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Resumo

Utilizando a simetria quiral, calculamos a contribuição dominante ao potencial nucleon-

nucleon (NN) devido à troca de três píons não correlacionados. Esta contribuição é

isovetorial com as componentes pseudoescalar e axial. A pseudoescalar é dominante,

tem um alcance de 1.0 fm e contribui no canal do píon.

No mesmo contexto, estudamos a produção de um píon na interação nucleon-nucleon

devida à troca de dois píons. O termo dominante do kernel da produção é construído a

partir da mesma interação básica usada no potencial NN devido à troca de três píons.

Relacionamos este termo à componente central do potencial NN devido à troca de dois

píons e mostramos que esta, por sua vez, é dominada pelo fator de forma escalar píon-

nucleon. O kernel obtido foi aplicado para o limiar da produção e na construção de um

potencial de três nucleons. Os resultados foram generalizados para um potencial NN

central qualquer e comparados ao potencial de Argonne e àquele devido à troca de um

méson escalar …ctício.

Palavras Chave: interação nucleon-nucleon; produção de píon; simetria quiral.

Números PACS: 13.75.Cs; 13.60.Le; 13.75.Gx; 12.39.Fe; 11.30.Rd.
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Abstract

Using the chiral symmetry, we calculated the dominant contribution to the nucleon-

nucleon (NN) potential due to the exchange of three non-correlated pions (3¼). This

contribution is isovetor with pseudoscalar and axial components. The pseudoscalar

component is dominant, it has a range of 1.0 fm and it contributes in the pion channel.

In the same context, we studied the pion production in the nucleon-nucleon inter-

action due to the exchange of two pions (2¼). The dominant term of the production

kernel is built from the same basic interaction used in the 3¼-exchange NN potential.

We related this term to the central component of the 2¼-exchange NN potential and

we showed that the latter, on its turn, is dominated by the pion-nucleon scalar form

factor. The obtained kernel was applied at the threshold and in the construction of a

three-nucleon potential. The results were generalized for a central NN potential of any

kind and compared to the potentials of Argonne and to that due to the exchange of one

…ctitious scalar meson.

Key words: nucleon-nucleon interaction; pion production; chiral symmetry.
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Capítulo 1

Introdução

A cromodinâmica quântica (QCD) é a teoria fundamental das interações fortes. A liberdade

assintótica dos quarks, proveniente do caráter não abeliano da QCD, restringe o uso da teoria de

perturbação a energias altas. Em energias baixas, métodos não perturbativos, tais como cálculos na

rede e regras de soma, podem ser empregados em casos como espectroscopia hadrônica e larguras

de decaimento. Uma outra forma de contornar esta di…culdade é usar teorias de campos efetivas,

em que os estados ligados de quarks são tratados como hádrons, bárions ou mésons.

Atualmente são conhecidos seis quarks, mas nas interações hadrônicas a baixas energias e,

em particular, nas forças nucleares os quarks mais leves dominam. Estes quarks leves, o u (up) e o

d (down), têm massas da ordem de 10 MeV, muito menores que a escala da QCD, ¤QCD = 1 GeV.
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2 1 Introdução

Interações de férmions sem massa foram inicialmente estudadas no contexto das interações

fracas, no qual se percebeu que as lagrangianas apropriadas são invariantes pelo grupo de trans-

formações quirais. Por isso, é natural pensar que o setor da QCD envolvendo os quarks leves u

e d seja aproximadamente invariante por transformações quirais SU(2) ­ SU(2). Este fato é da

maior relevância para a construção de uma teoria de campos efetiva (EFT). O propósito de uma

teoria efetiva da QCD é substituir os detalhes microscópicos das interações de quarks e glúons por

processos macroscópicos mais simples. Logo, para que a teoria efetiva seja aceitável, é preciso que

ela partilhe as simetrias da teoria fundamental. Isso deve acontecer tanto com as simetrias de

Poincaré, associadas às propriedades do espaço-tempo, quanto para as simetrias dinâmicas, como

isospin e simetria quiral. No caso de sistemas de nucleons e píons, portanto, é muito importante

descrever a dinâmica por meio de lagrangianas efetivas aproximadamente invariantes pelo grupo

quiral SU(2)­ SU(2).

A simetria quiral é realizada no modo de Nambu-Goldstone e o vácuo, prenchido com um

condensado, permite excitações de estados coletivos sem massa, identi…cados com os píons. A quebra

da simetria, devida às massas dos quarks no nível fundamental, é associada às massas pequenas dos

píons nas teorias efetivas. Por isso, o cálculo de amplitudes em energias baixas requer o emprego

de uma teoria que trate as interações hadrônicas como sendo aproximadamente invariantes por

transformações quirais. Existem várias maneiras de construir lagrangianas com simetria quiral,

mas duas delas são especialmente importantes, porque re‡etem pontos de vista diferentes para o

signi…cado da simetria. Uma delas é a realização linear do modelo sigma e a outra é a realização

não-linear, com o acoplamento píon-nucleon derivativo.

A formulação sistemática de uma teoria de campos efetiva para as interações fortes, que

incorpore a simetria quiral, depende da expansão da lagrangiana em relação ao campo do píon.

No caso das interações píon-nucleon, esta expansão produz uma amplitude na forma de uma série

convergente em potências dos trimomentos externos e da massa do píon [ Wei 79]. A simetria quiral

faz com que, em energias baixas, o termo dominante desta série seja determinado por f¼ , a constante

de decaimento do píon, e por gA , o elemento de matriz nucleônico da carga axial. A formulação

sistemática da EFT é conhecida como teoria da perturbação quiral (ChPT) [ GL 84] [ GL 85].

Em processos envolvendo somente mésons, o tratamento relativístico fornece um procedimento de

contagem de potências bem de…nido. Quando bárions também estão presentes, a contagem quiral de

potências torna-se problemática [ GSS 88]. Um modo de superar esta di…culdade consiste em supor

que os nucleons são muito pesados em comparação aos momentos envolvidos e efetuar a aproximação
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não-relativística do setor bariônico das lagrangianas [ Wei 90] [ Wei 91] [ JM 91]. Neste caso, a

expansão da lagrangiana quiral é feita, também, em potências do inverso da massa do bárion. Esta

abordagem, conhecida como teoria de perturbação quiral para bárions pesados (HBChPT), produz

bons resultados para muitos processos, embora a convergência da série que representa a amplitude

não seja assegurada. Recentemente, foi proposta uma abordagem alternativa para o problema,

totalmente relativística, que assegura a contagem quiral de potências para processos que envolvem

bárions [ BL 99].

Para sistemas contendo apenas um nucleon, as duas abordagens são consistentes somente se

a escala da regularização dimensional for …xada igual à massa do nucleon [ BKKM 92]. Já com dois

nucleons, os dois procedimentos parecem não ser consistentes. No espalhamento nucleon-nucleon

devido à troca de dois píons, as predições dos cálculos relativísticos para a contribuição dominante

diferem de 25% dos baseados no HBChPT em primeira ordem. A introdução de correções de ordem

superior diminui esta diferença, mas não consegue eliminá-la totalmente [ Rob 01].

A importância da simetria quiral depende fortemente do processo considerado. Nos proces-

sos puramente mesônicos, como o espalhamento píon-píon (¼¼) [ GL 84] [ BCEGS 97], os termos

dominantes da amplitude são determinadas pela simetria quiral. Nos processos méson-nucleon, a

ação da simetria parece depender do número de píons envolvidos. No espalhamento píon-nucleon

(¼N) [ OO 75] [ GSS 88] [ Pup 95] [ FMS 98], ela dá origem a cancelamentos entre os diagramas, de

modo que a amplitude ¼N se anula no limite quiral, quando a massa do píon tende a zero. Já para

a produção de um píon no espalhamento ¼N [ OT 68] [ Ber 92] [ BKM 94], a simetria quiral não

contribui para o termo dominante da amplitude. Na fotoprodução de píons [ NL 90] [ BKLM 94]

[ Pup 94], ela é dominante apenas para a produção de dois píons. No caso de processos envolvendo

dois nucleons, tais como o espalhamento nucleon-nucleon elástico ou a produção de píons, a avali-

ação da importância da simetria se torna mais complicada, pois as interações envolvem estados

intermediários com diferentes números de píons, em que a simetria quiral pode ou não ser relevante.

Como esses estados intermediários geralmente estão associados à distância entre os nucleons, o papel

da simetria pode, também, ser relacionado com esta distância.

No espalhamento NN , a atuação da simetria quiral é bem entendida apenas nas trocas

de um e dois píons. A troca de um píon, responsável pela parte de longo alcance da interação,

independe da simetria quiral, pois todas as lagrangianas, simétricas ou não, produzem o mesmo

vértice básico ¼N . Isso mostra que a simetria quiral é compatível e, ao mesmo tempo, irrelevante

para esse processo. Na troca de dois píons, por outro lado, a simetria é crucial, pois o potencial NN
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desaparece no limite quiral. Essa importância decorre de ela gerar cancelamentos nas amplitudes

¼N intermediárias, que descrevem os acoplamentos entre o sistema de dois píons e um nucleon.

O próximo passo para o entendimento da interação NN a menores distâncias, seria determinar

a intensidade da troca de três píons e a relevância da simetria quiral neste processo. Apesar

desse passo ser, em princípio, “natural”, ele somente foi dado em 1999, quando da publicação de

um trabalho de nossa autoria [ PR 99]. A troca de três píons relativística é descrita no capítulo

4, para uma classe de diagramas baseados nos resultados de Olsson e Turner para o processo

¼N ! ¼¼N [ OT 68] [ OT 69] [ OT 77]. Atualmente, extensões deste cálculo estão sendo realizados

em HBChPT [ Kai 01].

No caso da produção de um píon no espalhamento NN , a importância da simetria quiral

ainda não está bem estabelecida. Espera-se que a contribuição de longo alcance seja descrita pela

simples emissão de um píon, conhecida como aproximação de impulso, e pelo reespalhamento do

píon trocado entre os nucleons. A simetria quiral é relevante apenas no segundo caso, pois o reespal-

hamento envolve a amplitude ¼N elástica. Entretanto, cálculos efetuados apenas com os termos

de impulso e de reespalhamento subestimam os dados experimentais [ CFMK 96] [ KMR 96]. A

inclusão dos deltas no termo de reespalhamento também produz contribuições pequenas [ RMK 99]

[ PRS 99]. A explicação dos resultados experimentais deve estar associada à troca de mais píons.

Esta idéia foi confirmada com o estudo da contribuição de um méson escalar quiral …ctício [ CPR 95]

[ MR 99], que simula a componente escalar-isoescalar da troca de dois píons. Contudo, cálculos real-

izados com HBChPT [ DKMS 99] e ChPT [ BKM 99] mostraram que cancelamentos também estão

presentes na troca de dois píons. Para tentar compreender este problema, estudamos, no capítulo 5,

a produção devida à troca de dois píons não correlacionados. Inicialmente, consideramos apenas a

componente dominante do potencial NN , em seguida, estabelecemos a relação desta interação com

o processo de produção. Deste modo, identi…camos com mais transparência a dinâmica quiral da

contribuição dominante da produção devido à troca de dois píons. Essa relação, apresentada num

trabalho de nossa autoria [ MPR 00], é nova e não trivial uma vez que a dinâmica da produção é

mais complexa, envolve mais cancelamentos e não pode ser reduzida à dinâmica do espalhamento

NN .

No capítulo 5, também demos atenção ao potencial de três nucleons devido à troca de três

píons, que envolve a amplitude de produção como um processo intermediário do espalhamento de

três nucleons. A realização desta contribuição através da dinâmica quiral é uma novidade entre os

potenciais existentes. Este resultado permite, também, compreender a diferença entre os poten-
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ciais de Tucson-Melbourne [ CSB 75] [ CSMBBM 79] [ CG 81] e do Brasil [ CDR 83] [ RICD 85]

[ RC 86].

Este trabalho consiste de seis capítulos e três apêndices. No capítulo 2, introduzimos alguns

conceitos do formalismo lagrangiano e das simetrias unitárias. Mostramos a relação entre estas

simetrias e leis de conservação neste formalismo. Apresentamos a simetria quiral e suas realizações

linear e não-linear. Mostramos as regras de Feynman, decorrentes de tais realizações, necessárias

para o cálculo das amplitudes dos processos estudados neste trabalho. No capítulo 3, estudamos três

processos intermediários do espalhamento nucleon-nucleon, ¼¼ ! ¼¼, ¼N ! ¼N e ¼N ! ¼¼N .

No capítulo 4, calculamos o potencial NN devido à troca de três píons não correlacionados. No

capítulo 5, obtemos o kernel da produção de um píon no espalhamento NN devido à troca de dois

píons não correlacionados. Finalmente, no capítulo 6, apresentamos nossas conclusões e possíveis

extensões deste trabalho. Os apêndices são dedicados à notação, cálculos de sanduíches spinoriais

e de integrais.



Capítulo 2

Simetrias e Lagrangianas

A teoria de campos quânticos costuma ser escrita no formalismo lagrangiano. Uma das

grandes vantagens desse formalismo é a existência de quantidades conservadas devido às simetrias

da lagrangiana. Nesse formalismo, por exemplo, as conservações total da corrente vetorial e parcial

da corrente axial nas interações fortes decorre de uma simetria aproximada da QCD, a simetria

quiral. Embora esta simetria seja exata apenas no limite em que as massas dos quarks desaparecem,

ela pode ser considerada aproximada nas interações fortes envolvendo os quarks leves up e down,

pois suas massas de 2 a 15 MeV são consideravelmente menores que a escala de energia hadrônica

de 200 MeV. Outra grande vantagem deste formalismo é a construção de amplitudes de uma forma

muito mais simples e intuitiva, através das regras de Feynman derivadas da lagrangiana.

7



8 2 Simetrias e Lagrangianas

2.1 Formalismo Lagrangiano

A formulação lagrangiana fornece um procedimento conveniente e sistemático para a obtenção

de equações de movimento.

Na mecânica clássica, a lagrangiana L de um sistema, em coordenadas generalizadas qi(t), é

dada pela diferença entre as energias cinética T e potencial V ,

L(qi; _qi) = T ¡ V ; (2.1)

onde _qi denota a derivada temporal de qi.1

O comportamento do sistema é dado pelas equações de movimento de Euler-Lagrange

d

dt

µ
@L

@ _qi

¶
¡ @L

@qi
= 0 ; (2.2)

obtidas através do princípio variacional de Hamilton, que consiste na variação da ação

A =

Z t2

t1

dt L(qi; _qi) ; (2.3)

de modo que esta tenha um valor estacionário sobre um caminho arbitrário qi(t) com ±qi ! 0 em

t1 e t2 [ Gol 80]. A hamiltoniana H do sistema é introduzida pela transformada de Legendre de

L(qi; _qi),

H(qi; _qi) =
nX

i

pi _qi ¡ L(qi; _qi) ; (2.4)

onde pi é o momento generalizado conjugado a qi,

pi =
@L

@ _qi
: (2.5)

Na mecânica quântica, cada observável físico torna-se um operador hermitiano no espaço de

Hilbert. A quantização do sistema é obtida fazendo com que os operadores qi(t) e pi(t) obedeçam

as relações canônicas de comutação,

[qi(t); pj(t
0)]t0=t = i ±i j e [qi(t); qj(t

0)]t0=t = [pi(t); pj(t
0)]t0=t = 0 : (2.6)

Na teoria de campos clássicos, a lagrangiana é de…nida como uma extensão da expressão

(2.1), no limite em que o número de graus de liberdade torna-se in…nito e contínuo [ Sak 67]. A

1L é um escalar de Lorentz.
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lagrangiana é dada pela integral de uma função L, a densidade de lagrangiana, que depende dos

campos Ái(x; t) e das suas derivadas @¹Ái, isto é,

L =

Z
d3xL(Ái; @¹Ái) ; (2.7)

onde

L = T ¡ V : (2.8)

O princípio variacional torna-se

±A = 0 )
Z
d4x

·
@L
@Ái

±Ái +
@L

@(@¹Ái)
±(@¹Ái)

¸
= 0 )

Z
d4x

½
@L
@Ái

±Ái ¡ @¹
·

@L
@(@¹Ái)

¸
±Ái

¾
= 0 ;

(2.9)

onde a integração por partes no último termo é possível desde que ±Ái ! 0 em x¹1 e x¹2 . Com isso,

as equações de movimento tomam a forma

@¹

·
@L

@(@¹Ái)

¸
¡ @L
@Ái

= 0 : (2.10)

A hamitoniana também passa a ser a integral de uma densidade de hamiltoniana, de…nida

por

H(Ái; ¼i) = ¼i(x; t) _Ái(x; t) ¡ L(Ái; @¹Ái) ; (2.11)

onde ¼i(x; t) são os momentos conjugados a Ái(x; t),

¼i =
@L
@ _Ái

: (2.12)

Em teoria de campos sempre trabalhamos com densidades de lagrangiana ou hamiltoniana

e, daqui em diante, vamos omitir a palavra densidade, deixando-a implícita nestas expressões.

2.2 Simetria Unitária e Lei de Conservação

Na física, e especialmente na física de partículas, as simetrias têm papel muito importante.

Em muitos casos, existem leis de conservação que podem ser atribuídas aos princípios de simetria.
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Segundo Lee [ Lee 81], as simetrias de maior importância na física podem ser agrupadas

em quatro tipos: permutação, discretas, contínuas externas e contínuas internas. As simetrias de

permutação são baseadas nas estatísticas de Bose-Einstein e de Fermi-Dirac, as discretas, nas invar-

iâncias por conjugação de carga, re‡exão espacial (ou operação de paridade) e reversão temporal, as

contínuas externas, nas invariâncias por transformações de translação, de rotação, de Lorentz e de

Poincaré (translação, rotação e mudanças de referencial) e as contínuas internas, nas invariâncias

por transformações de fase, de isospin, quiral, de sabor, de cor.

As simetrias de permutação, as contínuas externas e algumas das contínuas internas, como

a de fase e, talvez, a de cor, parecem ser exatas, enquanto que as demais parecem ser quebradas.

As simetrias contínuas estão associadas às invariâncias de um sistema sob transformações

contínuas que preservam a norma dos vetores de estado. As matrizes com parâmetros reais e

contínuos que realizam estas transformações ou são ortogonais (~A = A¡1), quando os vetores são

reais, ou unitárias (Ay = A¡1), quando os vetores são complexos. O determinante dessas matrizes

tem uma fase arbitrária, detA = ei µ, que pode ser …xada impondo-se µ = 0. Neste caso, as

matrizes são ditas unimodulares ou especiais. As matrizes n£n unimodulares ortogonal e unitária

formam, respectivamente, os grupos de Lie SO(n) e SU(n). Estes grupos são compactos, pois seus

parâmetros variam em intervalos fechados, [0; ¼] para O(n) e [0; 2¼] para SU(n). Um grupo de Lie

compacto pode ser representado por operadores unitários na forma exponencial complexa

U(¸) = e¡ i ¸aFa ; (2.13)

onde ¸a são os parâmetros reais e contínuos das transformações e Fa são operadores que geram

o grupo matemático, pois de…nem a álgebra do grupo [ Arf 85]. A relação dos parâmetros das

transformações com o espaço-tempo divide as simetrias contínuas internas em dois níveis: global

e local. Quando ¸a não depende de x, temos uma simetria global, pois estamos supondo que o

sistema é transformado pela mesma quantidade em diferentes pontos do espaço-tempo. Para uma

escolha mais geral, ¸a = ¸a(x), o sistema só é transformado pela mesma quantidade num mesmo

ponto do espaço-tempo, ou seja, a simetria é local.

A álgebra de um grupo de Lie compacto consiste nas relações de comutação de seus geradores,

sendo representada genericamente por

[Fa; Fb] = i cabc Fc ; (2.14)

cujas constantes de estrutura cabc são coe…cientes reais totalmente antissimétricos. A condição

de unitariedade da transformação faz com que esses geradores sejam hermitianos (Fy = F) e a
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imposição detA = 1 faz com que tenham traço nulo (trF = 0). O número de geradores é igual ao

número de parâmetros independentes no grupo, assim, temos n (n¡ 1) =2 geradores para SO(n) e

n2 ¡ 1 para SU(n).

No formalismo lagrangiano da teoria de campo, as simetrias de um sistema são relacionadas

às leis de conservação pelo teorema de Noether. Neste teorema, a invariância da lagrangiana sob um

grupo de transformações contínuas corresponde a uma quantidade conservada [ Sak 64]. No caso

de uma simetria contínua interna, a quantidade conservada é, como veremos a seguir, a densidade

de corrente.

A ação de um grupo de transformações in…nitesimais (¸ ! ±¸) sobre os campos, sem

translação e rotação (±x¹ = 0), é dada por

Á0i(x) = U y Ái(x)U »= (1 + i ±¸aFa) Ái(x) (1¡ i ±¸aFa) = Ái(x) + ±Ái(x) ; (2.15)

onde

±Ái = i ±¸a [Fa; Ái] + O(±¸2a) : (2.16)

Estas modi…cações nos campos geram a seguinte variação in…nitesimal da lagrangiana:

L(Á0i; @¹Á0i) »= L(Ái; @¹Ái) + ±L ; (2.17)

onde

±L =
@L
@Ái

±Ái +
@L

@(@¹Ái)
@¹(±Ái) : (2.18)

Usando a equação de movimento (2.10), podemos reescrever esta expressão como

±L = @¹

·
@L

@(@¹Ái)

¸
±Ái +

@L
@(@¹Ái)

@¹(±Ái) = @¹

·
@L

@(@¹Ái)
±Ái

¸
: (2.19)

Explicitando as variações dos campos, temos que

±L = @¹

·
@L

@(@¹Ái)
i [Fa; Ái] ±¸a

¸
= @¹

·
i

@L
@(@¹Ái)

[Fa; Ái]

¸
±¸a + i

@L
@(@¹Ái)

[Fa; Ái] @¹ (±¸a) : (2.20)

De…nindo as densidades de corrente do sistema pelos quadrivetores

j¹a (x)
:
= i

@L
@(@¹Ái)

[Fa; Ái] ; (2.21)

podemos reescrever essa variação in…nitesimal como

±L = @¹j
¹
a ±¸a + j¹a @¹ (±¸a) : (2.22)
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Comparando-a com a variação in…nitesimal geral

±L =
@L(Á0i; @¹Á0i)

@¸a
±¸a +

@L(Á0i; @¹Á0i)
@ (@¹¸a)

± (@¹¸a) (2.23)

e usando o fato de a variação in…nitesimal comutar com a quadridivergência, podemos expressar

tanto as densidades de corrente do sistema como as suas quadridivergências através das derivadas

parciais

j¹a =
@L(Á0i; @¹Á0i)
@ (@¹¸a)

e @¹ j
¹
a =

@L(Á0i; @¹Á0i)
@¸a

; (2.24)

conhecidas como equações de Gell-Mann e Lévy [ GL 60].

Se a variação in…nitesimal da lagrangiana for nula (±L = 0) e as transformações forem globais

(¸ = cte), a equação (2.22) se reduz às equações de conservação das densidades de corrente,

@¹ j
¹
a = 0 : (2.25)

Integrando essas equações sobre todo o espaço e usando o Teorema de Gauss, temos
Z

V

d3x @¹ j
¹
a = 0 )

Z

V

d3x (@t½a +r ¢ ja) = 0 ) @t

Z

V

d3x ½a +

Z

S

dsn ¢ ja = 0 ; (2.26)

onde ½a são as densidades de carga e ja as densidades de corrente-vetor. A integral de superfície

corresponde a um ‡uxo através da fronteira de todo o espaço. Logo, esta integral pode ser desprezada

para correntes vetoriais que caiam su…cientemente rápidas no in…nito, isto é,

lim
S!1

Z

S

ds n ¢ ja = 0 : (2.27)

Assim, a expressão (2.26) restringe-se às conservações das cargas

@tQa = 0 ) Qa = cte ; (2.28)

onde as cargas

Qa
:
=

Z

V

d3x ½a(x) = i

Z

V

d3x
@L

@(@tÁi)
[Fa; Ái(x)] = i

Z

V

d3x ¼i(x) [Fa; Ái(x)] (2.29)

correspondem aos geradores do grupo (Qa ´ Fa), pois

[Qa; Ái(x)] = i

Z

V

d3x0[¼j(x
0)[Fa; Áj(x

0)]; Ák(x)]

= i

Z

V

d3x0 (¡ i) ±ij ±3(x0 ¡ x) [Fa; Áj(x0)] = [Fa; Ái(x)] : (2.30)
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As simetrias contínuas internas globais manifestam-se de dois modos diferentes na natureza:

Wigner-Weyl e Nambu-Goldstone.

No modo de Wigner-Weyl, as partículas formam multipletos que correspondem às represen-

tações do grupo de simetria da lagrangiana. Em particular, o auto-estado mais baixo da hamiltoni-

ana, o vácuo, é invariante sob o grupo de simetria. Um exemplo típico deste modo é a simetria de

isospin SU(2). No limite em que essa simetria é exata, a comutação da hamiltoniana com as cargas

de isospin - geradores do grupo SU(2) - permite a classi…cação do espectro dos estados em multi-

pletos de mesma massa, que correspondem às representações desse grupo. Assim, na simetria de

isospin, o próton e o nêutron com aproximadamente a mesma massa formam um dupleto de isospin,

a representação fundamental do grupo SU(2), e os píons um tripleto de isospin, a representação

adjunta do grupo SU(2).

No modo de Nambu-Goldstone, as partículas formam multipletos que correspondem às rep-

resentações de um único subgrupo do grupo de simetria da lagrangiana. Neste caso, o vácuo é

invariante sob o subgrupo, mas não sob o grupo todo. Sob as transformações de simetria restantes,

que não formam subgrupo, o vácuo associa-se aos bósons sem massa e com spin zero, conhecidos

como bósons de Goldstone [ Gol 61]. Este modo é referido algumas vezes como quebra espontânea

da simetria ou simetria escondida. Um exemplo importante deste modo é a simetria quiral associ-

ada ao grupo SU(2)L ­ SU(2)R, que se manifesta na natureza somente através de multipletos de

isospin, uma vez que multipletos de paridade não são encontrados. No limite em que a simetria

quiral SU(2)L ­ SU(2)R é exata, os píons são os bósons de Goldstone.

2.3 Simetria Quiral

Apesar da simetria quiral, nos dias de hoje, desempenhar um papel fundamental no entendi-

mento das interações hadrônicas, sua idéia surgiu nos anos 50 no contexto das interações fracas.

No começo dos anos 30, a interação fraca restringia-se ao decaimento-¯, descrito pelo processo

n ! p + e¡ + ¹º : (2.31)

O primeiro passo para a formulação de uma teoria para o decaimento-¯ foi dado por Fermi em

1934. Baseando-se na existência do neutrino, postulada por Pauli em 1931, Fermi propôs que o

decaimento-¯ seria uma interação puntiforme de quatro férmions similar à interação eletromagnética
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sem mediação de fótons. A lagrangiana de interação para o decaimento-¯ seria, então, o acoplamento

vetorial de duas correntes uma associada à transição do nêutron em próton e outra associada à

criação do elétron e do antineutrino, isto é,

Lint = CV J
¹
hadrônica J

leptônica
¹ ; (2.32)

onde o coe…ciente CV de dimensão [M ]¡2 é a medida da intensidade do acoplamento entre as

correntes fracas

J¹hadrônica =
¹Ãp °

¹ Ãn e J leptônica¹ = ¹Ãe °¹ Ãº : (2.33)

Em seguida, essa lagrangiana foi generalizada para todos os acoplamentos invariantes de

Lorentz, por reversão temporal, conjugação de carga e re‡exão espacial (paridade). Assim,

Lint =
5X

k=1

Ck
¡
¹Ãp ¡

k Ãn
¢ ¡
¹Ãe ¡k Ãº

¢
; (2.34)

onde Ck são as constantes de acoplamento de cada invariante de Lorentz e ¡k representa as possíveis

interações da tabela (2.1).

Tabela 2.1: Estruturas de Lorentz de uma interação.
Invariantes de Lorentz k ¡
escalar S 1
pseudoescalar PS °5
vetorial V °¹

pseudovetorial (axial) PV (A) °¹ °5
tensorial T ¾¹º

No decaimento-¯ de um núcleo, a aproximação não relativística é razoável, porque os mo-

mentos dos nucleons são normalmente muito pequenos. Nesta aproximação, restam apenas duas

transições permitidas [ Gas 66]: a de Fermi, associada a CS e CV , e a de Gamow-Teller, associada

a CA e CT . O termo proporcional a CP desaparece e os termos cruzados em cada uma dessas tran-

sições são praticamente nulos (CSCV »= 0 e CACT »= 0), pois possuem uma forte dependência com a

energia, que não é observada experimentalmente. Os primeiros resultados experimentais revelaram
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que os acoplamentos da transição de Fermi, denotados genericamente por GF eram próximos aos

da transição de Gamow-Teller, denotados genericamente por GGT ,

jGGT j = (1:2§ 0:5) jGF j : (2.35)

Esta proximidade levou à idéia da universalidade das interações fracas, ou seja, de que a forma e as

constantes de acoplamento da lagrangiana (2.34) seriam as mesmas para os diversos decaimentos.

As descobertas do múon em 1936 e do píon em 1947 reforçaram esta idéia. Tanto o decai-

mento do múon

¹¡ ! e¡ + ¹ºe + º¹ (2.36)

e sua captura nuclear

¹¡ + (Z;A) ! (Z ¡ 1; A) + º¹ ; (2.37)

como os decaimentos do píon

¼¡ ! e¡ + ¹ºe e ¼¡ ! ¹¡ + ¹º¹ ; (2.38)

podiam ser descritos por uma interação similar e com aproximadamente a mesma intensidade a do

decaimento-¯, isto é, por uma lagrangiana de interação universal

Lint = G
5X

k=1

¡
¹Ã ¡k Ã

¢(1) ¡
¹Ã ¡k Ã

¢(2)
; (2.39)

onde os índices 1 e 2 distinguem os pares fermionicos.

Embora houvesse boas evidências da conservação da paridade nas interações fortes e eletro-

magnéticas, nenhum experimento tinha sido realizado, até então, para testar esta conservação nas

interações fracas. Em 1956, Lee e Yang [ LY 56] propuseram a não conservação da paridade nas

interações fracas, para resolver o paradoxo µ-¿ , onde µ e ¿ seriam partículas com os mesmos números

quânticos, mas que decaiam nos diferentes processos

µ§ ! ¼§ + ¼0 e ¿§ ! ¼§ + ¼+ + ¼0 : (2.40)

Através do estudo do decaimento do píon seguido do decaimento do múon em cadeia

¼¡ ! ¹¡ + ¹º¹ (2.41)

j! e¡ + ¹ºe + º¹
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sugeriram que a não conservação da paridade poderia ser veri…cada correlacionando-se a helicidade

do múon, medida no decaimento do píon, com a helicidade do elétron, medida no decaimento

do múon. Se houvesse conservação da paridade, existiriam dois esquemas para estes decaimentos

compatíveis com as conservações da carga elétrica, do momento angular e do número leptônico: o

esquema (a) da …gura (2.1) e, sua re‡exão espacial, o esquema (b) da mesma …gura. Os experimentos

mostraram que somente o esquema (a) acontece na natureza, negando, assim, a conservação da

paridade. Medidas de outros decaimentos con…rmaram a inexistência de neutrinos com helicidade

positiva e antineutrinos com helicidade negativa, indicando também a não conservação da paridade.

Figura 2.1: Possíveis esquemas do decaimento de ¼§, impostos pela conservação da paridade. As
helicidades das partículas, representadas pelas setas, devem ser sempre as mesmas para conservar
o momento angular.

Os neutrinos são partículas que obedecem a equação de Dirac sem massa. No espaço dos

momentos, esta equação tem a forma

6p u(p) = 0 ; (2.42)

cuja solução é o spinor

u(p) = lim
m! 0

1p
E +m

µ
E +m
¾ ¢ p

¶
Âms

1=2 =
p

jpj
µ

I
¾ ¢ p̂

¶
Âms

1=2 ; (2.43)

onde

lim
m! 0

E = lim
m! 0

p
p2 +m2 = jpj : (2.44)

O spinor de um neutrino com helicidade negativa

uL(p) =
p

jpj
µ
I¡ ¾ ¢ p̂
¾ ¢ p̂¡ I

¶
Âms

1=2 (2.45)
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e o spinor de um antineutrino com helicidade positiva

uR(p) =
p

jpj
µ
I+ ¾ ¢ p̂
¾ ¢ p̂+ I

¶
Âms

1=2 (2.46)

podem ser obtidos a partir do operador helicidade

§̂
:
=

µ
¾ ¢ p̂ 0
0 ¾ ¢ p̂

¶
; (2.47)

impondo-se

§̂uL(p) = ¡ uL(p) e §̂ uR(p) = + uR(p) : (2.48)

Alternativamente, a partir do operador quiralidade

°5
:
=

µ
0 I
I 0

¶
; (2.49)

pode-se obter

uL(p) =
1

2
(1¡ °5) u(p) e uR(p) =

1

2
(1 + °5)u(p) ; (2.50)

de modo que

°5 uL(p) = ¡ uL(p) e °5 uR(p) = + uR(p) : (2.51)

A coincidência entre os operadores de helicidade, equação (2.48), e os operadores de quirali-

dade, equação (2.51), resulta do fato dos neutrinos terem helicidade bem de…nida, pois, movendo-se

com a velocidade da luz, a projeção do spin do neutrino ao longo da direção do seu movimento é

independente do referencial. No caso de férmions massivos, esses operadores deixam de ser coinci-

dentes, pois a helicidade passa a depender do referencial, enquanto a quiralidade permanece bem

de…nida.

Para incorporar a não conservação da paridade na lagrangiana de interação de Fermi, equação

(2.34), é necessário discriminar a quiralidade nos campos dos neutrinos e antineutrinos, lembran-

do que ¹u(p) = uy(p) °0 e f°0; °5g = 0. O uso dessas combinações de…ne, automaticamente, a

quiralidade do lépton associado a este neutrino, pois

¹ÃL ¡k ÃL = ¹ÃR ¡k ÃR = 0 para k = 1; 2; 5 (2.52)

e

¹ÃL ¡k ÃR = ¹ÃR ¡k ÃL = 0 para k = 3; 4 : (2.53)
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No caso do decaimento ¹¡ ! e¡ + ¹ºe + º¹, veri…cou-se que a interação direta corrente-

corrente produzia melhores resultados. Assim, a lagrangiana generalizada de Fermi foi restringida

a

Lint = G¹ J
º
muônica J

eletrônica
º ; (2.54)

onde o coe…ciente G¹ = GF=
p
2 é a constante de acoplamento entre as correntes fracas

J ºmuônica =
¹Ã
neutrino
L °º Ãm¶uonL = ¹Ã

neutrino
(1 + °5)°

º(1¡ °5)Ãm¶uon

= ¹Ã
neutrino

°º Ãm¶uon| {z } ¡ ¹Ã
neutrino

°º°5 Ã
m¶uon

| {z } (2.55)

V º Aº

e

J eletrônicaº = ¹Ã
el¶etron
L °º ÃneutrinoL = ¹Ã

el¶etron
(1 + °5)°

º(1¡ °5)Ãneutrino

= ¹Ã
el¶etron

°º Ãneutrino| {z } ¡ ¹Ã
el¶etron

°º°5 Ã
neutrino

| {z } ; (2.56)

Vº Aº

ambas compostas de uma parte vetorial V e outra axial A.

A estrutura dessa lagrangiana, conhecida como V-A, foi estendida para o decaimento-¯,

supondo que a parte hadrônica tivesse a mesma estrutura da parte leptônica. Deste modo, a

lagrangiana de Fermi para o decaimento n ! p+ e¡ + ¹ºe assumiu a forma

Lint = [CV V
º ¡ CAAº]hadrônica [G¹ (Vº ¡Aº)]leptônica ; (2.57)

onde as correntes hadrônicas são

V º = ¹Ã
pr¶oton

°º Ãnêutron e Aº = ¹Ã
pr¶oton

°º°5 Ã
nêutron (2.58)

e as correntes leptônicas

Vº = ¹Ã
el¶etron

°º Ãneutrino e Aº = ¹Ã
el¶etron

°º°5 Ã
neutrino : (2.59)

A constante de acoplamento vetorial

CV »= 1:01£ 10¡5=m2
pr¶oton (2.60)
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é determinada através do decaimento do O14 em N14* e a axial

CA »= ¡ 1:26 CV (2.61)

a partir do tempo de vida do nêutron [ Cam 78].

A con…rmação dessa extensão, obtida de detalhadas medidas de polarização, indicou que as

interações fracas envolvendo hádrons também podem ser descritas por lagrangianas com estrutura

V-A e, inesperadamente, que CV = G¹. Esta igualdade mostra que a constante de acoplamento

vetorial é a mesma para hádrons e léptons, analogamente ao que acontece com a constante de

acoplamento eletromagnética e. Essa igualdade sugeriu, então, que a corrente fraca associada a CV

deveria ser conservada,

@ºV
º = 0 ; (2.62)

em analogia à corrente eletromagnética associada a e. Além disso, a corrente vetorial hadrônica no

decaimento-¯, expressão (2.58), seria a corrente de isospin do espalhamento elétron-nucleon. Essas

duas características levaram à hipótese da conservação da corrente vetorial (CVC) nas interações

fracas [ FG 58]. Nesta hipótese, a corrente vetorial hadrônica fraca é identi…cada como sendo a

corrente de isospin, conservada nas interações fortes e cujas componentes carregadas são dadas

pelas combinações

V º+ = V º1 + V º2 ; V º¡ = V º1 ¡ V º2 e V º0 = V º3 : (2.63)

Por outro lado, a constante de acoplamento axial CA não é exatamente a mesma para hádrons

e léptons, como mostra a expressão (2.61). Essa pequena diferença levou à idéia de que a corrente

fraca associada a CA seria parcialmente conservada,

@º A
º »= 0 : (2.64)

A formalização desta idéia foi realizada por Gell-Mann e Lévy em 1960 através do decaimento

do píon negativo [ GL 60],

¼¡ ! ¹¡ + ¹º¹ ; (2.65)

que poder ser descrito pelo elemento de matriz

h ¹º ¹¡ j T̂ j¼ i ´ h 0 jJºh¶adron j ¼ i ¹um¶uon °º(1¡ °5)vneutrino ; (2.66)
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onde o píon que tem paridade negativa está ligado ao vácuo que tem paridade positiva. Devido à

conservação de paridade nas interações fortes, somente a corrente axial pode contribuir para o setor

hadrônico deste decaimento. A invariância de Lorentz e a ausência de spin no píon fazem com que

este elemento de matriz deva ser da forma

h 0 jAºa(0) j¼b(k)i = i ±ab k
º f¼ ; (2.67)

onde o kº é o quadrimomento do píon, f¼ é a constante do seu decaimento, a e b são índices de

isospin. No espaço dos momentos, a divergência de uma corrente equivale multiplicá-la por “¡ i ”
e pelo quadrimomento transferido, o que nos permite escrever

h 0 j @º Aºa(0) j ¼b(k)i = ¡ i kº h 0 jAºa(0) j¼b(k)i = f¼ ¹
2 ±ab ; (2.68)

onde ¹ é a massa do píon. Assim, o decaimento do píon implica na não conservação da corrente

axial, pois sua quadridivergência está relacionada à massa do píon e à constante que descreve o seu

decaimento.

Como o píon tem massa muito pequena quando comparada com a de qualquer outro hádron,

o resultado acima sugere a conservação parcial da corrente axial (PCAC). Esta hipótese pode ser

reescrita através da identidade de operadores

@ºA
º
a = f¼ ¹

2 ¼a : (2.69)

É de se esperar, então, que exista uma simetria global interna aproximada nas interações

fracas, para guiar a construção de lagrangianas com a estrutura V-A, de modo que produzam

PCAC e CVC via teorema de Noether. A simetria que cumpre este papel é a simetria quiral, que

corresponde à invariância de um sistema sob o grupo de transformações quirais SU(2)L ­ SU(2)R.

Essas transformações são implementadas por operadores unitários da forma

UV (®) = ei ®aQ
V
a e UA(¯) = ei ¯aQ

A
a ; (2.70)

de modo que as variações quirais in…nitesimais dos campos dividem-se em vetoriais e axiais, respec-

tivamente

±V Ái = i ±®a [Q
V
a ; Ái] e ±AÁi = i ±¯a [Q

A
a ; Ái] ; (2.71)

onde

QVa =

Z
d3xV a0 (x; t) e QAa =

Z
d3xAa0(x; t) : (2.72)
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Segundo a hipótese de CVC, as cargas associadas às corrente vetoriais são os geradores das

transformações de isospin, que satisfazem a álgebra de Lie do grupo SU(2),

[QVa ; Q
V
b ] = i ²abcQ

V
c ; (2.73)

idêntica à relação de comutação dos operadores do momento angular. As cargas associadas às

correntes axiais transformam-se como vetores sob rotações de isospin, o que leva às relações de

comutação

[QVa ; Q
A
b ] = i ²abcQ

A
c : (2.74)

O fechamento deste grupo quiral foi proposto por Gell-Mann [ Gel 62] [ Gel 64], sem introduzir

novas cargas, através das relações de comutação

[QAa ; Q
A
b ] = i ²abcQ

V
c : (2.75)

As relações de comutação, dadas pelas expressões (2.73, 2.74 e 2.75), descrevem implicita-

mente a álgebra do grupo SU(2)L ­ SU(2)R. A primeira relação descreve a álgebra do subgrupo

SU(2) de isospin e as demais não descrevem independentemente a álgebra de qualquer subgrupo.

De…nindo as combinações

QLa
:
=
1

2
(QVa ¡QAa ) e QRa

:
=
1

2
(QVa +Q

A
a ) ; (2.76)

as relações de comutação das cargas, equações (2.73), (2.74) e (2.75), passam a explicitar, concomi-

tantemente, dois grupos de simetria independentes,

[QLa ; Q
L
b ] = i ²abcQ

L
c| {z } ; [QRa ; Q

R
b ] = i ²abcQ

R
c| {z } e [QLa ; Q

R
b ] = 0| {z } : (2.77)

SU(2)L SU(2)R desacoplamento

Essas relações de comutação descrevem explicitamente a álgebra de Lie do grupo SU(2)L­SU(2)R,

denominado grupo quiral, devido à simetria direita-esquerda.

A versão diferencial das relações de comutação das cargas, conhecida como álgebra de cor-
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rentes, corresponde a

[V 0a (x); V
º
b (y)]x0=y0 = i ²abc V

º
c (x) ±

3(x¡ y) ;

[V 0a (x); A
º
b (y)]x0=y0 = i ²abcA

º
c (x) ±

3(x¡ y) ;
(2.78)

[A0a(x); V
º
b (y)]x0=y0 = i ²abcA

º
c (x) ±

3(x¡ y) ;

[A0a(x); A
º
b (y)]x0=y0 = i ²abc V

º
c (x) ±

3(x¡ y) ;

onde os termos de Schwinger foram omitidos. Sua estrutura pode ser vista como um re‡exo da

simetria quiral aproximada nas interações fracas.

A viabilidade dessa simetria no mundo real foi reforçada pela validade empírica da relação

de Goldberger-Treiman [ GT 58], que relaciona a constante de acoplamento píon-nucleon g às con-

stantes de acoplamento axial CA e vetorial CV do decaimento-¯ através de

g f¼ »= m gA ; (2.79)

ondem é a massa do nucleon, f¼ é a constante de decaimento do píon e gA = jCA=CV j. Esta relação

decorre naturalmente da idéia de PCAC e da dominância do pólo do píon, na qual as interações

envolvendo correntes axiais são sempre mediadas por píons com quadrimomento pequeno.

Os valores atuais de g são 13:4§ 0:1 para o grupo de Karlsruhe [ KA 85], 13:18§ 0:12 para

Matsinos [ Mat 97] e 13:13§ 0:03 para o grupo de Virginia [ SP 98]. Para as demais constantes, há

um certo consensu, gA = 1:26, m = 938:27 MeV, f¼ = 92:4 MeV e ¹ = 139:57 MeV.

A conservação da corrente de isospin tanto nas interações fortes como nas fracas indica que a

corrente axial, parcialmente conservada nas interações fracas, também deve sê-la nas fortes. Todas

essas “conservações” estão relacionadas pelo teorema de Noether à simetria quiral aproximada nessas

interações.

Embora as primeiras tentativas de incluir essa idéia tenham sido formuladas em termos de

lagrangianas, a que obteve maior destaque no início dos anos 60 foi um método não perturbativo que

combinava as fórmulas de redução de Lehmann, Symanzik e Zimmermann [ LSZ 55] com a álgebra

de correntes e a hipótese de PCAC. Excetuando o modelo de Skyrme [ Sky 62], o formalismo
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lagrangiano está vinculado à linguagem perturbativa que parecia não funcionar para as interações

hadrônicas, uma vez que suas constantes de acoplamento são grandes.

Supondo apenas que o píon é mole (q = 0 e ¹ ! 0), compatível com o fato da massa do píon

ser muito pequena na escala hadrônica, o método da álgebra de correntes gerou, sem usar qualquer

teoria das interações fortes, um conjunto de vínculos úteis para espalhamentos de píons perto do

limiar sobre um alvo hadrônico. Esses vínculos, usualmente conhecidos como teoremas de baixas

energias, concordaram muito bem com os experimentos e até hoje representam uma referência para

muitas descrições teóricas da física hadrônica [ AFFR 73]. Assim, o conhecimento dessa “álgebra”

permite-nos derivar “teoremas” a baixas energias sem o conhecimento dos detalhes da dinâmica de

um processo.

Apesar da vantagem desse método não envolver teoria de perturbação, na prática ele é

restrito aos espalhamentos de poucos píons moles por um hádron qualquer, pois o procedimento

torna-se muito trabalhoso à medida que o número de píons moles emitidos e absorvidos aumenta.

Além disso, por ser essencialmente algébrico, este método di…culta o entendimento da dinâmica da

interação. Para remediar isso, Weinberg sugeriu em 1967 [ Wei 67] o uso do formalismo lagrangiano

apenas para o nível árvore, através da construção de lagrangianas efetivas com simetria quiral, que

reproduzissem os resultados na forma ditada pela álgebra de correntes. Com essas lagrangianas,

as implicações dinâmicas de um processo seriam explícitas e os teoremas a baixas energias seriam

obtidos via diagramas de Feynman de uma forma mais intuitiva e simples.

As lagrangianas quirais efetivas podem ser divididas quanto à maneira de realizar a simetria.

No modelo sigma-linear, a simetria é realizada inteiramente por meio de transformações lineares.

Isto é conseguido com a introdução de uma partícula com os mesmos números quânticos do vácuo,

denominada sigma. Nos modelos não-lineares, esta partícula é substituída por uma função não-linear

do campo do píon, de modo que as transformações axiais passam, também, a ser não-lineares.

2.4 Realização Linear

O primeiro modelo para hádrons que incorporou a simetria quiral foi denominado sigma-

linear, devido à introdução de um méson, denominado sigma, e às propriedades lineares de transfor-

mações dos campos. Este modelo, desenvolvido muito antes da QCD ser estabelecida como a teoria
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fundamental das interações fortes, é o exemplo mais simples de uma lagrangiana quiral efetiva. Ele

foi criado por Schwinger em 1957 [ Sch 57] e formulado no contexto de PCAC três anos mais tarde,

por Gell-Mann and Lévy [ GL 60], incorporando os dogmas da álgebra de correntes.

Sua lagrangiana é construída com simetria quiral global, de modo a reproduzir, via o teorema

de Noether, as hipóteses de CVC e PCAC. Isto é feito, de…nindo o comportamento dos campos sob

as transformações desta simetria. No caso dos píons, usa-se o isomor…smo entre o grupo quiral

SU(2)L ­ SU(2)R e o de rotações no espaço euclidiano quadridimensional O(4), o que nos permite

escrever

QVa = ¡ 1

2
²abc Lbc e QAa = L4a para a; b; c = 1; 2; 3 ; (2.80)

onde Lij (Lij = ¡Lji e tr L = 0, com i = 1; 2; 3; 4) são os geradores do grupo O(4). A maneira

mais simples de introduzir o píon neste grupo interno, é considerar o quadrivetor Pi
:
= (¾;¼), em

que ¾ representa um campo escalar extra e ¼, as três componentes de isospin do píon, (¼1; ¼2; ¼3).

Usando a álgebra do grupo O(4),

[Lij; Pk] = i (Pi ±jk ¡ Pj ±ik) ; (2.81)

e as igualdades de (2.80), determinamos as relações de comutação das cargas vetoriais e axiais com

os campos mesônicos

[QVa ; ¾] = 0 ; [QVa ; ¼b] = ¡ i ²abc ¼c ;

[QAa ; ¾] = i ¼a ; [QAa ; ¼b] = ¡ i ±ab ¾ :
(2.82)

Com isso, as variações quirais in…nitesimais dos campos, dadas em (2.71), são lineares,

±V ¾ = 0 ±V¼ = ±® ^ ¼

±A¾ = ±¯ ¢ ¼ ±A¼ = ¡ ±¯ ¾
: (2.83)

O termo cinético da lagrangiana mesônica deve ser

T (¼; ¾) = 1

2
(@¹¾ @

¹¾ + @¹¼ ¢ @¹¼) ; (2.84)

para que a equação de movimento de cada bóson, equação de Euler-Lagrange (2.10), seja uma

equação de Klein-Gordon. Sob transformações quirais, temos

±V T = @¹
¡
±V ¾

¢
@¹¾ + @¹

¡
±V¼

¢
¢ @¹¼ = (±® ^ @¹¼) ¢ @¹¼ = 0 (2.85)



2.4 Realização Linear 25

e

±AT = @¹
¡
±A¾

¢
@¹¾ + @¹

¡
±A¼

¢
¢ @¹¼ = ±¯ ¢ (@¹¼ @¹¾ ¡ @¹¾ @¹¼) = 0 : (2.86)

Já o termo potencial da lagrangiana pode ser escrito através das combinações

(¾2 + ¼2)n ; (2.87)

que também são invariantes sob transformações quirais,

±V
¡
¾2 + ¼2

¢
= 2 ¾ ±V ¾ + 2¼ ¢ ±V¼ = 2¼ ¢ (±® ^ ¼) = 0 (2.88)

e

±A
¡
¾2 + ¼2

¢
= 2 ¾ ±A¾ + 2¼ ¢ ±A¼ = 2 (¾ ±¯ ¢ ¼ ¡ ¼ ¢ ±¯ ¾) = 0 : (2.89)

No modelo ¾-linear simétrico, o potencial é dado por

V(¼; ¾) = ¸

4

£¡
¾2 + ¼2

¢
¡ c2

¤2 ¡ ¸

4
c4 ; (2.90)

onde ¸ > 0 é a constante de acoplamento e c uma constante a ser determinada. A con…guração de

menor energia é determinada pelo sistema de equações
8
>>><
>>>:

dV
d¾

= 0 ) ¸ (¾2 + ¼2 ¡ c2) ¾ = 0

dV
d¼

= 0 ) ¸ (¾2 + ¼2 ¡ c2) ¼ = 0
; (2.91)

onde ¼ := j¼j.

Para c2 · 0, esse potencial corresponde ao parabolóide da …gura (2.2.a) com um único estado

de menor energia, onde os valores esperados dos campos são iguais a zero. Para c2 > 0, ao sombrero

da …gura (2.2.b), onde a circunferência formada pelo vale corresponde a estados degenerados de

menor energia.

Como vimos na seção anterior, o PCAC re‡ete a ocorrência do decaimento do píon na

natureza. Para reproduzir o PCAC, acrescentamos um termo nesse potencial que quebre sutilmente

a simetria quiral. A forma mais simples é

VSB = ¡ " ¾ ; (2.92)
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Figura 2.2: Potencial do modelo ¾-linear simétrico: (a) c2 · 0 e (b) c2 > 0.

onde a constante pequena " > 0 é o parâmetro que regula a intensidade da quebra. Com isso, o

potencial passa a ser dado por

V(¼; ¾) = ¸

4

£¡
¾2 + ¼2

¢
¡ c2

¤2 ¡ ¸

4
c4 ¡ " ¾ : (2.93)

Esse termo de quebra produz, através da equação (2.24), uma corrente axial que não é

conservada, isto é,

@¹A
¹ = "¼ : (2.94)

Comparando este resultado com a expressão (2.69) do PCAC, veri…camos que

" ´ f¼¹
2 : (2.95)

Isto vincula a quebra explícita da simetria quiral à massa do píon e ao seu decaimento.

O vácuo, o estado fundamental do sistema, corresponde à con…guração de menor energia,

com paridade positiva e todos os números quânticos nulos. Logo, o valor esperado do campo do píon

no vácuo é igual a zero, pois ele tem paridade negativa e isospin não-nulo. Por outro lado, como o

sigma tem paridade positiva e todos os demais números quânticos nulos, o seu campo pode ter um

valor esperado no vácuo diferente de zero. Portanto, a minimização do potencial, expressão (2.93),

restringe-se à solução da primeira equação do sistema dado em (2.91) com a adição da constante ",

dV
d¾

= 0 ) v3 ¡ c2v ¡ "=¸ = 0 ; (2.96)

onde v é o valor de ¾ nos pontos extremos.
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As soluções aproximadas em torno de " = 0 são dadas por

v+ = c+
"

2¸c2
+ : : : ;

v0 =
"

¸c2
+ : : : ; (2.97)

v¡ = ¡ c+ "

2¸c2
+ : : : :

A escolha c2 · 0 corresponde à …gura (2.3.a) com

V(0; v0) = 0 + : : : ; (2.98)

onde o vácuo é dado pelo ponto

(¼ = 0 ; ¾ = v0) : (2.99)

Neste caso, a simetria quiral manifesta-se através de multipletos de isospin e de paridade, modo

Wigner-Weyl. Como multipletos de paridade não são encontrados na natureza, esta escolha não

tem respaldo fenomenológico.

A escolha c2 > 0 está associada à …gura (2.3.b) com

V(0; v+) = ¡ ¸

4
c4 ¡ " c+ : : : ;

V(0; v0) = 0 + : : : ; (2.100)

V(0; v¡) = ¡ ¸

4
c4 + " c+ : : : ;

onde o vácuo é dado pelo ponto 2

(¼ = 0 ; ¾ = v+) : (2.101)

Esta con…guração corresponde à quebra “espontânea” da simetria quiral, pois este vácuo não é

invariante quiral. Para distingui-lo do vácuo trivial j0i, ele é denotado por jvi. Nesta situação, a

simetria quiral manifesta-se no modo Nambu-Goldstone com os píons sendo os bósons de Goldstone.

No limite em que a simetria quiral é exata (" = 0), o píon tem massa nula, pois a ‡utuação

pseudoescalar do vácuo (pequenas oscilações ao longo do vale) não custa qualquer energia.

2Na linguagem mais fundamental da QCD, um estado com h0j¾j0i 6= 0 corresponde a um condensado escalar
quark-antiquark, h0jq¹qj0i.
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Figura 2.3: Potencial do modelo ¾-linear simétrico sem (linha contínua) e com quebra explícita da
simetria quiral (linha pontilhada): (a) c2 · 0 e (b) c2 > 0.

Quando há quebra espontânea de simetria, é conveniente reexpressar o campo do sigma pela

soma

¾
:
= s + v+ ; (2.102)

onde s representa a ‡utuação escalar do vácuo, ou seja, pequenas oscilações na direção do eixo ¾,

de modo que

h v j s j v i = 0 : (2.103)

Com isso, o potencial passa a ser escrito na forma

V(¼; s+ v+) =
¸

4

¡
s2 + ¼2

¢2
+
1

2
m2
¾s
2 +

1

2
¹2¼2 + ¸v+

¡
s2 + ¼2

¢
s+ V(0; v+) ; (2.104)

onde 3

¹2
:
= ¸

¡
v2+ ¡ c2

¢
=

"

v+
; (2.105)

m2
¾
:
= ¸

¡
3v2+ ¡ c2

¢
= 2¸v2+ + ¹

2 (2.106)

e

V(0; v+) :
=
¸

4

¡
v2+ ¡ c2

¢2 ¡ " v+ ¡ ¸

4
c4 : (2.107)

3Como podemos observar, a quebra explícita da simetria quiral gera a massa do píon e, consequentemente,
aumenta a do sigma.
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Comparando as expressões (2.105) e (2.95), observamos que

v+ ´ f¼ : (2.108)

Desta forma, …xamos

¸ =
m2
¾ ¡ ¹2
2 f 2¼

e c2 = f 2¼
m2
¾ ¡ 3¹2
m2
¾ ¡ ¹2 : (2.109)

Assim, o setor mesônico da lagrangiana que incorpora CVC e PCAC pode ser escrito como

LM =
1

2
(@¹¾ @

¹¾ + @¹¼ ¢ @¹¼) + ¸c
2

2

¡
¾2 + ¼2

¢
¡ ¸

4

¡
¾2 + ¼2

¢2
+ f 2¼¹

2 ¾ (2.110)

ou, alternativamente, como

LM =
1

2

¡
@¹s @

¹s¡m2
¾s
2
¢
+
1

2

¡
@¹¼ ¢ @¹¼ ¡ ¹2¼2

¢
¡ ¸f¼

¡
s2 + ¼2

¢
s¡ ¸

4

¡
s2 + ¼2

¢2
: (2.111)

Na segunda versão, os dois primeiros termos são associados aos mésons livres e os dois últimos, às

suas interações. O termo V(0; v+) é constante e foi eliminado, por não in‡uir na dinâmica.

Podemos ampliar a lagrangiana mesônica, de…nindo os comportamentos de outras partícu-

las sob as transformações da simetria quiral. No caso dos nucleons, isso é feito em analogia aos

neutrinos, equação (2.50). Caracterizando os nucleons pelo campo,

N = NL + NR ; (2.112)

onde

NL(x) =
1

2
(1¡ °5)N(x) e NR(x) =

1

2
(1 + °5)N(x) ; (2.113)

e usando as de…nições das cargas esquerda e direita (2.76), desacoplamos as relações de comutação

entre cargas e campos, produzindo expressões idênticas às do grupo de isospin SU(2),

[QLa ; NL] = ¡ ¿ a
2
NL ; [QRa ;NR] = ¡ ¿a

2
NR e [QRa ; NL] = [QLa ; NR] = 0 : (2.114)

Com isso, deduzimos que as relações de comutação das cargas vetoriais e axiais com os campos

nucleônicos são dadas por

[QVa ;N ] = ¡ ¿a
2
N e [QAa ;N ] =

¿a
2
°5N : (2.115)
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Logo, as variações quirais in…nitesimais dos campos, dadas em (2.71), são lineares,

±VN = i ±® ¢ ¿

2
N ±V ¹N = ¡ i ¹N ±® ¢ ¿

2

±AN = ¡ i ±¯ ¢ ¿

2
°5N ±A ¹N = ¡ i ¹N °5 ±¯ ¢ ¿

2

; (2.116)

onde usamos ¹N = N y°0 e f°0; °5g = 0.

Segundo essas variações quirais, a lagrangiana nucleônica simétrica restringe-se ao termo

cinético

i ¹N 6@ N ; (2.117)

pois

±V
¡
i ¹N 6@ N

¢
= i ±V ¹N 6@ N + i ¹N 6@ ±VN = ¹N ±® ¢ ¿

2
6@N ¡ ¹N 6@ (±®) ¢ ¿

2
N = 0 (2.118)

e

±A
¡
i ¹N 6@ N

¢
= i ±A ¹N 6@ N + i ¹N 6@ ±AN = ¹N °5 ±¯ ¢ ¿

2
6@N + ¹N 6@ (±¯) ¢ ¿

2
°5N = 0 ; (2.119)

onde utilizamos a notação 6@ := °¹ @¹ e a relação de anticomutação entre °5 e °¹.

Um termo de massa, da forma “¡m ¹N N”, quebra a simetria quiral. Este termo é invariante

pela transformação vetorial,

±V
¡
¹N N

¢
= ±V ¹N N + ¹N ±VN = ¡ i ¹N ±® ¢ ¿

2
N + i ¹N ±® ¢ ¿

2
N = 0 ; (2.120)

mas não o é pela transformação axial,

±A
¡
¹N N

¢
= ±A ¹N N + ¹N ±AN = ¡ i ¹N ±¯ ¢ ¿

2
°5N ¡ i ¹N °5 ±¯ ¢ ¿

2
N = ¡ i ¹N ±¯ ¢ ¿ °5N : (2.121)

Por isso, no modelo linear com simetria quiral, o nucleon não pode ter massa.

A variação axial acima mostra que o quadrivetor ªi
:
=

¡
¡ i ¹N ¿ °5N; ¹N N

¢
é um elemento

do grupo SO(4). Logo, se o multiplicarmos escalarmente pelo quadrivetor Pi
:
= (¼; ¾), obtemos o

escalar

ª ¢P = ¹N N ¾ + i ¹N ¿ °5N ¢ ¼ ; (2.122)
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invariante sob transformações quirais. Então, admitindo que o acoplamento do píon com o nucleon

seja o usual, a parte da lagrangiana geral que descreve a interação entre sigma, píons e nucleons é

dada por

¡gª ¢P = ¡ g ¹N (¾ + i ¿ ¢ ¼ °5) N = ¡ g v+ ¹N N ¡ g ¹N (s + i ¿ ¢ ¼ °5) N ; (2.123)

onde g é a constante de acoplamento méson-nucleon e o sinal é negativo por convenção.

O termo de interação entre o vácuo e o campo nucleônico pode ser identi…cado com o termo

de massa do nucleon,

m = g v+ ; (2.124)

o que corresponde à relação de Goldberger-Treiman (2.79) com a aproximação gA »= 1.

Esta identi…cação permite interpretar a massa do nucleon como

m »= ±
m+ ±m

SB
; (2.125)

onde
±
m corresponde à massa decorrente da quebra espontânea da simetria quiral,

±
m = g c ; (2.126)

e ±m
SB

, ao acréscimo de massa decorrente da quebra explícita da simetria quiral [ Cam 78],

±m
SB

= g
"

2¸c2
= g f¼

¹2

m2
¾

: (2.127)

Medidas provenientes do espalhamento píon-nucleon [ Hoh 83] levam a crer que este acréscimo,

conhecido como termo sigma píon-nucleon, deve ser de 35§ 5 MeV, o que implicaria numa massa

de aproximadamente 829 MeV para o méson ¾.

Assim, a lagrangiana para o sistema píon-nucleon pode ser expressa por duas formas alter-

nativas

LN = i ¹N 6@ N ¡ g ¹N (¾ + i ¿ ¢ ¼ °5)N (2.128)

ou

LN = ¹N (i 6@ ¡m)N ¡ g ¹N (s+ i ¿ ¢ ¼ °5)N : (2.129)

Na última expressão, o primeiro termo está associado ao nucleon livre, com a massa gerada di-

namicamente, e o segundo, à interação entre os campos, com o acoplamento ¼N pseudoescalar

(PS).
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A lagrangiana geral, L = LN+LM , reproduz as hipóteses de CVC e PCAC, pois as quadridi-

vergências das correntes vetoriais e axiais, obtidas da segunda igualdade de (2.24) com as variações

in…nitesimais (2.83) e (2.116), correspondem a

@¹V
¹ = ¡ @L(¼0; ¾0)

@®
= 0 e @¹A

¹ = ¡ @L(¼0; ¾0)
@¯

= ¹2 f¼ ¼ : (2.130)

As correntes vetoriais,

V¹ = ¡ @L(¼0; ¾0)

@ (@¹®)
= ¹N °¹

¿

2
N + ¼ ^ @¹¼ ; (2.131)

e axiais,

A¹ = ¡ @L(¼0; ¾0)

@ (@¹¯)
= ¹N °¹°5

¿

2
N + ¼ @¹¾ ¡ ¾ @¹¼ ; (2.132)

são obtidas da primeira igualdade de (2.24).

Além disso, com a contagem de potências ou com a simples constatação de que g é adi-

mensional, mostra-se que a lagrangiana geral é renormalizável para todas as ordens em teoria de

perturbação.

2.5 Realização Não-Linear

Para se obter uma lagrangiana quiral sem a discutível partícula sigma do modelo ¾-linear é

necessário rede…nir o campo ¼, de modo que a transformação axial do novo campo piônico Á seja

não-linear. A forma mais simples de realizar isso é através da troca do ¾, nas lagrangianas (2.110)

e (2.128), pela função não-linear
p
f 2¼ ¡ Á2 [ GL 60]. Assim,

LM = 1

2

µ
@¹

q
f 2¼ ¡ Á2 @¹

q
f 2¼ ¡ Á2 + @¹Á ¢ @¹Á

¶
+ f¼¹

2

q
f2¼ ¡ Á2 (2.133)

e

LN = i ¹N 6@ N ¡ g ¹N
µq

f 2¼ ¡ Á2 + i ¿ ¢ Á °5
¶
N : (2.134)

Com esse procedimento, as funções
p
f 2¼ ¡ Á2 e Á transformam-se do mesmo modo que os campos

¾ e ¼ do modelo linear, mas com um grau de liberdade a menos, pois a ‡utuação escalar do vácuo

é eliminada.



2.5 Realização Não-Linear 33

Expandindo
p
f 2¼ ¡ Á2 em torno de Á2 = 0, o modelo ¾-não-linear corresponde, então, às

lagrangianas

LM = 1

2

¡
@¹Á ¢ @¹Á ¡ ¹2Á2

¢
+

1

8f 2¼

¡
@¹Á

2 @¹Á2 ¡ ¹2Á4
¢
+

1

16f 4¼

¡
@¹Á

2 @¹Á4 ¡ ¹2Á6
¢
+ : : :

(2.135)

e

LN = ¹N (i 6@ ¡m)N ¡ i g ¹N °5 ¿ N ¢ Á+
g

2f¼
¹N N

µ
Á2 +

Á4

4f 2¼
+

Á6

8f 4¼
+ : : :

¶
; (2.136)

onde m = g f¼ e as reticências indicam termos de ordem mais alta no campo do píon. O modelo

quiral construído com esta realização tem, como conteúdo principal, a capacidade de relacionar

processos envolvendo diferentes números de píons.

A generalização deste modelo foi feita por Weinberg. Em 1967, ele propôs uma aproximação

dinâmica para a álgebra de correntes, baseada na rede…nição dos campos do modelo ¾-linear. Com

esta rede…nição, a transformação axial do novo campo piônico passou a ser não-linear e o acopla-

mento ¼N , pseudovetorial (PV) [ Wei 67].

Um ano mais tarde, Weinberg elaborou uma realização não-linear generalizada da simetria

quiral, de…nindo um novo comportamento dos campos sob transformações axiais. Nesta realização,

a simetria é assegurada pela introdução de derivadas covariantes, que resultam num acoplamento

¼N pseudovetorial (PV) [ Wei 68].

Nesta abordagem, as relações de comutação das cargas vetoriais com os campos piônico e

nucleônico são as mesmas da realização linear. Denotando o campo do píon por Á(x) e do nucleon

por Ã(x), tem-se

[QVa ;Á] = ¡ ta Á e [QVa ; Ã] = ¡ ¿ a
2
Ã ; (2.137)

onde ta é a representação 3 £ 3 dos geradores do grupo SU(2) 4. Com isso, as variações vetoriais

são dadas por

±VÁ = ¡ ±® ^ Á (2.138)

e

±V Ã =
i

2
±® ¢ ¿ Ã : (2.139)

4Na forma matricial, temos (ta)bc = ¡ i ²abc.
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Para as variações axiais não-lineares dos campos, Weinberg propôs as relações de comutação 5

[QAa ; Áb] = i ±ab f(Á
2) + i Áa Áb g(Á

2) (2.140)

e

[QAa ; Ã] = ¡ v(Á2) ²abc
¿ b
2
Ác Ã ; (2.141)

onde f(Á2) é uma função real arbitrária,

g(Á2) =
1 + 2f(Á2) f 0(Á2)

f(Á2)¡ 2Á2f 0(Á2)
(2.142)

e

v(Á2) =
1

f(Á2) +
q
f2(Á2) + Á2

: (2.143)

As variações axiais dos campos são, então, dadas por

±AÁ = f(Á2) ±¯ + g(Á2) ±¯ ¢ Á Á (2.144)

e

±AÃ =
i

2
v(Á2) ±¯ ¢ (¿ ^ Á) Ã : (2.145)

Na abordagem não-linear, é impossível construir lagrangianas quirais envolvendo apenas o

campo do píon. Contudo, invariantes podem ser construídos com o auxílio da derivada covariante

deste campo, com a forma geral

D¹Á = K

2
4 1q

f 2(Á2) + Á2
@¹Á ¡ f 0(Á2) + v(Á2)=2

f 2(Á2) + Á2
Á @¹Á

2

3
5 ; (2.146)

onde K é uma constante. Deste modo, as relações de comutação das cargas com esta derivada

covariante passam a ser semelhantes às do campo nucleônico, isto é,

[QVa ;D¹Á] = ¡ taD¹Á e [QAa ;D¹Á] = ¡ v(Á2) ²abc tb ÁcD¹Á ; (2.147)

5O comutador entre a carga axial e o campo piônico (nucleônico) tem paridade positiva (negativa), porque, como
visto na seção 2.2, a carga axial muda a paridade.
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e as variações in…nitesimais tomam a forma

±V (D¹Á) = ¡ ±® ^D¹Á ±A (D¹Á) = v(Á
2) (±¯ ^ Á) ^D¹Á : (2.148)

Assim, por construção, o escalar

1

2
D¹Á ¢D¹Á =

1

2

K2

f 2(0)
@¹Á ¢ @¹Á + : : : (2.149)

é invariante sob transformações quirais. Para que o campo do píon tenha a normalização usual,

toma-se K = f(0).

A massa do píon provém de um termo na lagrangiana que quebra a simetria quiral, dado

por uma função h(Á2), de modo que o segundo coe…ciente da série de Taylor desta função resulte

no termo de massa, isto é,
·
d h

d(Á2)

¸

Á2=0

= ¡ 1

2
¹2 : (2.150)

Através da equação (2.24), temos que a divergência da corrente axial em Á2 = 0 é dada por

[@¹A
¹]Á2=0 = ¡ 2

·
d h

d(Á2)

£
f(Á2) + Á2g(Á2)

¤
Á

¸

Á2=0

= ¹2 f(0)Á : (2.151)

Comparando com a hipótese de PCAC, temos

f(0) = f¼ : (2.152)

No caso do nucleon, as variações quirais (2.139) e (2.145) fazem com que o termo de massa,

¡m ¹Ã Ã ; (2.153)

passe a ser um invariante quiral, pois

±V
¡
¹Ã Ã

¢
=

¡
±V ¹Ã

¢
Ã + ¹Ã

¡
±V Ã

¢
=
i

2
¹Ã ±® ¢ ¿ Ã ¡ i

2
¹Ã ±® ¢ ¿ Ã = 0 (2.154)

e

±A
¡
¹Ã Ã

¢
=

¡
±A¹Ã

¢
Ã + ¹Ã

¡
±AÃ

¢
= ¡ i

2
v(Á2) ¹Ã ±¯ ¢ (¿ ^ Á) Ã +

i

2
v(Á2) ¹Ã ±¯ ¢ (¿ ^ Á) Ã = 0 :

(2.155)

Para assegurar a simetria quiral do termo cinético, é preciso trocar a derivada comum do

campo nucleônico por uma derivada covariante. Neste caso, a escolha particular

D¹Ã
:
= @¹Ã + ²ijk

¿ i
2
Áj @¹Ák

v(Á2)q
Á2 + f 2(Á2)

Ã (2.156)
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leva a

[QVa ;D¹Ã] = ¡ ¿ a
2
D¹Ã e [QAa ;D¹Ã] = ¡ v(Á2) ²abc

¿ b
2
ÁcD¹Ã ; (2.157)

o que implica em

±V (D¹Ã) =
i

2
±® ¢ ¿ D¹Ã e ±A(D¹Ã) =

i

2
v(Á2) ±¯ ¢ (¿ ^ Á) D¹Ã : (2.158)

A substituição da derivada comum no termo cinético por esta derivada covariante produz o

invariante quiral

¹Ã (i 6D ¡m) Ã ; (2.159)

que inclui o nucleon livre,

¹Ã (i 6@ ¡m) Ã ; (2.160)

e a interação do nucleon com um número par de píons 6,

i

2

v(Á2)q
f 2(Á2) + Á2

¹Ã °¹ ¿ Ã ¢ (Á ^ @¹Á) : (2.161)

A interação entre um número ímpar de píons e o nucleon, no entanto, é dada pelo invariante

quiral 7

gA
2f¼

¹Ã °¹°5 ¿ Ã ¢D¹Á : (2.162)

Além das interações já mencionadas, é possível obter muitas outras, através das derivadas

covariantes, como, por exemplo, a interação isoescalar entre um número par de píons e o nucleon.

Ela é obtida multiplicando-se dois invariantes: o termo de massa do nucleon e o termo cinético do

píon,

G ¹Ã Ã D¹Á ¢D¹Á ; (2.163)

onde G é a constante de acoplamento isoescalar.

6O acoplamento, neste caso, é isovetorial e vetorial (V).
7O acoplamento, neste caso, é isovetorial e pseudovetorial (PV).
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Em geral, os resultados não devem depender da forma de f(Á2), [ Haa 58] e [ CWZ 69]. Por

isto, neste trabalho, adotamos a forma correspondente ao modelo ¾-não-linear,

f(Á2) =
q
f2¼ ¡ Á2 ; (2.164)

que torna g(Á2) = 0 e, consequentemente, ±AÁ = ±¯ f(Á2).

Com isso, a derivada covariante do nucleon, equação (2.156), resume-se a

D¹Ã = @¹Ã +
i

2f¼
³
f¼ +

p
f 2¼ ¡ Á2

´ ¿ ¢ (Á ^ @¹Á) Ã (2.165)

e a do píon, equação (2.146), a

D¹Á = @¹Á+
1

2
p
f 2¼ ¡ Á2

³
f¼ +

p
f2¼ ¡ Á2

´ Á @¹Á
2 : (2.166)

Neste caso, a expressão (2.149) corresponde ao termo cinético usual e às interações entre números

pares de píons do modelo ¾-não-linear com simetria quiral, isto é,

D¹Á ¢D¹Á = @¹Á ¢ @¹Á+ @¹
q
f 2¼ ¡ Á2 @¹

q
f 2¼ ¡ Á2 : (2.167)

A forma mais simples para o termo de quebra da simetria quiral, que satisfaz a equação

(2.151) com esta escolha de f(Á2), é

h(Á2) = f¼ ¹
2

q
f 2¼ ¡ Á2 ; (2.168)

que é idêntico ao do modelo ¾-não-linear.

Logo, temos duas alternativas para lagrangianas não-lineares:

LPS = LM + LN e LPV = LM + LÃ ; (2.169)

onde

LM =
1

2

µ
@¹

q
f 2¼ ¡ Á2 @¹

q
f 2¼ ¡ Á2 + @¹Á ¢ @¹Á

¶
+ f¼¹

2

q
f2¼ ¡ Á2 ; (2.170)

LN = i ¹N 6@ N ¡ g ¹N
µq

f 2¼ ¡ Á2 + i ¿ ¢ Á °5

¶
N ; (2.171)

LÃ = ¹Ã (i 6D ¡m) Ã + gA
2f¼

¹Ã °¹°5 ¿ Ã ¢D¹Á : (2.172)
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Nos espalhamentos ¼¼, ¼N e NN , nas fotoproduções de um e dois píons no nível árvore

[ Pup 94], assim como no espalhamento ¼N com um loop [ PR 97] e no espalhamento NN devido

à troca de dois píons [ Roc 93], veri…cou-se explicitamente que, para gA = 1, os dois modelos

não-lineares são equivalentes. No caso gA 6= 1, a equivalência entre as duas abordagens requer

modi…cações na lagrangiana (2.171).

Em 1979, Weinberg [ Wei 79] postulou que a lagrangiana efetiva mais geral, que incluísse

todos os termos consistentes com analiticidade, unitariedade e simetrias da teoria, produziria via

regras de Feynman e numa dada ordem de teoria de perturbação a amplitude mais geral consistente

com as simetrias assumidas. Com isso, ele retirou a necessidade dos píons serem moles, estendendo

a teoria de campos efetiva para além da álgebra de correntes. O desenvolvimento mais rigoroso

dessa proposição para os mésons, realizado por Leutwyler em 1994 [ Leu 94], deu origem a moderna

teoria de perturbação quiral (ChPT). Recentemente ele estendeu a ChPT para os bárions [ BL 99].

2.6 Regras de Feynman

Na linguagem perturbativa, a amplitude de transição de um processo consiste na série mono-

tonicamente convergente

T = T (0) + T (1) + T (2) + : : :+ T (n) + : : : ; (2.173)

onde T (n) é a amplitude de ordem n, relacionada com um conjunto de diagramas, conhecidos como

diagramas de Feynman, que representa a dinâmica do processo nesta ordem. Esta amplitude é

dada, então, pela soma

T (n) = T
(n)
1 + T

(n)
2 + T

(n)
3 + : : :+ T (n)m ; (2.174)

onde T (n)m é a amplitude do diagrama m do conjunto de ordem n. No contexto da simetria quiral,

estes conjuntos são formados por grupos de diagramas de Feynman.

Os diagramas de Feynman são divididos em três componentes básicas: linhas externas, linhas

internas e vértices. Essas componentes são relacionadas às expressões matemáticas por meio de um

conjunto de prescrições no espaço dos momentos, denominadas regras de Feynman, que permitem

obter as amplitudes desses diagramas de uma forma prática e intuitiva.
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As linhas externas e internas representam, respectivamente, partículas reais e virtuais. As

partículas reais correspondem às soluções das equações de movimento e as virtuais às propagações

dessas soluções, sendo, por isso, chamadas também de propagadores. Em geral, as lagrangianas

livres são as mesmas em todos os modelos e isto também acontece com as expressões matemáticas

associadas às linhas externas e internas.

Os vértices representam as interações entre as partículas. Suas expressões matemáticas são

derivadas da lagrangiana de interação e, portanto, dependem do modelo empregado.

Neste trabalho, os píons são representados por linhas tracejadas e os nucleons, por linhas

contínuas.

1. Linhas Externas:

LM
1

2

¡
@¹Á ¢ @¹Á ¡ ¹2Á2

¢

bHH
HH

HH
j
k; a

1

b©© ©©
©©

*
k0; b

1

LÃ ; LN ¹Ã (i 6@ ¡m)Ã ; ¹N (i 6@ ¡m)N

bHHHjHH

p; s
us(p) =

1p
E +m

µ
E +m
¾ ¢ p

¶
Âs

b©©©*©©p0; s0
¹us

0
(p0) =

1p
E0 +m

Âys0 (E
0 +m;¡¾ ¢ p0)



40 2 Simetrias e Lagrangianas

2. Linhas Internas:

LM
1

2

¡
@¹Á ¢ @¹Á ¡ ¹2Á2

¢

b - b
k

i¢(k) =
i

k2 ¡ ¹2

LÃ ; LN ¹Ã (i 6@ ¡m)Ã ; ¹N (i 6@ ¡m)N

b - b
p

i S(p) =
i

6 p¡m ´ i
6 p+m
p2 ¡m2

3. Vértices:

LM
1

8f 2¼

¡
@¹Á

2 @¹Á2 ¡ ¹2Á4
¢

¡ i

f 2¼
f±ab±cd [(k + q) ¢ (k0 + q0) + ¹2]

b@@
@@

@@

I

¡¡
¡¡

¡¡

ª

¡¡
¡¡

¡¡

µ

@@
@@

@@

R

k; a

q; b

k0; c

q0; d

+ ±ac±bd [(k + k
0) ¢ (q + q0) + ¹2]

+ ±ad±bc [(k + q
0) ¢ (q + k0) + ¹2] g
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LÃ
gA
2f¼

¹Ã °¹°5 ¿ Ã ¢ @¹Á

b- -

6
k; a

¡ gA
2f¼

¿ a 6k °5

LÃ ¡ 1

4f 2¼
¹Ã °¹ ¿ Ã ¢ (Á ^ @¹Á)

b- -@@
@@

@@

I
¡¡

¡¡
¡¡

µk; a k0; b ¡ 1

4f 2¼
²abc ¿ c (6k¡6k0)

LÃ
gA
8f3¼

¹Ã °¹°5 ¿ Ã ¢ Á @¹Á
2

b- -@@
@@

@@

Ik; a 6

q; b

¡¡
¡¡

¡¡

µ q0; c ¡ gA
4f 3¼

[±cb¿a (6q+ 6q0) + ±ac¿ b (6q0¡6k) + ±ba¿ c (6q¡6k)] °5
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LN ¡ i g ¹N °5 ¿ N ¢ Á

b- -

6
k; a

g ¿ a °5

LN
g

2f¼
¹N N Á2

b- -@@
@@

@@

I
¡¡

¡¡
¡¡

µk; a k0; b i
m gA
f2¼

±ab

4. Loops:

bHH
JJ

­­
©© HH

JJ

­­
©©- -

6 ?

k; a

1

2!

R d4k

(2¼)4

b­­
©© HH

JJ

­­
©©HH

JJ

b- -

-

-

-

k; a

k0; b

k00; c

1

3!

R d4k

(2¼)4
R d4k0

(2¼)4



Capítulo 3

Processos Intermediários

A dinâmica da interação NN , mediada pela troca de píons virtuais não correlacionados, pode

ser analisada por meio de subprocessos básicos. As trocas de um, dois e três píons no espalhamento

NN são baseadas nas interações N ! ¼N , ¼N ! ¼N e ¼N ! ¼¼N . Já a produção de um píon

na interação NN devida às trocas de um e dois píons depende, respectivamente, das combinações

de N ! ¼N com ¼N ! ¼N e de ¼N ! ¼N com ¼N ! ¼¼N . Essas composições facilitam

os cálculos, pois as amplitudes desses processos intermediários são tomadas como subamplitudes e

usadas como vértices em regras de Feynman compostas.

Uma parte da dinâmica do processo ¼N ! ¼¼N está associada ao espalhamento ¼¼ elástico

e, por isso, é conveniente considerar também a amplitude deste espalhamento como sendo um vértice

efetivo nas regras de Feynman.

43
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3.1 Espalhamento Píon-Píon

O espalhamento de píons é o processo mais básico da QCD a baixas energias. Ele é ideal para

estudar o mecanismo de quebra espontânea da simetria quiral pois, como envolve somente bósons

de Goldstone pseudoescalares, espera-se que a expansão de sua amplitude convirja rapidamente.

O espalhamento ¼¼ elástico consiste no processo ¼a(k)¼b(q) ! ¼c(k
0)¼d(q0), onde os índices

romanos representam as terceiras componentes de isospin e os quadrimomentos obedecem à conser-

vação de energia-momento

k + q = k0 + q0 : (3.1)

A forma geral da amplitude de transição é

Tdcba = ±ab ±cdA(s) + ±ac ±bdA(t) + ±ad ±bcA(u) ; (3.2)

onde A é uma função escalar, dependente das variáveis de Mandelstam

s = (k + q)2 = (k0 + q0)2 ; t = (k ¡ k0)2 = (q0 ¡ q)2 ; u = (k ¡ q0)2 = (k0 ¡ q)2 ; (3.3)

com o vínculo s+ t+ u = 4¹2, para píons na camada de massa.

Uma vez que o momento angular e o isospin totais, J (= L) e I, são conservados, é conveniente

a análise dos dados experimentais em ondas parciais com isospin bem de…nido. A decomposição da

amplitude em ondas parciais permite expressá-la em termos de defasagens reais e, perto do limiar

(s »= 4¹2 e t »= u »= 0), em termos do comprimento de espalhamento e do alcance efetivo. A

conservação do isospin possibilita reescrever a amplitude no canal s como

Tdcba =
X

I=0;1;2

T I P I
dcba ; (3.4)

onde

P 0
dcba =

1

3
±ab±cd ; P 1

dcba =
1

2
(±ac±bd ¡ ±ad±bc) ; P 2

dcba =
1

2
(±ac±bd + ±ad±bc)¡

1

3
±ab±cd (3.5)

são os operadores de projeção de isospin e

T 0 = 3A(s) +A(t) +A(u) ; T 1 = A(t)¡ A(u) ; T 2 = A(t) +A(u) (3.6)

são as amplitudes para cada canal de isospin.
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½¼
¾»
¼¼

@@

@@
R

¡¡

¡¡
µ

¡¡

¡¡
µ

@@

@@
R

k; a

q; b

k0; c

q0; d

¼ r@@@@
@@
R

¡¡
¡¡

¡¡
µ

¡¡
¡¡

¡¡

µ

@@
@@

@@

R

k; a

q; b

k0; c

q0; d

Figura 3.1: Dinâmica do espalhamento ¼¼ para os modelos não-lineares no nível árvore.

Nos modelos quirais não-lineares, a dinâmica da interação ¼¼, em primeira ordem de per-

turbação, é descrita por apenas um diagrama de Feynamn do tipo árvore, o da …gura (3.1). A

amplitude resume-se ao vértice de quatro píons dado no capítulo 2,

Tdcba = ¡ 1

f2¼

©
±ab±cd

£
(¡ k ¡ q) ¢ (k0 + q0) + ¹2

¤
+ ±ac±bd

£
(¡ k + k0) ¢ (¡ q + q0) + ¹2

¤

+ ±ad±bc
£
(¡ k + q0) ¢ (¡ q + k0) + ¹2

¤ ª
: (3.7)

Usando as equações (3.1) e (3.3) na expressão (3.2), obtemos

A(s) =
1

f 2¼

¡
s¡ ¹2

¢
; A(t) =

1

f2¼

¡
t¡ ¹2

¢
e A(u) =

1

f 2¼

¡
u¡ ¹2

¢
: (3.8)

COMPORTAMENTO A BAIXAS ENERGIAS

A amplitude T I em primeira ordem, expressão (3.6) com (3.8), corresponde aos valores do

comprimento de espalhamento e alcance efetivo preditos por Weinberg para píons moles [ Wei 67],

a00 =
7

4
¹L ; b00 = 2¹L ; a20 = ¡ 1

2
¹L ; b20 = ¡¹L e a11 =

1

3
¹L ; (3.9)

onde

L
:
=

¹

8¼f 2¼
»= 0:089

¹
(3.10)

é o comprimento de espalhamento universal. Estes resultados reproduzem os da álgebra de corrente

[ Wei 66b], com apenas dois parâmetros livres, f¼ e ¹.

Na tabela (3.1), vemos que esses resultados são menores do que os valores experimentais,

principalmente para a onda S com isospin nulo (a00). Esses parâmetros são particularmente sensíveis
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à quebra explícita da simetria quiral na QCD, pois todos desaparecem no limite quiral (¹ ! 0). A

expansão quiral até segunda ordem, realizada por Gasser e Leutwyler [ GL 83b] [ GL 84], corrige o

valor de a00 em 25% e adiciona quatro novos parâmetros livres, por causa da não renormalizibilidade

da lagrangiana. Os trabalhos atuais em ChPT [ BGS 94] [ KMSF 96] [ BCEGS 97] [ Wan 97] en-

volvem mais seis parâmetros livres, decorrentes da expansão quiral em 2 loops, mas não obtem uma

correção signi…cativa. Resultados equivalentes são obtidos no programa de unitarização da álgebra

de correntes [ Bor 84] [ BBT 98].

Tabela 3.1: Parâmetros do limiar em unidades de ¹ [ BCEGS 97].

Árvore 1 Loop 2 Loops Experimento
ajuste 1 ajuste 2 [ KA 82]

a00 0:16 0:20 0:217 0:206 0:26§ 0:05
b00 0:18 0:25 0:275 0:249 0:25§ 0:03
a20 ¡ 0:045 ¡ 0:042 ¡ 0:0413 ¡ 0:0443 ¡ 0:028§ 0:012
b20 ¡ 0:091 ¡ 0:073 ¡ 0:072 ¡ 0:080 ¡ 0:082§ 0:008
a11 0:03 0:037 0:040 0:038 0:038§ 0:002
b11 0 0:0048 0:0079 0:0054 —–
a02 0 0:0018 0:0027 input 0:0017§ 0:003
a22 0 0:00021 0:00023 input 0:00013§ 0:0003

3.2 Espalhamento Píon-Nucleon

O espalhamento píon-nucleon (¼N) é dado pelo processo ¼a(k)N(p)! ¼b(k
0)N(p0), onde os

índices a e b representam o isospin dos píons e os quadrimomentos obedecem à relação de conservação

de energia-momento,

p+ k = p0 + k0 : (3.11)

As variáveis de Mandelstam deste espalhamento são

s = (p+ k)2 = (p0 + k0)2; t = (k ¡ k0)2 = (p0 ¡ p)2; u = (p¡ k0)2 = (p0 ¡ k)2: (3.12)

Além destas variáveis, é conveniente o uso das combinações antissimétrica

º =
s¡ u
4m

=
(p+ p0) ¢ (k + k0)

4m
(3.13)
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e simétrica

ºB =
2m2 ¡ s¡ u

4m
=
t¡ 2¹2
4m

= ¡ k ¢ k0
2m

: (3.14)

A amplitude de transição pode ser separada, quanto à troca dos índices a e b, em uma parte

simétrica T + e uma antissimétrica T ¡,

Tba = ±ab T
+ + i ²bac ¿ c T

¡ : (3.15)

A conservação do isospin total, por sua vez, produz

Tba = T 1=2(s; t; u) P̂
1=2
ba + T 3=2(s; t; u) P̂

3=2
ba ; (3.16)

onde

P̂
1=2
ba =

1

3
(±ba + i ²bac ¿ c) e P̂

3=2
ba =

1

3
(2±ba ¡ i ²bac ¿ c) (3.17)

são os operadores de projeção de isospin e

T 1=2(s; t; u) = T + + 2T ¡ e T 3=2(s; t; u) = T + ¡ T ¡ (3.18)

são as amplitudes nos canais de isospin.

As conservações de paridade e energia-momento, para nucleons na camada de massa, fornecem

a estrutura geral

T § = ¹u(p0)

·
A§ +

1

2
(6k0+ 6k)B§

¸
u(p) ; (3.19)

onde A§ e B§ são funções escalares das variáveis de Mandelstam. Pela decomposição de Gordon,

podemos reescrever as amplitudes T § na forma alternativa

T § = ¹u(p0)

·
D§ ¡ 1

4m
[6k0; 6k ]B§

¸
u(p) ; (3.20)

onde D§ = A§ + ºB§. A expressão (3.19) pode, também, ser escrita como

T§ =
Âyp
E0 +m

(E0 +m; ¡¾ ¢ p0)
µ
A§ + !B§ ¡¾ ¢ k B§
¾ ¢ k B§ A§ ¡ !B§

¶µ
E +m
¾ ¢ p

¶
Âp
E +m

: (3.21)

A conservação do momento angular total J (= L + S), neste caso, implica na existência

de duas amplitudes para cada autovalor de L, que descrevem os espalhamentos com e sem troca
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de sentido de spin do nucleon emergente, relativamente ao incidente. Com isso, as defasagens, os

comprimentos de espalhamento e os alcances efetivos são expressos em termos de l § 1=2.

Nos cálculos teóricos, as amplitudes invariantes A§ e B§ são determinadas a partir da

dinâmica do espalhamento. Em ordem mais baixa de perturbação e segundo os modelos quirais não-

lineares do capítulo 2, esta dinâmica é descrita pelos diagramas da …gura (3.2), que correspondem

à realização mínima da simetria nesta ordem.
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Figura 3.2: Dinâmica do espalhamento ¼N para os modelos não-lineares no nível árvore.

No modelo não-linear com acoplamento ¼N pseudovetorial (PV), temos

Tba =
g2A
4f 2¼

¹u

·
¡ ¿ b¿ a 6k0 6p+ 6k ¡m

s¡m2
6k ¡ ¿ a¿ b 6k 6p¡6k0 ¡m

u¡m2
6k0

¸
u

+
1

4f 2¼
¹u [¡ i ²abc¿ c (6k+ 6k0)]u : (3.22)

Simpli…cando a parte spinorial por meio da expressão (3.11) e da equação de Dirac, podemos

reescrever a amplitude como

Tba =

µ
mgA
f¼

¶2

¹u

·
±ba

µ
1

m
¡ 6k
s¡m2

+
6k

u¡m2

¶
+ i ²bac ¿ c

µ
¡ 6k
s¡m2

¡ 6k
u¡m2

¶¸
u

¡ g2A ¡ 1
2 f2¼

¹u [i ²bac ¿ c 6k] u : (3.23)

Nesta expressão, percebemos que os diagramas com propagadores nucleônicos no modelo PV contêm,

além das contribuições do pólo do nucleon, termos parecidos aos produzidos por diagramas de

contato.

O cálculo da amplitude ¼N no contexto do modelo com acoplamento PS é totalmente análogo

e produz um sanduíche spinorial idêntico ao primeiro da expressão (3.23), multiplicado por g2 ao

invés de (mgA=f¼)
2. Com a ajuda da relação de Goldberger-Treiman podemos, então, escrever

Tba =

µ
mgA
f¼

¶2
T

PS

ba

g2
+

¡
g2A ¡ 1

¢
±Tba : (3.24)
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O termo 1=m na parte isosescalar da expressão (3.23) corresponde a uma interação de contato

e, no modelo não-linear PS, é derivado da função f = (f 2¼¡Á2)1=2. Portanto, este termo representa a

assinatura da simetria quiral e, para estudar o seu papel em outras amplitudes, passamos a rotulá-lo

por um parâmetro, o ¾.

A comparação entre as expressões (3.23) e (3.15) fornece

A+=

µ
mgA
f¼

¶2 ¾

m
; B+ =

µ
mgA
f¼

¶2µ
¡ 1

s¡m2
+

1

u¡m2

¶
=
mg2A
f 2¼

º

º2B ¡ º2 ;

(3.25)

A¡=0 ; B¡ =

µ
mgA
f¼

¶2µ
¡ 1

s¡m2
¡ 1

u¡m2

¶
¡ g2A ¡ 1

2f2¼
=
mg2A
f2¼

ºB
º2B ¡ º2 ¡ g2A ¡ 1

2f 2¼
:

COMPORTAMENTO A BAIXAS ENERGIAS

Considerando os píons na camada de massa e tomando o referencial no centro de massa do

sistema (cm), temos

p
cm
= (E;k) ; k

cm
= (!;¡k) ; p0

cm
= (E;k0) ; k0

cm
= (!;¡k0) (3.26)

e

s = (E + !)2 ; t = ¡ 2 jk j2 (1¡ x) ; u = ¡ s¡ t+ 2m2 + 2¹2; (3.27)

onde x := cos µ = k ¢ k0=k2.

Neste caso, é conveniente escrever a expressão (3.21) na forma

T§ = 8¼
p
s

¡
Ây F§ Â

¢
; com F§ = G§ + i¾ ¢ n̂ H§ ; (3.28)

onde

G§ = (E +m)
£
A§ +

¡p
s¡m

¢
B§

¤
¡ (E ¡m)

£
A§ ¡

¡p
s+m

¢
B§

¤
cos µ ;

(3.29)

H§ = ¡ (E ¡m)
£
A§ ¡

¡p
s +m

¢
B§

¤
sin µ

e n̂ = (k0 ^ k) = (k2 sin µ).
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O limiar (k0 ! 0), no espalhamento ¼N , corresponde a
p
s »= (m+ ¹), º »= ¹ e ºB »=

¡¹2=2m. Neste limite, temos que H§ = 0,

G+ =

µ
mgA
f¼

¶2

2

µ
¾ ¡ 4m2

4m2 ¡ ¹2
¶

e G¡ =

µ
mgA
f¼

¶2
¹

m

µ
4m2

4m2 ¡ ¹2 ¡ 1 + 1

g2A

¶
: (3.30)

A expansão de G§, em torno de " = ¹=m, fornece

G+ =

µ
mgA
f¼

¶2 ·
2 (¾ ¡ 1)¡ 1

2
"2 + : : :

¸
e G¡ =

µ
mgA
f¼

¶2 ·
1

g2A
"+

1

4
"3 + : : :

¸
: (3.31)

Estes resultados indicam que, no limiar, a ausência da simetria quiral, representada por ¾ = 0,

produz um termo dominante em G+ que é cerca de 200 vezes maior do que o da ordem seguinte.

Por outro lado, a simetria não afeta G¡ e H§ no limiar.

Os valores do comprimento de espalhamento e do alcance efetivo para o modelo PV no nível

árvore com ¾ = 1, derivados de G§ no limiar, e um loop na abordagem HBChPT, dados na refer-

ência [ FMS 98], são apresentados na tabela (3.2). Os três conjuntos de valores empíricos deve-se à

dependência de hipóteses teóricas usadas nas análises dos dados experimentais. Além de princípios

teóricos gerais, como causalidade, unitariedade, invariâncias de Lorentz, re‡exão temporal, conju-

gação de carga e paridade, empregam-se também a analiticidade de Mandelstam e a invariância de

isospin.

Nesta tabela, é possível constatar que as previsões para o canal positivo são ruins, mas

que os resultados podem melhorar sensivelmente com um loop piônico ou, simplesmente, com a

inclusão do termo sigma e das ressonâncias ¢ e ½ no nível árvore [ Men 85]. O papel da simetria

quiral é fundamental no espalhamento ¼N , pois a sua ausência total implicaria na inexistência do

diagrama de contato do modelo PS e, consequentemente, em A+ = 0, mudando o comprimento de

espalhamento por um fator de 200.

A informação experimental do espalhamento ¼N pode ser extendida para a região abaixo do

limiar via relações de dispersão. Usando as propriedades de unitariedade, analiticidade e simetria

de cruzamento (s$ u) da amplitude de espalhamento, as partes reais e imaginárias das amplitudes

invariantes A§ e B§ podem ser relacionadas pelo teorema de Cauchy,
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Tabela 3.2: Parâmetros do limiar das ondas S e P em unidades de 10¡2 ¹¡1 [ FMS 98].

Árvore 1 Loop Experimento Experimento Experimento
ajuste 1 ajuste 2 ajuste 3 [ KA 85] [ Mat 97] [ SP 98]

a+0 ¡ 1:03 ¡ 0:97 0:49 0:25 ¡ 0:83 0:41§ 0:09 0:0§ 0:1
b+0 1:20 ¡ 4:77 ¡ 5:23 ¡ 6:33 ¡ 4:40 ¡ 4:46 ¡ 4:83§ 0:10
a¡0 0:08 9:05 7:72 8:72 9:17 7:73§ 0:06 8:83§ 0:07
b¡0 ¡ 2:10 1:26 1:62 0:82 0:77 1:56 0:07§ 0:07
a+1¡ ¡ 10:57 ¡ 5:52 ¡ 5:38 ¡ 4:90 ¡ 5:53 ¡ 5:46§ 0:10 ¡ 5:33§ 0:17
a+1+ 5:29 13:97 13:66 14:21 13:27 13:13§ 0:13 13:6§ 0:1
a¡1¡ ¡ 4:65 ¡ 1:36 ¡ 1:25 ¡ 0:98 ¡ 1:13 ¡ 1:19§ 0:08 ¡ 1:00§ 0:10
a¡1+ ¡ 4:66 ¡ 8:44 ¡ 8:40 ¡ 8:16 ¡ 8:13 ¡ 8:22§ 0:07 ¡ 7:47§ 0:13

ReA§(º; t) =
1

¼
P

Z 1

ºth

dº 0 ImA§(º0; t)

µ
1

º 0 ¡ º § 1

º0 + º

¶

(3.32)

ReB§(º; t) =
g2

2m

µ
1

ºB ¡ º ¨ 1

ºB + º

¶
+
1

¼
P

Z 1

ºth

dº0 ImB§(º0; t)

µ
1

º 0 ¡ º ¨ 1

º 0 + º

¶
;

onde ºth = ¹ + t= (4m). Os integrandos podem ser calculados através dos dados experimentais

disponíveis, pois o intervalo de integração está restrito ao domínio físico de º (º > ºth). Como

essas relações de dispersão são válidas para quaisquer º e t, as amplitudes invariantes podem ser

extrapoladas para o domínio não físico de º (0 < º < ºth) [ Hoh 83]. Retirando das amplitudes T§

as contribuições do pólo do nucleon T§N , obtemos amplitudes restantes T§R que variam suavemente

nessa região sublimiar, isto é,

T§ = T§N + T§R ; (3.33)

com

T§N = ¹u

·
A§N +

1

2
(6k0+ 6k)B§N

¸
u e T§R = ¹u

·
A§R +

1

2
(6k0+ 6k)B§R

¸
u ; (3.34)

de modo que A§R e B§R possam ser expandidas em torno do ponto da simetria de cruzamento

(º = t = 0). Devido à simetria de cruzamento, essas expansões podem ser escritas como

X(º; t) =
X

m;n

xmn º
2m tn ; para X 2

½
A+R ;

A¡R
º
;
B+R
º
; B¡R

¾
: (3.35)

Os valores empíricos dos coe…cientes xmn, obtidos por Höhler, Jakob e Strauss [ HJS 72], são mostra-

dos na tabela (3.3).
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Tabela 3.3: Coe…cientes HJS em unidades de ¹, com g = 13:4, ¹ = 139:57 MeV e m = 6:7227¹.

(m;n) (0; 0) (0; 1) (0; 2) (1; 0) (1; 1) (2; 0)
a+mn ¡1:46§0:10 1:14§0:02 0:036§0:003 4:66 ¡ 0:01 1:20§0:02
b+mn ¡3:54§0:06 0:18§0:01 ¡0:01 ¡1:00§0:02 0:08§0:01 ¡0:31§0:02
a¡mn ¡8:83§0:10 ¡0:37§0:02 ¡0:015§0:002 ¡1:25§0:05 0:013§0:006 ¡0:33§0:02
b¡mn 8:37§0:10 0:24§0:01 0:025§0:002 1:08§0:05 ¡0:055§0:005 0:29§0:02

3.3 Produção de Um Píon

A produção de um píon no espalhamento ¼N consiste no processo ¼a(k)N(p) ! ¼b(q)

¼c(q
0)N(p0), onde o isospin dos píons são representados pelos índices romanos e os quadrimomentos

são relacionados por

p+ k = p0 + q + q0 : (3.36)

Nesse processo, existem nove variáveis de Mandelstam,

s = (p + k)2 ; s0 = (p0 + q)2 ; s00 = (p0 + q0)2 ;

t = (p0 ¡ p)2 ; t0 = (q ¡ k)2 ; t00 = (q0 ¡ k)2 ;

u = (p0 ¡ k)2 ; u0 = (p¡ q)2 ; u00 = (p¡ q0)2 :

(3.37)

Partindo das conservações de paridade e energia-momento, a amplitude de transição tem a

seguinte estrutura 1 :

Tcba = ±bc¿ a TA + ±ac¿ b TB + ±ba¿ c TC ¡ i ²cba TD ; (3.38)

com

Tk = i [¹u(p0) °5 (Ak+ 6q Bk+ 6q0Ck+ 6q 6q0Dk) u(p)] ; (3.39)

onde os coe…cientes Ak, Bk, Ck e Dk são funções escalares das variáveis de Mandelstam. A re-

lação das amplitudes Tk com os processos especí…cos é dada na tabela (3.4). Cinco são acessíveis

experimentalmente, mas somente quatro canais de isospin são independentes.

1Esta estrutura é idêntica às das referências [ Ber 92] e [ JM 97].
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Tabela 3.4: Processos ¼N ! ¼¼N especí…cos com o isospin
total do sistema ¼N inicial e o isospin do sistema ¼¼ …nal.

Reação I¼aN I¼b ¼c Amplitude
¼¡p ! ¼+¼¡n 1=2 0 T =

p
2 (TA + TB)

¼¡p ! ¼0¼0n 1=2 0 T =
p
2TA

¼¡p ! ¼0¼¡p 1=2 1 T = TB + TD
¼+p ! ¼+¼0p 3=2 1 T = TC + TD
¼+p ! ¼+¼+n 3=2 2 T =

p
2 (TB + TC)

Em ordem mais baixa de perturbação, a realização mínima da simetria quiral no modelo

PV é representada pelos quatorze diagramas do tipo árvore indicados na …gura (3.3). No modelo

não-linear PS, temos os mesmos diagramas exceto o último, o de contato de três píons.
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Figura 3.3: Dinâmica do processo ¼N ! ¼¼N para o modelo não-linear PV no nível árvore.

O primeiro diagrama corresponde à contribução do pólo do píon,

T ¼
cba = i

gA
2f¼

T ¼¼
dcba

t¡ ¹2 ¹u °5
£
¿d 6¹k

¤
u ; (3.40)

onde

T ¼¼
dcba =

1

f2¼

n
±ad±bc

h
(q + q0)

2 ¡ ¹2
i
+ ±ac±bd

£
(q0 ¡ k)2 ¡ ¹2

¤
+ ±ab±cd

£
(q ¡ k)2 ¡ ¹2

¤o
: (3.41)
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Substituindo o quadrimomento ¹k por (p ¡ p0) na amplitude T ¼
cba e usando a equação de Dirac,

obtemos

T ¼
cba = i

mgA
f 3¼

½
±bc¿ a

h
(q + q0)2 ¡ ¹2

i
+ ±ac¿ b

£
(q0 ¡ k)2 ¡ ¹2

¤
+ ±ab¿ c

£
(q ¡ k)2 ¡ ¹2

¤¾ 1

t¡ ¹2 ¹u °5 u :
(3.42)

Este resultado relaciona-se ao do modelo não-linear PS por

T ¼
cba =

µ
mgA
f¼

¶
T ¼ PS

cba

g
: (3.43)

Baseados apenas na unitariedade, Dashen e Weinstein [ DW 69] mostraram que, no canal t,

o resíduo do termo do pólo do píon deve fatorar no produto da amplitude do espalhamento ¼¼ na

camada de massa pela função do vértice ¼¼¼NN . Com isso, a amplitude T ¼
cba pode ser relacionada

diretamente às defasagens do espalhamento ¼¼, apesar do píon trocado no primeiro diagrama da

…gura (3.3) estar fora da camada de massa.

O cálculo dos demais diagramas produz

¹Tcba = i
g3A
8f 3¼

¹u °5

·
¡ ¿ c¿ b¿a 6q0

6p0+ 6q0+m
s00 ¡m2

6q6p+ 6k ¡m
s¡m2

6k ¡ ¿ c¿ a¿ b 6q0
6p0+ 6q0+m
s00 ¡m2

6k6p¡6q ¡m
u0 ¡m2

6q

¡ ¿ a¿ c¿ b 6k
6p0¡6k +m
u¡m2

6q06p¡6q ¡m
u0 ¡m2

6q ¡ ¿ b¿ c¿a 6q
6p0+ 6q +m
s0 ¡m2

6q06p+ 6k ¡m
s¡m2

6k

¡ ¿ b¿a¿ c 6q
6p0+ 6q +m
s0 ¡m2

6k6p¡6q0¡m
u00 ¡m2

6q0 ¡ ¿ a¿ b¿ c 6k
6p0¡6k +m
u¡m2

6q6p¡6q0¡m
u00 ¡m2

6q0
¸
u

+ i
gA
8f 3¼

¹u °5

·
¡ i ²abd¿ c¿d 6q0

6p0+ 6q0+m
s00 ¡m2

(6k+ 6q)¡ i ²abd¿d¿ c (6k+ 6q) 6p¡6q0¡m
u00 ¡m2

6q0

¡ i ²acd¿ b¿d 6q
6p0+ 6q +m
s0 ¡m2

(6k+ 6q0)¡ i ²acd¿d¿ b (6k+ 6q0) 6p¡6q ¡m
u0 ¡m2

6q

¡ i ²bcd¿a¿d 6k
6p0¡6k +m
u¡m2

(6q¡6q0)¡ i ²bcd¿ d¿ a (6q¡6q0) 6p+ 6k ¡m
s¡m2

6k

¡ 2±cb¿a (6q+ 6q0)¡ 2±ac¿ b (6q0¡6k)¡ 2±ba¿ c (6q¡6k)
i
u : (3.44)

A amplitude ¹Tcba pode ser simpli…cada através do cancelamento entre os quadrimomentos

presentes nos vértices ¼N e os propagadores nucleônicos. Usando a equação (3.36) no vértice central,
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a equação de Dirac e a relação de anticomutação entre as matrizes °¹ e °5, obtemos

¹Tcba = ¡ i
µ
mgA
f¼

¶3

¹u °5

·
±bc¿ a

µ 6k=m
s¡m2

+
6k=m
u¡m2

+
6q0 6k

(s00 ¡m2)(s¡m2)
+

6q0 6q
(s00 ¡m2)(u0 ¡m2)

+
6k 6q

(u¡m2)(u0 ¡m2)
+

6q 6k
(s0 ¡m2)(s¡m2)

+
6q 6q0

(s0 ¡m2)(u00 ¡m2)
+

6k 6q0
(u¡m2)(u00 ¡m2)

¶

+ ±ac¿ b

µ
¡ 6q=m
s0 ¡m2

¡ 6q=m
u0 ¡m2

¡ 6q0 6k
(s00 ¡m2)(s¡m2)

¡ 6q0 6q
(s00 ¡m2)(u0 ¡m2)

+
6k 6q

(u¡m2)(u0 ¡m2)
+

6q 6k
(s0 ¡m2)(s¡m2)

¡ 6q 6q0
(s0 ¡m2)(u00 ¡m2)

¡ 6k 6q0
(u¡m2)(u00 ¡m2)

¶

+ ±ab¿ c

µ
¡ 6q0=m
s00 ¡m2

¡ 6q0=m
u00 ¡m2

+
6q0 6k

(s00 ¡m2)(s¡m2)
¡ 6q0 6q
(s00 ¡m2)(u0 ¡m2)

¡ 6k 6q
(u¡m2)(u0 ¡m2)

¡ 6q 6k
(s0 ¡m2)(s¡m2)

¡ 6q 6q0
(s0 ¡m2)(u00 ¡m2)

+
6k 6q0

(u¡m2)(u00 ¡m2)

¶

+ i ²cba

µ 6q0 6k
(s00 ¡m2)(s¡m2)

+
6q0 6q

(s00 ¡m2)(u0 ¡m2)
+

6k 6q
(u¡m2)(u0 ¡m2)

¡ 6q 6k
(s0 ¡m2)(s¡m2)

¡ 6q 6q0
(s0 ¡m2)(u00 ¡m2)

¡ 6k 6q0
(u¡m2)(u00 ¡m2)

¶¸
u

¡ i
¡
g2A ¡ 1

¢ mgA
2f 3¼

¹u °5

·
±bc¿ a

µ 6q
m
+

6q0
m
+

6q 6q0
s0 ¡m2

+
6q0 6q

u0 ¡m2
+

6q0 6q
s00 ¡m2

+
6q 6q0

u00 ¡m2

¶

+ ±ac¿ b

µ
¡ 1¡ 6q

m
+

6q 6k
s¡m2

¡ 6k 6q0
u¡m2

¡ 6q0 6q
s00 ¡m2

¡ 6q 6q0
u00 ¡m2

¶

+ ±ab¿ c

µ
¡ 1¡ 6q0

m
¡ 6q 6k
s¡m2

+
6k 6q0
u¡m2

¡ 6q 6q0
s0 ¡m2

¡ 6q0 6q
u0 ¡m2

¶

+ i ²cba

µ
1¡ 6q 6k

s¡m2
¡ 6k 6q0
u¡m2

¡ 6q 6q0
s0 ¡m2

+
6q0 6q

u0 ¡m2
+

6q0 6q
s00 ¡m2

¡ 6q 6q0
u00 ¡m2

¶¸
u : (3.45)

O termo proporcional a (mgA=f¼)
3 corresponde à amplitude do modelo não-linear PS, com (mgA=f¼)

3

no lugar de g3. Assim, temos

¹Tcba =

µ
mgA
f¼

¶3 ¹T
PS

cba

g3
+

¡
g2A ¡ 1

¢
±Tcba : (3.46)

No modelo PS, os termos provenientes dos diagramas com o vértice ¼¼NN , derivado da

função f = (f2¼ ¡ Á2)1=2, correspondem à assinatura da simetria quiral e, como na seção anterior,
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são rotulados com ¾. Com isso, os coe…cientes dinâmicos da equação (3.39) podem ser expressos

na forma compacta

A¼
A;B;C;D =

mgA
f3¼

"
(+1;0;0;0) (q + q

0)2 ¡ ¹2
t¡ ¹2 + (0;+1;0;0) (q

0 ¡ k)2 ¡ ¹2
t¡ ¹2 + (0;0;+1;0) (q ¡ k)2 ¡ ¹2

t¡ ¹2

#
;

B ¼
A;B;C;D = C

¼
A;B;C;D = D ¼

A;B;C;D = 0 (3.47)

e

¹AA;B;C;D =

µ
mgA
f¼

¶3 ·
(+2;0;0;0)

s¡m2
+

(+2;0;0;0)

u¡m2
+

(¡1;¡1;+1;+1)(q
2+ 2q ¢p0)

(s¡m2) (s0 ¡m2)
+

(¡1;¡1;+1;¡1)[q
2¡ 2q ¢(p¡q0)]

(u¡m2) (u0 ¡m2)

+
(¡1;+1;¡1;¡1) [q

0 2 + 2q0 ¢(p0+ q)]
(s¡m2) (s00 ¡m2)

+
(¡1;+1;¡1;+1) (q

0 2 ¡ 2q0 ¢p)
(u¡m2) (u00 ¡m2)

+
(¡1;+1;+1;¡1) (2q ¢q0)
(s00 ¡m2) (u0 ¡m2)

¸

¡
¡
g2A ¡ 1

¢ mgA
2f3¼

·
(0;¡1;¡1;+1) +

(0;+1;¡1;¡1) (q2 + 2q ¢p0)
s¡m2

+
(0;¡1;+1;¡1) (q0 2 ¡ 2q0 ¢p)

u¡m2

+
(+1;0;¡1;+1) (2q ¢q0)

u0 ¡m2
+

(+1;¡1;0;+1) (2q ¢q0)
s00 ¡m2

¸
;

¹BA;B;C;D =

µ
mgA
f¼

¶3
¾

m

·
(¡1;0;0;0)
s¡m2

+
(¡1;0;0;0)
u¡m2

+
(0;+1;0;0)

s0 ¡m2
+

(0;+1;0;0)

u0 ¡m2

¸
¡

¡
g2A ¡ 1

¢ mgA
2f 3¼

h
(+1;¡1;0;0)
m

i
;

¹CA;B;C;D =

µ
mgA
f¼

¶3
¾

m

·
(¡1;0;0;0)
s¡m2

+
(¡1;0;0;0)
u¡m2

+
(0;0;+1;0)

s00 ¡m2
+

(0;0;+1;0)

u00 ¡m2

¸
¡

¡
g2A ¡ 1

¢ mgA
2f 3¼

h
(+1;0;¡1;0)
m

i
;

¹DA;B;C;D =

µ
mgA
f¼

¶3 ·
(¡1;¡1;+1;+1)

(s¡m2) (s0 ¡m2)
+

(+1;¡1;+1;+1)
(s¡m2) (s00 ¡m2)

+
(+1;+1;¡1;+1)

(u¡m2) (u0 ¡m2)

+
(¡1;+1;¡1;+1)

(u¡m2) (u00 ¡m2)
+

(+1;¡1;¡1;+1)
(s00 ¡m2) (u0 ¡m2)

+
(¡1;+1;+1;+1)

(s0 ¡m2) (u00 ¡m2)

¸

+
¡
g2A ¡ 1

¢ mgA
2f3¼

·
(0;¡1;+1;+1)
s¡m2

+
(0;+1;¡1;+1)
u¡m2

+
(¡1;0;+1;+1)
s0 ¡m2

+
(+1;0;¡1;+1)
u0 ¡m2

+
(+1;¡1;0;+1)
s00 ¡m2

+
(¡1;+1;0;+1)
u00 ¡m2

¸
:

(3.48)

Como podemos ver, somente os coe…cientes ¹BA;B;C;D e ¹CA;B;C;D estão relacionadas com a assinatura

da simetria quiral.
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APROXIMAÇÃO DE OLSSON E TURNER

No contexto da lagrangiana não-linear PV, Olsson e Turner [ OT 68] [ OT 69] [ OT 77]

[ OMKB 95] mostraram que, próximo do limiar, a contribuição dominante de ¹Tcba vem do diagrama

de contato de três píons, o último da …gura (3.3). Este diagrama de contato gera a amplitude

T ctcba = ¡ i gA
4f 3¼

¹u °5

h
±cb¿ a (6q+ 6q0) + ±ac¿ b (2m¡6q) + ±ba¿ c (2m¡6q0)

i
u ; (3.49)

última linha da equação (3.44), que corresponde aos coe…cientes dinâmicos

ActA;B;C;D =
mgA
f 3¼

(0;¡1;¡1;0)
2

; BctA;B;C;D =
gA
f3¼

(¡1;+1;0;0)
4

; CctA;B;C;D =
gA
f 3¼

(¡1;0;+1;0)
4

; Dct
A;B;C;D = 0

(3.50)
muito mais simples do que os coe…cientes (3.48).

Usando a equação (3.39), obtemos as contribuições dominantes das amplitudes de isospin

T OT
A;B;C;D = T ¼A;B;C;D + T ctA;B;C;D ; (3.51)

onde

T ¼A = i
mgA
f3¼

·
1 +

k2 + 2 k ¢(p¡ p0)
t¡ ¹2

¸
[¹u °5 u] ; (3.52)

T ¼B = i
mgA
f3¼

·
1 +

q2 ¡ 2 q ¢(p¡ p0)
t¡ ¹2

¸
[¹u °5 u] ; (3.53)

T ¼C = i
mgA
f3¼

·
1 +

q0 2 ¡ 2 q0 ¢(p¡ p0)
t¡ ¹2

¸
[¹u °5 u] ; (3.54)

T ¼D = 0 (3.55)

e

T ctA = ¡ i mgA
f 3¼

1

4m
[¹u °5 (6q+ 6q0) u] ; (3.56)

T ctB = ¡ i mgA
f 3¼

½
1

2
[¹u °5 u]¡

1

4m
[¹u °5 6q u]

¾
; (3.57)

T ctC = ¡ i mgA
f 3¼

½
1

2
[¹u °5 u]¡

1

4m
[¹u °5 6q0 u]

¾
; (3.58)

T ctD = 0 : (3.59)
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COMPORTAMENTO A BAIXAS ENERGIAS

Se considerarmos os píons na camada de massa, a produção de um píon tem um limiar de

energia para ocorrer. No centro de massa (cm) do sistema, este limiar corresponde a

p
cm
= (E;k) ; k

cm
= (!;¡k) ; p0

cm
= (m; 0) ; q

cm
= (¹; 0) ; q0

cm
= (¹; 0) (3.60)

e

s = m2 + 4¹ (¹+m) ; s0 = s00 = m2 + ¹ (¹+ 2m) ;

t = ¹2 + 4¹ (¹¡ !) ; t0 = t00 = ¹2 + ¹ (¹¡ 2!) ;

u = m2 + 4¹ (¹¡ E) ; u0 = u00 = m2 + 2 (¹+m) (¹¡ !) ;

(3.61)

onde

! = ¹
4m+ 5¹

2m+ 4¹
e E = m+ 2¹¡ ! : (3.62)

Neste limite, devemos ter TB = TC e TD = 0. Logo,

Tcba = ±bc¿ a TA + (±ac¿ b + ±ba¿ c) TB ; (3.63)

onde

Tk = i ¹u(0) °5

n£
Ak + ¹

2Dk
¤
+ °0 ¹ [Bk + Ck]

o
u(k) : (3.64)

Como

¡ ¹u(0) °5 °0 u(k) = ¹u(0) °5 u(k) =

r
2m

E +m
Ây (¾ ¢ k) Â (3.65)

então,

Tk = i Ây (¾ ¢ k) Â Lk ; (3.66)

onde

Lk =
n£
Ak + ¹

2Dk
¤
¡ ¹ [Bk + Ck]

o r
2m

E +m
(3.67)

são as amplitudes do limiar.

Essas amplitudes estão relacionadas às da referência [ BKM 94] por 2

D1 =
LB
2m

e D2 =
LA
2m

(3.68)

2O fator 2m é devido à normalização empregada.
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e estas, por sua vez, às amplitudes mais usuais A2I¼N I¼¼ por

A32 =
p
10 D1 e A10 = ¡ 2D1 ¡ 3D2 : (3.69)

No limiar e no centro de massa do sistema, os coe…cientes dinâmicos são dados por

A¼
A;B;C;D =

g

f 2¼

·
(+3;¡1;¡1;0) ¹

4 (¹¡ !) +
(0;+1;+1;0)

2

¸
; B ¼

A;B;C;D = C ¼
A;B;C;D = D ¼

A;B;C;D = 0

(3.70)

e

¹AA;B;C;D =

µ
mgA
f¼

¶3 ·
(+1;0;0;0)

2¹ (¹¡ E) +
(¡1;+1;¡1;¡1)

2 (¹+m) (¹+ 2m)
+

(¡1;0;0;0)
2 (¹+m) (¹¡ !)

+
(0;¡1;+1;¡1) ¹

4 (¹+m) (¹¡ !) (¹¡ E) +
(¡1;+1;+1;¡1) ¹

(¹+m) (¹+ 2m) (¹¡ !)

¸

¡
¡
g2A ¡ 1

¢ mgA
2f 3¼

·
(0;¡1;¡1;0) +

(0;¡1;+1;+1) ¹

4 (¹+m)
+

(0;+1;¡1;+1) ¹

4 (¹¡ E) +
(+2;¡2;0;+2) ¹

(¹+ 2m)
+

(+2;0;¡2;+2) ¹
2

2 (¹+m)(¹¡ !)

¸
;

¹BA;B;C;D + ¹CA;B;C;D =

µ
mgA
f¼

¶3 ¾

m

·
(¡1;0;0;0)

2¹ (¹+m)
+

(¡1;0;0;0)
2¹ (¹¡ E) +

(0;+1;+1;0)

¹ (¹+ 2m)
+

(0;+1;+1;0)

2 (¹+m) (¹¡ !)

¸

¡
¡
g2A ¡ 1

¢ mgA
2f 3¼

h
(+2;¡1;¡1;0)

m

i
;

¹DA;B;C;D =

µ
mgA
f¼

¶3 ·
(0;¡1;+1;+1)

2¹2(¹+m)(¹+2m)
+

(0;+1;¡1;+1)
4¹(¹+m)(¹¡!)(¹¡E) +

(0;0;0;+1)

¹(¹+m)(¹+2m)(¹¡!)

¸

¡
¡
g2A ¡ 1

¢ mgA
2f 3¼

·
(0;+1;¡1;¡1)
4¹ (¹+m)

+
(0;¡1;+1;¡1)
4¹ (¹¡E) +

(0;+1;¡1;¡2)
¹ (¹+ 2m)

+
(0;¡1;+1;¡2)

2 (¹+m) (¹¡ !)

¸
: (3.71)

Através da expressão (3.67), obtemos

L¼A;B;C;D =
mgA
f3¼

·
(+3;¡1;¡1;0) ¹

4 (¹¡ !) +
(0;+1;+1;0)

2

¸r
2m

E +m
(3.72)



60 3 Processos Intermediários

e

¹LA;B;C;D =

µ
mgA
f¼

¶3 ·
(+1;0;0;0)

2¹(¹¡E) +
(¡1;0;0;0)

2(¹+m)(¹+ 2m)
+

(¡1;0;0;0)
2(¹+m)(¹¡!) +

(¡1;+1;+1;0) ¹

(¹+m)(¹+2m)(¹¡!)

+
¾

m

µ
(+1;0;0;0)

2 (¹+m)
+

(+1;0;0;0)

2 (¹¡ E) +
(0;¡1;¡1;0)
(¹+ 2m)

+
(0;¡1;¡1;0) ¹

2 (¹+m)(¹¡ !)

¶¸r
2m

E +m
(3.73)

¡
¡
g2A ¡ 1

¢ mgA
2f 3¼

·
(0;¡1;¡1;0) +

(¡2;+1;+1;0) ¹

m
+

(+2;¡1;¡1;0) ¹

(¹+ 2m)
+

(+2;¡1;¡1;0) ¹
2

2(¹+m)(¹¡ !)

¸r
2m

E +m
:

Expandindo estes resultados em torno de " = ¹=m, temos

L¼A=¡ mgA
4f 3¼

·
3 +

9

2
"¡ 27

8
"2 + : : :

¸
;

(3.74)

L¼B=
mgA
4f3¼

·
3 +

3

2
"¡ 15

8
"2 + : : :

¸

e

¹LA=¡
µ
mgA
f¼

¶3
1

4m2

£
4¾ "+ (3¡ 3¾) "2 + : : :

¤
+

¡
g2A ¡ 1

¢ mgA
4f3¼

£
4"+ 2"2 + : : :

¤
;

(3.75)

¹LB=¡
µ
mgA
f¼

¶3
1

4m2

·
2¡ 2¾ "+

µ
3¾ ¡ 13

4

¶
"2 + : : :

¸
+

¡
g2A ¡ 1

¢ mgA
4f3¼

·
2¡ 2"¡ 7

4
"2 + : : :

¸
:

Logo,

LA
2m

= ¡ gA
8f 3¼

½
3 +

·
17

2
¡ g2A (1¡ ¾)

¸
"¡

·
11

8
¡ g2A (1¡ 3¾)

¸
"2 + : : :

¾
(3.76)

e

LB
2m

=
gA
8f3¼

½
1 +

·
7

2
¡ 2g2A (1¡ ¾)

¸
"¡ 1

2

·
1

4
¡ g2A (3¡ 6¾)

¸
"2 + : : :

¾
: (3.77)

Este resultado, com ¾ = 1, coincide com as predições no nível árvore de ChPT [ Ber 92] e HBChPT

[ BKM 94]-[ BKM 95b],

D1 =
gA
8f3¼

·
1 +

7

2
"+ : : :

¸
e D2 = ¡ gA

8f 3¼

·
3 +

17

2
"+ : : :

¸
: (3.78)
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Uma lagrangiana sem simetria quiral, contendo apenas uma interação ¼N pseudoescalar,

implicaria na ausência dos diagramas com apenas um propagador nucleônico, isto é, sobrariam

o diagrama com propagador piônico e os com dois propagadores nucleônicos. Esta possibilidade,

representada por ¾ = 0, produziria

D1 =
gA
8f 3¼

·
1 +

µ
7

2
¡ 2g2A

¶
"+ : : :

¸

¾=0

e D2 = ¡ gA
8f3¼

·
3 +

µ
17

2
¡ g2A

¶
"+ : : :

¸

¾=0

; (3.79)

indicando que os termos dominantes independem da simetria quiral. Portanto, na produção de

píons, a simetria quiral não tem um papel tão relevante quanto no caso do espalhamento ¼N .

No limiar, os canais com I¼
b
¼c = 1 da tabela (3.4) desaparecem, pois os píons produzidos

estão num estado s, que resulta em I¼
b
¼c par. Assim, os valores empíricos de D1 e D2 são obtidos

do primeiro e último processos dessa tabela,

T¼¡p!¼+¼¡n = i 2m
p
2 ¾ ¢k D1 e T¼+p!¼+¼+n = i m

p
2 ¾ ¢k (D1 +D2) : (3.80)

Os resultados numéricos para as subamplitudes, tabela (3.5), mostram que as predições do modelo

quiral mínimo no nível árvore estão próximas dos valores empíricos [ BL 91], principalmente para

D1. A correção de um loop e a inclusão da excitação Roper 3, realizada com HBChPT [ BKM 95b],

melhorou D2 sem alterar D1.

Tabela 3.5: Amplitudes D1 e D2 em unidades de ¹¡3.

Árvore (¾ = 0) Árvore (¾ = 1) 1 Loop+N¤ Experimento
D¼
1 1:81 1:81 ¡ ¡
¹D1 ¡ 1:22 ¡ 0:96 ¡ ¡
D1 0:59 0:85 0:94§ 0:08 0:80§ 0:04
D¼
2 ¡ 2:06 ¡ 2:06 ¡ ¡
¹D2 ¡ 0:19 ¡ 0:33 ¡ ¡
D2 ¡ 2:25 ¡ 2:39 ¡ 3:21§ 0:37 ¡ 3:20§ 0:13

É importante comparar estas predições com as de Olsson e Turner, que são muito mais

simples. Neste modelo, a contribuição dominante da expressão (3.73) é dada por

LctA;B;C;D =
mgA
4f 3¼

h
(0;¡2;¡2;0) +

(+2;¡1;¡1;0) ¹

m

i r
2m

E +m
; (3.81)

3Outras excitações nucleônicas e as trocas mesônicas desaparecem no limiar.
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cuja expansão em torno de " = ¹=m produz

LctA =
mgA
4f 3¼

h
2 "+ 0 "2 + : : :

i
e LctB = ¡ mgA

4f 3¼

·
2 + "¡ 3

4
"2 + : : :

¸
: (3.82)

Com a contribuição do pólo do píon, equação (3.74), obtemos

DOT
1 =

L¼B + L
ct
B

2m
=

gA
8f 3¼

·
1 +

1

2
"¡ 9

8
"2 + : : :

¸
(3.83)

e

DOT
2 =

L¼A + L
ct
A

2m
= ¡ gA

8f 3¼

·
3 +

5

2
"¡ 27

8
"2 + : : :

¸
: (3.84)

Logo, os resultados de Olsson e Turner reproduzem corretamente os termos dominantes no limiar,

re‡etindo a relevância dos diagramas de troca do píon e contato de três píons. No limiar, a fatoração

do diagrama de troca do píon, mostrada por Dashen e Weinstein, pode ser explicitada através das

amplitudes A2I¼N I¼¼ , escrevendo-se

A32 = ¡ 2¼
p
10
gA
f¼

µ
a20
¹2
+ d2

¶
e A10 = 4¼

gA
f¼

µ
a00
¹2
+ d0

¶
; (3.85)

onde a00 e a20 são dadas pelas equações (3.9) e as correções d0 e d2, por

d2 = ¡ L

¹

·
7

4
¡ g2A (1¡ ¾)

¸
"+ : : : e d0 =

L

¹

·
37

8
+
1

4
g2A (1¡ ¾)

¸
"+ : : : (3.86)

Na formulação original de Olsson e Turner, os comprimentos de espalhamento ¼¼ para a

onda S (a00 e a20) contêm um parâmetro, », que descreve o padrão de quebra da simetria quiral.

Atualmente, sabe-se que apenas o valor » = 0 é consistente com a QCD [ OMKB 95] e condizente

com a expressão (3.9). Portanto, os resultados de Olsson e Turner, com » = 0, podem ser usado na

obtenção dos termos dominantes de processos com vértices ¼¼¼NN a baixas energias.



Capítulo 4

Espalhamento NN

Atualmente, os modelos dinâmicos existentes para a interação NN incorporam vários pro-

cessos mesônicos, mas a troca de três píons ainda não foi devidamente considerada. Além das

componentes isoescalar e isovetorial, esta interação se decompõe numa parte pseudoescalar e noutra

axial. O sistema de três píons tem uma massa ao redor de 417 MeV, sugerindo que seus efeitos

na região de médio alcance do potencial podem ser comparáveis aos produzidos nos modelos com

mésons vetoriais. A existência dessa lacuna decorre do fato deste processo ser bastante complexo,

envolvendo grande número de diagramas, todos com dois loops.

Apresentamos aqui uma estimativa desta componente da interação e calculamos a troca de

três píons não correlacionados, tomando como base os resultados de Olsson e Turner para o processo

¼N ! ¼¼N . O sistema resultante não tem a componente isoescalar e, por isso, comparamos

os nossos resultados com as contribuições do píon (isovetorial e pseudoescalar) e do méson a1

(isovetorial e axial).

63
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A interação nucleon-nucleon (NN) vem sendo estudada desde o estabelecimento da teoria

mesônica de Yukawa [ Yuk 35] e da subsequente deteção do píon [ LOP 47]. Entretanto, muitas

décadas depois, ela ainda não está completamente entendida. Segundo o programa de pesquisa,

proposto por Taketani, Nakamura e Sasaki por volta de 1950 [ TNS 51], a interação NN pode ser

dividida em três regiões: curto (r . 1 fm), médio (1 fm . r . 2 fm) e longo (r & 2 fm) alcances.

Atualmente sabemos que a região de curto alcance, onde ocorre a sobreposição dos dois nucleons,

deve ser descrita explicitamente por quarks e glúons. As demais regiões, no entanto, podem ser

descritas efetivamente por trocas mesônicas, cujo alcance é determinado pela massa trocada no

canal t. Quanto menor esta massa maior o alcance da interação 1.

O potencial gerado pela troca de um píon, o sistema mais leve, é importante para grandes

distâncias e domina as ondas com L > 5. Esta dominância na região de longo alcance do OPEP

(one-pion exchange potential), como é conhecido este potencial, tornou-se um consenso na década

de 60 [ HJ 62] [ LHRMB 62] [ NT 65] [ Rei 68].

A medida que encurtamos a distância entre os nucleons, a complexidade da interação aumen-

ta. Na interface das regiões de médio e longo alcance, a maior contribuição do potencial é devido

à troca de dois píons, o segundo sistema mais leve. Seu conteúdo dinâmico está intimamente rela-

cionado à amplitude ¼N intermediária [ CM 63]. Este potencial, conhecido como TPEP (two-pion

exchange potential), foi estudado detalhadamente, junto com trocas mais pesadas, nas décadas de

70 e 80 pelos grupos de Paris [ CLLRV 73] [ LLRVCPT 80] e Bonn [ MHE 87]. A descrição do

TPEP no potencial de Paris não é dinâmica, pois ele é calculado por meio de relações de dispersão,

que extrapolam a amplitude ¼N para píons virtuais. No potencial de Bonn, o conteúdo dinâmico

do TPEP é dado pelas trocas de píons independentes ou correlacionados e pela troca de um ½,

ressonância de dois píons. Este potencial é uma generalização dos trabalhos de Partovi e Lomon

[ PL 70], onde o acoplamento ¼N é pseudoescalar, e de Zuilhof e Tjon [ ZT 82], com acoplamento

¼N pseudovetorial. Nestes trabalhos, o potencial é derivado da teoria de campos e a dinâmica

é descrita por apenas dois diagramas de Feynman, o box e o cruzado. A substituição do TPEP

pela troca de um méson …ctício no potencial de Bonn resulta no potencial devido às trocas de um

bóson, conhecido como OBEP (one-boson exchange potential). Como seu conteúdo dinâmico é mais

simples e menos trabalhoso, o uso do OBEP em cálculos de estrutura nuclear é mais conveniente.

A troca de três píons, o terceiro sistema mais leve, foi estudada explicitamente por Vinh

Mau e Heitzmann [ HV 79] através do acoplamento do vértice ¼N com as relações de dispersão

1Além da característica espacial, existe uma forte dependência da interação NN nos canais de spin e isospin.
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¼N . Nos potenciais de Paris e Bonn, ela é considerada de modo efetivo, por meio de sistemas mais

pesados, como as trocas de um ! (Paris e Bonn) e da combinação de um ½ com um ¼ (Bonn).

No OBEP, esta combinação também é simulada pela troca de um méson a1 [ DSBJ 77] [ DBS 84],

tabela (4.1) 2.

Tabela 4.1: Trocas mesônicas consideradas nos potenciais existentes.

Trocas OBEP Massa g¹NN g¹N¢ IG
¡
JP

¢
Interação

¼ ¼ 139:08 13:4 0:49 1¡ (0¡) PS
2 ¼ — 278:16 [1¡ (0¡)]­[1¡ (0¡)] S-V

´ ´ 547:45 ¡ 4:77 ¡ 5:23 0+ (0¡) PS
— ¾ (2¼) 550 10:75 7:72 0+ (0+) S

½ (2¼) ½ (2¼) 769:9 1:26 1:62 1+ (1¡) V
! (3¼) ! (3¼) 781:94 ¡ 5:52 ¡ 5:38 0¡ (1¡) V
´ ¼ — 685:48 [0+ (0¡)]­[1¡ (0¡)] S
½ ¼ — 907:93 [1+ (1¡)]­[1¡ (0¡)] PV
! ¼ — 919:97 [0¡ (1¡)]­[1¡ (0¡)] PV
— a0 (´ ¼) 982:4 13:97 13:66 1¡ (0+) S
— a1 (3¼) 1230 9:6 1¡ (1+) PV

Na década passada, a inclusão sistemática da simetria quiral no estudo do TPEP tornou a

sua descrição mais precisa. A simetria quiral é muito importante no espalhamento NN devido à

troca de dois píons [ BD 71], porque ela cria vínculos na amplitude ¼N intermediária. Em energias

baixas e intermediárias, a amplitude ¼N é determinada pelas contribuições do pólo do nucleon e de

um fundo estável [ Hoh 83]. Esta simetria é responsável, diretamente, por grandes cancelamentos

dentro da contribuição do pólo do nucleon, …xando a escala do problema e ampliando o papel do

fundo. Este último é muito importante, uma vez que a contribuição quiral do pólo do nucleon,

sozinha, não basta para explicar os dados experimentais provenientes do espalhamento ¼N .

A construção do TPEP no contexto da dinâmica quiral começou com o trabalho de Ordóñez e

van Kolck [ OK 92], que considera um sistema contendo apenas píons e nucleons. Vários trabalhos,

que se seguiram lidaram com aspectos complementares do problema [ CPS 92] [ FC 94] [ RR 94]

[ Bir 94] [ KBW 97]. Os potenciais desses trabalhos não reproduzem a dominância da atração

escalar-isoescalar na região intermediária, constatada nos modelos fenomenológicos. Isso acontece

porque um sistema contendo apenas píons e nucleons não pode explicar os dados experimentais do

espalhamento ¼N [ Hoh 83], necessitando de outros graus de liberdade, especialmente os associados

2Alguns mésons não foram levados em conta, porque suas constantes de acoplamento são muito pequenas.
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às excitações delta e ao termo sigma ¼N . A inclusão dos deltas [ ORK 94] [ ORK 96] [ KGW 98] ou

de coe…cientes empíricos [ Rob 95] [ RR 97] [ BRR 98] é su…ciente para explicar a cauda do potencial

escalar-isoescalar 3. Este esforço baseado na simetria quiral levou a um re…namento importante da

parte mais externa da região intermediária do potencial e trouxe vínculos teóricos para ondas com

L > 3. Predições para os observáveis, baseadas na suposição que apenas o OPEP e o TPEP quiral

representem a interação completa para distâncias maiores que 1,4 fm, estão em bom acordo com a

experiência [ RTFS 99].

Em 1999 publicamos um trabalho [ PR 99] onde a troca de três píons entre dois nucleons

era estudada por meio da simetria quiral. Este foi o primeiro trabalho a estudar esta classe de

processos pois, até então, somente contribuições das trocas de um e dois píons haviam sido estudadas

no contexto desta simetria. O nosso objetivo foi preencher uma lacuna na tabela (4.1) relativa à

contribuição da troca de mais de dois mésons. Neste capítulo, descrevemos a componente do

potencial NN devido à troca de três píons não correlacionados, usando os resultados de Olsson e

Turner para o processo ¼N ! ¼¼N .

4.1 Potencial

A representação da interação NN através de um potencial não-relativístico, obtido a partir

de uma aproximação perturbativa da teoria de campos, é motivada por aplicações em problemas de

estrutura nuclear. O uso desse potencial na equação de Schrödinger deve produzir uma amplitude

de transição equivalente àquela derivada da teoria de campos na mesma ordem de aproximação.

Na aproximação perturbativa da teoria de campos, a amplitude de transição relativística para um

processo é dada, diretamente, pela expansão da matriz-S na constante de acoplamento. Cada ordem

nesta expansão está associada a um conjunto de diagramas de Feynman irredutíveis, que representa

a dinâmica do processo na respectiva ordem.

Em espalhamentos elásticos, é conveniente partir da equação de Bethe-Salpeter [ BS 51], que

representa a amplitude de transição da teoria de campos numa forma covariante. Em termos de

3Nas referências [ RR 94] [ Rob 95] [ RR 97] [ BRR 98], o TPEP é tratado relativisticamente e dado ênfase à
parte mais externa da região intermediária, que é determinada pela amplitude ¼N . Nas demais referências, o TPEP
é baseado no HBChPT.
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operadores, ela é dada por

T̂ (p0; pjW ) = K̂(p0; pjW ) +
Z

d4q

(2¼)4
K̂(p0; qjW ) G(qjW ) T̂ (q; pjW ) ; (4.1)

onde

W = p1 + p2 = p
0
1 + p

0
2 ; p = (p1 ¡ p2) =2 ; p0 = (p01 ¡ p02) =2 ; (4.2)

q é o quadrimomento relativo intermediário, K̂ é o kernel (núcleo) da interação e G, o propagador

relativístico de duas partículas.

Devido à sua origem perturbativa, o kernel não é uma expressão fechada, o que torna a

resolução dessa equação relativística muito difícil [ FT 75]. Esta di…culdade aumenta ainda mais

se as duas partículas forem férmions, mesmo considerando os diagramas irredutíveis mais simples

como as trocas de apenas um bóson [ FT 80] [ ZT 81]. Em energias baixas, é possível contornar esse

problema através de reduções tridimensionais que satisfazem a condição relativística de unitariedade

elástica e …xam a componente temporal numa forma covariante, de modo que ela não apareça como

uma variável separada no propagador. Geralmente, essas reduções são obtidas a partir da quebra

da equação de Bethe-Salpeter nas duas equações

T̂ = K̂ +

Z
d4q

(2¼)4
K̂ g T̂ e K̂ = K̂ +

Z
d4q

(2¼)4
K̂ (G ¡ g) K̂ ; (4.3)

onde K̂ é um kernel efetivo e g, um propagador não-relativístico que deve ter a mesma estrutura

analítica de G na região física.

O kernel corresponde à soma de todos os diagramas conexos irredutíveis. O kernel efetivo é

dado pela série

K̂=
h
K̂2

i

| {z }
+

·
K̂4+

Z
d4q

(2¼)4
K̂2 (G¡g) K̂2

¸

| {z }
+

·
K̂6+

Z
d4q

(2¼)4
d4q0

(2¼)4
K̂2 (G¡g) K̂2 (G¡g) K̂2

¸

| {z }
+ : : :

K̂2 K̂4 K̂6 (4.4)

com os índices referindo-se à ordem da constante de acoplamento.

Identi…cando, nesta série, os termos da expansão perturbativa dos operadores de transição

da teoria de campos, podemos reescrever o kernel efetivo como

K̂ =
h
T̂2

i

|{z}
+

·
T̂4 ¡

Z
d4q

(2¼)4
K̂2 g K̂2

¸

| {z }
+

·
T̂6 ¡

Z
d4q

(2¼)4
d4q0

(2¼)4
K̂2 g K̂2 g K̂2

¸

| {z }
+ : : :

K̂2 K̂4 K̂6 (4.5)
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com

T̂2 ´ K̂2 ; T̂4 ´ K̂4 +

Z
d4q

(2¼)4
K̂2 G K̂2 ; T̂6 ´ K̂6 +

Z
d4q

(2¼)4
d4q0

(2¼)4
K̂2 G K̂2 G K̂2 : : :

(4.6)

Dentre as diversas escolhas possíveis para g, a mais utilizada é a de Blankenbecler e Sug-

ar. Desenvolvida originalmente para partículas sem spin [ BbS 66], ela associa g à propagação de

partículas com energia positiva, de modo que “G ¡ g” propague partículas com energia negativa.

No caso do espalhamento NN , a escolha de Blankenbecler e Sugar [ PL 70] produz

g(qjP ) = ±(q0)
1

(2¼)3
1

4Eq

¤
(1)
+ (q) ¤

(2)
+ (¡q)

1
4
P 2 ¡ E2q + i "

; (4.7)

onde

¤(i)+ (q) =
X

si

usi(q) ¹usi(q) = [6q +m](i) (4.8)

são os operadores de projeção de energia positiva para o núcleon i com momento q. Com isso,

a amplitude de transição é obtida tomando-se o operador de transição entre spinores de energia

positiva,

T (p0;p) = ¹u(1)(p0) ¹u(2)(¡p0) T̂ (p0;p) u(1)(p)u(2)(¡p) : (4.9)

Como o propagador relativístico de dois nucleons é dado por

G(qjP ) =
"

1
2
6P+ 6q +m

¡
1
2
P + q

¢2 ¡m+ i "

#(1) "
1
2
6P¡6q +m

¡
1
2
P ¡ q

¢2 ¡m+ i "

#(2)
; (4.10)

a equação integral para o espalhamento NN assume a forma

T (p0;p) = K(p0;p) +
Z

d3q

(2¼)3
K(p0;q) 1

4Eq

1

p2 ¡ q2 + i " T (q;p) (4.11)

com o kernel efetivo dado por

K(p0;p) = ¹u(1)(p0) ¹u(2)(¡p0) K̂(p0;p) u(1)(p)u(2)(¡p) : (4.12)

Com isso, K é dado pela expansão da amplitude de transição da teoria de campos, sendo K2

associado ao diagrama com troca de um píon, K4 associado ao conjunto de diagramas com troca de

dois píons, K6 associado ao conjunto de diagramas com troca de três píons, ... É importante notar
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Figura 4.1: Representação diagramática da amplitude de transição segundo a equação de Beth-
Salpeter.

que nos kernels efetivos K4; 6; 8; ::: os propagadores nucleônicos de energia positiva contabilizados na

iteração do OPEP são subtraídos para evitar dupla contagem, …gura (4.1).

A amplitude de transição relativística é de…nida pela relação

S¯® = ±¯® + i (2¼)4 ±4(p01 + p
0
2 ¡ p1 ¡ p2) T¯® (4.13)

e a não-relativística (nr), por

S¯® = ±¯® ¡ i 2¼ ±(E01 + E
0
2 ¡E1 ¡ E2) T nr

¯® ; (4.14)

onde

S¯® =
D
¯; t ! +1

¯̄
¯ Ŝ

¯̄
¯®; t ! +1

E
= h¯; t ! +1j®; t ! ¡1i = out h¯ j®iin : (4.15)

As normalizações adotadas para os estados no espaço dos momentos são

out hp0; ¯jp; ®iout = 2E (2¼)3 ±3(p0¡ p) ±¯® e out hp0; ¯jp; ®inrout = (2¼)3 ±3(p0¡ p) ±¯® (4.16)

e, conseqüentemente, os fatores de normalização das funções de onda são

N =
1

(2¼)3=2
1p
2Ep

e Nnr =
1

(2¼)3=2
: (4.17)
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Assim, a relação entre as amplitudes é dada por

T nr
¯® ´ ¡ (2¼)3 ±3(p01 + p02 ¡ p1 ¡ p2) t¯® ; (4.18)

com

t¯® =
1

4
p
Ep1Ep2Ep01Ep02

T¯® : (4.19)

Aplicando esta relação na equação (4.11), obtem-se uma equação integral,

Tnr(p
0;p) = Knr(p

0;p) +

Z
d3q

(2¼)3
Knr(p

0;q)
m

p2 ¡ q2 + i " Tnr(q;p) ; (4.20)

equivalente à equação não-relativística de Lippmann-Schwinger para o espalhamento NN .

Em espalhamentos elásticos, podemos relacionar o operador de transição não-relativístico ao

potencial, de modo que

V̂ jÃ i ´ T̂nr jÁ i ; (4.21)

sendo os estados jÁ i e jÃ i determinados pelas equações

H0 jÁ i = E jÁ i e (H0 + V ) jÃ i = E jÃ i ; (4.22)

onde H0 é a hamiltoniana livre. Portanto, no espaço de coordenadas, o potencial NN corresponde

à transformada de Fourier da amplitude de transição não-relativística,

hr01; r02j V̂ j r1; r2i =
Z
d3p01
(2¼)3

d3p02
(2¼)3

d3p1
(2¼)3

d3p2
(2¼)3

e¡ i (p
0
1¢r01+p02¢r02¡p1¢r1¡p2¢r2) hp01;p02j V̂ jp1;p2i ; (4.23)

onde

hp01;p02j V̂ jp1;p2i = ¡ (2¼)3 ±3(p01 + p02 ¡ p1 ¡ p2) t(p01;p02;p1;p2) : (4.24)

Usando as combinações

P = p0 + p e ¢ = p01 ¡ p1 = p2 ¡ p02 = p0 ¡ p ; (4.25)

suas relações inversas

p0 = (P +¢) =2 e p = (P ¡¢) =2 ; (4.26)
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e a de…nição da variável W em (4.2), obtemos

p1 =
1

2
(W + P ¡¢) ; p01 =

1

2
(W + P +¢) ; p2 =

1

2
(W ¡ P +¢) ; p02 =

1

2
(W ¡ P ¡¢) :

(4.27)

Para os nucleons na camada de massa, temos os vínculos

W ¢ p0 =W ¢ p =W ¢ P =W ¢¢ = P ¢¢ = 0 : (4.28)

Com isso,

V (r01; r
0
2; r1; r2) = ¡

Z
d3W

(2¼)3
d3P

(2¼)3
d3¢

(2¼)3
e
i
2 [W¢(r01+r02¡r1¡r2)¡P¢(r0¡r)¡¢¢(r0+r)] t(P;¢jW) ; (4.29)

onde r := r2 ¡ r1 e r0 := r02 ¡ r01 :

Tomando o referencial no centro de massa (cm) do sistema, temos

p1
cm
= (E;p) ; p2

cm
= (E;¡p) ; p01

cm
= (E;p0) ; p02

cm
= (E;¡p0) (4.30)

e, conseqüentemente,

W
cm
= (2E;0) ; p

cm
= (0;p) ; p0

cm
= (0;p0) ; P

cm
= (0;p0+ p) ; ¢

cm
= (0;p0¡ p) : (4.31)

Com isso,

V (r0; r) = ¡
Z

d3¢

(2¼)3
d3P

(2¼)3
e¡

i
2
[P¢(r0¡r)+¢¢(r0+r)] t(P;¢) ; (4.32)

onde

t(P;¢) =
1

(2E)2
[T (P;¢)]cm : (4.33)

Decompondo na estrutura de spin usual [ PL 70], obtemos

t(P;¢) = tC(¢) + ­̂SS tSS(¢) + ­̂T tT(¢) + ­̂SO tSO(¢) + : : : ; (4.34)

onde

­̂SS =¢
2¾(1) ¢ ¾(2) ; ­̂T =¢

2¾(1) ¢ ¾(2) ¡ 3¾(1) ¢¢¾(2) ¢¢ ; ­̂SO =
i

4

¡
¾(1)+ ¾(2)

¢
¢(¢^P)

(4.35)
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correspondem aos operadores central (C), spin-spin (SS), tensor (T) e spin-órbita (SO) no espaço

de coordenadas.

Desprezando termos não-locais proporcionais a P2=m2 e usando a igualdade

¢ e¡ i¢¢r = ir e¡ i¢¢r ; (4.36)

obtemos

V (r) = VC(r) + ­SS VSS(r) + ­T VT(r) + ­SO VSO(r) + : : : ; (4.37)

onde

VC(r) = ¡
Z

d3¢

(2¼)3
e¡ i¢¢r tC(¢) ; (4.38)

VSS(r) =

µ
@2

@r2
+
2

r

@

@r

¶Z
d3¢

(2¼)3
e¡ i¢¢r tSS(¢) ; (4.39)

VT(r) = ¡
µ
@2

@r2
¡ 1

r

@

@r

¶Z
d3¢

(2¼)3
e¡ i¢¢r tT(¢) ; (4.40)

VSO(r) = ¡
µ
1

r

@

@r

¶Z
d3¢

(2¼)3
e¡ i¢¢r tSO(¢) (4.41)

e

­SS = ¾(1) ¢ ¾(2) ; ­T = 3¾(1) ¢ r̂ ¾(2) ¢ r̂ ¡ ¾(1) ¢ ¾(2) ; ­SO =
1

2

¡
¾(1)+ ¾(2)

¢
¢ L ; (4.42)

com L = r ^P :

No espaço de isospin, a estrutura da amplitude é dada por uma componente isoescalar (+)

e uma isovetorial (¡),

T = T+ + ¿ (1) ¢ ¿ (2) T¡ : (4.43)

Em termos de potencial, essa estrutura permanece a mesma,

V = V + + ¿ (1) ¢ ¿ (2) V ¡ : (4.44)
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4.2 Trocas de Um Píon e Um Méson a1

As …guras (4.2.a) e (4.2.b) mostram, respectivamente, as trocas dos mésons pseudoescalar,

o píon, e pseudovetorial, o a1(1260), no espalhamento NN . A cinemática dessas trocas obedece à

conservação de energia-momento, equações (4.2) e (4.25), com os vínculos da equação (4.28) para

nucleons na camada de massa.

Figura 4.2: Espalhamento NN devido às trocas de: (a) um píon e (b) um méson a1.

A amplitude da troca de um píon é dada por 4

T¼ = ¡ 1

¢2 ¡ ¹2
·
¹u
gA
2f¼

¿ a 6¢ °5 u
¸(1) ·

¹u
gA
2f¼

¿a 6¢ °5 u
¸(2)

(4.45)

e a do méson a1, por

Ta1 = ¡ g¹º ¡¢¹¢º=m2
a1

¢2 ¡m2
a1

£
¹u i ga1 ¿a °¹ °5 u

¤(1)
[¹u i ga1 ¿ a °º °5 u]

(2) ; (4.46)

onde ¹ = 139:57 MeV, f¼ = 93 MeV, gA = 1:26 [ Hoh 83], ma1 = 1230 MeV e ga1 = 9:6 [ GK 80].

A equação de Dirac implica na identidade

¢¹¢º [¹u °5 °
¹ u](1) [¹u °5 °

º u](2) = [¹u °5(¡ 2m)u](1) [¹u °5(2m)u](2) ; (4.47)

que aplicada nas amplitudes acima resulta em

T¼ = ¿ (1) ¢ ¿ (2) m
2g2A
f2¼

1

¢2 ¡ ¹2 [¹u °5 u]
(1) [¹u °5 u]

(2) (4.48)

e

Ta1 = ¿ (1) ¢ ¿ (2) g2a1
1

¢2 ¡m2
a1

½
4m2

m2
a1

[¹u °5 u]
(1) [¹u °5 u]

(2) +
£
¹u °¹°5 u

¤(1)
[¹u °¹°5 u]

(2)

¾
: (4.49)

4Estamos usando a notação ¿a = ´y ¿a ´ .
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O caráter isovetorial destas amplitudes resulta, em cada caso, da troca de um único méson isoveto-

rial.

No centro de massa do sistema (cm), as amplitudes são dadas por

T¼
cm
= ¡ ¿ (1) ¢ ¿ (2) m

2g2A
f 2¼

1

¢2 + ¹2
[¹u °5 u]

(1) [¹u °5 u]
(2) (4.50)

e

Ta1
cm
= ¡ ¿ (1) ¢ ¿ (2) g2a1

1

¢2 +m2
a1

½
4m2

m2
a1

[¹u °5 u]
(1) [¹u °5 u]

(2) +
£
¹u °¹°5 u

¤(1)
[¹u °¹°5 u]

(2)

¾
; (4.51)

onde os sanduíches spinoriais, apresentados no apêndice A, assumem a forma

[¹u °5 u]
(1) [¹u °5 u]

(2) cm
= ¡¾(1) ¢¢ ¾(2) ¢¢ (4.52)

e

£
¹u °¹°5 u

¤(1) £
¹u °¹°5 u

¤(2) cm
= ¡¾(1) ¢ (p0 + p) ¾(2) ¢ (p0 + p) + (E +m)¡2

n
I(1) I(2) (p ^ p0)2

¡ ¾(1) ¢ ¾(2)
£
(E +m)2 ¡ p ¢ p0

¤2 ¡ i
£
I(1)¾(2) ¢ (p ^ p0) + I(2)¾(1) ¢ (p ^ p0)

¤

£
£
(E +m)2 ¡ p ¢ p0

¤
¡

£
¾(1) ¢ p0 ¾(2) ¢ p0 ¡ ¾(1) ¢ p¾(2) ¢ p

¤
p2

¡
£
¾(1) ¢ p ¾(2) ¢ p0 + ¾(1) ¢ p0¾(2) ¢ p

¤ £
2 (E +m)2 ¡ p ¢ p0

¤ª
; (4.53)

com a notação

¾(i) =
£
Ây¾ Â

¤(i)
: (4.54)

No limite estático, obtemos

[¹u °5 u]
(1) [¹u °5 u]

(2)
cm
E!m
= ¡¾(1) ¢¢¾(2) ¢¢ (4.55)

e

£
¹u °¹°5 u

¤(1) £
¹u °¹°5 u

¤(2) cm
E!m
= ¡ 4m2

£
¾(1) ¢ ¾(2) + O(p2=m2) +O(p4=m4)

¤
: (4.56)

Logo, pela relação (4.33), temos

t¼ =
[T¼]cm
4m2

= ¿ (1) ¢ ¿ (2)
g2A
4f2¼

1

¢2 + ¹2
¾(1) ¢¢¾(2) ¢¢ (4.57)
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e

ta1 =
[Ta1 ]cm
4m2

»= ¿ (1) ¢ ¿ (2) g2a1
1

¢2 +m2
a1

µ
1

m2
a1

¾(1) ¢¢¾(2) ¢¢ + ¾(1) ¢ ¾(2)

¶
: (4.58)

Com a igualdade

¾(1) ¢¢¾(2) ¢¢ =
1

3
­̂SS ¡ 1

3
­̂T ; (4.59)

essas amplitudes podem ser decompostas em

t¼ = ¿ (1) ¢ ¿ (2) g2A
12f 2¼

1

¢2 + ¹2

³
­̂SS ¡ ­̂T

´
(4.60)

e

ta1
»= ¿ (1) ¢ ¿ (2)

g2a1
3m2

a1

1

¢2 +m2
a1

³
­̂SS ¡ ­̂T + 3m2

a1
¾(1) ¢ ¾(2)

´
: (4.61)

No apêndice C, temos que
Z

d3¢

(2¼)3
e¡ i¢¢r 1

¢2 + »2¹2
=

1

4¼

e¡ » ¹ r

r
=

¹

4¼

e¡ » x

x
; (4.62)

onde x = ¹ r é adimensional, » = 1 para o píon e » = ma1=¹ para o méson a1:

Usando as equações (4.39) e (4.40), obtemos

USS(x) =

µ
@2

@x2
+
2

x

@

@x

¶
¹3

4¼

e¡ » x

x
=
¹3

4¼
»2
e¡ » x

x
(4.63)

e

UT(x) = ¡
µ
@2

@x2
¡ 1

x

@

@x

¶
¹3

4¼

e¡ » x

x
= ¡ ¹3

4¼
»2

µ
1 +

1

»

3

x
+
1

»2
3

x2

¶
e¡ » x

x
: (4.64)

Logo,

[V¼]SS = ¿ (1) ¢ ¿ (2)
g2A
12f2¼

¹3

4¼

e¡x

x
; (4.65)

[V¼]T = ¿ (1) ¢ ¿ (2)
g2A
12f2¼

¹3

4¼

µ
1 +

3

x
+
3

x2

¶
e¡x

x
; (4.66)

[Va1 ]SS = ¿ (1) ¢ ¿ (2)
g2a1
3

¹

4¼
(1¡ 3) e

¡xma1=¹

x
; (4.67)

[Va1 ]T = ¿ (1) ¢ ¿ (2)
g2a1
3

¹

4¼

µ
1 +

¹

ma1

3

x
+
¹2

m2
a1

3

x2

¶
e¡xma1=¹

x
: (4.68)
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Figura 4.3: Componentes spin-spin (SS) e tensor (T) de V¼ (linha contínua) e V¼ + Va1 (linha
tracejada).

Na …gura (4.3), podemos ver que a adição da troca do a1(1260) ao canal spin-spin do OPEP

é relevante para distâncias inferiores a 1.5 fm. No canal tensor, não é possível distinguir esta soma

porque a contribuição do méson a1 é desprezível, quando comparado com o OPEP.

4.3 Troca de Três Píons Não Correlacionados

A forma geral da amplitude do espalhamento NN devido à troca de três píons não correla-

cionados é

T =
1

3!

Z
d4Q

(2¼)4

Z
d4Q0

(2¼)4
T
(1)
abc T

(2)
cba

(k2 ¡ ¹2) (q2 ¡ ¹2) (q0 2 ¡ ¹2) ; (4.69)

onde k, q e q0 são os momentos dos píons intermediários, Q = (q0 + q + k) =2 e Q0 = (q0 ¡ q) =2 são

as variáveis de integração e

T
(2)
cba = ±bc ¿a T

(2)
A + ±ac ¿ b T

(2)
B + ±ba ¿ c T

(2)
C ¡ i ²cba T

(2)
D ; (4.70)

a amplitude do processo ¼N ! ¼ ¼N no nucleon 2. O fator 1
3 !

corresponde à simetria de troca dos

píons intermediários.
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Neste processo, o momento externo transferido, equação (4.25), pode ser escrito como ¢ =

(q0 + q)¡k : Com isso, as relações inversas são dadas por q0 = (Q+¢=2) =2¡Q0; q = (Q+¢=2) =2+
Q0 e k = Q¡¢=2 :

Figura 4.4: Espalhamento NN devido à troca de três píons não correlacionados.

A dinâmica quiral mínima do espalhamento NN devido à troca de três píons não correla-

cionados é representada, no modelo PV, por 45 diagramas com dois loops, envolvendo píons e nucle-

ons. O cálculo exato deste processo é, portanto, bastante extenso. Para obtermos uma estimativa

acerca desta interação, tomamos como base as contribuições dominantes do processo ¼N ! ¼ ¼N

perto do limiar, para cada nucleon do espalhamento, como mostra a …gura (4.4). Usando a equação

(3.51), temos para o nucleon 2

[TA;B;C;D]
(2) =

£
T ¼A;B;C;D

¤(2)
+

£
T ctA;B;C;D

¤(2)
; (4.71)

com

T
(2)
A = i

gA
f 3¼

½
m

µ
1 +

k2 + 2¢ ¢ k
¢2 ¡ ¹2

¶
[¹u °5 u]

(2) ¡ 1

4

¡
q¹ + q

0
¹

¢
[¹u °5 °

¹ u](2)
¾
; (4.72)

T
(2)
B = i

gA
f 3¼

½
m

µ
1

2
+
q2 ¡ 2¢ ¢ q
¢2 ¡ ¹2

¶
[¹u °5 u]

(2) +
1

4
q¹ [¹u °5 °

¹ u](2)
¾
; (4.73)

T
(2)
C = i

gA
f 3¼

½
m

µ
1

2
+
q0 2 ¡ 2¢ ¢ q0
¢2 ¡ ¹2

¶
[¹u °5 u]

(2) +
1

4
q0¹ [¹u °5 °

¹ u](2)
¾
; (4.74)

T
(2)
D = 0 : (4.75)

As expressões para o nucleon 1 são obtidas com as trocas k ! ¡ k ; q ! ¡ q ; q0 ! ¡ q0 e ¢ ! ¡¢ :



78 4 Espalhamento NN

Assim, a estrutura de isospin provém de

T
(1)
cba T

(2)
cba = ¡ 2T (1)D T

(2)
D + ¿ (1) ¢ ¿ (2)

h
2
³
T
(1)
A T

(2)
A + T

(1)
B T

(2)
B + T

(1)
C T

(2)
C

´

+
³
T
(1)
A + T

(1)
B + T

(1)
C

´³
T
(2)
A + T

(2)
B + T

(2)
C

´i
: (4.76)

Os diagramas (a), (b) e (c) da …gura (4.4), associados ao pólo do píon, também contribuem

para a troca de um píon, renormalizando a massa do píon e a constante de acoplamento ¼N . Como

estamos trabalhando com a massa do píon física ¹ e a constante de acoplamento física g¼N , estes

efeitos já foram levados em conta na troca de um píon, calculada na seção anterior. Com isso,

subtraindo a contribuição dada em (4.48), as contribuições da expressão (4.76) se resumem a

2
³
T
(1)
A T

(2)
A +T

(1)
B T

(2)
B +T

(1)
C T

(2)
C

´
=
g2A
f 6¼

½
m2

·
1¡ 4¢¢k¡4¹2

¢2 ¡ ¹2 ¡ 8(¢¢k)2+8(¢¢q)2+8(¢¢q0)2¡2¹4
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¸

£ [¹u °5 u](1)[¹u °5 u](2)+
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4

·µ
1+

4¢¢k+4¢¢q
¢2 ¡ ¹2

¶
q¹+

µ
1+

4¢¢k+4¢¢q0
¢2 ¡ ¹2

¶
q0¹

³̧
[¹u °5 u]

(1)[¹u °5 °
¹ u](2)

¡ [¹u °5 °
¹ u](1) [¹u °5 u]

(2)
´
+
1

8

£¡
q¹+q

0
¹

¢
(qº+q

0
º)+q¹qº+q

0
¹q
0
º

¤
[¹u °5 °

¹ u](1) [¹u °5 °
º u](2)

)
(4.77)

e

³
T
(1)
A + T

(1)
B + T

(1)
C

´³
T
(2)
A + T

(2)
B + T

(2)
C

´
= ¡ g2A

f6¼

m2 ¹4

(¢2 ¡ ¹2)2
[¹u °5 u]

(1) [¹u °5 u]
(2) : (4.78)

A amplitude é, então, dada apenas por sua parte isovetorial

T = ¿ (1) ¢ ¿ (2)
g2A
8f6¼

1

3!

Z
d4Q

(2¼)4

Z
d4Q0

(2¼)4
¢(k)¢(q)¢(q0)

½
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·
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¶
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¸

£
³
[¹u °5 u]
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¹ u](2) ¡ [¹u °5 °¹ u](1) [¹u °5 u](2)

´
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0
¹
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0
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0
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0
º

¤
[¹u °5 °

¹ u](1) [¹u °5 °
º u](2)

¾
: (4.79)
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Usando a equação (4.47), podemos reescrevê-la como

T = ¿ (1) ¢ ¿ (2)
g2A
8f6¼

[¹u °5 °
¹ u](1) [¹u °5 °

º u](2)
1

3!

Z
d4Q

(2¼)4

Z
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(2¼)4
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£
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1 +
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+
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0
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0
º) + q¹qº + q

0
¹q
0
º

¾
(4.80)

Eliminando as variáveis k, q e q0 em termos de ¢, Q e Q0, obtemos a expressão geral

T =

µ
gA
8f 3¼

¶2

¿ (1) ¢ ¿ (2) [¹u °5 °
¹ u](1) [¹u °5 °

º u](2) I¹º ; (4.81)

onde

I¹º =
1

3!

Z
d4Q

(2¼)4
I 0¹º

(Q¡¢=2)2 ¡ ¹2
(4.82)

com

I 0¹º =

Z
d4Q0

(2¼)4
1£

(Q=2 + ¢=4 +Q0)2 ¡ ¹2
¤ £
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0½Q0¾

¾
: (4.83)

Para resolvermos essas integrais, usamos as funções X deduzidas no apêndice C,

X(K;¹; ») =

Z
d4Q

(2¼)4
1£

(Q¡K=2)2 ¡ ¹2
¤ £
(Q+K=2)2 ¡ ¹2»2

¤

= ¡ i
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0
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Z 1

0
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K2 ¡ ¹2­2=¯ ; (4.84)

X¹(K;¹; ») =

Z
d4Q
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(4¼)2
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d®

Z 1

0

d¯
¹2­2=¯2
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K¹

2¹
; (4.85)
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X¹º(K;¹; ») =

Z
d4Q

(2¼)4
Q¹Qº =¹

2

£
(Q¡K=2)2 ¡ ¹2

¤ £
(Q+K=2)2 ¡ ¹2»2

¤ (4.86)
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;

com

­2 =
4

£
®+ (1¡ ®) »2

¤

1¡ (1¡ 2®)2
: (4.87)

Escrevendo a integral I 0¹º através dessas funções, obtemos

I 0¹º = X(Q+¢=2; ¹; 1)

½
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Logo,
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onde

¸2 =
1

®(1¡ ®)¯ : (4.90)

Com isso, a integral I¹º assume a seguinte forma:

I¹º = ¡ i

(4¼)2
¹2

3!

Z 1

0

d®

Z 1

0

d¯
¸2

¯

Z
d4Q

(2¼)4
1£

(Q¡¢=2)2 ¡ ¹2
¤ £
(Q+¢=2)2 ¡ ¹2¸2

¤

£
½
32¹4¢¹¢º

(¢2¡¹2)2
+
8¹2¢¹¢º
¢2 ¡ ¹2 +3¢¹¢º+

³
(1¡2®)2¢½¢¾¡2

£
1¡(1¡2®)2

¤
(1¡¯)¹2¸2g½¾

´

£
µ
16¢¹¢º¢½¢¾

(¢2 ¡ ¹2)2
¡ 4 (¢¹gº½ +¢ºg¹½)¢¾

¢2 ¡ ¹2 + g¹½gº¾

¶



4.3 Troca de Três Píons Não Correlacionados 81
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Usando novamente as funções X, temos
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onde

µ2 =
° + (1¡ °)¸2
° (1¡ °) " : (4.94)

Este resultado permite decompor a integral I¹º numa parte pseudoescalar (P) e noutra axial (A):

I¹º = ¢¹¢º ¹
4 IP(¢) + g¹º ¹

6 IA(¢) (4.95)
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Através da fatorização de ¢2 e ¢4 com o propagador do píon externo à bolha,
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a parte pseudoescalar da integral I¹º assume a forma
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:

A parte axial não se altera.

TROCA DE TRÊS PÍONS

Os termos que não podem ser dissociados do pólo do píon estão relacionados às correções

do vértice ¼N e do propagador piônico, que contribuem para a troca de um píon. Como eles não

contribuem para a troca de três píons, não serão mais considerados daqui em diante.

Usando a expressão (4.95) em (4.81) e a equação de Dirac, a amplitude devida à troca de

três píons pode ser expressa na forma

T3¼ = TP3¼ + TA3¼ ; (4.100)

onde
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µ
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No centro de massa e no limite estático, podemos usar as equações (4.55) e (4.56) para obter
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e
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Logo,
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As integrações em " e ¯, efetuadas no apêndice C, produzem
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onde

a =

s
1

1¡ ° +
1

® (1¡ ®) ° : (4.111)
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Usando as equações (4.39) e (4.40), obtemos
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Assim, nos canais de spin, as nossas expressões das contribuições P e A ao potencial da troca

de três píons não correlacionados são dadas por
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Estes potenciais incorporam dois tipos de aproximações. O primeiro deles está associado

com a a…rmação de que a parte da lagrangiana PV, que gera o vértice 3¼NN , representa a con-

tribuição dominante. A outra está relacionada ao limite estático. No cálculo da integral I¹º(¢),

não …zemos aproximações, apenas desprezamos as correções do vértice ¼N e do propagador do píon,

que contribuem para o potencial devido à troca de um píon (OPEP).

Resolvendo as integrais numericamente, obtemos os grá…cos da …gura (4.5), onde é possível

notar que todas as curvas divergem na origem, comportamento típico de potenciais não regulariza-

dos. Por este motivo, supomos que nossos resultados são realísticos para distâncias internucleônicas

maiores que 0.7 fm, o raio da sacola usual. Observando a contribuição total para o canal spin-spin

dessa …gura, percebemos que o cancelamento entre as contribuições das interações pseudoescalar e

axial não é desprezível e é dominada pela interação pseudoescalar.

Figura 4.5: Potencial spin-spin devido às interações pseudoescalar (linha tracejada) e axial (linha
tracejada-pontilhada) e potencial tensor devido à interação pseudoescalar (linha pontilhada). O
potencial spin-spin total é representado pela linha contínua.
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Nas …guras (4.6) e (4.7), vemos que a troca de três píons gera uma contribuição para o OPEP

razoavelmente menor do que a de um a1(1260), tanto no canal spin-spin como no tensor.

Figura 4.6: Potencial spin-spin isovetor devido à troca de um píon (linha contínua), um a1(1260)
(linha pontilhada) e três píons (linha tracejada).

Na …gura (4.8), observamos que a contribuição da troca de três píons ao canal spin-spin

do OPEP é signi…cativa até 1.0 fm. No canal tensor, não é possível distinguir as curvas porque

esta contribuição é desprezível frente ao OPEP. Logo, o potencial devido à troca de três píons não

correlacionados começa a ser relevante a distâncias muito curtas, quando comparado ao OPEP.
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Figura 4.7: Potencial tensor isovetor devido à troca de um píon (linha contínua), um a1(1260) (linha
pontilhada) e três píons (linha tracejada).

Figura 4.8: Componentes spin-spin (SS) e tensor (T) de V¼ (linha contínua) e V¼ + V3¼ (linha
tracejada).



Capítulo 5

Produção de Píon no Espalhamento NN

A produção de um píon na interação nucleon-nucleon (NN) é um problema tradicional na

física de hádrons. Sua importância deriva do fato de ela poder ser medida experimentalmente, no

caso de um píon real e, também, de ser uma componente importante das forças de três nucleons,

quando o píon for virtual.

Neste capítulo, discutimos a relação entre a componente escalar-isoescalar do potencial NN

devido à troca de dois píons não correlacionados e o potencial NN gerado pela troca de um méson

…ctício com os mesmos números quânticos. Estudamos, também, o papel dos cancelamentos quirais

no termo dominante da produção de um píon devido à troca de dois píons não correlacionados,

a partir das subamplitudes ¼N ! ¼N e ¼N ! ¼¼N . Determinamos a dependência espacial da

amplitude da produção e a comparamos com aquela gerada pela troca do méson escalar efetivo. Por

…m, para grandes distâncias internucleônicas, generalizamos o nosso resultado para um potencial

nuclear qualquer.

89
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A produção de um píon nas interações NN a baixas energias vem sendo estudada desde

a década de 60. Recentemente, o interesse neste problema foi renovado, devido à existência de

novos dados experimentais, bastante precisos, para as reações: np ! d¼0 [ Hut+91], pp ! pp¼0

[ Mey+92] [ Bond+95], pp ! d¼+ [ Droch+96] [ Heimb+96] e pp ! pn¼+ [ Daeh+95] [ Har+97]

[ Fla+98]. Paralelamente, do ponto de vista teórico, os avanços da teoria de perturbação quiral

(ChPT) permitiram tratar o problema de uma maneira sistemática. Entretanto, apesar destes

progressos, existem problemas em aberto.

Há duas classes de interações envolvidas na produção de um píon, uma associada com as

correlações dos nucleons e outra, com a emissão do píon externo. No procedimento desenvolvido por

Koltun e Reitan [ KR 66], essas interações estão incluídas, respectivamente, nas funções de onda

inicial e …nal e no kernel (núcleo) de interação. As primeiras correspondem a soluções da equação

de Schrödinger com potenciais realistas, enquanto o kernel é descrito através de modelos baseados

em diagramas de Feynman.

No que concerne ao kernel de interação, geralmente é possível distinguir entre contribuições

de longo e curto alcances. As de longo alcance são mostradas na …gura (5.1), onde o primeiro

diagrama representa a aproximação de impulso e o segundo, o termo de reespalhamento do píon.

Estes dois processos foram considerados por Koltun e Reitan [ KR 66] na descrição do canal ¼0,

mas a seção de choque era cinco vezes menor que os dados obtidos recentemente [ MS 91]. O

termo de reespalhamento usado naquele trabalho veio de amplitudes ¼N na camada de massa,

embora o píon trocado no diagrama (5.1.b) esteja fora da camada de massa. Modelos que levam

em conta a virtualidade do píon aumentam a seção de choque e tendem a melhorar o acordo com os

experimentos [ HP 78] [ EZO 90] [ HO 95] [ HHRSS 95] [ HHS 96]. Cálculos com bárions pesados

em ChPT [ CFMK 96] [ KMR 96] [ RMK 99] também explicitam a importância desse termo de

reespalhamento na ordem dominante. Entretanto, nestes trabalhos os termos de reespalhamento e

impulso aparecem com sinais opostos, produzindo um saldo menor que o de cálculos fenomenológicos

[ HHHMS 98], indicando a necessidade de outros mecanismos.

Interações de alcance menor, envolvendo trocas de dois píons não correlacionados, são bas-

tante complexas e, no caso da produção de um píon, estas componentes foram descritas através de

trocas de mésons pesados efetivos. As contribuições destes correspondem ao último diagrama da

…gura (5.1), conhecido como grá…co z, visto que a propagação do nucleon de freqüência positiva,

já incluída na função de onda, é subtraída. A inclusão dos mésons ¾, !, e ½, de modo explicito

[ HHRSS 95] ou em uma densidade de corrente axial geral [ LR 93], permitiu bons ajustes para
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a seção de choque do processo pp ! pp¼0 no limiar. Contudo, o estudo dos efeitos relativísticos

na produção do ¼0 [ ASPG 97] demonstrou que os efeitos do grá…co z são pequenos e insu…cientes

para explicar as seções de choque. A extensão para os outros canais (¼+ e ¼¡), com inclusão de

ressonâncias nucleônicas [ RMK 99] [ HHKS 98] [ PRS 99], também não melhorou a situação.

Figura 5.1: Contribuições para o processo NN ! ¼NN : (a) impulso, (b) reespalhamento e (c)
grá…co z; nucleons, píons e mésons mais pesados são representados pelas linhas sólidas, tracejadas
e onduladas.

Há algum tempo atrás, Coon, Peña e Riska [ CPR 95] produziram um potencial de três

corpos baseado nas trocas de um píon e um méson escalar, que foi capaz de melhorar o acordo

entre teoria e experimento no caso da energia de ligação de três nucleons. Mais tarde, Maekawa

e Robilotta [ MR 98] obtiveram um resultado equivalente, usando uma lagrangiana não-linear com

um campo escalar quiral s, que simula o potencial NN devido à troca de dois píons. Além do

acoplamento direto deste méson efetivo com os nucleons, esta lagrangiana gera uma forte interação

de contato ¼sNN . A troca de dois píons não correlacionados, formulada no contexto da simetria

quiral e incorporando os deltas, explica muito bem a cauda do potencial NN escalar-isoescalar

[ ORK 94] [ ORK 96] [ Rob 95] [ RR 97] [ KBW 97] [ KGW 98], não sendo necessário um méson

escalar verdadeiro para descrever esse canal. Por outro lado, em problemas onde a simplicidade é

mais importante do que o re…namento, pode ser útil simular todos os processos associados ao canal

escalar-isoescalar por um único campo escalar quiral. Com este enfoque, a interação de contato

¼sNN foi aplicada aos canais de produção ¼0 e ¼+, produzindo resultados teóricos compatíveis

com os experimentais [ MR 99].

Cálculos com troca de dois píons, baseados nas teorias de perturbação quiral relativística

[ BKM 99] e de bárions pesados [ DKMS 99], produziram novamente grandes contribuições que se

cancelam.

Recentemente, contribuímos para o esclarecimento deste problema, apresentando uma de-
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scrição dinâmica da produção devido à troca do méson escalar e relacionando a produção ao poten-

cial NN central isoscalar [ MPR 00].

5.1 Espalhamento NN Devido à Troca de Dois Píons

O potencial NN devido à troca de dois píons (TPEP) não correlacionados é obtido a partir

da amplitude geral

T2¼ = ¡ i 1
2 !

Z
d4Q

(2¼)4
T
(1)
ab T

(2)
ba

(k2 ¡ ¹2) (k0 2 ¡ ¹2) ; (5.1)

onde 1
2 !

é o fator de simetria da troca destes píons, k e k0 são os momentos dos píons intermediários,

¹ é a massa do píon, Q = (k0 + k) =2 é a variável de integração e

T
(2)
ba = ±ab

£
T+

¤(2)
+ i ²bac ¿ c

£
T¡

¤(2)
; (5.2)

a amplitude do espalhamento ¼N no nucleon 2, com

£
T§

¤(2)
= A§ [¹uu](2) + B§ [¹u 6Qu](2) : (5.3)

As expressões para o nucleon 1 são obtidas com as trocas a $ b e Q ! ¡Q :

A parte isosescalar de T2¼ é dada por

T+2¼ = ¡ i 1
2

Z
d4Q

(2¼)4
3 [T+](1) [T+](2)

(k2 ¡ ¹2) (k0 2 ¡ ¹2) (5.4)

e a isovetorial, por

T¡2¼ = ¡ i 1
2

Z
d4Q

(2¼)4
2 [T¡](1) [T¡](2)

(k2 ¡ ¹2) (k0 2 ¡ ¹2) : (5.5)

A interação obtida a partir da teoria de campos deve ser compatível com potenciais fenomenológi-

cos, em que os dados experimentais são ajustados por meio de funções envolvendo parâmetros livres.

Um desses potenciais, o de Argonne [ WSA 84], ajusta a região intermediária (I ) por funções da

forma

VA(x) = I p
µ
1 +

3

x
+
3

x2

¶2
e¡2x

x2
; (5.6)

que simulam a iteração do OPEP. Os parâmetros I p são ajustados livremente, para os vários canais

do potencial 1. Os valores obtidos pelo grupo de Argonne, mostrados na tabela (5.1), enfatizam a

conhecida dominância da componente escalar-isoescalar do potencial NN .
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Tabela 5.1: Parâmetros I p em MeV [ WSA 84].

1 ¿ (1) ¢ ¿ (2)
C ¡ 4; 801125 0; 798925
SS 1; 189325 0; 182875
T ¡ 0; 1575 ¡ 0; 7525
SO 0; 5625 0; 0475
Q 0; 070625 ¡ 0; 148125

As realizações mínimas da simetria quiral envolvem apenas píons e nucleons. Potenciais

baseados nestas realizações mínimas [ OK 92] [ CPS 92] [ FC 94] [ RR 94] [ Bir 94] subestimam a

componente escalar-isoescalar do potencial, devido a grandes cancelamentos que ocorrem entre os

diagramas. A inclusão dos deltas na descrição da interação NN [ ORK 94] melhorou consideravel-

mente as predições.

Uma outra forma de se obter um potencial compatível com os dados é incorporar, por meio

de coe…cientes empíricos, as informações do espalhamento ¼N na região cinemática abaixo do limiar

[ Rob 95]. Separando T (i)ba em uma contribuição T (i)N , contendo somente interações píon-nucleon, e

um resto T (i)R , envolvendo outros graus de liberdade, o potencial passa a ser proporcional a

£
T§ba

¤(1) £
T§ba

¤(2)
=

£
T§N

¤(1) £
T§N

¤(2)
+

½£
T§N

¤(1) £
T§R

¤(2)
+

£
T§R

¤(1) £
T§N

¤(2)
¾
+

£
T§R

¤(1) £
T§R

¤(2)
: (5.7)

Assim, a dinâmica dominante da interação NN pode ser representada por diagramas con-

tendo apenas nucleons num lado e demais graus de liberdade no outro, mostrados na …gura (5.2).

Figura 5.2: Contribuições dominantes para o processo NN ! NN .

1Canais de spin central (C), spin-spin (SS), tensor (T), spin-órbita (SO), spin-órbita quadrático (Q) etc, para os
isospins escalar (1) e vetorial (¿ (1) ¢ ¿ (2)).
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O estudo numérico desta amplitude [ RR 97] [ BRR 98] mostra que o primeiro termo, que

corresponde à realização quiral mínima, é muito pequeno e que a contribuição mais importante vem

dos produtos entre chaves no canal isoescalar. As funções relevantes da equação (5.3), para
£
T+N

¤(2)
,

são

A+N =
g2

m
; B+N = g2

·
¡ 1

(p+k)2¡m2
+

1

(p¡k0)2¡m2

¸
(5.8)

e, para
£
T+R

¤(1)
,

A+R =
X

m;n

a+mn º
2m tn ; B+R

»= 0 ; (5.9)

onde os coe…cientes a+mn são obtidos a partir do espalhamento ¼N elástico [ Hoh 83].

As correções associadas às potências mais altas de º e t, na expansão da subamplitude A+R ,

são muito pequenas em energias baixas. Assim, para distâncias grandes, a contribuição principal

vem da região ao redor de º ¼ 0 e t ¼ 4¹2, isto é,

A+R(º = 0; t = 4¹
2) = ®+00 =¹ ; (5.10)

onde

®+00 = ¹
¡
a+00 + 4¹

2 a+01 + 16¹
4 a+02

¢
: (5.11)

Com isso, o termo dominante da amplitude pode ser expresso por

T2¼ »= 3
®+00
¹

[¹uu](1)
£
¡+N

¤(2)
+ (1) $ (2) ; (5.12)

onde

£
¡+N

¤(2)
= ¡ i

2

Z
d4Q

(2¼)4

£
T+N

¤(2)

(k2 ¡ ¹2) (k0 2 ¡ ¹2) : (5.13)

A simetria da função B+N , em relação à troca k $ ¡ k0, permite escrever

£
¡+N

¤(2)
= ¡ i

2

g2

m

Z
d4Q

(2¼)4
1

(k2 ¡ ¹2) (k0 2 ¡ ¹2)

½
[¹uu](2) ¡ 2m

(p + k)2 ¡m2
[¹u 6Qu](2)

¾
: (5.14)

Usando o momento externo transferido ¢ = k0¡k e as relações inversas k0 = Q+¢=2 e k = Q¡¢=2,
temos

£
¡+N

¤(2)
= ¡ i

2

g2

m

½
[¹uu](2)

Z
d4Q

(2¼)4
1

[(Q¡¢=2)2¡¹2] [(Q+¢=2)2¡¹2] (5.15)

¡ [¹u °¹ u](2)
Z

d4Q

(2¼)4
2m Q¹

[(Q¡¢=2)2¡¹2] [(Q+¢=2)2¡¹2] [Q2+2mV ¢Q¡¢2=4]

¾
;
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onde V = (p02 + p2)=2m. Reescrevendo as integrais através das funções X e Y do apêndice C,

obtemos

£
¡+N

¤(2)
= ¡ i

2

g2

m

½
[¹uu](2) X(¢; ¹; 1) ¡ [¹u °¹ u](2) Y¹(¢; ¹; 1)

¾
; (5.16)

onde

X(¢; ¹; 1) =

Z
d4Q

(2¼)4
1£

(Q¡¢=2)2¡ ¹2
¤£
(Q+¢=2)2¡ ¹2

¤ = ¡ i

(4¼)2

Z 1

0

d®

Z 1

0

d¯

¯

¹2¸2

¢2¡ ¹2¸2 ;

(5.17)

com

¸2 =
1

®(1¡ ®)¯ ; (5.18)

e

Y¹(¢; ¹; 1) =

Z
d4Q

(2¼)4
2m Q¹£

(Q¡¢=2)2 ¡ ¹2
¤£
(Q+¢=2)2 ¡ ¹2

¤
[Q2 + 2mV ¢Q¡¢2=4]

(5.19)

= ¡ i

(4¼)2

Z 1

0

d®
1¡®
®

Z 1

0

d¯
1¡¯
¯

½
2mV¹+

·
1¡ 2®

(1¡®) (1¡¯) ¡ 1
¸
¢¹

¾
m

¢2¡¹2´2 ;

com

´2 =
(1¡ ®)2(1¡ ¯)2 (m=¹)2 ¡ (1¡ ®)(1¡ ¯) + 1

®(1¡ ®)¯ : (5.20)

As igualdades

[¹u 6¢u](i) = 0 e [¹u 6V u](i) = [¹uu](i) ; (5.21)

produzidas pela equação de Dirac, implicam em

£
¡+N

¤(2)
= ¡ g2

2m
[¹uu](2)

1

(4¼)2

Z 1

0

d®

Z 1

0

d¯

µ
1

¯

¹2¸2

t¡ ¹2¸2 ¡ 1¡ ®
®

1¡ ¯
¯

2m2

t¡ ¹2´2
¶
; (5.22)

onde t = ¢2.

A função [¡+N ] está relacionada ao fator de forma escalar ¾(t), de…nido por

h p0 j Lsb j p i = ¡¾(t) [¹u u] ; (5.23)

onde Lsb é o termo da lagrangiana que quebra a simetria quiral. A estrutura de longo alcance de

¾(t) foi discutida por Gasser, Sainio e Švarc [ GSS 88] e está relacionada à função [¡+N ] por

3¹2
£
¡+N

¤
= ¾(t) [¹uu] : (5.24)
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Com isso, a contribuição assintótica da amplitude isoescalar pode ser escrita como

T2¼ »= 2
®+00
¹

¾(t)

¹2
[¹uu](1) [¹uu](2) : (5.25)

Esta expressão é interessante porque informa acerca da estrutura da interação. Ela retrata um

nucleon, que age como uma fonte escalar, perturbando a nuvem piônica do outro. O fator de forma

escalar é relacionado ao termo sigma do nucleon por ¾(0) = ¾N : O valor do fator de forma escalar

pode ser obtido, no ponto de Cheng-Dashen (t = 2¹2), a partir de dados experimentais e, em

t = 0 ; por meio de extrapolações.

No centro de massa do sistema (cm), a expressão (5.22) é dada por

£
¡+N

¤(2) cm
=

g2

2m
[¹u u](2)

1

(4¼)2

Z 1

0

d®

Z 1

0

d¯

µ
1

¯

¹2¸2

¢2 + ¹2¸2
¡ 1¡ ®

®

1¡ ¯
¯

2m2

¢2 + ¹2´2

¶
(5.26)

e o produto de sanduíches spinoriais, por

[¹uu](1) [¹uu](2)
cm
=

"
(E +m)2¡ 2p0 ¢ p+ (p0 ¢ p)2

(E +m)2

#
¡ i

¡
¾(2) + ¾(1)

¢
¢(p0^ p)

·
1¡ p0 ¢ p

(E +m)2

¸

¡ ¾(1) ¢ p
0^ p

E +m
¾(2) ¢ p

0^ p
E +m

(5.27)

Fazendo o limite estático

[¹u u](1) [¹uu](2) »= 4m2 (5.28)

e usando a relação (4.33), podemos escrever a amplitude como

t2¼(¢)
E!m
cm
=

T2¼
4m2

»= 2
®+00
¹3

¾(¢2) ; (5.29)

onde

¾(¢2) =
g2

2m

3¹2

(4¼)2

Z 1

0

d®

Z 1

0

d¯

µ
1

¯

¹2¸2

¢2 + ¹2¸2
¡ 1¡ ®

®

1¡ ¯
¯

2m2

¢2 + ¹2´2

¶
: (5.30)

Passando para o espaço de con…guração via transformada de Fourier, obtemos nossa ex-

pressão …nal para a parte dominante do potencial devido à troca de dois píons não correlacionados,2

V2¼(x) = ¡ 2 ®
+
00

¹3

Z
d3¢

(2¼)3
e¡ i¢¢ r ¾(¢2) = ¡ 2 ®

+
00

¹3
¾(x) ; (5.31)

2O sinal “¡” na frente da integral surge da diferença entre as amplitudes de transição relativística e não-
relativística.
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onde

¾(x) =
g2

2m

3¹4

(4¼)2
¹

4¼

h
Scc(x)¡ Ssc(x)

i
; (5.32)

com

Scc(x) =

Z 1

0

d®

Z 1

0

d¯
¸2

¯

e¡¸x

x
e Ssc(x) =

2m2

¹2

Z 1

0

d®
1¡ ®
®

Z 1

0

d¯
1¡ ¯
¯

e¡´ x

x
: (5.33)

Antes de concluir esta seção, convém notar que, em algumas situações, pode ser útil parametri-

zar ¾(t) por meio de funções simples. Neste caso, a dependência de t na expressão (5.22) sugere a

parametrização

¾(t) ¼ ¡ c

t¡m2
s

; (5.34)

onde os parâmetros livres ms e c podem ser escritos em função dos valores do fator de forma escalar

em t = 2¹2 e t = 0,

m2
s =

2 ¾(2¹2)

¾(2¹2)¡ ¾(0) ¹
2 e c = ¾(0) m2

s : (5.35)

Comparando a amplitude isoescalar, expressão (5.25), com aquela devida à troca de um

méson escalar efetivo,3

Ts ¼ ¡ g2s
t¡m2

s

[¹u u](1) [¹uu](2) ; (5.36)

obtemos a constante de acoplamento deste méson com os nucleons,

g2s ¼ 2®+00
m2
s ¾(0)

¹3
: (5.37)

No espaço de con…guração, temos

Vs(x) = ¡ g2s
¹

4¼

e¡xms=¹

x
: (5.38)

Na tabela (5.2), apresentamos os valores dems e gs , obtidos a partir de dados experimentais.

Na maioria dos casos, a massa obtida para esse méson escalar é próxima daquela usada no potencial

de Bonn [ MHE 87], porém a constante de acoplamento é menor.

3Este méson não é equivalente ao do modelo ¾-linear, uma vez que, ao contrário do que acontece com o ¾, sua
constante de acoplamento desaparece no limite quiral.
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Tabela 5.2: Valores de ms, em MeV, e gs, adimensional.

®+00 ¾(2¹2) ¾(2¹2)¡¾(0) ms gs

3; 68 a 60 c 7; 3 b 564 7; 22
3; 68 a 60 c 15 c 393 4; 36
6; 74 d 88 d 15 c 478 9; 09
4; 61 e 90 e 15 c 483 7; 71

a[ Hoh 83], b[ GSS 88], c[ GLS 91], d[ KH 99] e e[ PASW 99].

Na …gura (5.3), mostramos os potenciais isoescalares-escalares, equações (5.31), (5.6) e (5.38).

É possível notar que a suas formas são semelhantes, embora quantitativamente diferentes. A relação

de V2¼(x) e Vs(x) com VA(x), …gura (5.4), indica que as trocas de dois píons não correlacionados

e de um méson escalar efetivo não são equivalentes. O comportamento de V2¼(x) tende a VA(x).

Já isto não acontece com Vs(x), porque a dependência de x no denominador envolve uma potência

diferente de VA(x).

Figura 5.3: Potenciais V2¼(x) (linha contínua), VA(x) (linha tracejada) e Vs(x) com ®+00 = 4:61,
gs = 7:71 e ms = 483 MeV tomados da última linha da tabela 5.2 (linha pontilhada).
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Figura 5.4: Razões V2¼(x)=VA(x) (linha contínua) e Vs(x)=VA(x) (linha tracejada).

5.2 Produção de Um Píon Devido à Troca de Dois Píons

A amplitude da produção de um píon com momento q e isospin c, no espalhamento NN

devido à troca de dois píons, é dada por

Tc = ¡ i 1
2 !

Z
d4Q

(2¼)4
T
(1)
abc T

(2)
ba

(k2 ¡ ¹2) (k0 2 ¡ ¹2) + (1 $ 2) ; (5.39)

onde as amplitudes intermediárias T (1)cba e T (2)ba , apresentadas no capítulo 3, descrevem os processos

¼N ! ¼¼N e ¼N ! ¼N . O momento externo transferido, neste caso, é escrito como ¢ = k0¡k =
q ¡ q0 = q + p01 ¡ p1 = p2 ¡ p02 :

A estrutura geral de isospin é

Tc = ¿ (1)c T1 + i (¿ (1) ^ ¿ (2))c T12 + ¿ (2)c T2 + (1 $ 2) ; (5.40)
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com

T1 = ¡ 1

2

Z
d4Q

(2¼)4
[TA + TB + 3TC]

(1) [T +](2)

(k2 ¡ ¹2)(k0 2 ¡ ¹2) ; (5.41)

T12 = ¡ 1

2

Z
d4Q

(2¼)4
[TA ¡ TB]

(1) [T ¡](2)

(k2 ¡ ¹2)(k0 2 ¡ ¹2) ; (5.42)

T2 = ¡ 1

2

Z
d4Q

(2¼)4
2 [TD]

(1) [T ¡](2)

(k2 ¡ ¹2)(k0 2 ¡ ¹2) : (5.43)

A amplitude T1 é dominante e apenas ela será considerada daqui em diante. Para calculá-la,

usamos Tabc na aproximação de Olsson e Turner, discutida na seção 3 do capítulo 3, e o termo

dominante da amplitude Tba, discutido na seção anterior. Assim, a produção de um píon, no

espalhamento NN devido à troca de dois píons, pode ser representada pelos diagramas da …gura

(5.5), que corresponde a

[TA + TB + 3TC]
(1) £

T+
¤(2) »=

£¡
T ¼A + T

ct
A

¢
+

¡
T ¼B + T

ct
B

¢
+ 3

¡
T ¼C + T

ct
C + T

z
C

¢¤(1) £
T+N

¤(2)
: (5.44)

Figura 5.5: Contribuições para a amplitude NN ! ¼NN : (a) pólo do píon, (b) contato, (c) e (d)
grá…cos z.
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A partir de (3.51), as componentes da expressão (5.44) são

[T ¼A]
(1) = i

mgA
f 3¼

·
1 +

k2 ¡ 2 k¢q0
q0 2 ¡ ¹2

¸
[¹u °5 u]

(1) ; (5.45)

[T ¼B ]
(1) = i

mgA
f 3¼

·
1 +

k0 2 + 2 k0 ¢q0
q0 2 ¡ ¹2

¸
[¹u °5 u]

(1) ; (5.46)

[T ¼C ]
(1) = i

mgA
f 3¼

·
1 +

q2 ¡ 2 q ¢q0
q0 2 ¡ ¹2

¸
[¹u °5 u]

(1) ; (5.47)

£
T ctA

¤(1)
= ¡ i mgA

f 3¼

1

4m
[¹u (6k0¡6q) °5 u](1) ; (5.48)

£
T ctB

¤(1)
= ¡ i mgA

f 3¼

½
1

2
[¹u °5 u]

(1) ¡ 1

4m
[¹u 6k0 °5 u](1)

¾
; (5.49)

£
T ctC

¤(1)
= ¡ i mgA

f 3¼

½
1

2
[¹u °5 u]

(1) +
1

4m
[¹u 6q °5 u](1)

¾
; (5.50)

[T zC]
(1) = ¡ i gA

2f¼

®+00
¹

·
¹u

½
6q °5

6pd +m
p2d ¡m2

+
6pe +m
p2e ¡m2

6q °5
¾
u

¸(1)
(5.51)

com pd = p01 + q e pe = p1 ¡ q :

Rearrajando os termos, obtemos

T1 = ¡ i

2

Z
d4Q

(2¼)4
[(T ¼A + T

¼
B + 3T

¼
C) + (T

ct
A + T

ct
B + 3T

ct
C ) + 3T

z
C]
(1) £

T+N
¤(2)

(k2 ¡ ¹2) (k0 2 ¡ ¹2) ; (5.52)

com

[T ¼A + T
¼
B + 3T

¼
C ]
(1) = i

mgA
f 3¼

½
3 +

(k2¡¹2) + (k0 2¡¹2) + 3q2 ¡ 4 q ¢q0
q0 2 ¡ ¹2

¾
[¹u °5 u]

(1) ; (5.53)

£
T ctA + T

ct
B + 3T

ct
C

¤(1)
= ¡ i 2mgA

f 3¼

½
[¹u °5 u]

(1) +
1

4m
[¹u 6q °5 u](1)

¾
; (5.54)

[ 3T zC]
(1) = i

3gA
f¼

®+00
¹

·
¹u

½
°5 +m°5

6pd +m
p2d ¡m2

+m
6pe +m
p2e ¡m2

°5

¾
u

¸(1)
: (5.55)

É importante notar, na última equação, a existência de um termo de contato, que não é aparente

na equação (5.51). Este termo, típico de sistemas com acoplamento PV, surge devido a fatores no

numerador da expressão (5.51) que, devidamente manipulados, simpli…cam com o denominador que

corresponde ao pólo do nucleon.
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Figura 5.6: Reespalhamento do píon.

A expressão (5.53) está relacionada com o diagrama (5.5.a). Os termos proporcionais a

(k2¡¹2) e (k0 2¡¹2) desta expressão cancelam os propagadores piônicos do loop e, portanto, cor-

respondem a efeitos de curto alcance, que não serão mais considerados. Assim, usando a equação

(5.13), obtemos

T ¼1 = i
mgA
f3¼

½
3 +

3q2 ¡ 4 q ¢ q0
q0 2 ¡ ¹2

¾
[¹u °5 u]

(1) £
¡+N

¤(2)
; (5.56)

onde
£
¡+N

¤(2)
é dado pela equação (5.22).

Este resultado requer uma análise mais detalhada, pois nem todos os seus termos contribuem

para o kernel da produção de um píon devido à troca de dois píons. Como discutiremos a seguir,

uma parte desta expressão pode ser interpretada como o espalhamento do píon emitido em um dos

nucleons pela núvem piônica do outro. Este processo de reespalhamento, mostrado na …gura (5.6),

fornece

T reespc = i

·
¡ ¹u gA

2f¼
¿d 6q 0 °5 u

¸(1) 1

q0 2 ¡ ¹2 T
(2)
dc (q

0 2; q2) + (1) $ (2) ; (5.57)

onde T (2)dc (q
0 2; q2) é a amplitude ¼N no nucleon 2, para píons na camada de massa e fora dela. Com

isso, a amplitude T1 devido ao reespalhamento do píon é

T reesp1 = i
mgA
f¼

1

q0 2 ¡ ¹2 [¹u °5 u]
(1) £

T+(q0 2; q2)
¤(2)

: (5.58)

No canal simétrico de isospin, a amplitude ¼N intermediária satisfaz a identidade de Ward-

Takahashi [ BPP 71], dada por

T+(q0 2; q2) = T+N +
q0 2 + q2 ¡ ¹2

f 2¼ ¹
2

¾(t) [¹u u] + r+ ; (5.59)

onde T+N e ¾(t) são as funções discutidas anteriormente e r+ é um resto que não inclui contribuições

de ordem dominante. Esta amplitude pode ser reescrita destacando as contribuições dos píons na
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Figura 5.7: Correção de um loop com amplitude ¼¼ intermediária para o espalhamento ¼N .

camada de massa, T+(¹2; ¹2), e fora dela, ±T+, isto é,

T+(q0 2; q2) = T+(¹2; ¹2) + ±T+ ; (5.60)

onde

T+(¹2; ¹2) = T+N + T+R ; com T+R =
1

f 2¼
¾(t) [¹uu] + r+ ; (5.61)

e

±T+ =
(q0 2 ¡ ¹2) + (q2 ¡ ¹2)

f 2¼ ¹
2

¾(t) [¹uu] : (5.62)

No caso de píons na camada de massa, o diagrama da …gura (5.7) fornece uma contribuição

para T+R ; dada por

T+R
¯̄
(5.7)

= ¡ i

2 !

Z
d4Q

(2¼)4
T ¼¼ T+N

(k2 ¡ ¹2) (k0 2 ¡ ¹2) (5.63)

com

T ¼¼ =
1

f 2¼

n
3
h
(q ¡ q0)2 ¡ ¹2

i
+

h
(k0 + q0)

2 ¡ ¹2
i
+

h
(k ¡ q0)2 ¡ ¹2

io

=
1

f 2¼

£
3¹2 ¡ 4 q ¢ q0 +

¡
k2 ¡ ¹2

¢
+

¡
k0 2 ¡ ¹2

¢¤
: (5.64)

Usando esta expressão na equação (5.58), obtemos 4

T reesp1 j(5.7) = i
mgA
f¼

1

q0 2 ¡ ¹2 [¹u °5 u]
(1)

(
¡ 1

f 2¼

¡
3¹2 ¡ 4 q ¢ q0

¢ i
2

Z
d4Q

(2¼)4

£
T+N

¤(2)

(k2 ¡ ¹2) (k0 2 ¡ ¹2)

¡ i

2f2¼

Z
d4Q

(2¼)4

£
T+N

¤(2)

k0 2 ¡ ¹2 ¡ i

2f 2¼

Z
d4Q

(2¼)4

£
T+N

¤(2)

k2 ¡ ¹2

)
: (5.65)

4Esta contribuição de T+(¹2; ¹2) pode, também, ser obtida a partir do coe…ciente A+
N da equação (A.35) da

referência [ GSS 88], usando ºB = ¡ q ¢ q0=2m.
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As duas últimas integrais desta expressão correspondem a correções de vértice, que representam

efeitos de curto alcance. Desprezando estes efeitos e usando a equação (5.13), temos

T reesp1 j(5.7) = i
mgA
f 3¼

½
3¹2 ¡ 4 q ¢ q0
q0 2 ¡ ¹2

¾
[¹u °5 u]

(1) £
¡+N

¤(2)
: (5.66)

A contribuição de ±T+, por outro lado, é obtida usando a equação (5.62) na (5.58) e produz

T ±1 = i
mgA
f 3¼

½
3 +

3 (q2 ¡ ¹2)
q0 2 ¡ ¹2

¾
[¹u °5 u]

(1) £
¡+N

¤(2)
(5.67)

com a identidade (5.24).

Juntando as expressões (5.66) e (5.67), recuperamos o resultado (5.56), isto é,

T ¼1 = T reesp1 j(5.7) + T ±1 : (5.68)

Com isso, concluimos que T ±1 é a parte da amplitude T ¼1 que não contribui para o respalhamento de

píons na camada de massa. Assim, para o kernel da produção de um píon devido à troca de dois

píons, devemos fazer T ¼1 ! T ±1 :

A expressão (5.54), associada ao diagrama (5.5.b), é mais clara e produz

T ct1 = ¡ i mgA
f 3¼

½
2 [¹u °5 u]

(1) +
1

2m
[¹u 6q °5 u](1)

¾ £
¡+N

¤(2)
: (5.69)

Como podemos observar, a componente pseudoescalar desta amplitude cancela parcialmente a da

amplitude (5.67) 5. Usando a relação (5.24), podemos escrever a soma das amplitudes (5.67) e

(5.69) como

T ±1 + T
ct
1 = i

gA
f¼

¾(t)

¹2

½
m

f 2¼

µ
1

3
+
q2 ¡ ¹2
q0 2 ¡ ¹2

¶
[¹u °5 u]

(1) ¡ 1

6f2¼
[¹u 6q °5 u](1)

¾
[¹uu](2) : (5.70)

A expressão (5.55), diagramas (c) e (d) da …gura (5.5), produz

T z1 = i
3gA
f¼

®+00
¹

·
¹u

½
°5 +m°5

6p0+ 6q +m
(p0 + q)2 ¡m2

+m
6p¡6q +m

(p¡ q)2 ¡m2
°5

¾
u

¸(1) £
¡+N

¤(2)

= i
gA
f¼

¾(t)

¹2
®+00
¹3

½
[¹u °5 u]

(1) ¡ 2m

(p01 + q)
2 ¡m2

[¹u 6q °5 u](1)
¾
[¹uu](2) ; (5.71)

onde usamos a equação de Dirac, a identidade (5.24) e a simetria pelas trocas p1 $ p01 e q $ ¡ q.
5Este cancelamento nasce do mesmo mecanismo apresentado na seção 3 do capítulo 3.
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Somando as equações (5.70) e (5.71), obtemos

T1 = i
gA
f¼

¾(t)

¹2

½·
m

f 2¼

µ
1

3
+
q2¡¹2
q0 2¡¹2

¶
+
®+00
¹

¸
[¹u °5 u]

(1) ¡
·
1

6f2¼
+

2m ®+00 =¹

(p01+q)
2¡m2

¸
[¹u 6q °5 u](1)

¾
[¹uu](2) :

(5.72)

Este resultado representa a contribuição dominante à amplitude do processo NN ! ¼NN e é válido

para o caso de o píon externo ser real (q2 = ¹2). No caso deste píon ser virtual, esta expressão deve

ser usada com cautela, como discutiremos na seção 5.6.

5.3 Kernel da Produção

Para usar o resultado da seção anterior com funções de onda nucleares, é necessário deduzir

um kernel não-relativístico a partir da amplitude T1. Esta amplitude inclui a propagação de estados

de energia positiva (+) e negativa (¡), incorporados no propagador covariante

6 ¹p+m
¹p2 ¡m2

= S+(¹p) + S¡(¹p) ; (5.73)

onde

S+(¹p) =
1

2 ¹E

P
us(¹p) ¹us(¹p)

¹p0 ¡ ¹E
=

1

2 ¹E

°0 ¹E ¡ ° ¢ p+m
¹p0 ¡ ¹E

=
1

2 ¹E

µ 6 ¹p+m
¹p0 ¡ ¹E

¡ °0
¶

(5.74)

e

S¡(¹p) =
1

2 ¹E

P
vs(¡ ¹p) ¹vs(¡ ¹p)
¹p0 + ¹E

=
1

2 ¹E

°0 ¹E + ° ¢ p¡m
¹p0 + ¹E

; (5.75)

com ¹E =
p
m2 + ¹p2 :

A propagação dos estados de energia positiva está incluída nas funções de onda nucleares

e, por isso, deve ser subtraída da amplitude para evitar dupla contagem. Esta contribuição está

contida em T z1 ; e a parte com energia negativa, T z1 j¡ ; é obtida substituindo os propagadores da

equação (5.55) por 6

S¡(¹p) =
6 ¹p+m
¹p2 ¡m2

¡ S+(¹p) =
1

2 ¹E

µ
°0 ¡ 6 ¹p +m

¹p0 + ¹E

¶
(5.76)

6Esta substituição não pode ser realizada na expressão (5.51) porque, como já dissemos, nela não é possível
distinguir claramente propagadores e termos de contato.
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com ¹p = pd e ¹p = pe ; isto é,

T z1 j¡ = i
3gA
f¼

®+00
¹

·
¹u

½
°5 +

m°5
2Ed

µ
°0 ¡ 6pd +m

p0d + Ed

¶
+
m

2Ee

µ
°0 ¡ 6pe +m

p0e + Ee

¶
°5

¾
u

¸(1) £
¡+N

¤(2)

= i
gA
f¼

¾(t)

¹2
®+00
¹

½
[¹u °5 u]

(1) +
1

2

µ
m

Ee
¡ m

Ed

¶
[¹u °0 °5 u]

(1)

+
1

2

µ
m=Ed

p00 + q0 + Ed
+

m=Ee
p0 ¡ q0 + Ee

¶
[¹u 6q °5 u](1)

¾
[¹uu](2) : (5.77)

O kernel corresponde à parte da amplitude T1, equação (5.72), com propagação de estados

de energia negativa,

K1 = T ±1 + T ct1 + T z1 j¡ ; (5.78)

logo

K1 = i
gA
f¼

¾(t)

¹2

½µ
m

3f 2¼
+
®+00
¹

¶
[¹u °5 u]

(1) +
1

2

µ
m

Ee
¡ m

Ed

¶
[¹u °0 °5 u]

(1)

¡
·
1

6f 2¼
¡ ®+00
2¹

µ
m=Ed

p00 + q0 + Ed
+

m=Ee
p0 ¡ q0 + Ee

¶¸
[¹u 6q °5 u](1)

¾
[¹u u](2) : (5.79)

No centro de massa e no limite estático, os elementos das matrizes são dados por

[¹uu](2) »= 2m ;

[¹u °5 u]
(1) »= ¾(1) ¢ (p¡ p0) ; (5.80)

[¹u 6q °5 u](1) »= ¹ ¾(1) ¢ (p+ p0)¡ 2m ¾(1) ¢ q ;

[¹u °0 6q °5 u](1) »= ¹ ¾(1) ¢ (p¡ p0)¡ 2m ¾(1) ¢ q :

Com isso,7

·1

E!m
cm
=

K1

4m2
»= i

1

4m2

gA
f¼

¾(t)

¹2

½µ
m

3f 2¼
+
®+00
¹

¶
¾(1) ¢ (p¡ p0)

¡
·
1

6f 2¼
¡ ®+00
2¹

µ
1

2m+ ¹
+

1

2m¡ ¹

¶¸ £
¹¾(1) ¢ (p+ p0)¡ 2m¾(1) ¢ q

¤¾
2m:

(5.81)

7O fator 4m2 surge da diferença entre as normalizações relativística e não-relativística dos nucleons, relação (4.33).
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Desprezando pequenos termos, obtemos

·1 »= i
gA
2mf¼

¾(t)

¹2

·µ
m

3f 2¼
+
®+00
¹

¶
¾(1) ¢ (p¡ p0) +

µ
m

3f2¼
¡ ®+00
¹

¶
¾(1) ¢ q

¸
(5.82)

ou, alternativamente,

·1 »= i
gA
2mf¼

¾(t)

¹2

·
¡

µ
m

3f 2¼
+
®+00
¹

¶
¾(1) ¢¢+

2m

3f2¼
¾(1) ¢ q

¸
; (5.83)

onde ¢ = q+ p0 ¡ p :

Este kernel pode ser aplicado tanto ao estudo da produção de um píon no limiar da colisão

entre dois nucleons como na construção de forças de três nucleons. No primeiro caso, t »= ¹2=4¡¢2

e no segundo, t »= ¡¢2 [ CPR 95] e [ MR 98]. Para testar a in‡uência destes valores diferentes de

t sobre os resultados, mostramos na …gura (5.8) a transformada de Fourier da função ¾(t), que dita

a dependência espacial do kernel nos dois casos. Este grá…co indica que a componente de energia

do quadrimomento transferido tem pouca importância e, portanto, o resultado estático também

pode ser aplicado ao kernel da produção. Isso é interessante, porque permite relacionar o kernel da

produção diretamente ao potencial central isoescalar, expressão (5.31),

·1 »= i
gA
2mf¼

·
¡

µ
m¹

6®+00 f
2
¼

+
1

2

¶
¾(1) ¢¢+

m¹

3®+00 f
2
¼

¾(1) ¢ q
¸
t2¼(¢) : (5.84)

Para estimar a importância relativa dos dois termos entre colchetes, colocamos na equação

(5.84) os valores numéricos extremos para ®+00 encontrados na literatura, 3,68 [ Hoh 83] e 6,74

[ KH 99], e obtemos

·1 »= i
gA
2mf¼

h
¡ 1; 18 ¾(1) ¢¢+ 1; 37 ¾(1) ¢q

i
t2¼(¢) (5.85)

ou

·1 »= i
gA
2mf¼

h
¡ 0; 87 ¾(1) ¢¢+ 0; 75 ¾(1) ¢q

i
t2¼(¢) : (5.86)

Estes resultados sugerem que, dentro das aproximações consideradas neste trabalho, podemos

escrever

·1 »= i
gA
2mf¼

¾(1) ¢ (p1 ¡ p01) t2¼(¢) ; (5.87)

onde p1 ¡ p01 = q¡¢ :

O kernel, tal como dado nas equações (5.84) e (5.87), constitui um dos principais resultados

deste capítulo, e suas consequências são discutidas na próxima seção.
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Figura 5.8: Transformada de Fourier de ¾(¡¢2) para a força de três corpos (linha contínua) e de
¾(¹2=4¡¢2) para a produção de um píon no limiar (linha tracejada), em função da distância r.

5.4 Generalização

Os resultados, neste capítulo, foram obtidos no contexto de modelos quirais particulares,

em que usamos apenas as principais contribuições dos processos intermediários. O modelo para

a interação de dois corpos, representado na …gura (5.2), produz uma amplitude isoescalar que

corresponde, no espaço de con…guração, à componente central isoescalar do potencial NN . Na

produção do píon, o modelo adotado, …gura (5.5), fornece uma expressão para o kernel, equação

(5.84), proporcional à amplitude isoescalar da interação NN . A versão aproximada desta expressão,

equação (5.87), é parecida com a obtida por Maekawa e Robilotta [ MR 98] com um outro modelo

quiral, baseado em um méson escalar-isoescalar …ctício (s) e gA = 1,

·s »= i
1

2mf¼
¾(1) ¢ (q¡¢) ts(¢) : (5.88)

A semelhança qualitativa entre ·1 e ·s re‡ete uma característica comum nestes kernels, a de que

ambos são proporcionais a uma amplitude NN escalar-isoescalar. Esta característica se deve à re-



5.4 Generalização 109

lação entre a interação NN devida à troca de dois píons e a do méson …ctício. A componente central

do potencial NN devido à troca de dois píons não correlacionados pode ser expressa naturalmente

em termos de ¾(t), o fator de forma escalar. Esta função é relacionada ao termo sigma ¼N e pode,

se o desejarmos, ser parametrizada como uma troca de méson escalar efetivo.8

A proporcionalidade entre o kernel e a componente escalar-isoescalar do potencial NN não

é uma particularidade dos modelos adotados neste trabalho e na referência [ MR 98]. Ao contrário,

ela deve ter validade bastante geral. A razão para essa generalidade deriva de uma constatação

antiga de Nambu et al. [ NL 62] [ NS 62] e Weinberg [ Wei 66] no contexto da álgebra de correntes,

a de que, para dois estados genéricos A e B, a contribuição dominante do processo A ! ¼B é obtida

pela inserção do píon, com acoplamento derivativo, nas linhas externas do processo A ! B. No

caso do processo NN ! ¼NN devido à troca de dois píons, a contribuição dominante da amplitude

deve, então, ser proporcional à componente escalar-isoescalar da amplitude do espalhamento NN

devido à troca de dois píons. Isso corresponde claramente à relação não-relativística (5.84) ou,

de forma menos explicita, à relação relativística (5.72), onde a componente escalar-isoescalar está

associada ao fator de forma escalar.

Assim, podemos generalizar o kernel da produção para qualquer amplitude NN escalar-

isoescalar. Para a relação (5.87), esta generalização é dada pela expressão

·1 »= i
gA
2mf¼

¾(1) ¢ (q¡¢) t(¢) ; (5.89)

onde t(¢) representa uma interação escalar-isoescalar qualquer. Esta situação está esquematizada

na …gura (5.9).

No espaço de con…guração, a generalização implica, no caso da força de três nucleons, que

kernel e potencial têm dependências espaciais semelhantes e, no caso da produção do píon no

limiar, que esta relação também é aproximadamente válida. Estes resultados nos permitem produzir

expressões que relacionem o kernel diretamente a um potencial escalar-isoescalar favorito, tal como

o de Argonne. Para usar esse resultado nos cálculos de processos físicos é preciso avaliar o potencial

numericamente e, em seguida, o sanduíche do kernel entre as funções de onda de dois nucleons.

Uma vez que o kernel e o potencial central estão intimamente relacionados e, por consistência,

podemos usar a mesma dinâmica na construção do operador ·1 e das funções de onda.

8Como discutimos anteriormente, o acoplamento deste estado com nucleons desaparece no limite de quiral e,
conseqüentemente, este méson escalar não corresponde àquele presente no modelo ¾-linear. Com isso, a troca do
méson …ctício na interação NN pode ser vista como uma simpli…cação da troca de dois píons.
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Figura 5.9: A …gura superior indica a generalização da componente escalar-isoescalar do potencial
NN : a dinâmica à esquerda é trocada pela componente equivalente de um potencial qualquer,
indicado pela linha ondulada. A …gura inferior representa o mesmo tipo de generalização para o
kernel.

5.5 Produção no Limiar

No limiar da produção de um píon (q ! 0), o kernel dado pela relação geral (5.89) assume

a forma

·1(¢) »= ¡ i gA
2mf¼

¾(1) ¢¢ t(¢) : (5.90)

Fazendo a transformada de Fourier e usando a equação (4.36), obtemos o kernel no espaço

de con…guração,

·1(x) »= gA
2f¼

¹

m
¾(1) ¢ rx V (x) ; (5.91)

onde o gradiente opera sobre a variável x e

V (x) = ¡
Z

d3¢

(2¼)3
e¡ ix¢¢=¹ t(¢) : (5.92)

A relação (5.91) é nova e interessante, pois permite obter o kernel da produção sem a

necessidade do estudo da dinâmica da interação de dois corpos, que pode ser incorporada num

potencial NN teórico ou fenomenológico bem estabelecido.

Para estudar as características de ·1(x), tomamos V (x) como sendo o potencial desenvolvido

na seção 5.1, dado por

V2¼(x) = ¡ 2 ®
+
00

¹3

½
g2

2m

3¹4

(4¼)2
¹

4¼

h
Scc(x)¡ Ssc(x)

i¾
; (5.93)
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com

Scc(x) =

Z 1

0

d®

Z 1

0

d¯
¸2

¯

e¡¸x

x
; Ssc(x) =

2m2

¹2

Z 1

0

d®

Z 1

0

d¯
(1¡ ®) (1¡ ¯)

® ¯

e¡ ´ x

x
(5.94)

e

¸2 =
1

®(1¡ ®)¯ ; ´2 =
(1¡ ®)2(1¡ ¯)2 (m=¹)2 ¡ (1¡ ®)(1¡ ¯) + 1

®(1¡ ®)¯ : (5.95)

Usando o gradiente da função de Yukawa em coordenadas esféricas

rx

µ
e¡ » x

x

¶
= ¡ r̂

µ
» +

1

x

¶
e¡ » x

x
; (5.96)

e escolhendo o potencial da equação (5.31), obtemos

·1(x) »= gA
2f¼

¹

m
¾(1) ¢ r̂

½
2
®+00
¹3

g2

2m

3¹4

(4¼)2
¹

4¼

·Z 1

0

d®

Z 1

0

d¯
¸2

¯

µ
¸+

1

x

¶
e¡¸x

x

¡ 2m2

¹2

Z 1

0

d®

Z 1

0

d¯
(1¡ ®) (1¡ ¯)

® ¯

µ
´ +

1

x

¶
e¡ ´ x

x

¸¾
: (5.97)

Alternativamente, para o potencial devido à troca do méson escalar, temos

·s(x) »= ¡ gA
2f¼

¹

m
¾(1) ¢ r̂

µ
ms

¹
+
1

x

¶
Vs(x) ; (5.98)

onde

Vs(x) = ¡ g2s
¹

4¼

e¡xms=¹

x
; (5.99)

e para o potencial de Argonne,

·A(x) »= ¡ gA
2f¼

¹

m
¾(1) ¢ r̂

µ
6

x
+

2x2 + 2x

x2 + 3x+ 3

¶
VA(x) ; (5.100)

onde

VA(x) = IC

µ
1 +

3

x
+
3

x2

¶2
e¡ 2x

x2
; (5.101)

com IC »= ¡ 4; 8 MeV.

Os grá…cos desses potenciais são apresentados na …gura (5.10). A curvas dessas funções são

semelhantes, sendo V2¼(x) e Vs(x) mais próximos quanto à intensidade.

Uma característica interessante destes resultados é que todos eles são proporcionais a ¹=m; o

que poderia sugerir que o kernel seria, de alguma forma, pequeno. Esta impressão é reforçada pelo
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Figura 5.10: Kernels derivados dos potenciais V2¼(x) (linha contínua), Vs(x) (linha pontilhada) e
VA(x) (linha tracejada).

fato de que a expressão (5.90), no espaço dos momentos, contém o fator j¢j=m que, ingenuamente,

poderia ser tomado da ordem de ¹=m. A …m de testar esta hipótese, na …gura (5.11) mostramos a

razão adimensional

R =
¹

m
j rx V (x) j = j V (x) j (5.102)

para os três potenciais considerados. Inspecionando esta …gura, podemos notar que esta razão é

comparável a 1, indicando que o fator ¹=m é, na verdade, compensado pela ação do gradiente sobre

o potencial.

Esta indicação é con…rmada no trabalho de Maekawa e Rocha [ MR 99], onde a aplicação

do kernel com méson escalar aumenta a seção de choque dos processos pp ! pp¼0 e pp ! pd¼+,

subestimada nos termos de impulso e reespalhamento, ajustando a escala dos resultados teóricos,

como mostra a …gura (5.12).
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Figura 5.11: Grá…co de R, equação (razao), para V = V2¼ (linha contínua), V = Vs (linha pontil-
hada) e V = VA (linha tracejada).

5.6 Potencial de Três Nucleons

No espaço de momentos, o potencial do espalhamento de três nucleons é dada pela relação

hp01;p02;p03j Ŵ jp1;p2;p3icm = ¡ (2¼)3 ±(p01 + p02 + p03 ¡ p1 ¡ p2 ¡ p3) t3N ; (5.103)

com

t3N
cm
=

1

(2E)3
T3N ; (5.104)

onde T3N corresponde à amplitude própria deste espalhamento.

A componente mais importante e de maior alcance do potencial de três nucleons é a devida à

troca de dois píons (2¼), dada pelo diagrama (a) da …gura (5.13). O processo de ordem seguinte, na

hierarquia de distâncias das interações nucleares, corresponde aos diagramas (b) e (c), envolvendo

três píons (3¼). Estes desenhos, sem ambiguidades aparentes, sugerem que o primeiro diagrama

pode ser construído a partir da amplitude de espalhamento ¼N e o segundo, a partir do kernel

desenvolvido nas seções anteriores deste capítulo. Nesta seção, entretanto, mostramos que, de fato,

esta interpretação pode envolver uma dupla contagem.

A bolha hachurada do diagrama (a) representa a amplitude de espalhamento elástico ¼N ,

cuja forma geral é dada pela identidade de Ward-Takahashi. No canal simétrico de isospin, este
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Figura 5.12: Seções de choque para as reações pp ! pp¼0 e pp ! pd¼+ em função do momento do
píon ´ = q=¹ [ MR 99].

diagrama corresponde a

T3N = ¿ (1) ¢ ¿ (3)
µ
gA
2f¼

¶2

[¡ ¹u 6q 0 °5 u](1)
i

q0 2 ¡ ¹2
£
T+(q0 2; q2)

¤(2) i

q2 ¡ ¹2 [¹u 6q °5 u](3)

= ¡ ¿ (1) ¢ ¿ (3)
µ
mgA
f¼

¶2 1

(q0 2¡¹2) (q2¡¹2) [¹u °5 u]
(1) £T+(¹2; ¹2) + ±T+

¤(2)
[¹u °5 u]

(3) ; (5.105)

onde T+(¹2; ¹2) e ±T+ são as amplitudes ¼N simétricas para píons na camada de massa e fora dela,

dadas pelas equações (5.61) e (5.62).

O termo contendo a amplitude para píons na camada de massa gera, de fato, um potencial

que envolve apenas dois píons virtuais [ CDR 83] [ RICD 85] [ RC 86]. O termo proporcional aos

píons fora da camada de massa, por outro lado, é ambíguo e pode ser escrito através da função

dada em (5.62) como

±T3N = ¡ ¿ (1) ¢ ¿ (3)
µ
mgA
f 2¼

¶2
¾(¢2)

¹2

µ
1

q2 ¡ ¹2 +
1

q0 2 ¡ ¹2
¶
[¹u °5 u]

(1) [¹uu](2) [¹u °5 u]
(3) ; (5.106)
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Figura 5.13: Contribuições da troca de dois píons, diagrama (a), e três píons, diagramas (b) e (c),
para o espalhamento de três nucleons.

com q = p03 ¡ p3 ; q0 = p1 ¡ p01 e ¢ = p2 ¡ p02 :

Passando para o formalismo não-relativístico e usando a equação (5.29), podemos escrever

±t3N = ¿ (1) ¢ ¿ (3)
3¹

2®+00

1

(2m)2

½·
mgA
f 3¼

¾(1) ¢ (p1 ¡ p01) t2¼(¢)
¸ ·

1

q2 + ¹2
mgA
f¼

¾(3) ¢ (p3 ¡ p03)
¸

+

·
mgA
f¼

¾(1) ¢ (p1 ¡ p01)
1

q0 2 + ¹2

¸ ·
mgA
f 3¼

¾(3) ¢ (p3 ¡ p03) t2¼(¢)
¸¾

: (5.107)

Esses resultados mostram que o uso da amplitude ¼N fora da camada de massa dá origem

a contribuições que envolvem a troca de três píons.

Para compreender melhor a origem deste problema, consideraremos as contribuições dos

diagramas (b) e (c) da …gura (5.13), associados à amplitude de produção de píons.

A principal contribuição para T3N vem dos diagramas da …gura (5.14), que envolvem tanto

processos próprios (a), (b) e (c), incorporados nos propagadores dos píons como outros em que o

OPEP e o TPEP são relacionados por um propagador de antinucleon (d), (e), (f) e (g).

O cálculo direto do diagrama (a) fornece

£
T ±1

¤(3)
= T ±1

i

q2 ¡ ¹2
·
¹u
gA
2f¼

6q °5 u
¸(3)

= ¡
µ
mgA
f 2¼

¶2µ
3

q2 ¡ ¹2 +
3

q0 2 ¡ ¹2
¶
[¹u °5 u]

(1) £
¡+N

¤(2)
[¹u °5 u]

(3) ; (5.108)

onde passamos a omitir os termos no espaço de isospin, ¿ (1) ¢ ¿ (3).

Lembrando que 3¹2
£
¡+N

¤
= ¾(t) [¹uu] ; notamos que esta amplitude é idêntica à expressão

(5.106). Isso não é surpreendente, já que os kernels dos diagramas (5.13.b) e (5.13.c) já incluem
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Figura 5.14: Contribuições para a amplitude do espalhamento de três nucleons devido à troca de
três píons: (a) pólo do píon, (b) e (c) contatos, (d), (e), (f) e (g) grá…cos z e permutações cíclicas.

contribuições de ±T+. Este resultado indica, portanto, que a incorporação de efeitos fora da camada

de massa no diagrama (5.13.a) e o cálculo do diagrama envolvendo o espalhamento ¼¼ na …gura

(5.14) não devem ser efetuados simultaneamente, pois isto levaria a dupla contagem.

Em um cálculo completo, a contribuição de
£
T ±1

¤(3)
deve ser considerada apenas uma vez.

Como ela envolve a troca de três píons, é mais natural incluí-la no cálculo dos diagramas da …gura

(5.13.b). Portanto, a força de três nucleons envolvendo a troca de dois píons ( 2¼) deve ser baseada

na amplitude ¼N para píons na camada de massa.

Com este entendimento, passamos a calcular as demais contribuições envolvendo três píons

virtuais.
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Os diagramas (b) e (c) fornecem, respectivamente,

£
T ct1

¤(3)
+

£
T ct3

¤(1)
= T ct1

i

q2 ¡ ¹2
·
¹u
gA
2f¼

6q °5 u
¸(3)

+

·
¡ ¹u gA

2f¼
6q 0 °5 u

¸(1)
i

q0 2 ¡ ¹2 T
ct
3

=

µ
mgA
f 2¼

¶2
1

q2 ¡ ¹2
½
2 [¹u °5 u]

(1) +
1

2m
[¹u 6q °5 u](1)

¾ £
¡+N

¤(2)
[¹u °5 u]

(3)

+

µ
mgA
f 2¼

¶2
1

q0 2 ¡ ¹2 [¹u °5 u]
(1) £

¡+N
¤(2)

½
2 [¹u °5 u]

(3) ¡ 1

2m
[¹u 6q 0°5 u](3)

¾
(5.109)

e

[T z1 ]
(3) + [T z3 ]

(1) = T z1
i

q2 ¡ ¹2
·
¹u
gA
2f¼

6q °5 u
¸(3)

+

·
¡ ¹u gA

2f¼
6q 0 °5 u

¸(1)
i

q0 2 ¡ ¹2 T
z
3

= ¡
µ
gA
f¼

¶2 3®+00
¹

1

q2 ¡ ¹2
½
[¹u °5 u]

(1) ¡ 2m

(p01 + q)
2 ¡m2

[¹u 6q °5 u](1)
¾ £
¡+N

¤(2)
[¹u °5 u]

(3)

¡
µ
gA
f¼

¶2
3®+00
¹

1

q0 2 ¡ ¹2 [¹u °5 u]
(1) £

¡+N
¤(2)

½
[¹u °5 u]

(3) +
2m

(p03 ¡ q0)2 ¡m2
[¹u 6q 0°5 u](3)

¾
:

(5.110)

Somando essas amplitudes e usando a relação (5.24), obtemos a contribuição dominante

K3N = ¡m
µ
gA
f¼

¶2½ 1

q2¡¹2
·µ
m

f 2¼
+
3®+00
¹

¶
[¹u °5 u]

(1)¡
µ
1

2f 2¼
+

6m ®+00 =¹

(p01+q)
2¡m2

¶
[¹u 6q °5 u](1)

¸
[¹u °5 u]

(3)

+
1

q0 2¡¹2 [¹u °5 u]
(1)

·µ
m

f 2¼
+
3®+00
¹

¶
[¹u °5 u]

(3)+

µ
1

2f 2¼
+

6m ®+00 =¹

(p03¡q0)2¡m2

¶
[¹u 6q 0°5 u](3)

¸¾£
¡+N

¤(2)
:

(5.111)

Esta expressão é simétrica pela troca 1 $ 3 ; isto é, p1 $ p3 ; p
0
1 $ p03 ; q $ ¡ q0: Logo, podemos

escrever

K3N = ¡m
µ
gA
f¼

¶2 1

q2 ¡ ¹2
½µ

m

f 2¼
+
3®+00
¹

¶
[¹u °5 u]

(1) ¡
µ
1

2f2¼
+

6m ®+00 =¹

(p01+q)
2¡m2

¶
[¹u 6q °5 u](1)

¾

£
£
¡+N

¤(2)
[¹u °5 u]

(3) + (1 $ 3) + perm: c¶{clica : (5.112)

É interessante notar que o mesmo resultado pode ser obtido usando o kernel da produção

do píon na camada de massa,

K3N = K1
i

q2 ¡ ¹2
mgA
f¼

[¹u °5 u]
(3) + (1 $ 3) + perm: c¶{clica ; (5.113)
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onde K1 é dado pela expressão (5.79).

No centro de massa e no limite estático, temos 9

·3N(¢;q)
E!m
cm
=

K3N(¢;q)

(2E)3
»= ·1(¢)

1

2m

·
mgA
f¼

i

q2 + ¹2
¾(3) ¢ q

¸
+ (1 $ 3) + p: c: (5.114)

A passagem para o espaço de coordenadas é realizada pela transformada de Fourier

hr01; r02; r03j Ŵ j r1; r2; r3i =

Z
d3p01
(2¼)3

d3p02
(2¼)3

d3p03
(2¼)3

d3p1
(2¼)3

d3p2
(2¼)3

d3p3
(2¼)3

e¡ i (p
0
1¢r01+p02¢r02+p03¢r03¡p1¢r1¡p2¢r2¡p3¢r3)

£
h
¡ (2¼)3 ±(p01 + p02 + p03 ¡ p1 ¡ p2 ¡ p3) ·3N(¢;q)

i
; (5.115)

onde usamos a equação (5.103).

Repetindo os mesmos procedimentos da primeira seção do capítulo 4 para o espalhamento

NN , obtemos

W (r) = ¡
Z

d3¢

(2¼)3
d3q

(2¼)3
e¡ iq¢r32 e¡ i¢¢r21 ·3N(¢;q) ; (5.116)

onde r21
:
= r2 ¡ r1 e r32 := r3 ¡ r2 :

Com isso, o potencial pode ser escrito como

W (r) »= ·1(r21) V (r32) + (1 $ 3) + perm: c¶{clica ; (5.117)

onde

·1(r21) »= gA
2mf¼

¾(1) ¢ r21 V (r21) =
gA
2f¼

¹

m
¾(1) ¢ rx21 V (x21) (5.118)

foi calculado na seção anterior, equação (5.97), e

V (r32) =
gA
2f¼

¾(3) ¢ r32

Z
d3q

(2¼)3
e¡ iq¢r32

1

q2 + ¹2
=

gA
2f¼

¹2

4¼
¾(3) ¢ rx32

µ
e¡x32

x32

¶

= ¡ gA
2f¼

¹2

4¼

µ
1 +

1

x32

¶
e¡x32

x32
¾(3) ¢ r̂32 : (5.119)

Assim,

W (x) »= ¡ 3

4
®+00 ¹

³ g
4¼

´4 ³ ¹
m

´4
¾(1) ¢ r̂21 ¾(3) ¢ r̂32

·Z 1

0

d®

Z 1

0

d¯
¸2

¯

µ
¸+

1

x21

¶
e¡¸x21

x21

¡ 2m2

¹2

Z 1

0

d®

Z 1

0

d¯
(1¡ ®) (1¡ ¯)

® ¯

µ
´ +

1

x21

¶
e¡´ x21

x21

¸µ
1 +

1

x32

¶
e¡x32

x32
: (5.120)

9O fator 1
2m vem do limite estático de 1

(2E)3
, descontando o fator 1

(2m)2
já presente em ·1.
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A in‡uência do termo de contato no caso · = ·s foi estudada por Maekawa e Robilotta

[ MR 98]. Este termo é característico da dinâmica quiral e os grá…cos z, de uma dinâmica triv-

ial. Comparando as …guras (5.15) e (5.16), vemos que simetria quiral é bastante relevante para o

potencial de três nucleons, pois muda completamente as equipotenciais.

Figura 5.15: Contribuição proveniente dos grá…cos z da referência [ MR 98]. Um nucleon é …xo em
x = ¡ 0; 5 fm, o outro em x = 0; 5 fm e o terceiro se move nas linhas equipotenciais.
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Figura 5.16: Contribuição proveniente do diagrama de contato e grá…cos z da referência [ MR 98].
Um nucleon é …xo em x = ¡ 0; 5 fm, o outro em x = 0; 5 fm e o terceiro se move nas linhas
equipotenciais.



Capítulo 6

Conclusões e Perspectivas

Neste trabalho, obtivemos os termos dominantes do potencial NN devido à troca de três

píons e do kernel para a produção de um píon no espalhamento NN . Em ambos os casos, os

píons virtuais não estão correlacionados. Os cálculos são baseados nas amplitudes dos processos

intermediários ¼N ! ¼N e ¼N ! ¼¼N , obtidas por meio das regras de Feynman derivadas

da lagrangiana quiral não-linear com acoplamento ¼N pseudovetorial. A dinâmica do processo

¼N ! ¼¼N , em particular, é bastante interessante, pois envolve o diagrama com vértice de quatro

píons, que tem papel fundamental. Este vértice é parcialmente cancelado por um diagrama de

contato pertencente à mesma subclasse de interações. Em processos contendo píons fora da camada

de massa é necessário reunir todos os diagramas de uma dada subclasse quiral, para que os resultados

independam da de…nição do campo do píon. No caso do processo ¼N ! ¼¼N , a subclasse de

diagramas que fornece a contribuição dominante a baixas energias contém apenas os diagramas

com vértice 4¼ e de contato.

121
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No estudo do espalhamento NN devido à troca de três píons não correlacionados, obtivemos

uma interação isovetorial com uma componente pseudoscalar e outra axial. No canal spin-spin,

a parte pseudoscalar, positiva, é um pouco maior do que a axial, negativa. A resultante tem um

alcance de cerca de 1.0 fm, que é compatível com os resultados obtidos em cálculos recentes baseados

em HBChPT. O potencial devido à troca de três píons é muito pequeno quando comparado ao

resultante da troca de um píon, o que se deve, por um lado, ao cancelamento entre as componentes

pseudoescalar e axial e, por outro, à simetria quiral, responsável pelo cancelamento parcial entre os

diagramas de Feynman. O efeito obtido é, então, menor do que o produzido pela troca do méson

a1.

O presente trabalho deixa vários problemas em aberto. Um deles, consiste em efetuar um

cálculo relativístico completo de todos os diagramas contendo dois loops e envolvendo apenas píons

e nucleons. Além disso, é preciso determinar as contribuições de outros graus de liberdade, em

especial das excitações delta, que têm papel importante na troca de dois píons.

No caso da produção de um píon devida à troca de dois píons não correlacionados, o kernel

relevante está associado a um número grande de diagramas. Para obter o termo dominante a

grandes distâncias internucleônicas, empregamos os mesmos diagramas utilizados na troca de três

píons, somados à contribuição da iteração de potenciais de dois corpos. Apesar da expressão …nal

também envolver o cancelamento parcial entre diagramas, o saldo ainda é importante.

Relacionamos, então, este kernel à componente central isoscalar do potencial NN devida à

troca de dois píons não correlacionados, que pode ser expressa naturalmente em termos do fator de

forma escalar ¼N . Estes resultados foram, em seguida, generalizados para o caso de um potencial

central qualquer. Como o fator de forma escalar ¼N pode ser simulado pela troca de um méson

escalar efetivo, o mesmo vale para o potencial de dois corpos e para o kernel da produção.

Uma das possíveis extensões deste trabalho consiste em realizar um cálculo dinâmico mais

completo, incluindo todos os membros de uma mesma família de diagramas quirais e, também,

outros graus de liberdade. Deste modo, seria possível testar a generalidade da relação entre kernel

e potencial de dois corpos.

O nosso kernel generalizado foi especializado para os casos da produção de píons no limiar do

espalhamentoNN e de interações próprias de três nucleons. Em ambos os casos, ele toma uma forma

semelhante e de mesma ordem de grandeza do devido à troca do méson escalar …ctício. Como este

último foi testado fenomenologicamente com sucesso, podemos esperar que o mesmo venha a ocorrer
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com o que obtivemos. Esta evidência precisa, entretanto, ser con…rmada por estudos detalhados

deste tipo de reação.



Apêndice A

Notação e Convenções

A.1 Notações Relativísticas

Em geral, os cálculos relativísticos são realizados no espaço de Minkowski. Este espaço é

caracterizado pelo tensor métrico

g¹º = g¹º =

0
BB@

1 0 0 0
0 ¡ 1 0 0
0 0 ¡ 1 0
0 0 0 ¡ 1

1
CCA : (A.1)

Com isso, os quadrivetores são expressos nas formas contravariante 1

a¹ = (a0; a1; a2; a3) = (a0; a) (A.2)

1Neste trabalho tomamos c = 1 e ~ = 1.
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e na covariante

a¹ = g¹º a
º = (a0;¡ a1;¡ a2;¡ a3) = (a0;¡a) ; (A.3)

de modo que o produto escalar seja

a ¢ b = a¹ b¹ = a0b0 ¡ a ¢ b : (A.4)

As respectivas derivadas são de…nidas como

@¹
:
=

@

@x¹
= ( @0;¡ @i) e @¹

:
=

@

@x¹
= ( @0; @i) ; (A.5)

de modo que

@¹ a¹ = @0 a0 ¡ @i ai =
@

@t
at ¡ r ¢ a e @¹ @¹ =

@2

@t2
¡ r2 :

= ¤ : (A.6)

A.2 Equações de Onda Relativísticas

² BÓSONS

Um bóson livre é descrito pela equação de Klein-Gordon

¡
¤ + ¹2

¢
Á¹t (x) = 0 ; (A.7)

onde Á¹t (x) representa o campo do bóson com grau de liberdade interna t e ¹, a sua massa. O

campo que satisfaz esta equação tem a forma

Á¹t (x) =

Z
d3kp
(2¼)32!k

h
ak e

¡ i k¢x + ayk e
i k¢x

i
"¹t (k) ; (A.8)

onde ak e ayk são, respectivamente, os operadores de aniquilação e criação e "¹t (k) é uma função com

quatro componentes.

Como na relatividade o spin da partícula está acoplado ao seu movimento, a equação de movi-

mento para uma partícula livre depende do spin dessa partícula. Assim, para que "¹t (k) represente

o spinor de bósons vetoriais com spin 1, deve-se introduzir um vínculo na equação de Klein-Gordon,
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para que produza três estados de polarização independentes (spin 1), quando ¹ 6= 0, e dois, quando

¹ = 0. A escolha mais natural é a condição de Lorentz

@¹ Á
¹
t (x) = 0 : (A.9)

Para bósons escalares (spin 0), temos apenas um estado independente, logo "¹t (k) = 1: No

caso de píons, t representa as componentes de seu isospin, de modo que

¼+ = ¡ 1p
2
(Á1 + i Á2) ; ¼0 = Á3 ; ¼+ =

1p
2
(Á1 ¡ i Á2) : (A.10)

A normalização adotada para os bósons é

hk0; ¯; t ! +1jk; ®; t ! ¡1i = 2! (2¼)3 ±3(k0 ¡ k) ±¯® ; (A.11)

onde ! = §
p
k2 + ¹2 é a energia relativística do bóson.

² FÉRMIONS

A equação que descreve um férmion livre é a equação de Dirac,

( i @¹ °
¹ ¡ m) Ãs(x) = 0 ; (A.12)

onde °¹ são as matrizes de Dirac, Ãs(x) representa o campo do férmion com grau de liberdade

interna s e m, a sua massa. O campo que satisfaz esta equação tem a forma

Ãs(x) =
X

s

Z
d3pp

(2¼)32Ep

£
bs(p) us(p) e

¡ i p¢x + dys(p) vs(p) e
i k¢x¤ ; (A.13)

onde os operadores bs(p) e dys(p) aniquilam e criam férmions e os spinores us(p) e vs(p) são as

funções que satisfazem as equações de Dirac no espaço dos momentos

(6p ¡ m) us(p) = 0 e (6p + m) vs(p) = 0 ; (A.14)

onde

6p = p¹ °
¹ : (A.15)

Para um nucleon, o spinor de Dirac corresponde a

us(p) =
1p

E +m

µ
E +m
¾ ¢ p

¶
Âs (A.16)
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e, para um antinucleon, a

vs(p) = ¡ i 1p
E +m

µ
¾ ¢ p
E +m

¶
¾2 Âs ; (A.17)

onde ¾i são matrizes hermitianas 2x2, conhecidas como matrizes de Pauli,

¾1 =

µ
0 1
1 0

¶
; ¾2 =

µ
0 ¡ i
i 0

¶
; ¾3 =

µ
1 0
0 ¡ 1

¶
; (A.18)

e Âs são os spinores não-relativísticos

Â1=2 =

µ
1
0

¶
e Â¡1=2 =

µ
0
1

¶
: (A.19)

No espaço de spin e isospin, um nucleon livre que chega com spin s, isospin t e momento p

é representado por

N t
s (p) = ´t ­ us(p) (A.20)

e o que sai, por

¹N t
s (p) = ´yt ­ ¹us(p) ; (A.21)

onde ´t é seu isospinor e ¹us(p) = uys(p) °
0.

Para o próton (t = 1=2), o isospinor corresponde a

´1=2 =

µ
1
0

¶
(A.22)

e, para o nêutron (t = ¡ 1=2), a

´¡1=2 =

µ
0
1

¶
: (A.23)

As matrizes de Dirac são matrizes 4x4 com traço nulo dadas por

°0 =

µ
I 0
0 ¡ I

¶
e °k =

µ
0 ¾k

¡¾k 0

¶
: (A.24)

A matriz usual °5 corresponde à combinação

°5 = i °0 °1 °2 °3 =

µ
0 I
I 0

¶
: (A.25)
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As relações de comutação e anticomutação das matrizes de Pauli são dadas por

[¾i ; ¾j ] = 2 i ²ijk ¾k
&
%

f¾i ; ¾jg = 2 ±ij
¾i ¾j = ±ij + i ²ijk ¾k (A.26)

e das matrizes de Dirac, por

[°¹; °º] = ¡ i 2¾¹º
&
%

f°¹; °ºg = 2 g¹º
°¹ °º = g¹º ¡ i ¾¹º : (A.27)

As normalizações adotadas para os férmions são

hp0; ¯; t ! +1jp; ®; t ! ¡1i = 2E (2¼)3 ±3(p0 ¡ p) ±¯® ; (A.28)

onde E = §
p
p2 + ¹2 é a energia relativística do férmion.

A.3 Convenções

² Variáveis do espalhamento NN devido à troca de três píons

W = p1 + p2 = p01 + p
0
2 P =

1

2
[(p1 + p

0
1)¡ (p2 + p02)]

¢ = p01 ¡ p1 = p2 ¡ p02 = (q0 + q)¡ k (A.29)

Q =
(q0 + q) + k

2
Q0 =

q0 ¡ q
2

V =
p02 + p2
2m

Os nucleons na camada de massa implicam no vínculo

W ¢ P = W ¢¢ = P ¢¢ = 0 : (A.30)

² Variáveis da produção de um píon no espalhamento NN devido à troca de dois píons

W = p1 + p2 = p01 + p
0
2 + q Q =

k0 + k

2
(A.31)

¢ = k0 ¡ k = q ¡ q0 = q + p01 ¡ p1 = p2 ¡ p02
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² Amplitudes

Tdcba = ±ac ±bdA(s) + ±ab ±cdA(t) + ±ad ±bcA(u) (A.32)

Tba = ±ab T
+ + i ²bac¿ c T

¡ (A.33)

com T § = A§ [¹u u] + B§ [¹u 6Qu] (A.34)

Tcba = ±bc¿ a TA + ±ac¿ b TB + ±ba¿ c TC ¡ i ²cba TD (A.35)

com Tk = i [¹u °5 (Ak+ 6q Bk+ 6q0Ck+ 6q 6q0Dk) u] (A.36)

onde A, B, C e D são funções invariantes de Lorentz provenientes da dinâmica do processo.



Apêndice B

Cálculos com Spinores

B.1 Sanduíches

Usando as notações

N =
1p

E +m
; N 0 =

1p
E0 +m

; I(i)
:
=

£
ÂyÂ

¤(i)
; ¾(i) :

=
£
Ây¾ Â

¤(i)
; (B.1)

temos

² S ¡! ¹uu = NN 0 Ây (E0 +m;¡¾ ¢ p0)
µ
E +m
¾ ¢ p

¶
Â

= NN 0Ây [(E 0+m)(E+m)¡ ¾i ¾j p0i pj]Â = NN 0Ây [(E0+m)(E+m)¡(±ij+i ²ijk ¾k) p0i pj]Â

= NN 0Ây [(E 0 +m) (E +m)¡ p0 ¢ p¡ i¾ ¢ (p0 ^ p)]Â

= NN 0ÂyÂ [(E0 +m) (E +m)¡ p0 ¢ p]¡ iNN 0Ây¾ Â ¢ (p0 ^ p) ; (B.2)
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² PS ¡! ¹u °5 u = NN 0 Ây (E0 +m;¡ ¾ ¢ p0)
µ
0 I
I 0

¶µ
E +m
¾ ¢ p

¶
Â

= NN 0Ây (¡¾ ¢ p0; E0 +m)
µ
E +m
¾ ¢ p

¶
Â = NN 0Ây¾ Â ¢[p (E0+m)¡ p0 (E +m)] ; (B.3)

² V ¡! ¹u °¹ u = ¹u (°0; °i) u = (¹u °0 u ; ¹u °i u)

¹u °0 u = NN 0Ây (E0 +m;¡¾ ¢ p0)
µ
I 0
0 ¡ I

¶µ
E +m
¾ ¢ p

¶
Â = NN 0Ây (E0 +m;¾ ¢ p0)

µ
E +m
¾ ¢ p

¶
Â

= NN 0Ây [(E0 +m) (E +m) + ¾i ¾j p
0
i pj ]Â = NN 0Ây [(E0 +m) (E +m) + (±ij + i ²ijk ¾k) p

0
i pj ]Â

= NN 0ÂyÂ [(E0 +m) (E +m) + p0 ¢ p] + iNN 0Ây ¾ Â ¢ (p0 ^ p) (B.4)

e

¹u °i u = NN 0Ây (E0 +m;¡ ¾ ¢ p0)
µ

0 ¾i
¡¾i 0

¶µ
E +m
¾ ¢ p

¶
Â

= NN 0Ây (¾ ¢ p0 ¾i ; (E0 +m) ¾i)
µ
E +m
¾ ¢ p

¶
Â = NN 0Ây

£
¾j ¾i (E +m) p

0
j + ¾i ¾j (E

0 +m) pj
¤
Â

= NN 0Ây
£
(±ij ¡ i ²ijk ¾k) (E +m) p0j + (±ij + i ²ijk ¾k) (E0 +m) pj

¤
Â

= NN 0Ây
£
p0i (E +m)¡ i ²ijk ¾k p0j (E +m) + pi (E0 +m) + i ²ijk ¾k pj (E0 +m)

¤
Â (B.5)

= NN 0ÂyÂ [p0i (E +m) + pi (E
0 +m)] + iNN 0Ây ¾k Â ²ijk

£
pj (E

0 +m)¡ p0j (E +m)
¤
:

² PV ¡! ¹u °¹ °5 u = ¹u (°0; °i) °5 u = (¹u °0 °5 u ; ¹u °i °5 u)

¹u °0 °5 u = NN 0Ây (E0 +m;¡¾ ¢ p0)
µ
I 0
0 ¡ I

¶µ
0 I
I 0

¶µ
E +m
¾ ¢ p

¶
Â

= NN 0Ây (E0 +m;¾ ¢ p0)
µ
0 I
I 0

¶µ
E +m
¾ ¢ p

¶
Â = NN 0Ây (¾ ¢ p0; E0 +m)

µ
E +m
¾ ¢ p

¶
Â

= NN 0Ây¾ Â ¢ [p0 (E +m) + p (E0 +m)] (B.6)
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e

¹u °i °5 u = NN 0Ây (E0 +m;¡ ¾ ¢ p0)
µ

0 ¾i
¡¾i 0

¶µ
0 I
I 0

¶µ
E +m
¾ ¢ p

¶
Â

= NN 0Ây (¾ ¢p0 ¾i ; (E0+m) ¾i)
µ
0 I
I 0

¶µ
E+m
¾ ¢p

¶
Â

= NN 0Ây ((E0+m) ¾i ; ¾ ¢p0 ¾i)
µ
E+m
¾ ¢p

¶
Â

= NN 0Ây
£
¾i (E

0 +m) (E +m) + ¾j p
0
j ¾i ¾k pk

¤
Â (B.7)

= NN 0Ây
£
¾i (E

0 +m) (E +m) + ¾j p
0
j (±ik + i ²ikm ¾m) pk

¤
Â

= NN 0Ây
£
¾i (E

0 +m) (E +m) + ¾ ¢ p0 pi + i ²ikm (±jm + i ²jmn ¾n) p0j pk
¤
Â

= NN 0Ây
£
¾i (E

0 +m) (E +m) + ¾ ¢ p0 pi + i ²ikj p0j pk + ²ikm ²jnm ¾n p0j pk
¤
Â

= NN 0Ây
£
¾i (E

0 +m) (E +m) + ¾ ¢ p0 pi + i (p ^ p0)i + (±ij±kn ¡ ±in±kj) ¾n p0j pk
¤
Â

= iNN 0ÂyÂ (p ^ p0)i +NN 0Ây ¾i Â [(E
0 +m) (E +m)¡ p ¢ p0] +NN 0Ây¾ Â ¢ (p0 pi + p p0i) :

No caso da contração deste sanduíche com um vetor q¹ ; temos

¹u 6q °5 u = ¹u °¹ °5 u q¹ = ¹u °0 °5 u q0 ¡ ¹u °i °5 u qi

= NN 0Ây¾ Â ¢ [p0 (E +m) + p (E0 +m)] q0 ¡ iNN 0ÂyÂq ¢ (p ^ p0)

¡ NN 0Ây ¾ Â ¢ q [(E0 +m) (E +m)¡ p ¢ p0]¡ NN 0Ây ¾ Â ¢ (p0 q ¢ p+ p q ¢ p0) : (B.8)

² T ¡! ¹u¾¹º u = ¹u

µ
¾00 ¾0 j

¾i 0 ¾i j

¶
u =

µ
¹u¾00 u ¹u¾0 j u
¹u¾i 0 u ¹u¾i j u

¶

¹u ¾00 u = 0 ; ¹u¾k0 u = ¡ ¹u¾0k u para k = i ou j ; (B.9)
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¹u¾0k u = NN 0Ây (E0 +m;¡¾ ¢ p0) i
µ
0 ¾k
¾k 0

¶ µ
E +m
¾ ¢ p

¶
Â

= NN 0Ây (¡ i¾ ¢ p0 ¾k ; i (E0 +m) ¾k)
µ
E +m
¾ ¢ p

¶
Â

= NN 0Ây [¡ i ¾i ¾k (E +m) p0i + i ¾k ¾j (E0 +m) pj ]Â (B.10)

= NN 0Ây [¡ i (±ik + i ²ikm ¾m) (E +m) p0i + i (±kj + i ²kjn ¾n) (E0 +m) pj]Â

= iNN 0ÂyÂ [pk (E
0 +m)¡ p0k (E +m)]¡ NN 0Ây ¾m Â ²kim p

0
i (E +m)¡ NN 0Ây ¾n Â ²kjn pj (E

0 +m)

e

¹u¾i j u = NN 0Ây (E0 +m;¡¾ ¢ p0) ²ijk
µ
¾k 0
0 ¾k

¶ µ
E +m
¾ ¢ p

¶
Â

= NN 0Ây ²ijk ((E
0 +m) ¾k;¡¾ ¢ p0¾k)

µ
E +m
¾ ¢ p

¶
Â

= NN 0Ây ²ijk [¾k (E
0 +m) (E +m)¡ ¾m p0m ¾k ¾n pn]Â

= NN 0Ây [²ijk ¾k (E
0 +m) (E +m)¡ ²ijk ¾m (±kn + i ²knl ¾l) p0m pn]Â

= NN 0Ây [²ijk ¾k (E
0 +m) (E +m)¡ ²ijn ¾m p0m pn ¡ i (±in±jl ¡ ±il±jn) (±ml + i ²mls ¾s) p0m pn]Â

= NN 0Ây
£
²ijk ¾k (E

0 +m) (E +m)¡ ²ijn pn ¾m p0m ¡ i p0j pi + i p0i pj ¡ pi ²jms p0m ¾s + ²ims pj p0m ¾s
¤
Â

= iNN 0ÂyÂ
¡
p0i pj ¡ p0j pi

¢
+NN 0Ây ¾k Â ²ijk (E

0 +m) (E +m)¡ NN 0Ây ¾m Â ²ijn pn p
0
m

+ NN 0Ây ¾s Â (²ims pj p
0
m ¡ ²jms pi p0m) : (B.11)

B.2 Produtos com Sanduíches

² Entre quadrivetor e sanduíche
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¹u 6a u = a¹ ¹u °¹ u = a0 ¹u °0 u¡ ai ¹u °i u

= NN 0ÂyÂ [(E0 +m) (E +m) + p0 ¢ p] a0 + iNN 0Ây¾ Â ¢ (p0 ^ p) a0

¡ NN 0ÂyÂ [a ¢ p (E0 +m) + a ¢ p0 (E +m)]¡ iNN 0Ây¾ Â ¢ [a ^ p (E0 +m)¡ a ^ p0 (E +m)] ;
(B.12)

¹u 6a °5 u = a¹ ¹u °¹ °5 u = a0 ¹u °0 °5 u¡ ai ¹u °i °5 u

= NN 0Ây¾ Â ¢ [p0 (E +m) + p (E0 +m)] a0 ¡ iNN 0ÂyÂ a ¢ (p ^ p0)

+NN 0Ây¾ Â ¢ a [(E0 +m) (E +m)¡ p ¢ p0] +NN 0Ây¾ Â ¢ (p0 a ¢ p+ p a ¢ p0) ; (B.13)

¹u a¹ bº ¾
¹º u = (a0 ;¡ ai)

µ
¹u ¾00 u ¹u¾0 j u
¹u¾i 0 u ¹u¾i j u

¶µ
b0

¡ bj

¶

=

µ
a0 ¹u¾

00 u a0 ¹u¾
0i u

ai ¹u¾
0i u ¡ ai ¹u¾i j u

¶µ
b0

¡ bj

¶
= a0b0 ¹u¾

00 u+ (b0ak ¡ a0bk) ¹u¾0k u+ aibj ¹u¾i j u

= iNN 0ÂyÂ (b0a¡ a0b) ¢ [p (E0 +m)¡ p0 (E +m)]

¡ NN 0Ây¾ Â ¢ f(b0a¡ a0b) ^ [p0 (E +m) + p (E0 +m)]g

+ iNN 0ÂyÂ (a ¢ p0 b ¢ p¡ b ¢ p0 a ¢ p) +NN 0Ây¾ Â ¢ (a ^ b) (E0 +m) (E +m)

¡ NN 0Ây¾ Â ¢ p0 (a ^ b) ¢ p+NN 0Ây ¾ Â ¢ [(p0 ^ b) a ¢ p¡ (p0 ^ a) b ¢ p] ; (B.14)

¹u 6b 6a °5 u =
Âyp
E0 +m

(E0 +m;¡¾ ¢ p0)
µ

b0 ¡¾ ¢ b
¾ ¢ b ¡ b0

¶µ
a0¾ ¢ p¡ (E +m) ¾ ¢ a
¾ ¢ a¾ ¢ p¡ a0 (E +m)

¶
Âp
E +m

=
Âyp
E0 +m

(E0 +m;¡¾ ¢ p0)

£
µ
b0 a0¾ ¢ p¡ b0 (E +m) ¾ ¢ a¡ ¾ ¢ b¾ ¢ a¾ ¢ p+ a0 (E +m) ¾ ¢ b
a0¾ ¢ b¾ ¢ p¡ (E +m) ¾ ¢ b¾ ¢ a¡ b0¾ ¢ a¾ ¢ p+ b0 a0 (E +m)

¶
Âp
E +m

=
p
E0 +m

p
E +m Ây

·
b0 a0¾ ¢ p
E +m

¡ b0¾ ¢ a¡ ¾ ¢ b¾ ¢ a¾ ¢ p
E +m

+ a0¾ ¢ b

¡ a0¾ ¢ p0 ¾ ¢ b¾ ¢ p
(E0 +m) (E +m)

+
¾ ¢ p0 ¾ ¢ b¾ ¢ a

E0 +m
+
b0¾ ¢ p0 ¾ ¢ a¾ ¢ p
(E0 +m) (E +m)

¡ b0 a0¾ ¢ p0
E0 +m

¸
Â ; (B.15)
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² Entre sanduíches

¡
¹u °¹ u

¢(1)
(¹u °¹ u)(2) = (¹u °0 u)

(1) (¹u °0 u)
(2) ¡ (¹u °i u)(1) (¹u °i u)(2)

=
©
NN 0ÂyÂ [(E0 +m) (E +m) + p0 ¢ p] + iNN 0Ây¾ Â ¢ (p0 ^ p)

ª(1)

£
©
NN 0ÂyÂ [(E0 +m) (E +m) + p0 ¢ p] + iNN 0Ây ¾ Â ¢ (p0 ^ p)

ª(2)

¡
©
NN 0ÂyÂ [p0i (E +m) + pi (E

0 +m)] + iNN 0Ây ¾k Â ²ijk
£
pj (E

0 +m)¡ p0j (E +m)
¤ª(1)

£
©
NN 0ÂyÂ [p0i (E +m) + pi (E

0 +m)] + iNN 0Ây ¾m Â ²ilm [pl (E
0 +m)¡ p0l (E +m)]

ª(2)
;

(B.16)

¡
¹u °¹°5 u

¢(1)
(¹u °¹°5 u)

(2) = (¹u °0°5 u)
(1) (¹u °0°5 u)

(2) ¡ (¹u °i°5 u)(1) (¹u °i°5 u)(2)

=
©
NN 0Ây¾ Â ¢ [p0 (E +m) + p (E0 +m)]

ª(1) ©NN 0Ây¾ Â ¢ [p0 (E +m) + p (E0 +m)]
ª(2)

¡
©
iNN 0ÂyÂ (p ^ p0)i +NN 0Ây ¾i Â [(E

0 +m) (E +m)¡ p ¢ p0] +NN 0Ây¾ Â ¢ (p0 pi + p p0i)
ª(1)

£
©
iNN 0ÂyÂ (p ^ p0)i +NN 0Ây ¾i Â [(E

0 +m) (E +m)¡ p ¢ p0] +NN 0Ây¾ Â ¢ (p0 pi + p p0i)
ª(2)

:

(B.17)



Apêndice C

Integrais

C.1 Quadridimensionais

Usando a parametrização de Feynman,

1

D1D2
= ¡(2)

Z 1

0

d®
1

[®D1 + (1¡ ®)D2]2
; (C.1)

e

1

D1D2D3
= ¡(3)

Z 1

0

d® (1¡ ®)
Z 1

0

d¯
1

[®D1 + (1¡ ®) ¯D2 + (1¡ ®) (1¡ ¯)D3]3
; (C.2)

137
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nos denominadores das integrais

X(K;¹; ») =

Z
d4Q

(2¼)4
1£

(Q¡K=2)2 ¡ ¹2
¤ £
(Q+K=2)2 ¡ ¹2»2

¤ ; (C.3)

X¹(K;¹; ») =

Z
d4Q

(2¼)4
Q¹ =¹£

(Q¡K=2)2 ¡ ¹2
¤ £
(Q+K=2)2 ¡ ¹2»2

¤ ; (C.4)

X¹º(K;¹; ») =

Z
d4Q

(2¼)4
Q¹Qº =¹

2

£
(Q¡K=2)2 ¡ ¹2

¤ £
(Q+K=2)2 ¡ ¹2»2

¤ ; (C.5)

Y¹(¢; ¹; 1) =

Z
d4Q

(2¼)4
2m Q¹£

(Q¡¢=2)2¡¹2
¤ £
(Q+¢=2)2¡¹2

¤
[Q2+2mV ¢Q¡¢2=4]

; (C.6)

obtemos

1£
(Q¡K=2)2 ¡ ¹2

¤ £
(Q+K=2)2 ¡ ¹2»2

¤ = ¡(2)

Z 1

0

d®
1

(Q2 + 2P ¢Q¡§2)2
(C.7)

e

1£
(Q¡¢=2)2 ¡ ¹2

¤ £
(Q+¢=2)2 ¡ ¹2

¤
[Q2 + 2mV ¢Q¡¢2=4]

= ¡(3)

Z 1

0

d® (1¡ ®)
Z 1

0

d¯
1

(Q2 + 2P 0 ¢Q¡§0 2)3
(C.8)

onde

P = (1¡ 2®)K=2 ;

§2 =
£
®+ (1¡ ®) »2

¤
¹2 ¡K2=4 =

£
1¡ (1¡ ®)

¡
1¡ »2

¢¤
¹2 ¡K2=4 ; (C.9)

P 0 = (1¡®) (1¡¯)mV ¡[®¡(1¡®)¯] ¢=2 = (1¡®) (1¡¯)mV +[1¡2®¡(1¡®) (1¡¯)]¢=2 ;

§0 2 = [®+(1¡®) ¯]¹2¡[2®+2(1¡®) ¯¡1]¢2=4 = [1¡(1¡®)(1¡¯)]¹2¡[1¡2(1¡®)(1¡¯)]¢2=4 :

Para resolver as integrações do espaço de Minkowski, utilizamos as seguintes fórmulas de ’t

Hooft e Veltman:
Z

d2!Q

(2¼)2!
1

(Q2+ 2P ¢Q¡ §2)A
=
i (¡1)A
(4¼)2

1

¡(A)

¡(A¡ !)
(P 2+§2)A¡!

; (C.10)

Z
d2!Q

(2¼)2!
Q¹

(Q2+ 2P ¢Q¡ §2)A
=
i (¡1)A¡1
(4¼)2

P¹
¡(A)

¡(A¡ !)
(P 2+§2)A¡!

; (C.11)

Z
d2!Q

(2¼)2!
Q¹ Qº

(Q2+ 2P ¢Q¡ §2)A
=
i (¡1)A
(4¼)2

·
P¹Pº
¡(A)

¡(A¡ !)
(P 2+§2)A¡!

¡ g¹º
2¡(A)

¡(A¡ 1¡ !)
(P 2+§2)A¡1¡!

¸
: (C.12)
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A função gama, para valores positivos de n, é dada por

¡(n+ 1) = n¡(n) = n! (C.13)

e, para valores negativos, pela expansão

¡(¡n+ ") = (¡1)n
n!

½
1

"
+ Ã(n+ 1) +

"

2

·
¼2

3
+ Ã2(n+ 1)¡ Ã0(n+ 1)

¸
+O("2) + : : :

¾
; (C.14)

onde

Ã(1) = ¡ ° = ¡ 0:5772 : : : Ã(n+ 1) = 1 +
1

2
+ : : :+

1

n
¡ °; (C.15)

e

Ã0(1) =
¼2

6
; Ã0(n+ 1) =

¼2

6
¡ 1¡ 1

4
¡ : : : (C.16)

Quando as integrais têm dimensão 4, ! é dado pelo limite ! ! 2¡ ", com " ! 0 e " > 0.

Neste limite, temos, por exemplo,

¡(3¡ !)
(P 2 +§2)3¡!

¡! 1

P 2 +§2
; (C.17)

¡(2¡ !)
(P 2 +§2)2¡!

¡! c0 ¡ ln
¡
P 2 +§2

¢
; (C.18)

¡(1¡ !)
(P 2 +§2)1¡!

¡! ¡
¡
P 2 +§2

¢ £
c1 ¡ ln

¡
P 2 +§2

¢¤
; (C.19)

¡(¡!)
(P 2 +§2)¡!

¡! 1

2

¡
P 2 +§2

¢2 £
c2 ¡ ln

¡
P 2 +§2

¢¤
; (C.20)

onde

c0
:
= 1="+ Ã(1) ; c1

:
= 1="+ Ã(2) = c0 + 1 ; c2

:
= 1="+ Ã(3) = c0 + 1 +

1

2
: (C.21)

Para as integrais X, X¹, X¹º e Y¹, temos

P 2 +§2 = (1¡ 2®)2K2=4 +
£
1¡ (1¡ ®)

¡
1¡ »2

¢¤
¹2 ¡K2=4

=
£
1¡ (1¡ ®)

¡
1¡ »2

¢¤
¹2 ¡ ® (1¡ ®)K2

=
£
1¡ (1¡ ®)

¡
1¡ »2

¢¤
¹2

(
1¡ ® (1¡ ®)K2

£
1¡ (1¡ ®)

¡
1¡ »2

¢¤
¹2

)

= ® (1¡ ®)¹2­2
µ
1¡ K2

¹2­2

¶
; (C.22)



140 C Integrais

que implica

ln
¡
P 2 +§2

¢
= ln

£
® (1¡ ®)¹2­2

¤
+ ln

µ
1¡ K2

¹2­2

¶
; (C.23)

e

P 0 2 +§0 2 = f(1¡®) (1¡¯)mV +[1¡2®¡(1¡®) (1¡¯)]¢=2g2+[1¡(1¡®) (1¡¯)]¹2

¡[1¡2 (1¡®) (1¡¯)]¢2=4

= (1¡®)2 (1¡¯)2m2V 2+(1¡®) (1¡¯) [1¡2®¡(1¡®) (1¡¯)]mV ¢¢

+ [1¡2®¡(1¡®)(1¡¯)]2¢2=4+[1¡(1¡®)(1¡¯)]¹2¡[1¡2 (1¡®)(1¡¯)]¢2=4

= (1¡ ®)2 (1¡ ¯)2m2

µ
1¡ ¢2

4m2

¶
+ [1¡ (1¡ ®) (1¡ ¯)]¹2

+
©
[1¡ 2®¡ (1¡ ®) (1¡ ¯)]2 ¡ [1¡ 2 (1¡ ®) (1¡ ¯)]

ª
¢2=4

= (1¡ ®)2 (1¡ ¯)2m2 + [1¡ (1¡ ®) (1¡ ¯)]¹2 ¡ ® (1¡ ®) ¯¢2

= ¡® (1¡ ®) ¯
¡
¢2 ¡ ¹2´2

¢
; (C.24)

que implica

1

P 2 +§2
= ¡ 1

® (1¡ ®) ¯
1

¢2 ¡ ¹2´2 (C.25)

com as de…nições

­2
:
=
1¡ (1¡ ®)

¡
1¡ »2

¢

® (1¡ ®) (C.26)

e

´2
:
=
(1¡ ®)2(1¡ ¯)2 (m=¹)2 ¡ (1¡ ®)(1¡ ¯) + 1

®(1¡ ®)¯ : (C.27)

Logo, pelas expressões (C.10,C.11 e C.12), essas integrais são dadas por

X(K;¹; ») = +
i

(4¼)2

Z 1

0

d®

·
½0 ¡ ln

µ
1¡ K2

¹2­2

¶¸
; (C.28)

X¹(K;¹; ») = ¡ i

(4¼)2
K¹

¹

Z 1

0

d®
1¡ 2®
2

·
½0 ¡ ln

µ
1¡ K2

¹2­2

¶¸
; (C.29)
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X¹º(K;¹; ») = +
i

(4¼)2

(
K¹Kº

¹2

Z 1

0

d®

µ
1¡ 2®
2

¶2 ·
½0 ¡ ln

µ
1¡ K2

¹2­2

¶¸

+
g¹º
2

Z 1

0

d®
1¡ (1¡ 2®)2

4
­2

µ
1¡ K2

¹2­2

¶·
½1 ¡ ln

µ
1¡ K2

¹2­2

¶¸)
;(C.30)

Y¹(¢; ¹; 1) = ¡ i

(4¼)2

Z 1

0

d®

Z 1

0

d¯
(1¡®) (1¡¯)mV¹+[1¡2®¡(1¡®) (1¡¯)]¢¹=2

®¯

2m

¢2¡¹2´2 ;

(C.31)

onde

½0
:
= c0 ¡ ln

£
® (1¡ ®)¹2­2

¤
e ½1

:
= c1 ¡ ln

£
® (1¡ ®)¹2­2

¤
: (C.32)

Usando a representação integral

ln

µ
1¡ K2

¹2­2

¶
=

Z 1

0

d¯

µ
1

¯
+

¹2­2=¯2

K2 ¡ ¹2­2=¯

¶
; (C.33)

as integrais podem ser reescritas como

X(K;¹; ») = +
i

(4¼)2

Z 1

0

d®

µ
½0 ¡

Z 1

0

d¯
1

¯
¡

Z 1

0

d¯
¹2­2=¯2

K2 ¡ ¹2­2=¯

¶
; (C.34)

X¹(K;¹; ») = ¡ i

(4¼)2
K¹

¹

Z 1

0

d®
1¡ 2®
2

µ
½0 ¡

Z 1

0

d¯
1

¯
¡

Z 1

0

d¯
¹2­2=¯2

K2 ¡ ¹2­2=¯

¶
; (C.35)

X¹º(K;¹; ») = +
i

(4¼)2

"
K¹Kº

¹2

Z 1

0

d®

µ
1¡ 2®
2

¶2µ
½0 ¡

Z 1

0

d¯
1

¯
¡

Z 1

0

d¯
¹2­2=¯2

K2 ¡ ¹2­2=¯

¶

+
g¹º
2

Z 1

0

d® ® (1¡ ®)­2
µ
1¡ K2

¹2­2

¶µ
½1¡

Z 1

0

d¯
1

¯
¡

Z 1

0

d¯
¹2­2=¯2

K2 ¡ ¹2­2=¯

¶¸
; (C.36)

Y¹(¢; ¹; 1) = ¡ i

(4¼)2

Z 1

0

d®
1¡®
®

Z 1

0

d¯
1¡¯
¯

½
mV¹+

·
1¡ 2®

(1¡®) (1¡¯) ¡ 1
¸
¢¹

2

¾
2m

¢2¡¹2´2 :

(C.37)

Na penúltima expressão, temos

¡
µ
1¡ K2

¹2­2

¶
¹2­2=¯2

K2 ¡ ¹2­2=¯ =

µ
K2 § ¹2­2=¯

¹2­2
¡ 1

¶
¹2­2=¯2

K2 ¡ ¹2­2=¯

=
1

¯2
+

¹2­2=¯3

K2 ¡ ¹2­2=¯ ¡ ¹2­2=¯2

K2 ¡ ¹2­2=¯ =
1

¯2
+
1¡ ¯
¯

¹2­2=¯2

K2 ¡ ¹2­2=¯ : (C.38)
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As três primeiras expressões contêm constantes in…nitas provenientes da regularização di-

mensional no limite d ! 4 e das integrais
R 1
0
1
¯
d¯ e

R 1
0
1
¯2
d¯. Essas divergências são removidas por

renormalização. Essas constantes serão negligenciadas porque têm alcance zero e sobrepõe a outros

efeitos de curta distância não considerados neste trabalho. Assim,

X(K;¹; ») = ¡ i

(4¼)2

Z 1

0

d®

Z 1

0

d¯
¹2­2=¯2

K2 ¡ ¹2­2=¯ ; (C.39)

X¹(K;¹; ») = +
i

(4¼)2

Z 1

0

d®

Z 1

0

d¯
¹2 ­2=¯2

K2 ¡ ¹2­2=¯ (1¡ 2®) K¹

2¹
; (C.40)

X¹º(K;¹; ») = ¡ i

(4¼)2
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0

d®

Z 1

0

d¯
¹2­2=¯2

K2¡¹2­2=¯

·
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¸
;

(C.41)

Y¹(¢; ¹; 1) = ¡ i

(4¼)2
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1¡¯
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½
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·
1¡ 2®
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¸
¢¹

¾
m
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(C.42)

C.2 Tridimensionais

A integração da parte angular da integral

F (r) =

Z
d3¢

(2¼)3
e¡ i¢ ¢ r

¢2 + »2¹2
(C.43)

consiste em

F (r) =

Z 1

0

d¢

(2¼)3
¢2

¢2 + »2¹2

Z +1
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d(cos µ)

Z 2¼

0

dÁ e¡ i¢ r cos µ
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Z 1

0

d¢

(2¼)2
¢2
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¡1
d(cos µ) e¡ i¢ r cos µ
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Z 1

0

d¢

(2¼)2
¢2

¢2 + »2¹2

µ
e¡ i¢ r

¡ i¢ r ¡ e i¢ r

¡ i¢ r

¶

=
i

r

Z +1

¡1

d¢

(2¼)2
¢ e¡ i¢ r

¢2 + »2¹2
= ¡ 1

r

d

dr

Z +1

¡1

d¢

(2¼)2
e¡ i¢ r

¢2 + »2¹2
; (C.44)
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onde a mudança de 0 para ¡1 no limite inferior de integração provém do fato do integrando ser

simétrico pela troca ¢ ! ¡¢. A integral de ¡1 a +1 resultante pode ser feita por resíduos, pois

o numerador é uma função analítica e o denominador tem um pólo em cada hemisfério do plano

complexo, “¡i » ¹ ” no plano inferior e “ i » ¹ ” no plano superior.

O resíduo é dado pelo primeiro termo da série de Laurent,

f(z) =
1X

n=¡m
an (z ¡ z0)n (C.45)

onde z0 é um pólo de ordem m. Quando há somente um pólo ou pólo simples, temos que m = 1 e

a¡1 passa a ser o primeiro termo da série,

f(z) =
a¡1
z ¡ z0

+ a0 +
1X

n=1

an (z ¡ z0)n (C.46)

com

a¡1 =
1

(m¡ 1)!
dm¡1

dzm¡1
[(z ¡ z0)m f(z)]z= z0 = [(z ¡ z0) f(z)]z= z0 : (C.47)

No plano inferior, o pólo é “¡i » ¹ ” e a integração é no sentido horário (¡ 2¼iRes), logo a

aplicação do teorema de resíduo neste hemisfério fornece

lim
L!1

Z +L

¡L
f(¢) d¢+ lim

L!1

Z +L

¡L
f(Le i µ) e¡ iL e

i µ r i L e i µ dµ =

I
f(z) dz = ¡ 2¼iRes (p¶olo) :

(C.48)

Como no plano inferior temos apenas um pólo (m = 1), então

Res(¡ i » ¹) =
·
(z + i » ¹)

e¡ i z r

z2 + »2¹2

¸

z=¡ i » ¹
=

·
e¡ i z r

z ¡ i » ¹

¸

z=¡ i » ¹
= ¡ e¡ » ¹ r

2 i » ¹
: (C.49)

A segunda integral do lado esquerdo desaparece pelo lema de Jordan, logo

lim
L!1

Z +L

¡L

e¡ i¢ r

¢2 + »2¹2
d¢ = ¡ 2¼i

µ
¡ e¡ » ¹ r

2 i » ¹

¶
=
¼ e¡ » ¹ r

» ¹
; (C.50)

ou seja,

F (r) = ¡ 1

r

d

dr

¼ e¡ » ¹ r

(2¼)2 » ¹
=

¹

4¼
U(x; ») ; (C.51)

onde

U(x; »)
:
=
e¡ » x

x
com x

:
= ¹ r : (C.52)
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C.3 Unidimensionais

As integrações em ¯ e " das funções de Yukawa

UP3¼(x) =
8
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(C.53)

e

UA3¼(x) = ¡ 4
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; (C.54)

onde

¸2
:
=

4

¯
£
1¡ (1¡ 2®)2

¤ =
1

® (1¡ ®) ¯ (C.55)

e

µ2
:
=
4
£
° + (1¡ °)¸2

¤

"
£
1¡ (1¡ 2°)2

¤ =
° + (1¡ °)¸2
"° (1¡ °) =

1

"

µ
1

1¡ ° +
¸2

°

¶
; (C.56)

podem ser obtidas analiticamente através da igualdade
Z 1

0

dt tn e¡ k t =
¡(n+ 1)

kn+1
: (C.57)

Essas funções de Yukawa podem ser reescritas como

UP3¼(x) =
8

(4¼)4
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f(x; ®; °; ¯) (C.58)
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onde

d2x
:
=

d2

dx2
e f(x; ®; °; ¯) =

Z 1

0

d"
µ2

"
e¡ µ x : (C.60)

Realizando a mudança de variável

µ = b+ y ) µ2 = (b+ y)2 ) " =
b2

(b+ y)2
) d"

dy
=

¡ 2b2
(b+ y)3

(C.61)

com

b = µ"=1 =

s
° + (1¡ °)¸2
° (1¡ °) =

s
1

1¡ ° +
¸2

°
; (C.62)

podemos usar a equação (C.57) na integral em " para obter

f(x; ®; °; ¯) =

Z 0

1
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¡ 2b2
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(C.63)

e, consequentemente,

d2xf(x; ®; °; ¯) = 2
¡
6 + 6bx+ 3b2x2 + b3x3

¢ e¡ b x
x4

: (C.64)

Então,
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onde

¸2 = °
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b2 ¡ 1

1¡ °

¶
e f(x; ®; °) =
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d¯
¸2

¯
e¡ b x : (C.67)

Seguindo o mesmo procedimento aplicado na resolução da integral em ", a mudança de

variável
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implica em
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e
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Com isso,
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(C.73)

As regiões de médio e longo alcance correspondem, respectivamente, a 140 < x < 280

e x > 280 MeV fm. Nessas regiões, todo intervalo de integração é fortemente dominado pela

exponencial. Em ® = 1=2 e ° = 2=3, a função a assume o valor mínimo a = 3, que corresponde

à exponencial máxima e¡3x. Distanciando-se deste ponto, a exponencial cai rapidamente a zero,

pois a tende a in…nito nos limites das integrais, como é mostrado nas …guras (C.1) e (C.2). Por

isso, é razoável a aproximação dos integrandos através da expansão das demais funções em torno

de ® = 1=2 e ° = 2=3.
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Figura C.1: Função a, equação (C.69), com 0 < ® < 1 e 0 < ° < 1.
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Figura C.2: Função e¡a x com x = 2¹= ~c (~c = 197:33 MeV fm), 0 < ® < 1 e 0 < ° < 1.
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