. No centro de massa (cm) do sistema, este limiar corresponde a

PEEK; kEMmik;  PPEMO; 9T ®0):; ¢ F (%0 (3.60)
e
s=m?+41(1+m); S'=s"=m2+1(2+2m);
t=124+41(1 ;1) ft=t0'=224+2(1;21); (3.61)
u=m?+41(*jE); v=u=mi+2@+m g ) ;
onde
4m + 51
1 =1_ "~ = m+2tj!: .
T e E m + 21 j (3.62)
Neste limite, devemos ter Tg = Tc e Tp = 0. Logo,
Teoa = tpcéa TA + (Facéb + *pacc) T s (3.63)
onde
n£ o} (0]
Tk = i8(0)° Ac+2Dy +°,1[Bc+C u(k): (3.64)
Como
—_
i 4(0)°s°,u(k) = &) °suk) = Erm A (%K) A (3.65)
entao,
Te = i A FUtk) ALy ; (3.66)
onde
-
L= A +22p, ;1B +C]0 2m (3.67)
k — Kk k 1 k k E+m .
sdo as amplitudes do limiar.
Essas amplitudes est&o relacionadas as da referéncia [ BKM 94] por 2
_ Ls _ La
D, = m e D, = om (368)

20 fator 2m ¢ devido a normalizacio empregada.
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e estas, por sua vez, as amplitudes mais usuais Ay, 1, POr

P—
Az = 10 D4 € Ap = i2D1 i 3D, (369)

No limiar e no centro de massa do sistema, 0s coe..cientes dinamicos sdo dados por

g (+3;il;i1;0)1+(0:+1;+1;0) )

AK;B;C;D = .':_1/24 4(1i !) 2 ’ B/1-<‘;B;C;D = CZ\A;B;C;D = DZ:‘;B;C;D =0
(3.70)
€
Tz -
Ansop = mga (+1,000) GL+LiLil + (i1,0,0,0)
F, 2t(*iE) 2(*+mE+2m) 2(F+m)(*i!l)

5

+ 0;i1;+1;i1) 1 + (iL;+1+1;51) 1
4@E+m@EiHEiE) E+FrmE+2m@E i)

: ) 1 1 1 12
: lgi ; 1¢ mg? ©iLiLo) 4 (O;ili+1;+l) + (o;+1i EEic R (+21; 12042 T (Iz;o;azwi) _ :
2t 4(*+m) 4(* i E) *+2m) 2(@F+m)(*il)

K

mia ’ ﬁ (10000 (1000 . (OF+L+10) (0;+1;+1;0)
f, m 22(*+m) 2*(*;iE) *(*+2m) 2(F+m(@*i!)

BA;B;C;D + éA;B;C;D =

¢ mga h(+2;i1;i1;0) ! )

- - 1 :
i Jai 2F3 m
IJ' 1-[3 b 5
B = mga (0; § 1;+1;+1) (0;+1; j 1;+1) + (0;0;0;+1)
ABCET TR, 22@+m)(E+2m)  AAE+m)(E i DEGE)  AE+m)E+2my)(ti )
i, tmoa i + ©il+5in) | O+Lili2) (0;i1;+1;i2) ) (3.71)

VORI 26 1a@+m) 223 E) 1@+2m) 2@+m)(EiT)

Através da expressao (3.67), obtemos

- r
Y, _ MYa  +3iL;i10) t (0;+1;+1;0) : 2m
Lagcp = 5 a1 e Exm (3.72)
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K s -

R mga (+1;0;0;0) + (i 1;0;0;0) + (i 1;0;0;0) + (i1;+1;+1;0)1
ARERT R 2@E)  20em)(+2m)  2G+m)Ei ) Grm)E+rzm)(il)

3/4” (FLO00) | (FLO00) L (QiLiL0) ©iLi10 " i 2m 3.73
m 2(*+ 1 1y Trm)E g ! + (3.73)
m 2(*+m) 2(*iE) (*+2m) 2(+m(*i!l) E+m
: r
) igz . 1¢ MIA ©ini10) 4 (i2:+l;+l;0)1+ (+2:i1;i1;0)1+ t2inino ¥ 7 2m
PoEa T o83 m T+2m) 20+m)(@i!) E+m’
Expandindo estes resultados em torno de " = 1=m, temos
u_ Mg . 9. 27,  °
Li=j—m 3+ ="j—=—"2+::1
ATiges 3V !
(3.74)
1/4:mgA +§II - E--Z_l_ ]
Le=r T2 i3
e
9 15 .
1 £ o ¢ mgat o
Bazi 2w @idW)Pe + Rl A2
AST T g MBI LT '
(3.75)
SR | . H T . >
1 13 i ¢ mga 7
Be=i 2 2 i2%"+ i "2+ +'gdil 2§ 2 i 2
e B Al B Il s c1e g
Logo,
L "y .1 : 7
A= igh 3 T HGRMEW Ti g iid T (3.76)
Ya
e
L o T 101 . 7
B _ YA = 9n2 - = 2 - w2 4o
— = + - 3 == 3 +o :
om . BF3 1 2|29A(1|/4) i 5 4|9A(3|6/4) (3.77)

Este resultado, com % = 1, coincide com as predic¢des no nivel arvore de ChPT [ Ber 92] e HBChPT
[ BKM 94]-[ BKM 95h],

5

7 ga . 17
1+=-"4+::: D, = j=— 3+—"4+::: : 3.78
5 € 2 '8f1/34 5 (3.78)

gA-

D, = =&
LT o83
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Uma lagrangiana sem simetria quiral, contendo apenas uma interacdo %N pseudoescalar,
implicaria na auséncia dos diagramas com apenas um propagador nuclebnico, isto €, sobrariam
o diagrama com propagador piénico e os com dois propagadores nuclednicos. Esta possibilidade,

representada por % = 0, produziria

. M 1 R - M 1 R
Oa [ . 0a 17 > ... .
D ==— 1+ - ;2 + D, = j=— 3+ — + : (3.79
! Sfﬁ’ 2 I <0a %=0 ¢ 2 ! 8f1/34 2 1 0a %=0 ( )

indicando que os termos dominantes independem da simetria quiral. Portanto, na producédo de

pions, a simetria quiral ndo tem um papel tdo relevante quanto no caso do espalhamento %N.

No limiar, os canais com Iy, 5, = 1 da tabela (3.4) desaparecem, pois 0s pions produzidos
estdo num estado s, que resulta em Iy, %, par. Assim, os valores empiricos de D; e D, sdo obtidos
do primeiro e ultimo processos dessa tabela,

.. P= o p-
T1/4ip!1/4+1/4in = i2m 2%tk Dy € T1/4+p!1/4+1/4+n = im 2%tk (Dl + D2) . (380)

Os resultados numeéricos para as subamplitudes, tabela (3.5), mostram que as predi¢ées do modelo
guiral minimo no nivel arvore estdo proximas dos valores empiricos [ BL 91], principalmente para
D;. A correcdo de um loop e a inclusdo da excitacdo Roper 3, realizada com HBChPT [ BKM 95b],
melhorou D, sem alterar D;.

Tabela 3.5: Amplitudes D, e D, em unidades de 113,

Arvore (% =0) Arvore (% =1) 1Loop+N® Experimento

D} 1:81 1:81 i i
D, i 1:22 i 0:96 i i
D, 0:59 0:85 0:94 8 0:08 0:80 8 0:04
Dy i 2:06 i 2:06 i i
D, i 0:19 i 0:33 i i
D, i2:25 i2:39 i32180:37 {32080:13

E importante comparar estas predicdes com as de Olsson e Turner, que sd0 muito mais

simples. Neste modelo, a contribuicdo dominante da expressédo (3.73) € dada por
Lot _ Mga h(O;iZ;iZ;O) 4+ (F2iLiL0) 2i 2m (3.81)
AB.C.D — 4f12 m E+m ’ .

3Qutras excitagdes nuclednicas e as trocas mesonicas desaparecem no limiar.
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cuja expansao em torno de " = 1=m produz

h [
MIA o 402 411 e LY = j

4f}

' 3
Mda 24+"§ S (3.82)

LCt —
A 4T 4

Com a contribuicdo do pdlo do pion, equacéao (3.74), obtemos

LE+Lg _ ga .1, 9 :
DT = 28 = 1+Z"§ ="+ 3.83
L 2m 8f ;3 2 '3 (3:83)
e
LY+ LSt gan . 5. 27 :
DT = 2A_A = 22 3+ 2" j ="+ 3.84
2 2m ' 8f 3 2 '8 (3.84)

Logo, os resultados de Olsson e Turner reproduzem corretamente os termos dominantes no limiar,
refetindo a relevancia dos diagramas de troca do pion e contato de trés pions. No limiar, a fatoragéo
do diagrama de troca do pion, mostrada por Dashen e Weinstein, pode ser explicitada através das
amplitudes Ay, 1,,, escrevendo-se

H il M il
P— a2 ad
Aw = i 2% 10‘]1—2 %+ e Ap = 4%‘]1—: Bvdy 3 (389)
onde aj e a3 sdo dadas pelas equagdes (3.9) e as corregdes do € d,, por
L 7 : L 37 1 :
d = j 7 Zigi(li%) " e d = 3 §+Zgi(1i%) "+ (3.86)

Na formulacéo original de Olsson e Turner, os comprimentos de espalhamento %Y para a
onda S (aj e a3) contém um parametro, », que descreve o padréo de quebra da simetria quiral.
Atualmente, sabe-se que apenas o valor » = 0 ¢é consistente com a QCD [ OMKB 95] e condizente
com a expressao (3.9). Portanto, os resultados de Olsson e Turner, com » = 0, podem ser usado na
obtenc¢do dos termos dominantes de processos com vértices %Y%NN a baixas energias.



Capitulo 4

Espalhamento NN

Atualmente, os modelos dinamicos existentes para a interacdo NN incorporam varios pro-
cessos mesbnicos, mas a troca de trés pions ainda ndo foi devidamente considerada. Além das
componentes isoescalar e isovetorial, esta interagdo se decompde numa parte pseudoescalar e noutra
axial. O sistema de trés pions tem uma massa ao redor de 417 MeV, sugerindo que seus efeitos
na regido de médio alcance do potencial podem ser comparaveis aos produzidos nos modelos com
mésons vetoriais. A existéncia dessa lacuna decorre do fato deste processo ser bastante complexo,
envolvendo grande ndmero de diagramas, todos com dois loops.

Apresentamos aqui uma estimativa desta componente da interacéo e calculamos a troca de
trés pions ndo correlacionados, tomando como base os resultados de Olsson e Turner para 0 processo
YN ¥ Y%N. O sistema resultante ndo tem a componente isoescalar e, por isso, comparamos
0S Nnossos resultados com as contribui¢cdes do pion (isovetorial e pseudoescalar) e do méson a;
(isovetorial e axial).

63
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A interacdo nucleon-nucleon (NN) vem sendo estudada desde o estabelecimento da teoria
mesonica de Yukawa [ Yuk 35] e da subsequente detecdo do pion [ LOP 47]. Entretanto, muitas
décadas depois, ela ainda nédo estd completamente entendida. Segundo o programa de pesquisa,
proposto por Taketani, Nakamura e Sasaki por volta de 1950 [ TNS 51], a interacdo NN pode ser
dividida em trés regides: curto (r - 1fm), médio (1fm . r - 2fm) e longo (r & 2fm) alcances.
Atualmente sabemos que a regido de curto alcance, onde ocorre a sobreposi¢do dos dois nucleons,
deve ser descrita explicitamente por quarks e glions. As demais regides, no entanto, podem ser
descritas efetivamente por trocas mesonicas, cujo alcance é determinado pela massa trocada no
canal t. Quanto menor esta massa maior o alcance da interacéo *.

O potencial gerado pela troca de um pion, o sistema mais leve, é importante para grandes
distancias e domina as ondas com L > 5. Esta dominancia na regido de longo alcance do OPEP
(one-pion exchange potential), como é conhecido este potencial, tornou-se um consenso na década
de 60 [ HJ 62] [ LHRMB 62] [ NT 65] [ Rei 68].

A medida que encurtamos a distancia entre os nucleons, a complexidade da interacdo aumen-
ta. Na interface das regides de médio e longo alcance, a maior contribuicdo do potencial é devido
a troca de dois pions, o segundo sistema mais leve. Seu contetdo dinamico esta intimamente rela-
cionado a amplitude %N intermediaria [ CM 63]. Este potencial, conhecido como TPEP (two-pion
exchange potential), foi estudado detalhadamente, junto com trocas mais pesadas, nas décadas de
70 e 80 pelos grupos de Paris [ CLLRV 73] [ LLRVCPT 80] e Bonn [ MHE 87]. A descri¢éo do
TPEP no potencial de Paris ndo é dinamica, pois ele é calculado por meio de relacdes de disperséo,
gue extrapolam a amplitude %N para pions virtuais. No potencial de Bonn, o conteido dinamico
do TPEP é dado pelas trocas de pions independentes ou correlacionados e pela troca de um %,
ressonancia de dois pions. Este potencial é uma generaliza¢do dos trabalhos de Partovi e Lomon
[ PL 70], onde o acoplamento “N é pseudoescalar, e de Zuilhof e Tjon [ ZT 82], com acoplamento
“iN pseudovetorial. Nestes trabalhos, o potencial é derivado da teoria de campos e a dinamica
é descrita por apenas dois diagramas de Feynman, o box e o cruzado. A substituicdo do TPEP
pela troca de um méson ..cticio no potencial de Bonn resulta no potencial devido as trocas de um
béson, conhecido como OBEP (one-boson exchange potential). Como seu contetido dindmico é mais
simples e menos trabalhoso, o uso do OBEP em calculos de estrutura nuclear é mais conveniente.

A troca de trés pions, o terceiro sistema mais leve, foi estudada explicitamente por Vinh
Mau e Heitzmann [ HV 79] atraveés do acoplamento do vértice “sN com as relagBes de dispersédo

LAlém da caracteristica espacial, existe uma forte dependéncia da interacio NN nos canais de spin e isospin.
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YiN. Nos potenciais de Paris e Bonn, ela é considerada de modo efetivo, por meio de sistemas mais
pesados, como as trocas de um ! (Paris e Bonn) e da combinacdo de um % com um % (Bonn).
No OBEP, esta combinacdo também é simulada pela troca de um méson a; [ DSBJ 77] [ DBS 84],
tabela (4.1) 2.

Tabela 4.1: Trocas mes6nicas consideradas nos potenciaisﬂexistentes.

Trocas OBEP Massa JinN Oine 16 "JP Interacdo
Yy Y 139:08 13:4 0:49 17 (07) PS
29, — 278:16 [1i (01)]=[1i (01)] S-V
i i 547:45 j 477 j 5:23 0" (01) PS
— % (2%) 550 1075 7:72 0+ (0%) S

b (2%) % (2%)  769:9 1:26 1:62 1% (17) V

1 (3%) 1 (3%)  781:94 552 538 0i (1) V
Y — 685:48 [0 (0F)]=[1F (07)] S
Y, — 907:93 [1* (11)]-[1F (01)] PV
1y, — 919:97 [0i (11)]—[1F (01)] PV
— a(C%) 9824  13:97  13:66 1i (0%) S
—  a, (3%) 1230 9:6 1i (1%) PV

Na década passada, a inclusdo sistematica da simetria quiral no estudo do TPEP tornou a
sua descricdo mais precisa. A simetria quiral é muito importante no espalhamento NN devido a
troca de dois pions [ BD 71], porque ela cria vinculos na amplitude %N intermediaria. Em energias
baixas e intermediérias, a amplitude %N é determinada pelas contribuigdes do po6lo do nucleon e de
um fundo estavel [ Hoh 83]. Esta simetria é responsavel, diretamente, por grandes cancelamentos
dentro da contribuicdo do polo do nucleon, ..xando a escala do problema e ampliando o papel do
fundo. Este dltimo é muito importante, uma vez que a contribui¢do quiral do pdélo do nucleon,
sozinha, néo basta para explicar os dados experimentais provenientes do espalhamento %N.

A construcdo do TPEP no contexto da dindmica quiral comegou com o trabalho de Ordodfiez e
van Kolck [ OK 92], que considera um sistema contendo apenas pions e nucleons. Varios trabalhos,
gue se seguiram lidaram com aspectos complementares do problema [ CPS 92] [ FC 94] [ RR 94]
[ Bir 94] [ KBW 97]. Os potenciais desses trabalhos nédo reproduzem a dominéncia da atragdo
escalar-isoescalar na regidao intermediaria, constatada nos modelos fenomenolégicos. 1sso acontece
porque um sistema contendo apenas pions e nucleons ndo pode explicar os dados experimentais do
espalhamento %N [ Hoh 83], necessitando de outros graus de liberdade, especialmente os associados

2 Alguns mésons ndo foram levados em conta, porque suas constantes de acoplamento sdo muito pequenas.
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as excitacOes delta e ao termo sigma %N . A inclusdo dos deltas [ ORK 94] [ ORK 96] [ KGW 98] ou
de coe..cientes empiricos [ Rob 95] [ RR 97] [ BRR 98] é su...ciente para explicar a cauda do potencial
escalar-isoescalar 3. Este esforco baseado na simetria quiral levou a um re..namento importante da
parte mais externa da regido intermediaria do potencial e trouxe vinculos tedricos para ondas com
L > 3. PredicOes para os observaveis, baseadas na suposicdo que apenas o OPEP e o TPEP quiral
representem a interacdo completa para distéancias maiores que 1,4 fm, estdo em bom acordo com a
experiéncia [ RTFS 99].

Em 1999 publicamos um trabalho [ PR 99] onde a troca de trés pions entre dois nucleons
era estudada por meio da simetria quiral. Este foi o primeiro trabalho a estudar esta classe de
processos pois, até entdo, somente contribuicdes das trocas de um e dois pions haviam sido estudadas
no contexto desta simetria. O nosso objetivo foi preencher uma lacuna na tabela (4.1) relativa a
contribuicdo da troca de mais de dois mésons. Neste capitulo, descrevemos a componente do
potencial NN devido a troca de trés pions ndo correlacionados, usando os resultados de Olsson e
Turner para o processo %N ¥ Y%N.

4.1 Potencial

A representacdo da interacdo NN através de um potencial ndo-relativistico, obtido a partir
de uma aproximacao perturbativa da teoria de campos, € motivada por aplicacdes em problemas de
estrutura nuclear. O uso desse potencial na equacao de Schrodinger deve produzir uma amplitude
de transicdo equivalente aquela derivada da teoria de campos na mesma ordem de aproximacao.
Na aproximacao perturbativa da teoria de campos, a amplitude de transicao relativistica para um
processo é dada, diretamente, pela expansdo da matriz-S na constante de acoplamento. Cada ordem
nesta expansao esta associada a um conjunto de diagramas de Feynman irredutiveis, que representa
a dindmica do processo na respectiva ordem.

Em espalhamentos elasticos, € conveniente partir da equacao de Bethe-Salpeter [ BS 51], que
representa a amplitude de transicdo da teoria de campos numa forma covariante. Em termos de

3Nas referéncias [ RR 94] [ Rob 95] [ RR 97] [ BRR 98], o TPEP ¢ tratado relativisticamente e dado énfase a
parte mais externa da regido intermediaria, que é determinada pela amplitude %N. Nas demais referéncias, o TPEP
¢ baseado no HBChPT.
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operadores, ela é dada por
z

(' piw) = R(p%; piw) +

d4
(24)*

R(p% qiw) G(ajw) T'(q; piw); (4.1)

onde
W =p; +p, =p) +pj; p=(p1 i P2)=2; p' = (P} i pd)=2; (4.2)

q é 0 quadrimomento relativo intermediario, K é o kernel (nucleo) da interagéo e G, o propagador
relativistico de duas particulas.

Devido a sua origem perturbativa, o kernel ndo ¢ uma expressao fechada, o que torna a
resolucdo dessa equacao relativistica muito dificil [ FT 75]. Esta di..culdade aumenta ainda mais
se as duas particulas forem férmions, mesmo considerando os diagramas irredutiveis mais simples
como as trocas de apenas um boson [ FT 80] [ ZT 81]. Em energias baixas, € possivel contornar esse
problema através de reducdes tridimensionais que satisfazem a condigéo relativistica de unitariedade
elastica e ..xam a componente temporal numa forma covariante, de modo que ela ndo apareca como
uma variavel separada no propagador. Geralmente, essas reducdes sdo obtidas a partir da quebra
da equacéo de Bethe-SaIpeter nas duas equacdes

Z Zd4
fore Llggr o R=R+ JLRGigR @y

(2¥)*

(21/4)4
onde K é um kernel efetivo e g, um propagador néo-relativistico que deve ter a mesma estrutura
analitica de G na regido fisica.

O kernel corresponde a soma de todos os diagramas conexos irredutiveis. O kernel efetivo é

dado pela série
z z

d*q d*q’
R= R +|2+ —— R, (G g)|2 +|2 1 R (G ig)R; (G g)|2
| {22} I 4 (2/)4:{ 2 i 2} I 6 (2/)4 (2/)4 {2 i 2 i 2}
R, R, R (4.4)

com os indices referindo-se a ordem da constante de acoplamento.

Identi..cando, nesta série, 0s termos da expansdo perturbativa dos operadores de transicédo

da teoria de campos podemos reescrever o kernel efetivo como

Py T‘Z Rk.fzd‘lqd‘lkl%l%
+ g + = - : g +
I{;} I 4 (2{/7)4 2 2 I 6 1 (2/4)4 (%/)4 2 2 }

R, Ry Re (4.5)
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com
Z Z
_ _ d4 _ d4 d4 0
1L\z |22; 1L\4 I24"‘ (21—/34sz Rzi T\e IQ6+ (21/34(21/34 IQZG IQZG IQZ D
(4.6)

Dentre as diversas escolhas possiveis para g, a mais utilizada é a de Blankenbecler e Sug-
ar. Desenvolvida originalmente para particulas sem spin [ BbS 66], ela associa g a propagacéo de
particulas com energia positiva, de modo que “G j g” propague particulas com energia negativa.

No caso do espalhamento NN, a escolha de Blankenbecler e Sugar [ PL 70] produz

1 1 =aP@eP(iq),
(243 4Eq P2 iE2+i"

9(qiP) = (o) (4.7)

onde

O — < — ®
aP@ =" us(0) 8 () =B +m (4.8)

Si

sdo os operadores de projecdo de energia positiva para o nacleon i com momento . Com isso,
a amplitude de transicdo é obtida tomando-se o operador de transi¢cdo entre spinores de energia
positiva,

T (" p) = &@ (P &@ (i p’) T(P"; p) U (P)u@(i p): (4.9)

Como o propagador relativistico de dois nucleons é dado por

" #oy'" #
® )
_ 1e+6+m 1ejg+m
GEP) = +—2—¢ R S e — (4.10)
sSP+q  im+i sPiq im+i
a equacao integral para o espalhamento NN assume a forma
Z 3
TE:P) = KEEP + b K(p'iq) = T(@p) (411
’ ’ (20 L L I '
com o kernel efetivo dado por
K(p'; p) = &@(p") &@ (i p) R(p; p) uP(p)u®(i p): (4.12)

Com isso, K é dado pela expansdo da amplitude de transicdo da teoria de campos, sendo K,
associado ao diagrama com troca de um pion, K4 associado ao conjunto de diagramas com troca de
dois pions, Kg associado ao conjunto de diagramas com troca de trés pions, ... E importante notar
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Figura 4.1: Representacdo diagramatica da amplitude de transicdo segundo a equacdo de Beth-
Salpeter.

que nos kernels efetivos K. 5. 05 propagadores nuclednicos de energia positiva contabilizados na
iteracdo do OPEP sdo subtraidos para evitar dupla contagem, ..gura (4.1).

A amplitude de transicdo relativistica € de..nida pela relacéo
Se =t + () +*(PL+py ipLip)Te (4.13)

e a ndo-relativistica (nr), por

S =t¢e i i2Nx(E+E)jElijE)Th; (4.14)

onde

D - E
Se= t¥T+178@t¥+1 =h;t¥+1j®t¥ jLi=oh jOi, : (415)

As normalizagOes adotadas para os estados no espaco dos momentos séo
ot P TP @iy, = 2E (24)° (i P)to € outhp’ TJpi®ig, = (24)° (0" i p)t-e (4.16)

e, consequentemente, os fatores de normalizacdo das funcbes de onda séo

1 1 1

N = —— p=— Nor = oy 4.17
(2432 T 2E, T (2w)32 (417
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Assim, a relacéo entre as amplitudes é dada por

5 7 i (@)PLEi+pyipip)te; (4.18)
com
to = P Te: (4.19)
? 4HEP1ED2EP01ED% . '

Aplicando esta relacdo na equacao (4.11), obtem-se uma equacao integral,

Z &
Toe(P% P) = Kne(P'; P) + o~ Knr(P% )

(2%)3 Tor(0;P); (4.20)

m
p?igr+i”
equivalente a equacdo ndo-relativistica de Lippmann-Schwinger para o espalhamento NN.

Em espalhamentos elésticos, podemos relacionar o operador de transi¢cdo ndo-relativistico ao
potencial, de modo que

VijAi = T jAi; (4.21)

sendo os estados jAi e jA i determinados pelas equacdes
Ho jAi = E jAi e (Ho+V) jAi = EjAi; (4.22)
onde Hy é a hamiltoniana livre. Portanto, no espaco de coordenadas, o potencial NN corresponde

a transformada de Fourier da amplitude de transi¢cdo ndo-relativistica,

d°py d°p; d°pr dp

iy +p%ery i putrii P2r2) hl - 10V i AL -
@@y @y @y P Pai ¥ Ipsipai (429)

e 1 jry;rai =

onde
hpL; PSIV ipy P2l = i (24)°£3(PL+ Py i P1 i P2) t(PL: P P P2): (4.24)

Usando as combinag0es
P=p+p e ¢ =p

1iPL=PpP2iP =P ip; (4.25)

suas relagdes inversas

p= (P +¢)=2 e p=(FP j¢)=2; (4.26)
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e a de..nicdo da variavel W em (4.2), obtemos

1 1 1 1
pp==~W+Pj¢); pl==(W+P+¢); p,==WiP+¢); pb=W ijPjc):
2 2 2 2

(4.27)
Para os nucleons na camada de massa, temos os vinculos
Wep=Wip=WI(P=W(C=P¢¢ =0: (4.28)
Com isso,
Z
d*wW d°P di¢

VIR ) = i  z[WHri+rhirLir) i P i i ¢i(r+n)] t(P; ¢jW); (4.29)

(2%)3 (2%)3 (2%)3
onder=rjrier=rir:
Tomando o referencial no centro de massa (cm) do sistema, temos
p1 = (E;p); p. F (E: i p); P = (E;p); P = (E; i p) (4.30)
e, conseqlentemente,

wEZ@E0); pZ©Op); PEOPY); PZOP+p); ¢ZOpip): (431)

Com isso,
0 Z d3¢ d3P i[P¢(0 ) ¢¢(0 )]
V(rir) = i —— el 2THNINTEENIYP; ¢); 4.32
(50 =0 Gy (P ¢) (4.32)
onde
1
t(tP,¢) = — [T(P; ¢ : 4.33
(P; &) E)’ [T(P; ®)lem (4.33)
Decompondo na estrutura de spin usual [ PL 70], obtemos
t(P; €) = tc(€) + Ssstss(E) + Srtr(E) + Ssotso(€) + it (4.34)
onde
. ¢
L5 = €2% D%, 2= ¢2%Dew@ § 3% w@ie; S = % %0+ 5,27y ~P)

(4.35)
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correspondem aos operadores central (C), spin-spin (SS), tensor (T) e spin-6rbita (SO) no espaco
de coordenadas.

Desprezando termos n&o-locais proporcionais a P?=m? e usando a igualdade

CeiiCir = jyeiier, (4.36)
obtemos
V(r) = Ve(r) + —ssVss(r) + =1 Vr(r) + —soVso(r) + @it (4.37)
onde
Z
dc .
Ve(r) = i TR el e t () (4.38)
H M1z
02 2@ e .
Vss(r) = W + F@ ZDE gl tss(E); (4.39)
H |4
02 10 ¢ .
VT(r) = 1 W i F@ W e! Par tT(¢), (440)
H M1z
1@ dc .
VSO(r) = 1 F@ (21/4)3 el 1 tSO(¢) (4-41)
e
1li ¢
—ss = WO = 3RO AON | AOID ;o =2 O+ uO L (442)

comL=r"P:

No espaco de isospin, a estrutura da amplitude é dada por uma componente isoescalar (+)
e uma isovetorial (j),

T =T "+ W, @70 (4.43)
Em termos de potencial, essa estrutura permanece a mesma,

V =V + D@y (4.44)
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4.2 Trocas de Um Pion e Um Méson a;

As ..guras (4.2.a) e (4.2.b) mostram, respectivamente, as trocas dos mésons pseudoescalar,
0 pion, e pseudovetorial, 0 a;(1260), no espalhamento NN. A cinematica dessas trocas obedece a
conservagdo de energia-momento, equacdes (4.2) e (4.25), com os vinculos da equacdo (4.28) para
nucleons na camada de massa.

’

b, 1 p 1 b, 1 p 1
——
]
]
Aa A Aa
'
]
_)_|_>_
Py P, p, py
(a) ()

Figura 4.2: Espalhamento NN devido as trocas de: (a) um pion e (b) um méson a;.

A amplitude da troca de um pion é dada por *

L g0 6 "y 9 gou 45
T, = i & — °-u L] ; °-u 4,
Ui 1 ¢2 i 12 2f1/4 ¢a 5 2_';1/4 Ga 5 ( )
e a do méson ay, por
glo i ¢1¢0:m2 £ ) o o} . o o
Ta, = i 8 gy ia®s O5 U O [@iGay ia %o °5U]? (4.46)

¢2 § m2,
onde 1 = 139:57 MeV, T, = 93 MeV, ga = 1:26 [ Hoh 83], m,, = 1230 MeV e g,, = 9:6 [ GK 80].
A equacéo de Dirac implica na identidade
Cao [6°5°7 P [@°5°" U@ = [@°5(i 2m)u]® [@°52m)u]® ; (4.47)

que aplicada nas amplitudes acima resulta em

) m°gA 1

Ty = ¢Weyg
2 &2 j

— [&°5uV [@°,u]® (4.48)

1/2 ?/4

4m? £ a 1
= (W@ g2 [Bosu® @ u® + o ogu PEeto u® o (449)

Ta .
1 2 = 2 2
[OL mg, Mg,

1

4Estamos usando a notagio ¢a = Yia .
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O carater isovetorial destas amplitudes resulta, em cada caso, da troca de um Unico méson isoveto-

rial.
No centro de massa do sistema (cm), as amplitudes sdo dadas por
m292 1 R R
T 2 e =gt oy [0l (@5 (4.50)
e
Yo Ya
1 4m?

£ By
Ta, R A TAC) g5 [&°s U](l) [&°s U](z)"' %°.%u @ [&°"°s U](Z) , (4.51)

a1 2 2 2
¢ +mg  mg

onde os sanduiches spinoriais, apresentados no apéndice A, assumem a forma

cm

@o.ul®[@o.u® L juYie e (4.52)
e

£ a,.\ £ o .n
8°.°%u @ 805U @ L uOi (" +p) %P (p' +p) + (E+m)i2 1D (pAph?

g

£ £ o
i 6D E+m)? ipep’ T i 10%@(pAp) +1P%D¢(pp')

£ o £ o
£ E+m’iptp i %Oep'%@ip’ j %uOipu@ip p?
£ of ) na
i ¥Dtpu@¢p'+vDep'%Pep 2(E+m)*jptp’ ;  (4.53)
com a notacao
. £ .5
¥, = Ay A @ - (4.54)
No limite estatico, obtemos
cm
[@e ul®@e u® 2" juDicu@i ¢ (4.55)
e
£ o £ o en £ o
°1°5U (€)) aolosu (3] Eém i4m2 %(l)¢%(2) + O(p2:m2)+o(p4:m4) . (456)
Logo, pela relagcdo (4.33), temos
2
to= Ddom = o0 9 1 yoigyeie (4.57)

4m? ¢ 42 ¢2+12
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e
vl il
t = Hadm » @, @ ¢ L L 501 ¢ %00 ¢ + %Ot %@ 4.58
CER 4m2 - ¢ < gal ¢2+m2 m2 4 4 4 4 ( ’ )
ap ai
Com a igualdade
1 1
U EHOE = 20 i 57 (4.59)
essas amplitudes podem ser decompostas em
— .. @ Ja 1 3/\ -/\'
b, = ¢ Df giraz ST (4.60)
e
s W, @ Ya 1 S a .
tal = ¢ ¢6 3m? ¢2 me -ss i -1+ 3ma1 A7) (461)
a a1
No apéndice C, temos que
Z 3 i»lr 1 T X
d°¢ eii¢¢l’ 1 5 — ie. — _e. . (462)
(2%)3 C? + »212 4% r 4y, X
onde x = 1 r é adimensional, » = 1 para 0 pion e » = m,, =1 para 0 méson a;:
Usando as equagdes (4.39) e (4.40), obtemos
H il ] ]
@2 2 @ 13 gi”»X 13 2e|»x
u = —+-—— — = — 4.63
ss(X) 0x2  x@x 4% Xx & x (4.63)
e
Vi | ] 3 T .
@2 1 @ 13 e|»X 13 ) 13 1 3 e.»X
Urx) =i —si-— -— = j-— 1+-—+5— ——: 4.64
T ' @x2 ! X0x 4% X ' 4y, ? » X »2X? X ( )
Logo,
@4 @ ga 13 eix
V = Wit = — ; 4.65
[ 1/4]55 ¢ ¢ 12_';1/24 4y, x ( )
M T .
2 13 3 3 eiX
— s wy; @ %A S22 -
[Vylt AT 1212 7 I+ *+e (4.66)
1 2 0o, X gi XMa™
Madss = ¢Pte® 20 (1i8) ——; (4.67)
2 1 M 13 12 Sﬂeixmafl
Nalr = ¢@ie@ 2 : (4.68)

— + —
2 w2
3 4Y Mg, X Mg, X X
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V (MeV)

0.8 10 12 14 16 18 20 22
r (fm)

Figura 4.3: Componentes spin-spin (SS) e tensor (T) de V., (linha continua) e V,, + V,, (linha
tracejada).

Na ..gura (4.3), podemos ver que a adi¢do da troca do a;(1260) ao canal spin-spin do OPEP
é relevante para distancias inferiores a 1.5 fm. No canal tensor, ndo é possivel distinguir esta soma

porque a contribuicdo do méson a; é desprezivel, quando comparado com o OPEP.

4.3 Troca de Trés Pions Nao Correlacionados

A forma geral da amplitude do espalhamento NN devido a troca de trés pions néo correla-
cionados é
1% 40 Z Q! TOTO

3 (2% (W) (K2 1) (qzbci 33 @22 (4.69)

T =

onde k, g e g’ sGo os momentos dos pions intermediarios, Q = (@°+q+k)=2e Q" = (¢’ j q) =2 sdo

as variaveis de integracéo e

2 . 2 . 2 . 2) _ - 2) .
Tc(bg = ibc(,aT,g\) + iac(,b-ré) + iba(,cT((;) 1 |ZcbaT|:())' (4.70)

a amplitude do processo %N ¥ %%N no nucleon 2. O fator % corresponde a simetria de troca dos

pions intermediarios.
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Neste processo, 0 momento externo transferido, equacéo (4.25), pode ser escrito como ¢ =
(0" +q) j k: Comiisso, as relacdes inversas sdo dadas por ¢° = (Q + ¢=2)=2; Q"; ¢ = (Q + ¢=2) =2+
Qek=Qj ¢=2:

——— P, 7, 7 7, 3 P
p : 1 —_— > >
’ \ L ' 1
I’ : \‘ I’ : \‘ f Ad ka* 4qA q'c :l : b\||
Y A A = ka¥ Ahge TN N kaY A*°A gl
1 ) \ ] , k’ ] I, ] \ ] 1
\\\ J ‘-E—’ a*‘ 4(] ’A q,c A Ad \ E )
Ny, ' sV
P2 *A,d pé ——it — 1 —_——r?
14 ! ’
> > P, P, Py ) P, P,
(@ (®) (© @)

Figura 4.4: Espalhamento NN devido a troca de trés pions nédo correlacionados.

A dinémica quiral minima do espalhamento NN devido a troca de trés pions ndo correla-
cionados € representada, no modelo PV, por 45 diagramas com dois loops, envolvendo pions e nucle-
ons. O calculo exato deste processo €, portanto, bastante extenso. Para obtermos uma estimativa
acerca desta interacdo, tomamos como base as contribui¢cbes dominantes do processo %N ¥ % %N
perto do limiar, para cada nucleon do espalhamento, como mostra a ..gura (4.4). Usando a equacao
(3.51), temos para o nucleon 2

[Tagcol® = ETK;B;C;DD(Z) A Tfit;B;c;Du(Z) ; (4.71)
com
TP = i i—g 1/2m lJ1 + k::—ziiikﬂ G u]® j % iql + qol¢ [@°g°" u](z)?/4 ; (4.72)
Téz) = i ?:_g 1/2m u% N q2¢i2 2i¢1iqﬂ [&°s U](Z) * % O [&°5 o U](Z)?/4 : (4.73)
TE = ?’-‘2 1/2”‘ H% " —qozq;i ?qii ! [8°5u]® + % RS u]‘”% ; (4.74)
TV = 0: (4.75)
As expressdes para o nucleon 1 sdo obtidascomastrocask ¥ jk; q¥® jq;q ¥ jdec¢ ¥ j¢:
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Assim, a estrutura de isospin provém de
3 .

TOTO = {21OTO + ;W@ 2 TOTD 4 TOTP 4 TOTD

cha 'cha
3 -3 3
+ T/E\l)"'Tél)"'T((;l) T£2)+Té2)+-l-c(:2)

(4.76)

Os diagramas (a), (b) e (c) da ..gura (4.4), associados ao pdélo do pion, também contribuem

para a troca de um pion, renormalizando a massa do pion e a constante de acoplamento %N. Como

estamos trabalhando com a massa do pion fisica 1 e a constante de acoplamento fisica gy, estes

efeitos ja foram levados em conta na troca de um pion, calculada na se¢do anterior. Com isso,

subtraindo a contribui¢do dada em (4.48), as contribuicdes da expressdo (4.76) se resumem a

3 - 1

VAR
2 - N12 2 2 0\2 = 014>
Or@ W@ ~O+@ _9a o . 4Ctkjdre  B(Ctk)“+8(¢Ctq) +8(Ctq)"j2
2 T/ T +Tg T " +T57 T = f_lﬁf m= 1j ¢z 1z | (€2 § 12)2
-H il M M1 =3
m 4¢tk+4¢¢ 4¢tk+4¢a ¢’ : 1
£[&°; U](l)[aos U](Z)+Z 1+T12q O+ 1+T12q qg [&°s U](l)[EIOSO U](Z)

D)

o ol o ’ 1£| ¢ . o ol o o°
i (8% U@ U+ o gl (oo ge) +Haage g [8°5°7 U] (@957 U]

3 -3 -

WL TW 1D 1@, 1@ 4T ga m214
T +Tg7 + T2 T +Tg +T8 =i

JA o Mg e .
i 8 (€2 ; 12)2 [@°sul [&°s Ul :

A amplitude é, entdo, dada apenas por sua parte isovetorial
z Yo

Z )
2 4 40 - Q32
— W@ ga 1 dQ d*Q 0 , ,_ 8¢tk 8
T e BFE 3 (20 (2 ¢k)T@ ¢(@) 4m 2'—¢2i12
#
16 (¢ ¢k)? + 16 (¢ ¢ q)*> + 16 (¢ ¢ g")* § 214
i ( ) ((¢2qi) 12)? SALDE [B'OSU](D[B‘O5U](2)
H 4¢¢k+4¢¢qﬂ H 4¢¢k+4¢¢q°ﬂ .
+2m 1+ ¢7 5 12 Q-+ 1+ T G
3 -~
£ [aosu](l) [EIOS olu](z) i [ao5 olu](l) [EIOSU](Z)
3

£i ¢ a 1 o
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Usando a equacéo (4.47), podemos reescrevé-la como
Z

= W@ A (g ot Wge oo @ L d'Q 7 d'Q 0
T te 8ts [&°s % ul™ {8 % ° U™ @ @) ¢ (k) ¢(a) ¢(q)
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. Y
1 0 ¢ 0 00
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01/2 (¢1g01/2 + ¢Ogll/z)

Eliminando as variaveis k, q e ¢° em termos de ¢, Q e Q', obtemos a expressdo geral
H g )|}
A o ol o o° .
T = W C(1)¢C(2) [@° U](l) [ ° U](Z) lao
Ya

onde
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¢2 i 12
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Para resolvermos essas integrais, usamos as funcbes X deduzidas no apéndice C,
Z

d*Q .
X(K;L:») = g
KE = Gy Qi k271 2 QK2 § 1o
i Z 1 Z 1 _ 12 _2:_2
~ @y “© 0 e i 12-2=
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(4.80)

(4.81)

(4.82)

(4.83)

(4.84)

(4.85)
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YA

4 N =12
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Escrevendo a integral 1/, através dessas funcdes, obtemos
1/2 -
6CIQ ¢(Q § 212¢(Q + 14
0 — —9. 1.
15, = X(@Q+ ¢=2;1;1) 32¢.Co (@25 127 +12Q1Qo + 6¢oQx
T6EIQQF +3CIQ ¢ § 12QF § 12gh=2"
=+ 6¢1Qo +3¢.¢o i 8 (¢1gol/2 =+ ¢Ogll/2) >
¢ i 12
o 16€aCeCyCy, | A (Cagey + Colay) Cy, -
+1612 Xl//(Q+ ¢=2;1; l) (¢2 i 12)2 i Y. - 0 + gayQoy, (488)
Logo
. Z z _ Y. -
: R 12 2 i 6CIQ ¢IQ j 212¢(Q + 14°
l.o = i d® d 32¢.¢o 5
(41/4)2 0 0 (Q"‘ ¢= 2) i 12 2 (¢2 i 12)
%oy b 120% < 12¢h=0">
i 8(¢1gm/2+¢ogll/z) 6¢¢QQ 3¢¢qQ:2¢i ::2 Qi ¢ +12Q1Q0+6CoQ1+6C1Q0
h £ i
+ 3¢ Cot 4(1§20)5(QF+CH22) (QU+C¥=2) § 217 (1 26)° (1 )12, %"
. Y
:|.6¢1¢0(:l:l/zq:s/4 . 4-(‘:]::1_901/2 + ¢og:|_1/2) ¢3/4 ® )
E e 7 | ¢ 12 +Qugen (4.89)
onde
1
2 .
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Com isso, a integral 1.0 assume a seguinte forma:
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| 6412¢. oG 3¢HE, j 12g*g,
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Usando novamente as funcbes X, temos
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L 1.
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Este resultado permite decompor a integral 1. numa parte pseudoescalar (P) e noutra axial (A):
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Através da fatorizacdo de ¢2 e ¢* com o propagador do pion externo a bolha,
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a parte pseudoescalar da integral 1. assume a forma
zZ, 2, Z, Z, Yo
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A parte axial ndo se altera.

TROCA DE TRES PIONS

Os termos que ndo podem ser dissociados do polo do pion estdo relacionados as correcoes
do vértice %N e do propagador pidnico, que contribuem para a troca de um pion. Como eles nao
contribuem para a troca de trés pions, ndo serdo mais considerados daqui em diante.

Usando a expressao (4.95) em (4.81) e a equacdo de Dirac, a amplitude devida a troca de
trés pions pode ser expressa na forma

Ta, = T5, + T4, (4.100)
onde
TS = 87’*3 14, W@ g am? @ u]P[ao,u]@ 15 (¢) (4.101)
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e
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Ys
No centro de massa e no limite estatico, podemos usar as equagdes (4.55) e (4.56) para obter
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As integracdes em " e , efetuadas no apéndice C, produzem
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Usando as equacdes (4.39) e (4.40), obtemos
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4Y, ax ax? a3xd x4

Assim, nos canais de spin, as nossas expressdes das contribuicdes P e A ao potencial da troca
de trés pions ndo correlacionados sdo dadas por
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ax a2x? a3xd x4

Estes potenciais incorporam dois tipos de aproximacgdes. O primeiro deles esta associado
com a a..rmacdo de que a parte da lagrangiana PV, que gera o vértice 3NN, representa a con-
tribuicdo dominante. A outra esta relacionada ao limite estatico. No célculo da integral l.o(¢),
nao ..zemos aproximacodes, apenas desprezamos as correc¢des do vértice 4N e do propagador do pion,

gue contribuem para o potencial devido a troca de um pion (OPEP).

Resolvendo as integrais numericamente, obtemos os gréa..cos da ..gura (4.5), onde € possivel
notar que todas as curvas divergem na origem, comportamento tipico de potenciais ndo regulariza-
dos. Por este motivo, supomos que nossos resultados séo realisticos para distancias internucleénicas
maiores que 0.7 fm, o raio da sacola usual. Observando a contribuicdo total para o canal spin-spin
dessa ..gura, percebemos que o cancelamento entre as contribuicdes das interacdes pseudoescalar e
axial ndo é desprezivel e é dominada pela interacdo pseudoescalar.

1v0'“"'7/'l'\‘l'l'l'l'l'l'l'l

05 1

0,0

V (fm)

-1'0;..“/.“.|.|.|.|.|.|.|.|.
0,0 06 07 08 09 10 11 12 13 14 156

r (fm)

Figura 4.5: Potencial spin-spin devido as interacdes pseudoescalar (linha tracejada) e axial (linha
tracejada-pontilhada) e potencial tensor devido & interacdo pseudoescalar (linha pontilhada). O
potencial spin-spin total é representado pela linha continua.
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Nas ..guras (4.6) e (4.7), vemos que a troca de trés pions gera uma contribuicdo para o OPEP

razoavelmente menor do que a de um a;(1260), tanto no canal spin-spin como no tensor.

V (MeV)

4l
0,0 05 10 15 20
r (fm)

Figura 4.6: Potencial spin-spin isovetor devido a troca de um pion (linha continua), um a;(1260)
(linha pontilhada) e trés pions (linha tracejada).

Na ..gura (4.8), observamos que a contribuicdo da troca de trés pions ao canal spin-spin
do OPEP é signi..cativa até 1.0 fm. No canal tensor, ndo é possivel distinguir as curvas porque
esta contribuicdo é desprezivel frente ao OPEP. Logo, o potencial devido a troca de trés pions nao
correlacionados comeca a ser relevante a distancias muito curtas, quando comparado ao OPEP.
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Figura 4.7: Potencial tensor isovetor devido a troca de um pion (linha continua), um a;(1260) (linha
pontilhada) e trés pions (linha tracejada).
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Figura 4.8: Componentes spin-spin (SS) e tensor (T) de V,, (linha continua) e Vy, + V3, (linha
tracejada).



Capitulo 5

Producéo de Pion no Espalhamento NN

A producdo de um pion na interacdo nucleon-nucleon (NN) é um problema tradicional na
fisica de hadrons. Sua importancia deriva do fato de ela poder ser medida experimentalmente, no
caso de um pion real e, também, de ser uma componente importante das forgcas de trés nucleons,
quando o pion for virtual.

Neste capitulo, discutimos a relagcdo entre a componente escalar-isoescalar do potencial NN
devido a troca de dois pions nédo correlacionados e o potencial NN gerado pela troca de um méson
..cticio com os mesmos numeros quanticos. Estudamos, também, o papel dos cancelamentos quirais
no termo dominante da producdo de um pion devido a troca de dois pions ndo correlacionados,
a partir das subamplitudes 4N ¥ %N e %N ¥ Y%N. Determinamos a dependéncia espacial da
amplitude da producéo e a comparamos com aquela gerada pela troca do méson escalar efetivo. Por
..m, para grandes distancias internuclebnicas, generalizamos o0 nosso resultado para um potencial
nuclear qualquer.

89
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A producdo de um pion nas interacdes NN a baixas energias vem sendo estudada desde
a década de 60. Recentemente, o interesse neste problema foi renovado, devido a existéncia de
novos dados experimentais, bastante precisos, para as reacdes: np ¥ d%° [ Hut+91], pp ¥ pp¥%°
[ Mey+92] [ Bond+95], pp ¥ d%™ [ Droch+96] [ Heimb+96] e pp ¥ pn%* [ Daeh+95] [ Har+97]
[ Fla+98]. Paralelamente, do ponto de vista tedrico, os avancos da teoria de perturbacédo quiral
(ChPT) permitiram tratar o problema de uma maneira sistematica. Entretanto, apesar destes
progressos, existem problemas em aberto.

Ha duas classes de interagdes envolvidas na producdo de um pion, uma associada com as
correlagdes dos nucleons e outra, com a emissao do pion externo. No procedimento desenvolvido por
Koltun e Reitan [ KR 66], essas interacdes estdo incluidas, respectivamente, nas funces de onda
inicial e ..nal e no kernel (ndcleo) de interacdo. As primeiras correspondem a solugdes da equacéo
de Schrédinger com potenciais realistas, enquanto o kernel é descrito através de modelos baseados
em diagramas de Feynman.

No gue concerne ao kernel de interacdo, geralmente é possivel distinguir entre contribuicGes
de longo e curto alcances. As de longo alcance sdo mostradas na ..gura (5.1), onde o primeiro
diagrama representa a aproximacao de impulso e o segundo, o termo de reespalhamento do pion.
Estes dois processos foram considerados por Koltun e Reitan [ KR 66] na descricdo do canal %°,
mas a se¢do de choque era cinco vezes menor que os dados obtidos recentemente [ MS 91]. O
termo de reespalhamento usado naquele trabalho veio de amplitudes %N na camada de massa,
embora o pion trocado no diagrama (5.1.b) esteja fora da camada de massa. Modelos que levam
em conta a virtualidade do pion aumentam a se¢édo de choque e tendem a melhorar o acordo com 0s
experimentos [ HP 78] [ EZO 90] [ HO 95] [ HHRSS 95] [ HHS 96]. Calculos com barions pesados
em ChPT [ CFMK 96] [ KMR 96] [ RMK 99] também explicitam a importancia desse termo de
reespalhamento na ordem dominante. Entretanto, nestes trabalhos os termos de reespalhamento e
impulso aparecem com sinais opostos, produzindo um saldo menor que o de calculos fenomenoldgicos
[ HHHMS 98], indicando a necessidade de outros mecanismos.

InteracOes de alcance menor, envolvendo trocas de dois pions ndo correlacionados, sdo bas-
tante complexas e, no caso da producdo de um pion, estas componentes foram descritas através de
trocas de mésons pesados efetivos. As contribuicdes destes correspondem ao ultimo diagrama da
..gura (5.1), conhecido como gra..co z, visto que a propagacdo do nucleon de freqiéncia positiva,
j& incluida na funcdo de onda, é subtraida. A inclusdo dos mésons %, I, e %, de modo explicito
[ HHRSS 95] ou em uma densidade de corrente axial geral [ LR 93], permitiu bons ajustes para
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a secdo de choque do processo pp ¥ pp¥° no limiar. Contudo, o estudo dos efeitos relativisticos
na producdo do ¥° [ ASPG 97] demonstrou que os efeitos do gra..co z sdo pequenos e insu..cientes
para explicar as secdes de choque. A extensdo para os outros canais (%" e %), com inclusdo de
ressonancias nuclednicas [ RMK 99] [ HHKS 98] [ PRS 99], também n&o melhorou a situacéo.

b 4

(a) (©

Figura 5.1: Contribuicdes para o processo NN ¥ %NN: (@) impulso, (b) reespalhamento e (c)
gra..co z; nucleons, pions e mésons mais pesados sao representados pelas linhas sélidas, tracejadas
e onduladas.

Ha algum tempo atras, Coon, Pefia e Riska [ CPR 95] produziram um potencial de trés
corpos baseado nas trocas de um pion e um méson escalar, que foi capaz de melhorar o acordo
entre teoria e experimento no caso da energia de ligacdo de trés nucleons. Mais tarde, Maekawa
e Robilotta [ MR 98] obtiveram um resultado equivalente, usando uma lagrangiana nédo-linear com
um campo escalar quiral s, que simula o potencial NN devido a troca de dois pions. Além do
acoplamento direto deste méson efetivo com os nucleons, esta lagrangiana gera uma forte interacéo
de contato %.sNN. A troca de dois pions ndo correlacionados, formulada no contexto da simetria
quiral e incorporando os deltas, explica muito bem a cauda do potencial NN escalar-isoescalar
[ ORK 94] [ ORK 96] [ Rob 95] [ RR 97] [ KBW 97] [ KGW 98], ndo sendo necessario um meson
escalar verdadeiro para descrever esse canal. Por outro lado, em problemas onde a simplicidade é
mais importante do que o re..namento, pode ser Gtil simular todos os processos associados ao canal
escalar-isoescalar por um unico campo escalar quiral. Com este enfoque, a interacdo de contato
%sNN foi aplicada aos canais de producdo ¥° e %*, produzindo resultados tedricos compativeis
com o0s experimentais [ MR 99].

Calculos com troca de dois pions, baseados nas teorias de perturbacdo quiral relativistica
[ BKM 99] e de béarions pesados [ DKMS 99], produziram novamente grandes contribuicfes que se

cancelam.

Recentemente, contribuimos para o esclarecimento deste problema, apresentando uma de-
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scricdo dinamica da producédo devido a troca do méson escalar e relacionando a producéo ao poten-
cial NN central isoscalar [ MPR 00].

5.1 Espalhamento NN Devido a Troca de Dois Pions

O potencial NN devido a troca de dois pions (TPEP) ndo correlacionados é obtido a partir

da amplitude geral
Z

17 d TS T
Toy = i |g Q ab "ba

27" (K2 § 22) (K2 § 12) (5.1)

onde % é o fator de simetria da troca destes pions, k e k” sdo os momentos dos pions intermediarios,
1 ¢ a massa do pion, Q = (k' + k) =2 é a variavel de integragdo e

£ o £ o
Tb(j) = g T @ 4 1%bacéc T° (2); (5.2)

a amplitude do espalhamento %N no nucleon 2, com

£ o

75 @ = A3 [@u® + B3 [@Qu?: (5.3)
As expressdes para 0 nucleon 1 sdo obtidas com as trocasa $HheQ ¥ j Q:

A parte isosescalar de T,y é dada por

T oo |EZ d4Q 3 [T+](1) [T+](2) (5.4)
2w = 015 (%)% (K2 § 12) (K'2 j 12) '
e a isovetorial, por
) 1 d4 2Ti(l) Ti(z)
Th =il 1Q4 2 [- 11 [02 ] 12 (5.5)
2 (2t (k2§ 12 (K? § 12)

A interacdo obtida a partir da teoria de campos deve ser compativel com potenciais fenomenolégi-
cos, em que os dados experimentais sdo ajustados por meio de func¢des envolvendo parametros livres.
Um desses potenciais, o de Argonne [ WSA 84], ajusta a regido intermediaria (1 ) por funcdes da
forma

VA(X)=I'°“1+§+32 — (5.6)

X X X
gue simulam a iteracdo do OPEP. Os parametros | P sdo ajustados livremente, para os varios canais
do potencial 1. Os valores obtidos pelo grupo de Argonne, mostrados na tabela (5.1), enfatizam a

conhecida dominancia da componente escalar-isoescalar do potencial NN.
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Tabela 5.1: Parametros 1P em MeV [ WSA 84].

C i 4,801125 0; 798925
SS 1; 189325 0; 182875
T i 0;1575 i 0;7525
SO 0; 5625 0;0475
Q 0;070625 i 0;148125

As realizacdes minimas da simetria quiral envolvem apenas pions e nucleons. Potenciais
baseados nestas realizagdes minimas [ OK 92] [ CPS 92] [ FC 94] [ RR 94] [ Bir 94] subestimam a
componente escalar-isoescalar do potencial, devido a grandes cancelamentos que ocorrem entre 0s
diagramas. A inclusdo dos deltas na descri¢do da interacdo NN [ ORK 94] melhorou consideravel-
mente as predicoes.

Uma outra forma de se obter um potencial compativel com os dados é incorporar, por meio
de coe..cientes empiricos, as informacdes do espalhamento %N na regido cinemética abaixo do limiar
[ Rob 95]. Separando Tb(;) em uma contribuicéo T,E,'), contendo somente interacdes pion-nucleon, e

um resto T,S), envolvendo outros graus de liberdade, o potencial passa a ser proporcional a

Y% Y

£ £ £ _o. £ _no £ o.f o
T,\?(l) TR§(2)+TR§(1) TE(Z)

o,. £ o o..f£ _@o £ wo,.f£ _o
Tb§a @ Tb§a @ _ T,\? @ T,\? @ 4 + TR§ @ TR§ (2): (5.7)
Assim, a dinamica dominante da interacdo NN pode ser representada por diagramas con-

tendo apenas nucleons num lado e demais graus de liberdade no outro, mostrados na ..gura (5.2).

Py p, Py Py p
(O Ny I N
II \ : i \ \‘ *I
Y\ IA ka I» ‘\ k'b ka \ , k'b
D, P, r, P, p,
(a) (b)

Figura 5.2: Contribuices dominantes para o processo NN ¥ NN.

LCanais de spin central (C), spin-spin (SS), tensor (T), spin-6rbita (SO), spin-Orbita quadratico (Q) etc, para 0s
isospins escalar (1) e vetorial (¢ M¢ ¢ @),
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O estudo numérico desta amplitude [ RR 97] [ BRR 98] mostra que o primeiro termo, que

corresponde a realizacdo quiral minima, € muito pequeno e que a contribui¢cdo mais importante vem
o}

dos produtos entre chaves no canal isoescalar. As funcdes relevantes da equagdo (5.3), para Ty @ ,

séo
. _ 9 f_ o2 1 1
A SO CF S Y CHTO e ©9
E_ P
e, para Tg
+ > + o2m n + > .
Ag = a2t Br 2 0; (5.9
m;n

onde os coe..cientes a,,, sdo obtidos a partir do espalhamento %N eléstico [ Hoh 83].

As correcdes associadas as poténcias mais altas de © e t, na expansdo da subamplitude A%,
sd0 muito pequenas em energias baixas. Assim, para distancias grandes, a contribuicdo principal
vem da regido ao redor de © ¥4 0 e t ¥4 412, jsto §,

AL(C =0;t=141?) = @) =1; (5.10)
onde

i ¢
®f = 1'al +412a3, +161%a%, (5.11)

Com isso, 0 termo dominante da amplitude pode ser expresso por

®00

Ty 2 [@u)® .;0‘” + O)S$SO; (5.12)

onde
. Z E_,%
£l _ 1 d'Q L : (5.13)
& "2 @i ki) |

A simetria da fungéo By . em relacdo & troca k 5 j k', permite escrever
L+ @ _ ; @ . o
- 4 o oz L . (5.14
N 2 m (21/4)4 (k2 T 12) (k02 = 12) [ U] i (p + k)2 i m2 [ Q U] ( )

Usando o momento externo transferido ¢ = k’j k e as relagBes inversask? = Q+¢=2e k = Qj ¢=2,

temos
d*Q 1
@) 1Qi ¢=2)71 2] [(Q+¢=2)2 17|
Z Ya
g u®@ d*Q 2m Q- _
(2%)*[(Q i €©=2)2§ 12 [(Q+¢=2)2 j 12][Q2+2mV (Q j ¢2=4]

(5.15)
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onde V. = (p) + po)=2m. Reescrevendo as integrais através das fungdes X e Y do apéndice C,
obtemos
£ g - Y Ya
in @ =il EU®X(@LY § B Ya(e D) (5.16)
onde
Z 4 : Z 1 Z 14— 12 2
X(¢; 1) = dQ£ 2 "JE 2 B =1 ! d® dT—bz,
(2%)* "(Q § ©=2)%j 12 (Q+ ¢=2)?j 12 (4%)? o o  C%j 12,
(5.17)
com
1
2 .
R — 5.18
® ®(1 j ®) (5.18)
e
z d*Q 2m Q"
Ya(C; 1 1) = 4 £ 5 Bf 5 & (5.19)
(2%)* Qi €=2)" i 12 (Q+ ¢=2)" j 12 [Q?+2mV(Q j ¢2=4]
. 2y Z, _% - 7
I 1i® —1j 1§20 m
=i d®— d — ZmV1+ e e—— | 1 ¢1 —”
L@ o @ Cie)i) " ¢2 1272
com
o i@ )PM)’ i (Li®)i )+1, (5.20)
®1j®) ' '
As igualdades
@meu® =0 e @& u® = [au®; (5.21)
produzidas pela equacédo de Dirac, implicam em
Z Z H — il
£ .9 _ . g_z[ ](2) 1 1d® 1d_ 1 22 1§01 j 2m? 62
N ' 2m @2 o "2 2 ' e T ot v '
onde t = ¢2.
A funcéo [jy;] esta relacionada ao fator de forma escalar %(t), de..nido por
hp'jLsjpi = i %(1) [&u] ; (5.23)

onde Lg, € 0 termo da lagrangiana que quebra a simetria quiral. A estrutura de longo alcance de
%(t) foi discutida por Gasser, Sainio e Svarc [ GSS 88] e esta relacionada a fungéo [j ] por

312 . %(t) [@u] :
INn — 7 uj : (5.24)
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Com isso, a contribuicéo assintotica da amplitude isoescalar pode ser escrita como

®oo /4('[)

Ty, 2 2-0 [@ul® [eu)® : (5.25)

Esta expressdo e interessante porque informa acerca da estrutura da interacdo. Ela retrata um
nucleon, que age como uma fonte escalar, perturbando a nuvem pionica do outro. O fator de forma
escalar € relacionado ao termo sigma do nucleon por %(0) = %y : O valor do fator de forma escalar
pode ser obtido, no ponto de Cheng-Dashen (t = 21?), a partir de dados experimentais e, em
t = 0; por meio de extrapolagdes.

No centro de massa do sistema (cm), a expresséo (5.22) é dada por

Z Z _
£ .%) an 02 By 1 1 1 Hl 12 2 1j@1 om?
2

+ fy —_—
T @y ¢ TerynziTe T e

il

(5.26)

e 0 produto de sanduiches spinoriais, por

5

0t n)2 : ¢ ’ 0
BUPEU® D E+m)i2ptp+ P e g0 i giapy 15 PP

(E +m)? (E + m)?
.oy, PP p'Mp 3, p p 5.97
i = Evrm (5.27)
Fazendo o limite estéatico
[@ul® [@u® = 4m? (5.28)

e usando a relacdo (4.33), podemos escrever a amplitude como

ETm
T e
() = 4;;/‘ 2 2 0 y(¢?); (5.29)
onde
Z Z M _ 11

2 12 1 1 12 2 - - 2

o 023 | X 1i®1j 2m
wWa?) = 2 @ 0d® Od e arnra il B e ST (5.30)

Passando para o espacgo de con..guracdo via transformada de Fourier, obtemos nossa ex-

pressdo ..nal para a parte dominante do potencial devido a troca de dois pions ndo correlacionados,?
Z +

®p O ®
S O iierygd) = 42 =2 %(x); (5.31)

Vou(X) = 123 (21/)3

20 sinal “j” na frente da integral surge da diferenca entre as amplitudes de transicdo relativistica e n&o-
relativistica.
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onde
%(x) = 9—23—14ihs (x) i S (x)i' (5.32)
0T om @z gy, VeV b IS '
com
Z, Z, 2 qi.x 221 L@l j  ei X
Se(®) =  d® d_’rex e ssc(x)=21i2 d®1('®® il &7 (533
0 0 0 0

Antes de concluir esta se¢do, convém notar que, em algumas situacdes, pode ser util parametri
zar %(t) por meio de fungdes simples. Neste caso, a dependéncia de t na expressdo (5.22) sugere a
parametrizacéo

ZORZE P ;sz : (5.34)
S

onde os parametros livres ms e ¢ podem ser escritos em funcéo dos valores do fator de forma escalar
emt=212¢et=0,

o _ _ 2%(2%%)

== 7 12 = %(0) m?: 5.35
ms 3/4(212) i 3/4(0) e C 4( )ms ( )

Comparando a amplitude isoescalar, expressdo (5.25), com aquela devida a troca de um
méson escalar efetivo,?

.92 (1) @ .
Ts V. —_— )
s iy BU EU® (5:36)

obtemos a constante de acoplamento deste méson com os nucleons,

29,0
¢? v 203 MO (5.37)
No espaco de con..guracdo, temos
) 1 pixms=t
Vv = jgP——: .
) = 165 g — (5.38)

Na tabela (5.2), apresentamos os valores de ms e g, obtidos a partir de dados experimentais.
Na maioria dos casos, a massa obtida para esse méson escalar é proxima daquela usada no potencial

de Bonn [ MHE 87], porém a constante de acoplamento é menor.

3Este méson ndo ¢ equivalente ao do modelo %-linear, uma vez que, ao contrario do que acontece com o %, sua
constante de acoplamento desaparece no limite quiral.
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Tabela 5.2: Valores de ms, em MeV, e gs, adimensional.

®0 %(212)  %(222) j %(0) Ms Os
3:682 60°¢ 7:3b 564 7:22
3:682 60° 15¢ 393 4: 36
6; 744 8gd 15¢ 478 9:09
4:61° 90¢ 15¢ 483 7:71

a[ Hoh 83], °[ GSS 88], °[ GLS 91], °[ KH 99] e ¢[ PASW 99].

Na ..gura (5.3), mostramos os potenciais isoescalares-escalares, equagdes (5.31), (5.6) e (5.38).

E possivel notar que a suas formas sdo semelhantes, embora quantitativamente diferentes. A relacio
de Vu,(X) e Vs(X) com Va(X), ..gura (5.4), indica que as trocas de dois pions ndo correlacionados
e de um méson escalar efetivo ndo sdo equivalentes. O comportamento de V,(x) tende a Va(X).
Ja isto ndo acontece com V¢(x), porque a dependéncia de x no denominador envolve uma poténcia

diferente de Va(X).

00
02

04

v (MeV)

06

08

-1,0

7

r (fm)

40

Figura 5.3: Potenciais Va,(x) (linha continua), Va(x) (linha tracejada) e Vs(x) com ®;, = 4:61,
gs = 7:71 e mg = 483 MeV tomados da ultima linha da tabela 5.2 (linha pontilhada).
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X —

04 -

02

0,0

Figura 5.4: Razes V,,(X)=Va(X) (linha continua) e Vs(X)=Va(x) (linha tracejada).

5.2 Producéo de Um Pion Devido a Troca de Dois Pions

A amplitude da producédo de um pion com momento q e isospin ¢, no espalhamento NN

devido a troca de dois pions, é dada por

Z 4 O +@
TS L

abc

%)% (K2 § 12) (K2 j 12) + (1$2); (5.39)

onde as amplitudes intermediarias TM e 7 apresentadas no capitulo 3, descrevem 0s processos

cha ba
YN 1 %Y%N e %N ¥ %N. O momento externo transferido, neste caso, é escritocomo ¢ = k" jk =

qigq =qg+plip=p2ipy:

A estrutura geral de isospin é

To = ¢PTi+i( PP T + (8T, + (1$2); (5.40)
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com

Z @ 1 4@
1 d'Q [Ta+Tg + 3Tc]" [T7]

T =15 4 2 = 12)(Ki2 ; 12 ; (5.41)
2 (2%) (k* i )K= § 1)
1% ¢'Q [Ta i Te® [T 11?

T = i5 7 (k2 12\ (K2 - a2y (5.42)
2 (2W)* (k2§ )K= 1)
17 ¢ 2o [T

T, = i (5.43)

2 (2v)* (k2 § 1)(K2 j 12):

A amplitude T, é dominante e apenas ela sera considerada daqui em diante. Para calcula-la,
usamos Tac ha aproximacdo de Olsson e Turner, discutida na se¢do 3 do capitulo 3, e 0 termo
dominante da amplitude Tp,, discutido na se¢do anterior. Assim, a producdo de um pion, no
espalhamento NN devido a troca de dois pions, pode ser representada pelos diagramas da ..gura
(5.5), que corresponde a

£ o £i_, ¢ i, ¢ i, ¢oy £ ®
Ta+Te+3Tc]® T+ @ 2 g g e T 43! 12+ 78+ 72 O 10 @1 (5.44)

’

4 pl pl

q.C 4°
Kl > P, A p
1
—)—Q—)— qd Y :,c —)—K—)—/ y
' \ ~ ottt R ’
A = oo ka Kb
Y:l ka y W Kb ro
4 \ ' \
p, p, p, b, p, P,
(@) (®)
gc g gc g’
3 i A P,
II . pd p{ pl pe II \
ka p W Kb ka b W Kb
II \\ II \\
S A . S A -
p, Py 24 p, Py p,
(©) @

Figura 5.5: Contribuigdes para a amplitude NN ¥ “%NN: (a) polo do pion, (b) contato, (c) e (d)
gra..cos Zz.
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A partir de (3.51), as componentes da expressao (5.44) sao
@ _ Mga . K i2kegt gy
[TA® =i f; 1+ 1 [@°.ul® ; (5.45)
yq) _ : Mga - K'2 +2K%g" o ).
[Tg]™ =i 2 1+ PR [ ul* ; (5.46)
3’ mga . %2007 Ly
[TED = i f1,3A 1+ e [@°:u)® ; (5.47)
£__ 94 .m 1
O = i@ Ei6) s (5.48)
Ya
£_.°0 . mg 1/21 1 i
T80 = g SEosu® i o Ee ey (5.49)
l/4
£ o mg 1/21 Y
TE® = it Ceeu® (e ecsu® (5.50)
l/4
08 . Betm | Berm O
z1(1) — A oo d e °
[TC] 2f a 5 5 i m2 pg i m2 ﬁ 5 u (551)
COMpy = Py +0q € Pe= P iQ:
Rearrajando os termos, obtemos
T. = = iZ d*Q [(T/ +TE +3TL) + (TS + TS + 3T + 312 T+ ‘@ -
1= 15 (2%)* (k2 § 12) (K2 § 12) (5.52)
com
- ] mga A i)+ (2§19 +3¢ § datg
[T /4+T/4+3T /4](1) 3+ q02 i " [ﬂ (553)
1/4
£ 2m ” 1 i
TEHTE+3T8 @ = | fl/sgA Beosu® + o @aou® (5.54)
N f+m _ porm O
TP =i=2-2 & °,+m° S : 5.55
[ C] .':1/4 1 5 5p2 i m?2 p2 i m?2 5 ( )

E importante notar, na Gltima equac&o, a existéncia de um termo de contato, que n&o é aparente

na equacao (5.51). Este termo, tipico de sistemas com acoplamento PV, surge devido a fatores no

numerador da expressao (5.51) que, devidamente manipulados, simpli..cam com o denominador que

corresponde ao polo do nucleon.
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Figura 5.6: Reespalhamento do pion.

A expressdo (5.53) esta relacionada com o diagrama (5.5.a). Os termos proporcionais a
(k? § 22) e (k"2 j 1?) desta expressdo cancelam os propagadores pidnicos do loop e, portanto, cor-
respondem a efeitos de curto alcance, que ndo serdo mais considerados. Assim, usando a equacao

(5.13), obtemos
m & 392 j 4q¢ o4
i Ja 3+ q° i 4qtqQ

£ o,
3 72 1 [@osul® iy @ (5.56)
Ya

Y —
T =

+

E L% ., n
onde iy é dado pela equacéo (5.22).

Este resultado requer uma analise mais detalhada, pois nem todos os seus termos contribuem
para o kernel da producdo de um pion devido a troca de dois pions. Como discutiremos a seguir,
uma parte desta expressdo pode ser interpretada como o espalhamento do pion emitido em um dos
nucleons pela nivem pidnica do outro. Este processo de reespalhamento, mostrado na ..gura (5.6),

fornece
reesp .2 9a 0o -0 1 @402, 42 .
TP =0 Hzf%cd 6 °su FEFET) T (@50 + (1) $5(2); (5.57)
onde Toff)(qoz; g°) é a amplitude %N no nucleon 2, para pions na camada de massa e fora dela. Com

isso, a amplitude T, devido ao reespalhamento do pion é

.m 1 R E_, @
T = P U TR ) O (558)

No canal simétrico de isospin, a amplitude %N intermediaria satisfaz a identidade de Ward-
Takahashi [ BPP 71], dada por
Q2 +¢2 j 12

L ) [au) + rty (5.59)

T+(q02;q2) - T';'I_ =+ fl/212

onde Ty e %(t) sdo as fungBes discutidas anteriormente e r* é um resto que ndo inclui contribuicdes
de ordem dominante. Esta amplitude pode ser reescrita destacando as contribui¢Ges dos pions na
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Figura 5.7: Correcdo de um loop com amplitude Y% intermediéria para o espalhamento “iN.

camada de massa, T *(1?;1?), e fora dela, +T*, isto ¢,

T2 D) = THA%12) + +T*; (5.60)
onde

THEEA) = T AT eom TE = ) [eul 4 (561)
e 4

(@2 i )+ (i 1?)
f212

1T =

%(t) [@u] : (5.62)

No caso de pions ha camada de massa, o diagrama da ..gura (5.7) fornece uma contribuigéo

para Ty ; dada por
Z

: i d4Q TV T+
TS = j=— N 5.63
R (5.7) 5 (2%)* (k2 j 12) (k2 § 12) ( )
com
1 1 nh , i h , i h , io
™= 5 3@id) i+ W) i+ ki) i
A
1£ i ¢ ¢a
= & 312 j4qtq’+ 'k2 i+ & i o (5.64)
Ya
Usando esta expressdo na equacdo (5.58), obtemos *
mga 1 1 ¢ i ¢Q frat@
reesp: — A o @ . 2 . 0 N
T ey = f, 222 [&°5u] 1 f_l/a 3t 14q¢6qg 2 (2%)* (k2 § 12) (k2 § 12)
. Z £E_ % A £ Q(Z))
d4 Tr d4 T

Vo7 i Kkz e Y ofZ Uy ke 2

“Esta contribuicdo de T*(%2;22) pode, também, ser obtida a partir do coe..ciente Ay, da equacdo (A.35) da
referéncia [ GSS 88], usando °g = j q¢q’=2m.
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As duas ultimas integrais desta expressao correspondem a correcdes de vértice, que representam

efeitos de curto alcance. Desprezando estes efeitos e usando a equacéo (5.13), temos

mg 1/2312 i 4q¢q°3/4 £ @
. = A 1 o 1 . @ .
T{eesPJ(5,7) =1 f1/3 q02 i 12 [El 5u]() l'N" : (566)

A contribuicéo de +T™, por outro lado, é obtida usando a equacédo (5.62) na (5.58) e produz
1/2 ?/4
3(0® i *?)

fl? 3+ q02 i 12

T: = A

£ 0o
[@osul® iy @ (5.67)

com a identidade (5.24).

Juntando as expressdes (5.66) e (5.67), recuperamos o resultado (5.56), isto &,
T = Tlreesloj(sj) + 17 (5.68)

Com isso, concluimos que T; é a parte da amplitude T;* que ndo contribui para o respalhamento de
pions na camada de massa. Assim, para o kernel da producdo de um pion devido a troca de dois
pions, devemos fazer T)* ¥ TZ:

A expressdo (5.54), associada ao diagrama (5.5.b), é mais clara e produz
Ya Ya

| i £ o
it 2@ u® et u® iy @ (5.69)

T =i
1 1 3
f1/4

Como podemos observar, a componente pseudoescalar desta amplitude cancela parcialmente a da
amplitude (5.67) °. Usando a relagdo (5.24), podemos escrever a soma das amplitudes (5.67) e
(5.69) como

Yo M il %
3 2 212
) S eu® i e u® Bu®:  (570)

3 6F2

Ti+TCt — o
1 1 -
f1/4 12 f1/24 3 q02 i 12

A expressao (5.55), diagramas (c) e (d) da ..gura (5.5), produz

N p'+q+m pig+rm - Wi o,
T! 'S5 1 & “5+m°;— S, tM—H—— % N
2 @'+ im Pim im
. ga %(t) ®p ” 6} 2m (1)?/4 )
= 1 =3 [@°sul’ i @ §°sul” [&u]*™; (5.71)

f, 12 23 (P +a)° i m?

onde usamos a equagdo de Dirac, a identidade (5.24) e a simetria pelas trocas p; $pleq b jq.

SEste cancelamento nasce do mesmo mecanismo apresentado na se¢do 3 do capitulo 3.
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Somando as equacoes (5.70) e (5.71), obtemos

v T . : . Y
_ a3 1% @ L, M8 “yae @ [au®:
5 .

.m 1
T — = _l_ﬁ o @ .
YTOf, 22 f2 30 23 1 &7 ul™ i 6f7  (p)+q)’ i m?

(5.72)

Este resultado representa a contribuicdo dominante a amplitude do processo NN ¥ %NN e é valido
para o caso de o pion externo ser real (> = 1?). No caso deste pion ser virtual, esta expressdo deve
ser usada com cautela, como discutiremos na sec¢éo 5.6.

5.3 Kernel da Producao

Para usar o resultado da secdo anterior com funcbes de onda nucleares, é necessario deduzir
um kernel ndo-relativistico a partir da amplitude T,. Esta amplitude inclui a propagacao de estados
de energia positiva (+) e negativa (j), incorporados no propagador covariante

g+ m

2T S+(®) + S;(®); (5.73)
onde
S(ﬂ): L PUS(E)E‘S(E): l°0éi°¢p+m: 1 u@+m 'oﬂ (574)
" 2B B E 2B B i E 2E piBE' O -
e

P
1 (i p)®(ip) _ 1 °E+°tpim,

com I%:pm2+|’é)2:

A propagacao dos estados de energia positiva esta incluida nas fungdes de onda nucleares
e, por isso, deve ser subtraida da amplitude para evitar dupla contagem. Esta contribuicdo esta
contida em T{ ; e a parte com energia negativa, T7j, ; € obtida substituindo os propagadores da
equacdo (5.55) por ©

u 1
Si®) = g § Se® = 5z Toipm (5.76)

6Esta substituicdo ndo pode ser realizada na expressdo (5.51) porque, como ja dissemos, nela ndo é possivel
distinguir claramente propagadores e termos de contato.



106 5 Producéo de Pion no Espalhamento NN

com p=pg € P = pe; isto é,

+ 2 o K ﬂ 91 ﬂ Ya -
zZ: — '3gA®00 o m 5 o - 6d+m m o - 6e+m o (l)£-+ﬂ(2)
Ty = 14—— & %+ o 3 + 0 g s Uiy
fl/A 2Ed pd + Ed 2Ee pe + Ee
Nz H il
= g_A %(t) % [a ° u](l) + l m = m [a o o U](l)

f, 12 1 5 2 E, 1 Eq 0 5

K il Ya
1 =E =E

MEa M= mao,u® [@u®: (5.77)

2 Pb+0+Egq Poi Qo+ Ee

O kernel corresponde a parte da amplitude T,, equacéo (5.72), com propagacédo de estados
de energia negativa,

Ky = T7 + T+ T7, (5.78)
logo
Yol | M l
K, = (220 "M O e el MM e o @
! f, 12 3f7 1 5 2 Ec'Eq = °°
. H 1. Ya
1 ®E)'-O m:Ed m:Ee Q) 0
i =i + @G§°u gul™ 5.79
I 6f1/24I21 Po+do+Ed Poido+Ee (6% ul (& u] (5.79)
No centro de massa e no limite estatico, os elementos das matrizes sdo dados por
@ul® = 2m;
[@esul® 2 %®Oip jp) ; (5.80)
[@°sul” 2 2%O¢(p+p)) j 2m%Piq;
[@°,6°5u]Y 2 19%Oep i p’) i2m%Biq:
Com isso,’
Yo |l
I SR N L I Y P A
! 4m2 am? £, 12 3fz 1 !
. 8 1. Ya

- 1 - ®8-O 1 1 £13 (D) 0y - 3/ (1) . .

i 671/24'2_1 2rn+1+2mi1 W t(p+p)i2m¥%ltg 2m:
(5.81)

"0 fator 4m? surge da diferenca entre as normalizacdes relativistica e ndo-relativistica dos nucleons, relagdo (4.33).
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Desprezando pequenos termos, obtemos

M + H + l >
. ga  %(P) m ® m ®
PR g te ARIPY gp i %O &5
ou, alternativamente,
» : Oa 3/zl(t)-_p'm ®30ﬂ3(1) 2Mm oy,
1 = I2mf1/4 12 i 3?1/2+T Ya ¢¢+STV2/4 ¢q ; (583)

onde ¢ = g+p’ijp:

Este kernel pode ser aplicado tanto ao estudo da producdo de um pion no limiar da colisdo
entre dois nucleons como na construcéo de forcas de trés nucleons. No primeiro caso, t 2 12=4 j ¢:2
e no segundo, t 2 j ¢2 [ CPR 95] e [ MR 98]. Para testar a intuéncia destes valores diferentes de
t sobre os resultados, mostramos na ..gura (5.8) a transformada de Fourier da funcéo %(t), que dita
a dependéncia espacial do kernel nos dois casos. Este gra..co indica que a componente de energia
do quadrimomento transferido tem pouca importancia e, portanto, o resultado estatico também
pode ser aplicado ao kernel da producéo. Isso € interessante, porque permite relacionar o kernel da

producéo diretamente ao potencial central isoe'lsTcaIar, expressao (5.31),
- l'l 1

. Oa mt 1 1 m z
2 i += YOt e+ —— %Diq ty(¢): 5.84
! omf, ' 6eLf2 2 3@, T2 a4 (@) (5.84)

Para estimar a importéancia relativa dos dois termos entre colchetes, colocamos na equacgio
(5.84) os valores numéricos extremos para ®;, encontrados na literatura, 3,68 [ Hoh 83] e 6,74
[ KH 99], e obtemos

h i
- i2r%1/:‘1/ i 1,18 %Wea +1;37 %Witq () (5.85)
ou
g h i
o2 2mAm i 0:87%M¢ @ +0;75%Dtq  to(T): (5.86)
Estes resultados sugerem que, dentro das aproximacdes consideradas neste trabalho, podemos
escrever
1 2 i %O ) (@) (5.87)

ondep: i pi=qi ¢:

O kernel, tal como dado nas equagdes (5.84) e (5.87), constitui um dos principais resultados
deste capitulo, e suas consequéncias sao discutidas na proxima secao.



108 5 Producéo de Pion no Espalhamento NN

0.010 (/s

0.008 - 1

0.006 |- .

4

c (u)

0.004 - .

0.002 - .

0.000 L/ / \ ‘ \ ‘ \ ‘ \ ‘
0.0 12 14 16 18 20

r (fm)

Figura 5.8: Transformada de Fourier de %(j ¢2) para a forca de trés corpos (linha continua) e de
%(1%=4 j ¢?) para a producdo de um pion no limiar (linha tracejada), em funcdo da distancia r.

5.4 Generalizacao

Os resultados, neste capitulo, foram obtidos no contexto de modelos quirais particulares,
em que usamos apenas as principais contribui¢cdes dos processos intermediarios. O modelo para
a interacdo de dois corpos, representado na ..gura (5.2), produz uma amplitude isoescalar que
corresponde, no espaco de con..guragdo, a componente central isoescalar do potencial NN. Na
producao do pion, o modelo adotado, ..gura (5.5), fornece uma expressao para o kernel, equacao
(5.84), proporcional a amplitude isoescalar da interacdo NN. A versdo aproximada desta expressao,
equacao (5.87), é parecida com a obtida por Maekawa e Robilotta [ MR 98] com um outro modelo
quiral, baseado em um méson escalar-isoescalar ...cticio (s) e ga = 1,

.1
. |m %De(q i ¢) ts(E): (5.88)

A semelhanca qualitativa entre -; e -4 refete uma caracteristica comum nestes kernels, a de que
ambos sdo proporcionais a uma amplitude NN escalar-isoescalar. Esta caracteristica se deve a re-
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lacdo entre a interacdo NN devida a troca de dois pions e a do méson ..cticio. A componente central
do potencial NN devido a troca de dois pions ndo correlacionados pode ser expressa naturalmente
em termos de %(t), o fator de forma escalar. Esta func&o é relacionada ao termo sigma %N e pode,
se 0 desejarmos, ser parametrizada como uma troca de méson escalar efetivo.®

A proporcionalidade entre o kernel e a componente escalar-isoescalar do potencial NN néo
é uma particularidade dos modelos adotados neste trabalho e na referéncia [ MR 98]. Ao contrario,
ela deve ter validade bastante geral. A razéo para essa generalidade deriva de uma constatacao
antiga de Nambu et al. [ NL 62] [ NS 62] e Weinberg [ Wei 66] no contexto da algebra de correntes,
a de que, para dois estados genéricos A e B, a contribui¢cdo dominante do processo A ¥ %B é obtida
pela insercdo do pion, com acoplamento derivativo, nas linhas externas do processo A ¥ B. No
caso do processo NN ¥ “%NN devido a troca de dois pions, a contribuicdo dominante da amplitude
deve, entdo, ser proporcional a componente escalar-isoescalar da amplitude do espalhamento NN
devido a troca de dois pions. Isso corresponde claramente a relacdo néo-relativistica (5.84) ou,
de forma menos explicita, a relacdo relativistica (5.72), onde a componente escalar-isoescalar esté
associada ao fator de forma escalar.

Assim, podemos generalizar o kernel da producéo para qualquer amplitude NN escalar-
isoescalar. Para a relacdo (5.87), esta generalizacdo é dada pela expresséao

o2 i 98 s s .
L B Kt 1 ) (), (5.89)

onde t(<) representa uma interagdo escalar-isoescalar qualquer. Esta situagdo estd esquematizada
na ..gura (5.9).

No espaco de con..guracdo, a generalizagdo implica, no caso da forca de trés nucleons, que
kernel e potencial tém dependéncias espaciais semelhantes e, no caso da producdo do pion no
limiar, que esta relacdo também ¢é aproximadamente valida. Estes resultados nos permitem produzir
expressoes que relacionem o kernel diretamente a um potencial escalar-isoescalar favorito, tal como
o0 de Argonne. Para usar esse resultado nos calculos de processos fisicos é preciso avaliar o potencial
numericamente e, em seguida, o sanduiche do kernel entre as fun¢des de onda de dois nucleons.
Uma vez que o kernel e o potencial central estdo intimamente relacionados e, por consisténcia,
podemos usar a mesma dinamica na construcdo do operador -, e das funcbes de onda.

8Como discutimos anteriormente, o acoplamento deste estado com nucleons desaparece no limite de quiral e,
conseqlientemente, este méson escalar ndo corresponde aquele presente no modelo ¥%-linear. Com isso, a troca do
meéson ..cticio na interacdo NN pode ser vista como uma simpli..cacdo da troca de dois pions.
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Figura 5.9: A ..gura superior indica a generalizagcdo da componente escalar-isoescalar do potencial
NN: a dindmica a esquerda € trocada pela componente equivalente de um potencial qualquer,
indicado pela linha ondulada. A ..gura inferior representa 0 mesmo tipo de generalizacdo para o
kernel.

y

5.5 Producédo no Limiar

No limiar da producdo de um pion (q ¥ 0), o kernel dado pela relacéo geral (5.89) assume
a forma

(€)= iizi’} %D¢ ¢ t1(E): (5.90)

Fazendo a transformada de Fourier e usando a equacao (4.36), obtemos o kernel no espaco
de con..guracéo,

1
(X)) 2 — %Dty V(X); (5.91)
Zf%
onde o gradiente opera sobre a variavel x e
Z P
— - jixte=2
V(X) = i @) e t(ae): (5.92)

A relacdo (5.91) é nova e interessante, pois permite obter o kernel da producdo sem a
necessidade do estudo da dindmica da interacdo de dois corpos, que pode ser incorporada num
potencial NN tedrico ou fenomenoldgico bem estabelecido.

Para estudar as caracteristicas de -1(x), tomamos V (x) como sendo o potencial desenvolvido

na se¢do 5.1, dado por

Y
8 g 31 2l

13 2m (4%)2 4%

i/

Vau(X) = i2 45 Sec(X) T Ssc(X) (5.93)
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com
YA 1 YA 1 2 Af.X 2 Z 1 YA 1 - i
_ - 2 —Qi®1i iox
Se() = d® d =" Se(¥) = 21 de  d Gi®@i Jet © g
0 0 X 0 0 ®
e
S S o Wi®Pi )PM1)° i Li®i )+1, (5.95)
: ®1i®) ’ ®(1i®) ' '
Usando o gradiente da funcédo de Yukawa em coordenadas esféricas
r uei»Xﬂ— '1"“»+£ﬂei»x' (5.96)
o x - X X '
e escolhendo o potencial da equacgéo (5.31), obtemos
Y -Z Z M T
1 + 42 14 1 1 1 2 i.X
L) 2 A " g g8 O° 3% T Tye Ty al >+1 ¢
2f, m 13 2m (4%)? &% 0 X X
z z M mT ... .%
2m2 1 L 1i®ti) 1 ei x®
i — ® — T+ = ; .97
i 0 ) d ; d o % (5.97)
Alternativamente, para o potencial devido a troca do méson escalar, temos
H il
. » . 9A i 3,1) Ms l .
09 2§ e LU T o Ve(); (5.98)
onde
2 1 ei Xmg=1
Vi) = i 02 g (5.99)
e para o potencial de Argonne,
H 2
a(X) i o, /AR 343 Va(X); (5.100)
onde
H 3|}
3 3 “ei?x
Vax) = Ic 1+=+ 7z (5.101)

com Ic 2 j 4,8 MeV.

Os gréa..cos desses potenciais sdo apresentados na ..gura (5.10). A curvas dessas fun¢des sao
semelhantes, sendo V,(X) e Vs(X) mais proximos quanto a intensidade.

Uma caracteristica interessante destes resultados é que todos eles sdo proporcionais a =m; o
que poderia sugerir que o kernel seria, de alguma forma, pequeno. Esta impresséo € reforcada pelo
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Figura 5.10: Kernels derivados dos potenciais V.,(X) (linha continua), Vs(X) (linha pontilhada) e
Va(X) (linha tracejada).

fato de que a expressdo (5.90), no espaco dos momentos, contém o fator j&j=m que, ingenuamente,
poderia ser tomado da ordem de *=m. A ..m de testar esta hipdtese, na ..gura (5.11) mostramos a

razdo adimensional

1

R=— V)] =jV(x)] (5.102)

para os trés potenciais considerados. Inspecionando esta ..gura, podemos notar que esta razao é
comparavel a 1, indicando que o fator *=m €, na verdade, compensado pela acdo do gradiente sobre

0 potencial.

Esta indicagdo é con..rmada no trabalho de Maekawa e Rocha [ MR 99], onde a aplicacdo
do kernel com méson escalar aumenta a secdo de choque dos processos pp ¥ pp%° e pp ¥ pd¥%™,
subestimada nos termos de impulso e reespalhamento, ajustando a escala dos resultados tedricos,
como mostra a ..gura (5.12).
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Figura 5.11: Gra..co de R, equacdo (razao), para V. = Vg, (linha continua), V = Vs (linha pontil-
hada) e V =V (linha tracejada).

5.6 Potencial de Trés Nucleons

No espaco de momentos, o potencial do espalhamento de trés nucleons ¢ dada pela relacéo

hpl; p%; PYW jpi; P2 Paicm = i (%) (P + P+ P5 i P1 i P2 i P3) tan ; (5.103)
com
1
tow £ QE) LN (5.104)

onde T3y corresponde a amplitude propria deste espalhamento.

A componente mais importante e de maior alcance do potencial de trés nucleons é a devida a
troca de dois pions (2%), dada pelo diagrama (a) da ..gura (5.13). O processo de ordem seguinte, na
hierarquia de distancias das interagdes nucleares, corresponde aos diagramas (b) e (c), envolvendo
trés pions (3%). Estes desenhos, sem ambiguidades aparentes, sugerem que 0 primeiro diagrama
pode ser construido a partir da amplitude de espalhamento “iN e o segundo, a partir do kernel
desenvolvido nas se¢Oes anteriores deste capitulo. Nesta se¢do, entretanto, mostramos que, de fato,
esta interpretacdo pode envolver uma dupla contagem.

A bolha hachurada do diagrama (a) representa a amplitude de espalhamento elastico %N,
cuja forma geral é dada pela identidade de Ward-Takahashi. No canal simétrico de isospin, este
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Figura 5.12: Secdes de choque para as reacdes pp ¥ pp%° e pp ¥ pd%* em funcdo do momento do
pion ~ =qg=1 [ MR 99].

diagrama corresponde a

), @ v 9a T 0 @ i E v 2. %@ i ®)
Tan =¢Wte @ of, [1846 °5u] 2 12 T°(@%99) q2i12[916°5U]
H 12
1 £ a
= j W@ D9A [@o ul® TH(a222) 417+ Pge, u]®; (5.105)

. (@i @ i)
onde T*(12;22) ¢ +T™* séo as amplitudes %N simétricas para pions na camada de massa e fora dela,
dadas pelas equacoes (5.61) e (5.62).

O termo contendo a amplitude para pions na camada de massa gera, de fato, um potencial
gue envolve apenas dois pions virtuais [ CDR 83] [ RICD 85] [ RC 86]. O termo proporcional aos
pions fora da camada de massa, por outro lado, é ambiguo e pode ser escrito através da funcao

dada em (5.62) como
il

H ﬂZ 2 H
;@ Mda T W(EH) T 1 1 0 o .
tTon = §¢P6e@ 2 o gt m [ s Ul [@u]® [@egu]® ; (5.106)
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Figura 5.13: Contribuicdes da troca de dois pions, diagrama (a), e trés pions, diagramas (b) e (c),
para o espalhamento de trés nucleons.

comg=piips; ’=pripleE=pyinp}:

Passando para o formalismo néo-relativistico e usando a equacao (5.29), podemos escrever
.

311 mga > 1 mga i
+t — M0 3, A 3, . A0
n = (DO s T RO P i P @) oy £ WP i PY)
. . Y
m 1 > m ®
+ DAy i pl) ——— 2% (ps § pY) tau(E) (5.107)
'fl/4 q + f1/4

Esses resultados mostram que o uso da amplitude %N fora da camada de massa da origem
a contribuicdes que envolvem a troca de trés pions.

Para compreender melhor a origem deste problema, consideraremos as contribuicdes dos
diagramas (b) e (c) da ..gura (5.13), associados a amplitude de producéo de pions.

A principal contribui¢do para Tsn Vem dos diagramas da ..gura (5.14), que envolvem tanto
processos proprios (a), (b) e (c), incorporados nos propagadores dos pions como outros em gue 0
OPEP e o TPEP séo relacionados por um propagador de antinucleon (d), (e), (f) e (g).

O calculo direto do diagrama (@) fornece

£ o i =(3)
+ @3 _ + | 0a °
B N g2 i 2 E‘2f1/4e 54
K [Pyt il
mg 3 3 . £ .9, .
= i 4 omtar @ou® i P Eeu®;  (5.108)
fl/A q 1 q 1

onde passamos a omitir os termos no espaco de isospin, ¢ Mt ¢ @,

£ o
Lembrando que 312 j{ = %(t)[&u]; notamos que esta amplitude é idéntica a expressédo
(5.106). Isso ndo é surpreendente, ja que os kernels dos diagramas (5.13.b) e (5.13.c) ja incluem
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Figura 5.14: Contribuicdes para a amplitude do espalhamento de trés nucleons devido a troca de
trés pions: (a) polo do pion, (b) e (c) contatos, (d), (e), () e (g) gra..cos z e permutacdes ciclicas.

contribuicdes de +T . Este resultado indica, portanto, que a incorporacéo de efeitos fora da camada
de massa no diagrama (5.13.a) e o calculo do diagrama envolvendo o espalhamento %Y na ..gura
(5.14) ndo devem ser efetuados simultaneamente, pois isto levaria a dupla contagem.

Em um célculo completo, a contribuicdo de ETf%) deve ser considerada apenas uma vez.
Como ela envolve a troca de trés pions, € mais natural inclui-la no calculo dos diagramas da ..gura
(5.13.b). Portanto, a forca de trés nucleons envolvendo a troca de dois pions (2%) deve ser baseada
na amplitude %N para pions na camada de massa.

Com este entendimento, passamos a calcular as demais contribui¢es envolvendo trés pions

virtuais.
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Os diagramas (b) e (c) fornecem, respectivamente,

£ o £ o i -3 7 (1) .
®) o _ -2 9A 200 !
AT = T o 2f1/4 Q%u 4 QB @%U e TS
K 11, Y2 Y
m 1 o o E L% ...
fng 7z 2 218 u® + o [9' 8°su® iy @ [a°sul®
Y
M 1 1/2

£ o 1
o @ F.+"(@ o 1® . lo 13
f2 g2 12 [&°sul™ iy 2[@°%sul™ i 5 —[8Q°s U]

Ya

(5.109)

213) 2D _ 4z g . O g 9A goo S .
[T + [T = Tg R E‘m@ sU  + Zf%G 5 U WTB
nooT Y
A 2 3®p 1 e, u® ; 2m
f, 1 q2j 12 % +a)° i
H T Ya
ga 2 3®8’0 1 [E|°5u](l) £i+°(2) [E|°5u](3) + 2m
f, 1 222 N ® 1P i

Ya

£ L a,
= j . [a a 05 u](l) i-Nl- ) [El o5 u](3)
m

E
m2 [a 6005 u](3)

(5.110)

Somando essas amplitudes e usando a relagéao (5.24), obtemos a contribui¢do dominante
1/ -
ugAﬂz 2 1 91 3®8-01T " K 1 6m @, =1 1
T oo optoan Eesu®i o
o q2i? 7z 2 287 (Pi+9)"im?
-‘H | M . il Rz
wou® Mi3%0 pgo @y L, MOt T g0 Fiale
i 7oor T 262 (ph i)’ im? N

Ken = i M [4§°5u]® [@°su]®

(5.111)

Esta expressdo é simétrica pela troca 1 35 3; isto é, p; b p3; p] B p}; 9 B i ¢': Logo, podemos
escrever

TR Yop )l u N | %
K = im 2 1 m+3®00 @osul® § oo+ %0 Tgge
N f, 2§22 2 ° 2f2  (pl+0q)” i m? °
+ (2) o (3) . H .
£ iy [E°sul” + (1$3) + perm:c{clica: (5.112)

E interessante notar que o mesmo resultado pode ser obtido usando o kernel da producdo
do pion na camada de massa,

Kan = Klqzi;12 ”]‘C%A [@°.ul® + (13 + perm: cfclica; (5.113)
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onde K; é dado pela expressédo (5.79).
No centro de massa e no limite estatico, temos °

EIm ) i >
Kan (¢; 1 m I

A passagem para o espaco de coordenadas € realizada pela transformada de Fourier
d3p0l d3p02 d3p°3 d°py d®p, dps i i (PYer)+plerd+plerd j pitry i patra i patrs)
(294)3 (2V4)3 (2%)3 (2V4)3 (2%:)3 (2Y4)3
h i

£ 1 (@)°+(PL+py+p5iPLiPziPs)-an(Eiq) ; (5.115)

hry v W jry rg s =

onde usamos a equacéo (5.103).

Repetindo os mesmos procedimentos da primeira secdo do capitulo 4 para o espalhamento
NN, obtemos
z

d*¢ dd
W) = i .

(21/4)3 (21/4)3 el igrg, el i ©lrpg “ 3N (¢, q) : (5116)

onde M =r,jreryp=ry3jr;:

Com isso, o potencial pode ser escrito como

W(r) 2 -(ra)V(re) + (1$3) + perm:cfclica; (5.117)
onde
- 1(r21) =2 9a 3/4(1)¢ o \Y (r21) = Ja i 3/4(1)¢ x \Y (ij_) (5118)
2m'f1/4 21:1/4 m 21
foi calculado na secéo anterior, equacéo (5.97), e
N NE) d°g i 1 _ 0a*, 5 eixe
V(r = — % r el 'ra2 = — — ¥ r
() = 5, %7 2 Gy F+iz - of, e o
H T .
ga 2 1 et™ 0
= i — — /AR RV 5.119
! 21:1/4 4Y, X32 X32 ) 32 ( )
Assim,
3 - 3_° -Z Z 8} 1 .
3 g 4-1 4 1 1 B 2 1 gi . Xo1
WX) 2§05t — —  %®epy %O @ d = |+
( ) 1 4 00 i m 4 21 74 32 o . - Xo1 Xo1
Z Z U T . S 1T .
2m2 = 1 1 1i®@Aij 1 i xa1® 1 i X32
i &0 d® d i®di ) - 1 "¢ 1+— £ (5.120)
S 0 ® X21 X21 X322 X3

°0 fator - vem do limite estatico de ﬁ descontando o fator ﬁ j& presente em - .
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A intuéncia do termo de contato no caso - = -4 foi estudada por Maekawa e Robilotta
[ MR 98]. Este termo é caracteristico da dinamica quiral e os gra..cos z, de uma dinamica triv-
ial. Comparando as ..guras (5.15) e (5.16), vemos que simetria quiral é bastante relevante para o
potencial de trés nucleons, pois muda completamente as equipotenciais.

X (fm)

Figura 5.15: Contribui¢do proveniente dos gra..cos z da referéncia [ MR 98]. Um nucleon é ..xo em
= § 0;5 fm, o outro em x = 0;5 fm e o terceiro se move nas linhas equipotenciais.
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10 [ T 1 i I 1 ) | I

0.9

Figura 5.16: Contribuicdo proveniente do diagrama de contato e gra..cos z da referéncia [ MR 98].
Um nucleon é .xo em X = j0;5 fm, o outro em x = 0;5 fm e o terceiro se move nas linhas
equipotenciais.



Capitulo 6

ConclusoOes e Perspectivas

Neste trabalho, obtivemos os termos dominantes do potencial NN devido a troca de trés
pions e do kernel para a producdo de um pion no espalhamento NN. Em ambos os casos, 0s
pions virtuais ndo estdo correlacionados. Os céalculos sdo baseados nas amplitudes dos processos
intermediarios “/N ¥ YN e “N ¥ Y%Y%N, obtidas por meio das regras de Feynman derivadas
da lagrangiana quiral ndo-linear com acoplamento %N pseudovetorial. A dinamica do processo
YN ¥ %Y%N, em particular, é bastante interessante, pois envolve o diagrama com Vvértice de quatro
pions, que tem papel fundamental. Este vértice € parcialmente cancelado por um diagrama de
contato pertencente a mesma subclasse de intera¢fes. Em processos contendo pions fora da camada
de massa é necessario reunir todos os diagramas de uma dada subclasse quiral, para que os resultados
independam da de..nicdo do campo do pion. No caso do processo %N ¥ %YN, a subclasse de
diagramas que fornece a contribuicdo dominante a baixas energias contém apenas os diagramas
com Vértice 4% e de contato.

121
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No estudo do espalhamento NN devido a troca de trés pions ndo correlacionados, obtivemos
uma interagdo isovetorial com uma componente pseudoscalar e outra axial. No canal spin-spin,
a parte pseudoscalar, positiva, € um pouco maior do que a axial, negativa. A resultante tem um
alcance de cerca de 1.0 fm, que é compativel com os resultados obtidos em calculos recentes baseados
em HBChPT. O potencial devido a troca de trés pions é muito pequeno quando comparado ao
resultante da troca de um pion, o que se deve, por um lado, ao cancelamento entre as componentes
pseudoescalar e axial e, por outro, a simetria quiral, responsavel pelo cancelamento parcial entre os
diagramas de Feynman. O efeito obtido €, entdo, menor do que o produzido pela troca do méson

aj.

O presente trabalho deixa varios problemas em aberto. Um deles, consiste em efetuar um
calculo relativistico completo de todos os diagramas contendo dois loops e envolvendo apenas pions
e nucleons. Além disso, é preciso determinar as contribuicdes de outros graus de liberdade, em
especial das excitacOes delta, que tém papel importante na troca de dois pions.

No caso da producéo de um pion devida a troca de dois pions néo correlacionados, o kernel
relevante esta associado a um numero grande de diagramas. Para obter o termo dominante a
grandes distancias internuclednicas, empregamos os mesmos diagramas utilizados na troca de trés
pions, somados a contribuicdo da iteracdo de potenciais de dois corpos. Apesar da expressao ..nal
também envolver o cancelamento parcial entre diagramas, o saldo ainda € importante.

Relacionamos, entdo, este kernel a componente central isoscalar do potencial NN devida a
troca de dois pions ndo correlacionados, que pode ser expressa naturalmente em termos do fator de
forma escalar %iN. Estes resultados foram, em seguida, generalizados para o caso de um potencial
central qualquer. Como o fator de forma escalar “sN pode ser simulado pela troca de um méson
escalar efetivo, 0 mesmo vale para o potencial de dois corpos e para o kernel da producéo.

Uma das possiveis extensdes deste trabalho consiste em realizar um calculo dinamico mais
completo, incluindo todos os membros de uma mesma familia de diagramas quirais e, tambem,
outros graus de liberdade. Deste modo, seria possivel testar a generalidade da relagdo entre kernel
e potencial de dois corpos.

O nosso kernel generalizado foi especializado para os casos da producéo de pions no limiar do
espalhamento NN e de interagdes proprias de trés nucleons. Em ambos os casos, ele toma uma forma
semelhante e de mesma ordem de grandeza do devido a troca do meson escalar ...cticio. Como este
altimo foi testado fenomenologicamente com sucesso, podemos esperar que 0 mesmo venha a ocorrer



6 Conclustes e Perspectivas 123

com o que obtivemos. Esta evidéncia precisa, entretanto, ser con..rmada por estudos detalhados
deste tipo de reacao.



Apéndice A

Notacao e Convencoes

A.1 Notacoes Relativisticas

Em geral, os calculos relativisticos sdo realizados no espaco de Minkowski. Este espaco é
caracterizado pelo tensor métrico

(@) 1
1 0 0 O
w__ _Boj1 0 o § _
g —glo—go 0 i1 0 : (A1)
0 0 0 j1
Com isso, 0s quadrivetores sdo expressos nas formas contravariante *

a’ = (ap;a;;a:a3) = (ag; @) (A.2)

INeste trabalho tomamosc=1¢e ~=1.
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e na covariante
A =gwa = (a0 ia1idia)=(aia); (A.3)
de modo que o produto escalar seja
ath=a"b.=agh j atb: (A9

As respectivas derivadas sdo de..nidas como

Ol =i e B = (80 (A5)
de modo que
1 _ - _ @ . 1 _ 0° - 2 - .

] al—@oao.@iai—@at. rta e (] @1—@. r-=o: (A.6)

A.2 EquacgOes de Onda Relativisticas
2 BOSONS

Um bdson livre é descrito pela equacdo de Klein-Gordon

. 22" A;(x) = 0; (A7)

onde A; (x) representa o campo do béson com grau de liberdade interna t e 1, a sua massa. O

campo que satisfaz esta equacao tem a forma
Ai(X) = P——————— a el "™+ a e'™ " (K); A.8
£ () e ™ ! (k) (A8)
onde a e aj, sdo, respectivamente, os operadores de aniquilacéo e criagdo e "7 (K) é uma funcdo com

quatro componentes.

Como na relatividade o spin da particula esta acoplado ao seu movimento, a equacédo de movi-
mento para uma particula livre depende do spin dessa particula. Assim, para que ;L (K) represente
0 spinor de bosons vetoriais com spin 1, deve-se introduzir um vinculo na equacgéo de Klein-Gordon,
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para que produza trés estados de polarizacdo independentes (spin 1), quando * & 0, e dois, quando
1 =0. A escolha mais natural é a condicéo de Lorentz

@A (x) = O: (A.9)

Para bdsons escalares (spin 0), temos apenas um estado independente, logo ;L (k) =1: No
caso de pions, t representa as componentes de seu isospin, de modo que

1 . ] 1 .
W= i Ps (A A W = Ay, W= Ps(RiiAy): (A.10)
A normalizacéo adotada para os bdsons é
hK: 7t +Ajk®t ¥ §Li=212W 23K §Kte; (A.11)

P—o0—— : o )
onde ! =8 k2+ 12 ¢ a energia relativistica do béson.
2 FERMIONS

A equacdo que descreve um férmion livre é a equacao de Dirac,
(i@:°" § m)A(x) = 0; (A.12)

onde °* sdo as matrizes de Dirac, A (x) representa o campo do férmion com grau de liberdade
interna s e m, a sua massa. O campo que satisfaz esta equacdo tem a forma
N > ¢ d3p

£ . n
— j iptx ikex .

onde os operadores bs(p) e d¥(p) aniquilam e criam férmions e os spinores us(p) e vs(p) séo as
funcdes que satisfazem as equacdes de Dirac no espaco dos momentos

® i mus(p) =0 e ® + m)vs(p) = 0; (A.14)
onde

® = p.°": (A.15)

Para um nucleon, o spinor de Dirac corresponde a

1 H E+m il
us(p) = pﬁ %tp As (A.16)
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e, para um antinucleon, a

1 H %t p U N
Vo(P) = TP g oA (A.17)

onde ¥%; sdo matrizes hermitianas 2x2, conhecidas como matrizes de Pauli,

il | ]
3/4:“01 . %:uoil . 3/4:“1 0 ) (A.18)
! 10 ? i 0 ¥ 0o il '
e A, sdo os spinores nao-relativisticos
M 1 il H 0 il
A, = 0 e A, = 1 (A.19)

No espaco de spin e isospin, um nucleon livre que chega com spin s, isospin t e momento p
é representado por

NS(P) = "¢ — us(p) (A.20)
e 0 que sai, por
Ni(p) = ¥ - #(p); (A.21)

onde "t é seu isospinor e &s(p) = u¥(p) °°.

Para o préton (t = 1=2), o isospinor corresponde a

H 1 il
T2 T 0 (A.22)
e, para o néutron (t = j 1=2), a
H 0 11
Tl = 1 (A.23)

As matrizes de Dirac séo matrizes 4x4 com trago nulo dadas por

H OT[ ok_IJ 0 %kﬂ

|
0]l T j% |0

o0 _—_

(A.24)

A matriz usual °g corresponde & combinacéo
il

H 011
05 — ioOoloZo3 — o : (A25)
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As relacdes de comutacdo e anticomutacdo das matrizes de Pauli sdo dadas por

[%i 5 %] = 21 25 Y

& .
% Wi 3/4j =1 + |2ijk Yax (A26)
4 ; 3/4jg = Ziij
e das matrizes de Dirac, por
[01;00]: i i23/410
& 01 OO — 10 - 10 .
% =g ili¥% (A.27)

fol; oOg — 2g10
As normalizagdes adotadas para os féermions sdo
hp', 5t 8 +Ljp;®; t ¥ Li = 2E(2%)°£*(p" i p)te; (A.28)

onde E =8 p?+ 12 ¢ aenergia relativistica do férmion.

A.3 Convencoes

2 Variaveis do espalhamento NN devido a troca de trés pions

1
W = pi+p; = p]+p) P =§[(p1+p‘i)i(pz+p%)]
¢ =plipp=p2iph =0+ ik (A.29)
_ (@"+qg)+k v _ d'ig P+ p2
Q= 2 Q= 2 Vo= 2m

Os nucleons na camada de massa implicam no vinculo
WP = Wt¢ =Pt¢ = 0: (A.30)
2 Variaveis da producao de um pion no espalhamento NN devido a troca de dois pions

k' + k
2

W = pr+p, = pl+ph+g Q =
(A.31)

¢ =Kik=0qid =q+plip =piph
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2 Amplitudes

Tacha = ZacTod A(S) + Fap e A(L) + fag e A(U)

— + H . i
Tba - iabT + |2bac(,cT !

com T3 = AS[au]+ B3 [@®u]

Teoa = ZocéaTa + facib Te + thaéc Te i 1%ma TD

com Tx = i[&°(Ac+§Bx+8@ Cc+6 @' Dy) u

(A.32)

(A.33)

(A.34)

(A.35)

(A.36)

onde A, B, C e D sao func¢des invariantes de Lorentz provenientes da dinamica do processo.



Apéndice B

Calculos com Spinores

B.1 Sanduiches

Usando as notacgoes

1 0 1 i - E"y"n(i) i - £"y A1)
temos
H E+m 1
2SS §% fu=NNA(E'+m;j%tp" %t p

= NNA[(E™+m)(E+m) i % %; pipi]A = NNA [(E+m)(E+m) i (£ +i Zijx %) Pi pj] A
=NNA[E"+m)E+m)ip'tpii%t@E ~p)A

=NNANA[E'+m)(E+m)ip'tpl i iINNALALPE ~p); (B.2)
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uO IﬂuE+m
2pPS U @°u=NNAE+m;jutp) o %t
lJ'E+m.”
=NN'A(j %tp E"+m) %ip A=NN'A%Atp (E"+m) j p'(E+m)]; (B.3)

2V i1 &°7u=8(° °)u=(&°,u; @°;u)

L
aoou_NNOAy(EO_i_m -%¢p) 4’7 E3/4-;Fr;n A:NNUAY(E0+m,3/4¢pO) ES/Al-;FI;n A

= NN [(E' +m) (E +m) + %% pipi]A = NNA[E' +m) (B +m) + (& +i %% pi pi] A

=NN'AAE"+m)(E+m)+p'tp]+iNNA AL (P ~p) (B.4)
© T T
H H
A 0 | %; E+m -
° 1| — 0AY 0 . =3 0 1
B, u=NNAE"+m; j%tp" =0 %t A
R lJ'E+m - . £ o
=NN'A (%t p'%;; (E'+m) %) %0 p A=NN'A %% (E+m)p] +%% (E'+m)p; A

- £ o
=NNA (£ § i 2k %) (E +m) pj + (ij + i 2ijc %) (E' + m) p; A
- £ o
= NNA pl(E +m) i i2j%upj (E +m)+pi (E'+m)+iZ%p; (E'+m) A (B.5)

A . . £ ol
= NN'AYA [p} (E +m) +p; (E' +m)] + i NNAY % Az pj (E'+m) j pj (E +m)

2PV i! aolosu:a(oo;oi)osu:( ooosu;aoiosu)

K T T 1
. 1| 0 01 E+m
o o — 0AY 0 -3 0
G° s U=NNAE"+m; j%tp) 0] i1 10 %t p
M Tu T M 1l
. 01 E+m A E+m
— 0AY (=0 .3 0 — 0AY (3 0. =0
NNA(E"+m;%¢p) —+4 wip AT NNAGEpTE+m)

= NN'A%ACP (E+m)+p (E"+m)] (B.6)
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€
vl T T
A 0 | % 0|1 E+m
o o — 0AY 0 . -3 0 1
g °.u=NN'AE"+m; j %tp) 0 10 %ip
M |8t
A 0o1l1 E+m .
— 0AY (3 03/ - 0 3.
NNA" (Ftp i ; (B'+m) %) —5 %itp
~ IJ‘E+m ~
= NNA (E'+m) % ; %tp’ %) %ip A
£ IR
= NN'A %; (E"+m) (E +m) + % pj % % pic A (B.7)

£ o
= NN'A %; (E"+m) (E +m) + % p] (£ik + i Zikm ¥im) P A

. £ o
=NN'A % (E'+m) (E +m) +%¢tp’pi + i 2ikm (Ejm + i Zjmn %n) PP A

o}

- £ -
= NN'A % (E' +m) (E +m) +%¢p'pi + i Zikj P} P + Zikm Zjnm ¥on Pj P A

. £ o
=NNA % (E'+m) (E+m)+%tp'pi +i (pP"); + Eijtkn i tintkj) %nPj Pk A

=iNNAA (p~p"), + NN'AY%A[(E"+m)(E+m) § ptp T+ NNA%ACP pi +pp):

No caso da contracdo deste sanduiche com um vetor g ; temos
BG°;Uu=8°"°5uq = §°,°5udo i B°°5uQ;
=NNA%At[P (E+m)+p (E'+m)] g i iNN'AAqt(p~p)

i NN'A%Acq[(E'+m)(E+m) jptp]

P yoi T Mgy ayoiy T
e L0 i) B LIV ETEA AT

4%°u=0; 8%u=j8%%u para k=iouj:

NNA%At(P'gtp+pqtp’):

(B.8)

(B.9)
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K

T
A 3
%% u=NNAE +m; j%¢p") i 0 | ¥ E+m

Yo | O Yatp

HE+m.IT

Yalp

A
=NNAGivatp % i (E"+m) % A

= NNAY[§ i %% (E +m) p} + i %% (E'+m)p;]A (B.10)
= NNA[§ i (i + i 2ikm %m) (E +m) p}+ i (ti5 + i 20 %n) (E* +m) pj1A

=iNN'AA [p (E'+m) j pi (E+m)] i NN'A %y A2inpl (E+m) j NN'A Y%, A2, p; (E'+m)

e
M T 1
. " Ve | O E+m
3] — 0AY 0 .= 3 0y 2. K
aetu=NNAE +m; §%p) 2~z %t p
lJ'E+mﬂ
= NN'A 2 (B +m)%g i %6p%) 5 A

= NNPAY i, % (E* + m) (E +m) j Y%m Py %o %n Pn] A

= NNA [2ij Y (B + M) (E + M) § 2ijic % CGien + 1 2 %) Py Pl A

= NNA [2 % (E' + m) (E + M) i 2ijn%m P Pr i | Gintji i Hirtjn) Emi + i 2mis %s) P Pl A

= NN'AY Ezijk%k (E"+m)(E +m) i ZijnPn¥mPh i ip% Pi+iPiP; T PiZims P %s + Zims Pj Py %SQA
= iNNAYA ip‘; Pi i P pi¢+NN0Ay3/4kA2ijk(E°+m) (E +m) § NN'A % A2, pn P,

+ N NOAy 3/45A (Zims pj pen i 2jms Pi pom) : (B-ll)

B.2 Produtos com Sanduiches

2 Entre quadrivetor e sanduiche
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BAu=a. 8° u=a, &°,uja&°u
=NN'AA[E"+m)(E+m)+p'tp]ag+iNNA %A (P p) a

i NNAAatp (E'+m)+atp’(E+m)] i iINNA%At[a~p (E"+m) ja~p"(E+m);
(B.12)

BB°;U=2a8° °su=ayB°°sUja&°°su
=NN'A%LACP(E+m)+p (E'+m)]a i iINNAAat(p~ph)

+NNA%Ata[(E'+m)(E+m) jptp ]+ NNA%At(patp+patp’); (B.13)
a%°0u|a%oiuﬂ” bo 1

a%'%u | &% u i b

_Haoﬂ%°°u| a06|3/4°‘u T“'l bo 1
N ai5l3/40'U | iaia%”u ibj

8
Baibo%"u=(ap; i ai)

= agho & %% u + (boax i aobk) &% u + ab; &% u

= iNN'AA (boa i ab) ¢[p (E'+m) j p'(E +m)]
i NN'A%A ¢ f(boa i ab) ~[p' (E +m) +p (E' +m)lg

+ iNN'AYA (atp’'btp j btp'atp) + NNAY% AL (@~ b) (E'+ m) (E +m)

i NNAv%Atp" (@~b)tp+NNA%AC[(p" b) atp j (p'~a) btp]: (B.14)

- vl T 1T

o _pAy 0 c eyl bo |i?/4¢b Qp¥%tpi(E+m)%ta A
#6@ % u = |50+m(E miiep) %tb | b Y%itavstp j a (E+m) E+m

Ay
:pm (E'+m; j%ep)

Hboa03/4¢pibo(E+m)3/4¢ai3/4¢b3/4¢a3/4¢p+a0(E+m)3/4¢b.IT A
Q¥%tb¥%tp j (E+m)%tb¥%itajhby¥%tadatp +byay (E +m) E+m
o boap % Ytb¥%tado
:IDE°+mIOE+mAy M;m%m; 1tb% 4ID+a01“/4¢b
E+m E+m

) a03/4¢p°3/4¢b3/4¢p+%¢p°%¢b%¢a+b0%¢p°%¢a%¢p _boag¥%tp'” A

' (ET+m)(E+m) E+m E+mE+m) | Bam (B.15)
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2 Entre sanduiches

- ¢ .
IEH °.u @ (E| o u)(2) — (E| ° u)(l) (a ° u)(z) i (ﬂ °. u)(1) (E| ° u)(z)

© A . . a
= NN'AA [(E'+m)(E+m)+pep] +iNNA%A (P ~p) @

© o . . a
£ NNAAE"+m)(E +m)+p'tp]+iNNA %A (P ~p) @

© o . . £ &
i NN'AA [p} (E +m) +p; (E'+m)] +iNNA % A2 pj (E'+m) j p} (E+m) @

© o . . a
£ NNAA [l (E +m)+p; (E'+ m)] + i NNA % A2y [0y (B +m) § pl(E+m)] @
(B.16)

ioo ¢(1) olo o o o o - o o o o
25U (8 5U)(2) = (&% 5U)(l) (CR 5U)(2) i (8° 5U)(l) (Ch 5U)(2)

210 22

© o .
= NNA%A¢t[P"(E+m)+p (E'+m) NNAY%A¢[p"(E +m) +p (E'+m)]
© o . . . . a
i INN'AA (p~pY), + NN'A %A [(E' +m) (E+m) j ptp]+NNA%AL @ p +pph)

© o R . R R a
£ iNNAA (pApY), + NN'A %A [(E' +m)(E+m) jptp]+NNA%Ac@p+pp) 2
(B.17)



Apéndice C

Integrais

C.1 Quadridimensionais

Usando a parametrizagcdo de Feynman,
Z 1

1 1 .
5.5, 1@ s o oF (1)
€
1 Z1 Zy .
SR T s w TR TS ToN A
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nos denominadores das integrais

Z
t1lin) = d4Q £ n} o
XOGED = @y QK 2 QiK1
Z
= d4Q . Qi‘:]_ -
IS e Qi ki 7 QKD
Z
ey d4Q . anQO =12 " -
Xl = Gyt Qi k2P 2 QK2
Z
Ya(€;1;1) = ¢Q £ =5 2sz1 ) !
@) Qi ¢=27 1 (Q+G=2)7 {12 [QZ+2mViQj ¢2=4]
obtemos
Z 1
£ ﬁg g = i(2) d® =
Qi K=2)"j 1?2 (Q+K=2) j 1»? o (QR+2PtQi &
e
C nof 1 o
Qi ¢=2) i 2 (Q+¢=2)" i 12 [Q2+2mViQ j ¢2=4]
z, Z, .
= i@ 0d®(1i®) d (Q2+2P"¢Q j 8§2)°
onde

P=(lj2®)K=2;

2 £ 202 2 £ [ 2¢02 2
8=0+(1i®)» *jK=4=1j(1i® 1j» 21°jK=4;

(C.3)

(C.4)

(C.5)

(C.6)

(C.7)

(C.8)

(C.9)

PP=Qi® @i )mV j@i(Li®) Je=2=(Li® i )mV+[1i2®ij(Li®)Li )] ¢=2;

§7=[@+(1i®) | i[20+2(11®) i 1¢%=4=[1i (1i®) i ) illi2(Li®)(Li )]¢>=4:

Para resolver as integracdes do espaco de Minkowski, utilizamos as seguintes formulas de 't

Hooft e Veltman:
Z ., .
d?'Q 1 _iGgnr 1 jAGqY

@7 (Q2+2PtQ i 8" (W7 i(A) (PZ+EPAT

S are! Q CiGDA P iAGY)

@V (@+2PiQi 8 @I (A PI+EIAT

z

'Q Q: Qo _i(iDA PaPe i(A§Y) . g i(Ailil)”

(242 (Q2+2PtQ § 82~ (@42 i(A) (P2+8)AiL ! 2j(A) (P2+ 82)AILi!

(C.10)

(C.11)

: (C.12)
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A funcdo gama, para valores positivos de n, € dada por

imn+1)=nj(n)=n! (C.13)
e, para valores negativos, pela expansao
1/2 . . 3/4
" Gay" 1 "W 0 "
i(in+")= o ;+A(n+l)+§ ?+A(n+l)iA(n+1) +0O()+::: ; (C14)
onde
~ ~ 1 1
AQ)=j°=1j05772::: A(n+1):1+§+:::+ﬁi°; (C.15)
e
~ Y2 ~ Y2 1
A1) = %; An+1) = % iligi (C.16)

Quando as integrais tém dimensédo 4, ! é dado pelo limite I ¥ 2§ ", com™ ¥ 0e"™ > 0.
Neste limite, temos, por exemplo,

% i! P2i§2: (C.17)
% i’ cojln p2 §2¢ ; (C.18)
% i?! o iF’2+§2¢£cl i IniP2+§2¢u; (C.19)
% it % ‘24 52", jin'p2 e g2 (C.20)

onde

. - . . . . 1
=1="+AL);  a=1"+A@ =0+l o=1"+A@) = +l+s: (C21)

Para as integrais X, Xa, Xao € Ya, temos

£ i ¢
PI+§ = (1720)°K2=4+ 1i(1i0) 1i» 27K

o}

£ i 2%, 2
= 1j@Qi® 1j» j®1ijeK

C

£ i ¢o ®1 j ®)K?

= 1i@Qi®'1i»? 12 1;¢ (';) 4o
1i(Ti® 1j» 22

H K2 T
= @ j®212-2 1; , (C.22)

12_2 !
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que implica
L

. il
152 20 £ 2 2°
In P°+8 =1In®1Lij®1T- +In 1j ,

KZ

12_2

(C.23)

P2+82=Ff(1i®Li )mV+[1i20i(1i®) (i )¢=20°+[1i(1i® (1§ )]**
ili2Li®(Li )] ¢*=4
=@Li®*(Li ’mV2+1i®)Li )[1i2®i(1Li®) (Lj )mVie

+L1i20iLi®)Li e =4+1i(Li®)i )P ili2Qi®)1i )]e*=4
Ho LT
=i @i )M li,— +Li@i®)@i )N

a

©
+ [1iWili®Ai Nilli2@i®@i )] ¢*=4

=Li® @i YmM+L1ii®Qi )?ielid) ¢

i ¢
=ij®1ji®" '¢? j 1272 (C.24)
que implica
1 1 1
pe+g | 1L i® ¢2 1272 (€.25)
com as de..nicdes
1i(@1 '®)i1 i »2¢
2 1i i i
9110 (C.26)
e
oo Li®Pi )PM1)° i Li®)Li )+1, C.27)
®1li® ' '
Logo, pelas expressdes (C.10,C.11 e C.12), essas integrais sdo dadas por
i AT H K2 1.
X(K;1:») = + @y d® Y%y ilIn 1j 5 ; (C.28)
i z . 91 il
U B CR I i /) ) K2 T
X1(K,1'») =1 WT . d® 5 1/20 iln 1j 1 2 ; (C29)
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C Z, M T - |
1 _ 2 M o s
Xao(K:1:») = I KK e 1129 i 1 B
(4Y:)2 12 0 0 12_2
Z, 2 91 1 - 9 ﬂ,)
1o 1i@i20)° , K?2 K2
+ 2 4 d® 2 1 ) Yo i In 1j ) (C.30)
YA 1 YA 1 - - - - - - —
Ya(@:1:1) = 4@ d—(1|®)(1| )MVa+[1i20i (1i®) (i )]¢=2 2m
1 y Ty — 1 (41/4)2 0 0 ®_ ¢2i12'21
(C.31)
onde
. £ o} . £ a
%o = Co i In ®(1 j ®)12-2 e %y = ¢ jIn ®( j ®)12-2 : (C.32)
Usando a representacdo integral
M K2 11 Z, ~ ul 12_2.—2 11
as integrais podem ser reescritas como
i v4 1 H Z 1 1 Z 1 12_2-72 1l
X(K; 1, = +—- ® Yy i = _ 34
(K;1;») @2 d 0 1 ) d i ) d K2 122 X (C.34)
) z M z z — T
L KTt 1520 P D S
Xl(K,l,))) = i WT . d® 5 1/20 i . d = i . d m ; (C35)
o Z, M T zZ z T
Xoo(Kidin) = 4 1 Ko 40 71 20 R P il
ORI - (4%)2 12 0 2 0 1 o =1 0 K2 j 12-2=
glO Z 1 5 IJ' K2 T“J' z 1 1 z 1 _ 12_2:_2 TL
+2 0d®®(1i®)— li 5 %liod:iodm ; (C.36)
Z, Z, _ % . Y
i 1j® _1i 1j2® Ca 2m
Ya 1) = § —— ® —— e Vi —— — ] — ———:
@D =Gy ,“% ,° ™t Goain ' 7 e
(C.37)
Na penultima expressao, temos
H K2 T Mo gaz 2 T 2
il 12_2 K2 12-2= = 12_2 il K2 j 12-2="
1 12_2-—3 12_2-"2 1 1 i - 12_2-"2
= =+t K2 3 12-2= T s 12_2= = Zt—= K2 § 12-2= ° (C.38)
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As trés primeiras expressdes contém constantes in..nitas provenientes da regularizacdo di-

R R
11 — 1 — . P ~ .
0 id e 0 L d™. Essas divergéncias sdo removidas por

renormalizagéo. Essas constantes serdo negligenciadas porque tém alcance zero e sobrepde a outros

mensional no limite d ¥ 4 e das integrais

efeitos de curta distancia ndo considerados neste trabalho. Assim,

Z, Z,

12 _2:—2
i z 1 z 1 — 12 —2:_2 K1
N i Z ld YA 1d_ 12 _2-—2 ) » KiKo ) =2
Xlo(K, ,))) = 1 (41/4)2 . ® . m (1|2®) W 1 ®(1|®)(1| )2—_g10 X
(C.41)
. Z Z, _% - 7
i 1j® _1j 1j20® m
Ya = | = i ® — — 2mMVai+ ———— i 1 1 ——.
(@50 = 1@y , P ,° ™ Geaiy " e
(C.42)
C.2 Tridimensionais
A integracdo da parte angular da integral
Z .
d3¢ gi iCer
F(r) = (2%)3 ¢2 + »212 (C.43)
consiste em
Z 4 Z Z,
dae ¢2 +1 %
F A jicrcosy
(r) . @ eier d(cos ) . dAe
Z 4 2 Z 4
= de ¢ + d(COSU)ei iCrcosy
o (M2 a2z+»%12
Zl de ¢2 I"leii¢r ei¢r ﬂ
T, @W2ez+»222 Gicr'jicr
'Z+1 iicr Z+l iicr
i d¢ c¢e :ilg de¢ e (C.44)

r.1 (Q%)?c¢2+ »212 rdr ., (2%)?¢2+ »212’
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onde a mudanca de 0 para j 1 no limite inferior de integracdo provém do fato do integrando ser
simétrico pelatroca® ¥ j ¢. Aintegral de j 1 a + L resultante pode ser feita por residuos, pois
0 numerador é uma funcao analitica e 0 denominador tem um pdlo em cada hemisfério do plano
complexo, *“ ji» 1™ no plano inferior e “i» 1 no plano superior.

O residuo ¢é dado pelo primeiro termo da série de Laurent,

X
f(z) = an (z i 20)" (C.45)

n=ijm
onde zo € um polo de ordem m. Quando ha somente um pélo ou poélo simples, temos que m =1 e
a;1 passa a ser o primeiro termo da série,

X

fz2) = 0L ay+  an(zi ) (C.46)
L n=1
com
1 gmit o .
an = g (€1 20" T @, = (2§ 20Ty, (C.47)

No plano inferior, o polo é “ ji»1” e a integracdo € no sentido horario (j 2%i Res), logo a
aplicacao do teorema de residuo neste hemisferio fornece

Z ., Z .. _ |
lim f(¢)de + lim f(Le'Meie™rjLe"dy = F(z2)dz = j 2%iRes(pflo) :
L1 Lea

(C.48)

Como no plano inferior temos apenas um pélo (m = 1), entdo

) jizr > : eiizr > ei»lr
= a1 = 1 1 —_ - ey - .
ReS(l ' ) (Z+I» ) 22+»212 z=ji»t Zj i»t z=ji»t ! 2i»1 ' (049)

A segunda integral do lado esquerdo desaparece pelo lema de Jordan, logo

Ll giier 1.“ e>2r 1 yginar

Lll!ml o md(t = 1 2%l i e = g (C50)

ou seja,

1d Y%ei>™r 1
F(r) = j———— = —U(X)»); C.h1
O =ity w0 (5
onde
. i»X .

Ux;») = com X = 1r: (C.52)
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C.3 Unidimensionais

As integracdes em e " das fun¢des de Yukawa

- 8 Zl Zl_zl Zl ZHZeipxn ) (0}
. e (o] n >_ - O+ (o] - - .
Uz, (X) @y d® . d i d i d X 1§3°+3°1i®(1j0®)] (C.53)
e
Z Z Z Z
4 1 1 1 =1 1 ZUZ gi X
A — - o n s
U%,.(X) i3 @y d® i d . d . d"' =— ™
n B o
£ 01Li®Ii ). > +[1i®Li®)°(Li°)(LiMW ; (C.54)
onde
: 4 1
2= _¢ g = — C.55
> 1 (1 20)° ®(1j®) (C:55)
e
£ o L q
C A+ e+ @io? 1 1 ?
|J2 = £ (Li )>2ﬁ = "0( 1 o)’ = = =+ = (C.56)
102 1i®) 1i
podem ser obtidas analiticamente através da igualdade
YA 1
ikt — i(n + 1) .
dttheikt = e (C.57)

0

Essas fungdes de Yukawa podem ser reescritas como

3 lZl Z, 2, _2n o B
UL (x) = (41/4)4; i d® . de . d = 1§3°+3°[1j®(1i®)] F(x;®°;) (C.58)
e
Z Z Z Z %) .
4 1 1 1 1 _ 1 2p2 eipx 1 5
A — - o " os - 2 .
UZ.(X) .3(41/4)4 Od® 0d Od 0d = X ®(1li®) . I®(1i®)
" M 1 zﬂ,?/4
+[1i®1Li®)]°(1i°) Wi TR
Z Z Z
4 l 1 1 1 . 1 _>2n 5
= .5(41/4)4;0d®0d od:®(ll®)°ll
) H 1 21-[,?/4
+[1i®1Li®)]°(1§°) dij — + 2 f(x;®;°;7); (C.59)

[EEN
-
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onde
d2 YA 1 UZ
d2 = v e f(x;®;°:7) = i d" - eiHx (C.60)
Realizando a mudanca de variavel
i=bry D R =(b+y? D> =ty Do 1A (€61
(b+y)2 dy  (b+y)’ '
com
s s
o+(1 i o) 2 1 2
b = gy = _ = = + = C.62
= @i ) 1i° ° (©2)
podemos usar a equacdo (C.57) na integral em " para obter
Zy 2 Za
FO®°:7) = dy i2b (b+2y) piDXgiyX — 9gibx dy (b+Y) ei yX
(b+y)° b 0
(b +y)?
x D) iR gibx
2eibX %+% = 2(1+bx) (C.63)
e, consequentemente,
2 - i 202, a3t et
dif(X;®;°; ) = 2 6+ 6bx + 3b°x° + b°x 7' (C.64)
Entéo,
b 16 1 Z 1 Z 1 n 5 (@)
Us,(X) = @ X . d® . d® 1§3°+3°“[1i®(1§®)] (1ixdy)F(x;®;°) (C.65)
e
UL (x = § L 121d®z 1d°21d_’—21/2®(1'®)°ub2' L ﬂ'l
3% 3(41/4)4)(0 0 0 B ' I1i° !
i ¢O- | bx =
+[1i®1Li®)]°(Li°) diib? (1+bX)
z z z Ya - V1 1.
8 1 171 T2 e .1 1 eibx
—.§(41/4)4;0d®0d Od: ®(Lij®)° b j 1i°+®(1i®)° 1+ bx)
: ¢ei bx%
+ [1i®1i®)]°1Li°) 6+6bx+2b°x> ~
Z, 72, % . L qa
8 1 171 ! 1 1 >
— e ® o - o 242 - W3A3 - 2 -
3(41/4)4)(5 Od Od ®(1i®) XdX|XdX| 1i°+®(1i®)° X“(1 § xdy)

. ¢O
+[1i®Li®)]°(1i°) 6 6xd+2Pd  F(x0;°);

(C.66)
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onde
M 1 il Z 2
= i — e f(x;®°) = d z=eibx: (C.67)
1i 0
Seguindo o mesmo procedimento aplicado na resolugéo da integral em ", a mudanca de
variavel
1 1 y w — 1
h=a+z ) ——+—= - =(a+z) ) = . S
1| ®(1|®) ®(1i®)o (a+z)2il?-o
1
d i2@+
D) —= iz@r?) = (C.68)
©1Li®)° @+’ i
1
com
s s
1§j°+°®1 § ®) 1 1
a="b-; = = + ; C.69
' *(Li*)@(li0) 1i° °®(1i0) (¢.69)
implica em
Yo - LYy
Z ®1i® ° (a+2)°j
. . 0 0 i2(a+Z) ( ' ) (a Z) llio 1aX A1 2ZX
f(x;®;°) = dz . 5 el d%el
1 ) 1 ®(i®)
OQLi®° @+2) i
1
‘2 i), i@ e &
=2°el @ dz (a+z)ei?* = 2°¢idX + = 2°(1+ C.70
el ®x e (a+z)e e x v 1+ax)—5 (C.70)
e
i ¢eiax
Xy F(X;®;°) = j 2° 2+ 2ax + a’x? &
i ¢ giax
x?d2 F(x; ®; °) = 2° 6+ 6ax + 3a°x* + a>x° 7
i ¢ eiax
X33 F(x;®; °) = j 2° 24 + 24ax + 12a®x? + 4a®x® + a’x? 7 (C.71)
Com isso,
32 1 z 1 YA 1 n Oi ¢
UL (x) = d° °§3°2+3°3[1j®(1§®)] 3+3ax+a’x? ei?dX (C.72)

@4 x5 o
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Z, Z, n

£
1 1 d® d° ®(1j®)°? 30+30ax+15a°x>+5a°x3 +atx*

A
U3y,(X) 3 (@7 < , .

i ¢o i ¢O
i a?x2'3+3ax+a2x2 +[1j®(Lj®)]°2(Li °)' 30+30ax+12a2x2+2a3x3 eiax

1611leln o

= iz ayx 0 ®(1i®) °*+[1i®(1i®)]°*(Li°)

. ¢ )
£ '30+30ax+12a2x2+2a3x°% ei 2

2 1 1% “1on Oj ¢
3 @ d® d° °?j[1i®1i®)]°° 15+15ax+6a’x*+a’x’ ef?*:
4 0 0

(C.73)

As regides de médio e longo alcance correspondem, respectivamente, a 140 < x < 280
e X > 280 MeV fm. Nessas regides, todo intervalo de integracdo € fortemente dominado pela
exponencial. Em ® = 1=2 e © = 2=3, a funcdo a assume o valor minimo a = 3, que corresponde
a exponencial maxima ei %, Distanciando-se deste ponto, a exponencial cai rapidamente a zero,
pois a tende a in..nito nos limites das integrais, como é mostrado nas ..guras (C.1) e (C.2). Por
iss0, é razoavel a aproximacao dos integrandos através da expansdo das demais fungdes em torno
de ® =1=2 e ° = 2=3.

Figura C.1: Funcéo a, equacdo (C.69),com0<®<lel<°<l1.
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Figura C.2: Fungdo ei@* com x =21=~Cc (~c=197:33 MeV fm), 0<®<lel<° <1
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