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Motivations and Purpose

Particle physics is at the dawn of a new era: the discovery in 2012 of a new scalar resonance at the LHC [1, 2],

that has been subsequently established to be compatible with the Higgs boson [3–5], has marked a turning

point. The mere existence of the Higgs is a milestone in the already long history of success of the Standard

Model of particle physics (SM), as it ultimately confirms the set of particles included in the theory. Such a

triumph is even reinforced by the fact that, so far, the couplings of the Higgs scalar measured by the ATLAS

and CMS experiments are compatible with those predicted by the SM [6].

In this perspective, the years to come will necessarily push our knowledge into unexplored territory: the

LHC at CERN will keep colliding protons at the unprecedented center-of-mass energy of 13 and 14 TeV

and it will certainly provide new information about the nature of fundamental interactions. Would a new

particle be discovered, it would be a revolutionary event that could pave the way to the formulation of a

totally new “Standard Theory”. If such a new resonance will not appear, instead, the road of precision

measurements will have to be further explored.

The body of experimental evidence for the existence of new physics beyond the Standard Model (BSM)

is quite broad. To begin with, the cosmological models, based on the classical description of gravity, are

confronted with the presence of “Dark Energy”, a popular name for the unknown mechanism behind the

accelerated expansion of the Universe. While this puzzle does not necessarily seem to require an explanation

in terms of particle physics, others definitely call for an extension of the SM: Dark Matter (DM) and the

non-zero neutrino masses are among the most firmly established, but yet unexplained, phenomena. Another

question, unexplained by SM physics and posed by cosmological results, concerns instead the origin of the

disparity between the amount of matter and of antimatter present in the Universe. At the same time,

the SM construction also raises some theoretical concerns, that mostly manifest themselves in the form of

a fine-tuning to be imposed on some parameters appearing in the Lagrangian. For instance, a source of

quandary is the so-called “strong CP problem”. The origin of this issue is a tension between the presence, a

priori, of a CP-violating θ-term in the QCD Lagrangian and the experimental absence of a neutron’s electric

dipole moment induced by it: the current experimental bounds on this quantity set the very strong limit

θ̄ . 10−10. Although CP conservation could be imposed by hand in the strong sector, this would not solve

the problem, as contributions from the electroweak sector (or from new physics in general) entering this

term via the chiral anomaly, would tend to restore a non-zero value for θ̄.

Going further, a major lacuna of the Standard Model is certainly the lack of a rationale that could

account for the peculiar flavor structure observed in Nature. The masses and mixings of the known fermions

are merely described in the SM Lagrangian by arbitrary parameters, whose values are determined on an

empirical basis, in contrast with particles’ interactions, whose assortment and strength are elegantly fixed

by the gauge principle. Indeed, the latter principle is the only one imposing a significant constraint on

the structure of the fermionic sector, requiring the presence of “complete” families for ensuring anomaly

cancellation. The presence of exactly three families and the wide difference between the pattern of mass

hierarchies and mixings for quarks and leptons are also unexplained.

The flavor puzzle may be connected - or not - to the mechanism of mass generation implemented in

the SM, namely the electroweak symmetry breaking (EWSB) process. To elucidate the origin of the mass

of visible matter is indeed a fundamental quest in itself, that may also have a bearing on other problems

mentioned, such as those of strong CP or of DM. It is precisely on the mechanism of mass generation and

on the unknowns concerning the Higgs sector that this thesis will focus. One of the main reasons why the

SM Higgs mechanism is often considered not satisfactory, despite the compatibility with the Higgs data,
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is represented by the hierarchy problem. The latter can be stated as the question of why the Higgs is so

light if it can couple, a priori, to any larger new physics scale. The relevance of the hierarchy problem

motivated the formulation of a wide variety of possible solutions to this issue. In this thesis we address

it taking a well-known path, that historically proved effective in facing theoretical fine-tunings (a great

example is the prediction of the existence of the charm quark and of its mass [7, 8]): we follow a symmetry

principle. A guidance in this approach is provided by ’t Hooft’s naturalness criterion [9], according to which

all dimensionless free parameters not constrained by a symmetry should be of order one, and all dimensionful

ones should be of the order of the scale of the theory. In this perspective, the hierarchy problem should be

addressed by tackling the question of what is the symmetry that stabilizes the Higgs mass mh against large

radiative corrections.

There are two widely explored applications of the symmetry principle to the Higgs’ case. It’s worth

noting that, once a new symmetry is advocated, the Higgs is accompanied by new physical states, that

complete its multiplet representation under the new group: precisely the presence of these Higgs partners

allows, technically, to solve the hierarchy problem. The BSM theory may then be realized in a perturbative

regime and with the Higgs being an elementary state that belongs to a SU(2) doublet Φ, together with the

three electroweak Goldstone bosons, i.e. the W± and Z longitudinal components. This type of construction

is often referred to as a linear realization of the electroweak symmetry. A paradigmatic example of this class

of models is that of supersymmetry, where the protection ensured by the chiral symmetry on the Higgsino’s

mass term is transferred to the Higgs’ one.

In another class of theories, the Higgs is assumed to be a pseudo-Goldstone boson of some spontaneously

broken symmetry, so that its mass is protected by an approximate shift invariance. This option is most natu-

rally associated to scenarios with new strong interactions, whose condensation would trigger the spontaneous

symmetry breaking that delivers the electroweak scalars: this kind of construction implements a non-linear

realization of the EWSB. Popular representatives of these theories are composite Higgs models and little

Higgs models, that descend from Technicolor [10–12]. Other apparently quite distant constructions, such as

theories with extra-dimensions, can also be reconducted to this paradigm. A characteristic feature of this

framework is that, here, the properties of the Higgs particle detected at low energy can generically depart

from those of an exact SU(2) doublet. This hypothesis is indeed still viable, as the Higgs’ couplings are

known within an experimental accuracy of only 20 % on average.

It is worth pointing out, for completeness, that, although solutions based on the direct application of

symmetries remain most attractive, alternative possibilities have also been explored in the literature. A

recent example is provided by the “cosmological relaxation” mechanism [13], which builds upon the ideas

in Ref. [14]. In this work we will anyway stick to the guideline marked by symmetry explanations.

The road to precision

The main purpose of this thesis is that of exploring in depth the differences between the two main scenarios

mentioned above - linear and non-linear EWSB -, searching for distinctive signatures that may allow to

identify which is the solution adopted by Nature. We will do so exploring the corresponding electroweak-

scale phenomenology and analyzing, in particular, signals that may be observed at the LHC. Specifically,

if no new particle is discovered in the near future, the main way of gaining insight into BSM physics will

be by searching for anomalies in the measurement of given observables. In particular, deviations from the

SM values of the Higgs bosons’ couplings would provide invaluable information for determining whether

the Higgs is an exact SU(2) doublet or not. This fundamental quest requires, at the same time, both an
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increase in the measurements’ accuracy and the development of an adequate theoretical tool for interpreting

the observations. This work is meant to contribute to the latter line of research, with the realization of

a phenomenological study of Effective Field Theories (EFTs). The effective description has the advantage

of being rather model-independent as it uses only the information relative to the symmetries and particle

content of the system at a given energy. In practice, today the established, unquestionable low-energy

symmetry is that of the SM gauge group SU(3) × SU(2) × U(1). The EFT is written in terms of a

complete set of independent operators invariant under the chosen symmetry and systematically organized

in an expansion in which each operator is weighted down by an appropriate inverse power of the BSM scale.

The model dependence is thus encoded in the arbitrary Wilson coefficients that parameterize the expansion.

There are two categories of EFTs pertinent in the low-energy description of the EWSB sector, that are in

natural correspondence with the two scenarios described above: the most familiar is the linear Lagrangian,

which contains a series of invariants constructed out of the SM fields and organized in an expansion in

canonical dimensions (for this reason it is also dubbed SMEFT). In particular, the Higgs particle is contained

in the SU(2) doublet Φ and its interactions are consequently encoded in structures of the form (v + h)n.

The leading-order Lagrangian is thus that of the SM itself, while the first corrections are represented by a

basis of effective operators of dimension d = 6 (plus one term with d = 5 that generates Majorana neutrino

masses). With these choices, the effective description reproduces correctly the effects of new physics of the

first class, where the EWSB is realized linearly.

On the other hand, scenarios in which the Higgs arises as a pseudo-Goldstone boson are customarily

associated to a more general formalism, that of the non-linear -or chiral- Lagrangian. Here the physical Higgs

field is treated independently of the electroweak Goldstone bosons: because of their shift symmetry, the latter

only have derivative couplings and their interactions are consequently ordered in a momentum expansion.

In the Goldstone sector, the leading order Lagrangian typically corresponds to the two-derivative level of a

non-linear σ-model, while first order corrections are described by an independent basis of operators with four

derivatives, that at this level coincides with the so-called Applequist-Longhitano-Feruglio (ALF) effective

Lagrangian [15–19] constructed long ago without the inclusion of the Higgs particle. The latter can be

introduced in the chiral Lagrangian as a generic singlet h [20–23] since, in this framework, the Higgs particle

is not necessarily a component of an exact SU(2) doublet. Moreover, being a pseudo-Goldstone boson with

a mass of the same order as the EWSB scale, its interactions are not limited to derivative couplings: its

dependence is rather encoded into generic functionals F(h) [23–25], that can be parameterized in the form

F(h) = 1 + 2a
h

v
+ b

h2

v2
+ . . .

where the dots stand for higher powers of (h/v) and the series’ coefficients are model-dependent quantities.

This replaces the polynomial dependence on the structure (v + h) that characterizes the linear expansion.

It is worth noting that, since the couplings of the Higgs are not fixed by the SU(2)× U(1) symmetry, this

parameterization is actually more general than the linear one, and it can account for setups in which the

Higgs boson is embedded in arbitrary representations of SU(2); in particular, it includes the exact doublet

case (and thus the linear SMEFT) as a specific limit in the parameter space. The resulting Lagrangian may

also be used to describe scenarios other than those discussed above, for instance one in which the Higgs is

an “impostor” not related to electroweak symmetry breaking, such as a dark sector scalar, or a dilaton.

The effective linear and chiral Lagrangians with a light Higgs particle are intrinsically different. As a

general result, the leading corrections for the non-linear Lagrangian include a higher number of independent

(uncorrelated) couplings. Although this apparently implies a reduced predictivity for the chiral EFT, we
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will show that it is possible to identify a number of distinctive signatures of this framework. Specifically,

there are two sources of disparity between the linear and the non-linear EFTs:

(i) In the non-linear realization, the interactions of the Higgs particle are contained in generic functions

F(h) rather than coming in the structure (v + h), as mentioned above. Phenomenologically, this

corresponds to decorrelation effects between couplings with different number of Higgs legs, to be

observed in the non-linear case compared to the linear one.

(ii) The two EFTs differ in the expansion parameters: while the linear Lagrangian orders the operators

by canonical dimensions, the chiral one presents a more complex structure. In fact the simultane-

ous presence of the Higgs, Goldstone and transverse gauge bosons leads to a hybrid linear-nonlinear

expansion. This implies that some couplings appear at a different order (typically lower) in the non-

linear expansion compared to the linear case [25–27]. The extra structures appearing as lowest-order

corrections, that do not have an equivalent in the d = 6 linear basis, would then produce distinctive

signatures of non-linearity, that could indeed be detected at present or future collider experiments.

In this thesis1 we construct/complete the non-linear electroweak effective Lagrangian with a light Higgs

and we study it in detail devoting particular attention to its relation with the linear EFT. In particular,

we carry out for the first time a phenomenological comparison between the two scenarios, considering both

LEP and LHC data, identifying signals belonging to both categories indicated above. This analysis accounts

only for tree-level insertions of Higgs BSM couplings, as justified by the current experimental accuracy on

Higgs measurements, which ranges between 10 % and 30 % [6].

1 This thesis contains the results of four papers produced during my PhD and listed in Refs. [28–31]. However, I also worked
on other projects, two of which have already resulted into a publication: Ref. [32] contains the proposal of a new technique
for measuring the charm Yukawa coupling at the LHC studying Higgs-charm associated production. In Ref. [33], instead, we
considered the Higgs portal to scalar Dark Matter in the context of a non-linearly realized EWSB: we constructed a chiral
basis describing the leading DM interactions and studied for the first time their phenomenological impact.
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Motivaciones y Objetivos

La f́ısica de part́ıculas se encuentra a las puertas de una nueva época: el descubrimiento en 2012 de una

nueva resonancia escalar en el LHC [1, 2], posteriormente establecida como compatible con el bosón de Higgs

[3–5], ha resultado ser un punto de inflexión en su desarrollo. La mera existencia del Higgs es un hito en la

ya larga historia de éxito del Modelo Estándar (ME) de las interacciones fundamentales, ya que confirma

finalmente el conjunto de part́ıculas incluidas en la teoŕıa. Un triunfo reforzado por el hecho de que, hasta

el momento, los acoplos del escalar de Higgs medidos por los experimentos ATLAS y CMS son compatibles

con los predichos por el ME [6].

Ante esta perspectiva, es de esperar que los próximos años lleven nuestro conocimiento a territorio

desconocido: el LHC y el CERN continuarán colisionando protones a una enerǵıa de centro de masa de 13

y 14 TeV, que no conoce precedentes y que, sin duda, aportará información nueva sobre la naturaleza de las

interacciones fundamentales. El descubrimiento de una part́ıcula nueva seŕıa sin duda un acontecimiento

revolucionario que allanaŕıa el camino hacia la formulación de un “Modelo Estándar” completamente nuevo.

En caso contrario, el camino a seguir será aquel de las medidas de precisión.

El catálogo de indicios experimentales de la existencia de nueva f́ısica más allá del Modelo Estándar

(MME) es bastante amplio. Para empezar, los modelos cosmológicos, basados en la descripción clásica de

la gravedad, se enfrentan con la presencia de la “Enerǵıa Oscura”, el nombre popular para el mecanismo

desconocido responsable de la expansión acelerada del Universo. Mientras este rompecabezas no parece

necesitar forzosamente de una explicación en términos de f́ısica de part́ıculas, otros requieren decididamente

de una extensión del ME: la Materia Oscura (MO) y las masas no-nulas de los neutrinos están entre los

fenómenos que se han establecido más robustamente, y que todav́ıa no tienen explicación. Otra cuestión

aún inexplicada por la f́ısica del ME y planteada por los resultados cosmológicos, es la del origen de la

desigualdad entre la cantidad de materia y de antimateria presente en el Universo.

Al mismo tiempo, la construcción del ME levanta también cuestiones teóricas, que se manifiestan prin-

cipalmente en forma de ajustes muy finos que deben imponerse sobre los parámetros que aparecen en el

Lagrangiano. Por ejemplo, una fuente de dilemas es lo a que se llama “problema CP fuerte”. Este problema

encuentra su origen en una tensión entre la presencia, a priori, del llamado término-θ que viola la simetŕıa de

CP en el Lagrangiano de QCD, y la ausencia experimental de un momento de dipolo eléctrico del neutrón,

que seŕıa inducido por este mismo termino: los ĺımites experimentales actuales sobre esta cantidad ponen

una restricción muy fuerte de θ̄ . 10−10. Aunque seŕıa posible imponer a mano la conservación de la simetŕıa

CP en el sector fuerte, esto no resolveŕıa el problema, ya que las contribuciones a este término provenientes

del sector electrodébil (o de nueva f́ısica en general), que entran a través de la anomaĺıa quiral, tendeŕıan a

restablecer un valor no-nulo de θ̄.

Además, una laguna innegable del Modelo Estándar es la ausencia de una lógica que pueda dar cuenta

de la peculiar estructura de sabor observada en la Naturaleza. Las masas y mezclas de los fermiones

conocidos están meramente descritas en el Lagrangiano del ME por parámetros arbitrarios cuyos valores

han sido determinados de modo emṕırico, en contraste con las interacciones entre las part́ıculas cuyo surtido

y fuerza están elegantemente fijados por el principio gauge. Efectivamente, sólo éste impone una restricción

significativa sobre la estructura del sector fermiónico, requiriendo la presencia de familias “completas” para

asegurar la cancelación de anomaĺıas. La presencia de exactamente tres familias y la amplia diferencia entre

los patrones de jerarqúıas de masas y mezclas entre quarks y leptones están aún sin explicar.

El puzle de sabor podŕıa – o no – tener relación con el mecanismo de generación de masas implementado

en el ME, es decir el proceso de ruptura espontánea de la simetŕıa electrodébil (RESE). Dilucidar el origen
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de la masa de la materia visible es, en śı, una cruzada fundamental que puede llegar a influir en otros de

entre los problemas mencionados, como por ejemplo el problema CP-fuerte o la MO. Es precisamente el

mecanismo de generación de masas, junto con los aspectos desconocidos del sector del Higgs aquello que se

aborda en esta tesis. Una de las razones principales por las que a menudo se considera insatisfactorio el

mecanismo de Higgs del ME, a pesar de la compatibilidad con los datos sobre el Higgs, es el denominado

problema de la jerarqúıa. Éste último se puede enunciar como la cuestión de cómo puede el Higgs ser tan

ligero si, a priori, se acopla con cualquier escala más pesada de nueva f́ısica. La relevancia del problema de

la jerarqúıa motivó la formulación de una gran variedad de posibles soluciones. Hacemos frente al mismo en

esta tesis utilizando un método bien conocido, que históricamente ha mostrado su eficacia a la hora de tratar

ajustes teóricos (un gran ejemplo es la predicción de la existencia del quark charm y de su masa [7, 8]):

seguimos un principio de simetŕıa. A modo de gúıa para este tipo de acercamientos encontramos el criterio

de naturalidad de ’t Hooft [9], que asegura que todos los parámetros adimensionales que no están acotados

por una simetŕıa deberán ser de orden uno, y todos los que son dimensionales deberán ser del orden de la

escala de la teoŕıa. Bajo esta perspectiva, el problema de la jerarqúıa se puede abordar preguntando cuál

es la simetŕıa que estabiliza la masa del Higgs mh frente a grandes correcciones radiativas.

Existen dos usos ampliamente explorados del principio de simetŕıa en el caso del Higgs. Al propugnar una

nueva simetŕıa, el Higgs se encuentra acompañado por nuevos estados f́ısicos, que completan la representación

de multiplete bajo el nuevo grupo: precisamente la presencia de estos compañeros del Higgs es lo que permite,

técnicamente, resolver el problema de la jerarqúıa. La teoŕıa MME puede por tanto existir en un régimen

perturbativo, y siendo el Higgs un estado elemental que pertenece a un doblete Φ de SU(2), junto con los tres

bosones de Goldstone electrodébiles, i.e. las componentes longitudinales de los bosones W± y Z. Este tipo

de construcciones se denominan comúnmente realizaciones lineales de la simetŕıa electrodébil. El ejemplo

paradigmático de esta clase de teoŕıas es aquel de la supersimetŕıa, en el que la protección proporcionada

por la simetŕıa quiral al termino de masa del Higgsino se transfiere a aquel del Higgs.

En otra clase de teoŕıas se asume que el Higgs es un pseudo-bosón de Goldstone de una simetŕıa rota

espontáneamente, de manera que su masa queda protegida por una simetŕıa de traslación aproximada. Esta

opción se asocia de manera más natural a escenarios con nuevas interacciones fuertes, cuya condensación

desencadenaŕıa la ruptura espontánea de la simetŕıa que produce los escalares electrodébiles: este tipo de

construcciones conlleva una realización no-lineal de la RESE. Ejemplos t́ıpicos de estas teoŕıas son los

modelos de Higgs compuesto y modelos de “pequeño Higgs” que provienen de las teoŕıas de Technicolor.

Bajo este paradigma se pueden interpretar también otras construcciones aparentemente distantes de las

anteriores, como las teoŕıas con dimensiones extra. Una caracteŕıstica de este marco es que, bajo este tipo

de esquemas, las propiedades del campo de Higgs detectadas a baja enerǵıa pueden alejarse genéricamente

de aquellas de un doblete de SU(2) exacto. Dado que los acoplos del Higgs se conocen, de media, con una

precisión experimental del 20 %, esta hipótesis se encuentra todav́ıa abierta.

Merece la pena señalar, por completitud, que, aunque las soluciones basadas en aplicaciones directas

de las simetŕıas siguen siendo las más atractivas, se han explorado en la literatura otras alternativas. Un

ejemplo reciente es el mecanismo conocido como “relajación cosmológica” [13], que se nutre de las ideas

encontradas en Ref. [14]. En cualquier caso, a lo largo de este trabajo nos atenemos a las indicaciones dadas

por las explicaciones en lo referente a la simetŕıa.
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El camino hacia la precisión

El objetivo principal de esta tesis es explorar a fondo las diferencias entre los dos escenarios mencionados

arriba – RESE lineal y no-lineal –, buscando marcas distintivas que puedan permitir identificar cuál es

la solución elegida por la Naturaleza. Lo haremos explorando la fenomenoloǵıa correspondiente a la escala

electrodébil y analizando, en particular, señales que se pueden observar en el LHC. Si no se llegase a descubrir

ninguna part́ıcula nueva en el futuro más cercano, la manera principal de llegar a una comprensión de la f́ısica

MME será la búsqueda de anomaĺıas en las medidas de determinados observables. En particular, desviaciones

de los valores ME en los acoplos del bosón de Higgs proporcionaŕıan información inestimable para determinar

si el Higgs es, o no, un doblete de SU(2) exacto. Esta misión fundamental requiere, al mismo tiempo, tanto

de un aumento en la precisión de las medidas como del desarrollo de un instrumento teórico adecuado

para interpretar las observaciones. Este trabajo quiere contribuir a está ultima linea de investigación,

con la realización de un estudio fenomenológico de Teoŕıas Efectivas de Campos (TECs). La descripción

efectiva tiene la ventaja de ser bastante independiente de los modelos, dado que usa solo informaciones

relativas a las simetŕıas y al contenido en part́ıculas del sistema a una enerǵıa dada. En la práctica, hoy las

simetŕıas establecidas y incuestionables son las del grupo gauge del ME SU(3) × SU(2) × U(1). La TEC

se escribe en términos de un conjunto de operadores independientes, invariantes bajo la simetŕıa elegida y

sistemáticamente organizados en una expansión en la cual cada operador está suprimido por la potencia

adecuada de la escala MME. De este modo la dependencia de un cierto modelo queda codificada dentro de

los coeficientes de Wilson arbitrarios que parametrizan la expansión.

Hay dos categoŕıas de TECs pertinentes en la descripción de baja enerǵıa del sector RESE, que se

encuentran en una correspondencia natural con los dos escenarios descritos anteriormente: el más familiar

es el Lagrangiano lineal, que contiene una serie de invariantes construidos con campos del ME y organizados

en una expansión en dimensiones canónicas. En particular, la part́ıcula de Higgs está contenida en un doblete

Φ de SU(2) y sus interacciones están consiguientemente codificadas en estructuras de la forma (v+ h)n. El

Lagrangiano al orden dominante es, entonces, el del mismo ME, mientras las primeras correcciones están

representadas por una base de operadores efectivos de dimensión d = 6 (además de un término con d = 5

que genera masas de Majorana para los neutrinos). Con estas elecciones, la descripción efectiva reproduce

correctamente los efectos de nueva f́ısica de la primera clase, donde la RESE se realiza linealmente.

Por otro lado, los escenarios en que el Higgs aparece como un pseudo-bosón de Goldstone están normal-

mente asociados a un formalismo más general, el del Lagrangiano no-lineal - o quiral. Aqúı los campos del

Higgs f́ısico y de los bosones de Goldstone electrodébiles se tratan de manera independiente: a causa de su

simetŕıa de traslación, los Goldstone tienen solo acoplos derivativos y sus interacciones están consiguiente-

mente ordenadas en una expansión en momentos. Para el sector de los bosones de Goldstone, el Lagrangiano

de orden dominante corresponde t́ıpicamente al nivel de dos-derivadas de un modelo-σ no-lineal, mientras

las correcciones de primer orden están descritas por una base independiente de operadores con hasta cuatro

derivadas, que a este nivel coincide con el denominado Lagrangiano efectivo de Applequist-Longhitano-

Feruglio (ALF) [15–19] construido tiempo atrás sin incluir a la part́ıcula de Higgs. Esta última se puede

introducir en el Lagrangiano como un singlete genérico [20–23] ya que, en este marco, la part́ıcula de Higgs

no es necesariamente una componente de un doblete SU(2) exacto. Además, siendo un pseudo-bosón de

Goldstone con una masa del mismo orden que la escala de RESE, sus interacciones no están limitadas a

acoplos derivativos: su dependencia está más bien codificada dentro de funcionales genéricos F(h) [23–25],
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que se pueden parametrizar de la forma

F(h) = 1 + 2a
h

v
+ b

h2

v2
+ . . .

donde los puntos representan potencias más altas de (h/v) y los coeficientes de la serie son cantidades de-

pendientes del modelo. Esto reemplaza la dependencia polinomial de la estructura (v + h) que caracteriza

la expansión lineal. Merece la pena notar que, como los acoplos del Higgs no están fijados por la simetŕıa

SU(2)×U(1), esta parameterización es de hecho más general que la lineal, y puede dar cuenta de configura-

ciones en las que el bosón de Higgs está incrustado en una representación arbitraria de SU(2); en particular,

esto incluye al caso de doblete exacto como un ĺımite espećıfico en el espacio de parámetros. El Lagrangiano

resultante se puede utilizar, además, para describir escenarios distintos de los discutidos arriba, por ejemplo

alguno en que el Higgs es un “impostor” que no está relacionado con la ruptura de la simetŕıa electrodébil,

como un escalar del sector oscuro, o un dilatón.

Los Lagrangianos efectivos lineal y quiral con un Higgs ligero son intŕınsecamente distintos. Como

resultado general, las correcciones dominantes para el Lagrangiano no-lineal incluyen un número de acoplos

independientes (descorrelacionados) más alto. Aunque esto implica aparentemente una menor predictividad

para la TEC quiral, mostraremos que es posible identificar varias señales caracteŕısticas de esta construcción.

En concreto, existen dos fuentes de disparidad entre las TECs lineal y no-lineal:

1. En la realización no-lineal, las interacciones de la part́ıcula de Higgs están contenidas dentro de fun-

ciones genéricas F(h), en lugar de aparecer en la estructura (v+h), como se ha descrito previamente.

Fenomenológicamente, esto corresponde a efectos de descorrelación entre acoplos con distinto número

de patas de Higgs, que se observaŕıan en el caso no-lineal frente al caso lineal.

2. Las dos TECs difieren en los parámetros de expansión: mientras el Lagrangiano lineal ordena los

operadores por dimensiones canónicas, el quiral presenta una estructura más compleja. De hecho la

presencia simultánea de los bosones de Higgs, de Goldstone y de gauge lleva a una expansión h́ıbrida

lineal-nolineal. Esto implica que determinados acoplos aparecen a un orden distinto (t́ıpicamente

inferior) en la expansión no-lineal comparado con el caso lineal [25–27]. Las estructuras adicionales

que aparecen como correcciones de primer orden y que no tienen un equivalente en la base lineal a d = 6,

producirán entonces señales distintivas de no-linealidad, que podŕıan ser detectadas en experimentos

actuales o futuros.

En esta tesis2 construimos/completamos el Lagrangiano electrodébil efectivo y lo estudiamos en detalle,

dedicando especial antención a su relación con la TEC lineal. En concreto, se lleva a cabo un estudio

detallado del Lagrangiano quiral con un Higgs ligero, prestando especial atención a su relación en la TEC

lineal. En particular, realizamos por primera vez una comparación fenomenológica entre los dos escenarios,

considerando datos tanto de LEP como de LHC e identificando señales pertenecientes a las dos categoŕıas

anteriormente descritas. Este análisis tiene en cuenta únicamente inserciones a nivel-árbol de los acoplos

MME del Higgs, elección justificada por la precisión experimental actual de los datos de Higgs, que oscila

entre el 10 y el 30 % [6].

2 Esta tesis contiene los resultados de cuatro art́ıculos producidos a lo largo de mi doctorado y listados en la Refs. [28–31].
Sin embargo, en este tiempo he trabajado también en otros proyectos, entre los cuales dos desembocaron en publicación: la
Ref. [32] contiene la propuesta de una nueva técnica para medir el acoplo Yukawa del quark charm al LHC, estudiando la
producción asociada de Higgs y charm. Por otro lado, en la Ref. [33] consideramos el portal de Higgs a la Materia Oscura
escalar en el contexto de una RESE realizada no-linealmente: construimos una base quiral que describe las interacciones
dominantes de la MO y estudiamos por primera vez su impacto fenomenológico.
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CHAPTER 1

Introduction: the Standard Model Higgs boson

1.1 The Standard Model

The Standard Model (SM) encompasses our knowledge of the particles existing in nature and of the three
fundamental forces that have been understood at the quantum level: electromagnetic, weak and strong
interactions. This theory is the impressive result of more than half-a-century of efforts, and its solid success
has been established by a very wide number of experimental tests. In its fundamental structure it is a very
simple and elegant theory, described by the Lagrangian:

LSM = −1

4
W a
µνW

aµν − 1

4
BµνB

µν+

+ iQ̄L /DQL + iŪR /DUR + iD̄R /DDR + iL̄L /DLL + iĒR /DER+

+DµΦ†DµΦ− µ2

2
Φ†Φ− λ

4
(Φ†Φ)2+

−
[
Q̄LΦyDDR + Q̄LΦ̃yUUR + L̄LΦyEER + h.c.

]
+

+
g2
s

16π2
θGAµνG̃

Aµν ,

(1.1.1)

whose properties and motivations will be summarized in this section.

1.1.1 Symmetries and particle content

The SM is a Quantum Field Theory based on a principle of invariance under the local (gauge) symmetry
group SU(3)c × SU(2)L × U(1)Y , where the first term describes the strong interactions and the remaining
account for the electric and weak ones. As a consequence of this group choice it contains twelve gauge
bosons: eight gluons (GA) and four mediators of the electroweak (EW) interactions (W a, B). The first line

1



1. Introduction: the Standard Model Higgs boson

of Eq. (1.1.1) accounts for their kinetic terms, with the corresponding field strength defined as

GAµν = ∂µG
A
ν − ∂νGAµ + gsf

ABCGBµG
C
ν , {A,B,C} ∈ [1, 8]

W a
µν = ∂µW

a
ν − ∂νW a

µ − igεabcW b
µW

c
ν , {a, b, c} ∈ [1, 3]

Bµν = ∂µBν − ∂νBµ .

(1.1.2)

Here uppercase (lowercase) indices span the color (isospin) space, fABC are the structure constants of SU(3),
while εabc is the completely antisymmetric Levi-Civita tensor. The equation above also defines the color
and isospin coupling constants gs and g; the one for hypercharge will be denoted by g′.

Twelve are also the fermions whose interactions are described by the SM: six quarks and six leptons that
can be grouped in three generations (also families or flavors). The generations differ from one another in the
particles’ masses, while they are identical from the point of view of the gauge interactions. It is customary
to define the fermion fields as flavor multiplets, that is, as weak interaction eigenstates, denoted simply by
the names of the first generation:

U = (u, c, t) , D = (d, s, b) , E = (e, µ, τ) , ν = (νe, νµ, ντ ) . (1.1.3)

Both the up- and down-type quarks are in turn triplets of the SU(3) color group, while leptons do not
participate in the strong interactions. It is well-established that the electroweak interactions are chiral, i.e.
they act differently on the left- and right-handed components of the fermion fields, and have a V −A Lorentz
structure. In particular, right-handed quarks and charged leptons are singlet under the SU(2)L group, while
their left-handed counterparts are embedded in complex doublet representations:

QL = (UL, DL)
T
, LL = (νL, EL)

T
. (1.1.4)

The SM spectrum does not include right-handed neutrinos, as their existence has never been established. All
fermions are assigned an hypercharge which, as will be justified below, is determined by the condition that the
electric charge shall be obtained as Q = T3 + Y , where T3 is the third component of the isospin: T3 = ±1/2
within left-handed doublets and T3 = 0 for right-handed fields. The transformation properties of the SM
fermions under the color (SU(3)c), isospin (SU(2)L) and hypercharge (U(1)Y ) groups are summarized in
table 1.1. The last column indicates the explicit form of the corresponding covariant derivative, that appears
in the kinetic terms in the second line of Eq. (1.1.1). It is worth pointing out that this particular set of
fermions is not justified a priori by any guiding principle: the fermionic fields of the SM and their charge
assignments were rather determined on an empirical basis, interpreting the experimental observations. The
only significant constraint on the structure of the fermionic sector is again imposed by gauge invariance,
which requires the presence of “complete” families for ensuring anomaly cancellation.

Indeed, the fact that electroweak interactions are chiral exposes the SM to the appearance of gauge
anomalies: however, the charge assignments to the fermions are such that the gauge anomalies cancel in all
sectors of the SM. Still, a global anomaly is present for the axial symmetry U(1)A, under which the fermions
transform as ψ 7→ eiαγ5ψ. The divergence of the associated axial current jµ5 receives both a classical and
a quantum contribution: the former is proportional to the quarks’ masses, while the latter comes from the
triangle diagram that couples jµ5 to a gluon pair and it has the same structure as the QCD θ-term in the last
line of Eq (1.1.1), that violates CP . Despite being a total divergence, this term cannot be removed from the
Lagrangian as it can induce physical non-perturbative effects: in fact, there exist topologically non trivial
configurations of the gauge fields, called instantons, for which this term is not irrelevant. The θ-term gives
a non-negligible contribution to the neutron electric dipole moment, and the experimental upper bounds on
this quantity allow to infer a strong limit θ � 10−9. The problem of why θ is so small is known as the strong
CP problem. Notice that an analogous interaction with the structure WµνW̃

µν may be written a priori
for the other non-abelian gauge group of the SM, SU(2)L. However, this can be completely removed via a
B + L transformation, which is also anomalous in association with SU(2)L, and is therefore non-physical.

2



1.1. The Standard Model

field SU(3)c SU(2)L U(1)Y covariant derivative Dµ

QL = (UL, DL)T 3 2 1/6 ∂µ + igs
2 G

A
µλ

A + ig
2 W

a
µ τ

a + ig′

6 Bµ

UR 3 1 2/3 ∂µ + igs
2 G

A
µλ

A + 2ig′

3 Bµ

DR 3 1 −1/3 ∂µ + igs
2 G

A
µλ

A − ig′

3 Bµ

LL = (νL, EL)T 1 2 −1/2 ∂µ + ig
2 W

a
µ τ

a − ig′

2 Bµ

ER 1 1 −1 ∂µ − ig′Bµ

Table 1.1: Transformation properties of the fermions under the Standard Model gauge groups. The Pauli and
Gell-Mann matrices are denoted by τa and λA respectively.

Finally, a very important piece in the Standard Model construction is represented by the Higgs field Φ,
which is a complex scalar with the transformation properties Φ ∼ (2, 1/2) under the electroweak group.
Being a complex doublet, Φ contains four elementary degrees of freedom, one of which is the physical Higgs
boson h. The role of the Higgs doublet is that of triggering the spontaneous breaking of the electroweak
symmetry SU(2)L × U(1)Y down into the residual U(1)em of electromagnetic interactions. This can be
achieved for appropriate values of the parameters µ and λ in the scalar potential (the third line of Eq. (1.1.1))
and allows both the fermions and the mediators of the weak interactions (W±, Z) to acquire a non-vanishing
mass. The latter stem directly from the Higgs’ kinetic term, while the former emerge from the Yukawa
couplings in the second-to-last line of Eq. (1.1.1).

The phenomenon of spontaneous electroweak symmetry breaking (EWSB) is the central topic of this
thesis: its Standard Model implementation will be briefly illustrated in this section, while a deeper and
extended analysis of its dynamics will be presented in Chapter 2.

1.1.2 Electroweak symmetry breaking and Higgs mechanism

The gauge group SU(2)L×U(1)Y provides a unified description of the weak and electromagnetic interactions.
It was suggested for the first time by Glashow in 1961 [34] and by Salam and Ward in 1964 and finally
completed with the Higgs mechanism of spontaneous electroweak symmetry breaking (EWSB) by Weinberg
(1967) [35] and Salam (1968).

The fact that this could not be an exact symmetry of Nature was clear from the observation that an
exact gauge symmetry requires the corresponding gauge bosons to be massless, while the shortness of the
weak interactions’ range suggested that the mediators must be pretty heavy3. In addition, since the weak
interactions are chiral, their exact conservation is not compatible with fermion masses either, which is a
quite serious problem. On the other hand, the electromagnetic interactions were known to be described
with thrilling accuracy by an exact U(1) gauge symmetry in quantum electrodynamics (QED): this clearly
had to be the residual group after the breaking. Figure 1.1 shows a pictorial representation of how the
electromagnetic group has been eventually embedded in the EW one.

The issue of EWSB was a major challenge in the formulation of the Standard Model.

3 This issue was first studied in the context of strong interactions, that captured larger attention than the weak ones in the
1950s. Most of the work on spontaneous symmetry breaking was indeed carried out with the aim of obtaining massive gluons
and thus a short-range strong force, and was applied to the electroweak sector only later, by Weinberg and Salam in 1967. A
few years after, in 1979, it was understood that the color group is not broken, and that the extremely short range of strong
interactions is due to confinement.

3
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Figure 1.1: A pictorial view of the charge assignment
for the SM particles.

In several papers, including those of Glashow and of
Salam and Ward, the gauge bosons’ and fermions’
masses were simply added by hand to the La-
grangian. However, this was far from being a good
solution, as it was well known that the insertion
of explicit mass terms for the gauge bosons, break-
ing a gauge symmetry which in this case in non-
abelian, makes the whole model non-renormalizable.
This was a very serious issue for electroweak gauge
theories, whose primary motivation was to super-
sede the old Fermi model, curing precisely its non-
renormalizability. As an alternative to explicit vi-
olation, it was suggested that EWSB may rather
take place spontaneously, which means that the La-
grangian could be invariant under the gauge sym-
metry, although the spectrum of physical particle
does not form a representation of the local group.
The idea came from the recent discoveries on su-

perconductors and had been brought to particle physics by Nambu in 1960 [36]. It was known, in fact,
that magnetic flux is excluded from these materials in the superconducting phase: the photon effectively
behaves as if it acquired a mass inside the medium while the electric charge remains conserved. In the
case of the electroweak model, this would have allowed the Lagrangian to remain invariant under the whole
EW symmetry, thus ensuring renormalizability, while the vacuum state of the theory would have respected
electromagnetic invariance only, allowing for massive gauge bosons.

Irrespective of how the EW symmetry was to be broken, though, a major obstacle to the formulation
of the theory was represented by Goldstone’s theorem [37, 38] (1960, see Section 2.1.1) that stated that,
whenever a symmetry gets broken, a bunch of massless particles necessarily appears in the spectrum. This
conclusion was so discouraging that in a paper published in 1962 (in which they worked out the general proof
of the theorem) Weinberg, Salam and Goldstone himself described this fact as an “intractable difficulty” [38].
The impasse was solved four years later, in 1964, when the work of three independent groups (Englert and
Brout [3], Higgs [4, 5] and finally Guralnik, Hagen and Kibble [39]) demonstrated that Goldstone’s theorem
is not valid for local symmetries. In fact, the degrees of freedom liberated by the spontaneous breaking of a
gauge symmetry would not remain in the spectrum, but they rather emerge as the longitudinal components
of the gauge bosons, that thus become massive.

As mentioned above, the idea of spontaneous EWSB was finally joined with that of electroweak unification
based on SU(2)×U(1) invariance by Weinberg in 1967 [35] and Salam in 1968, establishing the core structure
of the standard model. The EWSB was implemented with the addition of a single complex scalar field that
transformed as a doublet under SU(2) and with hypercharge 1/2, namely the Higgs doublet. This contains
four real degrees of freedom:

Φ =

(
Φ+

Φ0

)
=

1√
2

(
iφ1 + φ2

φ0 − iφ3

)
and DµΦ = ∂µΦ +

ig

2
W a
µ τ

aΦ +
ig′

2
BµΦ . (1.1.5)

The most general SU(2) × U(1) invariant Lagrangian for the Higgs sector that can be constructed at the
renormalizable (d ≤ 4) level is therefore

LΦ = DµΦ†DµΦ− µ2

2
Φ†Φ− λ

4
(Φ†Φ)2+

−
[
Q̄LΦyDDR + Q̄LΦ̃yUUR + L̄LΦyEER + h.c.

]
.

(1.1.6)
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1.1. The Standard Model

Here the coupling constants yf are 3× 3 hermitian matrices in flavor space. The coupling to right-handed
up quarks has to be constructed with the conjugate Φ∗, in order to preserve hypercharge. Since this field
transforms in a 2̄ representation of SU(2), however, it shall also be contracted with the 2̄ of Q̄L through the
antisymmetric tensor εij = (iτ2)ij . For this reason, it is usually written in terms of a “tilded” field, defined
as

Φ̃ = iτ2Φ∗ =

(
Φ0∗

−Φ−

)
=

1√
2

(
φ0 + iφ3

iφ1 − φ2

)
, Φ̃ ∼ (2,−1/2) . (1.1.7)

The parameter λ in the scalar potential is necessarily positive in order for the potential to be bounded
from below. If also µ2 > 0, the potential has a unique minimum in |Φ| = 0, that leaves the EW symmetry
intact. Requiring µ2 < 0, instead, the potential is minimized for |Φ| =

√
−µ2/λ. In practice, the potential

is shaped as a “mexican hat” and there is an infinite set of degenerate vacua laying on a ring of fixed radius,
which defines the EW vacuum expectation value (vev) v:

v =
√

2〈Φ†Φ〉 =

√
−2µ2

λ
' 246 GeV . (1.1.8)

This is the characteristic scale of the EW theory: every physical parameter that appears in the EW ob-
servables and carries a mass dimension should be proportional to v. Experimentally, its value is inferred by
that of the Fermi constant GF via the relation v = (

√
2GF )−1/2, where the value of GF is extracted from

the muon decay rate [40].

Although the Lagrangian and the scalar potential are invariant under the full SU(2)L × U(1)Y , each
vacuum state only admits a residual U(1) symmetry. Among the infinite ground states available, the
alignment parallel to the neutral component of the doublet 〈Φ〉 ∼ v(0, 1)T preserves the electromagnetic
group identified as U(1)em. = U(1)T3+Y . Excitations around this particular vacuum can be parameterized
in polar coordinates as

Φ(x) =
v + h(x)√

2
eiπa(x)τa/v

(
0

1

)
=

1√
2

(
iπ1(x) + π2(x)

v + h(x)− iπ3(x)

)
+O(π2

i ) , (1.1.9)

Here the radial excitation h(x) is the physical Higgs boson [41], while the three phases πi(x) are the three
Goldstone bosons of the EWSB that shall be “eaten” by the gauge fields of the weak interactions via the
redefinition (W a

µ )′ = W a
µ + ∂µπ

a/(gv). At this point, it is possible to go to unitary gauge, where πi(x) ≡ 0
and see that the scalar potential provides then the Higgs mass term and self-couplings

µ2

2
Φ†Φ +

λ

4
(Φ†Φ)2 =

m2
h

2
h2 +

λv

4
h3 +

λ

16
h4, m2

h = −µ2 =
λv2

2
, (1.1.10)

while the Higgs’ kinetic term yields

DµΦ†DµΦ =
∂µh∂

µh

2
+

(v + h)2

4
g2W+

µ W
−µ +

(v + h)2

8
(g2 + g′2)ZµZ

µ , (1.1.11)

upon defining the physical fields

W±µ =
W 1
µ ∓ iW 2

µ√
2

, Zµ = cos θW 3
µ − sin θBµ, Aµ = sin θW 3

µ + cos θBµ , (1.1.12)

where θ is the weak angle θ = arctan(g′/g) ' 0.23. Equation (1.1.11) provides masses for the W and Z
bosons:

mW =
gv

2
, mZ =

gv

2 cos θ
, (1.1.13)
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1. Introduction: the Standard Model Higgs boson

while leaving a massless photon Aµ in the spectrum. The electromagnetic constant is then given by
e = g sin θ = g′ cos θ. Finally, the Yukawa interactions give to every fermion a mass mf = vyf/

√
2. In

unitary gauge they read

−Q̄LΦyDDR + Q̄LΦ̃yUUR + L̄LΦyEER + h.c. = −v + h√
2

(
D̄LyDDR + ŪLyUUR + ĒLyEER + h.c.

)
.

(1.1.14)
Here the constants yf represent 3 × 3 matrices in flavor space, that are in general not diagonal. However,
it is always possible to switch to the mass eigenbasis applying the redefinition

fL → V fL f
′
L , fR → V fRf

′
R (1.1.15)

where V fL and V fR are unitary matrices such that

(V dL )†yDV
d
R = diag(md, ms, mb) , (V uL )†yUV

u
R = diag(mu, mc, mt) , (V eL)†yEV

e
R = diag(me, mµ, mτ ) .

(1.1.16)
This rotation has no impact on the electromagnetic and neutral currents, where the matrices V f enter in the
combination V f†V f = 1. This means that flavor-changing neutral currents (FCNC) are absent at tree-level
in the SM. However, the charged-current interactions now connect different generations read (primes on the
fermion fields are dropped)

LCC = − g√
2
W+
µ

(
ŪLg

µ(V uL )†V dLDL + ν̄Lγµ(V νL )†V eLEL
)

+ h.c. (1.1.17)

In the quarks’ sector, this determines the presence of flavor-changing charged currents, that are controlled
by the Cabibbo-Kobayashi-Maskawa (CKM) matrix VCKM ≡ (V uL )†V dL [42, 43]. This matrix is unitary by
definition and it contains four physical parameters that can be chosen to be three mixing angles plus one
CP-violating phase [40]:

VCKM ≡ (V uL )†V dL =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (1.1.18)

where sij = sin θij , cij = cos θij . The mixing angles are chosen to lie in the first quadrant θij ∈ [0, π/2],
while δ can vary in the range [−π, π]. The magnitudes of the different CKM entries are extracted from the
semileptonic decay rates of the relevant quarks: for instance, |Vud| is determined from nuclear beta decays,
while |Vus| can be inferred from semileptonic decays of the K mesons, such as K0 → πeν. The experimental
results reveal a hierarchy between the mixing angles s13 � s23 � s12 � 1.

Flavor-changing effects in the leptonic sector are absent if neutrinos are exactly massless: in this case, in
fact, it is possible to choose V νL ≡ V eL in order to compensate for the charged leptons’ rotation in Eq. (1.1.17).
Nonetheless, the phenomenon of neutrino oscillations has been firmly established experimentally, which
implies the existence of a leptonic mixing matrix. The simplest and by now well-established explanation to
this phenomenon is that neutrinos do have masses, which, additionally, are not equal for the three families.
The leptonic mixing matrix is known as Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [44, 45] and it
is customarily written

UPMNS = VPMNSUP , (1.1.19)

where VPMNS is parameterized analogously to the CKM in Eq. (1.1.18) and UP = diag(1, eiα, eiβ). The
phases α, β contained in the latter matrix are physical if neutrinos are Majorana particles. The observed
pattern of leptonic mixing angles is very different from that of the quarks sector: two angles, θ12 and θ23 are
large (with θ23 nearly maximal) and the third is only one order of magnitude smaller, namely θ13 ' 0.15.
No significant constraint is currently available on the three complex phases.
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1.1. The Standard Model

When the Weinberg-Salam model was first proposed, there was no indication for the presence of the Z
boson (while the W± had been hypothesized as a weak mediator), nor the existence of quarks had been
established. Nonetheless, the model predicted a number of peculiarities of the electroweak interactions
that have gradually been observed, with amazing accuracy, by the experiments performed in the following
decades. Among the first decisive discoveries we recall that of the existence of neutral currents due to Z
mediation, discovered at CERN in 1973 and that of parity violation, observed in 1978. The success of
the Standard Model exploded with the discovery of the charm quark to complete the second family and,
subsequently, with that at LEP in 1983 of the W and Z bosons, whose masses were found to be 80.4 and
91.2 GeV respectively: these values are within the allowed window predicted by Weinberg in 1967 [35] from
the values of the electromagnetic and Fermi constant. The last missing piece has remained for a very long
time the Higgs boson, the scalar leftover of the EWSB. Searches were complicated by the fact that the Higgs
mass is not predicted within the Standard Model, but a particle compatible with this state has been finally
discovered bu the ATLAS and CMS experiments at the LHC in 2012. Its properties are currently being
measured and analyzed: the present knowledge about the new resonance is summarized in Section 1.2.

1.1.3 Open problems

Despite its long-standing success, the Standard Model could not be an exhaustive theory of nature as,
on one hand, some open theoretical problems still need to be addressed and, on the other, the SM does
not provide account for well-established experimental observations that call for an explanation in terms of
particle physics. The most striking examples are the existence of Dark Matter (DM) and the fact that
neutrinos are massive. None of the known particles appears to be a suitable Dark Matter candidate and
we are completely ignorant about the interactions in which DM may participate, besides the gravitational
one. In particular, there is no evidence that DM can communicate with the visible sector, although it
is plausible that this may happen at some level. Because of the absence of right-handed neutrinos, the
Standard formulation is also lacking a mechanism for the generation of neutrino masses. This issue is
intimately connected to another important question, which is whether neutrinos are Dirac or Majorana
particles: the latter option is viable for neutrinos as they are electrically neutral. In the Majorana case, the
possibility of lepton number violation would be open and processes such as neutrino-less double beta decay
may be observed. This kind of signal has been searched for by several dedicated experiments, but their
results are still not conclusive; intensive searches are currently ongoing. On the other hand, restricting to
the gauge symmetries and particle content of the SM, an effective mass term for neutrinos can be written
in the form of the Weinberg operator (L̄LΦ̃)(Φ̃TLcL), which is a d = 5 interaction. It is suggestive that this
yields a Majorana mass term which, in fact, violates the lepton number by two units. Another (related?)
unsolved issue which is worth mentioning, is the so-called flavor puzzle, namely the lack of an explanation for
the existence of three copies of all fundamental fermions, with such hierarchical masses, and of a rationale
that could justify the observed mixing pattern among the three families of quark and leptons.

There are good reasons to believe that some new physics should exist above the TeV scale: indications
that it may not be too far from this energy either, come mainly from theoretical considerations that concern
the scalar sector of the SM. In fact this sector, which is so important for the symmetry structure of the whole
theory, is affected by a few theoretical weaknesses that basically reflect the lack of a deep understanding of
the EWSB mechanism. The Higgs mechanism gives a correct description of this process, but it does not
account for the underlying dynamics, which is still unknown.

The hierarchy problem

The main issue related to the Higgs sector is known as hierarchy (or naturalness) problem, which origins
from the fact that radiative corrections to the mass of a fundamental scalar are quadratically sensitive
to high energy thresholds. In other words, any particle X that couples to the Higgs induces a radiative
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1. Introduction: the Standard Model Higgs boson

correction to its mass of the form

m2
h(µ)−m2

h(µ0) ∼ ±m2
X log

µ2

µ2
0

, (1.1.20)

where bosons and fermions contribute with a positive and negative sign respectively, and µ0 is a reference
renormalization scale. This implies that the Higgs mass should be naturally pushed towards the highest scale
that couples to the Standard Model fields. Although the existence of new physics with such destabilizing
properties has never been established, it is possible, for instance, that the Higgs field couples at some level
with quantum gravity, which is characterized by the Planck scale MP ∼ 1019 GeV. In this hypothesis
it would be quite difficult to keep the Higgs as light as we observed it to be. In fact, demanding that
mh �MP is satisfied at all orders is equivalent to requiring an extremely precise cancellation between the
bare mass parameter and all the loop corrections, that should take place with an accuracy of one part in
1015. In a slightly different formulation, the accent of the problem can be put on the unnaturalness of the
fine-tuning that would be required for keeping the electroweak scale much lighter than any new physics able
to communicate with the Higgs sector. The notion of “naturalness” in particle physics is often employed in
the definition given by ’t Hooft [9]

At any energy scale µ, a physical parameter or set of physical parameters αi(µ) is allowed to be
very small only if the replacement αi(µ) = 0 would increase the symmetry of the system.

While setting a fermion’s (or a gauge boson’s mass) to zero increases the symmetry of a system to include
chiral invariance, the mass of a fundamental scalar is not “protected” by the appearance of any new invari-
ance, which explains why the hierarchy problem is typical of the Higgs boson and it is not shared by other
SM particles.

The hierarchy problem has been object of study for quite a long time, during which a wide variety of so-
lutions has been formulated. The Higgs discovery lately generated renewed attention to this issue, impulsing
new lines of research: a recent example is provided by the “cosmological relaxation” mechanism [13], which
builds upon the ideas in Ref. [14]. However, among all solutions, the two most popular ones remain those
that make a direct use of the symmetry principle: supersymmetry (SUSY) and composite Higgs models
(CHM). Both these class of theories put ’t Hooft’s statement into practice, albeit in two distinct ways:
the latter is based on the idea that the Higgs may be a pseudo-Goldstone boson, so that its mass would
be protected by an approximate shift symmetry, while the former introduces a symmetry (SUSY) under
which the Higgs field transforms as a multiplet’s component. As explained below, the fields that complete
the Higgs’ multiplet have a key role in stabilizing the electroweak scale. Here we review briefly the main
features of these two frameworks.

Supersymmetry is a weakly coupled theory, in which the Higgs boson remains elementary, and it is based
on the hypothesis of a symmetry that relates particles of different spin: every fermion must be combined
with its bosonic superpartner, and vice versa, to form a superfield. Importantly, supersymmetric theories
contain at least two complex scalar doublets in the scalar sector, and therefore predict the existence of at
least one charged and three neutral particles. One of the neutral states is a pseudoscalar, while the other
two are CP-even particles. The properties of the lightest among them are typically similar to those of
the SM Higgs boson, meaning that its vacuum expectation value is predominantly responsible for EWSB,
and that this particle has SM-like couplings to the W and Z gauge bosons. In the limit in which SUSY
is exact, the mass of the would-be Higgs boson is identical to that of its fermion partner, the Higgsino.
In this way, the chiral symmetry that protects the fermion’s mass is transmitted to the bosonic sector,
thereby solving the hierarchy problem. However, since supersymmetric partners of the SM particles have
never been identified, supersymmetry must be broken at some level; consequently, corrections to the Higgs
mass should be proportional to the SUSY breaking scale. An attractive possibility would then be to have
SUSY broken around the TeV, so as not to reintroduce the EW hierarchy problem. This choice is also
supported by other fascinating considerations: besides providing interesting Dark Matter candidates, this

8



1.1. The Standard Model

scenario could allow for the unification of the strong and electroweak forces in a consistent and impressive
way. However, direct searches for supersymmetric particles in the TeV mass region have not been successful
yet, implying increasingly stringent constraints on the SUSY parameter space. These bounds can be evaded,
although losing somewhat of the original motivation, opting for example for a non-minimal particle content
or assuming either a harder or a more compressed spectrum.

An alternative application of ’t Hooft principle for stabilizing the electroweak scale is based on the idea
the Higgs may arise as a pseudo-Goldstone boson, which builds on an analogy with QCD pions. The Higgs
could still be an elementary state in this context, however, the most popular class of theories that implement
this idea are composite Higgs models. These assume the existence of some strong interacting new physics
that induces a strong breaking of the electroweak symmetry, producing, among others, four light bound
states to be identified with the three EW Goldstone bosons plus the physical Higgs. The work of this thesis
is mainly motivated by this kind of scenario, whose detailed description is deferred to Chapter 2.

Triviality and stability of the scalar potential

Finally, two further issues are worth mentioning, that have drawn much attention before the Higgs discovery,
as they implied bounds on the Higgs mass, but that are not considered as actual problems in the light of
the recently measured value for mh. They are related to the running of the quartic coupling λ, which have
raised a priori triviality and/or stability concerns. In practice, the former would have been relevant for a
heavy Higgs (mh & 400 − 500 GeV) as, in this regime, the quartic constant λ = 2m2

h/v
2 would have been

relatively large and its RGE evolution would have been approximately proportional to its value at a fixed
scale:

λ(µ) ∼ λ(µ0)

1− 3λ(µ0)
16π2 log

(
µ2

µ2
0

)
In this case the coupling would have been growing with the renormalization scale and ultimately hit a
Landau pole at µ̂ = µ0 exp(8π2/3λ(µ0)). Evidently, pushing µ̂ → ∞ is tantamount to taking the limit
λ(µ0) → 0, but this would imply a trivial theory, in which EWSB cannot occur. Instead, requiring that
the Landau pole lays beyond some finite reference scale (e.g. the Planck scale) and fixing µ0 = v leads to
λ(v) = 2m2

h/v
2 < −8π2 log(v/MP )/3 which is an upper bound on the Higgs mass.

Since the Higgs has been found to be quite light, though, the triviality bound is automatically satisfied,
while there are more serious reasons to worry about the stability of the EW vacuum, if the SM is the
ultimate quantum field theory. In fact it turns out that, assuming only contributions of SM particles in the
loops, λ(µ) is actually a decreasing function of the renormalization scale because the dominant contribution
to the running comes from a fermion, the top quark. Requiring that the quartic couplings remains positive
up to a fixed cutoff scale provides a lower bound on the Higgs mass. For the measured value, mh = 125 GeV
the sign flip is expected to happen around 1010 − 1012 GeV. Luckily it has been shown [46] that, even if
there was nothing between the EW and the Planck scales, the EW vacuum would remain metastable with
an estimated lifetime of at least 10150 years, much larger than the age of the Universe. Still, as briefly
illustrated above, there are good reasons to believe that some new physics should intervene before reaching
this energy, which may alter this behavior either alleviating or worsening the stability problem.
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1.2 The current experimental portrait of the Higgs boson

The discovery of a neutral boson compatible with the Higgs boson of the Standard Model has been announced
in July 2012 by the ATLAS [1] and CMS [2] experiments currently operating at CERN. ATLAS observed
the largest excess with a local significance of 5.9σ at a mass mh = 126.5 GeV, while CMS observed an excess
with a local significance of 4.9σ at a mass of 125.5 GeV.

The analyses were subsequently updated and complemented by several tests of the resonance’s properties
and couplings, mainly aimed at verifying whether these are entirely consistent with those of the Standard
Model Higgs boson. This section summarizes the currently available information about the new particle,
that has been extracted from the data recorded by the ATLAS and CMS experiments at the LHC Run 1,
corresponding to an integrated luminosity of approximately 5 fb−1 at the pp center-of-mass energy of

√
s =

7 TeV (recorded during 2011) and 20 fb−1 at
√
s = 8 TeV (recorded during 2012). With a slight abuse of

language, justified by the common usage and by the experimental status, we will refer to the new particle
simply as the “Higgs boson”.

1.2.1 Main properties of the h particle

JPC Some basic characteristics of the newly discovered particle follow immediately from the fact that it
has been observed decaying into two photons: it must be electrically neutral, colorless and of integer
spin. The Landau-Yang theorem [47, 48] additionally ensures than, due to conservation of angular
momentum and to the Bose symmetry, a particle decaying into γγ cannot have spin J = 1. Finally,
the study of the angular distribution of the four leptons in the h→ ZZ∗ → 4` decay channel allowed
to determine that the spin-parity of the Higgs boson is JP = 0+, excluding the hypothesis 0− and 2+

at confidence levels above 97.8% [49, 50].

Mass The mass of the Higgs boson is one of the most important parameters for understanding the electroweak
symmetry breaking process. As mentioned in the previous section, depending on whether the Higgs
is light or heavy, the scalar potential of the the Standard Model may be exposed to triviality or
stability problems. Furthermore, a large number of the beyond-Standard-Model theories that had
been proposed before 2012 gave a prediction for mh or at least indicated a range where this parameter
should lie: for example, a light mass was preferred by minimal supersymmetric models and in scenarios
that assumed no new physics up to the Planck scale.

The measurement of the Higgs boson’s mass has been obtained from the reconstructed invariant mass
peaks in the two cleanest decay channels h → γγ and h → ZZ∗ (see Fig. 1.2). The combination of
both channels for both the ATLAS and CMS experiments has been recently provided in [51]:

mh = 125.09± 0.21(stat.)± 0.11(syst.) GeV = (125.09± 0.24) GeV. (1.2.21)

This also determines the last unknown parameter of the Standard Model, i.e. the quartic coupling in
the scalar potential. In the normalization of Eq. (1.1.1):

λ =
2m2

h

v2
= 0.52 , (1.2.22)

which is consistent with a perturbative regime when analyzed in the SM framework.

Width Measuring the width of the Higgs boson can provide valuable information about the observed reso-
nance: for example, it the latter was found to be broader than expected, this would possibly indicate
either that the couplings of the Higgs boson to visible particles are larger than in the SM, or even that
what has been produced are actually two quasi-degenerate states.

10



1.2. The current experimental portrait of the Higgs boson

 [GeV]Hm

124 124.5 125 125.5 126 126.5 127

)µ
S

ig
na

l s
tr

en
gt

h 
(

0.5

1

1.5

2

2.5

3
CMS and ATLAS

 Run 1LHC

γγ→H ATLAS
l4→ZZ→H ATLAS

γγ→H CMS
l4→ZZ→H CMS

All combined

Best fit
68% CL

Figure 1.2: Likelihood summary in the plane of signal strength µ versus Higgs boson mass mh for the h → γγ
and h → ZZ∗ measured by the ATLAS and CMS experiments [51]. The curves delimit the 68% CL
confidence regions of the individual (dashed) and combined (solid) measurements. The markers indicate
the respective best-fit values. The SM signal strength is indicated by the horizontal line at µ = 1.

In the Standard model the Higgs boson is predicted to be very narrow: ΓSM
h = 4.07± 0.16 MeV. This

value is well below the experimental resolution of the LHC experiments, which typically lays in the
1 to 3 GeV range, and therefore it has not been possible to measure directly the Higgs width with
significant precision: at the moment, the best direct upper limit has been obtained via modeling of
the Breit-Wigner distribution of the di-photon decay and gives Γh < 2.4 GeV at 95% CL [52]. More
precise estimates can be obtained indirectly comparing the kinematic properties of the di-boson decay
channel near and away from the resonance peak (on- vs. off-shell production) [53, 54]. The best
indirect limit is

Γh . 22 MeV at 95% CL , (1.2.23)

which is still about 5.4 times larger than the SM expectation, but remarkably improves the direct
constraints. It is important to remark that, unlike direct measurement, the indirect estimate relies
on presuppositions on the underlying theory and, in particular, on the assumption that the couplings
of the Higgs boson are the same on and above the resonance peak. This is tantamount to neglecting
beyond-Standard-Model contributions both to Higgs production and decay.

Finally, recent analyses allow to constrain the Higgs invisible branching fraction. The best result has
been obtained by the ATLAS experiment combining the searches performed with the Higgs produced
in VBF, in association with a leptonically decaying Z boson and with an hadronically decaying gauge
boson [55]. The result is

Br(h→ invisible) < 0.25 at 95% CL. (1.2.24)

1.2.2 Production and decay channels at the LHC

The main modes through which the Higgs is produced at the LHC (and in general at a hadron collider) are
gluon-gluon fusion (ggF), vector boson fusion (VBF) and associated production with vector bosons (VH)
or a pair of top quarks (ttH).
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Figure 1.3: Sample Feynman diagrams for the main Higgs production modes at the LHC: gluon-gluon fusion (ggF),
vector-boson fusion (VBF), associated production with a gauge boson (VH) and with a tt̄ pair (ttH).
In the two central diagrams, V = {Z,W±}.

At high-energy hadron colliders, the dominating Higgs production channel is by far gluon-gluon fusion
(see Fig. 1.3). Despite being radiatively induced, this process takes advantage of the absence of weak cou-
plings (that suppress other tree-level channels) in the leading diagrams and, most importantly, of large
corrections due to higher order QCD contributions, which increase significantly the cross-section.The com-
parison of the measured ggF cross-section with the one predicted by the SM tests both the size of the
top-Yukawa coupling and the existence of new generations of heavy fermions that may run in the loop. The
theoretical estimation is complicated by the relatively large size of the QCD radiative corrections, that need
to be evaluated up to high orders. The cross-section for ggF Higgs production has been computed at 3-loops
(N3LO) in QCD [56], reaching a precision of order ∼ 10%. This result is very recent and has been obtained in
the customary approximation of large top-mass mt →∞ by matching the Higgs-gluon-gluon interaction to
an effective local operator hGAµνG

Aµν . Higgs production via VBF proceeds by the scattering of two quarks,
mediated by t or u-channel exchange of a W or Z boson that radiates the Higgs. The characteristic signature
of this process, that allows to distinguish it from the large QCD background, are the two hard jets in the
forward and backward regions of the detector produced by the scattered quarks. Such peculiarity makes
VBF a particularly clean environment also for the determination of the Higgs couplings to gauge bosons. A
complementary context where the latter may be tested, is in VH associated production. This channel also
turns out to be the most sensitive for the study of the coupling to the bottom quark. In fact, the process
pp→ hV with the V boson going into leptons is characterized by a particularly low QCD background, that
allows the best observation of the decay h→ bb̄. Finally, an alternative access to the top-Higgs interaction
is provided in principle by the ttH production mode. Although its observation has not been significantly
established at LHC Run 1 due to the large backgrounds and low statistics (see e.g. [57, 58]), there are
promising prospects for isolating this process at LHC Run 2, profiting of an approximately 5-times larger
cross-section and of improved jet substructure techniques.

According to the Standard Model prediction, the main decay channels for a Higgs boson with a mass
mh = 125 GeV are h → bb̄ and h → WW+, followed by h → gg, h → τ+τ− and h → ZZ∗. Smaller
branching fractions are expected for the loop-induced channels, such as h → γγ and h → Zγ and for
the Yukawa-suppressed ones, e.g. h → µ+µ− (see Table 1.2). This sums up to a quite varied number of
channels, that offer the opportunity to investigate the Higgs coupling to several SM particles, providing
complementary information with respect to the production modes. Despite enjoying relatively low rates,
the h → γγ and h → ZZ∗ → 4` signatures are the cleanest ones at the LHC: they benefit of a high
mass resolution and of low backgrounds. The former property is the main advantage with respect to the
WW ∗ → `+ν`−ν̄ channel, where the presence of the neutrinos prevents the total invariant mass from being
reconstructed precisely. The absence of hadrons in the final state, instead, allows to remove easily the
overwhelming QCD background that plagues the bb̄ and gg modes. Indeed, h → γγ and h → 4` were the
two “discovery channels” of 2012, namely those in which the Higgs was first detected with high significance.
With the statistics collected in the whole Run 1 of the LHC by the ATLAS and CMS experiments it has
been possible to observe the Higgs decaying into WW ∗, τ+τ− and bb̄, in addition to the two main channels.
Searches for decays into Zγ [59, 60] and into muons and electrons [61, 62] have not been conclusive.
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production ggF VBF WH ZW ttH tot

√
s = 7 TeV 16.85

+9%
−12% 1.22

+3%
−2% 0.58± 4% 0.33± 6% 0.09

+12%
−18% 19.07

√
s = 8 TeV 21.42

+9%
−11% 1.58

+3%
−2% 0.70

+4%
−5% 0.41± 6% 0.13

+12%
−18% 24.24

√
s = 14 TeV 54.67

+9%
−11% 4.18± 3% 1.50± 4% 0.88

+6%
−5% 0.61

+15%
−28% 61.84

decay h→ bb̄ h→WW ∗ h→ ττ h→ ZZ∗ h→ γγ

SM Br (%) 57.5 ± 1.9 21.6 ± 0.9 6.30 ± 0.36 2.67 ± 0.11 0.228 ± 0.011

Table 1.2: Higgs boson production cross sections (pb) and branching fractions computed in the Standard Model
with mh = 125 GeV and for pp collisions with different center-of-mass energies

√
s. The calculation

for ggF is done at NLO EW + N3LO QCD [56]. Those for VBF and VH are at NLO EW + NNLO
QCD, while ttH has been computed at NLO QCD [63]. The list includes only the decay channels that
have been observed with sufficient significance.

Signal strengths

Higgs boson data is usually expressed in terms of signal strengths. This parameter, denoted with µ, is
defined as the ratio between the observed rate and the SM expectation. Since the Higgs is very narrow, the
measured signal strength for a given production and decay channel i→ h→ f can be expressed as

µfi ≡
σ(i→ h) · Br(h→ f)

σSM(i→ h) · BrSM(h→ f)
(1.2.25)

which can be factorized in individual signal strengths for the production mode and for the decay channel
µfi = µi · µf where

µi ≡
σ(i→ h)

σSM(i→ h)
, µf ≡ Br(h→ f)

BrSM(h→ f)
. (1.2.26)

Although only the total signal strength µfi can be directly measured at experiments, the value of each µi
and µf can be extracted from a combined analysis of the data. The latest results have been published in
Ref. [6] and are reported in Fig. 1.4 for the most relevant channels.

The last point of Figure 1.4a shows the result for the global signal strength µ, obtained fitting the whole
dataset assuming a universal scaling for all the production and decay channels: µi ≡ µf ≡ µ for all i, f .
This parameterization provides the simplest test of the compatibility of the experimental data with the SM
predictions. The result reported by the collaborations is [6]

µ = 1.09
+0.11
−0.10 (1.2.27)

which is consistent with the Standard Model within 1σ.

1.2.3 Couplings to SM particles

In order for the observed scalar resonance to be recognized as the “Standard Model Higgs boson”, it is
necessary that all its couplings align with the Standard Model prediction. This implies, in particular, that
all the leading-order (LO) couplings of the h particle to a pair of fermions have to be flavor diagonal and
proportional to the fermion’s mass, with a proportionality constant equal to v = 246 GeV ≡ (

√
2GF )−1/2.

Analogously, pairs of gauge bosons’ should couple to the Higgs proportionally to the square of their masses.
The effective couplings to gluons and photons, that arise only at next-to-leading order (NLO), can also be
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sources of important information, as they are in principle sensitive to the presence of heavy BSM particles
running inside the loop.

More in general, testing the Higgs couplings experimentally is extremely important in order to establish
its nature and to gain an insight into the electroweak symmetry breaking process. Nonetheless, accessing
some of the Higgs interactions can be very challenging: this is especially true for light fermions, whose
Yukawas are very suppressed.

The experimental collaborations have been constraining the tree-level Higgs couplings within the so-called
κ-framework [63, 64], that provides a set of scale factors κi defined in such a way that each of the relevant
production cross-section and decay width of the h particle is formally rescaled by an associated factor κ2

i

with respect to the SM prediction. For example, according to this prescription the process gg → h → ZZ
is parameterized as

σ(gg → h) · Br(h→ ZZ) = σSM(gg → h) · BrSM(h→ ZZ)
κ2
g κ

2
Z

κ2
h

(1.2.28)

where κh rescales the total Higgs width. In practice, each κi parameterizes deviations from the SM of a
specific Higgs coupling. Indeed, it is possible to write a phenomenological Lagrangian that in unitary gauge
takes the form

Lh,κ = −
∑
f

κf
mf

v
f̄fh+ κZ

m2
Z

v
ZµZ

µh+ κW
2m2

W

v
W+µW−µ h+

+ κg
g2
s

48π2v
GAµνG

Aµνh+ κγ
e2

16π2v
AµνA

µνh+ κZγ
e2

4π2v
AµνZ

µνh .

(1.2.29)

Notice that the second line of this Lagrangian contains effective interactions that are generated at the one-
loop level in the Standard Model. The parameterization of Eq. (1.2.29) has some limitations: for example, it
respects the Lorentz and the electromagnetic symmetries, but it is not explicitly invariant under the whole
SU(2) × U(1), and it includes only the Lorentz structures expected within the SM. As a consequence it
cannot be used for the analysis of kinematic distributions, nor it is adequate for beyond LO computations.
Nonetheless, it is particularly simple and well-suited for constraining the size of the SM couplings via the
analysis of total rates. Figure 1.5a shows the current constraints on these parameters, as provided by the
most recent combined ATLAS-CMS analysis [6]. As shown in Eq. (1.2.28), Higgs data is sensitive to the
total Higgs width, which is rescaled, compared to the SM, by the factor κh. This quantity depends in
principle on the other κ’s that describe the Higgs decay into two SM particles, and is also sensitive to
any BSM contributions to Γh. In order to fit the individual κ parameters it is then necessary to make an
assumption about the Higgs width: for example, the combined ATLAS-CMS analysis in Ref. [6] considers
two different setups, either assuming Br(h → BSM) = 0, or allowing for BSM decays of the Higgs, but
constraining the parameter space to κV = κZ,W ≤ 1. Figure 1.5a shows that the current results are
generically compatible with the SM expectations, although the error bars are still quite large. Indeed, the
p-value of the compatibility with the SM for this particular fit is relatively low, around 11%.

The proportionality of the couplings to the other particles’ masses also gives a quite SM-like picture
of the Higgs boson: in figure 1.5b the best fit values for the reduced couplings ghff = κfmf/v and
gV V h =

√
κVmV /v, for fermions and gauge bosons respectively, are plotted against the corresponding

masses. In this picture the Standard Model alignment is represented by the dashed line, whose slope is
1/v = (246 GeV)−1: values κi < 1 correspond to points below the line and vice versa. Notice that there is
no perfect agreement between Figures 1.5a and 1.5b, as the latter has been derived with a more constrain-
ing setup, fixing BrBSM = 0 and κg = κγ = κZγ = 1, i.e. forbidding BSM contributions in the loops while
allowing to include the h→ µ+µ− data.

The analyses presented in Figures 1.4 and 1.5 represent the most generic studies of compatibility of the
observed resonance with the Standard Model Higgs boson. There are of course several other tests that can

14



1.2. The current experimental portrait of the Higgs boson

be performed under more restrictive assumptions. Among these, two have particular relevance for this work:
the test of violation of the custodial symmetry in the couplings of the Higgs to the Z and W bosons and
the combined fit to the couplings κV vs. κF , obtained assuming a universal scaling for the Higgs couplings
to vector bosons κZ = κW ≡ κV and for the Higgs couplings to all fermions κf ≡ κF ∀f . The former test
has been performed only by the CMS Collaboration [52], that used the combined data from h→ ZZ → 4`
and h → WW → `ν`ν decays to fit the parameter λWZ = κW /κZ that is expected to be unity in the SM.

Neglecting anomalous couplings of the Higgs to fermions, they obtain λZW = 0.94
+0.22
−0.18 which is largely

compatible with SM. The analysis of κV vs. κF has been presented in the combined analysis note: the best
fit and 1σ regions obtained are indicated by the star and the black line in Fig. 1.6. Once again, the result
is in very good agreement with the SM (p-value 59%). The colored areas show the contributions of the
individual decay channels h → V V and h → ff̄ . It is interesting to see that the fermionic decay channels
are basically blind to the sign of the coupling, while the preference for the positive quadrant is determined
by the bosonic decays.
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(a) Production signal strengths µi and global signal
strength µ.

Parameter value
0 0.5 1 1.5 2 2.5 3 3.5 4

bbµ

ττµ

WWµ

ZZµ

γγµ

 Run 1LHC
 PreliminaryCMS  and ATLAS ATLAS

CMS

ATLAS+CMS

σ 1±

(b) Decay signal strengths µf .

Figure 1.4: Best-fit results for the production (left) and decay (right) signal strengths for the combination of the
ATLAS and CMS results [6]. The last line of the left plot shows the global signal strength µ, obtained
assuming the same scaling for all the production and decay channels.
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Figure 1.5: Combined measurement of the Higgs couplings [6]. The dashed line marks the Standard Model align-
ment.
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Figure 1.6: Negative log-likelihood contours of κF vs. κV for the combination of ATLAS and CMS and for the
individual decay channels [6]. The black line shows their global combination, obtained assuming a
universal κF for all the fermions and κV = κZ = κW .
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CHAPTER 2

Dynamics of the electroweak symmetry breaking

As already reviewed in Chapter 1, the theory of electroweak (EW) interactions requires the implementation
of a mechanism of electroweak symmetry breaking (EWSB): the local symmetry SU(2)L × U(1)Y must be
broken in order to allow the description of massive fermions and gauge bosons. Moreover, for the theory to
be renormalizable the breaking must be spontaneous. In the Standard Model, this is implemented via the
Higgs mechanism, which is a phenomenologically successful model: the recent discovery of the Higgs boson
seems to confirm that this is a correct description of nature. Indeed, as was shown in Sec. 1.2, the measured
properties of the Higgs are so strikingly compatible with the SM predictions, that we may be tempted to
believe that the EWSB process has been mostly understood. However, most of the still unsolved mysteries
of particle physics, including the hierarchy and stability problems and even the flavor puzzle, are definitely
related to the scalar sector of the theory. This condition signals that a deep understanding of the EWSB is
still lacking: although the Higgs mechanism gives a correct description of this process, it does not account
for the underlying dynamics, which is still unknown.

For this reason, it is useful to take a step back and reexamine the structure of the EWSB sector. To
begin with, in this chapter we present the main properties of spontaneous symmetry breaking, highlighting
the differences between breakings that take place in global and in a local symmetry. Then, focusing on the
case of the EW symmetry, we will show that its breaking can be realized in two ways: either linearly or non-
linearly, discussed in Secs. 2.2 and 2.3 respectively. The former option can be generically implemented with
a linear σ-model, which is equivalent to the Higgs mechanism described in Sec. 1.1.2, and it is characterized
by the presence of a residual massive scalar in the spectrum: the Higgs boson. As will be shown, this
particle has an important role in ensuring the unitarity of the S-matrices for scattering processes involving
longitudinally polarized gauge bosons. This construction is typically the one embedded in models with
weakly-interacting new physics, such as supersymmetric theories.

As an alternative, the EWSB can be realized non-linearly via a non-linear σ-model: in this case the Higgs
boson is not indispensable for preserving gauge invariance, and it could even be removed from the spectrum.
In this way one would obtain an effective Lagrangian that contains only the three degrees of freedom needed
to give mass to the W± and Z bosons (see Sec. 2.3.2). This theory, however, would violate unitarity and
the interactions among the Goldstone bosons would ultimately become non-perturbative around the TeV
scale. This paradigm for the realization of the EWSB is naturally associated with the idea of a new strong-
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2. Dynamics of the electroweak symmetry breaking

interacting sector. In this case, the EW Goldstone bosons would correspond to composite states produced
in the confinement of exotic heavy fermions. In analogy with QCD, the latter would also produce vector
resonances that would cure the unitarity violation. The Higgs-less versions of these theories (that go under
the name of Technicolor) are currently strongly disfavored, due both to incompatibilities with EW precision
tests and flavor data, and of course to the fact that the Higgs has been discovered. However, the idea
of strong-interacting new physics is easily reconcilable with the existence of the Higgs: indeed, this scalar
boson may be composite. This scenario currently represents the most popular alternative to supersymmetry
(which implements a linear realization of EWSB) as a plausible solution to the hierarchy problem. It will
be discussed in Sec. 2.4.

2.1 Spontaneous symmetry breaking of continuous symmetries

Spontaneous symmetry breaking takes place in systems where the vacuum state
does not exhibit the same symmetry as the Lagrangian. This is quite common
in nature. The most classical example is that of a ball on the top of a dome:
although the system is rotationally symmetric, the state of minimum energy,
in which the ball sits at some point at the feet of the dome, is not. In fact,
there is an infinite set of different ground states, all degenerate in energy and
connected with each other via transformations of the broken symmetry.

In this chapter we focus on configurations similar to the ball-on-the-dome
example, i.e. on systems exhibiting a spontaneously broken continuous symmetry: in a quantum system, it
is easy to prove that this condition is always associated to the existence of a degenerate set of vacuum states.
Consider a quantum system with n global continuous symmetries. By Noether’s theorem, this corresponds
to a set of n conserved charges Qi that commute with the Hamiltonian of the system [H,Qa] = 0 and the
associated transformations are described by the action of the unitary operators Ua = eiαQa . The vacuum
state |Ω〉 of the system is the one with minimum energy: H|Ω〉 = Emin|Ω〉. Let us assume that this state is
not invariant under all of the n symmetries, but only under a subset of k transformations. Indicating with
hatted indices the (n− k) broken generators, this corresponds to the condition

Ua|Ω〉 = eiαQa |Ω〉 = |Ω〉 ⇒ Qa|Ω〉 = 0 a = {1, . . . , k}
Uâ|Ω〉 = eiαQâ |Ω〉 6= |Ω〉 ⇒ Qâ|Ω〉 6= 0 â = {k + 1, . . . , n} .

(2.1.1)

It’s easy to show that the states Uâ|Ω〉, that are connected by transformations of the broken symmetries,
have the same energy as |Ω〉 and therefore constitute a degenerate set of vacua:

HUâ|Ω〉 = ([H,Uâ] + UâH)|Ω〉 = UâH|Ω〉 = EminUâ|Ω〉 . (2.1.2)

This result holds irrespectively of whether the broken symmetry is global or local. Nonetheless, the physical
properties of the system are very different in the two cases: as shown in Sec. 2.1.1, Goldstone’s theorem
ensures that, in the global case, the spontaneous breaking leads to the appearance of a massless boson in
the spectrum, called Goldstone boson (GB). On the other hand, this fundamental result does not apply if
the symmetry is a local one: in this case, the main effect of the spontaneous breaking is that the associated
gauge boson becomes massive. This is the essence of the Higgs mechanism, illustrated in Sec. 2.1.2. Finally,
we will conclude enunciating the Goldstone bosons equivalence theorem in Sec. 2.1.3.

2.1.1 Global symmetries: Goldstone’s theorem

One of the most important results on spontaneous symmetry breaking is Goldstone’s theorem [36–38], that
can be stated as follows:
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2.1. Spontaneous symmetry breaking of continuous symmetries

Consider a system whose Lagrangian is invariant under an n-dimensional set of continuous, global
transformations. If the vacuum of the theory is invariant under the action of only k among the
n generators, then there must exist n− k spinless particles of zero mass.

A simple proof4 can be given for a toy model involving an arbitrary number of scalar fields ϕi(x). The
Lagrangian would simply read

L =
1

2
∂µϕi∂

µϕi − V (ϕ) . (2.1.3)

The vacuum state of this system corresponds to a constant configuration 〈ϕi〉 that minimizes the scalar
potential:

δ

δϕi
V (ϕ)

∣∣∣∣
ϕi(x)≡〈ϕi〉

= 0 . (2.1.4)

Let’s assume that the Lagrangian L is invariant under a global symmetry group G, spanned by n generators
T aij , a = {1, . . . , n}. Under an infinitesimal transformation, parametrized by ε � 1, the fields are shifted
according to ϕi(x) 7→ ϕi(x) + iεT aijϕj(x). The invariance condition for the scalar potential can then be
expressed as

∆V = V (ϕ+ iεT aϕ)− V (ϕ) = iε
δV

δϕi
T aijϕj = 0 ∀ε . (2.1.5)

Differentiating this equation with respect to ϕb gives

0 =
δ2V

δϕbδϕi
T aijϕj +

δV

δϕi
T aij

δϕj
δϕb

=
δ2V

δϕbδϕi
T aijϕj +

δV

δϕi
T aib . (2.1.6)

In the vacuum state the last term vanishes due to (2.1.4), and therefore we conclude that

δ2V

δϕbδϕi

∣∣∣∣
ϕi=〈ϕi〉

T aij〈ϕj〉 = 0 . (2.1.7)

We know make the hypothesis that the vacuum is not invariant under the whole group G, but only under
a subgroup H, generated by k among the n generators. Indicating with hatted indices the (n − k) broken
generators, this corresponds to the condition

T aij〈ϕj〉 = 0 ∀i, a = {1, . . . , k}
∃i : T âij〈ϕj〉 6= 0 â = {k + 1, . . . , n} .

(2.1.8)

With this assumption, Eq. (2.1.7) implies that the second derivative of the scalar potential, evaluated in
the vacuum state, has exactly n − k zero eigenvalues. Since the quantum excitations around the vacuum
πi(x) = ϕi(x)− 〈ϕi〉, satisfy the Klein Gordon equation(

�δij +
δ2V

δϕiδϕj

∣∣∣∣
ϕi=〈ϕi〉

)
πj(x) = 0 (2.1.9)

we conclude that there must be n − k massless physical fields, each corresponding to a broken generator.
These are called Goldstone bosons (GBs) of the theory.

Finally, it is worth noticing that the invariance of the original Lagrangian L (ϕ) under transformations
of the broken symmetry translates, in the Lagrangian written in terms of physical fields, into an invariance
under shifts of the (n−k) Goldstone fields. As a consequence, the latter can only have derivative couplings.

4 A most general proof, valid also for non-perturbative theories, can be found in the original paper [38].
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2. Dynamics of the electroweak symmetry breaking

An example from QCD: chiral symmetry breaking

It is important to remark that the spontaneous breaking of a symmetry (either global or local) does not
rely on the presence of fundamental scalars. In fact, although some scalar degrees of freedom are required
(only spin-less fields can acquire non-zero vacuum expectation value), these do not need to be fundamental,
but may as well be composite objects. A most famous example of this scenario is that of the spontaneous
breaking of the chiral symmetry in QCD, that is briefly reviewed in this paragraph.

In the limit of vanishing quark masses, the Lagrangian of QCD with two flavors Ψ = (U, D) is invariant
under the global chirally symmetry SU(2)L×SU(2)R, under which the quark fields of each chirality transform
as doublets:

ΨL =

(
UL
DL

)
7→ ULΨL, UL = eiα

i
Lτ

i/2 ∈ SU(2)L

ΨR =

(
UR
DR

)
7→ URΨR UR = eiα

i
Rτ

i/2 ∈ SU(2)R .

(2.1.10)

However, quark-antiquark pairs form spinless condensates whose vacuum expectation value is not vanishing:

〈Ψ̄Ψ〉 = 〈Ψ̄LΨR + Ψ̄RΨL〉 6= 0 . (2.1.11)

This vacuum configuration is not symmetric under the whole chiral group: instead, it is left invariant only
by transformations with UL = UR, i.e. by the vectorial subgroup SU(2)V = SU(2)L+R. The Goldstone
theorem implies then the existence of dim(SU(2) × SU(2)) − dim(SU(2)) = 3 massless, spin-0 Goldstone
bosons. It also ensures that these particles have the same quantum numbers as the associated broken
currents, which in this case are the axial currents iΨ̄γµγ5τ

iΨ: therefore they must be pseudoscalars. In
fact, the GBs of the two-flavor chiral symmetry breaking are identified with the pions π0, π±: since the up
and down quarks actually have a small but non-zero mass, the chiral symmetry of QCD is only approximate
and this allows to have massive, albeit light, Goldstone bosons.

2.1.2 Local symmetries: Higgs mechanism

There are profound differences between the spontaneous breaking taking place in a global and in a local5

continuous symmetries: in the local case, in fact, the degrees of freedom corresponding to the Goldstone
bosons do not show up as massless particles in the spectrum, but rather materialize as the longitudinally
polarized states of the vector bosons associated to the broken generators. Consequently, these gauge bosons
acquire a mass. This phenomenon is generally referred to as Higgs mechanism.

The inadequacy of Goldstone’s theorem for the case of local symmetries was discovered in 1964 by three
independent groups: Brout-Englert [3], Higgs [5] and Guralnik-Hagen-Kibble [39].

Consider a system analogous to the one presented in Sec. 2.1.1, containing a multiplet of real-valued
scalar fields ϕi(x) and invariant under the continuous group G whose generators are in a real, antisymmetric
representation defined by the matrices T aij , a = {1, . . . , n}. This symmetry is promoted to a local invariance
inserting an associated set of gauge bosons Aaµ(x). The transformation rules and the covariant derivatives
for the scalars read

ϕi(x) 7→ ϕi(x)− αa(x)T aijϕj(x) (2.1.12)

Dµϕi = ∂µϕi + gAaµT
a
ijϕj = ∂µϕi + gAaµ(T aϕ)i (2.1.13)

5 Technically, the expression “spontaneously broken local symmetry” is not correct. As stated by Elitzur’s theorem [65], in fact,
such a breaking cannot possibly occur in quantum field theory. Indeed the condition of gauge-invariance is never dismissed.
With a slight abuse of language, motivated by its widespread acceptance, this expression will be occasionally used here to
indicate the condition in which the spectrum of physical particles do not form a representation of a local symmetry group.
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2.1. Spontaneous symmetry breaking of continuous symmetries

where g is a coupling constant. The Lagrangian of this system is therefore

L =− 1

4
AaµνA

aµν +
1

2
DµϕiD

µϕi − V (|ϕ|) =

=
1

2
Aaµ(gµν�− ∂µ∂ν)Aaν − V (|ϕ|)+

+
1

2
∂µϕi∂

µϕi + gAaµj
aµ +

1

2
g2AaµA

bµ(T aϕ)i(T
bϕ)i

(2.1.14)

where jaµ is the Noether’s current associated to the generator T a: jaµ = ∂µϕi T
a
ij ϕj .

Let us assume that the scalar fields acquire a vacuum expectation value 〈ϕi〉 that leaves the system
invariant under a subgroup H ⊂ G generated by k among the n generators, while the remaining n − k
symmetries are spontaneously broken. In this configuration, the last term of Eq. (2.1.14) yields a mass term
for the gauge bosons

(m2)ab
2

AaµA
bµ with (m2)ab = g2〈T aϕ〉i〈T bϕ〉i (2.1.15)

that is non-vanishing only for the gauge bosons associated to the broken generators, for which (T a〈ϕ〉)i 6= 0,
while those corresponding to the preserved transformations, defined by (T â〈ϕ〉)i = 0, remain massless. Still,
the interaction in Eq. (2.1.15) alone cannot describe in a massive vector boson in a properly gauge-invariant
way. In order to see this, it is instructive to compute the self-energies of the gauge bosons Aaµ: prior to the
spontaneous symmetry breaking, the latter are massless, and therefore their propagator is just

∆µν(q2) =
−i
q2
gµν . (2.1.16)

Defining (iΠµν(q2)) to be the sum of all the one-particle-irreducible (1PI) insertions into the propagator,
the exact gauge bosons two-point function is given by the infinite series

= + 1PI + 1PI 1PI + . . .

= ∆µν + ∆µρ(iΠ
ρσ)∆σν + ∆µρ(iΠ

ρσ)∆σλ(iΠλη)∆ην + . . .
(2.1.17)

The Ward identity iqµΠµν(q2) = 0 requires iΠµν(q2) to be completely transverse, i.e. of the form

iΠµν(q2) = i(q2gµν − qµqν)Π(q2) . (2.1.18)

The infinite geometric series of Eq. (2.1.17) can therefore be re-summed with the result

=
−i
q2

[
1

(1−Π(q2))

(
gµν −

qµqν
q2

)]
, (2.1.19)

which represents the renormalized two-point function of a massive vector field iff 6 the vacuum-polarization
function Π(q2) has a pole in q2 → 0

Π(q2)

∣∣∣∣
q2→0

' m2

q2
(2.1.20)

that in fact would cause the renormalized propagator to have a pole in q2 = m2. It is shown in what follows
that the presence of the Goldstone bosons is exactly what ensures that the vacuum polarization function
has the appropriate momentum dependence.

6 This is strictly true in four space-time dimension, while a counterexample in known in d = 2.
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2. Dynamics of the electroweak symmetry breaking

Once the fields acquire a vacuum expectation value, we can expand the fields around the vacuum. We
adopt the notation

ϕi(x) ≡ 〈ϕ〉i + χi(x) ,

T aijϕj(x) = (T a〈ϕ〉)i + T aijχj(x) ≡ F ai + T aijχj(x) .
(2.1.21)

The constant vectors F ai associated to the preserved generators are identically vanishing, while those associ-
ated to the broken ones are F âi = T âij〈ϕ〉j 6= 0. The field fluctuations along the latter directions correspond
to the Goldstone bosons. Eq. (2.1.14) now reads

L =
1

2
Aaµ(gµν�− ∂µ∂ν)Aaν − V (|χ|) +

1

2
∂µχi∂

µχi+

+ gAaµ∂
µχi (F ai + T aijχj) +

1

2
g2AaµA

bµ(F ai + T aijχj)(F
b
i + T bikχk) .

(2.1.22)

The gauge bosons have an explicit mass term, now written as (ma)ab = F ai F
b
i , and the scalar potential

contains a mass matrix for the scalar particles that, as in the global case, has n− k vanishing eigenvalues,
corresponding to the Goldstone bosons’ excitation. All the states that are orthogonal to the latter are instead
massive. It is also worth noticing that the term gAaµ∂

µχi F
a
i yields a very important kinetic mixing between

the Goldstones and the associated gauge bosons. This does not come as a surprise, as the two associated
fields have the same quantum numbers (they are both created by the broken symmetry current). Given the
interactions in Eq. (2.1.22), the sum of 1PI insertions into the gauge bosons propagators is therefore

iΠµν(q2) =
m2gµν

+
πmqµ mqν

=

= i(mab)
2gµν + (maiqµ)

−iδij
q2

(mjbqν) =

= im2
ab

(
gµν −

qµqν
q2

) (2.1.23)

hence, equating to (2.1.18),

Π(q2) =
m2
ab

q2
. (2.1.24)

It is evident, at this point, that the explicit mass term of Eq. (2.1.15) alone cannot possibly provide a
transverse iΠµν(q2): since this condition is required by the Ward identity, the Goldstone bosons’ contribution
is strictly necessary in order to preserve gauge invariance.

Let us now get back to Eq. (2.1.22): the presence of the kinetic mixing gAaµ∂
µχi F

a
i signals that the

excitations associated to the Goldstone bosons are not actually describing physical massless particles. This
term must not appear in the Lagrangian, when the fields constitute a physical basis. In order not to spoil
the gauge invariance it is necessary, at this point, to introduce explicitly the gauge fixing term required the
Faddeev-Popov quantization procedure. In the well-known Rξ gauges, it can be chosen of the form

LGF =
1

2ξ
[∂µA

aµ − ξgF ai χi]
2

(2.1.25)

so that

L + LGF =
1

2
∂µχi∂

µχi − V (|χ|) +
1

2
Aaµ

[
gµν�−

(
1− 1

ξ

)
∂µ∂ν

]
Aaν+

+ gAaµ∂
µχi T

a
ijχj +

1

2
g2AaµA

bµ(F ai + T aijχj)(F
b
i + T bikχk)+

− 1

2
ξg2F ai F

b
j χiχj .

(2.1.26)
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2.2. Spontaneous EW symmetry breaking: linear realization

We see that with the gauge fixing choice of Eq. (2.1.25) the kinetic mixing cancels automatically. At the
same time, the Goldstone bosons acquire a mass proportional to the gauge fixing parameter itself. Since the
physics of the system cannot depend on ξ, this is again a sign that the Goldstone bosons of this theory are
unphysical particles: in fact, in the unitary gauge ξ →∞ the Goldstone fields become infinitely heavy and
they can be integrated out of the Lagrangian. In this way they are completely removed from the spectrum,
unlike the other massive scalars that in fact describe physical particles.

As a final remark, it is important to notice that in a system with spontaneous breaking of a local
continuous symmetry both the number of degrees of freedom and the symmetries of the Lagrangian remain
unvaried throughout the phase transition. The (n− k) real fields describing the Goldstone excitations, that
in the unbroken phase represent free scalars, become the longitudinal polarization states of the (n − k)
massive vector bosons in the broken phase. For this reason, it is customarily said that the Goldstones “get
eaten” by the gauge bosons.

The most important example of spontaneous breaking of a local continuous symmetry is that of the
Standard Model, described in Sec. 1.1.2. In that case, the initial symmetry is SU(2) × U(1) which gets
broken down to the electromagnetic group U(1) when an appropriate combination of the four real scalars
contained in the Higgs doublet acquires a non-vanishing vev. This produces three Goldstone bosons: two
charged ones, that are eaten by the W±, and a neutral one, eaten by the Z. The photon, being aligned with
the preserved generator, remains massless, while the fourth scalar remains in the spectrum as the massive
Higgs boson.

2.1.3 Goldstone boson equivalence theorem

An important result related to the spontaneous breaking of a gauge symmetry is the Goldstone boson
equivalence theorem, that ensures that the Goldstone bosons πa, once they have been eaten, physically
coincide with the longitudinal polarization states of the corresponding gauge bosons AaL. This must be so,
on an intuitive basis, because massive and massless vector fields contain a different number of degrees of
freedom: while the latter have only two possible polarization states (in the transverse plane), the former
are also allowed to be longitudinally polarized. Since, in a gauge theory, this extra freedom can only be
acquired by absorbing a Goldstone boson, physical processes involving AaL and πa must be somehow related.
It is also expected that the longitudinal polarization states reveal their origin as Goldstone bosons only at
energies E � m2

A, while in the limit in which the gauge boson is at rest they should be indistinguishable
from the transverse states. Indeed, the Equivalence theorem is enunciated as follows: in any Rξ gauge of a
spontaneously broken gauge theory, the amplitude for emission or absorption of a longitudinally polarized
gauge boson is equal, up to corrections of order O(mA/

√
s), to the amplitude for emission of absorption of

the associated Goldstone boson. This statement, generalized to the scattering of N longitudinally polarized
gauge bosons, is expressed by the equation:

A
(
AL(p1) . . . AL(pn) +X → AL(q1) . . . AL(qm) + Y

)
=

(−i)n+mA
(
π(p1) . . . π(pn) +X → π(q1) . . . π(qm) + Y

)(
1 +O(mA/

√
s)
) (2.1.27)

The first proof of the theorem, valid at tree level, was given by Cornwall et al. and by Vayonakis in Refs. [66]
and [67]. The complete proof at any order in perturbation theory was given by Chanowitz and Gaillard [68]
and Gounaris et al. [69].

2.2 Spontaneous EW symmetry breaking: linear realization

After discussing the general properties of the spontaneous breaking of a continuous symmetry, we now focus
on the specific case of the electroweak symmetry breaking (EWSB). It is particularly worth to differentiate
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2. Dynamics of the electroweak symmetry breaking

between two different parameterizations of the EW symmetry breaking (EWSB): the linear and non-linear
realizations. Here the nomenclature refers to the representation of the global chiral symmetry SU(2)L ×
SU(2)R to which the EW Goldstone bosons are assigned.. It turns out that the two realizations provide
equivalent descriptions of the EW Goldstone bosons, while they differ in the treatment of the physical Higgs
boson.

In this section we focus on the linear case, that can be identified with the SM Higgs mechanism already
introduced in Sec. 1.1.2. This formalism is also the one implemented in theories with weakly-coupled new
physics, such as supersymmetric model. The main characteristics of this realization are the following:

– it is described by a renormalizable Lagrangian that respects a global chiral symmetry SU(2)L×SU(2)R.
The latter is spontaneously broken to the custodial subgroup SU(2)c ≡ SU(2)L+R. The EW gauge
group SU(2)L × U(1)Y is embedded in the chiral group, as U(1)Y ⊂ SU(2)R.

– The scalar sector contains four fields: the three Goldstone bosons and the physical Higgs boson. These
are embedded altogether in a bi-doublet of the chiral symmetry and transform linearly under the latter.
The couplings of the four scalars (and in particular of the Higgs) are fixed by the symmetry.

– The chiral symmetry forbids to decouple the physical Higgs from the spectrum so that, in this formal-
ism, it is not possible to construct an invariant effective theory for energies E � mh that contained
only the three Goldstone bosons.

These properties are not peculiar of the EW case: indeed, they are most transparent in a simpler example,
that represents a paradigm for the linear realization of spontaneous symmetry breaking: the linear σ-model
of QCD. Is is instructive, therefore, to illustrate the latter before moving to the more complex case of the
EW interactions.

2.2.1 A preliminary example from QCD: linear σ-model

An instructive model of spontaneous symmetry breaking is the linear σ-model, first introduced by Gell-Mann
and Lévy in 1960 [70]. This model is very general, but we first focus on its application to the spontaneous
breaking of the chiral symmetry in QCD, an example very close to that considered in Sec. 2.1.1.

The fields involved are the following: a doublet of spin 1/2 nucleon fields

ψ =

(
p

n

)
(2.2.28)

and four real scalars: a set of three of fields ~π = (π1, π2, π3) that transform as a triplet under the SU(2)
isospin group, plus a singlet σ. Notice that the fermion field has been chosen differently compared to the
example of Sec. 2.1.1, as here the doublet embeds nucleons rather than quarks. The Lagrangian is

L = iψ̄ /∂ψ +
1

2
∂µσ∂

µσ +
1

2
∂µ~π · ∂µ~π − gψ̄(σ − i~τ · ~πγ5)ψ − V (σ, πi) (2.2.29)

where ~τ denotes the triplet of Pauli matrices and the scalar potential has the form

V (σ, πi) =
µ2

2
(σ2 + ~π · ~π) +

λ

4
(σ2 + ~π · ~π)2 . (2.2.30)

The kinetic term of the fermionic fields is manifestly invariant under a global U(2)L×U(2)R symmetry, that
can be decomposed into U(1)L+R × U(1)L−R × SU(2)L × SU(2)R. The first two factors, that correspond
respectively to the baryon number and to the anomalous chiral symmetry, will be neglected in this context.
The initial isospin symmetry corresponds instead to the vector subgroup SU(2)L+R.
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2.2. Spontaneous EW symmetry breaking: linear realization

Importantly, the scalar sector is also invariant under the chiral group SU(2)L × SU(2)R, although
the symmetry is somehow hidden in the parameterization of Eq. (2.2.29). Nonetheless, the scalar poten-
tial (2.2.30) depends only on the modulus of the multiplet (σ, ~π) and therefore it is invariant under a SO(4)
symmetry. Since this group is isomorphic to SU(2) × SU(2), it must possible to recast the scalars in a
configuration that makes the chiral invariance manifest for the whole Lagrangian. In the linear s-model7,
this is achieved defining the matrix field

Σ = σ1 + i~τ · ~π =

(
σ + iπ3 iπ1 + π2

iπ1 − π2 σ − iπ3

)
. (2.2.31)

Given the structure of the interaction between nucleons and scalars, the field Σ shall be assigned to a
bi-doublet representation of SU(2)L × SU(2)R:

Σ(x) 7→ ULΣ(x)U†R (2.2.32)

with UL,R defined as in Eq. (2.1.10). The transformation properties of the single components consequently
read

σ 7→ σ + (αiL − αiR)
πi

2

πi 7→ πi − (αiL − αiR)
σ

2
+ εijk(αjL + αjR)

πk

2
.

(2.2.33)

For αiL = αiR one recovers transformation properties under the isospin group (singlet and triplet respec-
tively), while for αiL = αiR the fields σ and ~π are interchanged.

By definition, Σ satisfies
1

2
Tr(Σ†Σ) = σ2 + ~π · ~π . (2.2.34)

As a consequence, the Lagrangian of Eq. (2.2.29) can be rewritten as

L = iψ̄L /∂ψL + iψ̄R /∂ψR +
1

4
Tr
(
∂µΣ†∂µΣ

)
− g

(
ψ̄LΣψR + ψ̄RΣ†ψL

)
− V (Σ) (2.2.35)

with

V (Σ) =
µ2

4
Tr(Σ†Σ) +

λ

16
Tr(Σ†Σ)2 . (2.2.36)

The invariance under the global chiral group SU(2)L × SU(2)R is now completely manifest. Consider now
the scalar potential: the parameter λ must be positive in order for the potential to be bounded from below,
but the parameter µ is free. For µ2 > 0 the configuration of minimum energy for the scalar fields is 〈Σ〉 ≡ 0
and the chiral symmetry is preserved. However, if µ2 < 0 the potential has a minimum in

〈Tr(Σ†Σ)〉
2

= 〈σ2 + ~π · ~π〉 =
−µ2

λ
≡ f2 , (2.2.37)

which is not invariant under the whole SU(2) × SU(2). The global symmetry is spontaneously broken
down to a single SU(2) subgroup that, if the vacuum is aligned in the direction

〈σ〉 = f, 〈πi〉 = 0 ↔ 〈Σ〉 = f1 (2.2.38)

coincides with the isospin SU(2)L+R. In fact, it can be immediately checked using the result in Eq. (2.2.33),
that this vacuum is invariant only under transformations with αiL = αiR.

7 An alternative parameterization, that characterizes the non-linear σ-model, will be described in Sec. 2.3.1.
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2. Dynamics of the electroweak symmetry breaking

0 1 2 3 4 5 6

Tr(Σ†Σ)

V
(Σ

)

Figure 2.1: Scalar potential for the linear σ-model, defined in Eq. (2.2.36), with different choices of µ2/λ. The
red/orange lines are drawn for µ2 ≥ 0 and show a minimum in Tr(Σ†Σ) = 0, while the blue lines
correspond to the case µ2 < 0 , where the minimum is shifted to Tr(Σ†Σ) = −2µ2/λ.

Expanding around the vacuum, the physical fields are (σ′ = σ − f, ~π) and, dropping the primes, the
Lagrangian finally reads

L = iψ̄ /∂ψ +
1

2
∂µ~π · ∂µ~π −mψψ̄ψ + igψ̄(~τ · ~π)γ5ψ+

+
1

2
∂µσ∂

µσ − m2
σ

2
σ2 − gψ̄ψσ − λ

4
(σ2 + ~π · ~π)2 − λfσ(σ2 + ~π · ~π) .

(2.2.39)

This final result describes three massless pions (as in the example of Sec. 2.1.1), two massive nucleons with
mp = mn = gf and a massive σ meson, with mass mσ = 2

√
λf . A more realistic result can be obtained

taking into account that the initial chiral symmetry is only approximate in nature and inserting in the initial
Lagrangian a soft chiral breaking term, such as εTr(Σ) with ε� 1. This would result in small pion masses
and lift the degeneracy between mp and mn.

The physical interpretation of the scale f is clarified computing the matrix element for the destruction
of a pion with four-momentum q via the action of the associated broken current:

〈0|J iµL−R(x)|πj(q)〉 =〈0|
[
ψ̄γµγ5

τ i

2
ψ + πi∂µ(σ + f)− (σ + f)∂µπi

]
|πj〉 =

=− f〈0|∂µπi(x)|πj(q)〉 = ifδijqµe−iqx
(2.2.40)

hence the scale f must coincide with the decay constant of the pions by 〈σ〉 = f = −fπ, where fπ is defined
as the scale that parameterizes the annihilation matrix element

〈0|Jµ(x)|π(q)〉 = −ifπqµe−iqx . (2.2.41)

Finally, it is worth to point out a few important properties of the linear σ-model just described: first,
the model is renormalizable. Second, in this parameterization the presence of the σ field is indispensable
for constructing a Lagrangian invariant under a global SU(2)× SU(2) symmetry. Indeed the couplings of
the σ to the pions are totally determined by the symmetry and the σ cannot be possibly decoupled from
the spectrum.
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2.2. Spontaneous EW symmetry breaking: linear realization

2.2.2 The EW case: Higgs mechanism

The Higgs mechanism of the Standard Model described in Sec. 1.1.2 can be formulated as a linear σ-model
for the electroweak symmetry breaking, in which the role of the σ field is played by the Higgs boson, and
the three massless pions are eventually eaten by the W± and Z bosons, as the isospin and hypercharge
symmetries are gauged.

Indeed, the Standard Model Lagrangian can be written in terms of the Σ field

Σ =
1√
2

(φ01 + i~τ · ~π) =
1√
2

(
φ0 + iπ3 iπ1 + π2

iπ1 − π2 φ0 − iπ3

)
≡
(

Φ̃ Φ
)

(2.2.42)

where Φ is the Higgs doublet introduced in Eq. (1.1.5), while Φ̃ was defined in Eq. (1.1.7). This matrix
satisfies

1

2
Tr(Σ†Σ) = Φ†Φ =

1

2
(φ2

0 + ~π · ~π) . (2.2.43)

As in the QCD example, the field Σ transforms as a bi-doublet of a global SU(2)L × SU(2)R. In the
electroweak case, importantly, the SU(2)L isospin symmetry is gauged, while SU(2)R embeds the gauged
hypercharge U(1)Y as a subgroup, generated by τ3. The associated covariant derivative is therefore

DµΣ(x) = ∂µΣ(x) +
igW i

µ(x)

2
τ iΣ(x)− ig′Bµ(x)

2
Σ(x)τ3 (2.2.44)

which can be easily seen to match the covariant derivative for the Higgs doublet as in Eq. (1.1.5).

In the language of the linear σ-model, the Higgs Lagrangian of Eq. (1.1.6) reads

LΦ → LΣ =
1

2
Tr
(
DµΣ†DµΣ

)
− µ2 Tr(Σ†Σ)− λ

2
Tr(Σ†Σ)2+

−
[
Q̄LΣ

(
yU

yD

)(
UR
DR

)
+ L̄LΣ

(
0

yE

)(
0

ER

)
+ h.c.

] (2.2.45)

where the right-handed fermions have been gathered in SU(2)R doublets. It is worth noticing that, unlike
in the QCD example (Eq. (2.2.35)), this Lagrangian is not invariant under the full SU(2)R global symmetry,
as the latter is explicitly broken by the heterogeneity of the Yukawa couplings (yU 6= yD and yE 6= 0) and
the fact only the hypercharge subgroup U(1)Y is gauged.

The spontaneous electroweak symmetry breaking takes place for µ2 < 0, so that the scalar potential has
a minimum in

〈Tr(Σ†Σ)〉
2

= 〈Φ†Φ〉 =
−µ2

λ
≡ v2

2
. (2.2.46)

Picking the alignment

〈φ0〉 = v, 〈πi〉 = 0 (2.2.47)

and expanding around the vacuum with φ0 = v+h, h represents the physical Higgs boson. In this case, the
gauge fixing term for a generic Rξ gauge is

LG.F = − 1

2ξ

(
∂µW

iµ + ξg
v√
2
πi
)2

− 1

2ξ

(
∂µB

µ + ξg′
v√
2
π3

)2

. (2.2.48)

Going to the unitary gauge, that corresponds to ξ → ∞, one recovers the results of the Higgs mechanism
reported in Sec. 1.1.2.
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2. Dynamics of the electroweak symmetry breaking

Custodial symmetry

The analogy between the Higgs mechanism of the Standard Model and the linear σ-model of the QCD
example in Section 2.2.1 allows to highlight a very important feature of the SM, which is the presence of
the so-called custodial symmetry [71].

As mentioned above, in the limit g′ = 0 and yU = yD,yE = 0, the Higgs Lagrangian in Eq. (2.2.45)
has a global SU(2)L × SU(2)R symmetry. However, as it was pointed out for the system of Sec. 2.2.1,
the vacuum of Eq. (2.2.47) is only invariant under the vector subgroup SU(2)L+R. The latter, in the EW
context, is referred to as custodial group and often denoted by SU(2)c.

In this limit, in which the hypercharge is not gauged, there are only three gauge bosons, and all of them
are associated to broken generators. The weak angle is vanishing as tan θ = g′/g = 0 and, consequently, the
W 3
µ boson coincides with the physical Z. Indeed, there is no photon in the spectrum, because the residual

U(1)em symmetry is not a local one. Furthermore, the masses of the W± and the Z turn out to be identical:
mW = mZ = gv/

√
2. This is consistent with the fact that the three massive vector bosons form a triplet of

the unbroken custodial group.
In the real world the initial chiral invariance is violated by g′ 6= 0 and therefore the custodial symmetry

is not exact: the equality mW = mZ is then replaced by the relation

ρ ≡ m2
W

m2
Z cos2 θ

= 1 , (2.2.49)

which is exact at tree-level. In general, the parameter ρ will receive higher-order corrections that, in the
context of the SM, must be proportional to g′ or to (yU − yD) and therefore are always small. The fact
that the EW vacuum is approximately custodially symmetric is a very important property of the SM Higgs
mechanism, which is easily spoiled in presence of new physics contributions. For this reason, custodial
invariance has been tested experimentally to a high precision: the most significant constraints are derived
from the electroweak precision measurements performed at LEP [72], that allow to bound the three Peskin-
Takeuchi oblique parameters S, T, U [73]. The latter quantities parameterize new-physics contributions to
the vacuum polarization functions of the EW gauge bosons. It is convenient to write the the sum of 1PI
new-physics contributions to the propagator of the gauge bosons as8

iΠ̄µν
ab = iΠ̄ab(q

2)gµν + (qµqν terms) (2.2.50)

and to parameterize the vacuum polarization by

Π̄ab(q
2) = Aab + q2Fab +O(q2/m2) . (2.2.51)

Here the indices a, b take values from zero (corresponding to the field B) to three (fields W 1,2,3). The three
oblique parameters are then defined as:

αemS = 2 sin(2θ)
d

dq2

(
Π̄30(q2)

) ∣∣∣
q2=0

= 2 sin(2θ)F30 (2.2.52a)

αemT =
1

m2
W

(
Π̄11(0)− Π̄33(0)

)
=

1

m2
W

(A11 −A33) (2.2.52b)

αemU = 4 sin2 θ
d

dq2

(
Π̄11(q2)− Π̄33(q2)

) ∣∣∣
q2=0

= 4 sin2 θ(F11 − F33) . (2.2.52c)

Among these, the parameter T is the most sensitive to effects of violation of the custodial symmetry. Indeed,
imposing custodial invariance at all orders implies T ≡ 0. The T is also related to the ρ parameter defined

8 We use the notation iΠ̄µν in order to stress that this is not the complete two-point function for gauge bosons, but it contains
only the sum of new physics contributions.
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2.3. Spontaneous EW symmetry breaking: non-linear realization

in Eq. (2.2.49): this can be easily understood noticing that the quantities Aab contribute to the poles of the
vacuum polarization functions for the gauge bosons and, therefore, they represent shifts to the W and Z
masses. Going to the physical basis one has9

m2
W = m2

W0 +A11 , m2
Z = m2

Z0 +A33 cos2 θ (2.2.53)

hence

ρ =
m2
W

m2
Z cos2 θ

=

(
1 +

A11

m2
W0

)(
1 +

A33 cos2 θ

M2
Z0

)−1

' 1 +
A11

m2
W0

− A33

m2
W0

= 1 + αemT . (2.2.54)

The current best-fit values for the oblique parameters, obtained from a global fit on electroweak precision
data, are [74]:

S = 0.08± 0.1 , T = −0.1± 0.12 , U = 0.0± 0.09 , (2.2.55)

hence we see that the invariance under the custodial symmetry has been established at the percent level.
This is one of the strongest constraints on BSM models and it has particular relevance for all the theories
that aim at explaining the dynamics of the electroweak symmetry breaking, providing a UV completion to
the Higgs sector.

2.3 Spontaneous EW symmetry breaking: non-linear realization

The alternative to the Higgs mechanism description of the EWSB process is provided by the non-linear re-
alization of the symmetry breaking. The main point of this parameterization is that it allows to disentangle
the physical Higgs from the Goldstone bosons in a gauge invariant way, and to assign them to different rep-
resentations of the SM symmetries. This appeared as a particularly attractive feature prior to the discovery
of the Higgs boson, fostered by some skepticism about its existence. The non-linear parameterization is
naturally associated to scenarios with strongly-interacting new physics: this is easily understood noticing
that, in absence of the Higgs, the couplings of the Goldstone bosons grow with the energy until they become
non-perturbative. Indeed, this scenario mirrors quite closely the behavior of the pions of QCD. Typical the-
ories that implement a non-linear EWSB are the now disfavored Technicolor models and the still plausible
composite Higgs models.

Here we summarize the properties of the non-linear EW symmetry breaking, to be compared with the
characteristics of the linear scenario listed in Sec. 2.2:

– The scalar sector in principle contains four fields: the three Goldstone bosons and the physical Higgs
boson. In this realization, the former are in a triplet of the chiral symmetry, while the latter is a
singlet. This is achieved at the cost of assigning the Goldstone bosons to a non-linear representation,
that allows them to compensate for the non-transformation of the Higgs.

– Being a singlet, the physical Higgs can be integrated out without spoiling the chiral (gauge) invariance.
In this way one obtains an effective Lagrangian, often called chiral Lagrangian that correctly describes
the Goldstone bosons in the low-energy regime. This represents the minimal parameterization of the
EWSB sector, and in principle it can be UV-completed in an arbitrary way, that does not need to
include the Higgs scalar.

– The effective theory is non-renormalizable and violates perturbative unitarity in the processes that
contain the Goldstone bosons (or, equivalently, longitudinally polarized W± and Z bosons).

9 The mass m2
Z does not receive contributions from A00 and A30 because these are identically zero by ward identities: the

photon’s self-energy cannot have a pole in q2 → 0. Analogously, the self-energy of the W in principle contains a term A22,
but this must be identical to A11.
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2. Dynamics of the electroweak symmetry breaking

In analogy with in the previous section, we begin with the preliminary example of the non-linear σ
model for QCD. Importantly, the results obtained in this context are actually general: Callan, Coleman,
Wess and Zumino developed the general theory of non-linear realization of a broken symmetry (hence known
as CCWZ formalism) in Refs. [75, 76], proving that it is always possible to construct an effective theory
containing only Goldstone bosons for any symmetry breaking scheme G → H , provided that G is a compact,
connected, semi-simple Lie group and that it contains H as a subgroup.

2.3.1 A preliminary example from QCD: non-linear σ-model

Section 2.2.1 contained the description of the linear σ-model for pions, nucleons and the (hypothetical) σ-
meson. It was underlined that the linear σ-model is a renormalizable theory with a global chiral symmetry
that requires all the four scalar fields to be in the spectrum. In particular, it is not possible to integrate out
the σ field from the Lagrangian, not even at energies well below the symmetry breaking scale, because this
would violate explicitly the global SU(2)×SU(2)R invariance.

It turns out, however, that the σ is not a fundamental ingredient of the symmetry breaking description,
and that it can actually be decoupled from the model. This can be done using another parameterization of
the σ-model, called non-linear realization, without spoiling the chiral invariance but at the cost of giving up
renormalizability. The Lagrangian constructed in this way defines the non-linear s-model that was again
introduced by Gell-Mann and Lévy in another section of their paper in 1960 [70]. The model contains only
the three pions and therefore is an effective theory valid only at energies lower than the σ mass. Here we
review its formulation.

The starting point is again the Lagrangian of Eq. (2.2.29): in the linear realization the scalar fields were
embedded in the matrix Σ defined in Eq. (2.2.31). In the non-linear realization, instead, one introduces the
scalar ϕ and the matrix U, defined by

Σ = ϕU . (2.3.56)

The scalar ϕ is not only a singlet of the SU(2)L+R group, as σ, but it is an invariant of the whole global
symmetry SU(2)L × SU(2)R. On the other hand, the matrix U is a bi-doublet, and transforms as Σ:

U 7→ UL UU†R. Moreover, U can be parameterized in terms of three real fields χi that must be in a triplet
of the residual group SU(2)L+R:

U ≡ exp

(
i~τ · ~χ

f

)
= cos

|~χ|
f

+ i
~τ · ~χ
|~χ|

sin
|~χ|
f
, (2.3.57)

where f must coincide with the vev of the singlet: f = 〈ϕ〉 =
√
−µ2/λ (see Eq. (2.3.61)). The matching

with the fields σ and ~π is therefore non-trivial:

σ = ϕ cos
|~χ|
f

= ϕ

(
1− 1

2

~χ · ~χ
f2

+ . . .

)
πi = ϕ sin

|~χ|
f

χi
|~χ|

= χi

(
ϕ

f
− 1

6

ϕ

f

~χ · ~χ
f2

+ . . .

)
.

(2.3.58)

With the non-linear change of variables defined by these relations is has been possible to concentrate all the
chiral information carried by the matrix Σ, that contains four degrees of freedom, into the matrix U, that
contains only three. The fourth scalar has been isolated and excluded from the chiral transformations, but
this requires the fields χi to transform non-linearly under SU(2)L×SU(2)R, in order to compensate for the
missing bi-doublet component.

In this notation, the Lagrangian of the σ-model is written

L = iψ̄ /∂ψ +
1

2
∂µϕ∂

µϕ+
ϕ2

4
Tr(∂µU†∂µU)− gϕ(ψ̄LUψR + ψ̄RU†ψL)− V (ϕ) . (2.3.59)
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2.3. Spontaneous EW symmetry breaking: non-linear realization

Since Tr(Σ†Σ) = 2ϕ2, the field U does not participate in the scalar potential, that reads just:

V (ϕ) =
µ2

2
ϕ2 +

λ

4
ϕ4 . (2.3.60)

As in the linear σ-model, the spontaneous chiral symmetry breaking takes place for µ2 < 0. In this case,
there is only one alignment allowed:

〈ϕ〉 =
−µ2

λ
= f2 . (2.3.61)

The fields χi do not even participate in the minimization of the potential, as by construction they describe
excitations exactly parallel to the broken generators. Indeed, they only appear in the Lagrangian with
derivative couplings. In the broken phase, expanding ϕ = f + ϕ′ and dropping the primes, the Lagrangian
is

L = iψ̄ /∂ψ +
(f + ϕ)2

4
Tr(∂µU†∂µU)− g(f + ϕ)(ψ̄LUψR + ψ̄RU†ψL)+

+
1

2
∂µϕ∂

µϕ−
m2
ϕ

2
ϕ2 − λ

4
ϕ4 − λfϕ3 .

(2.3.62)

As in the linear case, there is a massive singlet scalar with mass m2
ϕ = 2λf2 and a mass term for the nucleons

is triggered by the first term in the expansion of the U exponential, yielding mψ = gf . At this point, the
scalar ϕ can be easily decoupled taking the limit λ→∞ while keeping f2 = −µ2/λ constant. Importantly,
this means that the ϕ scalar can be integrated out only in the limit in which it is strongly interacting. In
this way one is left with the Lagrangian

L = iψ̄ /∂ψ +
f2

4
Tr(∂µU†∂µU)− gf(ψ̄LUψR + ψ̄RU†ψL) . (2.3.63)

This represents an effective Lagrangian for the pions, which is only valid at energies considerably lower than
the mass of the σ meson. It is often referred to as effective chiral Lagrangian for pions. That this is not
a renormalizable theory is clear from the fact that the matrix U contains couplings among an arbitrary
number of pions: for example, expanding the kinetic term one obtains

f2

4
Tr(∂µU†∂µU) =

1

2
∂µ~χ · ∂µ~χ+

1

6f2

(
(~χ · ∂µ~χ)2 − (~χ · ~χ)(∂µ~χ · ∂µ~χ)

)
+ . . . (2.3.64)

where the dots imply an infinite power series in (χ/f)n.

An alternative representation

The “exponential” parameterization chosen in Eq. (2.3.58) is not the only one that allows to disentangle
the three Goldstone bosons from the massive scalar, assigning the latter to a singlet representation of the
chiral symmetry. A well-known alternative is provided be the “square root” representation in which, after
the spontaneous symmetry breaking, one defines the following fields ϕ and ~χ:

ϕ =
√

(σ + f)2 + ~π · ~π − f = σ +
~π · ~π
2v
− σ~π · ~π

2v2
+ . . .

~χ =
~π√

(σ + f)2 + ~π · ~π
=
~π

f

(
1− ϕ

f
+
ϕ2

f2
− ~π · ~π

2v2
+ . . .

)
.

(2.3.65)

In this case, the Lagrangian of the non-linear σ-model is

L =iψ̄ /∂ψ +
1

2

(
1 +

ϕ

f

)2(
∂µ~χ · ∂µ~χ+

(~χ · ∂µ~χ)2

f2 − ~χ · ~χ

)
− g

(
1 +

ϕ

f

)
ψ̄
(√

f2 − ~χ · ~χ− i~τ · ~χγ5

)
ψ+

+
1

2
∂µϕ∂

µϕ−
m2
ϕ

2
ϕ2 − λ

4
ϕ4 − λfϕ3

(2.3.66)
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with m2
ϕ = 2λf2. Although the Goldstone bosons are described in a different way with respect to the

exponential parameterization, this Lagrangian shares some important features with that of Eq. (2.3.62): on
one hand the Goldstones have only derivative couplings and do not occur in the potential, and on the other
the ϕ scalar can be decoupled from the theory in the limit λ → 0 with f2 = −µ2/λ constant. Once the ϕ
is integrated out, the Lagrangian of the non-linear σ-model in this representation is just

L = iψ̄ /∂ψ +
1

2

(
∂µ~χ · ∂µ~χ+

(~χ · ∂µ~χ)2

f2 − ~χ · ~χ

)
− gψ̄

(√
f2 − ~χ · ~χ− i~τ · ~χγ5

)
ψ . (2.3.67)

It should be stressed that the different representations of the σ-model do not imply different physical
properties of the particles described: in fact, as long as two parameterizations are connected by a smooth
change of variables, they are totally equivalent. This is a general result in field theory, first proved by
Haag in 1958 [77]. The theorem basically states that if two fields are related by a (non-linear) functional
dependence φ = χF (χ) with F (0) = 1, the S-matrices calculated in terms of φ with the Lagrangian L (φ)
and in terms of χ with L (χF (χ) are identical. This follows from the fact that two S-matrices are identical
if they have the same single particle singularities, and the latter are preserved by a change of variables with
F (0) = 1. In practice, Haag’s theorem ensures that the Goldstone bosons can be described indifferently
in the linear or non-linear representation. The physical differences between the linear and the non-linear
σ-model appear only when the σ field is integrated out: it is at this stage that the non-linear theory becomes
intrinsically non-renormalizable and that the validity of the Lagrangian gets restricted to low energies.

The non-linear σ model as an Effective Theory

The Lagrangian (2.3.63) could have been constructed directly using only the information that the theory
has a global G = SU(2)L × SU(2)R symmetry broken down to the diagonal subgroup H = SU(2)L+R:
this is sufficient for knowing that at low energies there must be three Goldstone bosons, that transform
linearly under H (but non-linearly under G) and that must be embedded in an object that transforms in a
linear representation of G. The information about the existence of a σ-meson is unnecessary at this level,
although one must be aware that a theory that describes only the Goldstone bosons will lose its validity at
the energy scale where σ resonance appears. Remarkably, the description provided by the effective chiral
Lagrangian matches not only the low-energy limit of the σ-model, but that of any theory based on the
symmetry breaking pattern SU(2) × SU(2)/SU(2). Therefore Eq. (2.3.63) represents the most general,
model-independent Lagrangian for pions’ physics at low energies.

As an effective theory, the chiral Lagrangian of Eq. (2.3.63) can be interpreted as the leading order (LO)
of an infinite expansion in powers of some small parameter. In the specific case of the chiral expansion, the
most natural expansion parameter is (p/Λ), where p is the momentum of an interacting pion and Λ is the
cutoff scale at which the Lagrangian loses its validity. This is a consequence of the fact that U is a unitary
matrix: since Tr(U†U) = 1, the only non trivial interaction terms are those involving derivatives. Moreover,
the number of derivatives in a coupling (or, equivalently, of momenta in the vertices) obviously defines a
hierarchy among the different operators, as the Lagrangian is only valid in the regime where p/Λ� 1. The
leading order of the chiral expansion is therefore given by all the terms with two derivatives. As the energy
considered grows, higher orders in the (p/Λ) expansion must be taken into account: the first corrections to
the LO are provided by all terms with four derivatives and so on. This systematic organization of the effective
operators goes under the name of Weinberg’s counting rule [78], and it can be shown that it is consistent with
the renormalization procedure for the chiral Lagrangian: although the latter is non-renormalizable in the
classical sense, it is possible to make the theory finite order-by-order. For example, the divergences stemming
from one-loop diagrams constructed with LO vertices can be reabsorbed adding the required counterterms,
that consequently would constitute the NLO of the loop expansion. Since the Lagrangian is the most general
one consistent with the chiral symmetry, it must be possible to construct a number of invariants sufficient
for canceling all the divergences. Moreover, by a trivial power counting, these counterterms must be of
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2.3. Spontaneous EW symmetry breaking: non-linear realization

order O(E4), i.e. they must contain four derivatives. Hence, in chiral perturbation theory, the expansion
in derivatives basically coincides with the ordering defined by the renormalization procedure. It can be
shown that, for this to be consistently realized in the theory, the f and Λ scales must satisfy the constraint
Λ ≤ 4πf [79]. This is a typical condition for models that implement a non-linearly realized symmetry: for
instance, in QCD the inequality can be replaced by the estimate ΛQCD ' 4πfπ ∼ 1 GeV.

2.3.2 The EW case: Higgs-less EWSB

The non-linear σ-model for the pions of QCD discussed above is an interesting example of how a system with
a spontaneously broken symmetry can be described using only the fields corresponding to the Goldstone
bosons. As was mentioned above, in 1969 CCWZ proved that this can actually be done for any spontaneous
symmetry breaking pattern G/H, as long as G is a well-behaved group [75, 76].

Among all applications, we are particularly interested in using the non-linear formalism for describing
the spontaneous breaking of the electroweak symmetry. Exploiting the correspondence between the Higgs
mechanism of the Standard Model and the linear σ-model (see Sec. 2.2.2), it is easy to switch to a non-linear
parameterization: defining

φ0 = v + h and U = exp

(
i
~τ · ~π
v

)
(2.3.68)

such that
φ0√

2
U = Σ =

(
Φ̃ Φ

)
, (2.3.69)

with Σ defined in Eq. (2.2.42). The scalar φ0 is an EW singlet, while the matrix U is a bi-doublet of the
chiral group: once the EW symmetries are gauged, its covariant derivative reads

DµU = ∂µU + igW a
µ

τa

2
U− ig′BµU

τ3

2
. (2.3.70)

The Higgs Lagrangian of Eq. (1.1.6) therefore becomes

LΦ →
(v + h)2

4
Tr(DµU†DµU) +

1

2
∂µh∂

µh− m2
h

2
h2 − λv

4
h3 − λ

16
h4+

− (v + h)√
2

[
Q̄LUYQQR + L̄LUYLLR + h.c.

] (2.3.71)

where

YQ =

(
yU

yD

)
YL =

(
0

yE

)
(2.3.72)

and the right-handed fermions have been grouped in SU(2)R doublets. The Higgs boson can be decoupled
in the limit in which it is a strongly interacting particle λ→∞, leaving:

L0 =
v2

4
Tr(DµU†DµU)− v√

2

[
Q̄LUYQQR + L̄LUYLLR + h.c.

]
. (2.3.73)

This Lagrangian is extremely important as it provides the minimal description of the electroweak symmetry
breaking. The gauge fixing term can be written as

LG.F = −1

ξ

(
∂µW

µ + ξ
igv2

8
(U−U†)

)2

− 1

4ξ

(
∂µB

µ − ξ ig
′v2

4
(Uτ3 − τ3U†)

)2

(2.3.74)
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for a generic Rξ gauge. The unitary gauge ξ → ∞ corresponds to replacing U ≡ 1 everywhere in the
Lagrangian, and in this limit L0 yields the correct mass terms for the gauge bosons and the fermions:

L0
U≡1−→ v2

4

(
2g2W+

µ W
−µ +

g2

cos2 θ
ZµZ

µ

)
− v√

2

[
ŪLyUUR + D̄LyDDR + ĒLyEER + h.c.

]
. (2.3.75)

The chiral Lagrangian L0 respects the same custodial symmetry as the Lagrangian for the Higgs mechanism
(Eq. (2.2.45)). However, once the Higgs has been removed from the spectrum, it is possible to introduce
a new source of custodial violation in the Lagrangian: for this purpose it is useful to define the following
chiral objects

Vµ ≡ DµUU† , T ≡ Uτ3U† . (2.3.76)

Both these fields transform in the adjoint representation of SU(2)L: Vµ 7→ ULVµU
†
L and T 7→ ULTU†L.

The vector Vµ is also a singlet of SU(2)R, so that insertions of Vµ automatically preserve the custodial
invariance. On the other hand, the scalar T does not have well-defined transformation properties under
SU(2)R: it is invariant under the hypercharge but breaks explicitly the other two components of the SU(2)R
symmetry. In this sense, T is a spurion of the custodial symmetry. The LO of the chiral expansion for
the EW Goldstone bosons is expected to contain all the possible interactions with two derivatives. If the
custodial symmetry is not imposed by hand, the most general Lagrangian is then

L2 = −v
2

4
Tr(VµVµ) + cT

v2

4
Tr(TVµ) Tr(TVµ)− v√

2

[
Q̄LUYQQR + L̄LUYLLR + h.c.

]
, (2.3.77)

where Tr(VµVµ) ≡ −Tr(DµU†DµU). The second term, parameterized by an arbitrary coefficient cT ,
breaks explicitly SU(2)c. Indeed, in unitary gauge, it yields a contribution to the mass term for the Z
boson but not to that of the W±. As a consequence:

ρ =
m2
W

m2
Z cos2 θ

=
1

1− 2cT
' 1 + 2cT . (2.3.78)

Applying the definitions in Eq. (2.2.52) it is also straightforward to see that this operators contributes to
the T parameter giving αemT = 2cT , as was expected from the relation (2.2.54). The experimental bounds
on the oblique parameters imply, then, constraints of order 10−2 on the coefficient cT , which a posteriori
allows to consider the interaction Tr(TVµ)2 as a NLO term. This is a relevant example of how the custodial
symmetry, that arises accidentally in the SM Higgs mechanism, actually represents quite a strong constraint
for alternative parameterizations of the EWSB.

2.3.3 Violation of perturbative unitarity

The electroweak chiral Lagrangian L0 given in Eq. (2.3.73) describes the masses of the gauge bosons and
fermions of the Standard Model in a gauge invariant way and without the need of introducing the Higgs
scalar. This remarkable result provides the minimal parameterization of the electroweak symmetry breaking
at low energy and it can be interpreted as the most general starting point for the study of the EWSB
sector. From this point of view, the Higgs mechanism of the Standard Model represents only one viable UV
completion to the effective Lagrangian L0 among many. In particular, it would be even possible to formulate
totally Higgs-less theories of EWSB, such as the Technicolor models first introduced by Weinberg [10] and
Susskind [11] in the late 1970s.

The construction of viable UV completions for the effective chiral Lagrangian must keep into account
an important constraint, that originates from an internal inconsistency of the effective theory. In fact, the
latter predicts scattering amplitudes that violate perturbative unitarity; in particular, this happens for the
S-matrices that contain longitudinally polarized gauge bosons. As a consequence, the heavier states added
to the spectrum must be able to cure this problem.
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2.3. Spontaneous EW symmetry breaking: non-linear realization

A relevant example of unitarity violation is given by the cross-section for the elastic scattering of four
longitudinal W bosons: for energies sufficiently larger than the W mass, this can be computed applying the
Equivalence Theorem of Sec. 2.1.3. With the couplings contained in L0, one obtains then

A(W+
LW

−
L →W+

LW
−
L ) = A(π+π− → π+π−) ∼ s+ t

v2
, (2.3.79)

where s and t stand for the Mandelstam variables. Since this amplitude grows quadratically with the energy,
it violates the partial wave unitarity bound, or Froissart bound [80], which is a direct consequence of the
unitarity of the S-matrix. This bound basically ensures that the total cross-section of a process cannot be
arbitrarily large, and in particular it cannot grow faster than log2 s.

The same problem appears, for example, with the scattering into fermions, W+
LW

−
L → ψ̄ψ, that yields

A(W+
LW

−
L → ψ̄ψ) = A(π+π− → ψ̄ψ) ∼ mψ

v2

√
s. (2.3.80)

There are two main avenues for solving the unitarity problem, that eventually define two paradigms for
the implementation of the electroweak symmetry breaking:

(a) one possibility is that new particles come in to cancel the energy dependence in the cross-sections,
thus restoring perturbativity. This is the case of the Higgs mechanism in its linear description where,
as illustrated below, the Higgs boson plays a central role.

(b) An alternative is that the interaction among the Goldstone bosons indeed increases with the energy up
to the point at which the perturbative description breaks down. This scenario is naturally associated
with a strong interacting EWSB sector, and its simplest interpretation is that the EW Goldstone
bosons are composite states of heavier fundamental particles, pretty much like QCD pions.

Restoration of unitarity with a fundamental scalar: back to the Higgs mechanism

The first option for the restoration of unitarity is the addition of an extra particle to the chiral Lagrangian of
Eq. (2.3.73). The most economical choice is the addition of a real scalar degree of freedom ϕ. The minimal
requirement on this particle is that it must be a singlet under the custodial symmetry: the Lagrangian can
therefore be parameterized as [81]

L0ϕ =
1

2
∂µϕ∂

µϕ− V (ϕ) +
v2

4
Tr(DµU†DµU)

(
1 + 2a

ϕ

v
+ b

ϕ2

v2

)
+

− v√
2

[
Q̄LUYQQR + L̄LUYLLR + h.c.

] (
1 + c

ϕ

v

)
,

(2.3.81)

where the couplings a, b, c are in principle free. The scalar ϕ now enters the diagrams for the scattering
of Goldstone bosons. Here we report the dominant terms of three sample amplitudes. The corresponding
diagrams are drawn in Figure 2.2.

A(π+π− → π+π−) ∼ 1

v2

[
s+ t− a2

(
s2

s−m2
ϕ

+
t2

t−m2
ϕ

)]
=
s+ t

v2
(1− a2) +O(m2

ϕ/s) (2.3.82a)

A(π+π− → ϕϕ) ∼ s

v2
(b− a2) +O(m2

ϕ/s) (2.3.82b)

A(π+π− → ψ̄ψ) ∼ mψ

v2

√
s(1− ac) +O(m2

ϕ/s) . (2.3.82c)

Imposing that the scalar restores perturbative unitarity in all these processes fixes completely the three
couplings to be

a = b = c = 1 . (2.3.83)
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Figure 2.2: Feynman diagrams for the three sample scattering processes of Eqs. (2.3.82). The scalar field ϕ, indi-
cated with red dashed lines, eventually re-unitarizes the S-matrices of these processes. The parameters
a, b, c, defined in Eq. (2.3.81), represent arbitrary couplings of ϕ to Goldstone boson and fermions.

But this means that the scalar ϕ must have the same couplings as the Higgs field that was integrated out
from Eq. (2.3.71) which, at that stage, simply described the Standard Model Higgs mechanism in a non-
linear parameterization. Thus we must conclude that, by Haag’s theorem, the additional scalar must be the
SM Higgs boson: evidently, its role is not only that of completing the SU(2)× SU(2) multiplet of scalars,
but it also ensures the perturbative unitarity of the theory.

Despite being renormalizable and phenomenologically successful, it is well-known that the Higgs model
does not provide a self-contained theory of EWSB (see Sec. 1.1.3), as it doesn’t provide any dynamical
explanation of the symmetry breaking process and it is affected by the hierarchy problem. The idea of
UV-completing the EW Goldstone bosons’ Lagrangian with the insertion of a weakly-interacting Higgs
boson is then often embedded in larger constructions. In particular, this scenario matches particularly well
to supersymmetric theories and, more in general, with theories of EWSB that are weakly-coupled at high
energies.

Restoration of unitarity with strong resonances: Technicolor

The second option for addressing the unitarity problem is assuming that the EW Goldstone bosons really
become strongly interacting in the high energy limit. This scenario resembles quite closely that of QCD,
which can be used as a prototype for the construction of a strongly-coupled EWSB sector. In fact, the
scattering amplitude of QCD pions, computed in the description of the chiral Lagrangian (2.3.63), is also
proportional to the square of the momenta involved. However, the effective theory breaks down before
the unitarity bound is violated, more precisely when the energy becomes high enough for some composite
resonances to be produced. At this point, the pions can exchange a whole tower of heavier states that
eventually restore unitarity. In absence of a bound state with the quantum numbers of the σ (analogous to
the Higgs), the most relevant contribution comes from the ρ meson, which is the lightest vector resonance.

Models of EWSB based on the analogy with QCD began to be developed in the late 1970s [10–12] and go
under the name of Technicolor theories. They are based on the idea of some strong-interacting sector, similar
to ordinary QCD but living at a much higher scale. These interactions must have a global SU(2)L × SU(2)R
chiral invariance and contain N fundamental, heavy “techniquarks”. In the assumption that Technicolor
interactions confine, the formation of condensates triggers the breaking of the chiral symmetry down to the
custodial group: the resulting Goldstone bosons serve as the scalar degrees of freedom required for EWSB.
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2.3. Spontaneous EW symmetry breaking: non-linear realization

In this sense, the EW Goldstone bosons, eaten by the W and the Z, are identified with the “technipions”10.
In the simplest scenario, the EW vev v = 246 GeV must then coincide with the decay constant Fπ of the
technipions (see the discussion at the end of Sec. 2.2.1). In this sense, Technicolor immediately appears as
an attractive solution to the hierarchy problem: in this kind of scenario the electroweak scale is generated
dynamically and can be naturally much smaller than the energies at which the fundamental states live, in
complete analogy with QCD.

An important aspect of Technicolor models is that they predict the appearance of a whole tower of
resonances at a relatively low energy, as these must be able to restore perturbative unitarity in the scattering
of longitudinal gauge bosons. Indeed, the mass of the lightest vector resonance (the techni-ρ) can be naively
estimated with a rough rescaling

mρTC
' v

fπ
mρ = 2.1 TeV. (2.3.84)

It turns out that the presence of resonances at the TeV scale is a characteristic feature of any BSM theory
based on a strongly-interacting sector: in particular this is maintained in composite Higgs scenarios. These
resonances have a relevant phenomenological impact: besides restoring perturbative unitarity, they con-
tribute significantly to the oblique parameters S, T, U and, obviously, their observation at the LHC would
represent the most spectacular signature of these models.

Despite their attractiveness as non-linear solutions to the hierarchy problem, pure Technicolor models
present a whole list of serious problems that undermined their viability well before the discovery of the
Higgs boson. The two main issues are a parametrically too large correction to the S parameter and too fast
flavor-changing neutral currents (FCNC) processes. The former has been computed by Peskin and Takeuchi
in the case of Technicolor interactions based on the group SU(NTC) [82]. In the large-NTC approximation
they obtain the proportionality:

S ∼ NTCNTF

π
(2.3.85)

where NTC and NTF are the number of techni-colors and techni-flavors respectively and the proportionality
constant depends on the particular TC model considered. It is clear that this easily provides an order 1
contribution to the S parameter, even for small NTF, NTC.

The FCNC issue, on the other hand, is related to the implementation of quark masses in this class of
models: in absence of a Higgs mechanism, the simplest solution is assuming that the Technicolor and QCD
groups are embedded in a larger Extended Technicolor (ETC) symmetry

SU(NETC) ⊇ SU(NTC)× SU(3)c . (2.3.86)

Assuming that SU(NETC) is spontaneously broken at some scale ΛETC, the associated massive gauge bosons
can mediate the interaction of two techniquarks with two ordinary quarks. After TC condensation, this yields
a mass term for the light quarks [83, 84]. Schematically:

L ⊃ g2
ETC

Λ2
ETC

(Ψ̄TCΨTC)(q̄q)
cond.−→ g2

ETC

Λ2
ETC

〈Ψ̄TCΨTC〉(q̄q) = mq(q̄q) , (2.3.87)

where eventually mq ∼ ΛTC (ΛTC/ΛETC)
2
. Since ΛTC ' v, masses of the correct order of magnitude are

obtained for ΛETC very roughly in the range 1 − 100 TeV. This quite baroque procedure has two evident
drawbacks: to begin with, in order to reproduce the mass hierarchies it is necessary to assume that the
different quark families are embedded in a ETC multiplet and that SU(NETC) undergoes a cascade of
breakings. In this way, every quark flavor qα would be associated to a different breaking scale ΛαETC. More

10 More precisely, the EW Goldstones would be a linear combination of the QCD pions with the technipions, as these
states have the same quantum numbers: |WL, ZL〉 = sinα|πQCD〉 + cosα|πTC〉. However, the mixing angle would be
α = arctan(fπ/Fπ)� 1, being fπ ∼ MeV and Fπ ∼ GeV the decay constants of the QCD and techni-pions respectively.
Therefore, the QCD component, which is already present in the Standard Model, can be neglected.
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2. Dynamics of the electroweak symmetry breaking

importantly, the ETC gauge bosons must also mediate interactions of four light quarks with a coupling
∼ Λ−2

ETC. Since the light quarks belong to a same ETC multiplet, these interactions typically violate flavor
(and CP). The bounds derived from KK̄ and BB̄ oscillations impose then limits on the ETC scale of
order ΛETC & 103 − 105 TeV (see e.g. [85]), which is totally not compatible with the value needed to get
realistic quark masses. In practice there is a tension between the generation of large quark masses and the
suppression of FCNC processes.

The inconsistencies discussed above highlight that Technicolor models could not represent a plausible
theory of EWSB. This is even more clear after the discovery of the Higgs boson, whose existence is not
explained in this context. Nonetheless, the idea of a strong-interacting EWSB sector has an interesting
implementation in models with a composite Higgs, that will illustrated in the next section.

2.4 The Higgs as a pseudo-Goldstone boson

There is a fascinating variation of the EWSB paradigm presented in the previous Section that interpolates
between simple Technicolor the SM with an elementary Higgs. In this class of theories the Higgs boson
is one among the bound states produced in the spontaneous symmetry breaking that takes place in the
strongly interacting sector: this is the basic idea of Composite Higgs (CH) models. The main advantage
of Technicolor, namely the absence of fundamental scalars that removes the hierarchy problem, is thus
retained, while the presence of a light Higgs in the spectrum ameliorates the phenomenological viability of
the theory. In such a framework, the lightness of the Higgs boson compared to the other resonances could
be naturally justified if it emerges as a pseudo-Goldstone boson, i.e. it originates from the spontaneous
breaking of an approximate global symmetry [86–91]. In analogy with the QCD pions, the Higgs’ mass
would then be non-vanishing but protected by the approximate invariance. Technically, the main difference
between CH models from the Technicolor construction, is the existence of two separate phase transitions,
as will be underlined in the next section.

It is worth underlying that the (low-energy) properties of a particular CH model are completely defined
by the choice of the groups G andH. For this reason, it is customary to name the models by the implemented
symmetry breaking pattern: the first CH model to be formulated is SU(5)/SO(5), proposed by Georgi and
Kaplan in 1984 [90]. One of the most popular ones is instead the minimal custodially-symmetric model
SO(5)/SO(4) [92, 93], while the most minimal construction, based on the coset SU(3)/(SU(2) × U(1)) is
strongly disfavored due to the large custodial breaking effects induced. Details about the construction of
these specific models are deferred to Chapter 6.

2.4.1 Composite Higgs models: general structure

As explained above, the structure of a generic composite Higgs model must account for a double phase
transition. This is typically achieved as follows:

Stage 1 – As in Technicolor, one postulates the existence of a strong interacting sector with a global
symmetry G dynamically broken to a subgroup H. This creates n = dimG −dimH Goldstone bosons with
a characteristic scale f that satisfies 4πf ≥ Λ, being Λ roughly the mass scale of the strong resonances. In
order to obtain a composite Higgs with the correct quantum numbers, the chosen groups must satisfy the
following conditions:

(i) the SM gauge group SU(2)L × U(1)Y is embeddable into the group H
(ii) the coset G/H allows for the presence of at least one SU(2) doublet among the Goldstone bosons,

that will play the role of the Higgs doublet.

(iii) Although it is not mandatory, it is desirable that H embeds the custodial symmetry. This prevents
large contributions to the ρ parameter.
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Figure 2.3: Pictorial view of the structure of a generic composite Higgs model. In a first stage the condensation
of the strong interactions breaks the global symmetry G down to the subgroup H that contains the SM
group GSM = SU(2) × U(1), producing GBs with characteristic scale f ≥ Λ/4π. In a second stage,
radiative corrections due to the gauging of the SM group itself, that break explicitly G, induce a vacuum
misalignment that triggers the EWSB. This misalignment is quantified by the parameter ξ = v2/f2.

With this setup, at the energy scale f the EW symmetry is unbroken, the would-be Higgs doublet contains
four massless GB, and its scalar potential is vanishing (at tree level).

Stage 2 – Let’s now assume that a subgroup Hg ⊂ G is gauged. If the intersection with H is non-trivial,
i.e. H0 = H ∩Hg 6= ∅, ng = dimHg − dimH0 among the Goldstones are eaten by as many gauge fields.
The remaining (n − ng) states are either Goldstone bosons or pseudo-Goldstone bosons, depending on
whether the associated symmetry was exact or approximate.

In our case, the mere gauging of the SM group represents an explicit breaking of the global symmetry G,
which makes the Higgs doublet a pseudo-Goldstone field. As a result, loops of SM fermions and gauge
bosons generate an effective potential for the Higgs doublet. If this has the correct shape, with a negative
mass squared, the breaking of the EW symmetry is triggered exactly as in the SM. Eventually, the Higgs
boson emerges with a mass mh ∼ gv where g is a generic SM coupling and v the EW scale.

In practice, radiative corrections induce a misalignment between the initial vacuum, invariant under H,
and the true vacuum.

The electroweak scale v is determined dynamically in this process and it is naturally smaller than f , as the
two scales characterize two well-separated symmetry breakings. The distance between them, or equivalently
the size of the vacuum misalignment, is customarily quantified by the ratio

ξ =
v2

f2
∈ [0, 1] . (2.4.88)

This parameter is phenomenologically relevant, as it fixes the parametric suppression of all the corrections to
the precision observables. In particular, ξ enters the couplings of the physical Higgs boson, which therefore
do not coincide with those fixed by the SU(2) symmetry in the pure SM description. For example, in the
model SO(5)/SO(4) the Higgs couplings to gauge bosons, parameterized as in Eq. (2.3.81), are predicted
to take the form [81]

a =
√

1− ξ , b = 1− 2ξ , (2.4.89)
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which in general deviates from unity. This is consistent with the fact that, in this hybrid theories, both the
light h particle and the heavy resonances contribute to restoring the perturbative unitarity of the S-matrices.
Remarkably, the parameter a is equivalent to the coupling modifier κV ≡ κW = κZ defined in Sec. 1.2.2
and represented in Fig. 1.6. It is therefore possible to set a constraint on ξ, which currently reads ξ . 0.1
for this particular model. More details about the role of ξ in the low-energy description will be given in
Sec. 3.4 and in Chapter 4.

It is also worth noticing that ξ parameterizes a smooth transition between the linear Higgs model and
Technicolor: in the limit ξ → 0 (i.e. f → ∞) the Higgs remains light while the other resonances become
infinitely heavy and ultimately decouple. This is equivalent to the SM description. On the other hand, when
ξ → 1 (i.e. f → v) the two phase transitions exactly overlap, which means that the Technicolor picture has
been recovered.

A final comment is in order about the generation of fermions’ masses: the original model by Georgi and
Kaplan implemented a mechanism similar to that of Extended Technicolor. In this case, the presence of two
different phase transitions allows to disentangle the size of the quarks masses (proportional to v(f/ΛETC)2)
from that of FCNC (proportional to (v/ΛETC)2). However, in order to obtain realistic results one needs
to impose a very strong fine tuning on ξ, of the order ξ ' 10−3 − 10−5. On top of this, this mechanism
does not give a satisfactory solution for the hierarchies among fermions masses. An alternative and more
attractive mechanism is rather that of partial compositeness, originally proposed by Kaplan [94]. The basic
idea is the following: suppose to have linear (instead of bilinear) couplings between the light fermions and
composite operators

Lint. = λq̄O + h.c. (2.4.90)

where O is a fermionic composite operator, made for example (but not necessarily) of three technifermions.
At low energy the composite Higgs field is interpolated by pairs of composite operatorsOLOR. This generates
effective Yukawa couplings and quark masses of the form

mq ∼ vλLλR . (2.4.91)

Following an argument that we do not reproduce here, it can be shown that hierarchical mass terms can
be generated inducing different RG evolution for the couplings λ. This can be done under quite generic
assumptions and it ultimately boils down to assuming convenient anomalous dimensions of the corresponding
composite operators [81].

This mechanism is combined with another important outcome of the construction of Eq. (2.4.90): once
the strong interactions confine, the interaction term of Eq. (2.4.90) becomes a mass mixing term between
the SM fermions and a tower of fermion resonances. In a similar way, the EW gauge fields turn out to mix
with the tower of vector-like resonances. As a consequence, the SM particles are actually a superposition
of elementary and composite states: this justifies the name “partial compositeness”. The mixing angles α
can be naturally small because the RG evolution argument allows to have arbitrarily small mass mixing
parameters.

An important result is that, since only the composite component of a given particle communicates with
the strong sector, the degree of compositeness determines the strength with which a given particle feels the
EWSB, which ultimately determines its mass. Indeed, the SM Yukawa matrices will have the structure

(ySM)ij = (ycomp.)ij sinαLi sinαRj (2.4.92)

where ycomp.)ij is the Yukawa of the composite state, which is determined by the strong dynamics, and
αL,R are the associated mixing angles. Finally, {i, j} are flavor indices and no sum is intended in the RH
side of the equation.
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CHAPTER 3

Effective field theories with a light Higgs

In the previous chapter we described the two main paradigms for the realization of the EWSB and we gave
an overview of possible UV completions for the scalar sector of the EW theory. in particular, we underlined
that a linear EWSB is typically realized in theories with weakly-interacting new physics (e.g. SUSY models)
while a non-linearly realization of the EWSB is characteristic of theories based on strongly-interacting heavy
sectors: the prototype is Technicolor, but this is also the case of composite Higgs models, which currently
represent one of the most popular solutions to the hierarchy problem.

With these conclusions in mind, we now adopt a different point of view, that sets the approach of the
work presented in the next Chapters: we choose to study the EWSB in a model-independent way and, to
this aim, we make use of Effective Field Theories (EFTs). In this framework, the impact of any putative
new physics on the low-energy (sub-TeV) observables is parameterized by an infinite expansion of operators
built with a chosen set of degrees of freedom and preserving some given symmetries: in our case, Lorentz
invariance, the SM gauge symmetry SU(3)c × SU(2)L × U(1)Y and both baryon and lepton number. The
main advantage of employing an effective description resides in the universality of this parameterization,
that relies only on the most fundamental assumptions: any model compatible with the chosen symmetries
and particle content can be matched to the EFT, determining, in general, a set of specific constraints and
relations among the parameters of the effective expansion.

In the case of Higgs physics, there are two categories of effective Lagrangians that are pertinent: the
linear and the non-linear (or chiral) effective theories. As the names suggest, they are based on the two
realizations of the EWSB presented in the previous chapter. In this sense, the linear Lagrangian is expected
to capture the characteristic features of an elementary Higgs originating from some weakly-interacting new
physics, while scenarios with a composite Higgs or, more in general, with a strongly-interacting EWSB
sector are more properly described by the chiral Lagrangian. In practice, the distinction between the two
formalisms is not dichotomous, as the non-linear parameterization is actually more general than the linear
one, as already underlined in Sec. 2.3. Most importantly, the two EFT are intrinsically different and, as a
consequence, they predict well-distinct patterns of signals around the TeV scale. The quest for these model-
independent signatures of the EWSB nature is the main subject of this thesis, in which much attention will
be devoted to studying the possibility of observing them at the LHC.

41



3. Effective field theories with a light Higgs

In this chapter we first consider the linear effective Lagrangian (Sec. 3.1), which is constructed adopt-
ing the particle content of the SM and, for this reason, is also often called SM Effective Field Theory (or
SMEFT). We consider this expansion up to the first-order deviations from the SM, namely including op-
erators with mass dimension up to 6. We then move to the non-linear framework, introducing first the
so-called Appelquist-Longhitano-Feruglio (ALF) Lagrangian (Sec. 3.2), that was proposed in the 1980s as
an effective description of the EW Goldstone bosons, in absence of a Higgs particle. At the leading order,
this basically coincides with the EW chiral Lagrangian of Eq. (2.3.73), while the first corrections contain
a set of operators with up to four derivatives. The ALF basis is subsequently extended with the insertion
of an EW scalar singlet h (Sec. 3.3): the resulting Lagrangian provides the most general description of the
EW interactions in presence of a light (Higgs) boson. To stress this property, it is often referred to as Higgs
Effective Field Theory (HEFT, in contrast with SMEFT). Finally, we close this chapter with a schematic
recapitulation of the main differences between the to EFTs (Sec. 3.4) and a comment on the connection
between both descriptions (Sec. 3.4.1).

3.1 The linear Lagrangian (SMEFT)

The effective Lagrangian in the linear regime is constructed employing the relevant degrees of freedom and
symmetries of the SM. In particular, in this case the Higgs boson is embedded in the Higgs doublet Φ,
together with the three Goldstone bosons, that transform linearly under the gauge symmetry SU(2)L ×
U(1)Y . The tower of invariant operators is canonically organized based on their mass dimension: the LO
contains renormalizable terms with d = 4 and it coincides with the SM Lagrangian LSM (Eq. (1.1.1)).
Higher order effects are instead described by operators with d ≥ 6, that come suppressed by (d− 4) powers
of the cutoff Λ. Explicitly:

Llinear = LSM + ∆Llinear = LSM +
∑
i

fi
Λ2
Od=6
i +

∑
i

fi
Λ4
Od=8
i + . . . (3.1.1)

and cutting the expansion at NLO:

∆Llinear ≡ Ld=6 =
∑
i

fi
Λ2
Oi , (3.1.2)

OGG = − g
2
s

4 Φ†ΦGµνG
µν OWW = − g

2

4 Φ†WµνW
µνΦ

OBB = − g
′2

4 Φ†BµνB
µνΦ OBW = − gg

′

4 Φ†BµνW
µνΦ

OW = ig
2 (DµΦ)†Wµν(DνΦ) OB = ig′

2 (DµΦ)†Bµν(DνΦ)

OΦ1 = (DµΦ)
†

Φ Φ† (DµΦ) OΦ2 = 1
2∂

µ
(
Φ†Φ

)
∂µ
(
Φ†Φ

)
OΦ3 = 1

3

(
Φ†Φ

)3 OΦ4 = (DµΦ)
†

(DµΦ)
(
Φ†Φ

)
ODW = − g

2

2 (DµW
i
νρ)(D

µW iνρ) ODB = − g
′2

2 (∂µBνρ)(∂
µBνρ)

OWWW = − ig
3

8 Tr
(
WµνW

νρWµ
ρ

)
Table 3.1: Linear EFT: basis of bosonic operators of dimension 6 that preserve both C and P [95, 96].
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3.2. The chiral Lagrangian: Appelquist-Longhitano-Feruglio basis

where the sum is extended over a non-redundant basis of operators with d = 6. The first complete classifi-
cation of these invariants has been done in Ref. [97]. More recently, Ref. [98] corrected some inaccuracies of
that work and proposed another basis of operators, which has been widely used in the literature. It contains
a total number of 59 operators, assuming baryon number conservation and up to flavor indices.

An alternative choice, limited to the set of bosonic operators that preserve both C and P , is that of
Refs [95, 96] (sometimes called HISZ basis). As this is the basis chosen for the phenomenological comparison
worked out in the next chapters, we report it in Table 3.1.

Being based on the linear σ-model description of Sec. 2.2, the linear Lagrangian shares most of the
features that were pointed out in that context. In particular, it has an approximate custodial invariance:
for instance, in the Higgs sector, the custodial symmetry is violated only by one operator, which in the
HISZ basis is identified with OΦ,1. Another important property is that, in this language, insertions of the
GBs are always accompanied by insertions of the physical Higgs h, because of the SU(2) doublet structure.
At the same time, the Higgs’ couplings must always appear embedded in structures of the form (v + h)n,
due to the linear dynamics of the EWSB: here the scale v and the field h are respectively the vev and the
residual physical excitation of the same scalar Φ0.

3.2 The chiral Lagrangian: Appelquist-Longhitano-Feruglio basis

When considering non-linearly realized EWSB, it is possible to decouple the Higgs particle from the theory
and write a Lagrangian that describes only the low-energy interactions of the SM fermions, gauge bosons and
Goldstones. As discussed in Sec. 2.3, this can be done constructing a non-linear σ model for the Goldstone
bosons, obtaining a chiral Lagrangian:

Lchiral = L0 + ∆Lchiral (3.2.3)

which is organized as expansion in derivatives. At the leading order it reads

L0 =− 1

4
WµνW

µν − 1

4
BµνB

µν − 1

4
GAµνG

Aµν − v2

4
Tr[VµVµ]+

+ iQ̄ /DQ+ iL̄ /DL− v√
2

[
Q̄LUYQQR + L̄LUYLLR + h.c.

]
+

+
g2
s

16π2
θGAµνG̃

Aµν ,

(3.2.4)

where we have defined the chiral objects (see Sec. 2.3.2)

Vµ = DµUU† = (∂µU)U† + ig
W i
µ

2
τ i1− ig′Bµ

2
T (3.2.5)

T = Uτ3U† (3.2.6)

that transform in the adjoint of SU(2)L. It is then immediate to see that the term Tr(VµVµ) yields the
kinetic terms for the Goldstone bosons and the mass terms for the gauge fields. Moreover, the right-handed
fermions have been grouped in SU(2)R doublets and the Yukawa matrices are therefore defined as

YQ =

(
yU

yD

)
YL =

(
0

yE

)
. (3.2.7)

Focusing on the bosonic sector, the first order corrections are described by a complete basis of independent
operators with up to four derivatives. A customary choice is the so-called Appelquist-Longhitano-Feruglio
(ALF) basis, introduced in Refs.[15–19] and reported Table 3.2. With the ALF notation:

∆Lchiral = cWLW + cBLB + cTLT + cCLC +

14∑
i=1

ciLi . (3.2.8)
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3. Effective field theories with a light Higgs

LB = − g
′2

4 BµνB
µν L6 = g2 [Tr (TWµν)]

2

LW = − g
2

4 Tr (WµνW
µν) L7 = igTr (TWµν) Tr (T[Vµ,Vν ])

LT = v2

4 Tr (TVµ)
2 L8 = gεµνρσ Tr (TVµ) Tr (VνWρσ)

LC = − v
2

4 Tr (VµVµ) L9 = Tr
(
(DµVµ)2

)
L1 = g2Bµν Tr (TWµν) L10 = [Tr (TDµVµ)]

2

L2 = ig′Bµν Tr (T[Vµ,Vν ]) L11 = Tr ([T,Vµ]DνVν) Tr (TVν)

L3 = igTr (Wµν [Vµ,Vν ]) L12 = Tr (VµVµ) [Tr (TVν)]
2

L4 = [Tr (VµVµ)]
2 L13 = Tr (VµVν) Tr (TVµ) Tr (TVν)

L5 = [Tr (VµVν)]
2 L14 = [Tr (TVµ) Tr (TVν)]

2

Table 3.2: Chiral Lagrangian without Higgs scalar: complete basis of independent, CP-even bosonic operators with
up to 4 derivatives. This is often referred to as Applequist-Longhitano-Feruglio (ALF) basis.

Unlike in the linear case, this Lagrangian contains several sources of custodial violation, which are easily
recognized from the presence of the spurion T. Depending on whether the latter is accompanied by the
field Bµ or not, the breaking can be identified as having a SM-like origin or rather an external one: the
custodial-violating terms of the first type are removed in the limit g′ → 0, while the others are retained.
Unless specified, the attribute “custodial violating” will be implicitly referred to BSM custodial-breaking
effects in what follows.

3.3 The chiral Lagrangian with a light Higgs (HEFT)

The ALF chiral Lagrangian presented in the previous section can be easily extended to account for the
presence of a light scalar in the spectrum, namely the Higgs boson: the first attempts were made in
Refs. [23, 24, 99]. In analogy with the procedure followed in Sec. 2.3.3, the physical Higgs h can be
introduced as a gauge singlet: this choice is very general, as the resulting parameterization can indeed be
used to describe a wide range of scenarios, including those in which the h field is embedded in a doublet
or in another more exotic isospin representation, and even dilaton-like models. The chiral Lagrangian with
a light Higgs is often referred to as Higgs EFT (HEFT) Lagrangian, to distinguish it from the linear one,
called with the acronym SMEFT.

The dependence on the physical Higgs can then be expressed by generic functions [25]

Fi(h) = 1 + 2ai
h

v
+ bi

h2

v2
+ . . . (3.3.9)

which replace the polynomial dependence in (1 +h/v)n that characterizes the linear expansion. Notice that
the h insertions are weighted by powers of v rather than of the cutoff Λ: in this sense, the Higgs field h is
treated similarly to the Goldstone bosons, with the adimensional F(h) representing the counterpart of the
U matrix.

44



3.3. The chiral Lagrangian with a light Higgs (HEFT)

The Leading Order Lagrangian of Eq. (3.2.4) is consequently modified into

L0 =− 1

4
W a
µνW

aµν − 1

4
BµνB

µν − 1

4
GAµνG

Aµν − v2

4
Tr[VµVµ]FC(h)+

+ iQ̄ /DQ+ iL̄ /DL− v√
2

(
Q̄LUYQ(h)QR + h.c.

)
− v√

2

(
L̄LUYL(h)LR + h.c.

)
+

+
1

2
∂µh∂

µh− V (h) +
g2
s

16π2
θGAµνG̃

Aµν .

(3.3.10)

Besides the appearance of a kinetic term and of a scalar potential for the h particle, the main change w.r.t
Eq. (3.2.4) is the insertion of the function FC(h), with the structure indicated in (3.3.9), and the promotion
of the Yukawa matrices to h-dependent functionals: here

YQ(h) = diag

(∑
n

Y
(n)
U

hn

vn
,
∑
n

Y
(n)
D

hn

vn

)
YL(h) = diag

(
0 ,
∑
n

Y
(n)
E

hn

vn

)
(3.3.11)

where the first terms Y
(0)
ψ ≡ yψ coincide with the SM Yukawas, while the higher orders describe the

interaction with n insertions of the Higgs field, accounting in general for non-aligned contributions. Notice
that none of the kinetic terms, besides the Goldstone bosons’ one, has been multiplied by a F(h), although
this would be allowed both by the gauge symmetry and by the adimensionality of the F(h) structure. The
reason is the following: for the Higgs’ and fermions’ kinetic terms, the addition of extra h couplings is
redundant, as it can be removed via a field redefinition and reabsorbed within the other arbitrary F(h)
functions appearing in the Lagrangian. For the gauge bosons, the kinetic terms involve only the transverse
components, that are assumed not to couple with the EWSB sector at LO. Indeed, operators with the
structure XµνX

µνF(h) are listed among the NLO terms (further details can be found in Chapter 7).
The Lagrangian L0 in Eq. (3.3.10) is totally equivalent to that of the Standard Model (Eq. (1.1.1)) in

the limit

FC(h) ≡ (1 + h/v)2, Yψ(h) ≡ yψ(1 + h/v), V (h) ≡ m2
h

2
h2 +

λv

4
h3 +

λ

16
h4 . (3.3.12)

The NLO Lagrangian contains a non-redundant basis of operators constructed with the same building
blocks as those for the ALF Lagrangian, plus the adimensional structures Fi(h) and its derivatives. It is
not so obvious, though, to establish where the boundary between NLO and NNLO lies exactly, i.e. to
give a unique definition of the power counting for this EFT11: this issue is currently object of debate in the
literature [100–103]. The main source of confusion is the fact that the HEFT Lagrangian is de facto a merging
of a non-linear σ-model for the scalar sector, that follows a derivative expansion, with a traditional, SM-
like description for fermions and longitudinal gauge bosons, whose interactions are in principle organized
according to their canonical dimension. This superposition spoils, for instance, the equivalence between
derivative expansion and renormalization ordering that holds in pure chiral perturbation theory: while in
the latter case the one-loop amplitudes constructed with two-derivative (LO) terms must be reabsorbed
by four-derivative (NLO) operators, in the linear theory loop structures containing d = 6 operators give
contributions at the same level (d = 6) in the expansion. The two countings, in derivatives and in canonical
dimension, operate simultaneously in the EW chiral Lagrangian, and it is not possible to select either of
the two as the dominating rationale, since this would lead to severe inconsistencies in at least one sector of
the theory. On the other hand, comparing suppressions determined with two different criteria may become
quite a delicate task.

Historically, the first attempt of constructing a unified counting rule was done in the 1980s, with the
formulation of the Naive Dimensional Analysis (NDA) prescription [79], which is still the most widely used

11 The power counting issue also affects the ALF chiral Lagrangian, that does not contain the Higgs field. We have deferred
the topic to this section because its discussion is particularly relevant (and timely) in this context.
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3. Effective field theories with a light Higgs

in the literature. The original version was subsequently generalized in [104] with the inclusion of weights
for the coupling constants. In this latter version, the overall coefficient of a generic interaction with D
derivatives, A gauge fields, F fermion insertions and S scalar fields, accompanied by Ng gauge coupling
constants and Ny Yukawas, is estimated by the formula [103]

Λ4

16π2

( p
Λ

)D (4πAµ
Λ

)A(
4πψ

Λ3/2

)F (
4πφ

Λ

)S ( g

4π

)Ng
( y

4π

)Ny

. (3.3.13)

In the HEFT case, ψ = {Q,L}, φ = {h, πi}, Aµ = {W i
µ, Bµ} and g = {g, g′}. It is easy to see that,

for example, chiral operators with four derivatives, such as Tr(VµVµ)2, that are NLO in the purely chiral
expansion, are assigned a NDA suppression 1/(4π)2 (notice that it coincides with the loop factor). On
the other hand, four-fermion operators, that are NLO in the linear towering, come with a factor (4π)2/Λ2.
Intuitively, both categories must belong to the NLO of the HEFT Lagrangian, although a priori the relative
importance of their impact depends on Λ.

On practical grounds, the HEFT Lagrangian at NLO can be identified based on the following (intuitive)
principles:

– the bosonic sector must include all the operators with up to four derivatives, that are required by the
renormalization procedure of the LO chiral Lagrangian. A complete, non-redundant set of pure-gauge
and gauge-Higgs interactions has been first proposed in Refs. [25, 105], where new physics effects in
the fermionic sector were totally neglected. We do not report it here, as an equivalent basis is listed
in Eqs (2.6)-(2.11) of Chapter 4.

– The fermionic sector must include at least four-fermion operators and dipole operators: these are
naturally NLO in the dimensional counting that befits the fermionic fields, and encode interactions
that receive one-loop contributions from L0. Only a subset of these structures are required to reabsorb
divergences, while others correspond to finite loops. However, generalizing, it is natural to assume
that all the bilinears with up to two derivatives should belong to the basis.

– Redundancies across the two sectors can be eventually removed applying the Equations of Motion
(EOMs) derived from the LO Lagrangian, that can be found in Appendix D of the publication in
Chapter 7.

More details about the construction of the complete HEFT Lagrangian at NLO is provided in Chap. 7, where
a non-redundant basis is also proposed. The latter contains 148 operators up to flavor indices. It should be
stressed that, despite the ambivalence of the double expansion, the commonsense criteria indicated above
allow for a safe and self-consistent identification of most of the operators that compose the NLO effective
basis. Nonetheless, a limited number of invariants is affected by some residual ambiguities in the power
counting. This is the source of a discrepancy between the bosonic bases presented in Chapters 4 and 7,
that concerns operators with the structure AµνA

νρAµρ . According to the derivative expansion, in fact, these
terms should represent NNLO effects. However, it may be argued that these interactions are unrelated to
the strong EWSB sector, as they only involve transverse components of the gauge bosons. As such, they
should rather follow a towering in canonical dimensions, which classifies them as NLO terms. The former
option was chosen in the publication of Chap. 4, while the latter, which is somehow more conservative,
was picked in Chap. 7. Neither of the two possibilities is clearly more rigorous than the other and indeed
the NDA formula assigns to these invariants a weight 4π/Λ2, which in general is not smaller than that of
four-fermion or four-derivative operators.
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3.4 Linear vs. non-linear in a nutshell

We conclude this chapter with a compendium of the disparities between the linear and the non-linear
effective Lagrangians, that is meant to be a handy reference for the works presented in the next pages.
In Sec. 3.4.1 we briefly analyze the correspondence between the two EFTs, highlighting the role of the
parameter ξ = v2/f2.

Higgs couplings
In the linear EFT, the Higgs couplings follow a polynomial dependence in (v + h)n, determined by the
SU(2) doublet structure in which the h field is embedded. In the non-linear EFT, they are encoded in
totally arbitrary functionals F(h). This marks a fundamental and intrinsic difference in the structure
of the two theories, that has been recently interpreted in terms of the curvature of the manifold formed
by the four scalar fields (the Higgs and the 3 GBs) [106].

Power counting
While the SMEFT (linear) Lagrangian is organized as an expansion in canonical mass dimensions, the
HEFT (non-linear) Lagrangian is more complex. In particular, the Goldstone bosons’ sector follows
an expansion in derivatives, typical of the chiral expansion. Moreover, the physical Higgs h and the
Goldstone bosons’ matrix U are independent objects in this framework. This causes a re-shuffling,
compared to the linear setup, of the orders at which given interactions appear in the expansion. In
particular, insertions of longitudinal gauge bosons are less suppressed in the chiral construction.

Number of invariants
All in all, the non-linear Lagrangian is more restrictive than the linear one, as it imposes less constraints
on the scalar fields. As a result, it contains a larger number of parameters at any given order: the
complete HEFT basis at NLO contains 148 independent operators [31], to be compared with the 59 of
the SMEFT basis [98] (up to flavor indices in both cases).

Custodial symmetry
The SMEFT construction, based on a linear σ-model, shows an approximate custodial symmetry up
to the NLO: in the Higgs sector, this invariance is broken only by one operator, OΦ,1 in the basis
of Tab. 3.1. By contrast, in the HEFT framework the is room for more custodial breaking effects,
both of SM and BSM origin: the purely bosonic basis at the four-derivatives level contains 16 sources
of custodial violation that survive even in the limit of massless fermions and g′ → 0 (see Sec. 2 of
Chapter 4).

Physical scales involved
Only two explicit scales appear in the linear expansion: the electroweak vev v, defined by the mass
of the W and Z gauge bosons, and the cutoff Λ. Strictly speaking, these are the only ones that have
a well-defined physical meaning in the effective description. Nonetheless, in the non-linear scenario
it makes sense to introduce explicitly another quantity: the characteristic scale f of the scalar fields,
interpreted as Goldstone bosons of a larger symmetry breaking12. This scale must satisfy the constraint
Λ ≤ 4πf and in general it is f 6= v. Keeping the latter distinction, is tantamount to introducing a
fine-tuning parameter in the effective Lagrangian, which is usually denoted by ξ = v2/f2. This quantity
is reminiscent of the vacuum misalignment parameter that characterizes composite Higgs models (see
Sec. 2.4) and it can be employed for keeping track of the correspondence between the linear and the
non-linear expansions, as explained below.

12 In complete generality, one may introduce different characteristic scales for the EW Goldstones and for the Higgs field:
fπ 6= fh. We do not consider this kind of scenario here, both for simplicity and because the condition fπ = fh = f is indeed
fulfilled in most of the BSM theories we are interested in, such as composite Higgs models.
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Figure 3.1: Schematic representation of the correspondence between the linear and non-linear EFTs. In both
towers, the first order deviations from the SM are highlighted in color.

3.4.1 Matching between both EFTs

A correspondence between the two expansions can be defined as follows: every linear operator is uniquely
associated to a particular combination of non-linear operators, that is easily identified with the replacement

Φ→ v + h√
2

U

(
0

1

)
. (3.4.14)

Inverting this relation, each non-linear operator is associated to a linear sibling defined as the linear operator
of the lowest possible dimension that contains its interactions. The sibling is not unique in general. As an
example, for the operator OB of Table 3.1 one finds

OB =
ig′

2
DµΦ†BµνDνΦ → ig′Bµν

4

(
Tr(T[Vµ,Vν ])

(v + h)2

2
+ Tr(TVµ)∂ν(v + h)2

)
(3.4.15)

which, in the notation of Chapter 4, reads

OB →
v2

8
(P2 + 2P4)

∣∣∣
F2(h)=F4(h)≡(v+h)2

. (3.4.16)

Being the lowest dimensional operator that contains their interactions, OB is the sibling of both P2 and
P4. It is clear from this example that the correspondence between the two expansions is far from being bi-
univocal at a given order: on the contrary, it looks rather intricate as indicated, schematically, in figure 3.1.
Two effects are worth being underlined: i) the chiral EFT contains a larger number of invariants at any
given order and ii) the correspondence defined above connects in general operators that belong to different
orders in both expansions. As detailed in Chapter 4, these two facts are the key for identifying distinctive
signals that may allow to disentangle the two scenarios experimentally. In particular, point i) translates into
the presence of signals that are predicted to be correlated in the linear case but uncorrelated in general in
the non-linear one. The example above already shows this feature: the couplings contained in the operators
P2 and P4 are independent in the nonlinear parameterization, while in the linear setup they are described by
the same object. On the other hand, point ii) implies that some effects are expected to be highly suppressed
in one scenario but not necessarily in the other. An example are the C and P odd (but CP even) couplings
of the operator P14, whose analysis is presented in Chapter 4.

The role of the ξ parameter in the HEFT

As shown in Sec. 2.4, realistic composite Higgs models typically require the Goldstone bosons’ characteristic
scale f to be well-separated from the EW scale v, defined by the masses of the EW gauge bosons. This is
related to the fact that the spontaneous symmetry breaking takes place in two distinct stages, or, in other
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words, that the vacuum of the first global breaking G → H is not aligned with the EW one. The parameter
ξ = v2/f2 ∈ [0, 1] quantifies such misalignment.

Intuitively, the limit ξ → 1 (f → v) represents the Technicolor limit, in which the gap between the two
breakings is practically lifted. On the other hand, in the limit ξ � 1 (v � f), the strong sector can be
decoupled and one recovers the weakly-interacting picture. In this sense, ξ can also be interpreted as a
measure of the “non-linearity” of the EWSB dynamics. Based on this consideration, it is natural to expect
ξ to appear in the HEFT Lagrangian that describes the low-energy effects of a concrete composite Higgs
model. Moreover, the dependence on this parameter must be such that in the regime ξ � 1 the chiral
series somehow aligns itself with the linear expansion. In practice, in this case ξ becomes an expansion
parameter, and the hierarchy it induces among the effective interactions reproduces that determined by
canonical dimensions.

This has been computed explicitly in the publication contained in Chapter 6, focusing on the bosonic
sector, for three different composite Higgs models: the results obtained show that in all these frameworks
the parameter ξ naturally appears both as an overall weight in front of each HEFT operator, and inside
the functionals F(h) that encode the dependence on the physical Higgs. Although the exact numerical
dependence varies depending on the chosen model, a universal feature is that chiral operators whose linear
sibling have dimension d always appear weighted by a global factor ξ(d−4)/2. At the same time, the form of
the functionals F(h) is such that, at first order in ξ, it coincides with (v+ h) to some power n. As a result,
the leading low-energy effects of a composite Higgs model are generally described by the non-linear Higgs
EFT (with specific constraints imposed on the Wilson coefficients), but in the limit ξ � 1 one recovers the
structure of the linear EFT.

It is worth stressing that, at the purely effective level, the parameter ξ is not physical, as it can always
be reabsorbed within the Wilson coefficients. Nonetheless, it can be useful for keeping track of the corre-
spondence with the linear expansion: in Chapter 4, the ξ weights of the chiral operators were assigned “by
hand”, based on the dimensionality of the associated linear sibling. The results are however consistent with
those derived in Chapter 6.
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CHAPTER 4

Disentangling a dynamical Higgs

This Chapter contains the publication in Ref. [28]. The main purpose of this work is the identification of a
set of observables that may allow to discriminate between scenarios with linearly and non-linearly realized
EWSB. The study is restricted to CP-even effects in the bosonic sector: the starting point is the complete
basis of non-linear operators with up to four derivatives previously constructed in Ref. [25] and reported
in Sec. 2 of this chapter. The set considered gives the most general description of first-order deviations
from the Standard Model in a context of non-linear EWSB; its linear counterpart is a complete basis of
bosonic operators of canonical dimension d = 6. As a reference, we chose the HISZ basis [95, 96]. The
choice of neglecting the impact of new physics on the fermionic sector allows for a simpler analysis without
weakening the results obtained. Indeed, the signatures identified in this context showcase all the salient
phenomenological differences between the two EFT descriptions.

A theoretical comparison between the linear and the non-linear expansions is worked out in detail in
Sec. 3. A correspondence between the two bases is established as follows: the leading effects of each linear
operator are equivalent to those of a specific linear combination of chiral operators, with fixed F(h) functions,
which is easily identified replacing Φ with (v + h)/

√
2 U
(

0
1

)
. Inverting this relation, we define the sibling of

a non-linear operator as the linear invariant of the lowest possible dimension that contains its interactions.
Not all the chiral operators have siblings at d = 6: to help tracking down the correspondence, the chiral
operators are written multiplied with a power of ξ = v2/f2. A factor ξn indicates a sibling with d = 2n+ 4.

The phenomenological study is contained in Sec. 4 of this chapter. A global fit is performed on a subset
of relevant Wilson coefficients, employing electroweak precision data as well as the Higgs data available at
the end of 2013. The most important result is the identification of a few sample observables that may serve
as discriminators between the two EWSB realizations, once a greater accuracy in Higgs measurements will
be achieved. There are two main sources of discriminating signatures: one is the presence of couplings
that must be correlated in the linear case but are described by a larger set of parameters in the nonlinear
setup. A promising example is that of triple gauge vertices (TGV) vs. couplings of the Higgs to two gauge
bosons, illustrated in Fig. 2. Another type of signals originates from the mismatch in the towering of the
operators: signals that are produced at the four-derivative level in the chiral expansion but only at d > 6
in the linear one may serve as smoking guns for the presence of non-linearity. An example is the anomalous
TGV generated by P14, that has its linear sibling only at d = 8, whose impact has been analyzed in Sec. 4.3
of this chapter.
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1 Introduction

The present ensemble of data does not show evidence for new exotic resonances and points

to a scenario compatible with the Standard Model (SM) scalar boson (so-called “Higgs” for

short) [1–3]. Either the SM is all there is even at energies well above the TeV scale, which

would raise a number of questions about its theoretical consistency (electroweak hierarchy

problem, triviality, stability), or new physics (NP) should still be expected around or not

far from the TeV scale.

This putative NP could be either detected directly or studied indirectly, analysing the

modifications of the SM couplings. To this aim, a rather model-independent approach

is that of Lorentz and gauge-invariant effective Lagrangians, which respect a given set of

symmetries including the low-energy established ones. These effective Lagrangians respect

– 1 –



J
H
E
P
0
3
(
2
0
1
4
)
0
2
4

symmetries in addition to U(1)em and Lorentz invariance and as a consequence they relate

and constrain phenomenological couplings [4] based only on the latter symmetries.

With a light Higgs observed, two main classes of effective Lagrangians are pertinent,

depending on how the electroweak (EW) symmetry breaking is assumed to be realized:

linearly for elementary Higgs particles or non-linearly for “dynamical” -composite- ones.

It is important to find signals which discriminate among those two categories and this will

be one of the main focuses of this paper.

In elementary Higgs scenarios, the effective Lagrangian provides a basis for all possible

Lorentz and SU(3)c×SU(2)L×U(1)Y gauge invariant operators built out of SM fields. The

latter set includes a Higgs particle belonging to an SU(2)L doublet, and the operators are

weighted by inverse powers of the unknown high-energy scale Λ characteristic of NP: the

leading corrections to the SM Lagrangian have then canonical mass dimension (d) six [5, 6].

Many studies of the effective Lagrangian for the linear expansion have been carried out

over the years, including its effects on Higgs production and decay [7, 8], with a revival of

activity [9, 10] after the Higgs discovery [11, 12] (see also refs. [13–40] for studies of Higgs

couplings in alternative and related frameworks). Supersymmetric models are a typical

example of the possible underlying physics.

In dynamical Higgs scenarios, the Higgs particle is instead a composite field which

happens to be a pseudo-goldstone boson (GB) of a global symmetry exact at scales Λs,

corresponding to the masses of the lightest strong resonances. The Higgs mass is protected

by the global symmetry, thus avoiding the electroweak hierarchy problem. Explicit real-

izations include the revived and now popular models usually dubbed “composite Higgs”

scenarios [41–50], for various strong groups and symmetry breaking patterns.1 To the

extent that the light Higgs particle has a goldstone boson parenthood, the effective La-

grangian is non-linear [53] or “chiral”: a derivative expansion as befits goldstone boson

dynamics. The explicit breaking of the strong group -necessary to allow a non-zero Higgs

mass- introduces chiral-symmetry breaking terms. In this scenario, the characteristic scale

f of the Goldstone bosons arising from the spontaneous breaking of the global symmetry

at the scale Λs is different2 from both the EW scale v defined by the EW gauge boson

mass, e.g. the W mass mW = gv/2, and the EW symmetry breaking (EWSB) scale 〈h〉,
and respects Λs < 4πf . A model-dependent function g links the three scales, v = g(f, 〈h〉),
and a parameter measuring the degree of non-linearity of the Higgs dynamics is usually

introduced:

ξ ≡ (v/f)2 . (1.1)

The corresponding effective low-energy chiral Lagrangian is entirely written in terms

of the SM fermions and gauge bosons and of the physical Higgs h. The longitudinal

degrees of freedom of the EW gauge bosons can be effectively described at low energies by

1Also “little Higgs” [51] (see ref. [52] for a review) models and some higher-dimensional scenarios can

be cast in the category of constructions in which the Higgs is a goldstone boson.
2In the historical and simplest formulations of “technicolor” [54–56], the Higgs particle was completely

removed from the low-energy spectrum, which only retained the three SM would-be-Goldstone bosons with

a characteristic scale f = v.
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a dimensionless unitary matrix transforming as a bi-doublet of the global symmetry:

U(x) = eiσaπ
a(x)/v , U(x)→ LU(x)R† , (1.2)

where here the scale associated with the eaten GBs is v, and not f , in order to provide

canonically normalized kinetic terms, and L, R denotes SU(2)L,R global transformations,

respectively. Because of EWSB, the SU(2)L,R symmetries are broken down to the diagonal

SU(2)C , which in turn is explicitly broken by the gauged U(1)Y and by the heterogeneity

of the fermion masses. On the other hand, while insertions of the Higgs particle are

weighted down as h/f , as explained above, its couplings are now (model-dependent) general

functions. In all generality, the SU(2)L structure is absent in them and, as often pointed out

(e.g. refs. [57, 58]), the resulting effective Lagrangian can describe many setups including

that for a light SM singlet isoscalar.

To our knowledge, the first attempts to formulate a non-linear effective Lagrangian in

the presence of a “non standard/singlet light Higgs boson” go back to the 90’s [59, 60], and

later works [57, 61]. More recently, ref. [62] introduced a relevant set of operators, while

ref. [63] derived a complete effective Lagrangian basis for pure gauge and gauge-h operators

up to four derivatives. Later on, ref. [64] added the pure Higgs operator in ref. [65] as well

as fermionic couplings, proposing a complete basis for all SM fields up to four derivatives,

and trading some of the operators in ref. [63] by fermionic ones.3

The effective linear and chiral Lagrangians with a light Higgs particle h are intrinsically

different, in particular from the point of view of the transformation properties under the

SU(2)L symmetry. There is not a one-to-one correspondence of the leading corrections of

both expansions, and one expansion is not the limit of the other unless specific constraints

are imposed by hand -as illustrated below- or follow from particular dynamics at high

energies [68]. In the linear expansion, the physical Higgs h participates in the scalar

SU(2)L doublet Φ; having canonical mass dimension one, this field appears weighted by

powers of the cut-off Λ in any non-renormalizable operator and, moreover, its presence in

the Lagrangian must necessarily respect a pattern in powers of (v + h). In the non-linear

Lagrangian instead, the behaviour of the h particle does not abide any more to that of an

SU(2)L doublet but h appears as a SM singlet. Less symmetry constraints means more

possible invariant operators [69–71] at a given order, and in summary:

- In the non-linear realization, the chiral-symmetry breaking interactions of h are now

generic/arbitrary functions F(h).

- Furthermore, a relative reshuffling of the order at which couplings appear in each

expansion takes place [63, 72, 73]. As a consequence, a higher number of indepen-

dent (uncorrelated) couplings are present in the leading corrections for a non-linear

Lagrangian.

3The inferred criticisms in ref. [64] to the results in ref. [63] about missing and redundant operators are

incorrect: ref. [63] concentrated by definition in pure gauge and gauge-h couplings and those criticized as

“missing” are not in this category; a similar comment applies to the redundancy issue, explained by the

choice mentioned above of trading some gauge operators by fermionic ones in ref. [64]. Finally, the ξ weights

and the truncations defined for the first time in ref. [63] lead to rules for operator weights consistent with

those defined long ago in the Georgi-Manohar counting [66], and more recently in ref. [67].
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Both effects increase the relative freedom of the purely phenomenological Lorentz and

U(1)em couplings required at a given order of the expansion, with respect to the linear

analysis. Decorrelations induced by the first point have been recently stressed in ref. [74]

(analysing form factors for Higgs decays), while those resulting from the second point above

lead to further discriminating signals and should be taken into account as well. Both types

of effects will be explored below.

In what respects the analysis of present LHC and electroweak data, a first step in the

direction of using a non-linear realization was the substitution of the functional dependence

on (v + h) for a doublet Higgs in the linear expansion by a generic function F(h) for a

generic SM scalar singlet h, mentioned in the first point above. This has already led to

a rich phenomenology [26, 62, 74, 75]. Nevertheless, the scope of the decorrelations that

a generic F(h) induces between the pure gauge and the gauge-h part of a given operator

is limited: whenever data set a strong constraint on the pure gauge part of the coupling,

that is on the global operator coefficient, this constraint also affects the gauge-h part as it

is also proportional to the global coefficient; only in appealing to strong and, in general,

unnatural fine-tunings of the constants inside F(h) could that constraint be overcome.

As for the second consequence mentioned above, the point is that if higher orders in

both expansions are considered, all possible Lorentz and U(1)em couplings would appear in

both towers (as it is easily seen in the unitary gauge), but not necessarily at the same leading

or sub-leading order. One technical key to understand this difference is the adimensionality

of the field U(x). The induced towering of the leading low-energy operators is different

for the linear and chiral regimes, a fact illustrated recently for the pure gauge and gauge-h

effective non-linear Lagrangian [63, 72, 73]. More recently, and conversely, an example was

pointed out [64] of a d = 6 operator of the linear expansion whose equivalent coupling does

not appear among the leading derivative corrections in the non-linear expansion.

It will be shown below that, due to that reshuffling of the order at which certain leading

corrections appear, correlations that are expected as leading corrections in one case may

not hold in the other, unless specific constraints are imposed by hand or follow from high

energy dynamics. Moreover, interactions that are strongly suppressed (subleading) in one

regime may be leading order in the other.

In this paper we will first consider the basis of CP-even bosonic operators for the

general non-linear effective Lagrangian and analyse in detail its complete and independent

set of pure gauge and gauge-Higgs operators, implementing the tree-level renormalization

procedure and deriving the corresponding Feynman rules. The similarities and differences

with the couplings obtained in the linear regime will be carefully determined, considering in

particular the Hagiwara-Ishihara-Szalapski-Zeppenfeld (HISZ) basis [76, 77]. Nevertheless,

the physical results are checked to be independent of the specific linear basis used, as they

should be. The comparison of the effects in both realizations will be performed in the

context of complete bases of gauge and/or Higgs boson operators: all possible independent

(and thus non-redundant) such operators will be contemplated for each expansion, and

compared. For each non-linear operator we will identify linear ones which lead to the same

gauge couplings, and it will be shown that up to d = 12 linear operators would be required

to cover all the non-linear operators with at most four derivatives. We will then identify
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some of the most promising signals to discriminate experimentally among both expansions

in hypothetical departures from the size and Lorentz structure of couplings predicted by

the SM. This task is facilitated by the partial use of results obtained earlier on the physics

impact of the linear regime on LHC physics from d = 6 operators in refs. [9, 10, 78], and

from previous analysis of 4-point phenomenological couplings carried out in refs. [79–83].

In this paper we concentrate on the tree-level effects of operators, as a necessary first step

before loop effects are considered [84].

The structure of the paper can be easily inferred from the table of Contents.

2 The effective Lagrangian

We describe below the effective Lagrangian for a light dynamical Higgs [63] (see also

ref. [64]), restricted to the bosonic operators, except for the Yukawa-like interactions, up to

operators with four derivatives.4 Furthermore, only CP-even operators will be taken into

account, under the assumption that h is a CP-even scalar.

The most up-to-date analysis to the Higgs results have established that the couplings

of h to the gauge bosons and the absolute value of the couplings to fermions are compatible

with the SM ones. On the contrary, the sign of the couplings between h and fermions is

still to be measured, even if a slight preference for a positive value is indicated in some

two parameter fits (see for example [16, 17, 26]) which take into account one-loop induced

EW corrections. It is then justified to write the effective Lagrangian as a term L0, which

is in fact the SM Lagrangian except for the mentioned sign (would the latter be confirmed

positive, L0 should be exactly identified with the SM Lagrangian L0 = LSM ), and to

consider as corrections the possible departures from it due to the unknown high-energy

strong dynamics:

Lchiral = L0 + ∆L . (2.1)

This description is data-driven and, while being a consistent chiral expansion up to four

derivatives, the particular division in eq. (2.1) does not match that in number of deriva-

tives, usually adopted by chiral Lagrangian practitioners. For instance, the usual custodial

breaking term Tr(TVµ)Tr(TVµ) is a two derivative operator and is often listed among

the leading order set in the chiral expansion; however, it is not present in the SM at tree

level and thus here it belongs to ∆L by definition. Moreover, data strongly constrain its

coefficient so that it can be always considered [58] a subleading operator.

The first term in Lchiral reads then

L0 =
1

2
(∂µh)(∂µh)− 1

4
W a
µνW

aµν − 1

4
BµνB

µν − 1

4
GaµνG

aµν − V (h)

− (v + h)2

4
Tr[VµV

µ] + iQ̄ /DQ+ iL̄ /DL

− v + sY h√
2

(
Q̄LUYQQR + h.c.

)
− v + sY h√

2

(
L̄LUYLLR + h.c.

)
,

(2.2)

4As usual, derivative is understood in the sense of covariant derivative. That is, a gauge field and a

momentum have both chiral dimension one and their inclusion in non-renormalizable operators is weighted

down by the same high-scale Λs.
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where Vµ ≡ (DµU) U† (T ≡ Uσ3U
†) is the vector (scalar) chiral field transforming in the

adjoint of SU(2)L. The covariant derivative reads

DµU(x) ≡ ∂µU(x) + igWµ(x)U(x)− ig′

2
Bµ(x)U(x)σ3 , (2.3)

with Wµ ≡W a
µ (x)σa/2 and Bµ denoting the SU(2)L and U(1)Y gauge bosons, respectively.

In eq. (2.2), the first line describes the h and gauge boson kinetic terms, and the effective

scalar potential V (h), accounting for the breaking of the electroweak symmetry. The

second line describes the W and Z masses and their interactions with h, as well as the

kinetic terms for GBs and fermions. Finally, the third line corresponds to the Yukawa-like

interactions written in the fermionic mass eigenstate basis, where sY ≡ ± encodes the

experimental uncertainty on the sign in the h-fermion couplings. A compact notation for

the right-handed fields has been adopted, gathering them into doublets5 QR and LR. YQ

and YL are two 6× 6 block-diagonal matrices containing the usual Yukawa couplings:

YQ ≡ diag (YU , YD) , YL ≡ diag (Yν , YL) . (2.4)

∆L in eq. (2.1) includes all bosonic (that is, pure gauge and gauge-h operators plus

pure Higgs ones) and Yukawa-like operators that describe deviations from the SM picture

due to the strong interacting physics present at scales higher than the EW one, in an

expansion up to four derivatives [63]:

∆L =

ξ [cBPB(h) + cWPW (h) + cGPG(h) + cCPC(h) + cTPT (h) + cHPH(h) + c�HP�H(h)]

+ ξ
10∑
i=1

ciPi(h) + ξ2
25∑
i=11

ciPi(h) + ξ4c26P26(h) + Σiξ
niciHHP iHH(h) (2.5)

where ci are model-dependent constant coefficients, and the last term account for all possi-

ble pure Higgs operators weighted by ξni with ni ≥ 2. The set of pure-gauge and gauge-h

operators are defined by [63]:6

5The Cabibbo-Kobayashi-Maskawa mixing is understood to be encoded in the definition of QL.
6The set of pure gauge and gauge-h operators exactly matches that in ref. [63]; nevertheless, the labelling

of some operators here and their ξ-weights are corrected with respect to those in ref. [63], see later.
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Weighted by ξ:

PC(h) = −v
2

4
Tr(VµVµ)FC(h) P4(h) = ig′BµνTr(TVµ)∂νF4(h)

PT (h) =
v2

4
Tr(TVµ)Tr(TVµ)FT (h) P5(h) = igTr(WµνV

µ)∂νF5(h)

PB(h) = −g
′2

4
BµνB

µνFB(h) P6(h) = (Tr(VµV
µ))2F6(h)

PW (h) = −g
2

4
W a
µνW

aµνFW (h) P7(h) = Tr(VµV
µ)∂ν∂

νF7(h)

PG(h) = −g
2
s

4
GaµνG

aµνFG(h) P8(h) = Tr(VµVν)∂µF8(h)∂νF ′8(h)

P1(h) = gg′BµνTr(TWµν)F1(h) P9(h) = Tr((DµVµ)2)F9(h)

P2(h) = ig′BµνTr(T[Vµ,Vν ])F2(h) P10(h) = Tr(VνDµVµ)∂νF10(h)

P3(h) = igTr(Wµν [Vµ,Vν ])F3(h)

(2.6)

Weighted by ξ2:

P11(h) = (Tr(VµVν))2F11(h) P19(h) = Tr(TDµVµ)Tr(TVν)∂νF19(h)

P12(h) = g2(Tr(TWµν))2F12(h) P20(h) = Tr(VµVµ)∂νF20(h)∂νF ′20(h)

P13(h) = igTr(TWµν)Tr(T[Vµ,Vν ])F13(h) P21(h) = (Tr(TVµ))2∂νF21(h)∂νF ′21(h)

P14(h) = gεµνρλTr(TVµ)Tr(VνWρλ)F14(h) P22(h) = Tr(TVµ)Tr(TVν)∂µF22(h)∂νF ′22(h)

P15(h) = Tr(TDµVµ)Tr(TDνVν)F15(h) P23(h) = Tr(VµVµ)(Tr(TVν))2F23(h)

P16(h) = Tr([T,Vν ]DµVµ)Tr(TVν)F16(h) P24(h) = Tr(VµVν)Tr(TVµ)Tr(TVν)F24(h)

P17(h) = igTr(TWµν)Tr(TVµ)∂νF17(h) P25(h) = (Tr(TVµ))2∂ν∂
νF25(h)

P18(h) = Tr(T[Vµ,Vν ])Tr(TVµ)∂νF18(h)
(2.7)

Weighted by ξ4:

P26(h) = (Tr(TVµ)Tr(TVν))2F26(h) . (2.8)

In eq. (2.7), Dµ denotes the covariant derivative on a field transforming in the adjoint

representation of SU(2)L, i.e.

DµVν ≡ ∂µVν + ig [Wµ,Vν ] . (2.9)

Finally, the pure Higgs operators are:

Weighted by ξ: this set includes two operators, one with two derivatives and one with

four,

PH(h) =
1

2
(∂µh)(∂µh)FH(h) , P�H =

1

v2
(∂µ∂

µh)2F�H(h) . (2.10)

In spite of not containing gauge interactions, they will be considered here as they affect

the renormalization of SM parameters, and the propagator of the h field, respectively.
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Weighted by ξ≥2: this class consists of all possible pure Higgs operators with four deriva-

tives weighted by ξ≥2, P iHH(h). We refrain from listing them here, as pure-h operators

are beyond the scope of this work and therefore they will not be taken into account in the

phenomenological sections below. An example of ξ2-weighted operator would be [65, 85]

PDH(h) =
1

v4
((∂µh)(∂µh))2FDH(h) . (2.11)

In another realm, note that PC(h), PT (h) and PH(h) are two-derivative operators

and would be considered among the leading terms in any formal analysis of the non-linear

expansion (as explained after eq. (2.1)), a fact of no consequence below.

The ξ weights within ∆L do not reflect an expansion in ξ, but a reparametrisation

that facilitates the tracking of the lowest dimension at which a “sibling” of a given operator

appears in the linear expansion. To guarantee the procedure, such an analysis requires to

compare with a specific linear basis; complete linear bases are only available up to d = 6

and here we use the completion of the original HISZ basis [6, 76], see section 3.1.

A sibling of a chiral operator Pi(h) is defined as the operator of the linear expansion

whose pure gauge interactions coincide with those described by Pi(h). The canonical di-

mension d of the sibling, that is the power of ξ, is thus an indicator of at which order in the

linear expansion it is necessary and sufficient to go to account for those gauge interactions:

operators weighted by ξn require us to consider siblings of canonical dimension d = 4 + 2n.

It may happen that an operator in eqs. (2.6)–(2.10) corresponds to a combination of linear

operators with different canonical dimensions: the power of ξ refers then to the lowest di-

mension of such operators that leads to the same phenomenological gauge couplings. The

lowest dimensional siblings of the operators in eqs. (2.6) and (2.10) have d = 6; those in

eqs. (2.7) have d = 8; that of eq. (2.8) has d = 12. ξ is not a physical quantity per se in

the framework of the effective Lagrangian. If preferred by the reader, the ξ weights can

be reabsorbed in a redefinition of the coefficients ci and be altogether forgotten; neverthe-

less, they allow a fast connection with the analyses performed in the linear expansion, as

illustrated later on.

In the Lagrangian above, Eq. (2.5), we have chosen a definition of the operator coeffi-

cients which does not make explicit the weights expected from Naive Dimensional Analysis

(NDA) [66, 67, 86]. While the NDA rules are known not to apply to the gauge and scalar

kinetic and mass terms, for the higher-order corrections they would imply suppressions

by factors of the goldstone boson scale f versus the high energy scale Λs. In particu-

lar, the coefficients of all operators in eq. (2.6) except PC(h), as well as all operators in

eqs. (2.7), (2.8) and (2.10), would be suppressed by the factor f2/Λ2
s = 1/(16π2). The

coefficients can be easily redefined by the reader if wished.

The F(h) functions encode the chiral interactions of the light h, through the generic

dependence on (〈h〉 + h), and are model dependent. Each function can be defined by

F(h) ≡ g0(h, v) + ξg1(h, v) + ξ2g2(h, v) + . . ., where gi(h, v) are model-dependent functions

of h and of v, once 〈h〉 is expressed in terms of ξ and v. Here we will assume that the

F(h) functions are completely general polynomials of 〈h〉 and h (not including derivatives

of h). Notice that when using the equations of motion (EOM) and integration by parts
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to relate operators, F(h) would be assumed to be redefined when convenient, much as one

customarily redefines the constant operator coefficients.

The insertions of the h field, explicit or through generic functions, deserve a separate

comment: given their goldstonic origin, they are expected to be suppressed by the goldstone

boson scale as h/f , as it has been already specified above. This is encoded in the present

formalism by the combination of the Fi(h) functions as defined in the text and the pertinent

ξ-weights which have been explicitly extracted from them, as they constitute a useful tool

to establish the relation with the linear expansions. Consider an initial generic dependence

on the h field of the form (h+ 〈h〉)/f =
√
ξ(h+ 〈h〉)/v: for instance in the linear regime, in

which 〈h〉 ∼ v, the Fi(h) functions are defined in the text as leading to powers of (1+h/v),

because the functional ξ-dependence has been made explicit in the Lagrangian.

Connection to fermionic operators. Several operators in the list in eqs. (2.6)–(2.8)

are independent only in the presence of massive fermions: these are P9(h), P10(h), P15(h),

P16(h), P19(h), one out of P6(h), P7(h) and P20(h), and one out of P21(h), P23(h) and

P25(h). Indeed, P9(h), P10(h), P15(h), P16(h), and P19(h) contain the contraction Dµ Vµ

that is connected with the Yukawa couplings [63], through the manipulation of the gauge

field EOM and the Dirac equations (see appendix A for details). When fermion masses

are neglected, these five operators can be written in terms of the other operators in the

basis (see eq. (A.16)). Furthermore, using the light h EOM (see eq. (A.3)), operator

P7(h) (P25(h)) can be reduced to a combination of P6(h) and P20(h) (P21(h) and P23(h)),

plus a term that can be absorbed in the redefinition of the h-gauge boson couplings, plus

a term containing the Yukawa interactions (see appendix A for details). In summary,

all those operators must be included to have a complete and independent bosonic basis;

nevertheless, in the numerical analysis in section 4.2 their effect will be disregarded as the

impact of fermion masses on data analysis will be negligible.

Other operators in the basis in eqs. (2.6)–(2.10) can be traded by fermionic ones

independently of the size of fermion masses, applying the EOM for DµWµν and ∂µB
µν , see

eqs. (A.1), (A.2) and (A.11) in appendix A. The complete list of fermionic operators that

are related to the pure gauge and gauge-h basis in eqs. (2.6)–(2.10) can also be found there.7

This trading procedure can turn out to be very useful [10, 35, 37, 38, 87] when analysing

certain experimental data if deviations from the SM values for the h-fermion couplings

were found. A basis including all possible fermionic couplings could be more useful in such

a hypothetical situation. The bosonic basis defined above is instead “blind” [88] to some

deviations in fermionic couplings. This should not come as a surprise: the choice of basis

should be optimized with respect to the experimental data under analysis and the presence

of blind directions is a common feature of any basis. In this work we are focused in exploring

directly the experimental consequences of anomalous gauge and gauge-h couplings and

eqs. (2.6)–(2.10) are the appropriate analysis tool.

7For completeness, the EOM of the gauge bosons, h and U(h), and the Dirac equations as well as the

full list of fermionic operators that are related to the bosonic ones in eqs. (2.6)–(2.10) are presented in

appendix A. In this paper, we will only rely on bosonic observables and therefore we will not consider any

fermionic operators other than those mentioned.
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Custodial symmetry. In the list in eqs. (2.6)–(2.10), the operators P�H(h), PT (h),

P1(h), P2(h), P4(h), P9(h), P10(h) and P12−26(h) are custodial symmetry breaking, as

either they: i) are related to fermion masses; ii) are related to the hypercharge through

g′Bµν ; iii) they contain the scalar chiral operator T but no Bµν . Among these, only PT (h)

and P1(h) are strongly constrained from electroweak precision test, while the phenomeno-

logical impact of the remaining operators has never been studied and therefore they could

lead to interesting effects.

If instead by “custodial breaking” operators one refers only to those in iii), a complete

set of bosonic custodial preserving operators is given by the following eighteen operators:

PH(h), P�H(h), PC(h), PB(h), PW (h), PG(h), P1−11(h), P20(h). (2.12)

Furthermore, if fermion masses are neglected, this ensemble is further reduced to a set of

fourteen independent operators, given by

PH(h), PC(h), PB(h), PW (h), PG(h), P1−5(h), P8(h), P11(h), (2.13)

plus any two among the following three operators:

P6(h), P7(h), P20(h). (2.14)

Under the same assumptions (no beyond SM sources of custodial breaking and massless

fermions), a subset of only twelve operators has been previously proposed in ref. [62], as

this reference in addition restricted to operators that lead to cubic and quartic vertices of

GBs and gauge bosons and including one or two Higgs bosons.

The Lagrangian in eq. (2.1) is very general and can be used to describe an extended

class of Higgs models, from the SM scenario with a linear Higgs sector (for 〈h〉 = v, ξ = 0

and sY = 1), to the technicolor-like ansatz (for f ∼ v and omitting all terms in h) and

intermediate situations with a light scalar h from composite/holographic Higgs models [41–

49, 56] (in general for f 6= v) up to dilaton-like scalar frameworks [85, 89–94] (for f ∼ v),

where the dilaton participates in the electroweak symmetry breaking.

3 Comparison with the linear regime

The chiral and linear approaches are essentially different from each other, as explained in

the introduction. The reshuffling with respect to the linear case of the order at which the

leading operators appear plus the generic dependence on h imply that correlations among

observables present in one scenario may not hold in the other and, moreover, interactions

that are strongly suppressed in one case may be leading corrections in the other. As the

symmetry respected by the non-linear Lagrangian is smaller, more freedom is generically

expected for the latter. In this section, for the sake of comparison we will first present the

effective Lagrangian in the linear regime, restricting to the HISZ basis [76, 77], and discuss

then the coincidences and differences expected in observable predictions. The relation to

another basis [87] can be found in appendix B.
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3.1 The effective Lagrangian in the linear regime

Following the description pattern in eq. (2.1), the effective Lagrangian in the linear regime

can be written accordingly as

Llinear = LSM + ∆Llinear , (3.1)

where the relation with the non-linear Lagrangian in eq. (2.2) is given by LSM = L0|sY =1,

and ∆Llinear contains operators with canonical dimension d > 4, weighted down by suitable

powers of the ultraviolet cut-off scale Λ. Restricting to CP -even and baryon and lepton

number preserving operators, the leading d = 6 corrections

∆L d=6
linear =

∑
i

fi
Λ2
Oi , (3.2)

may be parametrized via a complete basis of operators [5, 6]. Only a small subset of those

modify the Higgs couplings to gauge bosons. Consider the HISZ basis [76, 77]:

OGG = Φ†ΦGaµνG
aµν , OWW = Φ†ŴµνŴ

µνΦ ,

OBB = Φ†B̂µνB̂
µνΦ , OBW = Φ†B̂µνŴ

µνΦ ,

OW = (DµΦ)†Ŵµν(DνΦ) , OB = (DµΦ)†B̂µν(DνΦ) , (3.3)

OΦ,1 = (DµΦ)†Φ Φ† (DµΦ) , OΦ,2 =
1

2
∂µ
(

Φ†Φ
)
∂µ

(
Φ†Φ

)
,

OΦ,4 = (DµΦ)† (DµΦ)
(

Φ†Φ
)
,

where DµΦ =
(
∂µ + i

2g
′Bµ + i

2gσiW
i
µ

)
Φ and B̂µν ≡ i

2g
′Bµν and Ŵµν ≡ i

2gσiW
i
µν . An

additional operator is commonly added in phenomenological analysis,

OΦ,3 =
1

3

(
Φ†Φ

)3
, (3.4)

which is a pure Higgs operator. An equivalent basis of ten operators in the linear expansion

is often used nowadays instead of the previous set of ten linear operators: the so-called

SILH [87] Lagrangian, in which four of the operators above are traded by combinations of

them and/or by a fermionic one via EOM (the exact relation with the SILH basis can be

found in appendix B).

The pure Higgs interactions described by the ξ-weighted operator P�H of the chiral

expansion, eq. (2.10), are contained in the linear operator,

O�Φ = (DµD
µΦ)† (DνD

νΦ) . (3.5)

Let us now explore the relation between the linear and non-linear analyses. Beyond

the different h-dependence of the operators, that is (in the unitary gauge):

Φ =
1√
2

(
0

v + h(x)

)
vs. F(h) , (3.6)
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it is interesting to explore the relation among the linear operators in eqs. (3.3) and those

in the chiral expansion. A striking distinct feature when comparing both basis is the

different number of independent couplings they span. This is best illustrated for instance

truncating the non-linear expansion at order ξ -which may be specially relevant for small

ξ- and comparing the result with the d = 6 linear basis that contributes to gauge-Higgs

couplings: while the latter basis exhibits ten independent couplings, the former depends on

sixteen. A more precise illustration follows when taking momentarily Fi(h) = (1 + h/v)2,

with n = 2 in general, in all Pi(h) under discussion, which would lead to:

OBB =
v2

2
PB(h), OWW =

v2

2
PW (h),

OGG = −2v2

g2
s

PG(h), OBW =
v2

8
P1(h),

OB =
v2

16
P2(h) +

v2

8
P4(h), OW =

v2

8
P3(h)− v2

4
P5(h),

OΦ,1 =
v2

2
PH(h)− v2

4
F(h)PT (h), OΦ,2 = v2PH(h),

OΦ,4 =
v2

2
PH(h) +

v2

2
F(h)PC(h),

(3.7)

O�Φ =
v2

2
P�H(h) +

v2

8
P6(h) +

v2

4
P7(h)− v2P8(h)− v2

4
P9(h)− v2

2
P10(h).

These relations show that five chiral operators, PB(h), PW (h), PG(h), P1(h) and PH(h)

are then in a one-to-one correspondence with the linear operators OBB, OWW , OGG, OBW
and OΦ,2, respectively. Also the operator PT (h) (PC(h)) corresponds to a combination of

the linear operators OΦ,1 and OΦ,2 (OΦ,4 and OΦ,2). In contrast, it follows from eq. (3.7)

above that:

- Only a specific combination of the non-linear operators P2(h) and P4(h) corresponds

to the linear operator OB.

- Similarly, a specific combination of the non-linear operators P3(h) and P5(h) corre-

sponds to the linear operator OW .

- Only a specific combination of the non-linear operators P�H(h), P6(h), P7(h), P8(h),

P9(h) and P10(h) corresponds to the linear operator O�Φ.

It is necessary to go to the next order in the linear basis, d = 8, to identify the operators

which break these correlations (see eq. (C.2)). It can be checked that, for example for the

first two correlations, the linear d = 8 operators(
(DµΦ)†Φ

)
B̂µν

(
Φ†DνΦ

)
and

(
(DµΦ)†Φ

)
Ŵµν

(
Φ†DνΦ

)
(3.8)

correspond separately to P4(h) and P5(h), respectively.

A comment is pertinent when considering the ξ truncation. In the ξ → 0 limit, in which

F(h)→ (1 + h/v)2, if the underlying theory is expected to account for EWSB, the ensemble

of the non-linear Lagrangian should converge to a linear-like pattern. Nevertheless, the

– 12 –



J
H
E
P
0
3
(
2
0
1
4
)
0
2
4

size of ξ is not known in a model-independent way; starting an analysis by formulating

the problem (only) in the linear expansion is somehow assuming an answer from the start:

that ξ is necessarily small in any possible BSM construction. Furthermore, the non-linear

Lagrangian accounts for more exotic singlet scalars, and that convergence is not granted

in general.

The maximal set of CP-even independent operators involving gauge and/or the Higgs

boson in any d = 6 linear basis is made out of 16 operators: the ten [76, 77] in eqs. (3.3)

and (3.4), plus the operator [6] O�Φ defined in eq. (3.5), and another five which only modify

the gauge boson couplings and do not involve the Higgs field8 [76, 77]:

OWWW = iεijkŴ
i ν
µ Ŵ j ρ

ν Ŵ k µ
ρ , OGGG = ifabcG

a ν
µ Gb ρν G

c µ
ρ ,

ODW =
(
Dµ Ŵµν

)i (
DρŴ ρν

)i
, ODB =

(
∂µB̂µν

)(
∂ρB̂

ρν
)
,

ODG = (DµGµν)a (DρGρν)a .

(3.9)

The Lorentz structures contained in these five operators are not present in the non-linear

Lagrangian expanded up to four derivatives: they would appear only at higher order in

that expansion, i.e. six derivatives. They are not the siblings of any of the chiral operators

discussed in this work, eqs. (2.6)–(2.10).

The rest of this paper will focus on how the present and future LHC gauge and gauge-

h data, as well as other data, may generically shed light on the (non-)linearity of the

underlying physics. In particular exploiting the decorrelations implied by the discussion

above as well as via new anomalous discriminating signals.

Disregarding fine tunings, that is, assuming in general all dimensionless operator co-

efficients of O(1), the pattern of dominant signals expected from each expansion varies

because the nature of some leading corrections is different, or because the expected rela-

tion between some couplings varies. In the next subsections we analyze first how some

correlations among couplings expected in the linear regime are broken in the non-linear

one. Next, it is pointed out that some couplings expected if the EWSB is linearly realized

are instead expected to appear only as higher order corrections in the non-linear case.

Conversely and finally, attention is paid to new anomalous couplings expected as leading

corrections in the non-linear regime which appear only at d ≥ 8 of the linear expansion.

3.2 Decorrelation of signals with respect to the linear analysis

The parameter ξ is a free parameter in the effective approach. Nevertheless, in concrete

composite Higgs models electroweak corrections imply ξ . 0.2−0.4 [95] (more constraining

bounds ξ . 0.1−0.2 have been advocated in older analyses [29, 96, 97]), and it is therefore

interesting for the sake of comparison to consider the truncation of ∆L which keeps only

the terms weighted by ξ and disregard first those weighted by higher ξ powers. We will thus

8The Operators ODW , ODB and ODG are usually traded by OWWW and OGGG plus fermionic operators.

As in this paper we focus on bosonic observables, such translation is not pertinent. Taken by themselves,

the ensembles discussed constitute a non-redundant and complete set of gauge and/or Higgs operators. In

ODG, Dµ denotes the covariant derivative acting on a field transforming in the adjoint of SU(3)C .
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analyze first only those operators in eqs. (2.6) and (2.10). We will refer to this truncation

as ∆L ξ and define L ξ
chiral ≡ L0 + ∆L ξ.

All operators in ∆L ξ have by definition lowest dimensional linear siblings of d = 6.

We will thus compare first L ξ
chiral with the d = 6 linear expansion [5, 6, 87]. For low enough

values of ξ, that is when the new physics scale Λs � v, L ξ
chiral is expected to collapse into

the d = 6 linear Lagrangian if it should account correctly for EW symmetry breaking via

an SU(2)L doublet scalar, but the non-linear Lagrangian encodes more general scenarios

(for instance that for a SM singlet) as well.

The comparison of the effects in the non-linear versus the linear expansion is illuminat-

ing when done in the context of the maximal set of independent (and thus non-redundant)

operators on the gauge-boson/Higgs sector for each expansion: comparing complete bases

of those characteristics. The number of independent bosonic operators that induce leading

deviations in gauge-h couplings turns out to be then different for both expansions: ten

d = 6 operators in the linear expansion, see eq. (3.3) and eq. (3.5), for sixteen ξ-weighted

operators9 in the chiral one, see eq. (2.6) and (2.10). For illustration, further details are

given here on one example pointed out in section 3.1: P2(h) and P4(h) versus the d = 6

operator OB. From eq. (3.7) it followed that only the combinations P2(h) + 2P4(h) have a

d = 6 linear equivalent (with Fi(h) substituted by (1 +h/v)2). In the unitary gauge P2(h)

and P4(h) read:

P2(h) = 2ieg2AµνW
−µW+νF2(h)− 2

ie2g

cos θW
ZµνW

−µW+νF2(h) , (3.10)

P4(h) = − eg

cos θW
AµνZ

µ∂νF4(h) +
e2

cos2 θW
ZµνZ

µ∂νF4(h) , (3.11)

with their coefficients c2 and c4 taking arbitrary (model-dependent) values. In contrast,

their d = 6 sibling OB results in the combination:

OB =
ieg2

8
AµνW

−µW+ν(v + h)2 − ie2g

8 cos θW
ZµνW

−µW+ν(v + h)2

− eg

4 cos θW
AµνZ

µ∂νh(v + h) +
e2

4 cos2 θW
ZµνZ

µ∂νh(v + h) .

(3.12)

In consequence, the following interactions encoded in OB -and for the precise Lorentz

structures shown above- get decorrelated in a general non-linear analysis:

- γ −W −W from γ −Z − h, and Z −W −W from Z −Z − h; these are examples of

interactions involving different number of external h legs.

- γ −W −W − h from γ − Z − h, and Z −W −W − h from Z − Z − h, which are

interactions involving the same number of external h legs.

While such decorrelations are expected among the leading SM deviations in a generic non-

linear approach, they require us to consider d = 8 operators in scenarios with linearly real-

ized EW symmetry breaking. This statement is a physical effect, which means that it holds

9Note that the first operator in eq. (2.10) impacts on the gauge-h couplings via the renormalization of

the h field.
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irrespective of the linear basis used, for instance it also holds in the bases in refs. [97, 98].

The study of the correlations/decorrelations described represents an interesting method to

investigate the intimate nature of the light Higgs h.

The argument developed above focused on just one operator, for illustration. A par-

allel analysis on correlations/decorrelations also applies in other case, i.e. the interactions

described by P3(h) and P5(h) versus those in the d = 6 linear operator OW . Obviously,

in order to firmly establish the pattern of deviations expected, all possible operators at a

given order of an expansion should be considered together, and this will be done in the

phenomenological section 4 below.

3.3 Signals specific to the linear expansion

The d = 6 operators in eq. (3.9) have no equivalent among the dominant corrections of

the non-linear expansion, eqs. (2.6)–(2.10), all ξ weights considered. This fact results in an

interesting method to test the nature of the Higgs. Considering for example the operator

OWWW in eq. (3.9), the couplings

Aρ

W−ν

W+
µ

fWWW
3ieg2

4

[
gρµ ((p+ · p−)pAν − (pA · p−)p+ν)

+ gµν ((pA · p−)p+ρ − (pA · p+)p−ρ)

+ gρν ((pA · p+)p−µ − (p+ · p−)pAµ) + pAµp+νp−ρ − pAνp+ρp−µ

]
,

(3.13)

Zρ

W−ν

W+
µ

fWWW
3ig3 cos θW

4

[
gρµ ((p+ · p−)pZν − (pZ · p−)p+ν)

+ gµν ((pZ · p−)p+ρ − (pZ · p+)p−ρ)

+ gρν ((pZ · p+)p−µ − (p+ · p−)pZµ) + pZµp+νp−ρ − pZνp+ρp−µ

]
,

should be observable with a strength similar to that of other couplings described by d =

6 operators, if the EW breaking is linearly realized by the underlying physics. On the

contrary, for a subjacent non-linear dynamics their strength is expected to be suppressed

(i.e. be of higher order) [64].10 A similar discussion holds for the other operators in eq. (3.9).

3.4 New signals specific to the non-linear expansion

For large ξ, all chiral operators weighted by ξn with n ≥ 2, eqs. (2.7)–(2.10), are equally

relevant to the ξ-weighted ones in eq. (2.6), and therefore their siblings require operators

of dimension d ≥ 8. Of special interest is P14(h) which belongs to the former class, as some

of the couplings encoded in it are absent from the SM Lagrangian. This fact provides a

viable strategy to test the nature of the physical Higgs.

In appendix D, the Feynman rules for all couplings appearing in the non-linear La-

grangian for gauge and gauge-h operators can be found. A special column indicates directly

the non-standard structures and it is easy to identify among those entries the couplings

10This coupling is usually referred to in the literature as λV [4].
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weighted only by ξn with n ≥ 2. Here, we report explicitly only the example of the anoma-

lous Z −W −W and γ − Z −W −W vertices, assuming for simplicity that the F14(h)

function admits a polynomial expansion in h/v. The operator P14(h) contains the couplings

εµνρλ∂µW
+
ν W

−
ρ ZλF14(h) , εµνρλZµAνW

−
ρ W

+
λ F14(h) , (3.14)

which correspond to an anomalous Z −W −W triple vertex and to an anomalous γ−Z −
W −W quartic vertex, respectively. The corresponding Feynman diagrams and rules read

Zρ

W−ν

W+
µ

− ξ2 g3

cos θW
εµνρλ[p+λ − p−λ] ,

Aν

Zµ

W−ρ

W+
λ

− 2 ξ2 eg3

cos θW
εµνρλ .

(3.15)

These couplings are present neither in the SM nor in the d = 6 linear Lagrangian and are

anomalous couplings due to their Lorentz nature. A signal of these type of interactions

at colliders with a strength comparable with that expected for the couplings in the d = 6

linear Lagrangian would be a clear hint of a strong dynamics in the EWSB sector. More

details are given in the phenomenological sections below.

4 Phenomenology

Prior to developing the strategies suggested above to investigate the nature of the Higgs

particle, the renormalization procedure is illustrated next.

4.1 Renormalization procedure

Five electroweak parameters of the SM-like Lagrangian L0 are relevant in our analysis,

when neglecting fermion masses: gs, g, g′, v and the h self-coupling λ. The first four can

be optimally constrained by four observables that are extremely well determined nowadays,

while as a fifth one the Higgs mass mh can be used; in summary:

αs world average [99],

GF extracted from the muon decay rate [99],

αem extracted from Thomson scattering [99],

mZ extracted from the Z lineshape at LEP I [99],

mh now measured at LHC [11, 12].

(4.1)

This ensemble of observables defines the so-called Z-scheme: they will be kept as input pa-

rameters, and all predictions will be expressed as functions of them. Accordingly, whenever

a dependence on the parameters g, g′, v (and e) or the weak mixing angle θW may appear
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in the expressions below, it should be interpreted as corresponding to the combinations of

experimental inputs as follows:

e2 = 4παem , sin2 θW =
1

2

(
1−

√
1− 4παem√

2GFm2
Z

)
,

v2 =
1√

2GF
,

(
g =

e

sin θW
, g′ =

e

cos θW

)∣∣∣∣
θW , e as above

.

(4.2)

The abbreviations sθ (s2θ) and cθ (c2θ) will stand below for sin θW (sin 2θW ) and cos θW
(cos 2θW ), respectively. Furthermore, for concreteness, we assume a specific parametriza-

tion for the Fi(h) functions:

Fi(h) ≡ 1 + 2ãi
h

v
+ b̃i

h2

v2
+ . . . (4.3)

where the dots stand for higher powers of h/v that will not be considered in what follows;

to further simplify the notation ai and bi will indicate below the products ai ≡ ciãi and

bi ≡ cib̃i, respectively, where ci are the global operator coefficients.

Working in the unitary gauge to analyze the impact that the couplings in ∆L in

eq. (2.5) have on L0, it is straightforward to show that PB(h), PW (h), PG(h), PH(h),

P1(h) and P12(h) introduce corrections to the SM kinetic terms, and in consequence field

redefinitions are necessary to obtain canonical kinetic terms. Among these operators,

PB(h), PW (h) and PG(h) can be considered innocuous operators with respect to L0, as

the impact on the latter of cB, cW and cG can be totally eliminated from the Lagrangian by

ineffectual field and coupling constant redefinitions; they do have a physical impact though

on certain BSM couplings in ∆L involving external scalar fields.

With canonical kinetic terms, it is then easy to identify the contribution of ∆L to the

input parameters:11

δαem

αem
' 4e2 c1 ξ + 4e2 c12ξ

2 ,
δGF
GF

' 0 ,

δmZ

mZ
' −cT ξ − 2e2 c1 ξ + 2e2 cot2 θW c12 ξ

2 ,
δmh

mh
' 0 ,

(4.4)

keeping only terms linear in the coefficients ci. Expressing all other SM parameters in

Lchiral in terms of the four input parameters leads to the predictions to be described next.

W mass. The prediction for the W mass departs from the SM expectation by

∆m2
W

m2
W

=
4e2

c2θ
c1 ξ +

2c2
θ

c2θ
cT ξ −

4e2

s2
θ

c12 ξ
2

≡ e2

2c2θ
fBW

v2

Λ2
−

c2
θ

2c2θ
fΦ,1

v2

Λ2
,

(4.5)

where the second line shows for comparison the corresponding expression in the linear

expansion at order d = 6.

11The BSM corrections that enter into the definition of the input parameters will be generically denoted

by the sign “δ”, while the predicted measurable departures from SM expectations will be indicated below

by “∆”.
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S and T parameters. P1(h) and PT (h) generate tree-level contributions to the oblique

parameters S and T [100], which read

αem∆S = −8e2c1ξ and αem∆T = 2cT ξ . (4.6)

Triple gauge-boson couplings. The effective operators described in the non-linear La-

grangian, eqs. (2.6)–(2.8), give rise to triple gauge-boson couplings γW+W− and ZW+W−.

Following ref. [4], the CP-even sector of the Lagrangian that describes trilinear gauge boson

vertices (TGV) can be parametrized as:

LWWV =− igWWV

{
gV1

(
W+
µνW

−µV ν −W+
µ VνW

−µν
)

+ κVW
+
µ W

−
ν V

µν (4.7)

− igV5 εµνρσ
(
W+
µ ∂ρW

−
ν −W−ν ∂ρW+

µ

)
Vσ + gV6

(
∂µW

+µW−ν − ∂µW−µW+ν
)
Vν

}
,

where V ≡ {γ, Z} and gWWγ ≡ e = g sin θW , gWWZ = g cos θW (see eq. (4.2) for their

relation to observables). In this equation W±µν and Vµν stand exclusively for the kinetic part

of the gauge field strengths. In contrast with the usual parameterization proposed in ref. [4],

the coefficient λV (associated with a linear d = 6 operator) is omitted here as this coupling

does not receive contributions from the non-linear effective chiral Lagrangian expanded

up to four derivatives. Conversely, we have introduced the coefficients gV6 associated to

operators that contain the contraction DµVµ; its ∂µV
µ part vanishes only for on-shell

gauge bosons; in all generality DµVµ insertions could only be disregarded12 in the present

context when fermion masses are neglected, as explained in section 2 and appendix A.

Electromagnetic gauge invariance requires gγ1 = 1 and gγ5 = 0, and in consequence the

TGV CP-even sector described in eq. (4.7) depends in all generality on six dimensionless

couplings gZ1 , gZ5 , gγ,Z6 and κγ,Z . Their SM values are gZ1 = κγ = κZ = 1 and gZ5 = gγ6 =

gZ6 = 0. Table 1 shows the departures from those SM values due to the effective couplings

in eq. (2.5); it illustrates the ξ and ξ2-weighted chiral operator contributions. For the sake

of comparison, the corresponding expressions in terms of the coefficients of d = 6 operators

in the linear expansion are shown as well. A special case is that of the linear operator O�Φ,

whose physical interpretation is not straightforward [137–139] and will be analyzed in detail

in ref. [140]; the corresponding coefficient f�Φ does not appear in table 1 as contributing

to the measurable couplings, while nevertheless the symbol (∗) recalls the theoretical link

between some chiral operators and their sibling O�Φ. The analysis of table 1 leads as well

to relations between measurable quantities, which are collected later on in eq. (4.14) and

subsequent ones.

h couplings to SM gauge-boson pairs. The effective operators described in eqs. (2.6)–

(2.8) also give rise to interactions involving the Higgs and two gauge bosons, to which we

12See for example ref. [101] for a general discussion on possible “off-shell” vertices associated to d = 4

and d = 6 operators.
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Coeff. Chiral Linear

×e2/s2
θ ×ξ ×ξ2 ×v2/Λ2

∆κγ 1 −2c1+2c2+c3 −4c12+2c13
1
8 (fW + fB−2fBW )

∆gγ6 1 −c9 − (∗)

∆gZ1
1
c2θ

s22θ
4e2c2θ

cT +
2s2θ
c2θ
c1+c3 − 1

8fW +
s2θ

4c2θ
fBW− s22θ

16e2c2θ
fΦ,1

∆κZ 1
s2θ

e2c2θ
cT +

4s2θ
c2θ
c1− 2s2θ

c2θ
c2+c3 −4c12+2c13

1
8fW−

s2θ
8c2θ
fB+

s2θ
2c2θ

fBW− s2θ
4e2c2θ

fΦ,1

∆gZ5
1
c2θ

− c14 −

∆gZ6
1
c2θ

s2
θc9 −c16 (∗)

Table 1. Effective couplings parametrizing the VW+W− vertices defined in eq. (4.7). The coeffi-

cients in the second column are common to both the chiral and linear expansions. In the third and

fourth columns the specific contributions from the operators in the chiral Lagrangian are shown.

For comparison, the last column exhibits the corresponding contributions from the linear d = 6 op-

erators. The star (∗) in the last column indicates the link between the chiral operator P9(h) and its

linear sibling O�Φ, without implying a physical impact of the latter on the VW+W− observables,

as explained in the text and in ref. [140].

will refer as HVV couplings. The latter can be phenomenologically parametrized as

LHVV ≡ gHgg G
a
µνG

aµνh+ gHγγ AµνA
µνh+ g

(1)
HZγ AµνZ

µ∂νh+ g
(2)
HZγ AµνZ

µνh

+ g
(1)
HZZ ZµνZ

µ∂νh+ g
(2)
HZZ ZµνZ

µνh+ g
(3)
HZZ ZµZ

µh+ g
(4)
HZZ ZµZ

µ�h

+ g
(5)
HZZ ∂µZ

µZν∂
νh+ g

(6)
HZZ ∂µZ

µ∂νZ
νh (4.8)

+ g
(1)
HWW

(
W+
µνW

−µ∂νh+ h.c.
)

+ g
(2)
HWW W+

µνW
−µνh+ g

(3)
HWW W+

µ W
−µh

+ g
(4)
HWW W+

µ W
−µ�h+g

(5)
HWW

(
∂µW

+µW−ν ∂
νh+h.c.

)
+g

(6)
HWW ∂µW

+µ∂νW
−νh ,

where Vµν = ∂µVν − ∂νVµ with V = {A,Z,W,G}. Separating the contributions into SM

ones plus corrections,

g
(j)
i ' g

(j)SM
i + ∆g

(j)
i , (4.9)

it turns out that

g
(3)SM
HZZ =

m2
Z

v
, g

(3)SM
HWW =

2m2
Zc

2
θ

v
, (4.10)

while the tree-level SM value for all other couplings in eq. (4.8) vanishes (the SM loop-

induced value for gHgg, gHγγ and g
(2)
HZγ will be taken into account in our numerical analysis,

though); in these expressions, v is as defined in eq. (4.2). Table 2 shows the expressions

for the corrections ∆gHgg, ∆gHγγ , ∆g
(1,2)
HZγ , ∆g

(1,2,3,4,5,6)
HWW , and ∆g

(1,2,3,4,5,6)
HZZ induced at tree-

level by the effective non-linear couplings under discussion. In writing eq. (4.8) we have

introduced the coefficients ∆g
(4,5,6)
HZZ and ∆g

(4,5,6)
HWW : ∆g

(4)
HV V become redundant for on-shell

h; ∆g
(5,6)
HV V vanish for on-shell Wµ and Zµ or massless fermions. Notice also that the

leading chiral corrections include operators weighted by ξ powers up to ξ2. For the sake of
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Coeff. Chiral Linear

×e2/4v ×ξ ×ξ2 ×v2/Λ2

∆gHgg
g2s
e2

−2aG − −4fGG

∆gHγγ 1 −2(aB + aW ) + 8a1 8a12 −(fBB + fWW ) + fBW

∆g
(1)
HZγ

1
s2θ

−8(a5 + 2a4) −16a17 2(fW − fB)

∆g
(2)
HZγ

cθ
sθ

4
s2θ
c2
θ
aB − 4aW + 8 c2θ

c2
θ
a1 16a12 2

s2θ
c2
θ
fBB − 2fWW + c2θ

c2
θ
fBW

∆g
(1)
HZZ

1
c2
θ

−4
c2θ
s2
θ
a5 + 8a4 −8

c2θ
s2
θ
a17

c2θ
s2
θ
fW + fB

∆g
(2)
HZZ − c2θ

s2
θ

2
s4θ
c4
θ
aB + 2aW + 8

s2θ
c2
θ
a1 −8a12

s4θ
c4
θ
fBB + fWW +

s2θ
c2
θ
fBW

∆g
(3)
HZZ

m2
Z
e2

−2cH + 2(2aC − cC)− 8(aT − cT ) − fΦ,1 + 2fΦ,4 − 2fΦ,2

∆g
(4)
HZZ − 1

s2
2θ

16a7 32a25 (∗)

∆g
(5)
HZZ − 1

s2
2θ

16a10 32a19 (∗)

∆g
(6)
HZZ − 1

s2
2θ

16a9 32a15 (∗)

∆g
(1)
HWW

1
s2
θ

−4a5 − fW

∆g
(2)
HWW

1
s2
θ

−4aW − −2fWW

∆g
(3)
HWW

m2
Zc

2
θ

e2
−4cH+4(2aC−cC)+ 32e2

c2θ
c1+

16c2θ
c2θ

cT −32e2

s2
θ
c12

−2(3c2θ−s
2
θ)

c2θ
fΦ,1+4fΦ,4−4fΦ,2+ 4e2

c2θ
fBW

∆g
(4)
HWW − 1

s2
θ

8a7 − (∗)

∆g
(5)
HWW − 1

s2
θ

4a10 − (∗)

∆g
(6)
HWW − 1

s2
θ

8a9 − (∗)

Table 2. The trilinear Higgs-gauge bosons couplings defined in eq. (4.8). The coefficients in the

second column are common to both the chiral and linear expansions. The contributions from the

operators weighted by ξ and ξ≥2 are listed in the third and fourth columns, respectively. For

comparison, the last column exhibits the corresponding expressions for the linear expansion at

order d = 6. The star (∗) in the last column indicates the link between the chiral operators P7(h),

P9(h) and P10(h), and their linear sibling O�Φ, without implying a physical impact of the latter

on the observables considered, as explained in the text and in ref. [140].

comparison, the corresponding expressions in terms of the coefficients of the linear d = 6

operators in eq. (3.7) are also shown.13

Notice that the bosonic operators PH(h) and PC(h) induce universal shifts to the SM-

like couplings of the Higgs to weak gauge bosons. Similarly PH(h), induces universal shifts

to the Yukawa couplings to fermions, see eq. (FR.32) in appendix D. It is straightforward

to identify the link between the coefficients of these operators and the parameters a and c

defined in refs. [17, 26, 62] assuming custodial invariance, which reads14

a = 1− ξcH
2

+
ξ(2aC − cC)

2
, c = sY

(
1− ξcH

2

)
. (4.11)

13Alternatively the coefficient of ∆g
(3)
HWW can be defined in terms of the measured value of MW as M2

W /e
2.

In this case the entries in columns 3–5 read −4cH + 4(2aC − cC), −32 e
2

s2
θ

, and −2fΦ,1 + 4fΦ,4 − 4fΦ,2

respectively.
14Supplementary terms are present when taking into account the custodial breaking couplings considered

in this paper.
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Coeff. Chiral Linear

×e2/4s2
θ ×ξ ×ξ2 ×v2/Λ2

∆g
(1)
WW 1

s22θ
e2c2θ

cT +
8s2θ
c2θ

c1+4c3 2c11−16c12+8c13
fW
2

+
s2θ
c2θ
fBW− s22θ

4c2θe
2 fΦ1

∆g
(2)
WW 1

s22θ
e2c2θ

cT +
8s2θ
c2θ

c1+4c3−4c6 −2c11−16c12+8c13
fW
2

+
s2θ
c2θ
fBW− s22θ

4c2θe
2 fΦ1 + (∗)

∆g
(1)
ZZ

1
c4
θ

c6 c11+2c23+2c24+4c26ξ
2 (∗)

∆g
(3)
ZZ

1
c2
θ

s22θc
2
θ

e2c2θ
cT +

2s22θ
c2θ

c1+4c2θc3−2s4
θc9 2c11+4s2

θc16+2c24
fW c2θ

2
+

s22θ
4c2θ

fBW− s22θc
2
θ

4e2c2θ
fΦ1+(∗)

∆g
(4)
ZZ

1
c2
θ

2s22θc
2
θ

e2c2θ
cT +

4s22θ
c2θ

c1+8c2θc3−4c6 −4c23 fW c
2
θ+2

s22θ
4c2θ

fBW− s22θc
2
θ

2e2c2θ
fΦ1 + (∗)

∆g
(3)
γγ s2

θ −2c9 − (∗)

∆g
(3)
γZ

sθ
cθ

s22θ
e2c2θ

cT +
8s2θ
c2θ

c1+4c3+4s2
θc9 −4c16

fW
2

+
s2θ
c2θ
fBW− s22θ

4c2θe
2 fΦ1 + (∗)

∆g
(4)
γZ

sθ
cθ

2s22θ
e2c2θ

cT +
16s2θ
c2θ

c1+8c3 − fW +2
s2θ
c2θ
fBW− s22θ

2c2θe
2 fΦ1

∆g
(5)
γZ

sθ
cθ

− 8c14 −

Table 3. Effective couplings parametrizing the vertices of four gauge bosons defined in eq. (4.12).

The contributions from the operators weighted by ξ and ξ≥2 are listed in the third and fourth

columns, respectively. For comparison, the last column exhibits the corresponding expressions for

the linear expansion at order d = 6. The star (∗) in the last column indicates the link between the

chiral operators P6(h) and P9(h), and their linear sibling O�Φ, without implying a physical impact

of the latter on the observables considered, as explained in the text and in ref. [140].

Quartic gauge-boson couplings. The quartic gauge boson couplings also receive con-

tributions from the operators in eqs. (2.6)–(2.8). The corresponding effective Lagrangian

reads

L4X ≡ g2

{
g

(1)
ZZ(ZµZ

µ)2 + g
(1)
WW W+

µ W
+µW−ν W

−ν − g
(2)
WW (W+

µ W
−µ)2

+ g
(3)
V V ′W

+µW−ν
(
VµV

′
ν + V ′µVν

)
− g

(4)
V V ′W

+
ν W

−νV µV ′µ

+ ig
(5)
V V ′ε

µνρσW+
µ W

−
ν VρV

′
σ

}
, (4.12)

where V V ′ = {γγ, γZ, ZZ}. Notice that all these couplings are C and P even, except for

g
(5)
V V ′ that is CP even but both C and P odd. Some of these couplings are nonvanishing at

tree-level in the SM:

g
(1)SM
WW =

1

2
, g

(2)SM
WW =

1

2
, g

(3)SM
ZZ =

c2
θ

2
, g(3)SM

γγ =
s2
θ

2
,

g
(3)SM
Zγ =

s2θ

2
, g

(4)SM
ZZ = c2

θ , g(4)SM
γγ = s2

θ , g
(4)SM
Zγ = s2θ ,

(4.13)

where the notation defined in eq. (4.9) has been used and the expression for the weak

mixing angle can bee found in eq. (4.2). Table 3 shows the contributions to the effective

quartic couplings from the chiral operators in eqs. (2.6)–(2.8) and from the linear operator

in eq. (3.3).
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(De)correlation formulae. Some operators of the non-linear Lagrangian in section 2

participate in more than one of the couplings in tables 1 and 2. This fact leads to interesting

series of relations that relate different couplings. First, simple relations on the TGV sector

results:

∆κZ +
s2
θ

c2
θ

∆κγ −∆gZ1 =
16e2

s2
θ

(2c12 − c13)ξ2 , (4.14)

∆gγ6 +
c2
θ

s2
θ

∆gZ6 = −e
2

s4
θ

c16 ξ
2 , (4.15)

while other examples of relations involving HVV couplings are:

g
(1)
HWW − c

2
θ g

(1)
HZZ − cθsθ g

(1)
HZγ =

2e2

vs2
θ

a17ξ
2 , (4.16)

2c2
θ g

(2)
HZZ + 2sθcθ g

(2)
HZγ + 2s2

θ gHγγ − g
(2)
HWW =

4e2

vs2
θ

a12ξ
2 , (4.17)

∆g
(4)
HZZ −

1

2c2
θ

∆g
(4)
HWW = − 8e2

vs2
2θ

a25 ξ
2 , (4.18)

∆g
(5)
HZZ −

1

c2
θ

∆g
(5)
HWW = − 8e2

vs2
2θ

a19 ξ
2 , (4.19)

∆g
(6)
HZZ −

1

2c2
θ

∆g
(6)
HWW = − 8e2

vs2
2θ

a15 ξ
2 (4.20)

The non-vanishing terms on the right-hand side of eqs. (4.14)–(4.17) stem from ξ2-weighted

terms in the non-linear Lagrangian. It is interesting to note that they would vanish in the

following cases: i) the d = 6 linear limit;15 ii) in the ξ−truncated non-linear Lagrangian;

iii) in the custodial preserving limit. The first two relations with a vanishing right-hand

side where already found in ref. [33]. Any hypothetical deviation from zero in the data

combinations indicated by the left-hand side of those equations would thus be consistent

with either d = 8 corrections of the linear expansion or a non-linear realisation of the

underlying dynamics.

Furthermore, we found an interesting correlation which only holds in the linear regime

at order d = 6, it mixes TGV and HVV couplings and stems from comparing tables 1

and 2:

∆κZ −∆gZ1 =
vsθ
2cθ

[(
c2
θ − s2

θ

) (
g

(1)
HZγ + 2g

(2)
HZγ

)
+ 2sθcθ

(
2gHγγ − g(1)

HZZ − 2g
(2)
HZZ

)]
.

(4.21)

This relation does not hold in the non-linear regime, not even when only ξ−weighted

operators are considered. Its verification from experimental data would be an excellent

test of BSM physics in which the EWSB is linearly realized and dominated by d = 6

corrections.

The above general (de)correlations are a few examples among many [68].

15Eq. (4.14) with vanishing right-hand side was already known [76, 102] to hold in the linear regime at

order d = 6.
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When in addition the strong experimental constraints on the S and T parameters

are applied, disregarding thus cT and c1 (equivalently, fφ1 and fBW for the linear case),

supplementary constraints follow, e.g.:

2

m2
Z

g
(3)
HZZ −

1

m2
W + δm2

W

g
(3)
HWW =

16e2

v s2
θ

a12ξ
2 ,

2gHγγ +
cθ
sθ
g

(2)
HZγ − g

(2)
HWW = − 4e2

v s2
θ

a12ξ
2 ,

2g
(2)
HZZ +

sθ
cθ
g

(2)
HZγ − g

(2)
HWW = − 4e2

v s2
θ

a12ξ
2 ,

−2s2
θ

c2
θ − s2

θ

gHγγ +
2c2
θ

c2
θ − s2

θ

g
(2)
HZZ − g

(2)
HWW = − 4e2

v s2
θ

a12ξ
2 ,

(4.22)

where again the non-zero entries on the right-hand sides vanish in either the d = 6 linear

or the ξ-truncated non-linear limits.

Counting of degrees of freedom for the HVV Lagrangian. Given the present

interest in the gauge-h sector, we analyze here the number of degrees of freedom involved

in the HVV Lagrangian, eq. (4.8), for on-shell and off-shell gauge and Higgs bosons, with

massive and massless fermions.

This can be schematically resumed as follows: for the massive fermion case,

phen. couplings: 16
i)−→ 12 (∆g5,6

HV V = 0)
ii)−→ 10 (∆g4

HV V redundant)

op. coefficients: 17
i)−→ 13 (P11,P12,P16,P17 irrelevant)

ii)−→ 11 (P7,P25 redundant)

where the first line refers to the phenomenological couplings appearing in eq. (4.8), while

the second one to the operator coefficients of the non-linear basis in eq. (2.5). Moreover, i)

denotes the limit of on-shell gauge bosons, i.e. ∂µZµ = 0 and ∂µW±µ = 0, while ii) refers to

the limit of, in addition, on-shell h. In brackets we indicate the couplings and the operator

coefficients that are irrelevant or redundant under the conditions i) or ii).

If fermion masses are set to zero, the conditions ∂µZµ = 0 and ∂µW±µ = 0 hold also

for off-shell gauge bosons, and therefore the counting starts with 12 phenomenological

couplings and 13 operator coefficients.

This analysis for the number of operator coefficients refers to the full non-linear La-

grangian in eq. (2.5), which includes the custodial breaking operators.

Up to this point, as well as in appendices A, C and D for the EOM, d = 6 siblings

and Feynman rules, respectively, all non-linear pure gauge and gauge-h operators of the

chiral Lagrangian eq. (2.1) have been taken into account. The next subsection describes

the results of the numerical analysis, and there instead the value of fermion masses on

external legs will be neglected. This means that operators P9(h), P10(h), P15(h), P16(h),

and P19−21(h) become redundant then, and will not be analyzed.
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4.2 Present bounds on operators weighted by ξ

At present, the most precise determination of S, T , U from a global fit to electroweak

precision data (EWPD) yields the following values and correlation matrix [99]

∆S = 0.00± 0.10 ∆T = 0.02± 0.11 ∆U = 0.03± 0.09 (4.23)

ρ =

 1 0.89 −0.55

0.89 1 −0.8

−0.55 −0.8 1

 . (4.24)

Operators P1(h) and PT (h) contribute at tree-level to these observables, see eq. (4.6) and

consequently they are severely constrained. The corresponding 95% CL allowed ranges for

their coefficients read

− 4.7× 10−3 ≤ ξc1 ≤ 4× 10−3 and − 2× 10−3 ≤ ξcT ≤ 1.7× 10−3 . (4.25)

These constraints render the contribution of P1(h) and PT (h) to the gauge-boson self-

couplings and to the present Higgs data too small to give any observable effect. Conse-

quently we will not include them in the following discussion.

As for the ξ-weighted TGV contributions from P2(h) and P3(h), their impact on the

coefficients ∆κγ , ∆gZ1 and ∆κZ was described in table 1. At present, the most precise

determination of TGV in this scenario results from the two-dimensional analysis in ref. [103]

which was performed in terms of ∆κγ and ∆gZ1 with ∆κZ determined by the relation

eq. (4.14) with the right-handed side set to zero:

κγ = 0.984+0.049
−0.049 and gZ1 = 1.004+0.024

−0.025 , (4.26)

with a correlation factor ρ = 0.11. In table 4 we list the corresponding 90% CL allowed

ranges on the coefficients c2 and c3 from the analysis of the TGV data.

Now, let us focus on the constraints on ξ−weighted operators stemming from the

presently available Higgs data on HVV couplings. There are seven bosonic operators in

this category16

PG(h) , P4(h) , P5(h) , PB(h) , PW (h) , PH(h) , PC(h). (4.27)

To perform a seven-parameter fit to the present Higgs data is technically beyond the scope

of this paper and we will consider sets of “only” six of them simultaneously. We are

presenting below two such analysis. Leaving out a different coupling in each set. In the

first one, A, we will neglect PC(h) and in the second one, B, we will link its contribution

to that of PH(h), so the 6 parameters in each set read:

Set A : aG , a4 , a5 , aB , aW , cH , 2aC − cC = 0 , (4.28)

Set B : aG , a4 , a5 , aB , aW , cH = 2aC − cC . (4.29)

16In present Higgs data analysis, the Higgs state is on-shell and in this case ∆g
(4)
HV V can be recasted

as a m2
H correction to ∆g

(3)
HV V . Thus the contribution from c7, i.e. the coefficient of P7(h) to the Higgs

observables, can be reabsorved in a redefinition of 2aC − cC .
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For both sets we will explore the sensitivity of the results to the sign of the h-fermion

couplings by performing analysis with both values of the discrete parameter sY = ±.

As mentioned above, PH(h) and PC(h) induce a universal shift to the SM-like HVV

couplings involving electroweak gauge bosons, see eq. (FR.15) and (FR.17), while PH(h)

also induces a universal shift to the Yukawa Higgs-fermion couplings, see eq. (FR.32). In

consequence, the two sets above correspond to the case in which the shift of the Yukawa

Higgs-fermion couplings is totally unrelated to the modification of the HVV couplings

involving electroweak bosons (set B), and to the case in which the shift of SM-like HVV

couplings involving electroweak bosons and to the Yukawa Higgs-fermion couplings are the

same (set A). In both sets we keep all other five operators which induce modifications

of the HVV couplings with different Lorentz structures than those of the SM as well as

tree-level contributions to the loop-induced vertices hγγ, hγZ and hgg.

Notice also that a combination of PH(h) and PC(h) can be traded via the EOM

(see third line in eq. (A.11)) by that of fermion-Higgs couplings Pf,αβ(h) plus that of

other operators already present in the six-dimensional gauge-h set analyzed. So our choice

allows us to stay close to the spirit of this work (past and future data confronting directly

the gauge and gauge-h sector), while performing a powerful six-dimensional exploration of

possible correlations.

Technically, in order to obtain the present constraints on the coefficients of the bosonic

operators listed in eqs. (4.28) and (4.29) we perform a chi-square test using the available

data on the signal strengths (µ). We took into account data from Tevatron D0 and CDF

Collaborations and from LHC, CMS, and ATLAS Collaborations at 7 TeV and 8 TeV for

final states γγ, W+W−, ZZ, Zγ, bb̄, and τ τ̄ [104–117]. For CMS and ATLAS data, the

included results on W+W−, ZZ and Zγ correspond to leptonic final states, while for γγ

all the different categories are included which in total accounts for 56 data points. We refer

the reader to refs. [9, 78] for details of the Higgs data analysis.

The results of the analysis are presented in figure 1 which displays the chi-square

(∆χ2
Higgs) dependence from the analysis of the Higgs data on the six bosonic couplings for

the two sets A and B of operators and for the two values of the discrete parameter sY = ±.

In each panel ∆χ2
Higgs is shown after marginalizing over the other five parameters. As seen

in this figure, there are no substantial difference between both sets in the determination of

the five common parameters with only slight differences in aG (more below). The quality of

the fit is equally good for both sets ( |χ2
min,A−χ2

min,B| < 0.5). The SM lays at χ2
SM = 68.1

within the 4% CL region in the six dimensional parameter space of either set.

In figure 1, for each set, the two curves of ∆χ2
Higgs for sY = ± are defined with respect

to the same χ2
min corresponding to the minimum value of the two signs. However, as seen

in the figure, the difference is inappreciable. In other words, we find that in both six-

parameter analysis the quality of the description of the data is equally good for both signs

of the h-fermion couplings. Quantitatively for either set |χ2
min,+ − χ2

min,−| is compatible

with zero within numerical accuracy. If all the anomalous couplings are set to zero the

quality of the fit is dramatically different for both signs with χ2
− − χ2

+ = 26. This arises

from the different sign of the interference between the W - and top-loop contributions to

hγγ which is negative for the SM value sY = + and positive for sY = − which increases
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Figure 1. ∆χ2
Higgs dependence on the coefficients of the seven bosonic operators in eq. (4.27) from

the analysis of all Higgs collider (ATLAS, CMS and Tevatron) data. In each panel, we marginalized

over the five undisplayed variables. The six upper (lower) panels corresponds to analysis with set A

(B). In each panel the red solid (blue dotted) line stands for the analysis with the discrete parameter

sY = +(−).

BR−(h → γγ)/BRSM (h → γγ) ∼ 2.5, a value strongly disfavoured by data. However,

once the effect of the 6 bosonic operators is included — in particular that of PB(h) and

PW (h) which give a tree-level contribution to the hγγ vertex — we find that both signs of

the h-fermion couplings are equally probable.

In the figure we also see that in all cases ∆χ2
Higgs as a function of aG exhibits two degen-

erate minima. They are due to the interference between SM and anomalous contributions
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90% CL allowed range

Set A Set B

aGξ(·10−3) sY = +1: [−1.8, 2.1] ∪ [6.5, 10] sY = +1: [−0.78, 2.4] ∪ [6.5, 12]

sY = −1: [−9.9,−6.5] ∪ [−2.1, 1.8] sY = −1: [−12,−6.5] ∪ [−2.3, 0.75]

a4ξ [−0.47, 0.14]

a5ξ [−0.33, 0.17]

aW ξ [−0.12, 0.51]

aBξ [−0.50, 0.21]

cHξ [−0.66, 0.66] [−1.1, 0.49]

c2ξ [−0.12, 0.076]

c3ξ [−0.064, 0.079]

Table 4. 90% CL allowed ranges of the coefficients of the operators contributing to Higgs data

(aG, a4, a5, aW , aB , and cH) and to TGV (c2 and c3). For the coefficients a4, a5, aW , and aB , for

which the range is almost the same for analysis with both sets and both values of sY we show the

inclusive range of the four analysis. For cH the allowed range is the same for both signs of sY .

possessing exactly the same momentum dependence. Around the secondary minimum the

anomalous contribution is approximately twice the one due to the top-loop but with an

opposite sign. The gluon fusion Higgs production cross section is too depleted for aG values

between the minima, giving rise to the intermediate barrier. Obviously the allowed values

of aG around both minima are different for sY = + and sY = − as a consequence of the

different relative sign of the aG and the top-loop contributions to the hgg vertex. In the

convention chosen for the chiral Lagrangian, the relative sign of both contributions is neg-

ative (positive) for sY = +, (sY = −) so that the non-zero minimum occurs for aG around

0.01 (−0.01). The precise value of the aG coupling at the minima is slightly different for

the analysis with set A and B due to the effect of the coefficient cH near the minima, which

shifts the contribution of the top-loop by a slightly different quantity in both analysis.

Figure 1 also shows that in all cases the curves for a4 and a5 are almost “mirror sym-

metric”. This is due to the strong anticorrelation between those two coefficients, because

they are the dominant contributions to the Higgs branching ratio into two photons, which is

proportional to a4 +a5. In table 4 we list the corresponding 90% CL allowed ranges for the

six coefficients, for the different variants of the analysis. With the expected uncertainties

attainable in the Higgs signal strengths in CMS and ATLAS at 14 TeV with an integrated

luminosity of 300 fb−1 [118, 119], we estimate that the sensitivity to those couplings can

improve by a factor O(3− 5) with a similar analysis.

We finish by stressing that in the context of ξ-weighted operators in the chiral expansion

the results from TGV analysis and those from the HVV analysis apply to two independent

sets of operators as discussed in section 3.2. This is unlike the case of the linear expansion
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Figure 2. Left :A BSM sensor irrespective of the type of expansion: constraints from TGV and

Higgs data on the combinations ΣB = 4(2c2 +a4) and ΣW = 2(2c3−a5), which converge to fB and

fW in the linear d = 6 limit. The dot at (0, 0) signals the SM expectation. Right :A non-linear versus

linear discriminator: constraints on the combinations ∆B = 4(2c2 − a4) and ∆W = 2(2c3 + a5),

which would take zero values in the linear (order d = 6) limit (as well as in the SM), indicated by

the dot at (0, 0). For both figures the lower left panels shows the 2-dimensional allowed regions at

68%, 90%, 95%, and 99% CL after marginalization with respect to the other six parameters (aG,

aW , aB , cH , ∆B , and ∆W ) and (aG, aW , aB , cH , ΣB , and ΣW ) respectively. The star corresponds

to the best fit point of the analysis. The upper left and lower right panels give the corresponding

1-dimensional projections over each of the two combinations.

for which 2c2 = a4 and 2c3 = −a5, which establishes an interesting complementarity in the

experimental searches for new signals in TGV and HVV couplings in the linear regime [78].

Conversely, in the event of some anomalous observation in either of these two sectors, the

presence of this (de)correlation would allow for direct testing of the nature of the Higgs

boson. This is illustrated in figure 2, where the results of the combined analysis of the

TGV and HVV data are projected into combinations of the coefficients of the operators

P2(h), P3(h), P4(h) and P5(h):

ΣB ≡ 4(2c2 + a4) , ΣW ≡ 2(2c3 − a5) ,

∆B ≡ 4(2c2 − a4) , ∆W ≡ 2(2c3 + a5) ,
(4.30)

defined such that at order d = 6 of the linear regime ΣB = cB, ΣW = cW , while ∆B =

∆W = 0. With these variables, the (0, 0) coordinate corresponds to the SM in figure 2 left

panel, while in figure 2 right panel it corresponds to the linear regime (at order d = 6).

Would future data point to a departure from (0, 0) in the variables of the first figure it would

indicate BSM physics irrespective of the linear or non-linear character of the underlying

dynamics; while such a departure in the second figure would be consistent with a non-linear

realization of EWSB. For concreteness the figures are shown for the sY = + analysis with

set A, but very similar results hold for the other variants of the analysis.

– 28 –



J
H
E
P
0
3
(
2
0
1
4
)
0
2
4

Measurement (±68% CL region) 95% CL region

Experiment gZ5 gZ5 c14ξ
2

OPAL [120] −0.04+0.13
−0.12 [−0.28, 0.21] [−0.16, 0.12]

L3 [121] 0.00+0.13
−0.13 [−0.21, 0.20] [−0.12, 0.11]

ALEPH [122] −0.064+0.13
−0.13 [−0.317, 0.19] [−0.18, 0.11]

90% CL region from indirect bounds [123–125] gZ5 : [−0.08, 0.04] c14ξ
2: [−0.04, 0.02]

Table 5. Existing direct measurements of gZ5 coming from LEP analyses [120–122] as well as the

strongest constraints from the existing indirect bounds on gZ5 in the literature [123–125]. In the

last column we show the translated bounds on c14ξ
2. These bounds were obtained assuming only

gZ5 different from zero while the rest of anomalous TGV were set to the SM values.

4.3 ξ2-weighted couplings: LHC potential to study gZ5

One interesting property of the ξ2-chiral Lagrangian is the presence of operator P14(h)

that generates a non-vanishing gZ5 TGV, which is a C and P odd, but CP even operator;

see eq. (4.7). Presently, the best direct limits on this anomalous coupling come from the

study ofW+W− pairs and singleW production at LEP II energies [120–122]. Moreover, the

strongest bounds on gZ5 originate from its impact on radiative corrections to Z physics [123–

125]; see table 5 for the available direct and indirect limits on gZ5 .

We can use the relation in table 1 to translate the existing bounds on gZ5 into limits

on P14(h). The corresponding limits can be seen in the last column of table 5. We note

here that these limits were obtained assuming only a non-vanishing gZ5 while the rest of

anomalous TGV were set to their corresponding SM value.

At present, the LHC collaborations have presented some data analyses of anomalous

TGV [126–130] but in none of them have they included the effects of gZ5 . A preliminary

study on the potential of LHC 7 to constrain this coupling was presented in ref. [131] where

it was shown that the LHC 7 with a very modest luminosity had the potential of probing

gZ5 at the level of the present indirect bounds. In ref. [131] it was also discussed the use of

some kinematic distributions to characterize the presence of a non-vanishing gZ5 . So far the

LHC has already collected almost 25 times more data than the luminosity considered in this

preliminary study which we update here. Furthermore, in this update we take advantage

of a more realistic background evaluation, by using the results of the experimental LHC

analysis on other anomalous TGV couplings [126].

At the LHC, the anomalous coupling gZ5 contributes to WW and WZ pair production,

with the strongest limits originating from the last reaction [131]. Hence, the present study

is focused on the WZ production channel, where we consider only the leptonic decays of

the gauge bosons for a better background suppression, i.e., we analyze the reaction

pp→ `′±`+`−EmissT , (4.31)

– 29 –



J
H
E
P
0
3
(
2
0
1
4
)
0
2
4

where `(′) = e or µ. The main background for the gZ5 analysis is the irreducible SM

production of WZ pairs. There are further reducible backgrounds like W or Z production

with jets, ZZ production followed by the leptonic decay of the Z’s with one charged lepton

escaping detection and tt̄ pair production.

We simulated the signal and the SM irreducible background using an implementation

of the anomalous operator gZ5 in FeynRules [132] interfaced with MadGraph 5 [133] for

event generation. We account for the different detection efficiencies by rescaling our simu-

lation to the one done by ATLAS [126] for the study of ∆κZ , gZ1 and λZ . However, we also

cross checked the results using a setup where the signal simulation is based on the same

FeynRules [132] and MadGraph5 [133] implementation, interfaced then with PYTHIA [134]

for parton shower and hadronization and with PGS 4 [135] for detector simulation. Fi-

nally, the reducible backgrounds for the 7 TeV analysis were obtained from the simulations

presented in the ATLAS search [126], and they were properly rescaled for the 8 TeV and

14 TeV runs.

In order to make our simulations more realistic, we closely follow the TGV analysis

performed by ATLAS [126]. Thus, the kinematic study of the WZ production starts with

the usual detection and isolation cuts on the final state leptons. Muons are considered

if their transverse momentum with respect to the collision axis z, pT ≡
√
p2
x + p2

y, and

pseudorapidity η ≡ 1
2 ln |~p|+pz|~p|−pz , satisfy

p`T > 15 GeV , |ηµ| < 2.5 . (4.32)

Electrons must comply with the same transverse momentum requirement than that applied

to muons; however, the electron pseudo-rapidity cut is

|ηe| < 1.37 or 1.52 < |ηe| < 2.47 . (4.33)

To guarantee the isolation of muons (electrons), we required that the scalar sum of the pT
of the particles within ∆R ≡

√
∆η2 + ∆φ2 = 0.3 of the muon (electron), excluding the

muon (electron) track, is smaller than 15% (13%) of the charged lepton pT . In the case

where the final state contains both muons and electrons, a further isolation requirement

has been imposed:

∆Reµ > 0.1 . (4.34)

It was also required that at least two leptons with the same flavour and opposite charge

are present in the event and that their invariant mass is compatible with the Z mass, i.e.

M`+`− ∈ [MZ − 10, MZ + 10] GeV. (4.35)

A further constraint imposed is that a third lepton is present which passes the above

detection requirements and whose transverse momentum satisfies

p`T > 20 GeV . (4.36)
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Moreover, with the purpose of suppressing most of the Z+jets and other diboson production

background, we required

Emiss
T > 25 GeV and MW

T > 20 GeV , (4.37)

where Emiss
T is the missing transverse energy and the transverse mass is defined as

MW
T =

√
2p`TE

miss
T (1− cos(∆φ)) , (4.38)

with p`T being the transverse momentum of the third lepton, and where ∆φ is the azimuthal

angle between the missing transverse momentum and the third lepton. Finally, it was

required that at least one electron or one muon has a transverse momentum complying

with

p
e(µ)
T > 25 (20) GeV. (4.39)

Our Monte Carlo simulations have been tuned to the ATLAS ones [126], so as to

incorporate more realistic detection efficiencies. Initially, a global k-factor was introduced

to account for the higher order corrections to the process in eq. (4.31) by comparing our

leading order prediction to the NLO one used in the ATLAS search [126], leading to k ∼ 1.7.

Next, we compared our results after cuts with the ones quoted by ATLAS in table 1 of

ref. [126]. We tuned our simulation by applying a correction factor per flavour channel (eee,

eeµ, eµµ and µµµ) that is equivalent to introducing a detection efficiency of εe = 0.8 for

electrons and εµ = 0.95 for muons. These efficiencies have been employed in our simulations

for signal and backgrounds.

After applying all the above cuts and efficiencies, the cross section for the process (4.31)

in the presence of a non-vanishing gZ5 can be written as17

σ = σbck + σSM + σint g
Z
5 + σano

(
gZ5
)2
, (4.40)

where σSM denotes the SM contribution to W±Z production, σint stands for the interfer-

ence between this SM process and the anomalous gZ5 contribution and σano is the pure

anomalous contribution. Furthermore, σbck corresponds to all background sources except

for the SM EW W±Z production. We present in table 6 the values of σSM , σint and σano
for center-of-mass energies of 7, 8 and 14 TeV, as well as the cross section for the reducible

backgrounds.

In order to quantify the expected limits on gZ5 , advantage has been taken in this analysis

of the fact that anomalous TGVs enhance the cross sections at high energies. Ref. [131]

shows that the variables Mrec
WZ (the reconstructed W−Z invariant mass), p` max

T and pZT are

able to trace well this energy dependence, leading to similar sensitivities to the anomalous

TGV. Here, we chose pZT to study gZ5 because this variable is strongly correlated with the

subprocess center-of-mass energy (ŝ), and, furthermore, it can be directly reconstructed

with good precision from the measured lepton momenta. The left (right) panel of figure 3

depicts the number of expected events with respect to the Z transverse momentum for the

17We assumed in this study that all anomalous TGV vanish except for gZ5 .
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COM Energy σbck (fb) σSM (fb) σint (fb) σano (fb)

7 TeV 14.3 47.7 6.5 304

8 TeV 16.8 55.3 6.6 363

14 TeV 29.0 97.0 9.1 707

Table 6. Values of the cross section predictions for the process pp→ `′±`+`−EmissT after applying

all the cuts described in the text. σSM is the SM contribution coming from EW W±Z production,

σint is the interference between this SM process and the anomalous gZ5 contribution, σano is the

pure anomalous contribution and σbck corresponds to all background sources except for the SM

EW W±Z production.

Figure 3. The left (right) panel displays the number of expected events as a function of the Z

transverse momentum for a center-of-mass energy of 7 (14) TeV, assuming an integrated luminosity

of 4.64 (300) fb−1. The black histogram corresponds to the sum of all background sources except

for the SM electroweak pp→W±Z process, while the red histogram corresponds to the sum of all

SM backgrounds, and the dashed distribution corresponds to the addition of the anomalous signal

for gZ5 = 0.2 (gZ5 = 0.1). The last bin contains all the events with pZT > 180 GeV.

7 (14) TeV run and an integrated luminosity of 4.64 (300) fb−1. As illustrated by this

figure, the existence of an anomalous gZ5 contribution enhances the tail of the pZT spectrum,

signaling the existence of new physics.

Two procedures have been used to estimate the LHC potential to probe anomalous gZ5
couplings. In the first approach, we performed a simple event counting analysis assuming

that the number of observed events correspond to the SM prediction (gZ5 = 0) and we

look for the values of gZ5 which are inside the 68% and 95% CL allowed regions. As

suggested by ref. [131], the following additional cut was applied in this analysis to enhance

the sensitivity to gZ5 :

pZT > 90 GeV. (4.41)

On a second analysis, a simple χ2 was built based on the contents of the different bins of
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68% CL range 95% CL range

Data sets used Counting pZT > 90 GeV pZT binned analysis Counting pZT > 90 GeV pZT binned analysis

7+8 TeV (−0.066, 0.058) (−0.057, 0.050) (−0.091, 0.083) (−0.080, 0.072)

(4.64+19.6 fb−1)

7+8+14 TeV (−0.030, 0.022) (−0.024, 0.019) (−0.040, 0.032) (−0.033, 0.028)

(4.64+19.6+300 fb−1)

Table 7. Expected sensitivity on gZ5 at the LHC for the two different procedures described in the

text.

the pZT distribution, in order to obtain more stringent bounds. The binning used is shown

in figure 3. Once again, it was assumed that the observed pZT spectrum corresponds to

the SM expectations and we sought for the values of gZ5 that are inside the 68% and 95%

allowed regions. The results of both analyses are presented in table 7.

We present in the first row of table 7 the expected LHC limits for the combination

of the 7 TeV and 8 TeV existing data sets, where we considered an integrated luminosity

of 4.64 fb−1 for the 7 TeV run and 19.6 fb−1 for the 8 TeV one. Therefore, the attainable

precision on gZ5 at the LHC 7 and 8 TeV runs is already higher than the present direct

bounds stemming from LEP and it is also approaching the present indirect limits. Finally,

the last row of table 7 displays the expected precision on gZ5 when the 14 TeV run with

an integrated luminosity of 300 fb−1 is included in the combination. Here, once more,

it was assumed that the observed number of events is the SM expected one. The LHC

precision on gZ5 will approach the per cent level, clearly improving the present both direct

and indirect bounds.

4.4 Anomalous quartic couplings

As shown in section 3.4, in the chiral expansion several operators weighted by ξ or higher

powers contribute to quartic gauge boson vertices without inducing any modification to

TGVs. Therefore, their coefficients are much less constrained at present, and one can

expect still larger deviations on future studies of quartic vertices at LHC for large values

of ξ. This is unlike in the linear expansion, in which the modifications of quartic gauge

couplings that do not induce changes to TGVs appear only when the d = 8 operators are

considered [83]. For instance, the linear operators similar to P6(h) and P11(h) are LS,0 and

LS,1 in ref. [83].

Of the five operators giving rise to purely quartic gauge boson vertices (P6(h), P11(h),

P23(h), P24(h), P26(h)), none modifies quartic vertices including photons while all generate

the anomalous quartic vertex ZZZZ that is not present in the SM. Moreover, all these

operators but P26(h) modify the ZZW+W− vertex, while only P6(h) and P11(h) also

induce anomalous contributions to W+W−W+W−.

Presently, the most stringent bounds on the coefficients of these operators are indirect,

from their one-loop contribution to the EWPD derived in ref. [79] where it was shown that
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coupling 90% CL allowed region

c6 ξ [−0.23, 0.26]

c11 ξ
2 [−0.094, 0.10]

c23 ξ
2 [−0.092, 0.10]

c24 ξ
2 [−0.012, 0.013]

c26 ξ
4 [−0.0061, 0.0068]

Table 8. 90% CL limits on the anomalous quartic couplings from their one-loop contribution to

the EWPD. The bounds were obtained assuming only one operator different from zero at a time

and for a cutoff scale Λs = 2 TeV.

the five operators correct α∆T while render α∆S = α∆U = 0. In table 8 we give the

updated indirect bounds using the determination of the oblique parameters in eq. (4.24).

At the LHC these anomalous quartic couplings can be directly tested in the production

of three vector bosons (V V V ) or in vector boson fusion (VBF) production of two gauge

bosons [81]. At lower center-of-mass energies the best limits originate from the V V V

processes, while the VBF channel dominates for the 14 TeV run [80–83, 136].

At the LHC with 14 TeV center-of-mass energy, the couplings c6 and c11 can be con-

strained by combining their impact on the VBF channels

pp→ jjW+W− and pp→ jj(W+W+ +W−W−) , (4.42)

where j stands for a tagging jet and the final state W ’s decay into electron or muon plus

neutrino. It was shown in ref. [83] that the attainable 99% CL limits on these couplings are

− 12× 10−3 < c6 ξ < 10× 10−3 , −7.7× 10−3 < c11 ξ
2 < 14× 10−3 (4.43)

for an integrated luminosity of 100 fb−1. Notice that the addition of the channel pp→ jjZZ

does not improve significantly the above limits [80].

5 Conclusions

In this paper we have made a comparative study of the departures from the Standard

Model predictions in theories based on linear and non-linear realizations of SU(2)L×U(1)Y
gauge symmetry breaking. To address this question in a model-independent way, we have

considered effective Lagrangians containing either a light fundamental Higgs in the linear

realization or a light dynamical Higgs in the non-linear one. We have exploited the fact

that these two expansions are intrinsically different from the point of view of the presence

or absence, respectively, of a global SU(2)L symmetry in the effective Lagrangian, with

the light Higgs scalar behaving as a singlet in the chiral case. Less symmetry means

more possible invariant operators at a given order, and the result is that the non-linear

realization for a light dynamical Higgs particle is expected to exhibit a larger number of
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independent couplings than linear ones. This has been explored here concentrating on the

CP-even operators involving pure gauge and gauge-h couplings. First, in section 2 we have

presented the maximal set of independent (and thus non-redundant) operators of that type

contained in the effective chiral Lagrangian for a light dynamical Higgs, up to operators

with four derivatives. In section 3.1 the analogous complete basis of independent operators

up to dimension six in the linear expansion is presented. Comparing both sets of operators,

we have established the relations and differences between the chiral and the linear bases.

In particular, in sections 3.2 and 3.4 we have identified two sources of discriminating

signatures. For small values of the ξ parameter the counting of operators is not the same

in both sets, being larger by six for the chiral expansion. This implies that, even keeping

only operators weighted by ξ, the expected deviations from the SM predictions in the Higgs

couplings to gauge bosons and that of the triple gauge boson self-couplings are independent

in the chiral expansion, unlike in the linear expansion at dimension six; one interesting set

of (de)correlated couplings is explored in details as indicators of a non-linear character.

Conversely, when considering operators weighted by ξn with n ≥ 2 in the chiral expansion,

we find anomalous signals which appear only at dimension eight of the linear Lagrangian;

they may thus be detected with larger (leading) strength for a non-linear realization of

EWSB than for a linear one, for sizeable values of ξ.

In order to quantify the observability of the above effects we have implemented the

renormalization procedure as described in section 4.1 and derived the corresponding Feyn-

man rules for the non-linear expansion (which we present in the detail in appendix D, for

the complete set of independent operators under discussion). Neglecting external fermion

masses only in the numerical analysis, the results of our simulations for some of the dis-

criminating signatures at LHC are presented in sections 4.2– 4.4. To our knowledge, this is

the first six-parameter analysis in the context of the non-linear expansion, focusing on the

ξ-weighted pure gauge and gauge-h effective couplings. In particular we have derived the

present bounds on the coefficients of the latter from the analysis of electroweak precision

physics, triple gauge boson coupling studies and Higgs data. The results are summarized

in figure 1 and table 4 and the corresponding level of decorrelation between the triple

gauge couplings and Higgs effects is illustrated in figure 2: the presently allowed values for

the parameters ciξ and aiξ turn out to be of order 1, with only few exceptions bounded

to the per cent level. With the expected uncertainties attainable in CMS and ATLAS at

14 TeV, that sensitivity can be improved by a factor O(3− 5). Furthermore, our study of

the present sensitivity to the C and P odd operator in the analysis of WWZ vertex, with

the accumulated luminosity of LHC7+8 and with LHC14 in the future, show that per cent

precision on the coupling of the operator P14(h) is foreseeable. Similar precision should be

attainable for the coefficients of the operators leading to generic quartic gauge couplings

P6(h) and P11(h).
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A EOM and fermion operators

The EOM can be extracted from the L0 part of the chiral Lagrangian, eq. (2.2); as we will

work at first order in ∆L they read:18

(DµWµν)a =
g

2
Q̄Lσ

aγνQL +
g

2
L̄Lσ

aγνLL +
igv2

4
Tr[Vνσ

a]

(
1 +

h

v

)2

(A.1)

∂µBµν = − ig
′v2

4
Tr[TVµ]

(
1 +

h

v

)2

+ g′
∑
i=L,R

(
Q̄ihiγνQi +

1

6
L̄LγνLL

)
(A.2)

�h = −δV (h)

δh
− v + h

2
Tr[VµV

µ]− sY√
2

(
Q̄LUYQQR + L̄LUYLLR + h.c.

)
(A.3)

[
Dµ

((v + h)2

2
√

2
U†DµU

)]
ij

=


− (v + sY h)

[
(Q̄RY†Q)j(U

†QL)i + (L̄RY†L)j(U
†LL)i

]
for i 6= j

0 for i = j

(A.4)

i /DQL =
v + sY h√

2
UYQQR i /DQR =

v + sY h√
2

Y†QU†QL (A.5)

i /DLL =
v + sY h√

2
UYLLR i /DLR =

v + sY h√
2

Y†LU†LL , (A.6)

where hL,R are the 2× 2 matrices of hypercharge for the left- and right-handed quarks.

18With alternative choices for the separation L0 versus ∆L the EOM are correspondingly modified [63,

64, 73]: this is of no relevance to the focus of this paper, which explores the tree-level impact of effective

operators.
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By using these EOM, it is possible to identify relations between some bosonic operators

listed in eqs. (2.6)–(2.8) and specific fermion operators. This allows us to trade those

bosonic operators by the corresponding fermionic ones: this procedure can turn out to be

very useful when analysing specific experimental data. For instance, if deviations from the

SM values of the h-fermion couplings were found, then the following three operators,

PU,αβ(h) = − v√
2
Q̄LαU (FU(h)P↑QR)β + h.c. ,

PD,αβ(h) = − v√
2
Q̄LαU (FD(h)P↓QR)β + h.c. ,

PE,αβ(h) = − v√
2
L̄LαU (FE(h)P↓LR)β + h.c. ,

(A.7)

would be a good choice for an operator basis. In the previous equations the two projectors

P↑ =

(
1

0

)
P↓ =

(
0

1

)
, (A.8)

have been introduced.

On the contrary, without including the operators in eqs. (A.7), the bosonic basis defined

in eqs. (2.6)–(2.10) is blind to these directions. The fermionic operators that arise applying

the EOM to bosonic operators in the basis above is presented in the following list:

Weighted by ξ:

PU,αβ(h) = − v√
2
Q̄LαU (FU(h)P↑QR)β + h.c.

PD,αβ(h) = − v√
2
Q̄LαU (FD(h)P↓QR)β + h.c.

PE,αβ(h) = − v√
2
L̄LαU (FE(h)P↓LR)β + h.c.

P1Q,αβ(h) =
α

2
Q̄Lαγ

µ{T,Vµ} (F1Q(h)QL)β

P1L,αβ(h) =
α

2
L̄Lαγ

µ{T,Vµ} (F1L(h)LL)β

P1U,αβ(h) =
α

2
Q̄Rαγ

µ
{
σ3, Ṽµ

}
(F1U (h)P↑QR)β

P1D,αβ(h) =
α

2
Q̄Rαγ

µ
{
σ3, Ṽµ

}
(F1D(h)P↓QR)β

P1N,αβ(h) =
α

2
L̄Rαγ

µ
{
σ3, Ṽµ

}
(F1N (h)P↑LR)β

P1E,αβ(h) =
α

2
L̄Rαγ

µ
{
σ3, Ṽµ

}
(F1E(h)P↓LR)β

P2Q,αβ(h) = iQ̄Lαγ
µVµ (F2Q(h)QL)β

P2L,αβ(h) = iL̄Lαγ
µVµ (F2L(h)LL)β

P3Q,αβ(h) = iQ̄Lαγ
µTVµT (F3Q(h)QL)β

P3L,αβ(h) = iL̄Lαγ
µTVµT (F3L(h)LL)β

(A.9)
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P4UU,αβγδ(h) =
∑
a

[
Q̄Lασ

aU (F4U (h)P↑QR)β − h.c.
][
Q̄Lγσ

aU
(
F ′4U (h)P↑QR

)
δ
− h.c.

]
P4DD,αβγδ(h) =

∑
a

[
Q̄Lασ

aU (F4D(h)P↓QR)β − h.c.
][
Q̄Lγσ

aU
(
F ′4D(h)P↓QR

)
δ
− h.c.

]
P4UD,αβγδ(h) =

∑
a

[
Q̄Lασ

aU (F4U (h)P↑QR)β − h.c.
][
Q̄Lγσ

aU
(
F ′4D(h)P↓QR

)
δ
− h.c.

]
P4DU,αβγδ(h) =

∑
a

[
Q̄Lασ

aU (F4D(h)P↓QR)β − h.c.
][
Q̄Lγσ

aU
(
F ′4U (h)P↑QR

)
δ
− h.c.

]
P4EE,αβγδ(h) =

∑
a

[
L̄Lασ

aU (F4E(h)P↓LR)β − h.c.
][
L̄Lγσ

aU
(
F ′4E(h)P↓LR

)
δ
− h.c.

]
P4UE,αβγδ(h) =

∑
a

[
Q̄Lασ

aU (F4U (h)P↑QR)β − h.c.
][
L̄Lγσ

aU
(
F ′4E(h)P↓LR

)
δ
− h.c.

]
P4DE,αβγδ(h) =

∑
a

[
Q̄Lασ

aU (F4D(h)P↓QR)β − h.c.
][
L̄Lγσ

aU
(
F ′4E(h)P↓LR

)
δ
− h.c.

]
P4EU,αβγδ(h) =

∑
a

[
L̄Lασ

aU (F4E(h)P↓LR)β − h.c.
][
Q̄Lγσ

aU
(
F ′4U (h)P↑QR

)
δ
− h.c.

]
P4ED,αβγδ(h) =

∑
a

[
L̄Lασ

aU (F4E(h)P↓LR)β − h.c.
][
Q̄Lγσ

aU
(
F ′4D(h)P↓QR

)
δ
− h.c.

]
P5UU,αβγδ(h) =

[
Q̄LαTU (F5U (h)P↑QR)β − h.c.

][
Q̄LγTU

(
F ′5U (h)P↑QR

)
δ
− h.c.

]
P5DD,αβγδ(h) =

[
Q̄LαTU (F5D(h)P↓QR)β − h.c.

][
Q̄LγTU

(
F ′5D(h)P↓QR

)
δ
− h.c.

]
P5UD,αβγδ(h) =

[
Q̄LαTU (F5U (h)P↑QR)β − h.c.

][
Q̄LγTU

(
F ′5D(h)P↓QR

)
δ
− h.c.

]
P5DU,αβγδ(h) =

[
Q̄LαTU (F5D(h)P↓QR)β − h.c.

][
Q̄LγTU

(
F ′5U (h)P↑QR

)
δ
− h.c.

]
P5EE,αβγδ(h) =

[
L̄LαTU (F5E(h)P↓LR)β − h.c.

][
L̄LγTU

(
F ′5E(h)P↓LR

)
δ
− h.c.

]
P5UE,αβγδ(h) =

[
Q̄LαTU (F5U (h)P↑QR)β − h.c.

][
L̄LγTU

(
F ′5E(h)P↓LR

)
δ
− h.c.

]
P5EU,αβγδ(h) =

[
L̄LαTU (F5E(h)P↓LR)δ − h.c.

][
Q̄LγTU

(
F ′5U (h)P↑QR

)
δ
− h.c.

]
P5DE,αβγδ(h) =

[
Q̄LαTU (F5D(h)P↓QR)β − h.c.

][
L̄LγTU

(
F ′5E(h)P↓LR

)
δ
− h.c.

]
P5ED,αβγδ(h) =

[
L̄LαTU (F5E(h)P↓LR)δ − h.c.

][
Q̄LγTU

(
F ′5D(h)P↓QR

)
δ
− h.c.

]
.

Weighted by ξ
√
ξ:

P6U,αβ(h) = Q̄LαVµU (∂µF6U (h)P↑QR)β

P6D,αβ(h) = Q̄LαVµU (∂µF6D(h)P↓QR)β

P6N,αβ(h) = L̄LαVµU (∂µF6N (h)P↑LR)β

P6E,αβ(h) = L̄LαVµU (∂µF6E(h)P↓LR)β

P7U,αβ(h) = Tr[TVµ]Q̄LαTU (∂µF7U (h)P↑QR)β

P7D,αβ(h) = Tr[TVµ]Q̄LαTU (∂µF7D(h)P↓QR)β

P7N,αβ(h) = Tr[TVµ]L̄LαTU (∂µF7N (h)P↑LR)β

(A.10)
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P7E,αβ(h) = Tr[TVµ]L̄LαTU (∂µF7E(h)P↓LR)β

P8U,αβ(h) = Tr[TVµ]Q̄Lα[T,Vµ]U (F8U (h)P↑QR)β

P8D,αβ(h) = Tr[TVµ]Q̄Lα[T,Vµ]U (F8D(h)P↓QR)β

P8N,αβ(h) = Tr[TVµ]L̄Lα[T,Vµ]U (F8N (h)P↑LR)β

P8E,αβ(h) = Tr[TVµ]L̄Lα[T,Vµ]U (F8E(h)P↓LR)β .

Rearranging eqs. (A.1)–(A.4), one can derive the following relations between bosonic

and fermionic operators:

2PB(h) +
1

2
P1(h) +

1

2
P2(h) + P4(h)− g′2PT (h)

(
1 +

h

v

)2

=

=
∑
α

{
1

3
g′2P1Q,αα(h)+

4

3
g′2P1U,αα(h)− 2

3
g′2P1D,αα(h)−g′2P1L,αα(h)−2g′2P1E,αα(h)

}
,

−PW (h)−g2PC(h)

(
1+

h

v

)2

− 1

4
P1(h)− 1

2
P3(h)+P5(h) =

g2

2

∑
α

{
P2Q,αα(h)+P2L,αα(h)

}
,

PH(h)+2PC(h)

(
1+

h

v

)2

+(v+h)F(h)
δV

δh
= sY

v + h√
2

∑
f=U,D,E

∑
αβ

{
Yf,αβPf,αβ(h) + h.c.

}
,

g2PT (h)

(
1 +

h

v

)2

− 1

2
P1(h)− P3(h) +

1

2
P12(h) + P13(h) + P17(h) =

=
g2

2

∑
α

{
(P3Q,αα(h) + P2Q,αα(h)) + (P3L,αα(h) + P2L,αα(h))

}
.

(A.11)

The Fi(h) functions in all operators in these relations are the same, except for PH in the

third line of eq. (A.11), which is related to it by

FH(h) = FC(h) +

(
1 +

h

v

)
δFC(h)

δh
. (A.12)

Applying the EOM in eq. (A.3) to the operators P20(h) and P21(h) allows us to express

them in terms of other operators in the basis, h-gauge boson couplings and Yukawa-like

interactions:

P20(h) = 2F(h)P6(h) + 2F(h)P7(h)− 16

v3

√
F(h)PC(h)

δV

δh

− 8
√

2sy
v3

√
F(h)PC(h)

(
Q̄LUYQQR + L̄LUYLLR + h.c.

)
,

P21(h) = 2F(h)P23(h) + 2F(h)P25(h) +
16

v3

√
F(h)PT (h)

δV

δh

+
8
√

2sy
v3

√
F(h)PT (h)

(
Q̄LUYQQR + L̄LUYLLR + h.c.

)
,

(A.13)

where all Fi(h) appearing explicitly in these expressions and included in the definition of

the operators Pi(h) are the same and defined by

F(h) =

(
1 +

h

v

)2

. (A.14)

– 39 –



J
H
E
P
0
3
(
2
0
1
4
)
0
2
4

From eqs. (A.1), (A.2) and (A.5), it follows that

iv√
2

Tr(σjDµVµ)

(
1 +

h

v

)2

=
v + sY h

v

(
iQ̄Lσ

jUYQQR + iL̄Lσ
jUYLLR + h.c.

)
− iv√

2
Tr(σjVµ)∂µ

(
1 +

h

v

)2

,

iv√
2

Tr(TDµVµ)

(
1 +

h

v

)2

=
v + sY h

v

(
iQ̄LTUYQQR + iL̄LTUYLLR + h.c.

)
− iv√

2
Tr(TVµ)∂µ

(
1 +

h

v

)2

,

(A.15)

which allows us to rewrite the pure bosonic operators P11−13(h), P10(h) and P19(h) as

combination of other pure bosonic ones in eqs. (2.6)–(2.8) plus fermionic operators in

eqs. (A.9) and (A.10):

P9(h)− P8(h) =
1

v2

∑
f1,f2=U,D,E

∑
αβγδ

Yf1,αβYf2,γδP4f1f2,αβγδ(h)

− 2
√

2

v

∑
f=U,D,N,E

∑
αβ

(Yf,αβP6f,αβ(h)− h.c.) ,

P15(h)− P22(h) =
2

v2

∑
f1,f2=U,D,E

∑
αβγδ

Yf1,αβγδYf2,γδP5f1f2,αβγδ(h)

− 2
√

2

v cos θW

∑
f=U,D,N,E

∑
αβ

(Yf,αβP7f,αβ(h)− h.c.) ,

P16(h) + P18(h) =
∑

f=U,D,N,E

∑
αβ

√
2

v
(Yf,αβP8f,αβ(h)− h.c.) ,

P10(h) + P8(h) =
∑

f=U,D,N,E

∑
αβ

√
2

v
(Yf,αβP6f,αβ(h)− h.c.) ,

P19(h) + P22(h) =
∑

f=U,D,N,E

∑
αβ

√
2

v
(Yf,αβP7f,αβ(h)− h.c.) .

(A.16)

A straightforward consequence is that once the Fi(h) functions in the operators on the

left-hand side of eq. (A.16) are specified, then the Fi(h) functions in the operators on the

right-hand side are no longer general, but take the form of specific expressions.
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B Equivalence of the d = 6 basis with the SILH Lagrangian

The SILH Lagrangian [87] is defined by the following 10 d = 6 linear operators:

OSILH
g = Φ†ΦGaµνG

aµν , OSILH
γ = Φ†B̂µνB̂

µνΦ ,

OSILH
W =

ig

2

(
Φ†σi

↔
DµΦ

)
DνW

µν
i , OSILH

B =
(

Φ†
↔
DµΦ

)
∂νB̂

µν ,

OSILH
HW = (DµΦ)†Ŵµν(DνΦ) , OSILH

HB = (DµΦ)† (DνΦ)B̂µν , (B.1)

OSILH
T =

1

2

(
Φ†

↔
DµΦ

)(
Φ†

↔
D
µ
Φ
)
, OSILH

H =
1

2
∂µ
(

Φ†Φ
)
∂µ

(
Φ†Φ

)
,

OSILH
6 =

1

3

(
Φ†Φ

)3
, OSILH

y =
(

Φ†Φ
)
fLΦYfR + h.c. ,

where Φ†
↔
DµΦ ≡ Φ†DµΦ − DµΦ†Φ and Φ†σi

↔
DµΦ ≡ Φ†σiDµΦ − DµΦ†σiΦ. They can be

related directly to the operators in eqs. (3.3) and (3.4):

OSILH
g ≡ OGG , OSILH

γ ≡ OBB ,
OSILH
B ≡ 2OB +OBW +OBB , OSILH

W ≡ 2OW +OBW +OWW ,

OSILH
HW ≡ OW , OSILH

HB ≡ OB ,
OSILH
T ≡ OΦ,2 − 2OΦ,1 , OSILH

H ≡ OΦ,2 ,

OSILH
6 ≡ OΦ,3 , OSILH

y ≡ 2OΦ,2 + 2OΦ,4 −
(

Φ†Φ
)

Φ†
δV (h)

δΦ†
.

(B.2)

This shows the equivalence of the two linear expansions.

It can also be interesting to show explicitly the connection between the SILH operators

and those of the chiral basis in eqs. (2.6)–(2.8), which is as follows:

OSILH
g =

v2

2g2
s

PG, OSILH
γ =

v2

2
PB,

OSILH
B =

v2

8
(P2 + 2P4) +

v2

8
P1 +

v2

2
PB, OSILH

HB =
v2

16
(P2 + 2P4),+

v2

2
PW ,

OSILH
W =

v2

4
(P3 − 2P5) +

v2

8
P1 OSILH

HW =
v2

8
(P3 − 2P5), (B.3)

OSILH
T =

v2

2
F(h)PT , OSILH

H = v2PH ,

OSILH
y = 3v2PH + v2F(h)PC −

(v + h)3

2

δV (h)

δh
,

where the Fi(h) appearing in these relations and inside the individual Pi(h) operators are

all defined by

F(h) =

(
1 +

h

v

)2

. (B.4)
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C Relations between chiral and linear operators

In this appendix, the connections between the operators of the chiral and linear bases is

discussed. As the number and nature of the leading order operators in the chiral and linear

expansion are not the same, there are pairs of chiral operators that correspond to the same

lowest dimensional linear one: in order to get then a one-to-one correspondence between

these chiral operators and (combinations of) linear ones, operators of higher dimension

should be taken into consideration. For those weighted by a single power of ξ, the list of the

siblings can be read from eq. (3.7). Below, we also indicate which chiral operators, weighted

by higher powers of ξ, should be combined in order to generate the gauge interactions

contained in specific linear ones.

For operators weighted by ξ:

PB(h)→ OBB PW (h)→ OWW PG(h)→ OGG
PC(h)→ OΦ,4 PT (h)→ OΦ,1 PH(h)→ OΦ,2

P1(h)→ OBW P2(h) ,P4(h)→ OB P3(h) ,P5(h)→ OW

(C.1)

P6(h) ,P7(h) ,P8(h) ,P9(h) ,P10(h) ,P�H(h)→ O�Φ

For operators weighted by ξ2:

PDH(h),P20(h)→
[
DµΦ†DµΦ

]2

P11(h),P18(h),P21(h),P22(h),P23(h),P24(h)→
[
DµΦ†DνΦ

]2

P12(h)→
(

Φ†WµνΦ
)2

P13(h),P17(h)→
(

Φ†WµνΦ
)
DµΦ†DνΦ

P14(h)→ εµνρλ
(

Φ†
↔
DρΦ

)(
Φ†σi

↔
DλΦ

)
W i
µν

P15(h),P19(h)→
[
Φ†DµD

µΦ−DµD
µΦ†Φ

]2

P16(h),P25(h)→
(
DνΦ†DµD

µΦ−DµD
µΦ†DνΦ

)(
Φ†

↔
DνΦ

)
(C.2)

For operators weighted by ξ4:

P26(h)→
[(

Φ†
↔
DµΦ

)(
Φ†

↔
DνΦ

)]2
. (C.3)
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D Feynman rules

This appendix provides a complete list of all the Feynman rules resulting from the operators

discussed here in the Lagrangian Lchiral of eq. (2.1) (except for the pure Higgs ones weighted

by powers of ξ higher than one). Only diagrams with up to four legs are shown and the

notation Fi(h) = 1 + 2ãi h/v+ b̃i h
2/v2 + . . . has been adopted. Moreover, for brevity, the

products ciãi and cib̃i have been redefined as ai and bi, respectively. For the operators P8,

and P20−22, that contain two functions FX(h) and F ′X(h) we redefine cX ãX ã
′
X → aX . In

all Feynman diagrams the momenta are chosen to be flowing inwards in the vertices and

are computed in the unitary gauge, with the exception of the propagator of the photon

which is written in a generic gauge.

Finally, the standard (that is SM-like) and non-standard Lorentz structures are re-

ported in two distinct columns, on the left and on the right, respectively. Greek indices

indicate flavour and are assumed to be summed over when repeated; whenever they do

not appear, it should be understood that the vertex is flavour diagonal. All the quanti-

ties entering the Feynman diagrams can be expressed in terms of the parameters of the

Z-renormalization scheme, as shown in eq. (4.2).
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CHAPTER 5

Higgs ultraviolet softening

This Chapter contains the publication in Ref. [29]. Here the focus is on the operators that induce a
quartic momentum dependence in the Higgs propagator: O�Φ = (DµD

µΦ)†(DνD
νΦ) in the linear case and

P�h = 1
2 (�h)(�h) in the non-linear one. The relevance of this peculiar momentum structure resides in that

it allows to soften the sensitivity of the Higgs mass to UV scales, as quadratic divergences are removed by
the fast fall of the momentum dependence of the propagator. This can be interpreted as an alternative
solution to the hierarchy problem [107, 108]. The treatment of these operators is quite delicate, as their
presence induces a second pole in the Higgs propagator with a “wrong-sign” residue: in general, theories
with higher derivative kinetic terms (also known as Lee-Wick theories [109, 110]) violate both unitarity and
causality.

A safe and manageable way of handling these couplings is to trade them for the presence of a “ghost”
state with negative norm: a field with the same quantum numbers as h but with a “wrong-sign” mass
and kinetic term. As an alternative, the operators O�Φ and P�h can be removed from the Lagrangian
by applying the equations of motion for the Higgs. It is shown in Secs. 2 and 3 of this chapter that both
approaches lead to the same result once the Lee-Wick ghost is integrated out of the spectrum.

Remarkably, there are significant differences between the results obtained in the linear vs. the non-
linear case. In fact, the chiral operator P�h is traded for a large amount of anomalous couplings listed in
Tables 1-4, inducing both modifications of the SM vertices and the insertion of exotic Lorentz structures.
In particular, this affects triple and quartic gauge couplings, gauge-Higgs and gauge-fermion interactions.
On the other hand, the impact of the linear O�Φ is limited to the presence of anomalous Yukawa couplings
and to the introduction of some four-fermion vertices. In practice, the gauge structure of the operator O�Φ

determines a series of cancellations that do not take place in general in the non-linear case. In fact, in this
framework, such a cancellation would only be recovered imposing a (quite unnatural) relation among the
Wilson coefficients of 6 independent operators: v2c�h = 8c6 = 4c7 = −c8 = −4c9 = −2c10.

The presence of a larger number of vertices clearly offers an inviting window into chiral Higgs dynamics:
a few examples of how this fact can be exploited in future experiments are given in Sec. 5 of this chapter.
It turns out that a subset of the relevant Wilson coefficients (c�h, c6) can already be constrained combining
electroweak precision data with measurements of HVV, Hff and quartic gauge couplings. An interesting
signature, albeit quite challenging to observe at the LHC, is provided by the operator P7, that induces ZZ
and W+W− production mediated by an off-shell Higgs boson (see Sec. 5.2).
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and S. Rigolinf
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ultraviolet sensitivity to new physics. Two methods of analysis are applied, trading the

Lagrangian coupling by: i) a “ghost” scalar, after the Lee-Wick procedure; ii) other effec-

tive operators via the equations of motion. The two paths are shown to lead to the same

effective Lagrangian at first order in the operator coefficients. It follows a modification of

the Higgs potential and of the fermionic couplings in the linear realization, while in the non-

linear one anomalous quartic gauge couplings, Higgs-gauge couplings and gauge-fermion

interactions are induced in addition. Finally, all LHC Higgs and other data presently avail-

able are used to constrain the operator coefficients; the future impact of pp → 4 leptons
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1 Introduction

A revival of interest in theories with higher derivative kinetic terms [1, 2] is taking place, as

the increased momentum dependence of propagators softens the sensitivity to ultraviolet

scales. Quadratic divergences are absent due to the faster fall-off of the momentum depen-

dence of the propagators. For instance this avenue has been recently explored in view of

an alternative solution to the electroweak hierarchy problem [3, 4].

Originally proposed by Lee and Wick [1, 2], a large literature followed to ascertain

the field theoretical consistency of this type of theories, in particular from the point of

view of unitarity and causality. The issue is delicate as a second pole appears in the field

propagators, and this pole has a wrong-sign residue. Naively such theories are unstable

and not unitary. The present understanding is that the S matrix for asymptotically free
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states may remain unitary, though, and acausality only occurs at the microscopic level

while macroscopically and/or in any measurable quantity causality holds as it should.

For the computation of physical amplitudes, a modification of the usual rules to com-

pute perturbative amplitudes was proposed [5–8] respecting the aforementioned desired

properties. A more user-friendly field-theory tool [3] to approach these theories consists in

trading the higher derivative kinetic term by the presence of a new state with the same

quantum numbers of the standard field and quadratic kinetic energy, albeit with a “wrong”

sign for both quadratic terms (kinetic energy and mass), i.e. a state of negative norm: a

Lee-Wick (LW) partner or “ghost”. It corresponds to the second pole in the propagator,

describing an unstable state that would thus not threaten the unitarity of the S matrix,

as only the asymptotically free states participating in a scattering process are relevant for

the latter.

In this paper, we focus on the study of a higher derivative kinetic term for the Higgs

particle, in a model independent way. Although present Higgs data are fully consistent

with the Higgs particle being part of a gauge SU(2) scalar doublet, the issue is widely open

and all efforts should be done to settle it. Two main classes of effective Lagrangians are

pertinent, depending on how the Standard Model (SM) electroweak symmetry breaking

(EWSB) is assumed to be realized in the presence of a light Higgs particle: linearly for

an elementary Higgs particle [9–11] or non-linearly for a “dynamical” -composite- light

one [12–19]. The relevant couplings to be added to the SM Lagrangian will be denoted by

O�Φ = (DµD
µΦ)† (DνD

νΦ) (1.1)

for linearly realized electroweak symmetry breaking (EWSB) scenarios, and

P�h =
1

2
�h�h =

1

2
(∂µ∂

µh) (∂ν∂
νh) (1.2)

if the light Higgs stems from non-linearly realized EWSB. In eq. (1.1) Φ denotes the gauge

SU(2) scalar doublet, which in the unitary gauge reads Φ =
(
0, (v + h)/

√
2
)

with v/
√

2

being the Φ vacuum expectation value (vev) and h the Higgs excitation. Dµ stands for the

covariant derivative

DµΦ ≡
(
∂µ + igWµ +

i g′

2
Bµ

)
Φ (1.3)

with Wµ ≡W a
µ (x)σa/2 and Bµ denoting the SU(2)L and U(1)Y gauge bosons, respectively.

In equation (1.2), h denotes instead a generic scalar singlet, whose couplings are de-

scribed by a non-linear Lagrangian (often dubbed chiral Lagrangian) and do not need to

match those of a SU(2) doublet component.

Note that the operators O�Φ and P�Φ are but rarely [10] considered by practitioners

of effective Lagrangian analyses, and almost never selected as one of the elements of the

operator bases. They tend to be substituted instead by (a combination of) other operators

–which include fermionic ones– because the bounds on exotic fermionic couplings are often

more stringent in constraining BSM theories than those from bosonic interactions. Never-

theless, the new data and the special and profound theoretical impact of higher derivative

kinetic terms deserve focalised studies, to which this paper intends to contribute.
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In this context it is important to notice that, in order to have any impact on the

hierarchy problem, the validity of the operators under study should be extrapolated into

the regime E � Λ, which is beyond the usual regime where EFT description is valid. In

this sense, the SM Lagrangian with the addition of these operators can be treated as the

complete Lagrangian in the ultraviolet.

Either in the linear or the non-linear realizations, the contribution to the Lagrangian

of the effective operators in eqs. (1.1) and (1.2) can be parametrised as

δL = ciOi , (1.4)

with Oi ≡ {O�Φ,P�h} respectively, with the parameters ci having mass dimension −2.1

The impact of O�Φ and P�h appears as a correction in the propagator of the h scalar which

is quartic in four-momentum:
i

p2 −m2
h + ci p4

. (1.5)

This propagator has now two poles and describes thus two degrees of freedom. For instance

for 1/ci � m2
h they are approximately located at [3]

p2 = m2
h and p2 = −1/ci , (1.6)

which implies that the sign of the operator coefficient needs to obey ci < 0 in order to

avoid tachyonic instabilities.

It is important to find signals which discriminate among those two categories –linear

versus non-linear EWSB– and this will be one of the main focuses of this paper for the higher

derivative scalar kinetic terms considered. It will be shown that the effects of the couplings

in eqs. (1.1) and (1.2) differ on their implications for the gauge and gauge-Higgs sectors.

The phenomenological analysis will be restricted to tree-level effects and consistently to

first order in ci, and we will use two independent and alternative techniques, showing that

they lead to the same results:

• To trade the higher-derivative coupling by a LW “ghost” heavy particle, which is

subsequently integrated out.

• To apply first the Lagrangian equations of motion (EOM) to the operator, trading the

coupling by other standard higher-dimension effective operators, which only require

traditional fields and field-theory methods.

Together with exploring the different physical effects expected from the Higgs linear higher-

derivative term O�Φ and the non-linear one P�h, we will clarify their exact theoretical

relation, determining which specific combination of non-linear operators would result in

the same physics impact than the linear operator O�Φ.

1From the point of view of the chiral expansion, P�Φ is a four-derivative coupling, and a slightly different

normalization (by a v2 factor) was adopted in ref. [20], using a dimensionless coefficient; the choice here

allows to use the same notation for both expansions.
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The phenomenological analysis below includes as well a study of the impact of both

operators in present and future LHC data. In the case of the LW version of the SM, it

has been shown [21] that the measurements of the S and T parameters set very strong

constraints on the gauge and fermionic LW partner masses, which need to exceed several

TeV; this implies a sizeable tension with the issue of the electroweak hierarchy problem, as

the LW partners induce a finite shift in the Higgs mass proportional to their own masses.

On the contrary, the EW constraints are mild for the Higgs doublet LW partners, whose

impact may be within LHC reach [22]. We explore the experimental prospects for O�Φ and

P�h at first order in the effective operator coefficients, focusing only on the quark sector

for simplicity as the extension to the lepton sector is straightforward.

The structure of the manuscript can be easily inferred from the table of Contents.

2 Elementary Higgs: O�Φ

The quark-Higgs sector of the SM Lagrangian supplemented by O�Φ will be considered in

this section:

L = (DµΦ)†DµΦ−
(
q̄LΦ̃YUuR + q̄LΦYDdR + h.c.

)
+ c�ΦO�Φ − V (Φ†Φ) , (2.1)

where Φ̃ ≡ iσ2Φ, and the Standard Model potential,

V (Φ†Φ) = λ

[
Φ†Φ − v2

2

]2

, (2.2)

can be rewritten for future convenience in the unitary gauge in terms of the Higgs particle

mass, m2
h = 2λv2 and the Higgs doublet vev 〈Φ〉 = v/

√
2 as

V (h) =
m2
h

2
h2 +

m2
h

2v
h3 +

m2
h

8v2
h4 . (2.3)

2.1 Analysis in terms of the LW ghost

The Lee-Wick method for the case of a complex scalar doublet is applied next to the

analysis of the operator O�Φ in eqs. (1.1) and (1.4), following ref. [3]. Defining an auxiliary

complex SU(2) doublet ϕ, eq. (2.1) can be rewritten as a two-scalar-field Lagrangian:

L = (DµΦ)†DµΦ + (Dµϕ)†DµΦ + (DµΦ)†Dµϕ

−
(
q̄LΦ̃YUuR + q̄LΦYDdR + h.c.

)
− 1

c�Φ
ϕ†ϕ− V (Φ†Φ) .

(2.4)

The mass squared term for the auxiliary field is given by −1/c�Φ, which requires c�Φ < 0

to avoid a tachyonic resonance. The kinetic energy terms can now be diagonalised via the

simple field redefinitions Φ→ Φ′ −ϕ′, ϕ→ ϕ′, and the mass terms can be diagonalised by

a subsequent symplectic rotation given by:(
Φ′

ϕ′

)
=

(
coshα sinhα

sinhα coshα

)(
Φ′′

ϕ′′

)
, (2.5)
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where

tanh 2α =
2x

1 + 2x
, with x ≡ −c�Φm

2
h/2 . (2.6)

Finally, dropping the primes on the field notation, the scalar Lagrangian in eq. (2.4) can

be rewritten as

Lϕ,Φ =(DµΦ)†DµΦ− (Dµϕ)†Dµϕ+ LϕY − V (Φ, ϕ) (2.7)

with

LϕY = − (1 + x)
(
q̄L(Φ̃− ϕ̃)YUuR + q̄L(Φ− ϕ)YDdR + h.c.

)
, (2.8)

V (Φ, ϕ) = −
m2
h

2

(
1− x+

1

x

)
ϕ†ϕ−

m2
h

2
(1− x) Φ†Φ

+
m2
h

2v2
(1− 4x)

(
(Φ− ϕ)†(Φ− ϕ)

)2
, (2.9)

expanded at order x, assuming small x values. The location of the minimum of the Higgs

potential gets c�Φ corrections. For instance, for a BSM scale large compared with the

Higgs mass (i.e. x→ 0), the approximate location of the vacuum corresponds to:

Φ→ 〈Φ〉+
h√
2
, 〈Φ〉 =

v√
2

(
1 +

15

2
x2

)
+O(x3) , (2.10)

ϕ→ 〈ϕ〉+
χ√
2
, 〈ϕ〉 = −x v√

2
(1− 2x) +O(x3) , (2.11)

where h and χ are the field excitation over the potential minima, and the exact potential

has been retaken and terms up to x2 considered. In consequence, at leading order in c�Φ

the minimum of the Higgs potential remains unchanged. For the sake of comparison with

the non-linear case in the next section, it is useful to write explicitly the potential restricted

to the h and χ fields. After a further necessary diagonalization of the h and χ dependence,

their scalar potential reads at first order in x:

V (h, χ) =
m2
h

2
(1 + 2x)h2 +

m2
h

2

(
1 + 2x− 1

2x

)
χ2 +

m2
h

2v
(1 + 6x)(h− χ)3

+
m2
h

8v2
(1 + 8x)(h− χ)4 .

(2.12)

Eqs. (2.7) and (2.12) illustrate that for small x the χ state exhibits a “wrong” sign in both

the kinetic energy and the mass terms.

Integrating out the heavy scalar. At first order in the operator coefficient c�Φ, the

mixing in eq. (2.6) may be approximated by tanhα ∼ 2x = −c�Φm
2
h, and the effect of the

negative-norm heavy field described by ϕ with absolute mass ∼ |c−1
�Φ| can be integrated

out via its EOM:

ϕ̄i = c�Φ

(
d̄RY

†
DqL,i + q̄L,jεjiYUuR +

m2
h

v2
(Φ†Φ)Φi

)
+O

(
c2
�Φ

)
, (2.13)
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Throughout the paper we will work on the so-called Z-scheme of renormalization, in which

the five relevant electroweak parameters of the SM Lagrangian (neglecting fermion masses),

gs, g, g′, v and the h self-coupling, are fixed from the following five observables: the world

average value of αs [23], the Fermi constant GF as extracted from muon decay [23], αem

extracted from Thomson scattering [23], mZ as determined from the Z lineshape at LEP

I [23], and mh from the present LHC measurement [24, 25]. Eq. (2.13) above indicates

that O�Φ will impact the renormalised fermion masses and the Higgs sector parameters.

Specifically for the latter, while the electroweak vev v ≡ (
√

2GF )−1/2 is not corrected, the

Higgs mass renormalization must absorb a correction

δm2
h

m2
h

= 2x . (2.14)

The resulting renormalized effective Lagrangian reads (omitting again fermionic and gauge

kinetic terms):

L�Φ = (DµΦ)†DµΦ + LY�Φ + L4F
�Φ − V�Φ , (2.15)

where

LY�Φ =−
[
q̄LΦ̃YUuR + q̄LΦYDdR + h.c.

](
1− x

(
1− 2

Φ†Φ

v2

))
unitary gauge−−−−−−−→

− v + h√
2

[
ūLYUuR + d̄LYDdR + h.c.

](
1 +

x

v2
(h2 + 2hv)

)
, (2.16)

L4F
�Φ =− x 2

m2
h

[
+ (ūRY

†
UdL)(d̄LYUuR) + (ūRY

†
UuL)(ūLYUuR)

+ (ūLYDdR)(d̄RY
†
DuL) + (d̄LYDdR)(d̄RY

†
DdL)

+
{

(ūLYUuR)(d̄LYDdR)− (d̄LYUuR)(ūLYDdR) + h.c.
}]

, (2.17)

V�Φ =−
m2
h

2
(1− 3x) Φ†Φ +

m2
h

2v2
(1− 6x)

(
Φ†Φ

)2
+ 2x

m2
h

v4

(
Φ†Φ

)3
unitary gauge−−−−−−−→

m2
h

2
h2 +

m2
h

2v
(1 + 4x)h3 +

m2
h

8v2
(1 + 24x)h4 + x

m2
h

2v3

(
3h5 +

1

2v
h6

)
. (2.18)

It follow deviations from SM expectations in fermion-Higgs couplings, four-fermion inter-

actions and scalar properties; in particular, the relation between the Higgs self-couplings

and its mass is different from the SM one; this fact can be directly probed at the LHC

and ILC [26]. Moreover, the Higgs potential exhibits now h5 and h6 terms not present in

the SM, which require c�Φ < 0 for stability, consistently with the arguments given in the

Introduction. Note as well that, for the linear realization of EWSB under discussion, the

couplings involving gauge particles are not modified with respect to their SM values.

2.2 Analysis via EOM

An avenue alternative to the LW method when working at first order in the operator

coefficient, and one which involves only standard fields and standard field theory rules, is
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Figure 1. The scalar potential in the linear Lagrangian for different values of the coefficient c�Φv
2.

The solid red line denotes the SM and the interline spacing is ∆(v2c�Φ) = 7.5 · 10−5.

to apply directly the EOM for the Φ field to the operator O�Φ in eq. (2.1):

�Φi = − δV

δ(Φ†Φ)
Φi −

(
d̄RY

†
DqL,i + q̄L,jεjiYUuR

)
, (2.19)

�Φ†i = −Φ†i
δV

δ(Φ†Φ)
−
(
−ūRY †UεijqL,j + q̄L,iYDdR

)
. (2.20)

We have checked that this method leads to the same low-energy renormalized effective

Lagrangian than that in eqs. (2.15)–(2.18), obtained via the Lee-Wick procedure involving

a “ghost” field.

Higgs potential. Figure 1 shows the dependence of the scalar potential on c�Φ: the

points |Φ| = ±v/
√

2, corresponding to the SM vacuum, switch from stable minima to

maxima as c�Φ runs from negative to positive values. The location of Higgs vev for negative

c�Φ is not modified at this order, see eq. (2.10).

3 Light dynamical Higgs: P�h

This section deals with the alternative scenario of a light dynamical Higgs, whose CP-even

bosonic effective Lagrangian has been discussed in refs. [17, 20]. For simplicity and focus,

the leading-order Lagrangian will be taken to be that of the SM modified only by the

action of the operator P�h in eq. (1.2). The scalar potential will thus be assumed as well

to take the SM form for h, to facilitate comparison with the linear case; nevertheless, in

appendix A we discuss the extension to the case of a completely general potential for a

singlet scalar field h, showing that the conclusions obtained below are maintained.
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The quark-Higgs sector of the Lagrangian reads then

L =
1

2
∂µh∂

µh− (v + h)2

4
Tr[VµV

µ]− v + h√
2

(Q̄LUYQR + h.c.) + c�hP�h − V (h) , (3.1)

where V (h) takes the functional form in eq. (2.3). Vµ ≡ (DµU) U†, where U(x) is a

dimensionless unitary matrix describing the longitudinal degrees of freedom of the EW

gauge bosons:

U(x) = eiσaπ
a(x)/v , U(x)→ LU(x)R† , (3.2)

where L, R denotes SU(2)L,R global transformations, respectively. Vµ is thus a vector

chiral field belonging to the adjoint of the global SU(2)L symmetry, and the covariant

derivative reads

DµU(x) ≡ ∂µU(x) + igWµ(x)U(x)− ig′

2
Bµ(x)U(x)σ3 . (3.3)

Note that eq. (3.1) is simply the SM Lagrangian written in chiral notation, but for the

additional presence of the P�h coupling.

3.1 Analysis in terms of the LW ghost

In parallel to the analysis in section (2.1), for c�h < 0 the action of the operator P�h in

the Lagrangian eq. (3.1) can be traded for that of an auxiliary SM singlet scalar field χ,

and the Lagrangian in eq. (3.1) reads then

L =
1

2
∂µh∂

µh+ ∂µh∂
µχ− (v + h)2

4
Tr[VµV

µ]− v + h√
2

(Q̄LUYQR + h.c.)−V (h, χ) , (3.4)

where the non-scalar kinetic terms were omitted and (see appendix A)

V (h, χ) =
m2
h

2
h2 +

m2
h

2v
h3 +

m2
h

8v2
h4 +

1

2c�h
χ2 . (3.5)

The kinetic energy terms are diagonalised via the field redefinitions h → h′ − χ′, χ → χ′,

and the mass terms can be then diagonalised by a subsequent symplectic rotation analogous

to that in eq. (2.5) (with Φ and ϕ replaced by h and χ, respectively), with a mixing angle

given by

tanh 2α =
−4x

1− 4x
, with x ≡ −c�hm2

h/2 . (3.6)

Finally, dropping the primes on the field notation and omitting again fermionic and gauge

kinetic terms, the Lagrangian reads:

Lh,χ =
1

2
∂µh∂

µh− 1

2
∂µχ∂

µχ+ LχY + Lχgauge − V (h, χ) , (3.7)

where, at first order in x,

LχY =− 1√
2

(Q̄LUYQR + h.c.) [v + (h− χ) (1 + 2x)] , (3.8)

Lχgauge =− 1

4
Tr[VµV

µ]
[
v2 + 2v(1 + 2x)(h− χ) + (1 + 4x)(h− χ)2

]
, (3.9)

while the scalar potential V (h, χ) coincides with that given in eq. (2.12).
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Integrating out the heavy scalar. For small x (that is, χ mass large compared to the

Higgs mass), the first order EOM can be used to integrate out the LW partner,

χ̄ =
c�h
2

[√
2(Q̄LUYQR + h.c.) + Tr[VµV

µ](v + h) +
m2
h

v2
h2(h+ 3v)

]
+O(c2

�h) . (3.10)

While the masses of the gauge and fermion fields are unaffected by the presence of P�h,

the Higgs mass renormalization absorbs the correction

δm2
h

m2
h

= 2x . (3.11)

The resulting effective Lagrangian for the h field is given by (omitting kinetic terms other

than the Higgs one)

L�h =
1

2
∂µh∂

µh+ LY�h + L4F
�h + Lgauge

�h − V�h(h) , (3.12)

with

LY�h =− v + h√
2

(
Q̄LUYQR + h.c.

) (
1 +

x

v2
(h2 + 2vh)

)
− x

m2
h

(v + h)√
2

Tr[VµV
µ]
(
Q̄LUYQR + h.c.

)
, (3.13)

L4F
�h =− x

2m2
h

(
Q̄LUYQR + h.c.

)2
, (3.14)

Lgauge
�h =− (v + h)2

4
Tr[VµV

µ]
(

1 + 2
x

v2
(h2 + 2vh)

)
− x

4m2
h

Tr[VµV
µ]2(v + h)2 , (3.15)

V�h(h) =
m2
h

2
h2 +

m2
h

2v
(1 + 4x)h3 +

m2
h

8v2
(1 + 24x)h4 + x

m2
h

2v3

(
3h5 +

1

2v
h6

)
. (3.16)

LY�h above shows that anomalous gauge-fermion interactions weighted by Yukawas are ex-

pected in the non-linear realization, in addition to the pure Yukawa-like corrections present

in the linear expansion, see eq. (2.16). Furthermore, the potential V�h(h) in eq. (3.16)

matches exactly the potential in eq. (2.18) for the linear case, as it should, exhibiting

higher than quartic Higgs couplings that requires c�h < 0 (i.e., x > 0) for the stability of

the potential.

In summary, the resulting effective Lagrangian for the non-linear case in eqs. (3.12)–

(3.16) shows deviations from SM expectations in fermion-Higgs couplings, four-fermion

interactions and scalar properties, a pattern already found in the previous section for an

elementary Higgs. Nevertheless, important distinctive features appear with respect to the

case of a higher derivative kinetic term for a Higgs particle in linearly realised EWSB:

• The number of effective couplings modified is larger than in the linear case in

eqs. (2.15)–(2.18), a characteristic feature already explored previously in other set-

tings [20].
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Figure 2. The scalar potential in the chiral Lagrangian for different values of the coefficient v2c�h.

The solid red line denotes the SM and the interline spacing is ∆(v2c�Φ) = 7.5 · 10−5.

• Specifically, couplings involving gauge particles are now modified with respect to their

SM values; in addition to anomalous gauge-fermion interactions, particularly inter-

esting anomalous Higgs couplings to two (HVV) and three gauge bosons (HVVV),

two Higgs-two gauge bosons (HHVV) and quartic gauge couplings (VVVV) are ex-

pected. The pure-gauge and gauge-Higgs anomalous couplings will be analyzed in

detail in the next sections; they constitute a new tool to disentangle experimentally

an elementary versus a dynamical nature of the Higgs particle, in the presence of

higher-derivative kinetic terms.

3.2 Analysis via EOM

The alternative method of applying directly to the operator P�h in the original non-linear

Lagrangian eq. (3.1) the standard field theory EOM for the h field,

�h = −δV (h)

δh
− v + h

2
Tr[VµV

µ]− 1√
2

(
Q̄LUYQR + h.c.

)
, (3.17)

leads to the same effective low-energy Lagrangian at first order on c�h than that in

eqs. (3.12)–(3.16), obtained above via the LW procedure, as it can be easily checked.

Again, the correction to the scalar potential requires to impose c�h < 0 to ensure that the

potential remains bounded from below.

Higgs potential. Figure 2 shows the dependence of the shape of the scalar potential

on the perturbative parameter c�h: for negative values the SM vacuum 〈h〉 = 0 is still a

minimum, while for positive values the potential is not bounded from below and moreover

the SM vacuum is turned into a maximum.
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4 Chiral versus linear effective operators

The linear operator O�Φ involves gauge fields in its structure - see eq. (1.1), contrary to

the chiral effective operator P�h defined in eq. (1.2). Nevertheless, the addition of the

former operator to the SM Lagrangian turned out to give no contribution to couplings

involving gauge fields, while the chiral operator P�h does. This seemingly paradoxical

state of affairs and the consistency of the results can be ascertained by establishing the

exact correspondence between both operators, which we find to be given by:

O�Φ =
1

2
(�h)2 +

(v + h)2

8
(Tr[VµV

µ])2 +
v + h

2
Tr[VµV

µ]∂ν∂
νh− Tr[VµVν ]∂µh∂νh

− (v + h)2

4
Tr[(DµV

µ)2]− (v + h)Tr[VνDµV
µ]∂νh (4.1)

= P�h + v2

(
1

8
P6 +

1

4
P7 − P8 −

1

4
P9 −

1

2
P10

)
linearF

.

The right hand-side of eq. (4.1) describes a combination of the non-linear operator P�h and

a particular set of independent effective operators of the non-linear basis as determined in

ref. [20], defined by

P6 = (Tr[VµV
µ])2 F6(h) , P7 = Tr[VµV

µ]�F7(h) ,

P8 = Tr[VµVν ] ∂µF8(h)∂νF ′8(h) , P9 = Tr[(DµV
µ)2]F9(h) ,

P10 = Tr[VνDµV
µ] ∂νF10(h) ,

(4.2)

where the generic -model dependent- Fi(h) functions are often parametrised as [17, 20]

Fi(h) = 1 + 2ai
h

v
+ bi

h2

v2
. . . (4.3)

The subscript “linearF” in the right-hand side of eq. (4.1) indicates that the equality

holds when the arbitrary functions Fi(h) take the specific linear-like dependence — see

ref. [20]2

F6(h) = F7(h) = F9(h) = F10(h)
linearF

= (1+h/v)2 , F8(h) = F ′8(h)
linearF

= (1+h/v) .

(4.4)

Strictly speaking, in a general chiral Lagrangian the definition of P�h should also contain

a F�h(h) factor on the right hand side of eq. (1.2) [19, 20]; it would be superfluous to keep

track of F�h(h) here, though, as we will restrain the analysis to couplings involving at

most two Higgs particles, which is tantamount to setting F�h(h) = 1 in the phenomeno-

logical analysis.

Taken separately, P�h as well as each of the five operators in eq. (4.2) do induce

deviations on the SM expectations for couplings involving gauge bosons. Eq. (4.1) implies

2In that reference, powers of the ξ parameter — which refers to ratios of scales involved — were extracted

from the definition of the operator coefficients; we will refrain here from doing so, and adopt the simple

notation in eq. (1.4).
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nevertheless that the gauge contributions of these six operators will exactly cancel in any

physical observable when their relative weights are given by

v2c�h = 8c6 = 4c7 = −c8 = −4c9 = −2c10 . (4.5)

We have explicitly checked such cancellations in several examples of physical transitions;

appendix B describes the particular case of ZZ → ZZ scattering, for illustration.

5 Signatures and constraints

Tables 1, 2, 3, and 4 list all couplings involving up to four particles that receive contributions

from the effective linear operator O�Φ or any of its chiral siblings P�h and P6−10. We work

at first order in the operator coefficients, which are left arbitrary in those tables; the Fi(h)

functionals are also assumed generic as defined in eq. (4.3). For the sake of comparison,

a SM-like potential is taken for both the linear and chiral operators; the extension to a

general scalar potential for the chiral expansion can be found in appendix A and has no

significant impact.

It turns out that O�Φ gives no tree-level contribution to couplings involving gauge par-

ticles as argued earlier, while instead P�h and P6−10 are shown to have a strong impact on

a large number of gauge couplings. On the other side, anomalous four-fermion interactions

are induced by both O�Φ and P�h, even if with distinct patterns.

5.1 Effects from O�Φ

The only impact of O�Φ on present Higgs and gauge boson observables is to generate

the universal shift in the Higgs coupling to fermions shown in the first line of table 1.

Equivalently, in the notation in refs. [16, 24, 25, 27, 28], in which the deviations of the

Yukawa couplings and the gauge kinetic terms from SM predictions were parametrised as

LY ukawa ≡ −
v√
2

(
Q̄LUYQR + h.c.

)(
1 + c

h

v
+ . . .

)
, (5.1)

Lgauge−kinetic ≡ −
v2

4
Tr(VµV

µ)

(
1 + 2a

h

v
+ b

h2

v2
+ . . .

)
, (5.2)

the shift induced by the operator O�Φ reads

c ≡ κf ≡ 1 + ∆f = 1−m2
hc�Φ . (5.3)

while

a ≡ κV ≡ 1 + ∆V = 1 , b = 1 . (5.4)

In refs. [20, 29], a general analysis of the constraints on departures of the Higgs couplings

strength from SM expectations used all available collider and EW precision data, and it

was found that

− 0.55 ≤ ∆f ≤ 0.25 , (5.5)
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Fermionic couplings Coeff. SM value Chiral Linear: O�Φ

h
(
ūLYUuR + d̄LYDdR + h.c.

)
− 1√

2
1 −m2

hc�h −m2
hc�Φ

h2
(
ūLYUuR + d̄LYDdR + h.c.

)
− 1
v
√

2
− −3m2

h
2 c�h −3m2

h
2 c�Φ

ZµZ
µ
(
ūLYUuR + d̄LYDdR + h.c.

)
− g2v

4
√

2c2θ
− c�h −

W+
µ W

−µ (ūLYUuR + d̄LYDdR + h.c.
)

− g2v

2
√

2
− c�h −

(ūLYUuR)2 +
(
ūRY

†
UuL

)2
1
4 − c�h −

(ūLYUuR)
(
ūRY

†
UuL

)
1
2 − c�h 2c�Φ(

d̄LYDdR
)2

+
(
d̄RY

†
DdL

)2
1
4 − c�h −(

d̄LYDdR
) (
d̄RY

†
DdL

)
1
2 − c�h 2c�Φ

(ūLYUuR)
(
d̄RY

†
DdL

)
+ h.c. 1

2 − c�h −

(ūLYUuR)
(
d̄LYDdR

)
+ h.c. 1

2 − c�h 2c�Φ

(ūLYDdR)
(
d̄LYUuR

)
+ h.c. −1 − − c�Φ

(ūLYDdR)
(
d̄RY

†
DuL

)
+
(
d̄LYUuR

) (
ūRY

†
UdL

)
1 − − c�Φ

Table 1. Effective couplings involving fermions generated by the linear operator O�Φ and its

chiral siblings P�h and P6−10. For illustration only the couplings involving quark pairs are listed,

although similar interactions involving lepton pairs are induced.

at 90% CL after marginalizing over all other effective couplings. Eq. (5.5) constrainsm2
hc�Φ,

in addition to any combination of coefficients of other dimension-six operators which may

also modify universally the Higgs couplings to fermions, see for instance ref. [20].

When only O�Φ is added to the SM Lagrangian, eq. (5.5) translates into the bound

c�Φ . 1.6 · 10−5 GeV−2. This constraint is quantitatively quite weak, a fact due to present

sensitivity. For illustration, it could be rephrased as a lower limit of 250 GeV on the Higgs

doublet LW partner mass. It shows that the bound obtained is of the order of magnitude

of the constraints established by previous analyses, which considered direct production in

colliders and/or indirect contributions to EW precision data and flavour data [21, 30–36],

setting a lower bound for the LW scalar partner mass of 445 GeV.

5.2 Effects from P�h and P6−10

Tables 2, 3 and 4 illustrate that P�h generates tree-level corrections to the gauge boson self-

couplings, as well as to gauge-Higgs couplings. Note that some of these interactions would

not be induced by any d = 6 operator of a linear expansion, an example being the ZZZZ

interactions in table 2; other signals absent in both the SM and d = 6 linear expansions,

and thus unique to the leading order chiral expansion, can be found in appendix C. They

constitute a strong tool to disentangle a strong underlying EW dynamics from a linear one.
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VV, TGV and VVVV Coeff. SM value Chiral Linear: O�Φ

(∂µZ
µ)(∂νZ

ν) − g2

2c2θ
− c9 −

(∂µW
+µ)(∂νW

−ν) −g2 − c9 −

i(∂µW
−µ)(ZνW

+ν) + h.c. e2g
c2θ

− c9 −

i(∂µW
−µ)(AνW

+ν) + h.c. −eg2 − c9 −

(ZµZ
µ)2 g4

32c4θ
− v2c�h + 8c6 −

(
W+
µ W

−µ)2 −g2

2 1 −m2
W c�h − 2g2c6 −

(
W+
µ W

−µ) (ZνZ
ν) −g2c2

θ 1 −m2
Z

2 c�h − g2

c4θ
c6 −

(
W+
µ Z

µ
)

(W−ν Z
ν) g2c2

θ 1 − e2s2θ
c4θ
c9 −

(
W+
µ A

µ
)

(W−ν A
ν) e2g2 1 −c9 −

(
W+
µ A

µ
)

(W−ν Z
ν) + h.c. egcθ 1 e2

c2θ
c9 −

Table 2. Anomalous pure-gauge couplings involving two, three and four gauge bosons, induced by

the chiral operators P�h and P6−10, in contrast with the non-impact of their linear sibling O�Φ.

The effects stemming from the operators P6−10, which are also siblings of the linear

operatorO�Φ, are displayed in these tables for gauge two-point functions (VV), triple gauge

vertices (TGV) and VVVV couplings. As previously discussed, the tree-level contributions

to physical amplitudes induced by that set of chiral operators cancel if the conditions in

eqs. (4.4) and (4.5) are satisfied. Notwithstanding, for generic values of the coefficients

of P�h and P6−10, some signatures characteristic of a non-linearly realised electroweak

symmetry breaking are expected, as those discussed next.

From tables 3 and 1 it follows that P�h yields a universal correction to the SM Higgs

couplings to gauge bosons and fermions. Furthermore, in present Higgs data the Higgs

state is on-shell and, in this case, P7 gives also a correction to the SM-like HVV couplings,

while the modifications generated by P9 and P10 vanish for on-shell W and Z gauge bosons

or massless fermions. Thus these corrections can be cast as, in the notation of eqs. (5.1)

and (5.2),

a ≡ κV ≡ 1 + ∆V = 1−
m2
h

v2
(v2c�h + 4c7a7) , c ≡ κf ≡ 1 + ∆f = 1−m2

hc�h , (5.6)

with b7 = 0. The general constraints resulting from present Higgs and other data [20, 29]
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HVV and HVVV Coeff. SM value Chiral Linear: O�Φ

ZµZ
µh vg2

4c2θ
1 −m2

hc�h −

ZµZ
µ�h − g2

2c2θ
− 2c7a7

v −

(∂µZ
µ)(∂νZ

ν)h − g2

2c2θ
− 2c9a9

v −

(∂µZ
µ)(Zν∂

νh) − g2

2c2θ
− 2c10a10

v −

W+
µ W

−µh vg2

2 1 −m2
hc�h −

W+
µ W

−µ�h −g2 − 2c7a7
v −

(∂µW
+µ)(∂νW

−ν)h −g2 − 2c9a9
v −

(∂µW
+µ)(W−ν ∂

νh) + h.c. −g2

2 − 2c10a10
v −

i(∂µW
−µ)(ZνW

+ν)h+ h.c. e2g
c2θ

− 2c9a9
v −

i(∂µW
−µ)(AνW

+ν)h+ h.c. −eg2 − 2c9a9
v −

i(ZµW
+µ)(W−ν ∂

νh) + h.c. − e2g
2cθ

− 2c10a10
v −

i(AµW
+µ)(W−ν ∂

νh) + h.c eg2

2 − 2c10a10
v −

Table 3. Anomalous effective couplings of the Higgs particle to two or three gauge bosons, induced

by the chiral operators P�h and P6−10, in contrast with the non-impact of their linear sibling O�Φ.

apply as well here. For instance, if the coefficients of operators contributing only to the

SM-like HVV coupling — such as c7a7 above — cancel, the bound on ∆V and ∆f becomes,

at 90% CL,

− 0.33 ≤ ∆f = ∆V ≤ 0.33 , (5.7)

which translates into a bound c�h . 2.1 · 10−5 GeV−2.

Off-shell Higgs mediated gauge boson pair production. Potentially more interest-

ing, P7 leads to a new contribution to the production of electroweak gauge-boson pairs ZZ

and W+W− through

gg → h? → ZZ or W+W− , (5.8)

where the Higgs boson is off-shell [37, 38]. For the sake of illustration, we consider the ZZ

pair production with one Z decaying into e+e− while the other into µ+µ−. The left panel
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H2VV couplings Coeff. SM value Chiral Linear: O�Φ

ZµZ
µh2 g2

8c2θ
1 −5m2

hc�h −

ZµZ
µ�(h2) − g2

2c2θ
− c7b7

v2 −

ZµZν∂
µh∂νh − g2

2c2θ
− 4c8a8a′8

v2 −

(∂µZ
µ)(∂νZ

ν)h2 − g2

2c2θ
− c9b9

v2 −

(∂µZ
µ)(Zν∂

νh)h − g2

2c2θ
− 2c10b10

v2 −

W+
µ W

−µh2 g2

4 1 −5m2
hc�h −

W+
µ W

−µ�(h2) −g2 − c7b7
v2 −

W+
µ W

−
ν ∂

µh∂νh −g2 − 4c8a8a′8
v2 −

(∂µW
+µ)(∂νW

−ν)h2 −g2 − c9b9
v2 −

(∂µW
+µ)(W−ν ∂

νh)h+ h.c. −g2

2 − 2c10b10
v2 −

Table 4. Anomalous effective couplings involving two Higgs particles and two gauge bosons,

induced by the chiral operators P�h and P6−10, in contrast with the non-impact of their linear

sibling O�Φ.

of figure 3 depicts the leading-order SM contribution to

pp→ e+e−µ+µ− ,

together with the SM higher-order and P7 contributions through the ZZ channel in eq. (5.8).

The results presented in this figure were obtained assuming a center-of-mass energy at the

LHC of 13 TeV, and requiring that all leptons have transverse momenta in excess of 10 GeV,

that they are central (|η| < 2.5) and that the same-flavour opposite-charge lepton pairs

reconstruct the Z mass (|M`+`− −MZ | < 5 GeV). In presenting the P7 effects a coupling

c7a7 = 0.5 was assumed, which is compatible with the presently available Higgs data. Also,

since the goal here is to illustrate the effects of P7, we did not take into account the SM

higher-order contribution to gg → e+e−µ+µ− which interferes with the off-shell Higgs one;

for further details see ref. [39] and references therein.

The results in the left panel of the figure 3 show that P7 leads to an enhancement of

the off-shell Higgs cross section with respect to the SM expectations at high four-lepton

invariant masses. In fact, the scattering amplitude grows so fast that at some point uni-

tarity is violated [37], and the introduction of some unitarization procedure will tend to
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Figure 3. The left panel presents the four lepton invariant mass spectrum for the process pp →
e+e−µ+µ−. The right panel contains the WW transverse mass distribution of the process pp →
e+νeµ

−νµ. In both panels the black line stands for the SM leading-order contribution while the

blue (red) one represents the SM (P7) higher-order contribution given by eq. (5.8). In this figure

we assumed a center-of-mass energy of 13 TeV and c7a7 = 0.5.

diminish the excess. Nevertheless, even without an unitarization procedure, the expected

number of events above the leading order SM background induced by P7 is shown to be

very small, meaning that unraveling the P7 contribution will be challenging.

We have analyzed as well the process

pp→ e+νeµ
−νµ ,

that can proceed via the W+W− channel in eq. (5.8). In the right panel of figure 3 the

corresponding cross section is depicted as a function of the WW transverse mass

MWW
T =

[(√
(p`

+`′−
T )2 +m2

`+`′− +
√
/p2
T

+m2
`+`′−

)2

− (~p `+`′−
T + ~/pT )2

]1/2

, (5.9)

where ~/pT stands for the missing transverse momentum vector, ~p `+`′−
T is the transverse

momentum of the pair `+`′− and m`+`′− is the `+`′− invariant mass. Here ` = e or µ.

The transverse momentum and rapidity cuts used were the same than those for the left

panel. As expected, an enhancement of the gg → e+νeµ
−νµ cross section is induced by the

operator P7. Analogously to the case of ZZ production, the SM leading-order contribution

dominates but for large MWW
T ; the expected signals from the excess due to P7 will be thus

very difficult to observe.

Corrections to four gauge boson scattering. As can be seen in tables 2 and 3

the combination v2c�h + 8c6 generates the anomalous quartic vertex ZZZZ that is not

present in the SM. Moreover, the same combination gives anomalous contributions to the

ZZW+W− and W+W−W+W−. These are genuinely four gauge boson effects which do not

induce any modification to triple gauge boson couplings and, therefore, these coefficients

are much less constrained at present.
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Nowadays the most stringent bounds on the coefficients of these operators are indirect,

from their one-loop contribution to the electroweak precision data [40], in particular to α∆T

which at 90% CL imply

− 0.23 ≤ 1

8
v2c�h + c6 ≤ 0.26 . (5.10)

At the LHC with 13-14 TeV center-of-mass energy, they can be detected or constrained by

combining their impact on the VBF channels

pp→ jjW+W− and pp→ jj(W+W+ +W−W−) , (5.11)

where j stands for a tagging jet and the final state W ’s decay into electron or muon plus

neutrino [41]; the attainable 99% CL limits on these couplings are

− 1.2 · 10−2 ≤ 1

8
v2c�h + c6 < 10−2 . (5.12)

Disregarding the contribution from c6, this would translate into c�h . 1.3 · 10−6 GeV−2,

which would suggest a sensitivity to the mass of the LW partner for the singlet Higgs in

the chiral EWSB realization up to ∼ 887 GeV.

Strictly speaking, the relevant four gauge boson cross-section also receives modifica-

tions induced by those operators which correct the HVV and TGV vertices when the Higgs

boson or a gauge boson is exchanged in the s, t or u channels. In principle, these “triple

vertex” effects can be discriminated from the purely VVVV effects by their different de-

pendence on the scattering angle of the final state gauge bosons. In practice, a detailed

simulation will be required to establish the final sensitivity to all relevant coefficients.

6 Conclusions

An effective coupling for bosons which is tantamount to a quartic kinetic energy is a full-

rights member of the tower of leading effective operators accounting for BSM physics in

a model-independent way. This is so in both the linear and non-linear realizations of

electroweak symmetry breaking, or in other words irrespective of whether the light Higgs

particle corresponds to an elementary or a composite (dynamical) Higgs. The correspond-

ing higher derivative kinetic couplings, denoted here O�Φ and P�h, respectively, eqs. (1.1)

and (1.2), are customarily not considered but traded by others (e.g. fermionic ones) instead

of being kept as independent elements of a given basis.

It is most pertinent to analyze those couplings directly, though, as they are related

to intriguing and potentially very important solutions to ultraviolet issues, such as the

electroweak gauge hierarchy problem. The field theory challenges they rise constitute as

well a fascinating theoretical conundrum. Their theoretical impact is “diluted” and hard

to track, though, when they are traded by combinations of other operators. On top of

which, the present LHC data offer increasingly rich and precise constraints on gauge and

gauge-Higgs couplings, up to the point of becoming competitive with fermionic bounds

in constraining BSM theories; this trend may be further strengthened with the post-LHC

facilities presently under discussion.
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We have analyzed and compared in this paper O�Φ and P�h, unravelling theoretical

and experimental distinctive features.

On the theoretical side, two analyses have been carried in parallel and compared:

i) the Lee-Wick procedure of trading the second pole in the propagator by a “ghost”

scalar partner; ii) the application of the EOM to the operator, trading it by other effective

operators and resulting in an analysis which only requires standard field-theory tools. Both

paths have been shown to be consistent, producing the same effective Lagrangian at leading

order in the operator coefficient dependence.

A most interesting property is that the physical impact differs for linearly versus non-

linear EWSB realizations: departures from SM values for quartic-gauge boson, Higgs-gauge

boson and fermion-gauge boson couplings are expected only for the case of a dynamical

Higgs, i.e. only from P�h while not from O�Φ; in addition, they induce a different pattern

of deviations on Yukawa-like fermionic couplings and on the Higgs potential.

Note that these distinctive signals of a dynamical origin of the Higgs particle would be

altogether missed if a d = 6 linear effective Lagrangian was used to evaluate the possible

impact of an underlying strong dynamics, showing that in general a linear approach is not

an appropriate tool to the task. Indeed, for completeness we identified all TGV, HVV

and VVVV experimental signals which are unique in resulting from the leading chiral

expansion, while they cannot be induced neither by SM couplings at tree-level nor by

d = 6 operators of the linear expansion: the TGV couplings ∆gγ6 , ∆gZ5 and ∆gZ6 , the HVV

couplings ∆g
(4)
HV V , ∆g

(5)
HV V and ∆g

(6)
HV V and the VVVV couplings ∆g

(1)
ZZ and ∆g

(5)
γZ , with

the quartic kinetic energy coupling for non-linear EWSB scenarios P�h contributing only

to ∆g
(1)
ZZ among the above. The experimental search of that ensemble of couplings and

their correlations (see tables 5, 6 and 7 in appendix C), constitute a superb window into

chiral dynamics associated to the Higgs particle.

To tackle the origin of the different physical impact of quartic derivative Higgs kinetic

terms depending on the type of EWSB, we have explored and established the precise

relation between the two couplings: it was shown that O�Φ corresponds to a specific

combination of P�h with five other non-linear operators.

On the phenomenological analysis, the impact of O�Φ, P�h and P6−10 has been scru-

tinised. All LHC Higgs and other data presently available were used to constrain the

O�Φ and P�h coupling strengths. Moreover, the impact of future 14 TeV LHC data on

pp → 4 leptons has been explored; the operators under scrutiny intervene in the process

via off-shell Higgs mediation in gluon-gluon fusion, gg → h? → ZZ or W+W−, inducing

excesses at high four-lepton invariant masses via the ZZ channel, and at high values of

the WW invariant mass in the WW channel. The corrections expected at LHC through

their impact on four gauge boson scattering, extracted combining information from vector

boson fusion channels, pp → jjW+W− and pp → jj(W+W+ + W−W−), has been also

discussed. The possibility that LHC may shed light on Lee-Wick theories through the type

of analysis and signals discussed here is a fascinating perspective.
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A Analysis with a generic chiral potential V (h)

In the analysis performed in this paper the effective operators P�h and O�Φ are assumed

to be the only departures from the Standard Model present in the chiral and linear La-

grangians, respectively. However, the choice of a SM-like scalar potential might not appear

satisfactory for the chiral case: a priori V (h) is a completely generic polynomial in the

singlet field h, and the current lack of direct measurements of the triple and quartic self-

couplings of the Higgs boson leaves room for a less constrained parametrization.

Therefore, it can be interesting to test the stability of our results against deviations of

the scalar potential from the SM pattern. To do this, we apply the Lee-Wick method to

the Lagrangian in eq. (3.1) although with the SM-like potential in eq. (2.3) replaced by a

generic one,

V (h) = a1h+
m2
h

2
a2h

2 +
m2
h

2v
a3h

3 +
m2
h

8v2
a4h

4 , (A.1)

where we choose to omit higher h-dependent terms, as the analysis remains at tree level

and limited to interactions involving at most two Higgs particles. The correction factor a2

can always be reabsorbed in the definition of mh, and will thus be fixed from the start to

a2 = 1 .

The comparison with the case described in section 3 is straightforward choosing, in addition,

a3 = a4 = 1 and a1 = 0. The resulting mass-diagonal Lagrangian containing the LW field

χ is:

Lχ = (kin. terms) + LχY + Lχgauge − V (h, χ) , (A.2)
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with

LχY = − 1√
2

(Q̄LUYQR + h.c.) [1 + (1 + 2x)(h− χ)] , (A.3)

Lχgauge = −1

4
Tr[VµV

µ]
[
v2 + 2v(1 + 2x)(h− χ) + (1 + 4x)(h− χ)2

]
, (A.4)

V (h, χ) = a1(1 + 2x)(h− χ) +
m2
h

2
(1 + 2x)h2 +

m2
h

2

(
1− 1

2x
+ 2x

)
χ2

+
m2
h

2v
a3(1 + 6x)(h− χ)3 +

m2
h

8v2
a4(1 + 8x)(h− χ)4 , (A.5)

where x = −c�hm2
h/2 > 0.

Upon integrating out the heavy LW ghost, the following renormalized

Lagrangian results:

L�h =
1

2
∂µh∂

µh− 1

4
ZµνZ

µν − 1

2
W+
µνW

−µν + iQ̄ /DQ +Lfer.
�h + Lgauge

�h − V�h(h) , (A.6)

where

Lfer.
�h =− 1√

2

(
Q̄LUYQR + h.c.

) [
v + (1 + 2x)h+ 3a3x

h2

v
+ a4x

h3

v2

]
(A.7)

− x

2m2

(
Q̄LUYQR + h.c.

)2 − x

m2
h

v + h√
2

Tr[VµV
µ]
(
Q̄LUYQR + h.c.

)
,

Lgauge
�h =− 1

4
Tr[VµV

µ]

[
(v + h)2

(
1 + 4x

h

v
+ 2xh2

)
(A.8)

+ 2x(v + h)
h2

v2
(3v(a3 − 1) + h(a4 − 1))

]
− x

4m2
h

(v + h)2 Tr[VµV
µ]2 ,

V�h(h) =
m2
h

2
h2 + a1(1 + 2x)h+

m2
h

2v

[
a3(1 + 4x) +

2a1x

m2
hv

(a4 + a3 − 3a2
3)

]
h3 (A.9)

+
m2
h

8v2

[
a4(1 + 6x) + 2x

(
9a2

3 +
a1a4

m2v
(2− 3a3)

)]
h4 +

3a3a4m
2
hx

2v3
h5 +

a2
4m

2
hx

4v4
h6 .

Phenomenological impact. Assuming that the departures from unity of the ai param-

eters are small (of order c�h at most), we can replace

a1 → ∆a1 , ai → 1 + ∆ai , i = 3, 4 (A.10)

and expand the renormalized Lagrangian (A.6) up to first order in x and in the ∆i’s.

Restricting for practical reasons to vertices with up to four legs, the list of couplings that

are modified is very reduced and only includes terms in the scalar potential:

−
m2
h

2v
(1 + 4x+ ∆a3)h3 ,

−
m2
h

8v2
(1 + 24x+ ∆a4)h4 ,

−∆a1h .

(A.11)

In consequence, upon the assumption that possible departures of the scalar potential from

a SM-like form are quantitatively at most of the same order as c�h, those contributions

would not affect the numerical analysis presented in the text.
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B Impact of O�Φ versus P�h on ZZ → ZZ scattering

This appendix provides an illustrative example of how the contributions of the chiral oper-

ators P�h ,P6−10 to physical amplitudes combine to reproduce those of the linear operator

O�Φ, once the conditions (4.5) and (4.4) are imposed.

Let us consider the elastic scattering of two Z gauge bosons. This process is not

affected by O�Φ, therefore the corrections induced by the six chiral operators are expected

to cancel exactly, upon assuming (4.5) and (4.4).

Assuming the external Z bosons are on-shell, the only Feynman diagrams containing

deviations from the Standard Model are the following

As +At +Au =
h

Z2

Z1

Z4

Z3

+ h

Z2

Z1

Z4

Z3

+ h

Z2

Z1

Z3

Z4

(B.1)

A4Z =

Z1

Z2

Z3

Z4

(B.2)

For the amplitudes depicted in (B.1), the relevant couplings are ZZh and ZZ�h (see

table 3), and the contributions from each channel turn out to be

As = −(ε1 · ε2)(ε∗3 · ε∗4)
i

s−m2
h

4m4
Z

v2

(
1− 2m2

hc�h +
8s

v2
c7a7

)
, (B.3)

At = −(ε1 · ε∗3)(ε2 · ε∗4)
i

t−m2
h

4m4
Z

v2

(
1− 2m2

hc�h +
8s

v2
c7a7

)
, (B.4)

Au = −(ε1 · ε∗4)(ε∗3 · ε2)
i

u−m2
h

4m4
Z

v2

(
1− 2m2

hc�h +
8s

v2
c7a7

)
, (B.5)

where ε1, ε2 denote the polarizations of the incoming Z bosons, and ε∗3, ε
∗
4 those of the

outgoing ones.

Imposing the constraints c7 = v2c�h/4, from eq. (4.5) and a7 = 1 from eq. (4.4),

the dependence on the exchanged momentum drops from the non-standard part of the

amplitudes:

Ah = As +At +Au = −
4im4

Z

v2

[
(ε1 · ε2)(ε∗3 · ε∗4)

s−m2
h

+
(ε1 · ε∗3)(ε2 · ε∗4)

t−m2
h

+
(ε1 · ε∗4)(ε2 · ε∗3)

u−m2
h

]
−

8im4
Z

v2
c�h

[
(ε1 · ε2)(ε∗3 · ε∗4) + (ε1 · ε∗3)(ε2 · ε∗4) + (ε1 · ε4)(ε2 · ε∗3)

]
.

(B.6)

The diagram (B.2) contains only the four-point vertex ZZZZ (see table 2), and gives

A4Z =
32im4

Z

v4

(
c6 +

v2

8
c�h

)[
(ε1 · ε2)(ε∗3 · ε∗4) + (ε1 · ε∗3)(ε2 · ε∗4) + (ε1 · ε4)(ε2 · ε∗3)

]
=

8im4
Z

v2
c�h

[
(ε1 · ε2)(ε∗3 · ε∗4) + (ε1 · ε∗3)(ε2 · ε∗4) + (ε1 · ε4)(ε2 · ε∗3)

]
.

(B.7)

In the second line the condition (4.5) has been assumed, which imposes v2c�h = 8c6.
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The neat correction to the Standard Model amplitude for ZZ scattering induced by

the chiral operators P�h ,P6−10 is finally proved to vanish, as

∆A = ∆Ah +A4Z = 0 . (B.8)

C Chiral versus linear couplings

In this appendix, we gather the departures from SM couplings in TGV, HVV and VVVV

vertices, which are expected from the leading order tower of chiral scalar and/or gauge

operators (which includes P�h and P6−10 discussed in this manuscript), as well as from

any possible chiral or d = 6 linear coupling which may affect those same vertices at leading

order of the respective effective expansions. Their comparison allows a straightforward

identification of which signals may point to a strong dynamics underlying EWSB, being

free from SM or d = 6 linear operators contamination. In tables 5, 6 and 7 below:

• The O�Φ , P�h and P6−10 operators are defined as in eqs. (1.1), (1.2)and (4.2), while

for all other couplings mentioned — linear or chiral — the naming follows that in

ref. [20], to which we refer the reader.

• All operator coefficients appearing in the tables below are defined as in eq. (1.4).

In comparison with the definitions in ref. [20] this means that: i) the coefficient

of the chiral operator P�h has been rescaled, see footnotes 1 and 2; ii) the d = 6

linear operator coefficients fi in refs. [20, 29] are related to those in the tables below

as follows:

ci = fi/Λ
2 . (C.1)

As discussed in the text, new anomalous vertices related to a quartic kinetic energy for the

Higgs particle include as well HHVV couplings and new corrections to fermionic vertices.

We leave for a future publication the corresponding comparison between the complete

linear and chiral bases. When referring below to the SM, only tree-level contributions are

considered.

C.1 TGV couplings

The CP-even sector of the Lagrangian that describes TGV couplings can be parametrized as

LWWV =− igWWV

{
gV1

(
W+
µνW

−µV ν −W+
µ VνW

−µν
)

+ κVW
+
µ W

−
ν V

µν (C.2)

− igV5 εµνρσ
(
W+
µ ∂ρW

−
ν −W−ν ∂ρW+

µ

)
Vσ + gV6

(
∂µW

+µW−ν− ∂µW−µW+ν
)
Vν

}
,

where V ≡ {γ, Z} and gWWγ ≡ e = g sin θW , gWWZ = g cos θW . The SM values for

the phenomenological parameters defined in this expression are gZ,γ1 = κZ,γ = 1 and

gZ,γ5 = gZ,γ6 = 0. The resulting TGV corrections are gathered in table 5. For instance, while

∆gγ6 and ∆gZ6 cannot be induced by any linear d = 6 operators, they receive contributions

from the operators P6−10 discussed in this manuscript. Barring fine-tunings and one-loop

effects, a detection of such couplings with sizeable strength would point to a non-linear

realization of EWSB.
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Coeff. Chiral Linear

×e2/s2
θ ×v2

∆κγ 1 −2c1 + 2c2 + c3 − 4c12 + 2c13
1
8(cW + cB − 2cBW )

∆gγ6 1 −c9 −

∆gZ1
1
c2θ

s22θ
4e2c2θ

cT +
2s2θ
c2θ
c1 + c3

1
8cW +

s2θ
4c2θ

cBW −
s22θ

16e2c2θ
cΦ,1

∆κZ 1
s2θ

e2c2θ
cT +

4s2θ
c2θ
c1 −

2s2θ
ct2
c2 + c3 − 4c12 + 2c13

1
8cW −

s2θ
8ct2

cB +
s2θ

2c2θ
cBW −

s2θ
4e2c2θ

cΦ,1

∆gZ5
1
c2θ

c14 −

∆gZ6
1
c2θ

s2
θc9 − c16 −

Table 5. Effective couplings parametrizing the VW+W− vertices defined in eq. (C.2). The co-

efficients in the second column are common to both the chiral and linear expansions. The third

column lists the specific contributions from the operators in the chiral basis. For comparison, the

last column exhibits the corresponding contributions from linear d = 6 operators.

C.2 HVV couplings

The Higgs to two gauge bosons couplings can be phenomenologically parametrized as

LHVV ≡ gHgg GaµνGaµνh+ gHγγ AµνA
µνh+ g

(1)
HZγ AµνZ

µ∂νh+ g
(2)
HZγ AµνZ

µνh

+ g
(1)
HZZ ZµνZ

µ∂νh+ g
(2)
HZZ ZµνZ

µνh+ g
(3)
HZZ ZµZ

µh+ g
(4)
HZZ ZµZ

µ�h

+ g
(5)
HZZ ∂µZ

µZν∂
νh+ g

(6)
HZZ ∂µZ

µ∂νZ
νh (C.3)

+ g
(1)
HWW

(
W+
µνW

−µ∂νh+ h.c.
)

+ g
(2)
HWW W+

µνW
−µνh+ g

(3)
HWW W+

µ W
−µh

+ g
(4)
HWW W+

µ W
−µ�h+ g

(5)
HWW

(
∂µW

+µW−ν ∂
νh+ h.c.

)
+ g

(6)
HWW ∂µW

+µ∂νW
−νh ,

where Vµν = ∂µVν − ∂νVµ with V = {A,Z,W,G}. Separating the contributions into SM

ones plus corrections, g
(j)
i ' g

(j)SM
i + ∆g

(j)
i , it turns out that

g
(3)SM
HZZ =

m2
Z

v
, g

(3)SM
HWW =

2m2
Zc

2
θ

v
, (C.4)

while the tree-level SM value for all other couplings in eq. (C.3) vanishes.

While P�h may induce a departure from SM expectations in two HVV couplings,

∆g
(3)
HZZ and ∆g

(3)
HWW , table 6 shows that those signals could be mimicked by some d = 6

linear operators. On the contrary, a putative detection of ∆g
(4)
HV V couplings may arise from

the P7 operator discussed in this manuscript while neither from the SM not any linear d = 6

couplings, and would thus be a smoking gun for a non-linear nature of EWSB realization;

the same applies to ∆g
(5)
HV V from P10, and to ∆g

(6)
HV V from P9.
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Coeff. Chiral Linear

×e2/4v ×v2

∆gHgg
g2
s
e2

−2cGaG −4cGG

∆gHγγ 1 −2(cBaB + cWaW ) + 8c1a1 + 8c12a12 −(cBB + cWW ) + cBW

∆g
(1)
HZγ

1
s2θ

−8(c5a5 + 2c4a4)− 16c17a17 2(cW − cB)

∆g
(2)
HZγ

cθ
sθ

4
s2θ
c2θ
cBaB − 4cWaW + 8 c2θ

c2θ
c1a1 + 16c12a12 2

s2θ
c2θ
cBB − 2cWW + c2θ

c2θ
cBW

∆g
(1)
HZZ

1
c2θ

−4
c2θ
s2θ
c5a5 + 8c4a4 − 8

c2θ
s2θ
c17a17

c2θ
s2θ
cW + cB

∆g
(2)
HZZ − c2θ

s2θ
2
s4θ
c4θ
cBaB + 2cWaW + 8

s2θ
c2θ
c1a1 − 8c12a12

s4θ
c4θ
cBB + cWW +

s2θ
c2θ
cBW

∆g
(3)
HZZ

m2
Z
e2

−2cH + 2cC(2aC − 1)− 8cT (aT − 1)− 4m2
hc�h cΦ,1 + 2cΦ,4 − 2cΦ,2

∆g
(4)
HZZ − 1

s22θ
16c7a7 + 32c25a25 −

∆g
(5)
HZZ − 1

s22θ
16c10a10 + 32c19a19 −

∆g
(6)
HZZ − 1

s22θ
16c9a9 + 32c15a15 −

∆g
(1)
HWW

1
s2θ

−4c5a5 cW

∆g
(2)
HWW

1
s2θ

−4cWaW −2cWW

∆g
(3)
HWW

m2
Zc

2
θ

e2
−4cH + 4cC(2aC − 1) + 32e2

c2θ
c1 +

16c2θ
c2θ

cT − 8m2
hc�h −

32e2

s2θ
c12

−2(3c2θ−s
2
θ)

c2θ
cΦ,1 + 4cΦ,4 − 4cΦ,2 + 4e2

c2θ
cBW

∆g
(4)
HWW − 1

s2θ
8c7a7 −

∆g
(5)
HWW − 1

s2θ
4c10a10 −

∆g
(6)
HWW − 1

s2θ
8c9a9 −

Table 6. Higgs-gauge bosons couplings as defined in eq. (C.3). The coefficients in the second

column are common to both the chiral and linear expansions.The third column lists the specific

contributions from the operators in the chiral basis. For comparison, the last column exhibits the

corresponding contributions from linear d = 6 operators.

C.3 VVVV couplings

The effective Lagrangian for VVVV couplings reads

L4X ≡ g2

{
g

(1)
ZZ(ZµZ

µ)2 + g
(1)
WW W+

µ W
+µW−ν W

−ν − g
(2)
WW (W+

µ W
−µ)2

+ g
(3)
V V ′W

+µW−ν
(
VµV

′
ν + V ′µVν

)
− g

(4)
V V ′W

+
ν W

−νV µV ′µ

+ ig
(5)
V V ′e

µνρσW+
µ W

−
ν VρV

′
σ

}
,

(C.5)

where V V ′ = {γγ, γZ, ZZ}. At tree-level in the SM, the following couplings are non-

vanishing:

g
(1)SM
WW =

1

2
, g

(2)SM
WW =

1

2
, g

(3)SM
ZZ =

c2
θ

2
, g(3)SM

γγ =
s2
θ

2
,

g
(3)SM
Zγ =

s2θ

2
, g

(4)SM
ZZ = c2

θ , g(4)SM
γγ = s2

θ , g
(4)SM
Zγ = s2θ ,

(C.6)

table 7 shows the impact on the couplings in eq. (C.5) of the leading non-linear versus linear

operators. While P�h and P6 may induce ∆g
(2)
WW and ∆g

(4)
ZZ couplings, the table shows
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Coeff. Chiral Linear

×e2/4s2
θ ×v2

∆g
(1)
WW 1

s22θ
e2c2θ

cT +
8s2θ
c2θ
c1 + 4c3 + 2c11 − 16c12 + 8c13

cW
2 +

s2θ
c2θ
cBW −

s22θ
4c2θe2

cΦ1

∆g
(2)
WW 1

s22θ
e2c2θ

cT +
8s2θ
c2θ
c1 + 4c3 − 4c6 − v2

2 c�h − 2c11 − 16c12 + 8c13
cW
2 +

s2θ
c2θ
cBW −

s22θ
4c2θe2

cΦ1

∆g
(1)
ZZ

1
c4θ

c6 + v2

8 c�h + c11 + 2c23 + 2c24 + 4c26 −

∆g
(3)
ZZ

1
c2θ

s22θc
2
θ

e2c2θ
cT +

2s22θ
c2θ

c1 + 4c2
θc3 − 2s4

θc9 + 2c11 + 4s2
θc16 + 2c24

cW c2θ
2 +

s22θ
4c2θ

cBW −
s22θc

2
θ

4e2c2θ
cΦ1

∆g
(4)
ZZ

1
c2θ

2s22θc
2
θ

e2c2θ
cT +

4s22θ
c2θ

c1 + 8c2
θc3 − 4c6 − v2

2 c�h − 4c23 cW c
2
θ + 2

s22θ
4c2θ

cBW −
s22θc

2
θ

2e2c2θ
cΦ1

∆g
(3)
γγ s2

θ −2c9 −

∆g
(3)
γZ

sθ
cθ

s22θ
e2c2θ

cT +
8s2θ
c2θ
c1 + 4c3 + 4s2

θc9 − 4c16
cW
2 +

s2θ
c2θ
cBW −

s22θ
4c2θe2

cΦ1

∆g
(4)
γZ

sθ
cθ

2s22θ
e2c2θ

cT +
16s2θ
c2θ

c1 + 8c3 cW + 2
s2θ
c2θ
cBW −

s22θ
2c2θe2

cΦ1

∆g
(5)
γZ

sθ
cθ

8c14 −

Table 7. Effective couplings parametrizing the vertices of four gauge bosons defined in eq. (C.5).

The third column lists the specific contributions from the operators in the chiral basis. For com-

parison, the last column exhibits the corresponding contributions from linear d = 6 operators.

that those signals could be mimicked by some d = 6 linear operators. On the contrary, the

4Z coupling ∆g
(1)
ZZ is induced by P�h, while it vanishes in the SM and in any linear d = 6

expansion. A detection of ∆g
(1)
ZZ would thus be a beautiful smoking gun of a non-linear

nature of EWSB realization, which may simultaneously indicate a quartic kinetic energy

for the Higgs scalar of LW theories (although ∆g
(1)
ZZ may also be induced by other chiral

operators, including P6 as discussed towards the end of section 5).

Summarising this appendix, some experimental signals are unique in resulting from

the leading chiral expansion, while they cannot be induced neither by the SM at tree-level

nor by d = 6 operators of the linear expansion; among those analyzed here they are

• the TGV couplings ∆gγ6 , ∆gZ5 , and ∆gZ6 ,

• the HVV couplings ∆g
(4)
HV V , ∆g

(5)
HV V , and ∆g

(6)
HV V ,

• the VVVV couplings ∆g
(1)
ZZ , and ∆g

(5)
γZ ,

with the quartic kinetic energy coupling for non-linear EWSB scenarios P�h contributing

only to ∆g
(1)
ZZ among the above. ∆g

(3)
γγ does not receive contributions from d = 6 linear

operators, but it is induced by three-level SM effects. The experimental search of that

ensemble of couplings, with the correlations among them following from tables 5, 6 and 7,

constitute a fascinating window into chiral dynamics associated to the Higgs particle.
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CHAPTER 6

Sigma decomposition

This Chapter contains the publication in Ref. [30] This is a purely theoretical work that aims at clarifying the
low energy impact of specific composite Higgs models: the original SU(5)/SO(5) Georgi-Kaplan model [90],
the minimal custodial-preserving SO(5)/SO(4) [92] model and the minimal SU(3)/(SU(2)× U(1)) model,
which intrinsically breaks custodial symmetry.

To this aim, the general CCWZ description of non-linearly realized symmetries is employed for con-
structing the most general chiral effective Lagrangian for a symmetric coset G/H, which in the energy
regime between the breaking of the global symmetry G into the subgroup H ⊇ SU(2) × U(1) and the EW
symmetry breaking (i.e. roughly at Λs ≥ E ≥ f). It turns out, that, restricting to the bosonic CP-even
sector, this Lagrangian contains only up to 10 free operators, listed in Sec. 3.3 of this chapter. This number
may even be reduced for specific choices of the groups G and H due to relations among the generators. For
example, in the models SU(5)/SO(5) and SU(5)/SO(4) only 8 among the 10 invariants constructed are
independent, while in the case SU(3)/(SU(2)× U(1)) there are 9 free parameters.

At low energy, i.e. after EWSB, the impact of any of the considered composite Higgs models, irrespective
of the chosen symmetric coset G/H, can always be described in terms of the 33 effective operators of
Refs. [25, 28], whose couplings shall have strong model-dependent constraints, as they are written in terms
of only 8 or 9 free parameters. In Sec. 7 of this chapter the high-energy electroweak effective theory is
explicitly projected onto the low-energy Lagrangian: this analysis allows to confirm the completeness of
the low-energy basis of Refs. [25, 28] and to verify that the weights in powers of ξ that had been assigned
artificially to each operator indeed match the dependence that arises naturally in composite Higgs models.

It is worth pointing out that, in all the models considered, the Higgs boson is part of a high-energy
SU(2) doublet embedded in a representation of the larger group G. This ensures that, for vertices with a
fixed number of external Higgs legs, the gauge couplings combine with the same relative weights as in the
case of the d = 6 linear effective Lagrangian. Moreover, the low-energy projection is such that it reproduces
exactly the linear expansion in the limit ξ → 0. On the other hand, the couplings of the physical Higgs
result encoded in structures F(h) that have trigonometric structures, rather than reproducing the (v + h)
dependence typical of the linear scenarios. The latter is recovered only in the limit ξ → 0. A most striking
result obtained in this work is the universality of the functions F(h), that turn out to be basically identical
for the three models considered. As can be seen from Tables 1 and 2, they differ at most by a rescaling of f .
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1 Introduction

A new resonance with mass around 125GeV has been firmly established at LHC [1, 2].

Current data do not indicate deviations from the hypothesis of the Standard Model (SM)

Higgs particle [3–5] being a component of the SU(2)L scalar boson doublet of the elec-

troweak (EW) gauge symmetry. Moreover, even after the LHC 14TeV upgrade, in the

absence of exotic resonances it will not be possible to convincingly establish neither the

nature of electroweak symmetry breaking (EWSB), nor the mechanism that protects the

Higgs mass from large quadratic corrections.

To stabilise the Higgs mass and cure the electroweak hierarchy problem, two main

frameworks for beyond the Standard Model (BSM) physics are commonly considered and

still viable with the present data: the underlying high-energy dynamics could be either

weakly or strongly interacting. In the first case, the EWSB mechanism is linearly realised,

as in the SM, with the physical Higgs being an elementary particle. Even if this possibility

is more familiar, the existence of an elementary scalar state would represent a surprising

exception, as all known examples of scalar states in nature are understood as being compos-

ite. This is indeed the philosophy of the second scenario, in which the EWSB is non-linearly

realised and the Higgs arises as a composite particle from the strong dynamics sector.

The idea of a light composite Higgs originating in the context of a strongly interacting

dynamics was first developed in the 1980s [6–11] and underwent a recent revival of interest

either in strong interacting 4D models [12, 13] or in 5D Ads/CFT versions [14–17]. In

this framework, a global symmetry group G is postulated at high energies and broken

spontaneously by some strong dynamics mechanism to a subgroup H at a scale Λs. The

characteristic scale of the corresponding Goldstone boson (GB) sector is usually denoted

by f and satisfies the relation Λs ≤ 4πf [18]. Among this set of GBs, three are usually

identified with the would-be-longitudinal components of the SM gauge bosons and one

with the Higgs field, ϕ. Subsequently, a scalar potential for the Higgs field is dynamically

generated, inducing EWSB and providing a (light) mass to the Higgs particle. Being the

Higgs a pseudo-GB arising from the global symmetry breaking, its mass is protected against

quantum corrections of the high-energy symmetric theory, providing an elegant solution

to the EW hierarchy problem (see for example ref. [19] for a recent review). The EWSB

scale, identified with the vacuum expectation value (vev) of the Higgs field 〈ϕ〉 does not

need to coincide with the EW scale v defined by the EW gauge boson masses, i.e. the W

mass mW = g v/2. On the other side, 〈ϕ〉 is typically predicted in any specific composite

Higgs (CH) model to obey a constraint linking it to the EW scale v and to the GB scale

f . A model-dependent coefficient for the ratio between the strong dynamics scale and the

EW sector scale is usually introduced,

ξ ≡ (v/f)2 , (1.1)

and it quantifies the degree of non-linearity of the theory. If the Higgs particle is embedded

as an EW doublet in a representation of the high-energy group, in the limit ξ ≪ 1 the

construction converges to the corresponding linear realisations of EWSB for most of the

operators, except for few structures connected to the Goldstone boson nature of h.
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A general feature of these CH scenarios is the presence of exotic resonances lighter than

about 1.5 TeV that mainly interact with the third family of quarks [20–27]. At present,

however, direct searches at collider of these states are inconclusive. On the other side,

indirect studies are viable strategies to shed some light on BSM physics. Low-energy effects

of new physics (NP) can be described in a model-independent way via an effective field

theory approach, with effective operators written in terms of SM fields and invariant under

the SM symmetries. When considering non-linearly realised EWSB and restricting only to

the pure gauge sector, i.e. decoupling the Higgs particle from the theory, the most general

effective Lagrangian, describing gauge and GB interactions and with an expansion up to

four momenta, is the so-called Appelquist-Longhitano-Feruglio (ALF) basis, introduced in

refs. [28–32]. The first attempts of embedding a light Higgs particle in this context have

been proposed in refs. [33–35]. Subsequently, the complete basis of pure-gauge and gauge-

Higgs interactions, that extends the ALF basis including a light Higgs particle, has been

presented in refs. [36, 37].1

The effective chiral Lagrangian described in refs. [36, 37] represents a fundamental

tool for Higgs analyses at colliders and the related phenomenology has been studied in

refs. [37, 42, 43], mainly focusing on disentangling a composite Higgs from an elementary

one, via the analysis of its couplings. Promising discriminating signals include the decorre-

lation, in the case of non-linear EWSB, of signals expected to be correlated within a given

pattern in the linearly realised one, i.e. between some pure-gauge couplings versus gauge-

Higgs ones and also between specific couplings with the same number of external Higgs legs

(see also refs. [35, 44] for the latter type of decorrelations); furthermore, anomalous signals

expected at first order in the non-linear realisation may appear only at higher orders of the

linear one, and vice versa.

In this paper, the focus is on the connection between the high-energy (i.e above the

GB scale f) effective chiral Lagrangian of specific CH realisations and the low-energy

(i.e. below f) effective chiral Lagrangian for a dynamical Higgs derived in ref. [36], re-

stricting to the CP-even bosonic sector. Because of predictivity, an important issue on

the analysis of generic symmetric cosets G/H will be the determination of the num-

ber of free parameters in the high-energy theory, which may constrain the freedom of

the low-energy one. In particular, three explicit CH realisations will be considered in

the following: the original SU(5)/SO(5) Georgi-Kaplan model [10], the minimal intrinsi-

cally custodial-preserving SO(5)/SO(4) model [15] and the minimal intrinsically custodial-

breaking SU(3)/(SU(2) × U(1)) model. By custodial breaking we mean here sources of

breaking other than those resulting from gauging the SM subgroup.

The three models considered exhibit typical features of CH models present in the

literature and therefore the results obtained here can be straightforwardly generalised to

1The fermion sector has been discussed at different levels and with different aims in refs. [38–41]. More-

over, ref. [41] contains some inferred criticisms to the results presented in ref. [36], pointing to some allegedly

missing and redundant operators. Nevertheless, one of the authors in ref. [41] agreed in a private commu-

nication on the correctness of ref. [36] under the specific assumptions considered there: the list of operators

in ref. [36] is a complete basis when only effects that can be described by pure-gauge and gauge-h chiral

operators up to four derivatives are considered.
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other contractions. It will be shown that the low-energy effects of any of the considered CH

models, irrespective of the chosen symmetric coset G/H, can always be described in terms

of effective operators invariant under the SM symmetry and written in terms of SM gauge

bosons and a scalar singlet h, whose couplings have model-dependent constraints. The

existence of peculiar patterns in the coefficients of the low-energy effective chiral operators

should indeed provide very valuable information when trying to unveil the nature of the

EWSB mechanism.

The paper has been organised as follows. Section 2 is devoted to recalling the low-

energy effective chiral Lagrangian introduced in ref. [36]. Section 3 contains the high-energy

effective chiral Lagrangian, describing the CP-even interactions among SM gauge bosons

and the GBs associated to the symmetric coset G/H. Only operators with at most four

derivatives are retained in the Lagrangian. Furthermore, no source of custodial breaking

besides the SM ones is considered. In sections 4, 5 and 6, the low-energy effective EW chiral

Lagrangian is then derived from the high-energy one for the SU(5)/SO(5), SO(5)/SO(4)

and SU(3)/(SU(2) × U(1)) composite Higgs models. Finally in section 7, the connection

with the EW effective linear Lagrangian is also discussed. Conclusions are presented in

section 8. Technical details on the construction of the models and on the comparison with

the literature are deferred to the appendix.

2 Electroweak low-energy effective chiral Lagrangian

The scalar sector of the SM is gifted with an accidental SU(2)L×SU(2)R global symmetry

spontaneously broken to the diagonal component SU(2)C after the Higgs field gets a non-

vanishing vev. The three SU(2)L × SU(2)R/SU(2)C GBs, can be described at low-energies

by a non-linear σ-model using a dimensionless unitary field U(x). The latter transforms

in the bi-doublet representation of the SU(2)L × SU(2)R global group and is defined by

U(x) = eiπ(x)/v , U(x) → LU(x)R† , (2.1)

where π(x) = πa(x)σa (with σa the usual Pauli matrices) and L,R denoting respectively

SU(2)L,R global transformations. Moreover, the covariant derivative of the non-linear field

U(x) can be written as,

DµU(x) ≡ ∂µU(x) + igWµ(x)U(x)− ig′

2
Bµ(x)U(x)σ3 , (2.2)

where Wµ(x) ≡ W a
µ (x)σa/2. From the non-linear field U(x) and its covariant derivative

DµU(x), it is possible to define (pseudo-)scalar and vector chiral fields transforming in the

adjoint of SU(2)L as follows:

T(x) ≡ U(x)σ3U
†(x) , T(x) → LT(x)L† ,

Vµ(x) ≡ (DµU(x))U†(x) , Vµ(x) → LVµ(x)L
† .

(2.3)

These two fields T and Vµ, together with the SM gauge fields W a
µ and Bµ and their

derivatives, would suffice as building blocks to construct the EW effective chiral La-

grangian [28–32], in the absence of a light Higgs in the low-energy spectrum. Performing
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an expansion up to four momenta, a complete basis of SU(2)L ×U(1)Y invariant CP-even

operators — the ALF basis — is composed of eighteen independent operators.

The discovery of a light scalar degree of freedom, corresponding to the SM Higgs

particle, implies the necessity of extending the ALF basis. The electroweak chiral effective

Lagrangian should now describe also other interactions with a CP-even scalar singlet field

h that may (or may not) participate in the EWSB mechanism. The extension of the ALF

basis to include a new light scalar degree of freedom in the low-energy chiral Lagrangian

(which we will denote by Llow in what follows), has been derived in ref. [36], where the

complete set of independent CP-even operators describing pure-gauge and gauge-Higgs

interactions, up to four derivatives, has been listed.2 For definiteness and later comparison,

we report here the full set of operators, organised by their number of derivatives and their

custodial character:3

Operators with two derivatives

Custodial preserving Custodial breaking

PC = −v2

4
Tr(VµVµ) PT =

v2

4
Tr(TVµ)Tr(TVµ)

(2.4)

Operators with four derivatives

Custodial preserving Custodial breaking

PB = −1

4
BµνB

µν P12 = g2(Tr(TWµν))
2

PW = −1

2
Tr(WµνW

µν) P13 = igTr(TWµν)Tr(T[Vµ,Vν ])

P1 = gg′BµνTr(TWµν) P14 = gǫµνρλTr(TVµ)Tr(VνWρλ)

P2 = ig′BµνTr(T[Vµ,Vν ]) P15 = Tr(TDµV
µ)Tr(TDνV

ν)

P3 = igTr(Wµν [V
µ,Vν ]) P16 = Tr([T,Vν ]DµV

µ)Tr(TVν)

P4 = ig′BµνTr(TVµ)∂ν(h/v) P17 = igTr(TWµν)Tr(TVµ)∂ν(h/v)

P5 = igTr(WµνV
µ)∂ν(h/v) P18 = Tr(T[Vµ,Vν ])Tr(TVµ)∂ν(h/v)

P6 = (Tr(VµV
µ))2 P19 = Tr(TDµV

µ)Tr(TVν)∂
ν(h/v)

P7 = Tr(VµV
µ)∂ν∂

ν(h/v) P21 = (Tr(TVµ))
2∂ν(h/v)∂

ν(h/v)

P8 = Tr(VµVν)∂
µ(h/v)∂ν(h/v) P22 = Tr(TVµ)Tr(TVν)∂

µ(h/v)∂ν(h/v)

P9 = Tr((DµV
µ)2) P23 = Tr(VµV

µ)(Tr(TVν))
2

P10 = Tr(VνDµV
µ)∂ν(h/v) P24 = Tr(VµVν)Tr(TVµ)Tr(TVν)

P11 = (Tr(VµVν))
2 P25 = (Tr(TVµ))

2∂ν∂
ν(h/v)

P20 = Tr(VµV
µ)∂ν(h/v)∂

ν(h/v) P26 = (Tr(TVµ)Tr(TVν))
2 .

(2.5)

2The complete set of CP-odd operators describing pure-gauge and gauge-Higgs interactions has been

presented in ref. [37]. Chiral interactions including fermions have been considered in [39–41, 45].
3The set of pure-gauge and gauge-Higgs operators in eqs. (2.4) and (2.5) exactly matches that in ref. [36];

nevertheless, the labelling of some operators here is different with respect to that in ref. [36] and matches

that in ref. [42] instead.
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In eqs. (2.4) and (2.5), the operators have been classified according to their custodial

character: those on the right column, indicated as “custodial breaking”, describe tree-level

effects of custodial breaking sources beyond the SM (gauge) ones. All these operators

are easily identified by the presence of the scalar chiral field T(x) not in association with

the Bµν field strength. The ALF basis can simply be obtained from eqs. (2.4) and (2.5),

disregarding all the operators containing derivatives of h. In eq. (2.5), Dµ denotes the

covariant derivative in the adjoint representation of SU(2)L, i.e.

DµVν ≡ ∂µVν + i g [Wµ,Vν ] . (2.6)

To fully encompass the h sector, this list should be extended by a set of four pure-h

operators:

Operators with two derivatives

PH =
1

2
(∂µh)

2 . (2.7)

Operators with four derivatives

P�H =
1

v2
(∂µ∂

µh)2 , P∆H =
1

v3
(∂µh)

2�h ,

PDH =
1

v4
((∂µh)(∂

µh))2 . (2.8)

In summary, the low-energy electroweak chiral Lagrangian describing the CP-even

gauge-Goldstone and the gauge-scalar interactions can thus be written as

Llow = L
p2

low + L
p4

low , (2.9)

where L
p2

low and L
p4

low contain two and and four-derivative operators,

L
p2

low =PCFC(h) + cTPTFT (h) + PHFH(h) ,

L
p4

low =PBFB(h) + PWFW (h) +
26∑

i=1

ci PiFi(h)+

+ c�HP�HF�H(h) + c∆HP∆HF∆H(h) + cDHPDHFDH(h) ,

(2.10)

with the functions Fi(h) encoding a generic dependence on h (in particular, no derivatives

of h are included in Fi(h)).

The effective Lagrangian in eq. (2.9) describes at low-energy (EW scale v) any model

with a light CP-even Higgs, focusing only on the bosonic sector and restricting to CP-

even operators with at most four derivatives. Indeed, Llow describes an extended class of

“Higgs” models, ranging from the SM scenario to technicolor-like ansatzs and intermediate

situations such as dilaton-like scalar frameworks and CH models.

Notice that here, for later convenience, a slightly different notation is adopted with

respect to that in refs. [36, 42] for the definition of the Fi(h) functions. Here the Fi(h)

functions are not part of the definition of the operators Pi, but instead are left outside as

– 6 –
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multiplicative terms in the Lagrangian. The only dependence on h left inside the operators

Pi is that corresponding to derivatives of h. Furthermore, in refs. [36, 42] the dependence on

the parameter ξ was made explicit at the Lagrangian level in order to show the connection

with the linear effective Lagrangian. Here instead, the ξ weights are reabsorbed in the

coefficients ci and in the functions Fi(h). The role of ξ will become clear in the following

sections, once specific dynamical Higgs models will be considered.

According to NDA [18, 46], the weight in front of each four-derivative operator is

estimated to be f2/Λ2
s & 1/(4π)2. This is true for all terms above even if obscured for

those operators in eq. (2.5) which include ∂(h/v): their associated ci have already absorbed

a dependence on ξ, as mentioned above. To illustrate this, let us consider the example of

P5: on physics grounds, factors of h are expected to enter the operators weighted down

by f , which is the associated Goldstone boson scale, and the “natural” definition of the

operator would have been

P5 = igTr(WµνV
µ)∂ν(h/f) , (2.11)

for whose coefficient NDA would indicate a f2/Λ2
s weight. Now, the operator definition

chosen with ∂ν(h/v) instead of ∂ν(h/f), implies that c5 has already been redefined in order

to reabsorb a factor of
√
ξ, and the overall weight expected for the coefficient of the P5

operator as defined in eq. (2.5) is c5 ∼
√
ξf2/Λ2

s & (v/f)× 1/(4π)2.

3 Effective chiral Lagrangian for symmetric cosets

This section is dedicated to the construction of the high-energy effective Lagrangian in a

generic CH setup: a global symmetry group G is spontaneously broken by some strong dy-

namics mechanism at the scale Λs, to a subgroup H, such that the coset G/H is symmetric;

the minimum requisite is that dim(G/H) ≥ 4, i.e. at least four GBs arise from the global

symmetry breaking, such that three of them would be then identified with the longitudinal

components of the SM gauge bosons and one with the light scalar resonance observed at

LHC. No fermionic operators will be considered, and only CP-even ones will be retained

among the set of bosonic operators, up to four derivatives.

This generic effective chiral Lagrangian for symmetric cosets will be applied in the

subsequent sections to specific CH models.

3.1 Non-linear realisations of the G/H symmetry breaking

Following the general CCWZ construction [47, 48], the GB degrees of freedom arising from

the global symmetry breaking of the group G down to the subgroup H can be described

by the field Ω(x):

Ω(x) ≡ eiΞ(x)/2f , (3.1)

transforming under the global groups G and H as4

Ω(x) → gΩ(x) h−1(Ξ, g) , (3.2)

4Depending on whether the group SU(N) or SO(N) is considered, h−1 = h† or h−1 = hT should be used,

respectively.
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where g is a (global) element of G while h(Ξ, g) is a (local) element ofH depending explicitly

on g and on the Goldstone boson field Ξ(x). For the sake of brevity, in what follows it

will be understood h ≡ h(Ξ, g) unless otherwise stated. Eq. (3.2) defines the non-linear

transformation of Ξ(x). Denoting by Ta (with a = 1, . . . , dim(H)) the generators of H and

by Xâ (with â = 1, . . . , dim(G/H)) the generators of the coset G/H in such a way that

(Ta, Xâ) form an orthonormal basis of G, the GB field matrix explicitly reads:

Ξ(x) = Ξâ(x)Xâ . (3.3)

In all realistic models considered in the literature, either in the context of QCD, EW

chiral Lagrangian or CH models, the generators satisfy the following schematic conditions:

[T, T ] ∝ T , [T, X] ∝ X , [X, X] ∝ T , (3.4)

the last one being the condition for a symmetric coset.5 In other words, a symmetric G/H
coset admits the automorphism (usually dubbed “grading”) g → R(g) = gR,

R :

{
Ta → +Ta

Xâ → −Xâ

(3.5)

consistent with the commutation relations in eq. (3.4). For instance, in the case of chiral

groups like SU(N)L×SU(N)R → SU(N)V this grading corresponds to the parity operator

that leaves invariant the vector generators, while changing the sign to the axial-vector ones.

As already pointed out in ref. [47], it can be shown that in the presence of such an

automorphism the non-linear field transformations of Ω(x) can also be recast as:

Ω(x) → hΩ(x) g−1
R . (3.6)

From eqs. (3.2) and (3.6), it is thus possible to define for all symmetric cosets a “squared”

non-linear field Σ(x):

Σ(x) ≡ Ω(x)2 , (3.7)

transforming under G as,

Σ(x) → gΣ(x) g−1
R , (3.8)

showing explicitly that the transformation on Ξ(x) is a realisation of G, and that it is

linear when restricted to H. Notice that the GB field matrix Σ(x) transforms under the

grading R as:

Σ(x) → Σ(x)−1 . (3.9)

It is then a matter of taste, in a symmetric coset framework, to use Ω(x) or Σ(x) for

describing the GBs degrees of freedom and the interactions between the GB fields and the

gauge/matter fields. The Ω-representation to derive H-covariant quantities entering the

model Lagrangian has been used in several examples. However, when discussing QCD or

5The first condition follows from H being closed. The second one can be deduced from the first one

together with the fact that for compact groups the structure constants are completely antisymmetric.
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EW chiral Lagrangians, the Σ-representation has been more often adopted. To make a

straightforward comparison with Llow introduced in section 2, the Σ-representation will be

kept in the following.

One can introduce the vector chiral field:6

Ṽµ = (∂µΣ)Σ−1 , Ṽµ → g Ṽµ g
−1 , (3.10)

transforming in the adjoint of G. The effective Lagrangian describing the GB interactions

in the context of the non-linearly realised G breaking mechanism, with symmetric coset

G/H, can then be constructed solely from Ṽµ.

In a realistic context, however, gauge interactions should be introduced, and to assign

quantum numbers it is convenient to formally gauge the full group G. In the symmetric

coset case, it is possible to define both the G gauge fields S̃µ, and the graded siblings

S̃R
µ ≡ R(S̃µ), transforming under G, respectively, as:

S̃µ → g S̃µ g
−1 − i

gS
g(∂µ g

−1) , S̃R
µ → gR S̃R

µ g−1
R − i

gS
gR(∂µ g

−1
R ) , (3.11)

with gS denoting the associated gauge coupling constant. The (gauged) version of the

chiral vector field Ṽµ can then be defined as:

Ṽµ = (DµΣ)Σ−1 , (3.12)

with the covariant derivative of the non-linear field Σ(x) being,

DµΣ = ∂µΣ+ i gS(S̃µΣ−ΣS̃R
µ ) . (3.13)

The following three G-covariant objects can thus be used as building blocks for the (gauged)

effective chiral Lagrangian:

Ṽµ , S̃µν and ΣS̃R
µν Σ

−1 . (3.14)

The introduction of the graded vector chiral field ṼR
µ does not add any further independent

structure, as indeed

ṼR
µ ≡ R(Ṽµ) = (DµΣ)−1Σ with ΣṼR

µ Σ−1 = −Ṽµ . (3.15)

3.2 Basis of independent operators

It is now possible to derive the most general operator basis describing the interactions of

the G gauge fields and of the GBs of a non-linear realisation of the symmetric coset G/H.

Performing an expansion in momenta and considering CP even operators with at most four

derivatives, one obtains the following nine independent operators:

2-momenta operator

Tr
(
ṼµṼ

µ
)
. (3.16)

This operator describes the kinetic terms for the GBs and, once the gauge symmetry

is broken, results in masses for those GBs associated to the broken generators.

6In order to avoid confusion we will denote with “∼” gauge bosons and chiral fields embedded in G.
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4-momenta operators with explicit gauge field strength S̃µν

Tr
(
S̃µνS̃

µν
)
, Tr

(
ΣS̃R

µν Σ
−1 S̃µν

)
, Tr

(
S̃µν

[
Ṽµ, Ṽν

])
. (3.17)

The first operator describes the kinetic terms for the gauge bosons S̃µ. The other

two contain gauge-GB and pure-gauge interactions.

4-momenta operators without explicit gauge field strength S̃µν

Tr
(
Ṽµ Ṽ

µ
)
Tr
(
Ṽν Ṽ

ν
)
, Tr

(
Ṽµ Ṽν

)
Tr
(
Ṽµ Ṽν

)
,

Tr
(
(DµṼ

µ)2
)
, Tr

(
Ṽµ Ṽ

µṼν Ṽ
ν
)
, Tr

(
Ṽµ ṼνṼ

µ Ṽν
)
, (3.18)

where the adjoint covariant derivative acting on Ṽµ is defined as

DµṼ
µ = ∂µṼ

µ + i gS

[
S̃µ, Ṽ

µ
]
.

The operators listed in eqs. (3.16)–(3.18) represent a complete set of independent struc-

tures describing the interactions among G gauge bosons and the GBs associated to G/H
in the Σ-representation. Additional Lorentz and G-invariant structures could be a priori

considered beyond those in the previous list (aside from those that are trivially not indepen-

dent). Of particular interest are the operator Tr((DµṼ
µ)Ṽν Ṽ

ν) and operators containing

determinants. However, the first one is not invariant under the grading R (see eq. (3.15))

and therefore cannot be retained in the previous set of independent operators. Moreover,

invariants of the second type are redundant once restricting only to couplings with at most

four derivatives: the Cayley-Hamilton theorem to reduce determinants in terms of traces

is a useful tool to prove it.

It is worth noticing that in specific G/H realisations, some of the operators listed may

not be independent. For example the operators with traces of four Ṽµ appearing in the

second line of eq. (3.18) are redundant in the case G = SU(2)L×SU(2)R and H = SU(2)V ,

as they decompose in products of traces of two Ṽµ. It may not be true in models with

larger group G, as it depends on the specific algebra relations of the generators.

Finally, some caution should be also used when fermions are introduced. In this

case all operators containing DµṼ
µ can be traded, via equations of motion, by operators

containing fermions and a careful analysis should be performed to avoid the presence of

redundant terms.

3.3 General EW effective Lagrangian for a symmetric G/H coset

The list of operators in eqs. (3.16)–(3.18) is valid on general grounds when formally gauging

the full group G. Nevertheless, in most realisations of CH models only the SM gauge group

is gauged. Consequently, in the generic gauge field S̃µ, only the EW components should be

retained. While no new operator structures appear in the sector made out exclusively of

Ṽµ fields (see eqs. (3.16) and (3.18)), all operators where the gauge field strength appears
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explicitly, such as those in eq. (3.17), should be “doubled” by substituting S̃µ either with

W̃µ or B̃µ, defined by

W̃µ ≡ W a
µ Qa

L and B̃µ ≡ BµQY , (3.19)

where Qa
L and QY denote the embedding in G of the SU(2)L × U(1)Y generators. It

follows that a larger number of invariants can be written in this case. In consequence,

the CP-even EW high-energy chiral Lagrangian describing up to four-derivative bosonic

interactions, Lhigh, contains in total thirteen operators:

Lhigh = L
p2

high + L
p4

high , (3.20)

where

L
p2

high = ÃC , (3.21)

L
p4

high = ÃB + ÃW + c̃BΣÃBΣ + c̃WΣÃWΣ +
8∑

i=1

c̃i Ãi , (3.22)

with

ÃC = −f2

4
Tr
(
ṼµṼ

µ
)
, Ã3 = i gTr

(
W̃µν

[
Ṽµ, Ṽν

])
,

ÃB = −1

4
Tr
(
B̃µνB̃

µν
)
, Ã4 = Tr

(
Ṽµ Ṽ

µ
)
Tr
(
Ṽµ Ṽ

µ
)
,

ÃW = −1

4
Tr
(
W̃µνW̃

µν
)
, Ã5 = Tr

(
Ṽµ Ṽν

)
Tr
(
Ṽµ Ṽν

)
,

ÃBΣ = g′2Tr
(
ΣB̃µνΣ

−1B̃µν
)
, Ã6 = Tr

(
(DµṼ

µ)2
)
,

ÃWΣ = g2Tr
(
ΣW̃µνΣ

−1W̃µν
)
, Ã7 = Tr

(
Ṽµ Ṽ

µṼν Ṽ
ν
)
,

Ã1 = g g′Tr
(
ΣB̃µνΣ

−1W̃µν
)
, Ã8 = Tr

(
Ṽµ ṼνṼ

µ Ṽν
)
,

Ã2 = i g′Tr
(
B̃µν

[
Ṽµ, Ṽν

])
,

(3.23)

with the EW covariant derivative in eq. (3.23) defined as

DµṼ
µ = ∂µṼ

µ + i g
[
W̃µ, Ṽ

µ
]
+ i g′

[
B̃µ, Ṽ

µ
]
. (3.24)

The coefficients c̃i are expected to be all of the same order of magnitude, according to the

effective field theory approach.7 NDA [18, 46] applies and indicates that the four-derivative

operator coefficients are expected to be of order f2/Λ2
s & 1/(4π)2.

It is remarkable that, aside from kinetic terms, Lhigh contains only ten independent

operators, and thus at most ten arbitrary coefficients c̃i need to be determined. They will

govern the projection of Lhigh into Llow (in addition to the parameter(s) of the explicit

breaking of the global symmetry).

7The coefficients of the operators ÃC , ÃB and ÃW are taken equal to 1, which leads to canonical kinetic

terms.
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It is also worth to note that the gauging of the SM symmetry breaks explicitly the custo-

dial and the grading symmetries. As a result, custodial and/or grading symmetry breaking

operators can arise once quantum corrections induced by SM interactions are considered.

In the case G = SU(2)L × SU(2)R and H = SU(2)V , the Lagrangian Lhigh reduces

to the custodial preserving sector of the ALF basis, with the three GBs described by the

non-linear realisation of the EWSB mechanism corresponding to the longitudinal degrees

of freedom of the SM gauge bosons. In this case, dim(G/H) = 3 and the h field cannot

arise as a GB of the spontaneous G symmetry breaking.

CH models are, instead, built upon cosets with dim(G/H) ≥ 4, the minimal ones

being for example SO(5)/SO(4) and SU(3)/(SU(2) × U(1)) for the intrinsically custodial

preserving and custodial breaking setups, respectively. The four GBs resulting from the

non-linear symmetry breaking mechanism will then correspond to the three would-be SM

GBs and the Higgs particle. In non-minimal models, such as the SU(5)/SO(5) Georgi-

Kaplan model, additional GBs appear in the symmetry breaking sector. Either they are

light degrees of freedom and then provide interesting candidates for dark matter (see for

instance ref. [49, 50]) or for other exotic particles, or they should become heavy enough

through some “ad hoc” global symmetry breaking effect associated to the strong interacting

sector [10], leaving a negligible impact on low-energy physics.

In the next sections, Lhigh will be particularised to the case of three well-known CH

models, by decomposing the field matrix Σ in eq. (3.7) into its SM and BSM fields, and

projecting into the former: the title of this paper refers to this procedure.

4 The SU(5)/SO(5) composite Higgs model

The first CH model was proposed by Georgi and Kaplan [10] more than 30 years ago. They

assumed a global G = SU(5) symmetry spontaneously broken to the H = SO(5) subgroup.

It is clearly a non-minimal model as fourteen GBs arise from the SU(5) → SO(5) breaking:

three of them are then identified with the GBs of the SM, a fourth one with the physical

Higgs, while the remaining ten are potentially light states. In ref. [10], it was shown that

strong dynamical effects can induce large (i.e. O(f)) masses for these extra degrees of

freedom, that therefore can be safely disregarded at low-energies. The discussion of this

mechanism is beyond the scope of our paper and can be found in that reference. In what

follows all those ten extra GBs are removed from the spectrum and only the three plus one

physical degrees of freedom relevant at low energies are considered.

The global SU(2)L×SU(2)R symmetry can be embedded in the unbroken SO(5) resid-

ual group and therefore the model benefits of an approximate custodial symmetry. We

will first review in some detail the original Georgi-Kaplan construction, as this will be the

playground for generic (minimal or non-minimal) CH models.

4.1 Spontaneous SU(5)/SO(5) symmetry breaking setup

Mimicking the detailed discussion presented in ref. [11], the spontaneous (global) symmetry

breaking pattern SU(5) → SO(5) can be associated to a scalar field8 belonging to the

8This scalar field could result for example from fermionic condensates.
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symmetric representation of G and acquiring a vev ∆0. The vev can be taken in all

generality to be a real, symmetric and orthogonal 5× 5 matrix:

∆0 = ∆†
0 = ∆T

0 = ∆−1
0 . (4.1)

A convenient choice, which facilitates the identification of the SU(2)L × U(1)Y quantum

numbers in the SU(5) embedding, is given by

∆0 =




0 iσ2 0

−iσ2 0 0

0 0 1


 . (4.2)

It is then possible to describe the massless excitations around the vacuum with a symmetric

field ∆(x), obtained “rotating” the vacuum by means of the GB non-linear field Ω(x):

∆(x) = Ω(x)∆0Ω(x)
T , ∆(x) → g∆(x) gT . (4.3)

The field ∆(x) describes all fourteen GBs stemming from the SU(5)/SO(5) breaking. Its

transformation properties under SU(5), i.e. in the symmetric representation, follow from

the invariance of the vacuum under SO(5). Using the following relations between the

vacuum ∆0 and the broken and unbroken generators,

∆0 Ta∆0 = −T T
a , ∆0Xâ∆0 = XT

â , (4.4)

and because of the relations in eq. (4.1), the excitations around the vacuum can be rewritten

in terms of the GB field Σ(x):

∆(x) = Ω(x)2∆0 ≡ Σ(x)∆0 . (4.5)

The vector chiral field Ṽµ is then related to the vacuum excitations,

Ṽµ(x) ≡ (DµΣ(x))Σ†(x) = (Dµ∆(x))∆∗(x) , (4.6)

from which it follows that the GB kinetic term can be written as:

Tr ((Dµ∆)(Dµ∆)∗) = Tr
(
(DµΣ)(DµΣ)†

)
= −Tr

(
ṼµṼ

µ
)
. (4.7)

Considering the fourteen GBs arising from the SU(5)/SO(5) breaking and described

by Ω(x) (or Σ(x)), the three would-be SM GBs X (x) and the scalar singlet field ϕ(x) can

be split from the other d.o.f. denoted collectively by K(x), by decomposing Ω(x) as [11]:

Ω(x) = e
i
ϕ(x)
2f

X (x)
e
i
K(x)
2f . (4.8)

Strong dynamics effects may induce a heavy mass term for the GBs described by K(x) [10].

The GB field Ω(x), and Σ(x), can then be approximated at energies below f by:

Ω(x) ≈ e
i
ϕ(x)
2f

X (x)
, Σ(x) ≈ e

i
ϕ(x)
f

X (x)
. (4.9)

Furthermore, the explicit breaking of the global high-energy symmetry is assumed to in-

duce a potential for the singlet field ϕ(x), which eventually acquires dynamically a non-

vanishing vev,
ϕ(x)

f
≡ h(x) + 〈ϕ〉

f
=

(
h(x) + 〈ϕ〉

v

)√
ξ , (4.10)

where h(x) refers to the physical Higgs (denoted often simply as h in what follows).

– 13 –



J
H
E
P
1
2
(
2
0
1
4
)
0
3
4

Denoting by X the broken generator along which the EW symmetry breaking occurs,

X =
1

2




0 0 e1
0 0 e2
eT1 eT2 0


 with e1 =

(
1

0

)
, e2 =

(
0

1

)
, (4.11)

the SU(5) embedding of the SM GB fields can be parametrised as

X (x) =
√
2




U

U

1


X




U†

U†

1


 =

1√
2




0 0 U(x)e1
0 0 U(x)e2

(U(x)e1)
† (U(x)e2)

† 0


 , (4.12)

with U(x) defined in eq. (2.1). In the unitary gauge, X =
√
2X. Given the peculiar

structure of the matrix X, the Σ field can be written uniquely in terms of linear and

quadratic powers of X because X 3 = X :

Σ ≡ 1+ i sin

(
ϕ

f

)
X +

(
cos

(
ϕ

f

)
− 1

)
X 2 . (4.13)

The last ingredient needed to fully specify the setup is the embedding of the SM fields

in G. Given the choice of vacuum, the SU(2)L ×U(1)Y generators can be expressed as

Qa
L =

1

2




σa
σa

0


 , QY =

1

2




−12
12

0


 , (4.14)

where in these expressions σa denote the Pauli matrices and the normalisation of the

generators is Tr(QaQa) = 1.

4.2 The low-energy effective EW chiral Lagrangian

One can now substitute the explicit expression for Σ, Ṽµ, W̃µ and B̃µ in the operators

of the high-energy basis in eq. (3.23) and obtain Llow for the Georgi-Kaplan model as a

function of the SM would-be GBs, the light scalar singlet field ϕ(x) and the SM gauge

fields.

4.2.1 The two-derivative low-energy projection

For SU(5)/SO(5), the low-energy projection of the custodial preserving two-derivative op-

erator reads [51]

ÃC ≡ −f2

4
Tr(ṼµṼ

µ) =
4

ξ
sin2

[
ϕ

2f

]
PC + PH , (4.15)

with PC and PH being the operators in Llow defined in eqs. (2.4) and (2.7), respectively.

Having assumed the absence of any sources of custodial breaking besides the SM ones, no

other two-derivative operators arise in the low-energy effective chiral Lagrangian.

Besides giving rise to the (correctly normalised) h kinetic term described by PH , the

operator ÃC intervenes also in the definition of the SM gauge boson masses. To provide a

consistent definition for the SM W mass m2
W ≡ g2v2/4, it is necessary to impose that

ξ ≡ v2

f2
= 4 sin2

〈ϕ〉
2f

, (4.16)
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providing a strict and model-dependent relation between the EW scale v, the vev of the

scalar field ϕ and the NP scale f . Note that in the ξ ≪ 1 limit the usual SM result 〈ϕ〉 = v

is recovered. Using eq. (4.16), the functional dependence on ϕ/f can be nicely translated

in terms of the physical h excitation and the EW scale v, and the following expressions

will be useful later on:

sin

(
ϕ

2f

)
= sin

(
arcsin

(
v

2f

)
+

h

2f

)
=

v

2f
cos

(
h

2f

)
+

√
1− v2

4f2
sin

(
h

2f

)
,

cos

(
ϕ

2f

)
= cos

(
arcsin

(
v

2f

)
+

h

2f

)
=

√
1− v2

4f2
cos

(
h

2f

)
− v

2f
sin

(
h

2f

)
.

(4.17)

4.2.2 The four-derivative low-energy projection

The low-energy projection of the four-derivative effective operators of eq. (3.23) gives:

ÃB =PB ,

ÃW =PW ,

ÃBΣ =− 4 g′2 cos2
[
ϕ

2f

]
PB ,

ÃWΣ =− 4 g2 cos2
[
ϕ

2f

]
PW ,

Ã1 = sin2
[
ϕ

2f

]
P1 ,

Ã2 = sin2
[
ϕ

2f

]
P2 +

√
ξ sin

[
ϕ

f

]
P4 ,

Ã3 =2 sin2
[
ϕ

2f

]
P3 − 2

√
ξ sin

[
ϕ

f

]
P5 ,

Ã4 =4 ξ2PDH + 16 sin4
[
ϕ

2f

]
P6 − 16 ξ sin2

[
ϕ

2f

]
P20 ,

Ã5 =4 ξ2PDH − 16 ξ sin2
[
ϕ

2f

]
P8 + 16 sin4

[
ϕ

2f

]
P11 ,

Ã6 = − 2 ξ P�H − 1

2
sin2

[
ϕ

f

]
P6 + 4 ξ cos2

[
ϕ

2f

]
P8 + 4 sin2

[
ϕ

2f

]
P9+

− 2
√
ξ sin

[
ϕ

f

]
(P7 − 2P10) ,

(4.18)

while the remaining two high-energy operators are not independent when focusing only on

the light GBs remaining at low-energies:

Ã7 =
1

4

(
Ã4 + Ã5

)
, Ã8 =

1

2
Ã5 . (4.19)

The fact that Ã7 and Ã8 do not give independent contributions as they are linear combi-

nations of other high-energy operators is connected with the peculiar structure of the G/H
breaking and has to be inferred case by case. This specific example is similar to the ALF
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case, where it can be proven that traces of four Vµ can be expressed as products of traces

of two Vµ. In resume, Llow for the SU(5)/SO(5) scenario considered here depends on only

eight independent operators, besides the kinetic terms for gauge bosons and GB fields.

It is useful to explicit the dependence on the ϕ field of the expressions in eq. (4.18), so

as to identify easily the correlations to be expected in experimental signals involving the

same number of Higgs external fields, and compare with those involving a different number

of Higgs particles. To illustrate it, let us momentarily adopt a slightly different notation

for the following operators in Llow:

Pi ≡ P̂iν ∂
ν(h/v) for i = 4, 5, 10 ,

P7 ≡ P̂7 ∂ν∂
ν(h/v) ,

P8 ≡ P̂8νµ ∂
µ(h/v)∂ν(h/v) .

(4.20)

The operators Ã2, Ã3 and Ã6 can then be rewritten as

Ã2 =
(
P2 + 2 P̂4ν ∂

ν
)
sin2

[
ϕ

2f

]
,

Ã3 =2
(
P3 − 2 P̂5ν ∂

ν
)
sin2

[
ϕ

2f

]
,

Ã6 = − 2 ξ P�H −
(
1

2
P6 − 4P9 + 4 P̂7 ∂ν ∂

ν − 8 P̂10ν ∂
ν

)
sin2

[
ϕ

2f

]
+

+ 16 P̂8µν ∂
µ sin

[
ϕ

2f

]
∂ν sin

[
ϕ

2f

]
.

(4.21)

This decomposition shows that, for any given number of ϕ external legs, the gauge interac-

tions stemming -for instance- from P2 and P4 in Ã2 combine with a fixed relative weight,

independently of the size of f and of the ratio 〈ϕ〉/f . That relative weight is equal to

that holding for the same set of gauge interactions within the d = 6 operators of the linear

Lagrangian, as it will be discussed in section 7. This correlation is intimately related to

the fact that the ϕ field was embedded as a SU(2)L doublet in the high-energy theory. An

analogous discussion applies to Ã3 and Ã6 in eq. (4.21).

5 The minimal SO(5)/SO(4) composite Higgs model

Most of the recent literature in CH models deals with the minimal SO(5)/SO(4) [15] setup.

The features that make this model appealing are its custodial symmetry approximate con-

servation and its minimality in terms of number of GBs that arise from the global symmetry

breaking: only four to be associated with the SM would-be GBs and the Higgs field.

5.1 Spontaneous SO(5)/SO(4) symmetry breaking setup

The spontaneous SO(5)/SO(4) symmetry breaking can be obtained giving a vev to a scalar

field either in a fundamental or in the symmetric adjoint representation. To resemble most

the discussion of the SU(5)/SO(5) model the latter representation is chosen here. Also for
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this setup, the vacuum can be taken in all generality to be a real, symmetric and orthogonal

5× 5 matrix satisfying eq. (4.1), and a convenient choice is to set

∆0 =

(
14 0

0 −1

)
. (5.1)

As in the previous case, it is then possible to describe the massless excitations around the

vacuum with a symmetric field ∆(x) obtained “rotating” the vacuum with the GB non-

linear field Ω(x): eq. (4.3) also holds here, with g being now a transformation of SO(5).

∆(x) transforms in the adjoint of SO(5), as a consequence of the invariance of the vacuum

under SO(4), and describes only four GBs.

The relations between the vacuum ∆0 and the broken and unbroken generators pre-

sented in eq. (4.4) are valid also for this model, and because of the relations in eq. (4.1)

the excitations around the vacuum can be reparametrised in the Σ-representation as in

eq. (4.5), where now Ω(x) and Σ(x) are given by

Ω(x) = ei
ϕ(x)
2f

X (x) , Σ(x) = ei
ϕ(x)
f

X (x) . (5.2)

The SO(5)/SO(4) generators can be written in a compact form as

(Xâ)ij =
i√
2
(δi5δjâ − δj5δiâ) , â = 1, . . . , 4 , (5.3)

and denoting the broken generator along which the EW symmetry breaking occurs as X4̂,

X4̂ =
i√
2




0 0 0

0 0 −e2
0 eT2 0


 , (5.4)

the GB non-linear field reads

X (x) = − i√
2
Tr (Uσâ)Xâ , â = 1, . . . , 4 , (5.5)

where σâ ≡ {σ1, σ2, σ3, i12} and which reduces to X =
√
2X4̂ in the unitary gauge. Alike

to the case of the Georgi-Kaplan model, the field Σ takes the simple form in terms of

linear and quadratic powers of X shown in eq. (4.13). Finally, with this convention the

embedding of the SU(2)L ×U(1)Y generators in SO(5) reads

Q1
L =

1

2




−iσ1
iσ1

0


 , Q2

L =
1

2




iσ3
−iσ3

0


 ,

Q3
L =

1

2




σ2
σ2

0


 , QY =

1

2




σ2
−σ2

0


 .

(5.6)
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5.2 The low-energy effective EW chiral Lagrangian

Having chosen the explicit realisation of the SO(5)/SO(4) symmetry breaking mechanism

and the representation of the embedding of the SM group charges into SO(5), the substitu-

tion of the explicit expressions for Σ, Ṽµ, W̃µ and B̃µ into the operators of the high-energy

basis in eq. (3.23) produces Llow for the minimal SO(5)/SO(4) CH model, as a function of

the SM would-be GBs and the light scalar resonance ϕ.

The low-energy projection of the SO(5)/SO(4) Lagrangian turns out to be exactly

the same as that for the SU(5)/SO(5) model. This result depends on the strict connection

between SO(5) and SU(5), as indeed the GB matrix fields of the two theories are linked by a

unitary global transformation, once decoupling the extra GBs arising in the SU(5) → SO(5)

breaking. Moreover, the gauging of the SM symmetry represents an explicit breaking of

the global symmetries and it produces the effect of washing out the differences between

the two preserved subgroups, once focusing only on the SM particle spectrum. This also

suggests that any model with the minimal number of GBs that can be arranged in a

doublet of SU(2)L and approximate custodial symmetry will yield the same low-energy

effective chiral Lagrangian regardless of the specific ultraviolet completion.

6 The SU(3)/(SU(2) × U(1)) composite Higgs model

As a final example, the SU(3)/(SU(2) × U(1)) CH model is now considered. As only

four GBs arise from the breaking of the global symmetry, also this model is minimal.

However, contrary to the previously discussed CH models, the preserved subgroup H does

not contain the custodial SO(4) term and therefore no (approximate) custodial symmetry is

embeddable in this model. This feature disfavours phenomenologically the SU(3)/(SU(2)×
U(1)) CH model as large tree-level contributions to the T parameter occur. Nevertheless,

the study of its low-energy projection is instructive in order to discuss the custodial breaking

operators of the effective Lagrangian Llow in eq. (2.9). Indeed, although in the initial high-

energy SU(3)/(SU(2) × U(1)) Lagrangian no extra sources of custodial breaking (besides

the SM ones) are introduced, these operators appear at tree-level in the low-energy effective

Lagrangian.

6.1 Spontaneous SU(3)/(SU(2) × U(1)) symmetry breaking setup

An appropriate choice for the vacuum that breaks SU(3) → SU(2) × U(1) is given by the

following hermitian and orthogonal matrix:

∆0 =

(
12 0

0 −1

)
, (6.1)

that satisfies the relations in eq. (4.1). As in the previous cases, it is then possible to

describe the massless excitations around the vacuum with a unitary field ∆(x) obtained

“rotating” the vacuum with the GB non-linear field Ω(x):

∆(x) = Ω(x)∆0Ω(x)
† , ∆(x) → g∆(x) g† . (6.2)
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As the vacuum is invariant under SU(2)×U(1) transformations, ∆(x) belongs to the adjoint

of SU(3). Being dim(SU(3)/(SU(2)×U(1))) = 4, the field ∆(x) describes the dynamics of

only four GBs, which will be then identified with the longitudinal components of the SM

gauge bosons and the physical Higgs particle. Using the following relations between the

vacuum ∆0 and the broken and unbroken generators,

∆0 Ta∆0 = Ta , ∆0Xâ∆0 = −Xâ , (6.3)

and because of the relations in eq. (4.1), the excitations around the vacuum can be arranged

in the Σ-representation as in eq. (4.5) with Ω and Σ given as in eq. (5.2). Choosing the

following direction of EW symmetry breaking,

X =
1√
2

(
0 e2
eT2 0

)
, (6.4)

it is possible to write the SU(3) embedding of the SM GB fields as

X (x) =
√
2

(
U(x)

1

)
X

(
U(x)†

1

)
=

(
0 U(x)e2

(U(x)e2)
† 0

)
, (6.5)

reducing to X =
√
2X in the unitary gauge. As for the two models previously analysed,

the GB field matrix Σ can be expressed in terms of X as in eq. (4.13). Finally the SU(3)-

embedding of the SU(2)L ×U(1)Y generators are given by

Qa
L =

1

2

(
σa

0

)
, QY =

1

6

(
12

−2

)
, (6.6)

with Tr(Qa
LQ

a
L) = 1 and Tr(QY QY ) = 1/6.

6.2 The low-energy effective EW chiral Lagrangian

By substituting the explicit expressions for Σ, Ṽµ, W̃µ and B̃µ into the operators of the

high-energy basis in eq. (3.23), Llow is obtained for the SU(3)/(SU(2)×U(1)) model as a

function of the SM would-be GBs and the light physical Higgs ϕ.

6.2.1 The two-derivative low-energy projection

The low-energy projection of this CH model, where the custodial symmetry is not approx-

imately conserved, underlines some peculiarities that can be already seen in the resulting

expression for the dimension-two operator ÃC :

ÃC = −f2

4
Tr(ṼµṼ

µ) = PH +
4

ξ
sin2

[
ϕ

2f

]
PC +

2

ξ
sin4

[
ϕ

2f

]
PT . (6.7)

It projects at low-energy not only into the h and GBs kinetic terms as expected, but also

into the two-derivative custodial violating operator PT in eq. (2.4).

Alike to the situation for the models previously studied, ÃC contains the term that

describes the masses of the gauge bosons once the EW symmetry is broken. Requiring

consistency with the definition of the W -mass, the link given in eq. (4.16) among the EW

scale v, the Higgs VEV 〈ϕ〉 and the strong dynamic scale f also follows here.
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6.2.2 The four-derivative low-energy projection

The low-energy projection of the four-derivative operators listed in eq. (3.23) results in the

following decomposition for the SU(3)/(SU(2)×U(1)) model:

ÃB =
2

3
PB ,

ÃW =PW ,

ÃBΣ =− g′2

6

(
1 + 3 cos

[
2ϕ

f

])
PB ,

ÃWΣ =− 2 g2 cos

[
ϕ

f

]
PW + sin4

[
ϕ

2f

]
P12 ,

Ã1 =
1

4
sin2

[
ϕ

f

]
P1 ,

Ã2 =
1

4
sin2

[
ϕ

f

]
P2 +

√
ξ

2
sin

[
2ϕ

f

]
P4 ,

Ã3 =
1

2
sin2

[
ϕ

f

]
P3 − 2

√
ξ sin

[
ϕ

f

]
P5 + 2 sin4

[
ϕ

2f

]
P13 + 2

√
ξ sin

[
ϕ

f

]
sin2

[
ϕ

2f

]
P17 ,

Ã4 =4 ξ2 PDH + 16 sin4
[
ϕ

2f

]
P6 − 16 ξ sin2

[
ϕ

2f

]
P20 + 8 ξ sin4

[
ϕ

2f

]
P21+

− 16 sin6
[
ϕ

2f

]
P23 + 4 sin8

[
ϕ

2f

]
P26 ,

Ã5 =4 ξ2 PDH − 16 ξ sin2
[
ϕ

2f

]
P8 + 16 sin4

[
ϕ

2f

]
P11 + 8 ξ sin4

[
ϕ

2f

]
P22+

− 16 sin6
[
ϕ

2f

]
P24 + 4 sin8

[
ϕ

2f

]
P26 , (6.8)

Ã6 =− 2 ξ P�h −
1

2
sin2

[
ϕ

f

]
P6 − 2

√
ξ sin

[
ϕ

f

]
(P7 − 2P10) + 4ξ cos2

[
ϕ

2f

]
P8+

+ 4 sin2
[
ϕ

2f

]
P9 − 2 sin4

[
ϕ

2f

]
(P15 − 2P16)− 2ξ

(
1 + 2 cos

[
ϕ

f

])
sin2

[
ϕ

2f

]
P22+

+ 2
√
ξ sin

[
ϕ

f

]
sin2

[
ϕ

2f

]
(P18 − 2P19 + P25) + sin2

[
ϕ

f

]
sin2

[
ϕ

2f

]
P23+

− 4 sin6
[
ϕ

2f

]
P24 + 2 sin8

[
ϕ

2f

]
P26 ,

Ã7 =2 ξ2 PDH + 8 sin4
[
ϕ

2f

]
P6 − 4ξ sin2

[
ϕ

2f

]
P8 − 2

√
ξ sin

[
ϕ

f

]
sin2

[
ϕ

2f

]
P18+

− 4ξ sin2
[
ϕ

2f

]
P20 − 2ξ cos

[
ϕ

f

]
sin2

[
ϕ

2f

]
P21 + 2ξ sin2

[
ϕ

2f

]
P22−

− 2

(
3− cos

[
ϕ

f

])
sin4

[
ϕ

2f

]
P23 + sin2

[
ϕ

f

]
sin2

[
ϕ

2f

]
P24 + 2 sin

[
ϕ

2f

]8
P26

The remaining operator in the list in eq. (3.23) is not independent in this case, as it can

be expressed as the combination

Ã8 =
1

2
Ã4 + Ã5 − 2Ã7 , (6.9)
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which in summary implies that the low-energy physical consequences of this model depend

on nine arbitrary coefficients.

7 Matching the high- and the low-energy Lagrangians

The remnant of the GB nature of the Higgs field can be tracked down to the trigonometric

functions that enter into the low-energy EW chiral Lagrangian for the specific CH models:

indeed, one given gauge vertex can involve an arbitrary number of h legs, with a suppression

in terms of powers of the GB scale f . The explicit dependence on the h field is easily

recovered using eq. (4.10) in combination with trigonometric function properties. In the

general Llow basis, the dependence on the h field is encoded into the generic functions

Fi(h) in eq. (2.10) and into some operators which contain derivatives of h. The matching

between the low-energy EW chiral Lagrangian of the specific CH models and the general

Llow basis in eq. (2.9) allows to identify the products ciFi(h) in terms of the high-energy

parameters. The existence of peculiar correlations between the low-energy chiral effective

operators could indeed provide very valuable information when trying to unveil the nature

of the EWSB mechanism [37, 42, 43].

7.1 The SU(5)/SO(5) and SO(5)/SO(4) models

For the specific case of the SU(5)/SO(5) model discussed in section 4 and the terms in its

two-derivative Lagrangian it results

FC(h) =
4

ξ
sin2

[
ϕ

2f

]
, FH(h) = 1 , (7.1)

for the custodial preserving sector, while

cTFT (h) = 0 (7.2)

for the custodial breaking term, as expected from a model which was formulated with an

embedded custodial symmetry.

A superficial look to the ξ dependence of the right-hand side of eq. (4.15) (or equiva-

lently of FC(h) in eq. (7.1)) may raise questions about an apparent unphysical behaviour

for ξ ≪ 1. However, this is not the case as for ξ → 0 eq. (4.15) reduces to

ÃC ≈
[(

1 +
h

v

)2

− ξ

12

h

v

(
1 +

h

v

)(
3 + 3

h

v
+

h2

v2

)
+O(ξ2)

]
PC + PH , (7.3)

with the SM gauge boson-Higgs couplings exactly recovered9 for ξ = 0. This is consistent,

as in this model the three would-be SM GBs and the Higgs field were introduced in a

SU(2)L doublet structure embedded into the SU(5) representation (see eq. (4.12)). Any

deviation from the SM (doublet) predictions should thus appear weighted by powers of ξ.

9Equivalently, rewriting FC(h) in eq. (7.1) as FC(h) = (ϕ2/v2)[sin(x)/x]2 with x ≡
√
ξϕ/(2v) shows

that its ξ → 0 limit is safe, as sin(x)/x is an analytic function for any value of x and in particular x = 0.
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ciFi(h)
SU(5)/SO(5)

SO(5)/SO(4)
SU(3)/SU(2)×U(1) linear d ≤ 6

FC(h)
4
ξ
sin2 ϕ

2f
4
ξ
sin2 ϕ

2f
1 + (v+h)2

2Λ2 cΦ4

FH(h) 1 1 1+ (v+h)2

2Λ2 (cΦ1+2cΦ2+cΦ4)

FB(h) 1−4g′2c̃BΣ cos2 ϕ

2f
1−g′2 c̃BΣ

6

(
1+3 cos 2ϕ

f

)
1 + (v+h)2

2Λ2 g′2cBB

FW (h) 1−4g2c̃WΣ cos2 ϕ

2f
1− 2g2c̃WΣ cos ϕ

f
1 + (v+h)2

2Λ2 g2cWW

c�HF�H(h) −2c̃6ξ −2c̃6ξ
v2

2Λ2 c�Φ

c∆HF∆H(h) − − −

cDHFDH(h) 4 (c̃4 + c̃5) ξ
2 2 (2c̃4 + 2c̃5 + c̃7) ξ

2 −

c1F1(h) c̃1 sin
2 ϕ

2f
c̃1
4
sin2 ϕ

f

(v+h)2

4Λ2 cBW

c2F2(h) c̃2 sin
2 ϕ

2f
c̃2
4
sin2 ϕ

f

(v+h)2

8Λ2 cB

c3F3(h) 2c̃3 sin
2 ϕ

2f
c̃3
2
sin2 ϕ

f

(v+h)2

8Λ2 cW

c4F4(h) c̃2
√
ξ sin ϕ

f

c̃2
2

√
ξ sin 2ϕ

f

v(v+h)

2Λ2 cB

c5F5(h) −2c̃3
√
ξ sin ϕ

f
−2c̃3

√
ξ sin ϕ

f
− v(v+h)

2Λ2 cW

c6F6(h) 16c̃4 sin
4 ϕ

2f
− 1

2
c̃6 sin

2 ϕ

f
8(2c̃4+c̃7) sin

4 ϕ

2f
− 1

2
c̃6 sin

2 ϕ

f

(v+h)2

8Λ2 c�Φ

c7F7(h) −2c̃6
√
ξ sin ϕ

f
−2c̃6

√
ξ sin ϕ

f

v(v+h)

2Λ2 c�Φ

c8F8(h) −16c̃5ξ sin
2 ϕ

2f
+4c̃6ξ cos

2 ϕ

2f
−4(4c̃5+c̃7)ξ sin

2 ϕ

2f
+4c̃6ξ cos

2 ϕ

2f
− v2

Λ2 c�Φ

c9F9(h) 4c̃6 sin
2 ϕ

2f
4c̃6 sin

2 ϕ

2f
− (v+h)2

4Λ2 c�Φ

c10F10(h) 4c̃6
√
ξ sin ϕ

f
4c̃6

√
ξ sin ϕ

f
− v(v+h)

Λ2 c�Φ

c11F11(h) 16c̃5 sin
4 ϕ

2f
16c̃5 sin

4 ϕ

2f
−

c20F20(h) −16c̃4ξ sin
2 ϕ

2f
−4(4c̃4 + c̃7)ξ sin

2 ϕ

2f
−

Table 1. Expressions for the products ci Fi(h) of custodial preserving operators: SU(5)/SO(5)

and SO(5)/SO(4) in the second column, SU(3)/(SU(2)×U(1)) in the third column, and the d = 6

effective linear Lagrangian in the fourth column. The “-” entries indicate no leading order contribu-

tions at low-energy to the corresponding operator. Notice that the kinetic terms are not canonically

normalised at this stage.

For completeness, it may be useful to provide the expression for the FC(h) function in the

notation usually adopted in the literature:10

FC(h) = 1 + 2aC
h

v
+ bC

h2

v2
+ . . . , with aC = 1− ξ

8
, bC = 1− ξ

2
. (7.4)

For the terms in the four-derivative Lagrangian, the expressions for the products ciFi(h)

are reported in table 1 (second column). Some relevant conclusions can be inferred from

these results:

i) All custodial preserving operators entering the low-energy Lagrangian Llow,

eq. (2.10), are generated from the high-energy one Lhigh for the SU(5)/SO(5) CH

10In ref. [51], a slightly different result is reported: aC = 1 − ξ/2 and bC = 1 − 2ξ. This is due to a

different normalisation chosen for the operator ÃC in ref. [51] (see eq. (A.34)). By a redefinition of the

Higgs field, ϕ → ϕ/2, the two expressions for aC and bC coincide.
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model, with the exception of the operator P∆H in eq. (2.8) and FH(h), F�H and

FDH . They cannot be originated due to the GB nature of the ϕ field in that model,

which forbids couplings with an odd number of Goldstone bosons, plus the fact that

the departure from a pure Goldstone boson nature is through its vev 〈ϕ〉 6= 0, and

not from any source containing derivatives.11

ii) All other operators present in L
p4

low in eq. (2.10) and not appearing in table 1 describe

effects of tree-level custodial breaking beyond the SM ones, and are thus absent in

the low-energy SU(5)/SO(5) effective chiral Lagrangian discussed.

iii) The arbitrary functions Fi(h) of the generic low-energy effective chiral Lagrangian

Llow in eq. (2.10) become now a constrained set. Having chosen a specific CH model

reduces the number of free parameters in Llow: sixteen low-energy generic parame-

ters contained in ciFi(h) are now described in terms of the eight high-energy param-

eters c̃i.

As the EW chiral Lagrangian for the minimal SO(5)/SO(4) model is the same of

the one for the SU(5)/SO(5) model, the results presented here also apply to the minimal

SO(5)/SO(4) model.

7.2 The SU(3)/(SU(2) × U(1)) model

The FC(h) and FH(h) functions of the two-derivative low-energy chiral Lagrangian

eq. (2.10) stemming from the high-energy SU(3)/(SU(2)×U(1)) model turn out to be

FC(h) =
4

ξ
sin2

[
ϕ

2f

]
, FH(h) = 1 , (7.5)

for the custodial preserving sector, and thus equal to that for SU(5)/SO(5) and

SO(5)/SO(4) in eq. (7.1). This suggests that they are universal for composite models

in which the Higgs is embedded as a SU(2)L doublet. For the custodial breaking sector,

instead, it results

cTFT (h) =
2

ξ
sin4

[
ϕ

2f

]
, (7.6)

and in this case the coefficient cT is not a free parameter, but is fixed by the high-energy

operator ÃC . In consequence, the experimental bounds on the T parameter [52] translate

into strong constraints on the parameter ξ and on the strong dynamics scale f :

αem∆T =
ξ

4
=⇒ ξ . 0.014 , f & 2 TeV . (7.7)

For the terms in the four-derivative Lagrangian, the expressions for the products

ciFi(h) corresponding to custodial invariant operators are reported in table 1 (third col-

umn), while those corresponding to custodial-breaking ones are collected in table 2.

11Even when fermions will be considered explicitly, it is not expected to result in P∆H generated at low

energies; but the additional fermionic operators expected could be rewritten in terms of P∆H (and other

operators) via EOM. A similar reasoning applies to FH(h), F�H and FDH . We thus keep them here for

generality.
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ciFi(h) SU(3)/(SU(2)×U(1)) ciFi(h) SU(3)/(SU(2)×U(1))

cTFT (h)
2
ξ
sin4 ϕ

2f
c21F21(h) 8c̃4ξ sin

4 ϕ

2f
− 2c̃7ξ cos

ϕ

f
sin2 ϕ

2f

c12F12(h) c̃WΣ sin4 ϕ

2f
c22F22(h) 8c̃5ξ sin

4 ϕ

2f
+ 2ξc̃7 sin

2 ϕ

2f
− 2c̃6ξ sin

2 ϕ

2f

(
1+2 cos ϕ

f

)

c13F13(h) 2c̃3 sin
4 ϕ

2f
c23F23(h) −16c̃4 sin

6 ϕ

2f
+ c̃6 sin

2 ϕ

2f
sin2 ϕ

f
+ 2c̃7 sin

4 ϕ

2f

(
cos ϕ

f
−3

)

c15F15(h) −2c̃6 sin
4 ϕ

2f

c16F16(h) 4c̃6 sin
4 ϕ

2f
c24F24(h) −4(4c̃5 + c̃6) sin

6 ϕ

2f
+ c̃7 sin

2 ϕ

2f
sin2 ϕ

f

c17F17(h) 2c̃3
√
ξ sin2 ϕ

2f
sin ϕ

f
c25F25(h) 2c̃6

√
ξ sin2 ϕ

2f
sin ϕ

f

c18F18(h) 2(c̃6 − c̃7)
√
ξ sin2 ϕ

2f
sin ϕ

f
c26F26(h) 2(2(c̃4 + c̃5) + c̃6 + c̃7) sin

8 ϕ

2f

c19F19(h) −4c̃6
√
ξ sin2 ϕ

2f
sin ϕ

f

Table 2. Expressions for the products ci Fi(h) for the custodial symmetry breaking operators

of SU(3)/(SU(2) × U(1)) CH model. No analogous contributions are present neither for the

SU(5)/SO(5) and SO(5)/SO(4) model, nor for the linear d = 6 effective Lagrangian, but for the

combination cTFT (h) that receives contributions from OΦ1.

Contrary to the case of the two models previously analysed, all custodial preserving

and all custodial breaking operators entering the low-energy Lagrangian Llow in eq. (2.10)

are generated from the high-energy one for the SU(3)/(SU(2)×U(1)) CH model, with the

exception of the operator P∆H in eq. (2.8) and FH(h), F�H and FDH . On the other side,

also in this case the a priori many arbitrary combinations ciFi(h) can be written in terms

of the small set of nine high-energy parameters c̃i.

In summary, a quite universal pattern is suggested by our results as to the form of the

ciFi(h) functions, at least for the custodial preserving sector. Table 1 encompasses the main

results and allows a direct comparison of the low-energy impact of the models considered

(as well as of the BSM physics expected from linear realisations of EWSB). Not only FC(h)

coincides exactly for all three chiral models considered, see eqs. (7.1) and (7.5), but the

ciFi(h) functions for all four-derivative chiral operators do as well, except for the couplings

which involve gauge field-strengths for which the intrinsically custodial-invariant groups

and SU(3)/(SU(2) × U(1)) differ simply by a rescaling of the scale f and multiplicative

factors, see table 1.

7.3 The ξ ≪ 1 limit and the linear effective Lagrangian

As anticipated in section 2, the low-energy effective Lagrangian Llow is suitable to describe

a large class of Higgs models, including the case of a linearly realised EWSB. In the limit of

small ξ, the trigonometric functions containing the Higgs field ϕ can be expanded in Taylor

series. If only the first terms in this expansion are retained, the resulting effective chiral

Lagrangian describes similar interactions as the effective d = 6 linear Lagrangian [53, 54]

— and with similar features. For definiteness, let us refer to a specific basis for the bosonic

sector of the effective d = 6 linear Lagrangian — the so-called Hagiwara-Ishihara-Szalapski-

Zeppenfeld (HISZ) basis [55, 56]. The effective linear Lagrangian including the leading

corrections can be decomposed as the SM part plus a piece containing operators with

canonical dimension d = 6, weighted down by suitable powers of the ultraviolet cut-off
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scale Λ:

Llinear = LSM +∆Llinear , (7.8)

where

∆Llinear =
∑

i

ci
Λ2

Oi , (7.9)

with ci being order one parameters and Oi denoting operators defined as follows [54–56]:

OBB = Φ†B̂µνB̂
µνΦ , OWW = Φ†ŴµνŴ

µνΦ ,

OW = (DµΦ)
†Ŵµν(DνΦ) , OBW = Φ†B̂µνŴ

µνΦ ,

OB = (DµΦ)
†B̂µν(DνΦ) , OΦ,1 = (DµΦ)

†Φ Φ† (DµΦ) ,

OΦ,2 =
1

2
∂µ
(
Φ†Φ

)
∂µ

(
Φ†Φ

)
, OΦ,3 =

1

3

(
Φ†Φ

)3
,

OΦ,4 = (DµΦ)
† (DµΦ)

(
Φ†Φ

)
, O�Φ = (DµD

µΦ)† (DνD
νΦ) ,

(7.10)

with DµΦ ≡
(
∂µ + i

2g
′Bµ + i

2gσiW
i
µ

)
Φ. Among these, OΦ,1 is custodial breaking and OΦ,3

is a pure potential-like Higgs term; assuming custodial symmetry it remains a total of eight

independent operators.12

After the SU(2)L Higgs doublet Φ acquires a vev, 〈Φ〉 = (v + h)/
√
2, the interactions

resulting from this set of linear operators can be also described by Llow in eq. (2.10), with

the products ciFi(h) taking the values shown in the last column of table 1. In the small

ξ limit, the low-energy effective chiral Lagrangian associated to the considered CH models

converges to the linear one, with the correspondence

c̃BΣ → cBB , c̃WΣ → cWW , c̃1 → cBW , c̃2 → cB , c̃3 → cW , c̃6 → c�Φ . (7.11)

The parameters c̃4 and c̃5 are not relevant, because they appear in contributions of order

ξ≥2, that correspond to linear operators of d ≥ 8. Notice in addition that the prod-

ucts ciFi(h) corresponding to custodial-breaking operators and appearing in table 2 are

suppressed by ξ≥2 and are therefore negligible in the small ξ limit. Consistently, the cor-

responding contributions from the effective linear Lagrangian come from operators with

dimensions d ≥ 8. Notice that a complete comparison is only possible in the basis where

the kinetic terms are canonical: in table 1, FH(h) is 1 for the CH models, but not for the

linear Lagrangian.

Eq. (6.8) together with the decomposition in eq. (4.21) allow to appreciate the coin-

cidences and the differences between the low-energy effective chiral Lagrangian and the

effective linear one: i) the gauge interactions stemming from some chiral operators com-

bine with fixed weights, even for large ξ values, which are precisely those predicted by

the linear Lagrangian (see table 1); this is because the ϕ field was embedded in the high

energy theory as a SU(2)L doublet; ii) the low-energy differences stem from the h depen-

dence, given via functions of sin [(〈ϕ〉+ h)/2f ] for the low-energy chiral Lagrangian versus

12The original HISZ basis includes in addition the gluonic operator OGG = Φ†ΦGa
µνG

aµν , which is not

considered here as only the EW sector is analysed in this paper.
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powers of (v + h) /2 for linear realisations of BSM theories. Therefore, although the num-

ber of free parameters is the same in the two Lagrangians, the h-couplings have different

dependencies [35, 44].

To illustrate it, consider the OB operator of the linear realisation. Expressing Φ in

terms of the GB matrix U and the physical scalar h,

Φ =
(v + h)√

2
U

(
0

1

)
, (7.12)

OB can be rewritten in the chiral notation as

OB =BµνTr(T[Vµ,Vν ])
(v + h)2

4
+BµνTr(TVµ)∂ν (v + h)2

4

=
(
P2 + 2 P̂4ν ∂

ν
) (v + h)2

4
,

(7.13)

to be compared with Ã2 in eq. (4.21). This pattern is general for the complete set of

operators: same gauge couplings as in d = 6 linear basis for a fixed number of h legs, while

the relative strength of couplings involving different number of h external legs differs from

that in linear expansions. The results support the approach to the effective Lagrangian

for composite Higgs models based in the linear expansion in ref. [54–57] only if the Higgs

is assumed to be a pure SU(2)L doublet. Indeed in this case ξ ≪ 1 and the trigonometric

dependence on h reduces exactly to the linear one, as sin2(ϕ/f) = ξ(1+h/v)2+O(ξ2) and

the higher order terms in ξ can be safely neglected.

Promising discriminating signals include then some pure-gauge versus gauge-Higgs

couplings [37, 42, 43], whose precise form we have determined here for the specific CH

models considered. The strength of this type of departures from the SM expectations

depends on ξ and therefore the larger ξ the sooner it will be possible to disentangle at

colliders a composite from an elementary nature of the Higgs particle.

For the more general case in which the observed light Higgs particle is not an exact

SU(2)L doublet, linear d = 6 expansions will be insufficient to describe the leading correc-

tions. There are then more independent parameters, as given by the general low-energy

non-linear Lagrangian [36, 37, 42], and further decorrelations are expected, including among

vertices with the same number of Higgs legs.

8 Conclusions

For a simple group G broken to a subgroup H, we have constructed the effective chiral La-

grangian for a generic symmetric coset G/H, restricting to CP-even bosonic operators with

at most four derivatives: at most seven independent operators result, aside from the kinetic

terms. After gauging the SU(2)L×U(1)Y symmetry and considering the induced custodial

symmetry breaking terms, the total number of operators increases up to ten, plus three ki-

netic terms. This finding is independent of the specific choice of G. It applies to composite

Higgs scenarios in which the Higgs particle is a pseudo-Goldstone boson of the spontaneous

breaking of G, irrespective of the SU(2)L representation to which it may belong.
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One consequence is that for any composite model in which the Higgs is embedded as a

Goldstone boson of the high-energy theory, we predict strong relations among the dozens

of low-energy parameters of the general low-energy effective chiral Lagrangian with a light

Higgs particle.

Under the assumptions of no new sources of custodial non-invariance other than the SM

gauge ones, we then particularised to the case of three specific composite Higgs models:

two intrinsically custodial-preserving ones, SU(5)/SO(5) and SO(5)/SO(4), and another

which by construction breaks custodial symmetry, SU(3)/(SU(2) × U(1)). For the latter

group the number of independent operators is nine (aside from possible sources of explicit

subsequent breaking and from kinetic terms), while for the former two groups it is eight.

This analysis has allowed to confirm that the general low-energy Lagrangian for a

dynamical Higgs particle developed in refs. [36, 42] is complete: all operators of that basis

and nothing else result at low-energies. The exceptions are P∆H in eq. (3.19) and FH(h),

F�H and FDH , which are not generated: these couplings are forbidden by the original

Goldstone boson nature of the Higgs particle, and also by the particular way in which the

global symmetry is subsequently explicitly broken in the models considered (as a vev for

the Higgs particle). The results of the sigma decomposition confirm as well the powers of

ξ predicted in ref. [36, 42] as weights for each operator of the low-energy effective chiral

Lagrangian, allowing an immediate comparison with linear expansions. Note that, for the

scalar sector, a different and fully model-independent proof of the completeness of that

effective Lagrangian is provided by the recent analysis in ref. [58] of one-loop induced

four-derivative counterterms.

The present work also sheds light on the relevance of the Higgs particle being a Gold-

stone boson embedded as a part of an SU(2)L doublet in a representation of the high-energy

group, versus scenarios in which it is also a Goldstone boson albeit a SU(2) singlet, or the

most general case in which h is a generic singlet scalar, such as a Higgs “impostor”, or a

dilaton or a dark sector scalar. Data strongly suggest that h belongs to an electroweak

doublet and it is thus especially interesting to further explore the consequences of this

restriction for BSM physics. Our results show that:

i) For vertices with a fixed number of external Higgs legs, the gauge couplings combine

with the same relative weights as in the case of the d = 6 linear effective Lagrangian

for BSM physics. This is so irrespective of the size of ξ for the intrinsically custodial

preserving groups considered, while for the SU(3)/(SU(2)×U(1)) model it only holds

at leading order in ξ.

ii) Conversely, vertices with different number of h external legs get different relative

weights than in linear realisations of BSM physics. While the latter show a generic

polynomial Higgs dependence on (v+h) and its derivatives, composite Higgs models

induce a functional ciFi(h) dependence in the effective Lagrangian. We have explicitly

determined all ciFi(h) functions of the low-energy effective Lagrangian up to four-

derivative couplings, for the three composite models considered.
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iii) The determined Fi(h) are trigonometric functions, as befits a Goldstone boson origin

of the Higgs field, and it is tantalising that they turn out to be basically exactly equal

for the three models considered, except in the set of operators which include gauge

field strengths; even the latter differ at most by a rescaling of f (aside from custodial

breaking ingredients).

The latter point suggests that the Fi(h) determined here may be universal to any com-

posite Higgs model. Table 1 encompasses the main results and allows a direct compar-

ison of the low-energy impact of the composite Higgs models considered (as well as of

BSM linear realisations of EWSB). This universality may be very relevant for the analysis

of experimental data, as it predicts the precise form in which anomalies in Higgs-gauge

couplings and self-couplings would point to composite Higgs models, and in an almost

model-independent way.

The present work illuminates as well the relation between non-linear realisations of

electroweak symmetry breaking with a light Higgs embedded as an electroweak doublet of

the high-energy strong dynamics, and linear ones. The former approximates the latter when

the strong dynamics scale grows, that is for ξ → 0. We have shown here that the precise

-and almost universal- Fi(h) functions determined for three composite Higgs models shows

the specific form of the convergence towards the Higgs dependence of linear realisations, in

the limit ξ ≪ 1.

If the Higgs particle is a Goldstone boson of the high-energy group, although not an

electroweak doublet -for instance a singlet- then point i) above would not hold: while the

number of arbitrary operator coefficients would still be restricted to the small number

predicted for a generic symmetric coset, the relative weight of gauge couplings for a fixed

number of external h legs would be different with respect to that in linear analysis [54–57],

with gauge decorrelations predicted alike to those in refs. [36, 42, 43]. Finally, for the com-

pletely general case in which the Higgs field is a generic SM scalar singlet at low energies,

again the linear-based analysis is not an appropriate tool as both the relative weights of

gauge couplings with and without the same number of h legs are completely free parame-

ters, described (in the absence of a concrete model) by the most general low-energy bosonic

effective Lagrangian for a dynamical Higgs [36, 42]. Further experimental decorrelations

and signals follow in these last two cases [42, 43]. It is particularly relevant to keep track-

ing the possible non-doublet components of the Higgs particle, in view of the present large

error bars and the theoretical challenge set by the electroweak hierarchy problem.
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A The Ω-representation

The CCWZ construction allows to identify a non-redundant parametrisation of the GB

fields arising from the breaking G → H in terms of the GB matrix Ω, or in terms of Σ.

Although the choice between the Ω-representation or the Σ-representation is not discrim-

inant to construct the most general effective Lagrangian for the G/H coset, much of the

CH models in the literature have been presented in the Ω-representation. In the follow-

ing, we will rewrite the effective Lagrangians in eqs. (3.16)–(3.18) and in eq. (3.20) in

the Ω-representation and compare them with other effective Lagrangians presented in the

literature for the case of SO(5)/SO(4) model.

A.1 The high-energy effective chiral Lagrangian

The building blocks used to construct the effective Lagrangian in eqs. (3.16)–(3.18) are

the gauge field strength S̃µν and the vector chiral field Ṽµ, which in the Σ-representation

transform in the adjoint of the group G (see eqs. (3.11) and (3.10), respectively). To move

to the Ω-representation, it is then necessary to translate S̃µν and Ṽµ, and their graded

versions, into building blocks that transform in the adjoint of the preserved subgroup H.

The GB matrix Ω can be exploited to this end:

sµν ≡ Ω−1 S̃µν Ω , vµ ≡ Ω−1 ṼµΩ = Ω−1DµΩ− ΩDµΩ
−1 ,

sRµν ≡ Ω S̃R
µν Ω

−1 , vRµ ≡ Ω ṼR
µ Ω−1 = ΩDµΩ

−1 − Ω−1DµΩ .
(A.1)

From the relation vµ+vRµ = 0, one can deduce that vµ runs only over the broken generators

and not over the preserved ones. It is then useful to introduce the following notation:

Ω−1DµΩ ≡ vµ
2

+ i pµ =
vâµ
2

Xâ + i paµ Ta , (A.2)

with vµ and pµ transforming under H as:

vµ → h vµ h
−1 , pµ → h (pµ − i∂µ) h

−1 . (A.3)

The field pµ transforms as a connection and therefore it is possible to define the extended

covariant derivative of vµ as

∇µvν = Dµvν + i[eµ, vν ] . (A.4)
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From eq. (A.1), if follows that

vRµ = −vµ , (A.5)

and therefore the list of building blocks necessary to construct the effective Lagrangian in

the Ω-representation reduces to only three elements: {vµ, sµν , sRµν}.
The high-energy basis for a generic symmetric coset G/H in the custodial preserving

framework presented in eqs. (3.16)–(3.18) reads in the Ω-representation:

Tr
(
ṼµṼ

µ
)
→ Tr (vµv

µ) ,

Tr
(
S̃µνS̃

µν
)
→ Tr (sµνs

µν) ,

Tr
(
ΣS̃R

µν Σ
−1 S̃µν

)
→ Tr

(
sRµνs

µν
)
,

Tr
(
S̃µν

[
Ṽµ, Ṽν

])
→ Tr (sµν [v

µ, vν ]) ,

Tr
(
Ṽµ Ṽ

µ
)
Tr
(
Ṽν Ṽ

ν
)
→ Tr (vµ v

µ) Tr (vν v
ν) ,

Tr
(
Ṽµ Ṽν

)
Tr
(
Ṽµ Ṽν

)
→ Tr (vµ vν) Tr (v

µ vν) ,

Tr
(
(DµṼ

µ)2
)
→ Tr

(
(∇µv

µ)2
)
,

Tr
(
Ṽµ Ṽ

µṼν Ṽ
ν
)
→ Tr (vµ v

µ vν v
ν) ,

Tr
(
Ṽµ ṼνṼ

µ Ṽν
)
→ Tr (vµ vν v

µ vν) .

(A.6)

In realistic realisations of CH models only the SM gauge group is gauged, and in this

case the previous basis is augmented by operators constructed with

bµν ≡ Ω−1Bµν Ω , and wµν ≡ Ω−1Wµν Ω , (A.7)

in substitution of those containing explicit gauge field strength sµν . As a result, the effective

Lagrangian in eq. (3.20) reads in the Ω-representation:

ÃC → −f2

4
Tr (vµv

µ) , Ã3 → gTr (wµν [v
µ, vν ]) ,

ÃB → g′2Tr (bµνb
µν) , Ã4 → Tr (vµ v

µ) Tr (vν v
ν) ,

ÃW → g2Tr (wµνw
µν) , Ã5 → Tr (vµ vν) Tr (v

µ vν) ,

ÃBΣ → g′2Tr
(
bRµνb

µν
)
, Ã6 → Tr

(
(∇µv

µ)2
)
,

ÃWΣ → g2Tr
(
wR
µνw

µν
)
, Ã7 → Tr (vµ v

µ vν v
ν) ,

Ã1 → gg′Tr
(
bRµνw

µν
)
, Ã8 → Tr (vµ vν v

µ vν) .

Ã2 → g′Tr (bµν [v
µ, vν ]) ,

(A.8)

where bRµν ≡ ΩBµν Ω
−1 and wR

µν ≡ ΩWµν Ω
−1, and the gauge constants g and g′ have

been explicitly reported.
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A.2 SO(5)/SO(4) model in the Ω-representation by refs. [49,57]

An effective Lagrangian for the SO(5)/SO(4) CH model has been explicitly derived in the

Ω-representation in refs. [51, 59], even if slightly different operator bases have been reported

in the two articles. Furthermore, a different notation has been adopted in these references

with respect to the notation used in this paper. In this section, we will comment on the

differences among the two bases in refs. [51, 59]. In the next section, we will discuss the

different notations used and compare between the operators basis in ref. [51] and the one

presented in appendix A.1.

Equivalently to the definition in eq. (A.2), it is possible to introduce the following

expression, according to refs. [51, 59],

− i U−1DµU ≡ dµ + eµ = dâµXâ + eaµ Ta , (A.9)

where U stands for the GB matrix of the SO(5)/SO(4) coset, defined in eq. (11) of ref. [51],

and dµ and eµ transform under a global transformation of H = SO(4) as

dµ → h dµ h−1 , eµ → h (eµ − i ∂µ) h
−1 . (A.10)

The field eµ transforms as a connection, opening the possibility to define the field strength

eµν ≡ ∂µeν − ∂νeµ + i [eµ, eν ] , (A.11)

and the extended covariant derivative of dµ as

∇µdν = Dµdν + i [eµ, dν ] , (A.12)

where the covariant derivative Dµdν is defined in terms of the gauge fields Fµ associated

to the gauging of a subgroup SO(4)′ of SO(5):

Dµdν = ∂µdν + i gS Fµ dν . (A.13)

It is then possible to introduce the Fµν gauge field strength, albeit transforming in the

adjoint of the group SO(4):

fµν = Ω−1 FµνΩ , fµν → h fµν h
−1 ,

fR
µν = ΩFR

µνΩ
−1 , fR

µν → h fR
µν h

−1 ,
(A.14)

where in the second line the graded version of the gauge field strength is shown. The gauge

field strength can be expressed in the same notation as that in eq. (A.9), i.e. distinguishing

between the preserved and the broken parts:

f+
µν =

fµν + fR
µν

2
, f−

µν =
fµν − fR

µν

2
. (A.15)

The preserved part of the field strength f+
µν and the covariant field eµν are related by an

identity,

eµν = f+
µν − i [dµ, dν ] , (A.16)
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and, as a consequence, there is a certain degree of freedom in the choice of the building

blocks necessary to construct the Lagrangian: two distinct sets of covariant objects can be

adopted, either {f+
µν , f

−
µν , dµ} or {eµν , f−

µν , dµ}.
Since SO(4) is isomorphic to SU(2)L×SU(2)R, the custodial symmetry is embeddable

in this model. However, as it is explicitly broken by the gauging of the SM group, the

left and the right components of the covariant objects defined just above can be treated

independently, adding more freedom in writing the effective Lagrangian. The following

structures can then be introduced:

f+
µν = fL

µν + fR
µν , f̂+

µν = fL
µν − fR

µν ,

eµν = eLµν + eRµν , êµν = eLµν − eRµν ,
(A.17)

with the obvious relations

eLµν = fL
µν − i [dµ, dν ]L , eRµν = fR

µν − i [dµ, dν ]R . (A.18)

These covariant terms complete the list of building blocks necessary to write the effective

chiral Lagrangian up to four derivatives for the SO(5)/SO(4) model in the Ω-representation:

i) The kinetic term for the GBs is described by the operator

L(2) =
f2

4
Tr (dµd

µ) . (A.19)

ii) The kinetic terms for the gauge fields are described by the operator

Ok = Tr[fµνf
µν ] = Tr[fL

µνf
µν
L ] + Tr[fR

µνf
µν
R ] + Tr[f−

µνf
µν
− ] ≡ L2 + R2 + B2 (A.20)

where the definition for L, R, and B can be easily deduced. In the following, the

compact notation L, R, and B will be adopted for shortness when necessary.

iii) The following two operators describing gauge-GB interactions,

O1 = Tr (dµd
µ) Tr (dνd

ν) , O2 = Tr (dµdν) Tr (d
µdν) , (A.21)

belong to the operator basis presented both in ref. [51] and in ref. [59].

iv-a) In ref. [51], focussing only on CP-even operators with at most four derivatives, the

following list has been considered:

O3 = Tr (êµνe
µν) = Tr

(
(eLµν)

2 − (eRµν)
2
)
,

O+
4 = iTr

(
f+
µν [d

µ, dν ]
)
= iTr

(
(fL

µν + fR
µν) [d

µ, dν ]
)
,

O−
4 = iTr

(
f̂+
µν [d

µ, dν ]
)
= iTr

(
(fL

µν − fR
µν) [d

µ, dν ]
)
,

O+
5 = Tr

(
(f−

µν)
2
)
,

O−
5 = Tr

(
f̂+
µνf

+µν
)
= Tr

(
(fL

µν)
2 − (fR

µν)
2
)
.

(A.22)
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Although two additional operators with four dµ fields could be included in general,

O+
1a = Tr ([dµ, dν ] [d

µ, dν ]) = Tr
(
([dµ, dν ]L)

2 + ([dµ, dν ]R)
2
)
,

O−
1a = Tr

(
([dµ, dν ]L)

2 − ([dµ, dν ]R)
2
)
,

(A.23)

in the particular case of SO(5)/SO(4) CH model these operators are redundant or

vanishing:

O+
1a =

1

2
(O2 −O1) , O−

1a = 0 . (A.24)

It is useful to rewrite the operators in eqs. (A.22) and (A.23) in terms of the SU(2)L×
SU(2)R projections. Defining for shortness,

LDL = iTr
(
fL
µν [dµ, dν ]L

)
, RDR = iTr

(
fR
µν [dµ, dν ]R

)

D2
L
= Tr ([dµ, dν ]L [dµ, dν ]L) , D2

R
= Tr ([dµ, dν ]R [dµ, dν ]R) ,

(A.25)

it is possible to write:

O3 = L2 − R2 − 2 (LDL − RDR) + (D2
L
− D2

R
) ,

O+
4 = (LDL + RDR) ,

O−
4 = (LDL − RDR) ,

O+
5 = B2 ,

O−
5 = L2 − R2 ,

O+
1a = D2

L
+ D2

R
=

1

2
(O2 −O1) ,

O−
1a = D2

L
− D2

R
= 0 .

(A.26)

The set of operators {L(2),Ok,O1,O2,O+
4 ,O−

4 ,O+
5 ,O−

5 } constitutes a basis for the

SO(5)/SO(4) CH model, while the invariants {O3,O+
1a,O−

1a} are redundant or van-

ishing. In particular, contrary to what is stated in ref. [51], O3 is not an independent

operator of the basis as it can be expressed as a linear combination of other operators:

O3 = O−
5 − 2O−

4 . (A.27)

iv-b) The operator basis for the SO(5)/SO(4) CH model presented in ref. [59] is slightly

different. Besides L(2), Ok, O1 and O2, the operators in eq. (A.22) have been substi-

tuted by the following ones:13

O′+
3 = Tr (eµν e

µν) = Tr
(
(eLµν)

2 + (eRµν)
2
)
,

O′−
3 ≡ O3 = Tr (êµν e

µν) = Tr
(
(eLµν)

2 − (eRµν)
2
)
,

O′+
4 = iTr (eµν [d

µ, dν ]) = iTr
(
(eLµν + eRµν) [d

µ, dν ]
)
,

O′−
4 = iTr (êµν [d

µ, dν ]) = iTr
(
(eLµν − eRµν) [d

µ, dν ]
)
,

O′
5 ≡ O−

1a = Tr
(
([dµ, dν ]L)

2 − ([dµ, dν ]R)
2
)
.

(A.28)

13The operators of the basis in ref. [59] will be denoted with a “ ′ ” to avoid confusion with the ones in

ref. [51].
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By rewriting these operators in terms of the SU(2)L × SU(2)R projections, it fol-

lows that
O′+

3 = L2 + R2 − 2 (LDL + RDR) + (D2
L
+ D2

R
) ,

O′−
3 = L2 − R2 − 2 (LDL − RDR) + (D2

L
− D2

R
) ,

O′+
4 = (LDL + RDR) + D2

L
+ D2

R
,

O′−
4 = (LDL − RDR) + D2

L
− D2

R
,

O′
5 = D2

L
− D2

R
= 0 .

(A.29)

With respect to the basis in ref. [51], the operator O′−
3 = O3 should now be taken

as part of the basis, as it is the only one containing the combination L2 − R2 (O−
5

does not have a counterpart in this basis). The total number of operators entering

the basis is the same as in the previous case: {L(2),Ok,O1,O2,O′+
3 ,O′−

3 ,O′+
4 ,O′−

4 },
as O′

5 is automatically vanishing.

A.3 Comparison with the basis in ref. [49]

As described in ref. [51], the EWSB is induced due to a misalignment between the SO(4)

subgroup, left unbroken in the global SO(5) breaking, and the SO(4)′ subgroup that con-

tains the SM gauged group. A rotation between these two directions can be defined and it

can be parametrised by an angle θ. Accordingly, the SO(4) generators and the SO(4)′ ones

are connected to each other through the rotation Rθ and, to recover the results in eq. (13)

of ref. [51], the following relation between the GB matrices U , introduced in appendix A.2,

and Ω should be adopted:

U = ΩR†
θ , (A.30)

and it follows that

U †DµU = Rθ

(
Ω†DµΩ

)
R†

θ −→ dµ = − i

2
Rθ vµR

†
θ , eµ = Rθ pµR

†
θ . (A.31)

Furthermore, a link between the gauge field strengths sµν and fµν can be found:

fµν = Rθ sµν R
†
θ . (A.32)

It is now possible to identify the relation among the operator basis in ref. [51] and re-

ported in eq. (A.26) (excluding the redundant operator O3) and the operators in eqs. (A.6)

and (A.8). A similar discussion can be performed for the operators basis in ref. [59]. Fo-

cussing to the case in which the full group SO(5) is gauged, i.e. any source of custodial

breaking, SM or beyond, is neglected, it follows that the two bases are equivalent:

L(2) → −f2

16
Tr (vµ v

µ) ,

Ok → Tr (sµνs
µν) ,

O1 →
1

16
Tr (vµ v

µ) Tr (vµ v
µ) ,

O2 →
1

16
Tr (vµ vν) Tr (v

µ vν) ,

O+
4 → − i

4
Tr (sµν [v

µ, vν ]) ,

O+
5 → 2Tr (sµνs

µν)− 2Tr
(
sRµνs

µν
)
.

(A.33)
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Indeed the last three operators in eq. (A.6), that do not appear in the list above, are

vanishing or redundant due to the fact that fermions are neglected in ref. [51] and due to

the algebra of the SO(4) generators (see appendix A.2).

In the case in which only the SM symmetry is gauged, introducing then an explicit

breaking of the custodial symmetry due to the hypercharge group, the two bases do not

coincide anymore:

L(2) → 1

4
ÃC ,

Ok → ÃB + ÃW ,

O1 →
1

16
Ã4 ,

O2 →
1

16
Ã5 ,

O+
4 → −1

4

(
Ã2 + Ã3

)
,

O−
4 → 1

4

(
Ã2 − Ã3

)
,

O+
5 → 2

(
ÃB + ÃW

)
− 2

(
ÃBΣ + ÃWΣ + 2Ã1

)
,

O−
5 → −ÃB + ÃW .

(A.34)

The operators L(2), O1 and O2 are in a one-to-one correspondence with the operators ÃC ,

Ã4 and Ã5; the two operators Ok and O−
5 (O+

4 and O−
4 ) are connected to two linear inde-

pendent combinations of ÃB and ÃW (Ã2 and Ã3); finally, the operator O+
5 is connected

with a linear combination of five operators of the basis in eq. (A.8), identifying therefore a

relation among ÃBΣ, ÃWΣ and Ã1.

In summary, the analysis in this appendix has clarified the connection with previ-

ous literature. The differences between the basis presented here and that in ref. [51] are

understood in terms of the different sources of custodial breaking assumed:

- Ref. [51] describes an explicit breaking of the SO(4) subgroup (this is encoded in

their definition of f̂+
µν). As a result, their basis is composed of eight independent

operators.

- This work instead implements an explicit breaking of SO(4)′ in the language of

ref. [51]. This originates from treating independently the gauge fields Wµ and Bµ.

This choice closely follows the approach of Appelquist and Longhitano of considering

all possible SM SU(2)L × U(1)Y invariant operators: operators ÃWΣ and ÃBΣ arise

then as independent structures. As a consequence, the basis requires ten independent

operators.
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[41] G. Buchalla, O. Catà and C. Krause, Complete Electroweak Chiral Lagrangian with a Light

Higgs at NLO, Nucl. Phys. B 880 (2014) 552 [arXiv:1307.5017] [INSPIRE].

[42] I. Brivio et al., Disentangling a dynamical Higgs, JHEP 03 (2014) 024 [arXiv:1311.1823]

[INSPIRE].

[43] I. Brivio et al., Higgs ultraviolet softening, arXiv:1405.5412 [INSPIRE].

[44] G. Isidori and M. Trott, Higgs form factors in Associated Production, JHEP 02 (2014) 082

[arXiv:1307.4051] [INSPIRE].
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CHAPTER 7

The complete HEFT Lagrangian after the LHC Run I

This Chapter contains the publication in Ref. [31]. This work extends the analysis of Ref. [28] (Chapter 4)
with the addition of fermionic operators and of CP-odd interactions. The basis for the bosonic sector has
been obtained merging the sets of Refs. [28] (CP-even) and Ref. [105] (CP-odd), while the invariants for the
fermionic sectors have been constructed independently, assuming baryon and lepton number conservation.
Subsequently, the equations of motion have been employed to remove redundancies across the two sectors,
leaving a complete basis composed, altogether, of 148 independent flavor-blind operators (188 if right-handed
neutrinos are included in the spectrum), listed in Sec. 2 of this chapter. The correspondence between this
basis and the linear d = 6 ones in Refs. [98] and [111, 112] is reported in Table 9.

Sec. 3 contains a phenomenological study that follows the same lines as that in Chapter 4. In this case,
electroweak precision data allow to constrain up to 8 combinations of fermionic operators, plus 3 bosonic
ones. An interesting feature is the simultaneous presence of independent contributions to the oblique
parameter U and to the Fermi constant GF . This condition creates a blind direction in the parameter
space that eventually weakens the bounds on T and U by more than a factor 20 compared to the results
of the standard fit reported in Eq. (2.2.55). The impact on Higgs physics has been studied with a fit
similar to that in Chapter 4 but with an enlarged parameter space: here we include the three heavy Yukawa
couplings Yt, Yb, Yτ and the coefficient a17 that enters ZZh and Zγh couplings. As for the discriminating
signals between the two EFTs, it is worth noticing how the improvement in Higgs data (in particular the
information from kinematic distributions in Higgs decays) impacts on the bounds drawn in Fig. 3, compared
to the same plot produced two years earlier, namely Fig. 2 of Chapter 4. Finally, this work contains the
first systematic analysis of the validity of the chiral EFT, illustrated in Sec. 4 of this chapter.

A final remark: the notation adopted here differs slightly from that of Chapter 4: the explicit dependence
on the ξ parameter has been omitted and the operators have been normalized according to the prescriptions
of Naive Dimensional Analysis. Moreover, the bosonic operators PC and PH are not present due to a
different choice in the parameterization of the LO Lagrangian. Another major difference with Ref. [28]
originates from a modification in the counting rules adopted in the construction of the NLO basis, which
in this case is based on the results of Ref. [103], that were not available at the time of publication of the
previous paper. The main adjustment is the inclusion in the NLO basis of the operators PWWW and PGGG,
in spite of the fact that they technically contain six derivatives. More details can be found in the text.
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Abstract

The complete effective chiral Lagrangian for a dynamical Higgs is presented and
constrained by means of a global analysis including electroweak precision data to-
gether with Higgs and triple gauge boson coupling data from the LHC Run I. The
operators’ basis up to next-to-leading order in the expansion consists of 148 (188 con-
sidering right-handed neutrinos) flavour universal terms and it is presented here mak-
ing explicit the custodial nature of the operators. This effective Lagrangian provides
the most general description of the physical Higgs couplings once the electroweak
symmetry is assumed, and it allows for deviations from the SU(2)L doublet nature
of the Standard Model Higgs. The comparison with the effective linear Lagrangian
constructed with an exact SU(2)L doublet Higgs and considering operators with at
most canonical dimension six is presented. A promising strategy to disentangle the
two descriptions consists in analysing i) anomalous signals present only in the chiral
Lagrangian and not expected in the linear one, that are potentially relevant for LHC
searches, and ii) decorrelation effects between observables that are predicted to be
correlated in the linear case and not in the chiral one. The global analysis presented
here, that includes several kinematic distributions, is crucial for reducing the allowed
parameter space and for controlling the correlations between parameters. This im-
proves previous studies aimed at investigating the Higgs Nature and the origin of the
electroweak symmetry breaking.

ar
X

iv
:1

60
4.

06
80

1v
1 

 [
he

p-
ph

] 
 2

2 
A

pr
 2

01
6



Contents

1 Introduction 2

2 The Complete HEFT Lagrangian 4
2.1 The NLO Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 NLO basis: bosonic sector ∆Lbos . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 CP even bosonic basis ∆L CP
bos . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 CP odd bosonic basis ∆L��CP
bos . . . . . . . . . . . . . . . . . . . . . 11

2.3 NLO basis: fermionic sector ∆Lfer . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Single fermionic current ∆L2F . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Four-fermion operators ∆L4F . . . . . . . . . . . . . . . . . . . . . 15

2.4 Comparison with the SMEFT basis . . . . . . . . . . . . . . . . . . . . . . 17

3 Phenomenology 20
3.1 Renormalisation procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Constraints from EWPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Effects in Higgs Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Triple gauge boson couplings and Higgs interplay . . . . . . . . . . . . . . 30

4 Higher order operators and expansion validity 33

5 Conclusions 36

A Additional operators in presence of RH neutrinos 38

B Removal of F(h) from the Higgs and fermions kinetic terms 39

C Construction of the fermionic basis 41
C.1 Useful identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
C.2 Construction of ∆L2F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
C.3 Construction of ∆L4F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

D Application of the Equations of Motion 46

E Feynman rules 49

1



1 Introduction

The discovery of a resonance at LHC [1, 2] compatible with the Standard Model (SM)
scalar boson (“Higgs” for short) [3–5] opened a new era in particle physics. Now, the
on going LHC measurements of the Higgs properties are a crucial step to understand the
nature of the Higgs boson and of the Electroweak (EW) symmetry breaking (EWSB).

Without entering into details of specific scenarios, the formalism of Effective Field The-
ories (EFT) represents an optimal tool for studying the phenomenology of the Higgs sector.
In particular, an appropriate description of scenarios in which the Higgs belongs to an ele-
mentary SU(2) doublet is provided by the Standard Model EFT (SMEFT). This consists
of operators constructed with the SM spectrum, invariant under the Lorentz and SM gauge
symmetries and respecting an expansion in canonical mass dimensions d. Assuming lepton
and baryon number conservation, the first corrections to the SM are provided by operators
of dimension six [6, 7], suppressed by two powers of the cutoff scale Λ. Weakly coupled
theories are the typical underlying scenarios that can be matched to the SMEFT (also
referred to as “linear” Lagrangian) at low energy.

Scenarios where the Higgs does not belong to an elementary exact SU(2)L doublet are
still allowed within the current experimental accuracy. This is the case, for example, of
Composite Higgs models [8–12] or dilaton constructions [13, 14]. It is then fundamental
and necessary to identify observables that allow to disentangle these different possibilities.
When the Higgs is not required to belong to an exact EW doublet, instead, a useful tool is
the so-called Higgs EFT (HEFT) (also dubbed “chiral” Lagrangian). The main difference
between SMEFT and HEFT resides in the fact that, in the latter formalism, the physical
Higgs h and the ensemble of the three EW Goldstone bosons ~π are treated as independent
objects, rather than being collectively described by the Higgs doublet. In particular, the
physical Higgs h is assigned to a singlet representation of the SM gauge groups. The
Goldstone bosons’ sector has been studied deeply in the past [15–18] in the context of
Higgs-less EWSB scenarios. These works were the first to describe the GBs by means
of a dimensionless unitary matrix transforming as a bi-doublet of the global symmetry
SU(2)L × SU(2)R,

U(x) ≡ eiσaπ
a(x)/fπ , U(x)→ LU(x)R† , (1.1)

being fπ the scale associated to the SM GBs, and L, R the SU(2)L,R transformations. After
EWSB, the invariance under the group SU(2)L × SU(2)R is broken down to the diagonal
SU(2)C , commonly called Custodial symmetry, and explicitly broken by the gauging of the
hypercharge U(1)Y and by the fermion mass splittings. It is customary to introduce two
objects, the vector and scalar chiral fields, that transform in the adjoint of SU(2)L. They
are defined respectively as

Vµ ≡ (DµU)U† , T ≡ Uσ3U
† , (1.2)

where

DµU(x) ≡ ∂µU(x) + igWµ(x)U(x)− ig′

2
Bµ(x)U(x)σ3 . (1.3)
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Unlike Vµ, T is not invariant under SU(2)C and can therefore be considered a custodial
symmetry breaking spurion. The bosonic Higgs-less EW chiral Lagrangian can then be con-
structed with Vµ, T and the gauge boson field strengths as building blocks, and the tower
of invariant operators shall be organised according to a chiral (derivative) expansion [19].

In the last decade, the EW chiral Lagrangian has been extended with the introduction
of a light physical Higgs h [20–28], treated as an isosinglet of the SM gauge symmetries.
The dependence on the h field is customarily encoded in generic functions F(h), that are
used as building blocks for the construction of the effective operators. These functions
are made adimensional by implicitly weighting the insertions of the Higgs field with an
opportune suppression scale fh, so that one may rewrite the dependence as F(h/fh). It
is worth underlining that the dependence on the structure (1 + h/v), where v is the EW
vacuum expectation value (vev), that characterises the SMEFT Lagrangian is lost in the
HEFT and substituted by a generic h/fh expansion.

The typical underlying scenarios that can be described at low-energy in terms of the
matrix U(x), the Higgs functions F(h) and the rest of the SM fields, are those of Composite
Higgs models [8–12]. These assume the existence of some strong (“ultracolour”) interaction
at a high energy, and initially invariant under some global symmetry group G. At the scale
Λs, the formation of ultracolour condensates breaks spontaneously this invariance, leaving
a residual symmetry H that can embed the EW group. This triggers the appearance
of a certain number of Goldstone bosons, among which three can be identified with the
would-be GBs of the EW group and a fourth one with the Higgs. In such scenarios, all
the SM scalars are naturally associated to the same scale fπ = fh ≡ f , with Λs ≤ 4πf .
Spontaneous EWSB is triggered by some explicit breaking of the H symmetry (provided
either by external symmetries [8] or by gauging the SM symmetry together with fermion
interactions [11]) and takes place in a second stage. At this level, the Higgs field acquires a
vev 〈h〉 that does not need to coincide with the EW scale v, defined by the EW gauge boson
mass: the three quantities v, f and 〈h〉 are instead related by a model-dependent function.
The splitting between v and f constitutes the well-known fine-tuning of Composite Higgs
models. It is usually expressed in terms of the parameter

ξ ≡ v2

f 2
, (1.4)

that substantially quantifies the degree of non-linearity of the Higgs dynamics. The low-
energy projection of composite Higgs models can be described by the HEFT Lagrangian [29,
30] and the matching conditions allow to write the low-energy effective operator coefficients
in terms of the high-energy parameters, and the generic functions F(h) as trigonometric
functions of h/f . The HEFT Lagrangian can also be used to describe the SMEFT [22–25,
29–31], after identifying the operator coefficients of the effective Lagrangians and writing
all the F(h) functions in terms of (1 + h/v). Dilaton constructions [13, 14] or even more
exotic models, where the Higgs is an EW singlet, can also be described by the HEFT
Lagrangian.

Without assuming any specific underlying scenario or comparing with HEFT, the v/fh
and v/fπ parameters are not physical and can be reabsorbed in the operators coefficients
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and in the coefficients of the F(h) functions. This is tantamount to assuming

fπ = v , fh = v , (1.5)

which ensures canonical kinetic terms for the GBs and fixes the correct order of magnitude
for the gauge bosons masses, without fine-tunings. This notation will be employed in what
follows, unless otherwise specified.

The disparities between the SMEFT and the HEFT originate from the different nature
of the building blocks used in the construction of the effective operators. The independence
between the GB field U(x) and the physical h, together with the fact that h does not
transform under the SM gauge symmetries, leads to a different ordering of the chiral
effective operators compared to the linear ones. As a result, at any given order in the
expansion the number of chiral independent operators is much larger than in the SMEFT
case. The corresponding phenomenology, focussing on the bosonic part of the Lagrangian,
has been studied in Refs. [24,25], where signatures that may allow to discriminate between
an elementary and a dynamical Higgs have also been identified. These signatures include
sets of couplings that are predicted to be correlated in an elementary Higgs scenario but
are generically decorrelated in the dynamical case, as well as effects that are expected to
be suppressed in the linear realisation but may appear at the lowest order in the chiral
expansion.

The complete non-redundant HEFT Lagrangian including both bosonic and fermionic
operators has been constructed in this work and is presented in Sect. 2, making explicit the
custodial nature of the operators. The HEFT basis is formed by 148 independent flavour
universal operators altogether, whose extension to generic flavour contractions is straight-
forward. The Lagrangian does not account for the presence of right-handed neutrinos,
whose inclusion in the spectrum would imply the addition 40 extra operators to the basis,
listed in Appendix A. Section 2 also contains a comparison between the HEFT Lagrangian
and the SMEFT one, while a phenomenological analysis of the HEFT basis is presented
in Sect. 3. The study considers all the available collider data, which includes electroweak
precision measurements and Higgs and triple gauge boson vertex (TGV) data from the
LHC Run I. To our knowledge, this is the first time that such analysis has been done
for the complete HEFT description. Finally, Sect. 4, contains a discussion on the impact
of higher order operators: a set of invariants that may become relevant at the increased
energies foreseen for the LHC and future colliders is also pointed out. The conclusions
are presented in Sect. 5, while some more technical details are deferred to the Appendices,
together with the Feynman Rules for the CP-even subset of HEFT operators.

2 The Complete HEFT Lagrangian

In this section we review the construction of the HEFT Lagrangian, in a notation similar
to that of Refs. [22–25, 31, 32]. The bosonic building blocks are the gauge field strengths
Bµν , Wµν , Gµν , the vector and scalar chiral fields Vµ and T defined in Eq. (1.2) and the
functions F(h) introduced in the previous section. The SM fermions are conveniently
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grouped into doublets of the global SU(2)L,R symmetries:

QL =

(
UL
DL

)
, QR =

(
UR
DR

)
, LL =

(
νL
EL

)
, LR =

(
0

ER

)
. (2.1)

This choice allows to have a more compact notation for the fermionic operators. The
SU(2)R doublet structure can be easily broken with the insertion of the custodial symmetry
breaking spurion T. Notice that the LR doublet only includes right-handed charged
leptons. The inclusion of right-handed neutrinos requires an extension of the fermionic
basis presented in Sec. 2.3 with the addition of the operators listed in App. A.

The HEFT Lagrangian can be written as a sum of two terms,

LHEFT ≡ L0 + ∆L , (2.2)

where the first term contains the leading order (LO) operators and the second one accounts
for new interactions and for deviations from the LO.

The LO Lagrangian includes the kinetic terms for all the particles in the spectrum, the
Yukawa couplings and the scalar potential1:

L0 =− 1

4
GαµνGαµν −

1

4
W a
µνW

aµν − 1

4
BµνB

µν+

+
1

2
∂µh∂

µh− v2

4
Tr(VµV

µ)FC(h)− V (h)+

+ iQ̄L /DQL + iQ̄R /DQR + iL̄L /DLL + iL̄R /DLR+

− v√
2

(
Q̄LUYQ(h)QR + h.c.

)
− v√

2

(
L̄LUYL(h)LR + h.c.

)
+

− g2
s

16π2
λs Gαµν G̃αµν ,

(2.3)

where ˜Gµν ≡ 1
2
εµνρσGρσ. The first line describes the kinetic terms of the gauge bosons; the

second line contains the Higgs and Goldstone bosons’ kinetic term, the scalar potential,
and the mass terms for the EW gauge bosons; the third line presents the kinetic terms
for all the fermions, while the fourth line accounts for the Yukawa interactions. Finally,
the last line contains the theta term of QCD. The function FC(h) appearing in the kinetic
term for the GBs can be expanded as

FC(h) = 1 + 2aC
h

v
+ bC

h2

v2
+ . . . (2.4)

where the dots account for higher powers of (h/v). For the the phenomenological analysis
it is convenient to single out the BSM part of the coefficients aC , bC , using the notation

aC = 1 + ∆aC , bC = 1 + ∆bC , (2.5)

where ∆aC , ∆bC will be assumed to be of the same order as the coefficients accompanying
the operators appearing in ∆L . The functions YQ,L(h) appearing in the Yukawa couplings

1Comments on the construction of the LO Lagrangian in Eq. (2.3) are given in App. B.
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have an analogous structure to FC(h):

YQ(h) ≡ diag

(∑
n

Y
(n)
U

hn

vn
,
∑
n

Y
(n)
D

hn

vn

)
, YL(h) ≡ diag

(
0,
∑
n

Y
(n)
`

hn

vn

)
. (2.6)

The n = 0 terms yield fermion masses, while the higher orders describe the interaction
with n insertions of the Higgs field h, accounting in general for non-aligned contributions.

The kinetic terms of the fermions and of the physical Higgs are not accompanied by any
F(h) since, as shown in App. B, it is always possible to reabsorb their contributions inside
the generic functions FC(h) and YQ,L(h). This can be done either via a field redefinition
or, alternatively, applying the Equations of Motion (EOMs) (the two procedures are not
equivalent in general, but lead to the same result at first order in the deviations from
the LO). Moreover, the kinetic terms of the gauge bosons in the first line of Eq. (2.3)
do not come associated with any F(h), assuming that the transverse components of the
gauge fields, described by the gauge field strength, do not couple strongly to the Higgs
sector. These couplings can be neglected at the LO and be considered, instead, at the
next-to-leading order (NLO).

∆L contains higher order operators with respect to those appearing in L0. The precise
ordering of these operators depends on the choice of a specific power counting rule. The
HEFT can be seen as a fusion of two theories, the chiral perturbation approach associated
to the SM GBs – i.e. the longitudinal components of the gauge bosons – and the traditional
linear description that applies to the transverse components of the gauge bosons and to
fermions. The physical h should also undergo the chiral perturbation description as it enters
in the Lagrangian via the adimensional functions F(h): the latter can be interpreted as
playing the same role as the adimensional GB matrix field U(x). Indeed, in concrete
Composite Higgs models, the pseudo-GB nature of the Higgs forces the F(h) functions to
take trigonometric structures [29]. Being the HEFT a merging between linear and chiral
descriptions, the counting rules which apply singularly to each of the expansions hold
simultaneously for the HEFT [33]. As a result, the LO Lagrangian in Eq. (2.3) itself does
not strictly respect the chiral expansion: L0 contains both operators with two derivatives
and the gauge boson kinetic terms, which has four derivatives; at the same time, some
two-derivative operators have been excluded from the LO. On the other hand, L0 does not
even follow an expansion in canonical dimensions, as for instance the Yukawa interactions
and the gauge boson mass term present an infinite series of h legs, contrary to all the other
terms in the LO Lagrangian.

The renormalisability conditions are also different in the two descriptions. In the linear
expansion an n-loop diagram containing one single d = 6 vertex generates divergent contri-
butions that can be reabsorbed by other d = 6 operators and do not require the introduction
of any higher-dimensional operator. On the contrary, in the chiral case, 1-loop diagrams
with n insertions of a two-derivative coupling, usually listed in the LO Lagrangian, pro-
duce divergences that require the introduction of operators with four-derivatives, which
generically constitute the NLO Lagrangian.

Finally, the HEFT presents an additional aspect that makes it hard to identify a proper
counting rule: the presence of multiple scales. Besides the cut-off of the theory Λ, one
should consider the presence of the GB scale fπ and of the h-scale fh. Although it may
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happen that the last two coincide with fπ = fh = f and that they are related to the first
one by the constraint Λ ≤ 4πf (which is the case in composite Higgs models), the three
scales are in principle independent and associated to different physical quantities. On top
of this, one should not forget the fine-tuning associated to the EW scale v and parametrised
by ξ defined in Eq. (1.4). In practice, the counting rule associated to the HEFT depends
on more than one expansion parameters and may vary depending on the typical energy
scale of the observables considered in the phenomenological analysis.

In conclusion, rather than basing the choice of the NLO Lagrangian operators on a
sophisticated counting rule whose applicability is not valid in full generality, here the
selection is performed with the following strategy. An NLO operator should satisfy at least
one of the criteria below:

- It is necessary for reabsorbing 1-loop divergences arising from the renormalisation of
L0.

- It presents the same suppression as the operators in the first class and receives finite
1-loop contributions: for instance, all the four-fermion operators are included in the
NLO, in spite of the fact that only a subset of these is required to reabsorb 1-loop
divergences.

- It has been left out from the LO Lagrangian due to phenomenological reasons.

The suppression factor of each operator is determined using the NDA master formula,
first proposed in Ref. [34] and later modified in Refs. [35] and [33]. Following the notation
of Ref. [33]:

Λ4

16π2

[
∂

Λ

]Np [4π φ

Λ

]Nφ [4π A

Λ

]NA [4π ψ

Λ3/2

]Nψ [ g
4π

]Ng [ y
4π

]Ny
, (2.7)

where φ represents either the SM GBs or h, ψ a generic fermion, A a generic gauge field,
g the gauge couplings and y the Yukawa couplings. All the operators appearing in the
LO Lagrangian in Eq. (2.3) are normalised according to this formula, apart from the
operators providing gauge bosons’ masses, (v2/4)Tr(VµV

µ)FC(h), and fermions’ masses
(v
√

2)ψ̄LUYψ(h)ψR, which are multiplied by powers of the EW scale v and not by Λ or
f as expected. This is due to the well-known fine-tuning, typical of theories where the
EWSB sector is non-linearly realised. Notice that with these conventions all the kinetic
terms are canonically normalised, differently from what follows using the original version
of the NDA master formula from Ref. [34].

The master formula also ensures that the operators belonging to the NLO Lagrangian
are typically suppressed with respect to those of L0 by powers of (4π)(n≤2), reflecting the
renormalisation of the chiral sector, and/or by powers of Λ(n≤2), associated to possible new
physics contributions. Different cases will be discussed when necessary.

2.1 The NLO Lagrangian

The second part of the HEFT Lagrangian, ∆L , contains in general all the invariant
operators appearing beyond the leading order. They include corrections to the interactions
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contained in L0 as well as completely new couplings. This Lagrangian can be generically
written as a sum of two parts

∆L = ∆Lbos + ∆Lfer , (2.8)

where ∆Lbos contains all the purely-bosonic operators, while ∆Lfer accounts for the in-
teractions that involve fermions.

In this work, ∆L will be restricted to the NLO, defined according to the rules presented
in the previous section. We present a set of invariants that forms a complete, non-redundant
basis at this order in the effective expansion, which has been constructed identifying first
a complete basis for each of the two sectors individually (bosonic and fermionic) and
subsequently employing the EOMs to remove redundant terms.

Given the large number of invariants, the operators are classified as follows: the bosonic
basis is split into CP conserving and CP violating subsets (the field h is assumed to be a
CP-even scalar):

∆Lbos = ∆L CP
bos + ∆L��CP

bos , (2.9)

while in the fermionic sector the distinction is between fermionic single- and double-current
structures:

∆Lfer = ∆L2F + ∆L4F . (2.10)

The operators are named differently according to the category to which they belong and
each of them includes a function Fi(h) conventionally parametrised as

Fi(h) = 1 + 2ai
h

v
+ bi

h2

v2
+ . . . (2.11)

Moreover, each effective operator is multiplied with a real coefficient, indicated with a
lowercase letter (c, c̃, n, r) associated to each class. The following table defines the notation
and summarises the number of independent invariants for each set, in the absence of right-
handed neutrinos and after the application of the EOMs.

L sub-category notation # operators

∆L CP
bos cj Pj 26

∆L��CP
bos c̃j Sj 16

∆L2F quark current nQj NQj 36

lepton current n`j N `
j 14

∆L4F four quarks rQj RQj 26

four leptons r`j R
`
j 7

two quarks and two leptons rQ`j RQ`j 23

Tot 148
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Forty additional operators should be considered if right-handed neutrinos are added to
the spectrum: 17 in L2F , 8 four-leptons interactions and 15 mixed two-quark-two-lepton
terms.

The complete list of NLO operators is provided in what follows: Sects. 2.2 and 2.3
are respectively dedicated to the bosonic and fermionic sectors. Further details on the
construction of the invariants and on how the EOMs have been employed to remove re-
dundant terms can be found in Appendices C and D. The Feynman rules of the complete
CP conserving basis are reported in Appendix E, in unitary gauge and for vertices with
up to four legs.

2.2 NLO basis: bosonic sector ∆Lbos

At NLO in the chiral expansion, the Lagrangian ∆Lbos contains purely bosonic oper-
ators. Complete bases for the CP even and CP odd sectors have been already constructed
in Refs. [22, 24] and [25] respectively. In this work only a subset of those ensembles are
retained as, once the fermionic sector is introduced, some of the terms become redundant
and can be removed using the EOMs (see App. D). Nonetheless, the original numeration
of the operators has been kept, in order to simplify the comparison with the literature.
Finally, the explicit formal dependence on h in the generic functions Fi(h) is dropped in
what follows for brevity.

2.2.1 CP even bosonic basis ∆L CP
bos

The CP even NLO Lagrangian reads

∆L CP
bos =

∑
j

cjPj(h) , (2.12)

with

j = {T,B,W,G,DH, 1− 6, 8, 11− 14, 17, 18, 20− 24, 26,WWW,GGG} (2.13)

where all the operators contain four derivatives, with the exception of

PT (h) =
v2

4
Tr(TVµ)Tr(TVµ)FT , (2.14)

and

PWWW (h) =
4πεabc

Λ2
W aν
µ W bρ

ν W
cµ
ρ FWWW ,

PGGG(h) =
4πfαβγ

Λ2
Gαν
µ G

βρ
ν G

γµ
ρ FGGG ,

(2.15)

where fαβγ denotes the structure constants of SU(3).
The two-derivative operator PT (h) is very similar to v2Tr(VµV

µ)FC and, therefore,
it could have been included in L0 a priori. However, it is customary to move it to ∆L
because the bounds existing on its coefficient are quite strong: cT . 10−2. In fact, this
operator violates the custodial symmetry and contributes to the T parameter, which is
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constrained to a high accuracy by electroweak precision data (EWPD). The two operators
PWWW (h) and PGGG(h) are not required to absorb divergences due to the 1-loop renor-
malisation. However, they can be listed among the NLO operators: containing only the
transverse components of the gauge bosons, they follow the linear description; then, they
come suppressed by Λ2, on the same foot as the four-fermion operators. It will be shown
in the following that they have a non-trivial impact at the phenomenological level.

The remaining 23 operators in ∆L CP
bos , in the numeration of Ref. [24], are the following:

PB(h) = −1

4
BµνB

µνFB PW (h) = −1

4
W a
µνW

aµνFW

PG(h) = −1

4
Ga
µνG

aµνFG PDH(h) = (∂µFDH(h)∂µF ′DH(h))2

P1(h) = BµνTr(TW µν)F1 P2(h) =
i

4π
BµνTr(T[Vµ,Vν ])F2

P3(h) =
i

4π
Tr(Wµν [V

µ,Vν ])F3 P4(h) =
i

4π
BµνTr(TVµ)∂νF4

P5(h) =
i

4π
Tr(WµνV

µ)∂νF5 P6(h) =
1

(4π)2
(Tr(VµV

µ))2F6

P8(h) =
1

(4π)2
Tr(VµVν)∂

µF8∂
νF ′8 P11(h) =

1

(4π)2
(Tr(VµVν))

2F11

P12(h) = (Tr(TWµν))
2F12 P13(h) =

i

4π
Tr(TWµν)Tr(T[Vµ,Vν ])F13

P14(h) =
εµνρλ

4π
Tr(TVµ)Tr(VνWρλ)F14 P17(h) =

i

4π
Tr(TWµν)Tr(TVµ)∂νF17

P18(h) =
1

(4π)2
Tr(T[Vµ,Vν ])Tr(TVµ)∂νF18 P20(h) =

1

(4π)2
Tr(VµV

µ)∂νF20∂
νF ′20

P21(h) =
1

(4π)2
(Tr(TVµ))2∂νF21∂

νF ′21 P22(h) =
1

(4π)2
Tr(TVµ)Tr(TVν)∂

µF22∂
νF ′22

P23(h) =
1

(4π)2
Tr(VµV

µ)(Tr(TVν))
2F23 P24(h) =

1

(4π)2
Tr(VµVν)Tr(TVµ)Tr(TVν)F24

P26(h) =
1

(4π)2
(Tr(TVµ)Tr(TVν))

2F26 .

As anticipated in the previous section, while the kinetic terms for the gauge bosons are
listed at the LO, the interactions obtained after introducing the dependence on h are
reported in the list of NLO operators, under the assumption that the coupling of the
transverse components of the gauge fields with the Higgs sector is a subleading effect.

It is also worth commenting on the operators P1(h) and P12(h): these two structures,
including the terms without h insertions, are customarily listed among the NLO terms
despite their similarity with the gauge bosons’ kinetic terms. This is justified, a posteriori,
by the fact that they contribute to the S and U parameters respectively (see Sect. 3.2),
which are strongly constrained. In this sense, their treatment is analogous to that of PT (h).

The operators PC(h) and PH(h) of Ref. [24] have not been included in this list, as their
effects can be reabsorbed in redefinitions of the arbitrary functions FC(h) and YQ,L(h)
appearing in L0 in eq. (2.3) (see App. B). Moreover, compared to Ref. [24], a different
normalisation for the operators has been chosen: the 4π suppression factors determined by
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the NDA master formula in Eq. (2.7) have been made explicit (see Ref. [33] for details on the
advantages of the NDA normalisation), while the dependence on the coupling constants has
been removed, in order to emphasise the generality of the EFT approach. It is customary,
indeed, to include in the definition of the HEFT operators the numerical factors arising
from the 1-loop renormalisation procedure: for instance, the operator P1(h) is often defined
proportionally to gg′/(4π)2 [17,18,22,24]. However, in principle the coefficients ci account
not only for renormalisation effects, but also for possible external contributions, originated
by sources that do not need to share the same dependence on the gauge couplings. This
normalisation choice is common in many EFTs, such as Fermi’s Theory, the EFT for
mesons processes and the SMEFT.

2.2.2 CP odd bosonic basis ∆L��CP
bos

In the CP-odd sector the bosonic Lagrangian contains 16 operators: according to
Ref. [25],

∆L��CP
bos =

∑
j

c̃jSj, j = {2D, B̃, W̃ , G̃, 1− 9, 15, W̃WW, G̃GG} , (2.16)

where, as for ∆L CP
bos , all the operators have four derivatives, with the exception of

S2D(h) ≡ i
v2

4
Tr (T Vµ) ∂µF2D (2.17)

and

SW̃WW (h) =
4πεabc

Λ2
W̃ aν
µ W bρ

ν W
cµ
ρ FW̃WW ,

SG̃GG(h) =
4πfαβγ

Λ2
G̃αν
µ G

βρ
ν G

γµ
ρ FG̃GG .

(2.18)

The rest of operators entering ∆L��CP
bos are

SB̃(h) ≡ −Bµν B̃µν FB̃ SW̃ (h) ≡ −Tr
(
W µνW̃µν

)
FW̃

SG̃(h) ≡ −Gaµν G̃a
µν FG̃ S1(h) ≡ B̃µνTr (TWµν) F1

S2(h) ≡ i

4π
B̃µν Tr (T Vµ) ∂νF2 S3(h) ≡ i

4π
Tr
(
W̃ µν Vµ

)
∂νF3

S4(h) ≡ 1

4π
Tr (W µνVµ) Tr (T Vν)F4 S5(h) ≡ i

(4π)2
Tr (Vµ Vν) Tr (T Vµ) ∂νF5

S6(h) ≡ i

(4π)2
Tr (Vµ Vµ) Tr (T Vν) ∂νF6 S7(h) ≡ 1

4π
Tr (T [W µν ,Vµ]) ∂νF7

S8(h) ≡ Tr
(
T W̃ µν

)
Tr (TWµν)F8 S9(h) ≡ i

4π
Tr
(
T W̃ µν

)
Tr (T Vµ) ∂νF9

S15(h) ≡ i

(4π)2
Tr (T Vµ) (Tr (T Vν))2 ∂µF15 .

As for the CP-even part of the bosonic basis, the explicit dependence on the gauge couplings
is not part of the definition of the operators, while the 4π factors are reported according
to Eq. (2.7).
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The operator S2D(h) deserves a special remark. Being a two-derivative operator, it
would be naturally listed at the LO. However, restricting for simplicity the discussion to
the unitary gauge, S2D(h) introduces a mixing between the gauge boson Z and the physical
h, that can be rotated away via a proper redefinition of the Goldstone bosons’ matrix, as
detailed in Ref. [25,36]:

U→ Ũ exp

[
−ia2Dc̃2D

h

v
σ3

]
. (2.19)

At leading order in the effective coefficients, the effects of this operator are eventually
recast into CP-odd contributions to the Yukawa couplings with arbitrary number of h legs
and to the vertices Zhn, n ≥ 2. Furthermore, S2D(h) induces, at 1-loop, corrections to
the Higgs gauge-boson couplings that are bounded by the strong experimental limits on
fermionic EDMs, as discussed in Ref. [25]. For this reason is listed at the NLO, similarly
to PT (h).

Finally, the two operators PW̃WW (h) and PG̃GG(h) are the CP-odd counterparts of
PWWW (h) and PGGG(h); comments similar to those given for the latter apply here too.

2.3 NLO basis: fermionic sector ∆Lfer

The fermionic Lagrangian at NLO is constituted by single-current operators with up
to two derivatives and by four-fermion operators. Flavour indices are left implicit, unless
necessary for the discussion. This section presents a set of independent terms that com-
pletes the NLO basis in the bosonic sector ∆Lbos: some redundant structures have been
removed using the EOMs, as detailed in App. D. Only baryon and lepton number con-
serving operators are considered (see Ref. [37] for the baryon and lepton number violating
basis). Moreover, as already stated in the previous sections, right-handed neutrinos are
not considered in the present description. Their inclusion in the spectrum would require
an extension of the basis presented in this section, with the addition of the operators in
App. A.

The numbering of the functions Fi(h) is dropped in what follows for brevity. The
Pauli matrices that act on the SU(2)L components are denoted by σi, while the Gell-Mann
matrices that contract colour indices are indicated by λA. Whenever they are not specified,
the colour (uppercase) and isospin (lowercase) contractions are understood to be diagonal.
Flavour contractions are also assumed to be diagonal. The tensor structure σµν entering
the dipole operators is defined as σµν = i

2
[γµ, γν ]. Finally, the mark ��CP on the left of an

operator indicates that it is intrinsically CP-odd.
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2.3.1 Single fermionic current ∆L2F

The operators with a single fermionic current and up to two derivatives (including those
in Vµ) are contained in the Lagrangian

∆L2F =
8∑
j=1

nQj NQj +
28∑
j=9

1

Λ

(
nQj + iñQj

)
NQj +

36∑
j=29

4π

Λ

(
nQj + iñQj

)
NQj

+
2∑
j=1

n`jN `
j +

11∑
j=3

1

Λ

(
n`j + iñ`j

)
N `
j +

14∑
j=12

4π

Λ

(
n`j + iñ`j

)
N `
j + h.c. ,

(2.20)

where we recall that the coefficients nQj , n
`
j, ñ

Q
j , ñ

`
j are real and smaller than unity.

The terms with two derivatives have overall canonical mass dimension 5 and are there-
fore suppressed by Λ−1. Moreover, they necessarily require chirality-flipping (scalar or
tensor) Lorentz structures. These structures do not have definite CP character, as the
scalar (ψ̄ψ) and pseudo-scalar (ψ̄iγ5ψ) contractions have opposite parity. As a conse-
quence, each SU(2) structure yields two contributions with opposite CP properties, that
have been parameterised by two independent real coefficients: for the quark bilinears, the
terms nQj (NQj + h.c.) with the NQj ’s defined below are CP even, while the combinations

ñQj (iNQj + h.c.) are CP odd. A similar notation has been adopted for the lepton bilinears.

Quark Current Operators

All the non-redundant terms that can be constructed coupling one derivative or one chi-
ral vector field Vµ to a fermionic bilinear necessarily have a vector-axial Lorentz structure,
that preserves chirality. For the quarks case, they are:

NQ1 (h) ≡ iQ̄L γµV
µQLF NQ2 (h) ≡ iQ̄R γµU

†VµUQRF

��CP NQ3 (h) ≡ Q̄L γµ[Vµ,T]QLF ��CP NQ4 (h) ≡ Q̄R γµU
†[Vµ,T]UQRF

NQ5 (h) ≡ iQ̄L γµ{Vµ,T}QLF NQ6 (h) ≡ iQ̄R γµU
†{Vµ,T}UQRF

NQ7 (h) ≡ iQ̄L γµTVµTQLF NQ8 (h) ≡ iQ̄R γµU
†TVµTUQRF .

Invariants with a derivative acting on a fermion field or on a F(h) function are redundant
upon application of the EOMs and integration by parts, and have therefore been removed
from the final basis.

Operators with two derivatives require a fermionic current with an even number (zero
or two) of gamma matrices: therefore only chirality-flipping Lorentz structures are al-
lowed. All the operators with a scalar structure are required as counterterms in the 1-loop
renormalisation of L0:

NQ9 (h) ≡ Q̄L UQR ∂µF∂µF ′ NQ10(h) ≡ Q̄L TUQR ∂µF∂µF ′

NQ11(h) ≡ Q̄L VµUQR ∂
µF NQ12(h) ≡ Q̄L {Vµ,T}UQR ∂

µF

NQ13(h) ≡ Q̄L [Vµ,T]UQR ∂
µF NQ14(h) ≡ Q̄L TVµTUQR ∂

µF
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NQ15(h) ≡ Q̄L VµV
µUQRF NQ16(h) ≡ Q̄L VµV

µTUQRF

NQ17(h) ≡ Q̄L TVµTVµUQRF NQ18(h) ≡ Q̄L TVµTVµTUQRF

NQ19(h) ≡ Q̄L VµTVµUQRF NQ20(h) ≡ Q̄L VµTVµTUQRF .

Operators with tensor structure are also included in the NLO basis, although they are
not needed to reabsorb the 1-loop divergences of L0, as the loop diagrams that generate
them in the EFT are finite. Nonetheless, these interactions may result from the (tree-level)
exchange of a heavy BSM resonance and therefore they may be as relevant as those in the
previous lists:

NQ21(h) ≡ Q̄L σ
µνVµUQR ∂νF NQ22(h) ≡ Q̄L σ

µν [Vµ,T]UQR ∂νF

NQ23(h) ≡ Q̄L σ
µν{Vµ,T}UQR ∂νF NQ24(h) ≡ Q̄L σ

µνTVµTUQR ∂νF

NQ25(h) ≡ Q̄L σ
µνVµTVνUQRF NQ26(h) ≡ Q̄L σ

µνVµTVνTUQRF

NQ27(h) ≡ Q̄L σ
µν [Vµ,Vν ]UQRF NQ28(h) ≡ Q̄L σ

µν [Vµ,Vν ]TUQRF

NQ29(h) ≡ ig′ Q̄L σ
µνUQRFBµν NQ30(h) ≡ ig′ Q̄L σ

µνTUQRFBµν

NQ31(h) ≡ igs Q̄L σ
µνGµνUQRF NQ32(h) ≡ igs Q̄L σ

µνGµνTUQRF

NQ33(h) ≡ ig Q̄L σ
µνWµνUQRF NQ34(h) ≡ ig Q̄L σ

µν{Wµν ,T}UQRF

NQ35(h) ≡ ig Q̄L σ
µν [Wµν ,T]UQRF NQ36(h) ≡ ig Q̄L σ

µνTWµνTUQRF .

Leptonic Current Operators

Leptonic bilinears can be constructed along the same lines as the quark ones. The
absence of right-handed neutrinos, however, reduces notably the number of independent
invariants. Making use of Eq. (D.14), only two independent operators can be constructed
with the insertion of a single derivative or Vµ:

��CP N `
1 (h) ≡ L̄L γµ[Vµ,T]LLF N `

2 (h) ≡ iL̄R γµU
†{Vµ,T}ULRF .

Notice that, if flavour effects are also taken into consideration, two other structures should
be considered:

iL̄LiγµV
µLLjF , iL̄Liγµ{T,Vµ}LLjF . (2.21)

only for the case with i 6= j. Indeed, as shown in Eq. (D.14), the flavour diagonal con-
tractions do not represent independent terms as they are related via EOMs to bosonic
operators that have been retained in the basis.

With two derivatives, two Vµ or a combination of them, the following structures can
be constructed:

N `
3 (h) ≡ L̄L ULR ∂µF∂µF ′ N `

4 (h) ≡ L̄L {Vµ,T}ULR ∂
µF

N `
5 (h) ≡ L̄L [Vµ,T]ULR ∂

µF N `
6 (h) ≡ L̄L VµV

µULRF
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N `
7 (h) ≡ L̄L TVµTVµULRF N `

8 (h) ≡ L̄L σ
µν [Vµ,T]ULR ∂νF

N `
9 (h) ≡ L̄L σ

µν{Vµ,T}ULR ∂νF N `
10(h) ≡ L̄L σ

µνVµTVνULRF

N `
11(h) ≡ L̄L σ

µν [Vµ,Vν ]ULRF N `
12(h) ≡ ig′ L̄L σ

µνULRFBµν

N `
13(h) ≡ ig L̄L σ

µνWµνULRF N `
14(h) ≡ ig L̄L σ

µν [Wµν ,T]ULRF .

where, as explained above, all these operators are required as counterterms in the 1-loop
renormalisation of L0 with the exception of those with tensor structure, that correspond
to finite contributions. It is also worth recalling that all the chirality-flipping structures
listed here are CP even in the combination (N `

j +h.c.) but independent CP violating terms
of the form (iN `

j + h.c.) should also be considered.

2.3.2 Four-fermion operators ∆L4F

Four fermion operators can be classified into four-quarks, four-leptons and two-quark-
two-lepton sets. The overall Lagrangian reads:

∆L4F =
(4π)2

Λ2

[
8∑
j=1

(
rQj + ir̃Qj

)
RQj +

26∑
j=9

rQj R
Q
j +

(
r`1 + ir̃`1

)
R`

1 +
7∑
j=2

r`jR
`
j+

+
6∑
j=1

(
rQ`j + ir̃Q`j

)
RQ`j +

23∑
j=7

rQ`j RQ`j + h.c.

]
.

(2.22)

Details on the construction and reduction of this subset of operators can be found in
App. C.3. As for the bilinears case, the chirality-flipping contractions (ψ̄LψR)(ψ̄LψR) listed
here are CP even in the combination (Rf

j + h.c.) but independent CP violating terms of

the form (iRf
j + h.c.) should also be considered.

Pure Quark Operators

The only four-quark operators required to remove divergences originated at 1-loop are
the following:

RQ1 (h) ≡ (Q̄L UQR )(Q̄L UQR )F RQ2 (h) ≡ (Q̄L σ
iUQR )(Q̄L σ

iUQR )F

RQ3 (h) ≡ (Q̄L UQR )(Q̄L TUQR )F RQ4 (h) ≡ (Q̄L TUQR )(Q̄L TUQR )F

RQ5 (h) ≡ (Q̄L λ
AUQR )(Q̄L λ

AUQR )F RQ6 (h) ≡ (Q̄L λ
AσiUQR )(Q̄L λ

AσiUQR )F

RQ7 (h) ≡ (Q̄L λ
AUQR )(Q̄L λ

ATUQR )F RQ8 (h) ≡ (Q̄L λ
ATUQR )(Q̄L λ

ATUQR )F .

A large number of additional structures can be constructed, that are listed below and
included in the basis. Although they do not correspond to counterterms in the renormali-
sation of L0, they are potentially generated by the exchange of BSM resonances:
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RQ9 (h) ≡ (Q̄L γµQL )(Q̄L γ
µQL )F RQ10(h) ≡ (Q̄L γµQL )(Q̄L γ

µTQL )F

RQ11(h) ≡ (Q̄L γµTQL )(Q̄L γ
µTQL )F RQ12(h) ≡ (Q̄L γµσ

j QL )(Q̄L γ
µσj QL )F

RQ13(h) ≡ (Q̄R γµQR )(Q̄R γ
µQR )F RQ14(h) ≡ (Q̄R γµQR )(Q̄R γ

µU†TUQR )F

RQ15(h) ≡ (Q̄R γµU
†TUQR )(Q̄R γ

µU†TUQR )F RQ16(h) ≡ (Q̄R γµσ
j QR )(Q̄R γ

µU†σjUQR )F

RQ17(h) ≡ (Q̄L γµQL )(Q̄R γ
µQR )F RQ18(h) ≡ (Q̄L γµQL )(Q̄R γ

µU†TUQR )F

RQ19(h) ≡ (Q̄L γ
µTQL )(Q̄R γµQR )F RQ20(h) ≡ (Q̄L γµTQL )(Q̄R γ

µU†TUQR )F

RQ21(h) ≡ (Q̄L γµσ
iQL )(Q̄R γ

µU†σiUQR )F RQ22(h) ≡ (Q̄L γµλ
AQL )(Q̄R γ

µλAQR )F

RQ23(h) ≡ (Q̄L γµλ
AQL )(Q̄R γ

µλAU†TUQR )F RQ24(h) ≡ (Q̄L γ
µλATQL )(Q̄R γµλ

AQR )F

RQ25(h) ≡ (Q̄L γµλ
ATQL )(Q̄R γ

µλAU†TUQR )F RQ26(h) ≡ (Q̄L γµλ
AσiQL )(Q̄R γ

µλAU†σiUQR )F .

Pure Leptonic Operators

The set of independent four-lepton operators is considerably smaller than that with
four quarks, due to the absence of right-handed neutrinos and of colour charges. Only one
operator is required as a 1-loop counterterm:

R`
1(h) ≡ (L̄L ULR )(L̄L ULR )F .

Six additional structures, that are not required as counterterms, complete the list of possible
invariants:

R`
2(h) ≡ (L̄L γµ LL )(L̄L γ

µ LL )F R`
3(h) ≡ (L̄R γµ LR )(L̄R γ

µ LR )F

R`
4(h) ≡ (L̄L γµ LL )(L̄L γ

µTLL )F R`
5(h) ≡ (L̄L γµTLL )(L̄L γ

µTLL )F

R`
6(h) ≡ (L̄L γµ LL )(L̄R γ

µ LR )F R`
7(h) ≡ (L̄L γ

µTLL )(L̄R γµ LR )F .

Mixed Quark-Lepton Operators

Finally, barring any B or L violation effects, mixed four-fermion operators can only
contain two quarks and two leptons in either of the current structures L̄LQ̄Q and L̄QQ̄L.

Among the constructed invariants, the following are required to reabsorb 1-loop diver-
gences:

RQ`1 (h) ≡ (L̄L ULR )(Q̄L UQR )F RQ`2 (h) ≡ (L̄L UQR )(Q̄L ULR )F

RQ`3 (h) ≡ (L̄L ULR )(Q̄L TUQR )F RQ`4 (h) ≡ (L̄L TUQR )(Q̄L ULR )F

RQ`5 (h) ≡ (L̄L σ
iULR )(Q̄L σ

iUQR )F RQ`6 (h) ≡ (L̄L σ
iUQR )(Q̄L σ

iULR )F ,

while the remaining correspond to finite diagrams and are included for completeness:
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RQ`7 (h) ≡ (L̄L γµ LL )(Q̄L γ
µQL )F RQ`8 (h) ≡ (L̄R γµ LR )(Q̄R γ

µQR )F

RQ`9 (h) ≡ (L̄L γµ LL )(Q̄L γ
µTQL )F RQ`10 (h) ≡ (L̄R γµ LR )(Q̄R γ

µU†TUQR )F

RQ`11 (h) ≡ (L̄L γµTLL )(Q̄L γ
µQL )F RQ`12 (h) ≡ (L̄L γµTLL )(Q̄L γ

µTQL )F

RQ`13 (h) ≡ (L̄L γµσ
i LL )(Q̄L γ

µσiQL )F RQ`14 (h) ≡ (L̄L γµ LL )(Q̄R γ
µQR )F

RQ`15 (h) ≡ (Q̄L γµQL )(L̄R γ
µ LR )F RQ`16 (h) ≡ (L̄L γ

µTLL )(Q̄R γµQR )F

RQ`17 (h) ≡ (Q̄L γµTQL )(L̄R γ
µ LR )F RQ`18 (h) ≡ (L̄L γµ LL )(Q̄R γ

µU†TUQR )F

RQ`19 (h) ≡ (L̄L γ
µTLL )(Q̄R γµU

†TUQR )F RQ`20 (h) ≡ (L̄L γ
µσj LL )(Q̄R γµU

†σjUQR )F

RQ`21 (h) ≡ (Q̄L γµ LL )(L̄R γ
µQR )F RQ`22 (h) ≡ (Q̄L γµTLL )(L̄R γ

µQR )F

RQ`23 (h) ≡ (Q̄L γ
µσj LL )(L̄R γµU

†σjUQR )F .

2.4 Comparison with the SMEFT basis

The comparison with the SMEFT is crucial for the identification of signals able to shed
some light on the Higgs nature.

For the bosonic sector, the relation between the HEFT and its linear counterpart has
already been identified in Ref. [24], adopting the so-called HISZ basis [38,39], which is also
used in Refs. [40–42]. Those results still hold here, up to the fact that some operators have
been traded for fermionic ones: the correspondence is summarised in Table 1, where the
relation to the basis of Ref. [7] is also reported. The fermionic sector of the HEFT has also
been matched with the linear bases of Refs. [7] and [40–42], as indicated in Table 2.

It is worth pointing out a few points that should be kept into account when performing
this comparison:

- In the HEFT, right-handed fermions are grouped in the SU(2)R doublets LR and QR

and the up and down components are disentangled inserting the object U†TU = σ3

in the bilinear structures. Each linear operator, written in the traditional notation,
is then easily matched with a linear combination of HEFT invariants.

On the other hand, it is worth noticing that the HEFT notation allows to construct
invariants that contain the structure U†σjU, that in general does not have an equiv-
alent in the SMEFT. In particular, this can induce RH charged currents, that are
absent in the linear case.

- The adimensional scalar field T corresponds, in the linear context, to a quadratic
combination of Higgs doublets. As a consequence, the counterparts of fermionic
invariants containing T are mostly linear operators of dimension d > 6, that are
therefore not present in the list of Refs. [7], [41, 42].

The insertions of T into right-handed currents, mentioned in the previous point, rep-
resent an exception. In fact, in these cases T appears in the combination U†TU = σ3,
that does not contain any field and in fact is not associated to dimensional objects
in the linear language.
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Ref. [7] Refs. [41, 42] HEFT Ref. [7] Refs. [41, 42] HEFT

Qϕ OΦ,3 scalar pot. Qϕ� OΦ2
FC + FY (PH)

QϕD OΦ,1 PT QϕG OGG PG

QϕW OWW PW QϕB OBB PB

QϕWB OBW P1 − OB P2 + P4

− OW P3 + P5

QG “QG” PGGG QW OWWW PWWW

QϕG̃ “QϕG̃” SG̃ QϕB̃ “QϕB̃” SB̃
Q
ϕW̃

“Q
ϕW̃

” SW̃ Q
ϕW̃B

“Q
ϕW̃B

” S1

QG̃ “QG̃” PG̃GG Q
W̃

“Q
W̃

” P
W̃WW

Table 1: Correspondence between the SMEFT operators from Refs. [7] and [41, 42], and
the HEFT terms presented here for the bosonic sector. The - refers to the absence of an
equivalent operator. The use of “Qi” notation for the second column means that a particular
operator does not explicitly appear in Refs. [41, 42], but that anyway enters the SMEFT
basis and is defined as in Ref. [7]. Numerical coefficients and signs in the combinations of
the HEFT operators are not indicated.

- The two-derivative object VµV
µ is typically described, in the SMEFT, by a quan-

tity proportional to DµΦ†DµΦ, which has canonical dimension 4. Thus, fermionic
bilinears containing this structure correspond to SMEFT operators with d ≥ 7.

Tables 1 and 2 summarise the relations between operators of the HEFT, defined in the
previous section, and those of the SMEFT from Refs. [7] and [41, 42]. The only difference
between these two linear bases (the first two columns in both tables) lies in the choice of
two invariants: in Refs. [41,42] the EOMs have been used for removing the fermionic terms

corresponding to Q(1)
ϕl,ii and Q(3)

ϕl,ii in Ref. [7], replacing them with the bosonic operators OB
and OW . In the HEFT construction, the EOMs have been applied analogously to Refs. [41,
42], namely retaining PB and PW , rather than two leptonic invariants (see Eq. (D.14)).

All the HEFT operators that do not appear in this list have SMEFT counterparts
(dubbed also “linear siblings”) of dimension larger than six and therefore are not contained
in the bases of Refs. [7] and [41,42].
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Ref. [7] Refs. [41, 42] HEFT Ref. [7] Refs. [41, 42] HEFT

Qϕu OuΦ YU (h) Qϕe OeΦ YE(h)

Qϕd OdΦ YD(h) Q(1)
ϕl,ii − −

Q(1)
ϕq O(1)

ΦQ NQ
5 Q(1)

ϕl,ij O(1)
ΦL,ij iL̄Liγµ{T,Vµ}LLjF

Q(3)
ϕq O(3)

ΦQ NQ
1 Q(3)

ϕl,ii − −

Qϕu O(1)
Φu NQ

2 +NQ
6 +NQ

8 Q(3)
ϕl,ij O(3)

ΦL,ij iL̄Li
γµV

µLLj
F

Qϕd O(1)
Φd NQ

2 +NQ
6 +NQ

8 Qϕe O(1)
Φe N `

2

Qϕud O(1)
Φud NQ

2 +NQ
8

QuG “QuG” NQ
31 +NQ

32

QdG “QdG” NQ
31 +NQ

32

QuW “QuW ” NQ
33 +NQ

34 +NQ
35

QdW “QdW ” NQ
33 +NQ

34 +NQ
35 QeW “QeW ” N `

13

QuB “QuB” NQ
29 +NQ

30

QdB “QdB” NQ
29 +NQ

30 QeB “QeB” N `
12

Q(1)
qq “Q(1)

qq ” RQ
9 Qll “Qll” R`2

Q(3)
qq “Q(3)

qq ” RQ
12 Q(1)

lq “Q(1)
lq ” RQ`

7

Quu “Quu” RQ
13 +RQ

14 +RQ
15 Q(3)

lq “Q(3)
lq ” RQ`

13

Qdd “Qdd” RQ
13 +RQ

14 +RQ
15 Qee “Qee” R`3

Q(1)
ud “Q(1)

ud ” RQ
13 +RQ

15 Qeu “Qeu” RQ`
8 +RQ`

10

Q(8)
ud “Q(8)

ud ” RQ
13 +RQ

16 +RQ
15 Qed “Qed” RQ`

8 +RQ`
10

Q(1)
qu “Q(1)

qu ” RQ
17 +RQ

18 Qle “Qle” R`6

Q(8)
qu “Q(8)

qu ” RQ
22 +RQ

23 Qlu “Qlu” RQ`
14 +RQ`

18

Q(1)
qd “Q(1)

qd ” RQ
17 +RQ

18 Qld “Qld” RQ`
14 +RQ`

18

Q(8)
qd “Q(8)

qd ” RQ
22 +RQ

23 Qqe “Qqe” RQ`
15

Q(1)
quqd “Q(1)

quqd” RQ
1 +RQ

2 Qledq “Qlelq” RQ`
21 +RQ`

22

Q(8)
quqd “Q(8)

quqd” RQ
5 +RQ

6 Q(1)
lequ “Q(1)

lequ” RQ`
2 +RQ`

6

Q(3)
lequ “Q(3)

lequ” RQ`
1 +RQ`

2 +RQ`
3 +RQ`

5 +RQ`
6

Table 2: Correspondence between the SMEFT operators from Refs. [7] and [41, 42], and
the HEFT terms presented here for the fermionic sector. The - refers to the absence of
an equivalent operator. The use of “Qi” notation for the second column means that a
particular operator does not explicitly appear in Refs. [41, 42], but that anyway enters the
SMEFT basis and is defined as in Ref. [7]. Flavour indices are omitted, unless explicitly
indicated. Numerical coefficients and signs in the combinations of the HEFT operators are
not indicated.
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3 Phenomenology

3.1 Renormalisation procedure

The phenomenological analysis is carried out in the Z-scheme, defined by the following
set of observables, that are taken as input parameters:

αs world average [43],

GF extracted from the muon decay rate [43],

αem extracted from Thomson scattering [43],

MZ extracted from the Z lineshape at LEP I [43],

Mh measured at LHC [44].

(3.1)

All the other quantities appearing in the Lagrangian will be implicitly interpreted as cor-
responding to the combinations of experimental inputs as follows:

e2 = 4παem , sin2 θW =
1

2

(
1−

√
1− 4παem√

2GFM2
Z

)
,

v2 =
1√
2GF

,
(
g =

e

sin θW
, g′ =

e

cos θW

)∣∣∣∣
θW , e as above

.

(3.2)

The trigonometric functions sin θW , cos θW will be conveniently shortened to sθ, cθ.
The kinetic terms are made canonical and diagonal with the following field redefinitions:

Aµ → Aµ

[
1 + s2θc1 + 2s2

θc12 −
1

2
(c2
θcB + s2

θcW )

]
+

+ Zµ 2

[
c2θc1 + s2θ

(
c12 +

cB − cW
4

)]
+O(c2

i )

Zµ → Zµ

[
1− s2θc1 + 2c2

θc12 −
1

2

(
c2
θcW + s2

θcB
)]

+O(c2
i )

W+
µ → W+

µ

[
1− 1

2
cW

]
+O(c2

i ) .

(3.3)

The contributions to the input parameters at first order in the effective coefficients read:

δαem

αem

' 2s2θc1 + 4s2
θc12 − c2

θcB − s2
θcW

δGF

GF

' −64
√

2π2 v
2

Λ2
(r`2 − r`5)

δMZ

MZ

' −cT − s2θc1 + 2c2
θc12 −

1

2
(c2
θcW + s2

θcB)
δMh

Mh

' 0 .

(3.4)

The resulting shifts for the W mass and fermion couplings to gauge bosons with respect
to their corresponding SM expectations due to these finite renormalisation effects are sum-
marised below:

W mass:
∆MW

MW

=
c2
θ

c2θ

cT +
s2θ

c2θ

c1 − 2c12 +
32π2
√

2s2
θ

c2θ

v2

Λ2
(r`2 − r`5) . (3.5)
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Fermionic couplings:
It is convenient to adopt the following compact notation:

∆g1 = cT + 32π2
√

2
v2

Λ2
(r`2 − r`5)

∆gW =
c2
θ

c2θ

cT + t2θc1 − 2c12 +
32π2
√

2c2
θ

c2θ

v2

Λ2
(r`2 − r`5)

∆g2 = −s2
θ

(
−δs

2
θ

s2
θ

− β

tθ

)
=

s2
2θ

2c2θ

(
cT +

2c1

s2θ

+ 32π2
√

2
v2

Λ2
(r`2 − r`5)

)
,

(3.6)

where ∆g1 accounts for the renormalisation of Zµ, g and cθ in the combination
gZµ/cθ; ∆gW for the renormalisation of Wµ and g in the combination gWµ; ∆g2

for the renormalisation of s2
θ and for the contribution to the Z couplings that comes

from the redefinition of the photon field: A → αA + βZ (see Eq. (3.3)). With
this notation, the renormalisation of Z couplings to left-handed and right-handed
fermions, gfL = (T f3 − s2

θQ
f ) and gfR = −s2

θQ
f , and of the W to left handed fermions

can be written as

∆gfL,R = gfL,R∆g1 +Qf∆g2 ∆gff
′

W = ∆gW , (3.7)

where Qf and T3f are respectively the electric and isospin charges of the fermion f ,
and where the W couplings to left-handed fermions is normalised to 1 in the SM.

The next sections are dedicated to the discussion of the constraints imposed on the
operator coefficients considering respectively electroweak precision data, Higgs results from
the LHC and the Tevatron, and measurements of the triple gauge bosons couplings. For
the sake of simplicity we will assume fermion universality as well as the absence of new
sources of flavour violation.

3.2 Constraints from EWPD

After accounting for finite renormalisation effects in the gauge bosons’ wavefunctions
and couplings as well as for direct contributions to the vertices, 12 operators modify the Z
and W gauge boson couplings to fermions with the same Lorentz structure as the SM and
the W mass, which correspondingly lead to linear modifications of the EWPD.

Five operators, PT (h), P1(h), P12(h), R`
2(h), R`

5(h) give tree level contributions to
universal modifications of the couplings and of the W mass, which can be recast in terms
of the oblique S, T, U parameters [45, 46] and of the shift in the Fermi constant ∆GF . In
particular

αS = −8sθcθc1 , α T = 2cT , α U = −16s2
θc12 ,

δGF
GF

= −64π2
√

2 v2

Λ2

(
r`2 − r`5

)
, (3.8)

so, for example, the correction to the W mass in Eq. (3.5) reads

∆MW

MW

=
c2
θ

2c2θ

αT − 1

4c2θ

αS +
1

8s2
θ

αU − s2
θ

2c2θ

δGF

GF

. (3.9)
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The other seven operators, NQ1 (h), NQ2 (h), NQ5 (h), NQ6 (h), NQ7 (h), NQ8 (h), N `
2 (h), give

fermion dependent contributions to the W and Z couplings. Altogether the shifts to the
SM Z couplings can be written as

∆gfL,R = gfL,R∆g1 +Qf∆g2 + ∆g̃fL,R , (3.10)

where the finite renormalisation shifts of the fermion couplings in Eq. (3.6) can be rewritten
as:

∆g1 =
1

2

(
αT − δGF

GF

)
, ∆g2 =

s2
θ

c2θ

(
c2
θ

(
αT − δGF

GF

)
− 1

4s2
θ

αS

)
, (3.11)

while the fermion dependent modification of the couplings read2

∆g̃uL = nQ1 + 2nQ5 + nQ7 , ∆g̃uR = nQ2 + 2nQ6 + nQ8 ,
∆g̃dL = −nQ1 + 2nQ5 − nQ7 , ∆g̃dR = −nQ2 + 2nQ6 − nQ8 ,
∆g̃νL = 0 , ∆g̃νR = 0 ,
∆g̃eL = 0 , ∆g̃eR = 2n`2 .

(3.12)

The corresponding shifts to the W couplings to left-handed fermions (normalised to 1 in
the SM) are

∆gff
′

W = ∆gW + ∆g̃ff
′

W , (3.13)

with the universal shift due to the finite renormalisation defined in Eq. (3.6) given by

∆gW =
∆MW

MW

− 1

2

δGF

GF

, (3.14)

and the fermion dependent shifts induced by the fermionic operators by

∆g̃udW = 2nQ1 − 2nQ7 , ∆g̃eνW = 0 . (3.15)

There are two main differences with respect to the corresponding contributions to
EWPD obtained assuming a linear realisation of the SU(2)L × U(1)Y gauge symmetry
breaking with operators up to dimension six (see for example Refs. [47, 48]). First, in
the SMEFT no contribution to the U parameter is generated at dimension six, while a
contribution is generated in the HEFT at NLO, O(p4). Second, in the linear description
and assuming universality, the fermion dependent shifts of the W couplings to fermions
are directly determined by those of the Z as there are only five independent dimension-six
operators entering those vertices with SM Lorentz structure (which can be chosen for ex-

ample to be O(3)
φq , O(1)

φq , Oφu, Oφd, Oφe in the notation of Ref. [7]). In the chiral description
at order p4 the fermion dependent contributions come in contrast from the seven operators
given above, of which six combinations contribute independently to EWPD.

So altogether 10 combinations of the 12 operator coefficients can be determined by the
analysis of EWPD which have been chosen here to be cT , c1, c12, (r`2−r`5), nQ1 , (nQ2 +nQ8 ), nQ5 ,

2One could expect ∆g̃ν,eL to have a similar contributions as ∆g̃u,dL . This is not the case as the correspond-
ing leptonic operators have been removed from the basis by using the EOMs, as discussed in Eq. (D.14).
This choice simplifies the renormalisation procedure as ∆g̃ν,eL are vanishing.
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nQ6 , nQ7 and n`2. In order to obtain the corresponding constraints on these 10 parameters a
fit including 16 experimental data points is performed. These are 13 Z observables: ΓZ , σ0

h,
P pol
τ , sin2 θ`eff, R0

l , Al(SLD), A0,l
FB, R0

c , R
0
b , Ac, Ab, A

0,c
FB, and A0,b

FB from SLD/LEP-I [49],
plus three W observables: the average of the W -boson mass, from [50], the W width,
ΓW , from LEP-II/Tevatron [51], and the leptonic W branching ratio, BreνW , for which the
average in Ref. [43] is taken. The correlations among the inputs can be found in Ref. [49]
and have been taken into consideration in the analysis. As mentioned above, unlike in the
fits to dimension-6 SMEFT operators, the independent experimental information on the W
couplings to fermions have been included in the present study: this is done by considering
in the fit the leptonic W branching ratio, as it is measured independently of the total W
width, which is determined from kinematic distributions. The corresponding predictions
for the observables in the analysis in terms of the shifts of the SM couplings defined above
are given by:

∆ΓZ = 2ΓZ,SM


∑
f

(gfL∆gfL + gfR∆gfR)N f
C∑

f

(|gfL|
2 + |gfR|

2)N f
C

 (3.16)

∆σ0
h = 2σ0

h,SM

(geL∆geL + geR∆geR)

|geL|2 + |geR|2
+

∑
q

(gqL∆gqL + gqR∆gqR)∑
q

(|gqL|
2 + |gqR|

2)
− ∆ΓZ

ΓZ,SM

 (3.17)

∆R0
l ≡ ∆

(
Γhad
Z

ΓlZ

)
= 2R0

l,SM


∑
q

(gqL∆gqL + gqR∆gqR)∑
q

(|gqL|
2 + |gqR|

2)
− (glL∆glL + glR∆glR)

|glL|2 + |glR|2

 (3.18)

∆R0
q ≡ ∆

(
ΓqZ

Γhad
Z

)
= 2R0

q,SM

(gqL∆gqL + gqR∆gqR)

|gqL|2 + |gqR|2
−

∑
q′

(gq
′

L∆gq
′

L + gq
′

R∆gq
′

R)∑
q′

(|gq
′

L |
2 + |gq

′

R |
2)

(3.19)

∆ sin2 θleff = sin2 θleff,SM

glL
glL − glR

(
∆gfR
gfR
− ∆gfL

gfL

)
(3.20)

∆Af = 4Af,SM
gfLg

f
R

|gfL|4 − |g
f
R|4
(
gfR∆gfL − g

f
L∆gfR

)
(3.21)

∆P pol
τ = ∆Al (3.22)

∆A0,f
FB = A0,f

FB,SM

(
∆Al
Al

+
∆Af
Af

)
(3.23)

∆ΓW = ΓW,SM

(
4

3
∆gudW +

2

3
∆geνW + ∆MW

)
(3.24)

∆BreνW = BreνW,SM

(
−4

3
∆gudW +

4

3
∆geνW

)
. (3.25)
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When performing the fit within the context of the SM the result is χ2
EWPD,SM = 18.3,

while when including the ten new parameters it gets reduced to χ2
EWPD,min = 6. The

results of the analysis are shown in Fig. 1 which displays the ∆χ2
EWPD dependence of the

10 independent operator coefficients. In each panel ∆χ2
EWPD is shown after marginalizing

over the other nine coefficients. The figure shows the corresponding 95% allowed ranges
given in Table 3: the only operator coefficient not compatible with zero at 2σ is nQ2 +nQ8 , a
result driven by the 2.7σ discrepancy between the observed A0,b

FB and the SM expectation.
It is interesting to notice that the resulting constraints on the coefficients contributing

to T , U and δGF are considerably weaker than what one would obtain in the standard
3 parameter fits to S, T , U . Quantitatively, the results of the 10 parameter analysis
performed here give the following 1σ ranges for S, T, U and δGF :

S = −0.45± 0.37 , T = −0.3± 2.8 , U = −0.1± 2.5 , δGF
GF

= (0.08± 2.2)× 10−2 ,
(3.26)

to be compared with the results of the standard 3 parameter fit for S, T, U [48],

S = 0.08± 0.1 , T = −0.1± 0.12 , U = 0.0± 0.09 . (3.27)

While the range for S is only about 4 times broader when including the effects of all the
additional operators, the bounds on T and U are weakened by more than a factor 20. The
main reason is that when δGF is also included in the analysis cancellations can occur. In
particular for αT = δGF

GF
= − 1

4s2θ
αU the contributions from T , U , and δGF cancel both in

the Z observables and in ∆MW as can be seen from Eqs. (3.9) and (3.11). Therefore, along
this direction in the parameter space, the bounds on these three quantities come from the
contribution of δGF to ΓW and BreνW in Eq. (3.15), but these observables are less precisely
determined.

It is important to notice that this “weakening” arises even if the nfi coefficients, that is
all the fermion dependent contributions, but the four-fermionic ones, are set to zero and
only the four contributions c1, cT , c12 and r`2 − r`5 are retained. In this particular case, the
result of the fit is

S = −0.1± 0.1 , T = 0.43± 2.86 , U = −0.3± 2.4 , δGF
GF

= (−0.26± 2.0) × 10−2,
(3.28)

to be compared with Eq. (3.26). On the contrary, in the framework of linear dimension-6
operators, the condition U = 0 makes this cancellation not possible, so bounds on the cor-
responding operator coefficients are generically stronger. In other words, when making the
EWPD analysis in the context of HEFT at O(p4) the bounds on the operators contributing
to T and U are generically weaker by more than one order of magnitude.

The fermionic operators can also lead to modifications of the semileptonic decay am-
plitudes used to determine the elements of the CKM matrix and to test its unitarity. In
particular, NQ1 (h), NQ7 (h), R`

2(h), R`
5(h), RQ`13 (h) induce linear shifts to the corresponding

amplitudes (normalised to GF as determined from µ decay) which can be parameterised
as a shift in the effective CKM matrix,

∆VCKMij = VCKM,SMij

(
−64π2

√
2
v2

Λ2
rQ`13 + ∆g̃udW −

δGF

GF

)
, (3.29)
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Figure 1: Dependence of ∆χ2
EWPD+CKM (= ∆χ2

EWPD for all, but last panel) on the 11
independent operator coefficients as labeled in the figure. In each panel ∆χ2

EWPD+CKM is
shown after marginalizing over the other undisplayed parameters.
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coupling 95% allowed range

c1 (−0.66 , 2.7)× 10−3

cT (−0.023 , 0.021)

c12 (−0.011 , 0.011)
v2

Λ2

(
r`2 − r`5

)
(−4.9 , 4.7)× 10−5

nQ1 (−4.9 , 2.0)× 10−3

nQ2 + nQ8 (−22 , −1.5)× 10−3

nQ5 (−1.6 , 1.2)× 10−3

nQ6 (−0.025 , 8.8)× 10−3

nQ7 (−4.2 , 2.7)× 10−3

n`2 (−0.2 , 1.1)× 10−3

v2

Λ2 r
Q`
13 (−7.1 , 6.6)× 10−5

Table 3: 95% allowed ranges for the combinations of operator coefficients entering the
EWPD analysis and the CKM unitarity test.

and which can lead to violations of unitarity of the CKM matrix which are strongly con-
strained. In the case of SMEFT with operators up to dimension six, three operators enter
this observable after equivalent application of the EOMs [47,48] (which can be chosen for

example to be O(3)
φq , Oll, and, O(3)

lq Ref. [7]). From the global analysis in Ref. [43]

∑
i

|Vui|2 − 1 = 2

(
−64π2

√
2
v2

Λ2
rQ`13 + ∆g̃udW −

δGF

GF

)
= (−1± 6)× 10−4 . (3.30)

In combination with the analysis of the EWPD, this allows for constraining the coefficient of
an 11th operatorRQ`13 (h). Adding this data point to the 16 of the EWPD allows to construct
χ2

EWPD+CKM, which is now a function of 11 parameters (with χ2
EWPD+CKM,SM = 18.4 and

χ2
EWPD+CKM,min = 6). The marginalised distributions verify ∆χ2

EWPD+CKM(x) = ∆χ2
EWPD(x)

for the first ten parameters, i.e. the inclusion of the CKM unitarity constraint has no im-
pact in the previous analysis as long as rQ`13 is allowed to vary free in the fit. The new
∆χ2

EWPD+CKM(rQ`13 ) is shown in the curve in the last panel in Fig. 1 and its 95% CL range
is listed in the last row in Table 3.

3.3 Effects in Higgs Physics

This section is dedicated to the study of the current bounds stemming from the Higgs
searches at the LHC. Restricting the analysis to the subset of C and P–even operators3,
the focus is on those terms that contribute to the trilinear Higgs interactions with fermions
and gauge bosons (deviations in the Higgs triple vertex will only become observable in the
future). This list of operators includes PT (h), PB,G,W (h) and P1,4,5,12,17(h), in addition

3The extension of the analysis to CP–odd non linear operators could be performed after the inclusion
of CP sensitive observables, see Ref. [25].
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to the contributions from Y
(1)
U , Y

(1)
D , Y

(1)
` and to the deviations in the GBs kinetic term

parameterised by ∆aC . This set can be further reduced considering the strong constraints
imposed on PT,1,12(h) by the global analysis of EWPD at the Z pole: the impact of these
operators on Higgs physics can be safely neglected, given the accuracy at which these
observables are currently measured. Moreover, the current Higgs searches are only sensitive
to Hff vertices with f = t, b, τ (the addition of µ to the analysis will be straightforward
once the sensitivity to this coupling increases). Therefore, only a subset of 10 operators is
relevant for the analysis of the available Higgs data. Their contributions to the several Higgs
trilinear interactions can be illustrated with the usual HVV phenomenological Lagrangian
in the unitary gauge:

L = gHgg HG
a
µνG

aµν + gHγγ HAµνA
µν + g

(1)
HZγ AµνZ

µ∂νH + g
(2)
HZγ HAµνZ

µν

+g
(1)
HZZ ZµνZ

µ∂νH + g
(2)
HZZ HZµνZ

µν + g
(3)
HZZ HZµZ

µ

+g
(1)
HWW

(
W+
µνW

−µ∂νH + h.c.
)

+ g
(2)
HWW HW+

µνW
−µν + g

(3)
HWW HW+

µ W
−µ

+
∑
f=τ,b,t

(
gfHf̄LfR + h.c.

)
. (3.31)

The 13 parameters in this Lagrangian can be re-written in terms of the following ten
coefficients4:

∆aC , aB, aG, aW , a4, a5, a17, Y
(1)
t , Y

(1)
b , Y (1)

τ , (3.32)

and explicitly they read

gHgg = − 1

2v
aG , g

(1)
HZγ = − gsθ

4πvcθ

(
a5 + 2

cθ
sθ
a4 + 2a17

)
, g

(2)
HZγ =

sθcθ
v

(aB − aW ) ,

g
(1)
HZZ =

g

4πv

(
2
sθ
cθ
a4 − a5 − 2a17

)
, g

(2)
HZZ = − 1

2v

(
s2
θaB + c2

θaW
)
,

g
(3)
HZZ = M2

Z

(√
2GF

)1/2

(1 + ∆aC) , gHγγ = − 1

2v

(
s2
θaW + c2

θaB
)
,

g
(1)
HWW = − g

4πv
a5 , g

(2)
HWW =

1

v
aW , g

(3)
HWW = 2M2

W

(√
2GF

)1/2

(1 + ∆aC) ,

gf = −
Y

(1)
f√
2
.

(3.33)
The anomalous Higgs interactions described by these 10 operators can be studied and
constrained in a model independent way by means of a global analysis of all the Higgs ex-
perimental measurements that were performed at the LHC during the Run I. This includes
not only event rate data in several Higgs production and decay categories, but also some
kinematic distributions, that have an interesting phenomenological impact, as shown in the
context of SMEFT in Ref. [52–57]. Indeed, they are important for allowing to obtain finite
constraints in the large-dimensional parameter space spanned in the global analysis [52].
Moreover, they make it possible to disentangle the non-SM Lorentz structures from the
SM-like shifts.

4Notice the implicit redefinitions ai ≡ ciai for the bosonic operators.
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Figure 2: Results of the global analysis of LHC Higgs run I data, including kinematic
distributions, for {aB, a4, a17}, profiling on the undisplayed parameters. The colours refers
to the different C.L. regions: from the inner to outer, 68%, 90%, 95%, 99% C.L..

The global analysis of all Run I Higgs, data using the SFitter framework [58–62] for
the SMEFT [41,42], has been presented in Ref. [52]: in that case, the 13 parameters of the
phenomenological Lagrangian in Eq. (3.31) received contributions from 9 linear operators.
Here, that analysis is extended to account for the 10th coefficient a17. All the details
regarding the data set and the kinematic distributions analysed, as well as the statistical
treatment performed in this log-likelihood analysis follow exactly the description presented
in Ref. [52] and will not be repeated here.

The results of the global analysis on the parameters in Eq. (3.32) using the available
Higgs data, including all the kinematic distributions described in Ref. [52], are reported in
Table 4. On the right figure we graphically display the corresponding values where error
bars refer to the 95% C.L. allowed ranges, obtained profiling for each coefficient on the other
9 parameters that are included in the global analysis. The off-shell m4` distributions, which
have been implemented in Ref. [52], are not included here, as their impact in the present
analysis is subdominant with respect to the rest of kinematic distributions considered.

The addition of the extra parameter a17 has enlarged the allowed range for all the
rest of coefficients contributing to the bosonic Higgs trilinear interactions (a4, a5, aW , aB
and ∆aC) in comparison with the results in Ref. [52, 63] (after taking into account the
different normalizations used between the two analyses). This was expected given the
larger dimensionality of the parameter space analysed in here. The new contributions from
P17(h) are consequently strongly correlated to some of the other operators, as illustrated
in Figure 2, where the 2-dimensional planes aB vs. a17 and a4 vs. a17 are shown, after
profiling on the rest of undisplayed coefficients for each of the panels.

In the present analysis the addition of kinematic distributions is crucial both for closing
the allowed regions on all the considered parameters, and for controlling the correlations
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Best fit 95% CL region

aG -0.0125

-0.0030
0.0029

0.0123

(−0.018,−0.0080)

(−0.0054, 0.0058)

(0.0091, 0.017)

aW -0.017 (−0.11, 0.088)

aB 0.0052 (−0.025, 0.041)

a4 0.041 (−0.85, 1.1)

a5 0.13 (−0.81, 0.60)

∆aC -0.13 (−0.30, 0.23)

a17 0.055 (−0.52, 0.65)

Y
(1)
t /Y

(0)
t -1.11 (−1.7,−0.53)

1.31 (0.56, 1.7)

Y
(1)
b /Y

(0)
b -0.70 (−1.7,−0.39)

0.66 (0.35, 1, 7)

Y
(1)
τ /Y

(0)
τ -0.94 (−1.37,−0.63)

0.82 (0.66, 1.47)

c2 0.041 (−0.24, 0.27)

c3 0.15 (−0.093, 0.39)

cWWW 0.006 (−0.013, 0.018) -3 -2 -1 0 1 2

10
2
a

G

10
 
a

W

10
 
a

B

a
4

a
5

∆a
C

a
17

c
2

c
3

10
 
c

WWW

Y
t
(1)/Y

t
(0)

Y
b

(1)/Y
b

(0)

Y
τ
(1)/Y

τ
(0)

Table 4: Best fit and 95% C.L. allowed ranges of the coefficients of the operators contribut-
ing to Higgs data (aG, aW , aB, a4, a5, a17, ∆aC, Y

(1)
t , Y

(1)
b and Y

(1)
τ ) and to TGV analyses

(c2, c3 and cWWW ). Y
(1)
t , Y

(1)
b and Y

(1)
τ are normalised to the SM expectation.

among the anomalous couplings [52]. To our knowledge, the results derived here present
the most complete set of Higgs based constraints on the set of operators of the HEFT
Lagrangian. They highlight, in addition, the potential of the EFT expansion to describe
and study the Higgs interactions at the LHC.
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3.4 Triple gauge boson couplings and Higgs interplay

The study of triple gauge boson vertices is complementary to the analysis of Higgs
physics, and it is fundamental for obtaining a more complete description of the EWSB
sector. Focusing again on the C and P even operators and after including the strong con-
straints from EWPD, only four operators, P2(h), P3(h), P13(h) and PWWW (h), enter this
analysis5. They can give observable deviations from the SM predictions for the triple gauge
boson vertices WWZ and WWγ. These anomalous contributions can be parameterised in
terms of the usual phenomenological TGV Lagrangian presented in Ref. [65]:

LWWV = − igWWV

{
gV1

(
W+
µνW

−µV ν−W+
µ VνW

−µν
)

+κVW
+
µ W

−
ν V

µν+
λV

2m2
W

W+
µνW

−νρV µ
ρ

}
,

(3.34)
with deviations from the SM predictions gZ1 = κZ = κγ = 1, λγ = λZ = 1

∆gZ1 = gZ1 − 1 ≡ g

4πc2
θ

c3 ,

∆κZ = κZ − 1 ≡ g

4π
(c3 + 2c13 − 2tθc2) , (3.35)

∆κγ = κγ − 1 ≡ g

4π

(
c3 + 2c13 + 2

c2

tθ

)
,

λγ = λZ ≡
6π g v2

Λ2
cWWW .

Electromagnetic gauge invariance enforces gγ1 = 1, both in the SM and in the presence of
the new operators. In Eq. (3.34), V ≡ {γ, Z}, gWWγ = e, gWWZ = g cos θW , and W±

µν and
Vµν refer exclusively to the kinetic part of the gauge field strengths.

The combination of all the most sensitive searches for anomalous TGV deviations in
WV diboson production has been performed in Ref. [66], presenting the results obtained in
the SMEFT framework. These results show that at present the most stringent constraints
on the anomalous TGV are set by the LHC Run I searches, whose combined sensitivity
has clearly surpassed that of LEP. Even more relevant is the fact that, while the LHC
Higgs data and gauge boson pair production searches are able to separately set stringent
constraints on the HEFT operators, the combined study of the two sets of data could
be used to improve the understanding of the nature of the Higgs boson state, as already
emphasised in Ref. [24].

In brief, three CP-even SMEFT operators with d = 6 can lead to to sizeable corrections
to the TGV vertices after considering all bounds from EWPD [40–42,52,66]:

OW =
ig

2
(DµΦ)†W µν(DνΦ) , OB =

ig′

2
(DµΦ)†Bµν(DνΦ) ,

OWWW = −ig
3

8
Tr
(
WµνW

νρW µ
ρ

)
,

(3.36)

where the notation of the original papers has been kept.

5An additional operator, P14(h), generates a CP conserving but C and P violating coupling, whose
effects and numerical analysis have been discussed in Ref. [24, 64] and also hold here.
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As pointed out in Ref. [24], comparing the interactions generated by these three op-
erators with those induced by the relevant operators in the HEFT basis, one finds two
differences: (i) for the TGV phenomenology OW and OB give corrections to the vertices
equivalent to those induced by P2(h) and P3(h), while for the HVV couplings their effects
are equivalent to those of P4(h) and P5(h); (ii) the O(p4) chiral operator P13(h) has no
equivalent in the linear expansion at dimension 6.

In other words, (i) implies that, as it is well known from the pre-LHC times [67], and
recently emphasised in some of the post–Higgs discovery analyses [42,56,68], the operators
OW and OB lead at the same time to anomalous contributions to both Higgs physics
and TGV anomalous measurements. Thus, any deviation generated by them should be
correlated in data from both sectors, and consequently the combined analysis of Higgs
data and TGV measurements becomes mandatory in order to obtain constraints as strong
as possible on their coefficients [66]. Conversely, in the HEFT case, the anomalous TGV
deviations induced by OW and OB are generated by P2(h) and P3(h), while their effects
on Higgs physics originate from P4(h) and P5(h). Therefore, deviations in TGV and in
Higgs physics could remain completely uncorrelated in the HEFT context [24]. This means
that the nature of the Higgs boson can be directly probed by testing the presence of this
(de)-correlated pattern of interactions in the event of an anomalous observation in any of
the two sectors.

To illustrate the present status of such comparison, a global analysis of the data avail-
able both on the Higgs interactions and on the searches for anomalous TGV has been
performed. The analysis spans the 10 coefficients relevant for Higgs physics in the HEFT
scenario, see Eq. (3.32), together with the 3 parameters relevant for the TGV sector, which
have an equivalent in the SMEFT Lagrangian, c2, c3 and cWWW (i.e. setting c13 to zero)6.

In what respects the TGV analysis, the simulation of the relevant distributions and the
statistical fit follow those of Ref. [66]. The best fit values and 95% C.L. intervals obtained
for c2, c3 and cWWW are quoted for completeness in Table 4. As can be seen comparing
the results in Table 4 with Table 4 of Ref. [24], derived considering only the LEP based
TGV bounds on c2 and c3, the new combination of LHC Run I searches is able to improve
substantially the constraints on P2(h) and P3(h).

It was already shown in Ref. [24] that four specific combinations of the coefficients
P2(h), P3(h), P4(h) and P5(h) are meaningful for illustrating the Higgs+TGV results:7

ΣB ≡
1

πgtθ
(2c2 + a4) , ΣW ≡

1

2πg
(2c3 − a5) ,

∆B ≡
1

πgtθ
(2c2 − a4) , ∆W ≡

1

2πg
(2c3 + a5) .

(3.37)

These four parameters were defined in such a way that, at d = 6 order in the SMEFT
expansion, the two ∆’s are zero because of gauge invariance and of the doublet nature of

6Notice that the operator belonging to the SMEFT expansion which contains the same interactions
described by P13(h), also called “linear sibling”, arises only at d = 8.

7For the sake of comparison with Ref. [24], the four combinations have been defined to be quantitatively
equivalent to those in Ref. [24], in spite of the different normalisation for the ci and ai coefficients used in
here.
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Figure 3: Present bounds on ΣB, ΣW , ∆B and ∆W (see text for the details on
their definition) as obtained from the most recent combined global analysis of Higgs
and TGV data. The rest of undisplayed parameters spanned in the global analysis
(∆aC , aB, aG, aW , , a17, Y

(1)
t , Y

(1)
b , Y

(1)
τ and cWWW ) have been profiled. The black dots

signal the (0, 0) point, while the stars signal the current best fit point obtained in the anal-
ysis.

the Higgs, ∆B = ∆W = 0. On the other hand, the operators OW and OB contribute to
the Σ’s leading to ΣB = v2 fB

Λ2 and ΣW = v2 fW
Λ2 , being fi the associated Wilson coefficients.

In contrast, the HEFT operators could generate independent modifications to each of
these four variables. Figure 3 shows the current status of the bounds on the two relevant
planes of coefficients after taking into consideration all the Higgs measurements included
in the presented Higgs global analysis (based on Ref. [52]), together with the most recent
combination of TGV searches presented in the previous subsection (based on Ref. [66]).

As described in Ref. [24], in the left panel of Figure 3 the (0, 0) point corresponds to
no deviation from the SM, while in the right one it represents the limit in which TGV
and HVV couplings show a SMEFT-like correlation. Therefore, any deviation from (0, 0)
in the left panel would indicate BSM physics irrespectively of the nature of the EWSB
realisation, while a similar departure in the right panel would disfavour a linear EWSB. As
the ∆’s and the Σ’s are orthogonal combinations of parameters, the two panels of Fig. 3
are in principle independent of each other. In particular, deviations from (0, 0) may occur
arbitrarily in only one plane or in both at the same time.

The constraints of ΣB, ΣW , ∆B and ∆W shown in Fig. 3 present a significant improve-
ment with respect to the bounds previously shown in Fig. 2 of Ref. [24]. The reason for
such a sizeable improvement relies on two key points. First, the strength of the derived
results is increased by the inclusion of the more complete set of run I LHC Higgs event rate
measurement and by the addition of relevant kinematic distributions, that are sensitive to
the anomalous SM Lorentz structures generated by a3 and a5 [52]. Second, the combina-
tion of the significant LHC Run I diboson production analysis as described in Ref. [66] also
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has a huge impact in the analysis. The combination of these two ameliorations enhances
significantly the accuracy of the combined results shown in Figure 3, in spite of the larger
dimensionality of the parameter space considered in the present study with respect to the
global analysis in Ref. [24].

4 Higher order operators and expansion validity

An important issue for numerical analyses performed in an EFT approach is that of
establishing whether the EFT description is valid at the typical energies of the processes
considered. The task is particularly relevant when collider data is included in the analysis,
as the corresponding measurements are typically taken at energies significantly higher than
the EW scale.

In general, the validity of the expansion can be discussed studying the impact of op-
erators which belong to different expansion orders. In the context of the SMEFT, this is
tantamount to analysing operators with dimension d > 6. As discussed in Refs. [69–73],
this analysis sets different constraints on the cutoff of the theory, depending on the observ-
ables and of the operators considered: the strongest bounds are associated to observables
that receive contributions from d = 8 operators with a larger number of derivatives, as
they induce a strong energy-dependence.

Similar general considerations also apply to the HEFT. However, in this case the dis-
cussion is complicated by the simultaneous presence of several characteristic scales and,
consequently, of multiple expansion parameters. Although the only physical scales of the
HEFT are Λ and v, as explained in Sect. 1, it is useful to keep momentarily the scale f
(Λ ≤ 4πf) as an independent quantity. The limit f → v will be discussed later on.

In realistic Composite Higgs models, that can be considered as a benchmark for un-
derstanding the role played by each scale, v, f and Λ enter the low-energy Lagrangian
in three different combinations: v/f =

√
ξ, 1/4π ≤ f/Λ ≤ 1, and E/Λ, where E is the

characteristic energy scale of a given observable. As shown in Ref. [33], cross sections of
physical processes only depend on scale suppressions: the generic expression, adopting the
NDA normalisation of Eq. (2.7), is given by

σ ∼ π(4π)2

E2

(
E2

Λ2

)−NΛ

, (4.1)

where (−NΛ) is the number of powers of Λ that suppress an interaction term. The NDA
master formula takes automatically care of all the 4π factors appearing in the cross-section
(see Ref. [33] for further details and for generalisations), so that (−NΛ) actually counts
both powers of Λ and of f indifferently. As a result, the only quantities that can be
considered as proper suppression factors are

√
ξ and E/Λ. The physical relevance of a

given cross-sections is basically determined by its dependence on these two parameters.
While the dependence on 1/Λ is explicit in HEFT operators, it is less trivial to trace

that on
√
ξ = v/f . To this aim, it is useful to recall (see Sect. 1) that f is the scale

associated to both the SM GBs and the Higgs and, as such, it is always hidden inside
the GB matrix U(x) and the generic Higgs functions F(h). The dependence on f can be
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explicited expanding these structures:

U = 1 + 2i
σaπ

a

f
+ . . . , F(h) = 1 + 2a

h

f
+ . . . . (4.2)

Within Vµ and upon going to unitary gauge, the powers on 1/f are converted into factors
of
√
ξ. This is due to the fact that, in the kind of scenarios considered here, ξ represents

a fine-tuning, that necessarily weights insertions of longitudinal components of the gauge
bosons [33]. This indeed occurs in composite Higgs models (see Refs. [29, 30]), where
analogous conclusions are found to hold also for ∂µF(h).

It is worth noticing that, while U(x) and F(h), considered globally, are adimensional
quantities, their expansions contain terms with different canonical dimensions that come
suppressed by powers of f . As a result, the leading terms of Vµ and ∂µF(h), obtained
applying one derivative to the series of Eq. (4.2), have canonical dimension two: one
dimension being associated to the derivative and the other to the first non-vanishing term
in the expansion of either U or F(h). This observation can be generalised introducing
the primary dimension dp, defined in Ref. [33] as the canonical dimension of the leading
term in the expansion of a given object. For fundamental elements, such as derivatives,
gauge fields and fermions, the primary dimension coincides with the traditional canonical
dimension. Table 5 contains a summary of the primary dimensions for the building blocks
used in the construction of the HEFT Lagrangian, together with the associated suppression
factors. It follows from the discussion above that a term suppressed by ξα/2(p/Λ)β must
have dp = α + β.

With the information provided by Table 5, it is easy to infer the dependences for all the
HEFT operators, that can be thus organised in a two-parameter expansion as indicated,
schematically, in Table 6. The colours discriminate between two sets of operators: the
structures reported in the cyan boxes correspond to the NLO Lagrangian considered in this
work; the structures in the white cells, instead, are customarily considered as higher order
terms, but their impact may be comparable to that of the NLO terms for sufficiently high
energies. Depending on the observables considered, it may be necessary to include (part
of) the second set of operators into the phenomenological analysis (see also Ref. [74]), even
if this would mean working with a ill-defined basis from a renormalisation point of view.

Building block dp Factors of ξ Factors of p/Λ

U(x) 0 1 1

F(h) 0 1 1

∂µ 1 1 (p/Λ)

ψ 3/2 1 (p/Λ)3/2

Xµν 2 1 (p/Λ)2

Vµ 2
√
ξ (p/Λ)

∂µF(h) 2
√
ξ (p/Λ)

Table 5: Different HEFT building blocks and their primary dimensions. The two last
columns report the suppression factors associated to each object.
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ξ2

(∂F)2(V)2

(V)4

(∂F)4

ξ3/2

ξ
(V2)(X)2

(∂F)(V)(X)

(∂F)(V)(ψ̄ψ)

(V)2(ψ̄ψ)

(∂F)2(ψ̄ψ)

(X)2(V)2

(∂F)(V)(X)2

(∂F)2(X)2

√
ξ (ψ̄ψ)(V)

(V)(X)(ψ̄ψ)

(∂F)(X)(ψ̄ψ)

(V)(ψ̄ψ)2

(∂F)(ψ̄ψ)2

1 (X)2 (X)(ψ̄ψ)
(ψ̄ψ)2

(X)3
(X)2(ψ̄ψ)

(X)(ψ̄ψ)2

(X)4

1
(
p
Λ

) (
p
Λ

)2 (
p
Λ

)3 (
p
Λ

)4

Table 6: HEFT operators distributed according to their ξ and p/Λ suppressing factors. A
schematic notation has been adopted for categorising the operators based on the building
blocks they contain. The terms appearing in the cyan boxes correspond to the NLO operators
listed in the previous sections. The other terms refer to operators that usually belong to
higher Lagrangian orders, but that can have an impact similar to that of the NLO ones for
sufficiently high energies. EOMs have been employed to remove redundant structures.

This should not be seen as a concern, as, even considering a complete, non-redundant basis
at NNLO, only the subcategories listed in Table 6 would be physically relevant. Effects
due to operator mixing under the renormalisation group running are also expected to be
completely negligible at the experimental sensitivities foreseen for the near future.

In the limit f → v, the dependence on ξ does not represent a suppression anymore and
the physical impact of an operator is determined only by the factors of p/Λ. In this case,
one recovers a pure chiral expansion, which is organised “horizontally” in the representation
of Table 6.

On the contrary, in the limit p/Λ '
√
ξ, all the operators with the same dp are equally

suppressed and therefore one recovers, altogether, the linear expansion organised in canon-
ical (or primary) dimensions. In this case, all the operators in the white boxes of Ta-
ble 6 should be considered. This condition is for instance fulfilled for Λ = 10 TeV and
E ' 1 TeV, which is within the range of energies that are relevant for processes to be
observed at LHC13.

The introduction of the primary dimension, i.e. of a counting on explicit and implicit
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scale suppressions, allows to link the particular structure of an operator to the strength of
a physical signal in terms of cross sections. Indeed, if an observable receives contributions
from a single operator, then the corresponding cross section is uniquely determined by
the primary dimension of that operator, according to Eq. (4.1). As a consequence, the dp
is a useful phenomenological tool to indicate whether the strength of an observable, that
receive contributions only from operators belonging to higher expansion orders, is expected
to be of the same order or more suppressed with respect to the other processes already
considered in the phenomenological analysis.

An interesting application of the primary dimension is that if the dp of an HEFT
operator is smaller than the canonical dimension of the corresponding linear sibling, then
the processes described by these operators represent smoking guns to test the linearity of
the EWSB realisation. This is the case of the operator P14(h) discussed in Ref. [33]: it
induces an anomalous TGV, commonly called gZ5 , that is expected to be strongly suppressed
in the SMEFT description, but not in the HEFT one.

5 Conclusions

The complete effective Lagrangian for a non-linear realisation of the EWSB (shortened
into HEFT) has been presented. It provides the most general description of the Higgs
couplings and it can be used for investigating a large spectrum of distinct theories, ranging
from the SM to technicolour constructions, including Composite Higgs realisations and
dilaton-like frameworks. In contrast with the effective Lagrangian for a linearly realised
EWSB (also SMEFT), in which the Higgs belongs to an exact SU(2)L doublet, in the
HEFT the physical Higgs is assigned to a singlet representation of the EW group and it is
treated as an object independent of the Goldstone bosons’ matrix.

Assuming invariance under the Lorentz and SM gauge symmetries, as well as the con-
servation of Baryon and Lepton numbers, the complete chiral basis at the next to leading
order contains a total number of 148 independent, flavour universal terms. When extend-
ing the SM spectrum to include three right-handed neutrinos, 40 more operators enrich
the basis. The generalisation to arbitrary flavour contractions is straightforward.

Conversely, the SMEFT basis up to d = 6 consists of only 59 flavour universal terms,
in absence of right-handed neutrinos. The different number of operators and of building
blocks used for the construction of the two bases lead to fundamental differences between
the SMEFT and the HEFT. The possibility of distinguishing between them has been
discussed performing a global fit including all the available data from colliders, including
EWPD, Higgs and TGV mearuments taken at the LHC Run I. The main outcomes are
summarised in the following points:

- The Electroweak precision data analysis together with the study of the CKM matrix
unitarity allows to constrain 11 parameters of the HEFT Lagrangian. The corre-
sponding value of the χ2 at the minimum is 6. This can be compared with the
corresponding analysis within the SM, whose χ2 is 18.4.

- The results for the S, T and U parameters are significantly different with respect to
the standard analysis in the SMEFT with operators up to dimension 6, due to the

36



presence of extra free parameters: the allowed range for S is about 4 times broader,
while the bounds on T and U are about 20 times weaker.

- The analysis of Higgs data depends on a total of 10 parameters, with one bosonic
operator more compared to the same analysis in the SMEFT case at dimension six.
Although the final results are quite similar to those obtained for the SMEFT, the
addition of the extra parameter broadens the allowed range for the remaining 9
coefficients, as expected.

- The interplay between triple gauge boson vertices and Higgs couplings provides an
interesting way of investigating the nature of EWSB. Although this analysis is not
conclusive yet due to the limited sensitivity on the observables considered, the intro-
duction of kinematic distributions is seen to improve considerably the results. Would
the accuracy of Higgs measurements improve significantly in the future, this kind of
analysis may reveal signatures of non-linearity in the Higgs sector.

- It has been underlined that with the increase in energy at colliders, it may be neces-
sary to consider several operators that, in spite of being usually considered as higher
order effects, may have a non-negligible phenomenological impact. The list of the
relevant structures has been given in Table 6.

In summary, this work extends the chiral basis of Refs. [24, 25] with the introduction
of fermionic operators. Moreover, the analysis presented here updates and extends that
contained in Ref. [24] with the inclusion of more recent collider data and of fermionic
observables. A strategy for disentangling the nature of the EWSB has been discussed,
based on the presence of new anomalous signals and of decorrelations among observables.
It has also been discussed how the phenomenological analysis should be modified when
higher energy data is kept into account, specifying the relevant operator structures that
should be added to the basis in this case. The analysis presented here represents the first
phenomenological study performed with the complete HEFT Lagrangian and it could be
taken as a reference for dedicated experimental analyses aimed at shedding light on the
Electroweak symmetry breaking sector and the Higgs nature.
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A Additional operators in presence of RH neutrinos

Adding right-handed neutrinos to the spectrum amounts to declaring a non-zero upper
component for the LR doublet, which shall be defined as LR = (NR, ER)T . Consequently,
the lepton Yukawa matrix in the LO Lagrangian Eq. (2.3) has to be generalised to account
for thr masses and interactions of the neutrinos with the Higgs

YL(h) ≡ diag

(∑
n

Y (n)
ν

hn

vn
,
∑
n

Y
(n)
`

hn

vn

)
. (A.1)

In addition, the fermionic basis presented in Sec. 2.3 must be enlarged in order to account
for the increased number of possible invariants, as follows:

∆L2F =
17∑
j=15

n`j N `
j +

28∑
j=18

1

Λ

(
n`j + iñ`j

)
N `
j +

31∑
j=29

4π

Λ

(
n`j + iñ`j

)
N `
j , (A.2)

∆L4F =
(4π)2

Λ2

[
10∑
j=8

(
r`j + ir̃`j

)
R`
j +

15∑
j=1

r`j R
`
j +

29∑
j=24

(
rQ`j + ir̃Q`j

)
RQ`j +

38∑
j=30

rQ`j RQ`j

]
.

(A.3)

The complete list of additional operators is provided in this Appendix.

Single Leptonic Current Operators

With one derivative

N `
15(h) ≡ iL̄R γµU

†VµULRF ��CP N `
16(h) ≡ L̄R γµU

†[Vµ,T]ULRF

N `
17(h) ≡ iL̄R γµU

†TVµTULRF

With two derivatives

N `
18(h) ≡ L̄L TULR ∂µF∂µF ′ N `

19(h) ≡ L̄L VµULR ∂
µF

N `
20(h) ≡ L̄L TVµTULR ∂

µF N `
21(h) ≡ L̄L VµV

µTULRF

N `
22(h) ≡ L̄L TVµTVµTULRF N `

23(h) ≡ L̄L VµTVµULRF

N `
24(h) ≡ L̄L VµTVµTULRF N `

25(h) ≡ L̄L σ
µνVµULR ∂νF

N `
26(h) ≡ L̄L σ

µνTVµTULR ∂νF N `
27(h) ≡ L̄L σ

µνVµTVνTULRF

N `
28(h) ≡ L̄L σ

µν [Vµ,Vν ]TULRF N `
29(h) ≡ ig′ L̄L σ

µνTULRFBµν

N `
30(h) ≡ ig L̄L σ

µν{Wµν ,T}ULRF N `
31(h) ≡ ig L̄L σ

µνTWµνTULRF
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Four-fermion Operators

Additional operators with four leptons:

R`
8(h) ≡ (L̄L σ

iULR )(L̄L σ
iULR )F R`

9(h) ≡ (L̄L ULR )(L̄L TULR )F

R`
10(h) ≡ (L̄L TULR )(L̄L TULR )F R`

11(h) ≡ (L̄R γµ LR )(L̄R γ
µU†TULR )F

R`
12(h) ≡ (L̄R γµU

†TULR )(L̄R γ
µU†TULR )F R`

13(h) ≡ (L̄L γµ LL )(L̄R γ
µU†TULR )F

R`
14(h) ≡ (L̄L γµTLL )(L̄R γ

µU†TULR )F R`
15(h) ≡ (L̄L γµσ

i LL )(L̄R γ
µU†σiULR )F

Additional mixed operators with two quarks and two leptons

RQ`24 (h) ≡ (L̄L UQR )(Q̄L TULR )F RQ`25 (h) ≡ (L̄L TULR )(Q̄L UQR )F

RQ`26 (h) ≡ (L̄L TULR )(Q̄L TUQR )F RQ`27 (h) ≡ (L̄L TUQR )(Q̄L TULR )F

RQ`28 (h) ≡ (L̄L σ
iTULR )(Q̄L σ

iUQR )F RQ`29 (h) ≡ (L̄L σ
iTUQR )(Q̄L σ

iULR )F

RQ`30 (h) ≡ (L̄R γµU
†TULR )(Q̄R γ

µQR )F RQ`31 (h) ≡ (L̄R γµU
†TULR )(Q̄R γ

µU†TUQR )F

RQ`32 (h) ≡ (L̄R γµU
†σjULR )(Q̄R γ

µU†σjUQR )F RQ`33 (h) ≡ (Q̄L γµQL )(L̄R γ
µU†TULR )F

RQ`34 (h) ≡ (Q̄L γµTQL )(L̄R γ
µU†TULR )F RQ`35 (h) ≡ (Q̄L γµσ

j QL )(L̄R γ
µU†σjULR )F

RQ`36 (h) ≡ (Q̄L γ
µ LL )(L̄R γµU

†TUQR )F RQ`37 (h) ≡ (Q̄L γµTLL )(L̄R γ
µU†TUQR )F

RQ`38 (h) ≡ (Q̄L γ
µσjTLL )(L̄R γµU

†σjUQR )F

B Removal of F(h) from the Higgs and fermions ki-

netic terms

All the kinetic terms in the LO Lagrangian, Eq. (2.3), are canonically normalised,
despite the fact that the singlet nature of the h field in principle allows to couple them to
a function F(h). In the case of the gauge bosons’ kinetic term, the absence of a Higgs-
dependence is justified in the assumption that the transverse components of the gauge
fields do not interact with the Higgs sector at LO. On the other hand, in the cases of the
Higgs and of the fermions’ kinetic terms, the dependence F(h) is completely redundant,
as it can be removed via a field redefinition (analogously to what was done in Ref. [75]).
This appendix provides more details about such redefinition.

The coupling of the fermionic kinetic term to a generic Higgs function would be of the
form

i

2

(
ψ̄ /Dψ − ψ̄

←−
/Dψ
)

(1 + Fψ(h)) , (B.1)

where ψ = {Q,L} and

Fψ(h) = cψ + 2aψ
h

v
+ bψ

h2

v2
+ . . . (B.2)
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The dependence of Fψ(h) can therefore be removed via the redefinition

ψ → ψ′ [1 + Fψ(h)]−1/2 . (B.3)

As this substitution is applied to the whole Lagrangian, it induces a modification of all the
couplings between fermionic and Higgs fields, which can be reabsorbed in redefinitions of
the functions Fi(h) that accompany fermionic operators. In particular, this is also true for
the LO Yukawa couplings, as they are accompanied by arbitrary polynomials YQ,L(h). In
conclusion, the insertion of a function Fψ(h) in the fermionic kinetic term is redundant in
the LO Lagrangian of Eq. (2.3).

The Higgs kinetic term may also be written as

1

2
∂µh∂

µh (1 + FH(h)) , (B.4)

with

FH(h) = cH + 2aH
h

v
+ bH

h2

v2
+ . . . (B.5)

In this case, the FH(h) function can be removed by the field redefinition

h′ →
∫ h

0

√
1 + FH(s) ds (B.6)

in fact

1

2
∂µh

′∂µh′ =
1

2

[
∂µh
√

1 + FH(h)
]2

= PH(h) . (B.7)

Although this redefinition looks quite involved, it clearly induces modifications of all the
Higgs couplings in the Lagrangian. As these are always described by arbitrary coefficients,
the redefinition (B.6) can be entirely reabsorbed into redefinitions of the functions Fi(H)
that appear in the Lagrangian. As seen for the case of Fψ(h) above, the presence of FH(h)
in the Higgs’ kinetic term is redundant within the LO Lagrangian chosen in Eq. (2.3).

A practical example

In order to give a practical illustration, one can consider a specific function

FH(h) = 2aH
h

v
. (B.8)

Then, the following equation

h′ =

∫ h

0

√
1 + 2aHs/v ds =

v

3aH

[(
2aHh

v
+ 1

)3/2

− 1

]
(B.9)

can be solved analytically, obtaining

h =
v

2aH

[(
3aH
v
h′ + 1

)2/3

− 1

]
. (B.10)

40



Plugging this result into FC(h) and re-expanding in h′/v, it gives8:

FC(h) = 1 + 2aC
h′

v
+ (bC − aCaH)

(
h′

v

)2

, (B.11)

so that the impact of the redefinition can be entirely reabsorbed defining primed coefficients

a′C = aC , b′C = bC − aCaH . (B.12)

An analogous redefinition allows to reabsorb inside the function Y(n)
ψ the effects on the

Yukawa interactions.

C Construction of the fermionic basis

This appendix provides additional information about the construction of the fermionic
basis specifying, in particular, the relation between the structures present in the operators
presented in Sec. 2.3 and those that have been removed. In what follows, generic fermion
fields are denoted by ψ = {Q,L} while Γ stands for an arbitary SU(2) structure, com-
bination of the blocks {T, Vµ, Dµ, σ

j}. The Lorentz contractions are always explicited
and, whenever they are not specified, chiralities are arbitrary. The correspondence be-
tween classes of operators is indicated schematically by an arrow (→); signs and numerical
coefficients are not specified in these relations.

C.1 Useful identities

A list of useful identities is provided below. Since the building blocksA = {T, Vµ, DµV
µ}

are traceless, they can be generically rewritten as A = 1
2
Tr[Aσa]σa. This yields the rela-

tions:

[T,Vµ] =
i

2
εijkTr(Tσi)Tr(Vµσ

j)σk (C.1)

{T,Vµ} = Tr(TVµ)1 (C.2)

TVµT =
1

2

[
Tr(TVµ)Tr(Tσi)− Tr(Vµσ

i)
]
σi = TTr(TVµ)−Vµ (C.3)

The properties of the SU(2) generators additionally lead to the following identities:

TVµV
µ = VµV

µT

TV[µTVν] = V[µTVν]T

TV[µTVν]T = V[µTVν]

T[Vµ,Vν ] = −[Vµ,Vν ]T− 2V[µTVν] .

(C.4)

The trasformation properties of T and Vµ ensure:

DµT = [Vµ,T] (C.5)

Vµν = DµVν −DνVµ = igWµν − ig′Bµν/2 + [Vµ,Vν ] (C.6)

8In this computation aH > 0 is assumed. For negative values the third roots give some complications.
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Fierz identities for chiral (anticommuting) fields have been employed for the reduction of
the four fermion basis

(ĀLBR)(C̄LDR) =− 1

2
(ĀLDR)(C̄LBR)− 1

8
(ĀLσ

µνDR)(C̄LσµνBR) (C.7)

(ĀLBR)(C̄RDL) =− 1

2
(ĀLγµDL)(C̄Rγ

µBR) (C.8)

(ĀLγµBL)(C̄Lγ
µDL) =(ĀLγµDL)(C̄Lγ

µBL) (C.9)

(ĀRγµBR)(C̄Rγ
µDR) =(ĀRγµDR)(C̄Rγ

µBR) . (C.10)

Whenever they are applied to SU(2) doublets (and SU(3) triplets), these identities must
be applied together with the completeness relations for the generators of SU(2) (and of
SU(3))

σaijσ
a
mn = 2δinδmj − δijδmn (C.11)

λAijλ
A
mn = 2δinδmj −

2

3
δijδmn (C.12)

in order to recover the correct gauge contractions. For example, combining Eq. (C.8) with
Eqs. (C.11) and (C.12), the scalar identity for quark doublets reads

(Q̄1LQ2R)(Q̄3RQ4L) = − 1

12
(Q̄1LγµQ4L)(Q̄3Rγ

µQ2R)− 1

12
(Q̄1Lγµσ

kQ4L)(Q̄3Rγ
µσkQ2R)+

− 1

8
(Q̄1Lγµλ

AQ4L)(Q̄3Rγ
µλAQ2R)− 1

8
(Q̄1Lγµλ

AσkQ4L)(Q̄3Rγ
µλAσkQ2R) .

(C.13)

C.2 Construction of ∆L2F

- Since for traceless matrices Tr(AB)1 = {A,B}, the operators of the type ψ̄γµψTr(Γ1Γ2)F
with Γi = {T, Vµ, DµVν} are always equivalent to the bilinears ψ̄γµ{Γ1,Γ2}ψF .

- bilinears with a derivative on the fermion field and a vector current (eg. (Dµψ̄)γµXψ)
can been removed via intergration by parts and application of the Equations of Mo-
tion (see Appendix D)

- operators with a derivative on the fermion field but with no gamma matrices (of the
type ψ̄ΓµDµψ) are removed using the relation gµν = {γµ, γν}/2, integration by parts
and the Equations of Motion:

ψ̄ΓµD
µψ = ψ̄ gµνΓ

µDνψ = ψ̄/Γ( /Dψ) + ψ̄γν/Γ(Dνψ) =

= ψ̄/Γ( /Dψ)− (ψ̄
←−
/D)/Γψ − ψ̄( /D/Γ)ψ

→ ψ̄/Γψ + ψ̄DµΓµψ + iψ̄σµνDµΓνψ.

(C.14)

- bilinears with the structure γµγνDµVν can be reduced to a combination of dipole op-
erators (containing field strengths), terms with the structure σµνVµVν and bilinears
with the direct contraction DµV

µ. In fact:

γµγνDµVν = (gµν − iσµν) DµVν = DµV
µ − i

2
σµνVµν (C.15)
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where the relation (C.6) shall be applied on the latter term. The former can be also
removed using the EOMs.

- the commutator [Dµ, Dν ] is always vanishing when applied to SU(2) invariants (right-
handed fermions, B and G fields, F(h) functions), while it is traded for a field
strength when it acts on a quantity X with non-trivial isospin transformations:
[Dµ, Dν ]X = ig[Wµν , X].

- further combinations of T and Vµ that do not appear in the basis reported in Sec. 2.3
have been traded for others using the identities (C.1) and (C.4).

C.3 Construction of ∆L4F

Details about the construction and reduction of the four-fermion operators basis are
provided in this section. None of the terms of ∆L4F have been removed via Equations of
Motion, while the Fierz identities (C.7)-(C.10) have been extensively employed for remov-
ing redundant structures. In particular, operators with tensor currents ((ψ̄σµνψ)2) were
not included in the final basis, as they are always equivalent to combinations of scalar
contractions via the Fierz identity (C.7). Similarly, operators with the scalar contraction
(ψ̄LψR)(ψ̄RψL) have been traded for terms with the vector structure (ψ̄LγµψL)(ψ̄Rγ

µψR)
employing the identity (C.8).

Four-quark (lepton) operators

- There are four independent SU(2) contractions of four quarks that can be constructed
with the scalar structure (ψ̄LψR)(ψ̄LψR). They are easily identified in unitary gauge
by the U(1)em invariants

(uu)(uu), (dd)(dd), (uu)(dd), (ud)(du) .

Keeping colour contractions into account, the total number of independent operators
in this category is 8.

With four leptons there is only one invariant with this Lorentz structure, due to the
absence of right-handed neutrinos: (ee)(ee).

We do not provide the expressions of all the possible SU(2) structures in terms of
the invariants selected for the basis of Sect. 2.3. However, it is worth commenting on
two contractions that can be constructed without the explicit insertion of Goldstone
bosons: in the four-quarks case they are

RQε1 = εijεab(Q̄L iQR a)(Q̄L j QR b)F
RQε2 = εijεab(Q̄L iλ

AQR a)(Q̄L jλ
AQR b)F .

(C.16)

In the four-leptons case, it is possible to introduce a structure analogous to the first
one, but only in presence of right-handed neutrinos. this would read:

R`
εN = εijεab(L̄L i LR a)(L̄L j LR b)F . (C.17)
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The operators of Eqs. (C.16) and (C.17) are redundant in the basis of Sect. 2.3:
in fact, exploiting the properties of the Pauli matrices and the completeness rela-
tion (C.11) one has

UiaUjb −
(
Uσk

)
ia

(
Uσk

)
jb

= 2εijεab

(
c2
π +
|~π|2

v2
s2
π

)
, (C.18)

where we have used the compact notation sπ ≡ sin(|~π|/v), cπ ≡ cos(|~π|/v). From
Eq. (C.18) it follows immediately that

RQ1 −RQ2
2

= RQε1

(
c2
π +
|~π|2

v2
s2
π

)
= RQε1

(
1− |~π|

2

v2
+

4

3

|~π|4

v4
+ . . .

)
RQ5 −RQ6

2
= RQε2

(
c2
π +
|~π|2

v2
s2
π

)
= RQε2

(
1− |~π|

2

v2
+

4

3

|~π|4

v4
+ . . .

)
R`

1 −R`
8

2
= R`

εN

(
c2
π +
|~π|2

v2
s2
π

)
= R`

εN

(
1− |~π|

2

v2
+

4

3

|~π|4

v4
+ . . .

) (C.19)

Therefore, the interactions contained in RQε1, RQε2 and R`
εN are already described by

linear combinations of operators in the basis.

- The class of four fermion operators with two left-handed currents contains four inde-
pendent operators in both the four-quarks and four-leptons cases:

(Q̄L γµQL )2 : (uu)(uu), (dd)(dd), (uu)(dd), (ud)(du)

(L̄L γµ LL )2 : (νν)(νν), (ee)(ee), (νν)(ee), (νe)(eν)

Notice that in this case the octet colour contraction (Q̄L γµλ
AQL )2 is not inde-

pendent. In fact it is equivalent to a combination of invariants with singlet colour
contractions. Using Eqs. (C.12) and (C.9):

(Q̄L γµλ
aQL )(Q̄L γµλ

aQL ) =
1

3
(Q̄L γµQL )(Q̄L γµQL ) + (Q̄L γµσ

j QL )(Q̄L γµσ
j QL )

(C.20)

An analogous relation holds for the structures with right-handed currents.

- The class of four fermion operators with two right-handed currents contains four
independent operators in the four-quarks case but only one in the four-leptons sector:

(Q̄R γµQR )2 : (uu)(uu), (dd)(dd), (uu)(dd), (ud)(du)

(L̄R γµ LR )2 : (ee)(ee)

- Finally, there are five independent SU(2) contractions for quark vector currents of
opposite chirality (ψ̄LγµψL)(ψ̄Rγ

µψR), to be doubled when including octet colour
contractions:

(uu)(uu), (dd)(dd), (uu)(dd), (dd)(uu), (ud)(du) + (du)(ud)

The four-leptons counterpart, instead, contains two invariants corresponding to the
interactions

(ee)(ee), (νν)(ee) .
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Mixed quark-lepton operators

- Operators with the scalar contraction (ψ̄LψR)(ψ̄LψR) can have either the structure
(Q̄Q)(L̄L) or (Q̄L)(L̄Q). Each of these yield three independent invariants, that are
most easily identified in unitary gauge by the interactions:

(Q̄Q)(L̄L) : (uu)(ee), (dd)(ee), (du)(νe)

(Q̄L)(L̄Q) : (ue)(eu), (de)(ed), (de)(νu)
(C.21)

- The two combinations (Q̄LγµQL)(L̄Lγ
µLL), (Q̄LγµLL)(L̄Lγ

µQL) are related by the
Fierz identity (C.9), and therefore only the former stucture has been retained. The
same holds for the analogous terms constructed with right-handed currents, that are
connected by Eq. (C.10).

This class includes five independent left-handed invariants, identified by the hermitian
combinations

(uu)(ee), (dd)(ee), (uu)(νν), (dd)(νν), (du)(νe) + (ud)(eν) .

and two right-handed ones:
(uu)(ee), (dd)(ee).

- Operators with one left-handed and one right-handed current can be constructed in
either of the combinations (Q̄L γµQL )(L̄R γ

µ LR ), (L̄L γµ LL )(Q̄R γ
µQR ) and

(Q̄L γµ LL )(L̄R γ
µQR ). These provide, respectively, 2 + 5 + 3 independent interac-

tions:

(Q̄Q)(L̄L) : (uu)(ee), (dd)(ee)

(L̄L)(Q̄Q) : (ee)(uu), (ee)(dd), (νν)(uu), (νν)(dd), (νe)(du) + (eν)(ud)

(L̄Q)(Q̄L) : (eu)(ue), (ed)(de), (νu)(de)
(C.22)
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D Application of the Equations of Motion

Given the LO Lagrangian in Eq. (2.3), the fields satisfy the following Equations of
Motion (EOMs):

i /DψL =
v√
2
UYψ(h)ψR

i /DψR =
v√
2
Y†Q(h)U†ψL

(D.1)

(DµWµν)
a =

∑
ψ=Q,L

g

2
ψ̄Lσ

aγνψL +
igv2

4
Tr[Vνσ

a]FC(h) (D.2)

∂µBµν = gcθ
∑

i = L,R
ψ = Q,L

ψ̄ihψiγνψi −
igcθv

2

4
Tr[TVµ]FC(h) (D.3)

�
h

v
= −V ′(h)− v

4
Tr[VµV

µ]F ′C(h)−
∑
ψ=Q,L

1√
2

(
ψ̄LUY ′ψ(h)ψR + h.c.

)
(D.4)

where hψi are the hypercharges in the 2× 2 matrix notation:

hQL = diag (1/6, 1/6) , hQR = diag (2/3,−1/3) ,

hLL = diag (−1/2,−1/2) , hLR = diag (0,−1) ,
(D.5)

and the prime denotes the first derivative with respect to h/v. A consequence of Eqs. (D.2)
and (D.1) is

Dµ (VµFC) =
i

v2
Dµ

( ∑
ψ=Q,L

ψ̄Lσ
jγµψL

)
σj =

1√
2v

∑
ψ=Q,L

(
ψ̄Lσ

jUYψ(h)ψR − ψ̄RY†ψ(h)U†σjψL

)
σj

(D.6)
which can be recast in the form

Tr(σjDµV
µ)F(h) =

√
2

v

∑
ψ=Q,L

(
ψ̄Lσ

jUYψ(h)ψR − ψ̄RY†ψ(h)U†σjψL

)
− Tr(σjVµ)∂µF(h) ,

(D.7)
which is valid order by order in the h expansion.
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Operators that have been removed via EOM

The Equations of Motion relate the purely bosonic and the fermionic sectors, and they
have been used to eliminate operators that are redundant when both sectors are considered
at the same time. In this section we list the categories of operators that have been removed.

Bosonic sector

- Operators containing �F(h).

Applying the EOM for the Higgs, Eq. (D.4), these terms can be traded for a combi-
nation of other bosonic operators plus fermionic bilinears and four-fermion operators.
The following CP even terms have been removed, compared to the basis of Ref. [24]:

P�H(h) =
�h�h
v2
F

P7(h) = Tr(VµV
µ)�F

P25(h) = Tr(TVµ)Tr(TVµ)�F

(D.8)

and the CP odd operator
S13 = Tr(TVµ)∂µ�F (D.9)

- Operators containing DµV
µ.

Rewriting the traceless matrix DµV
µ as

DµV
µ =

σa

2
Tr(σaDµV

µ) (D.10)

and applying the identity (D.7), these bosonic operators can be traded by combi-
nations of fermion bilinears, four-fermion operators and other bosonic terms that
already belong to the basis. The following CP even terms have been eliminated, in
the notation of Ref. [24]:

P9(h) = Tr((DµV
µ)2)F

P10(h) = Tr(VνDµV
µ)∂νF

P15(h) = Tr(TDµV
µ)Tr(TDνV

ν)F
P16(h) = Tr([T,Vν ]DµV

µ)Tr(TVν)F
P19(h) = Tr(TDµV

µ)Tr(TVν)∂
νF .

(D.11)

Analogously, five CP odd operators have been traded for others: in the notation of
Ref. [25] they are

S10 = iTr(VνDµV
µ)Tr(TVν)F

S11 = iTr(TDµV
µ)Tr(VνV

ν)F
S12 = iTr([Vµ,T]DνV

ν)∂µF
S14 = iTr(TDµV

µ)∂νF(h)∂νF ′

S16 = iTr(TDµV
µ)Tr(TVν)Tr(TVν)F .

(D.12)
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Fermionic sector

- Bilinears of the type ψ̄Γγµψ ∂
µF .

Applying the EOMs for fermions (Eq. (D.1)), these operators can be schematically
rewritten as

ψ̄Γγµψ∂
µF = −ψ̄

←−
/DΓψF − ψ̄γµ(DµΓ)ψF − ψ̄Γ /DψF

→ ψ̄γµ(DµΓ)ψF ψ̄ΓψF
(D.13)

- Bilinears containing �F .

Operators in this category are removed applying the EOM for the Higgs field, Eq. (D.4)
and traded for other bilinears plus four-fermion operators.

- invariants containing DµVµ

As in the bosonic sector, these operators are removed applying the identity (D.7).
and traded for other bilinears plus four-fermion operators.

- Finally, the EOMs for the gauge (Eqs. (D.2), (D.3)) and Higgs (Eq. (D.4)) fields imply
the following additional relations (signs and numeric coefficients not specified):

PB + P1 + P2 + P4 + PT → iL̄Liγµ{Vµ,T}LLiF +NQ5 +NQ6
PW + P1 + P3 + P5 + Tr(VµV

µ)F → iL̄LiγµV
µLLiF +NQ1 (D.14)

PT + P1 + P3 + P12 + P13 + P17 → iL̄LiγµTVµTLLiF + iL̄LiγµV
µLLiF +NQ7 +NQ1 .

These have been employed to remove the three (flavour-diagonal contractions of the)
leptonic operators specified on the right-hand side. This choice simplifies the renor-
malisation procedure.
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E Feynman rules

This appendix provides a complete list of all the Feynman rules resulting from both
fermionic and bosonic operators considered in the present work and listed in Sections 2.2
and 2.3. For compactness we omit CP violating terms, that are not relevant for the
phenomenological study presented. The rules are derived in unitary gauge and only vertices
with up to four legs are shown. The SM contribution and the renormalization effects are
also included, up to first order in the effective coefficients. The latter are sometimes encoded
in the quantities ∆g1, ∆g2, ∆gW and ∆MW defined in Eqs. (3.6), (3.5) in the text.

A few comments about the notation and conventions used:

- All momenta are flowing inwards and the convention ∂µ → −ipµ has been used in
the derivation.

- We use a shorthand notation for the products ciai: for the bosonic operators, we
replace aici → ai and bici → ai. For the fermionic operators, we write afi n

f
i → (na)fi .

The structure ψ̄ψ∂F∂F ′ gives couplings hhff with the coefficients nfi a
f
i a
′f
i that has

been shortened in (naa′)fi . For the coefficients of the function FC(h), defined in
Eq. (2.4), the notation aC = 1 + ∆aC , bC = 1 + ∆bC is adopted.

- We have fixed VCKM = 1 for compactness. At the same level, all the effective coeffi-
cients are implicitly taken to be flavor-diagonal.

- In the vertices with a single fermion current the spin contractions are obvious. For
those with four fermions we use a notation with square brackets and lowercase indices:
for example [PR]ab[PL]cd means that the right chirality projector contracts the spins
of the a and b particle, and the left chirality one shall be inserted between the c and
d fields.

- Uppercase indices indicate color and are assumed to be summed over when repeated.
Whenever they are not specified, the color (and flavor) contractions go with those of
the spin.
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[71] A. Biekötter, A. Knochel, M. Krämer, D. Liu, and F. Riva, Vices and virtues of
Higgs effective field theories at large energy, Phys. Rev. D91 (2015) 055029,
[arXiv:1406.7320].

[72] J. Brehmer, A. Freitas, D. Lopez-Val, and T. Plehn, Pushing Higgs Effective Theory
to its Limits, Phys. Rev. D93 (2016) 075014, [arXiv:1510.03443].

[73] A. Biekötter, J. Brehmer, and T. Plehn, Pushing Higgs Effective Theory over the
Edge, arXiv:1602.05202.

[74] O. J. P. Eboli and M. C. Gonzalez-Garcia, Mapping the Genuine Bosonic Quartic
Couplings, arXiv:1604.03555.

71



[75] G. F. Giudice, C. Grojean, A. Pomarol, and R. Rattazzi, The Strongly-Interacting
Light Higgs, JHEP 06 (2007) 045, [hep-ph/0703164].

72



7. The complete HEFT Lagrangian after the LHC Run I

264



CHAPTER 8

Summary and Conclusions

In this thesis we have focused on a specific class of scenarios beyond the Standard Model of particle physics,
namely those in which the hierarchy problem is solved by adopting a symmetry principle. In these theories
the Higgs field is embedded in a larger multiplet of a new symmetry, so that the four scalars of the SM
appear accompanied by some new states. The presence of the latter technically helps, then, to protect
the Higgs mass against large radiative corrections. We were interested, in particular, in discriminating
between two main paradigms for the use of symmetries in the electroweak symmetry breaking (EWSB)
sector. One possible application, implemented for example in supersymmetry, is realized in a perturbative
regime and preserving, at low energy, the SU(2) doublet structure of the Higgs field, which is assumed to
be an elementary state. With reference to the Higgs’ transformation properties under the EW group, we
denoted this kind of construction as the linear scenario.

An alternative option is to assume that the Higgs is a pseudo-Goldstone boson of a larger symmetry
breaking, so that the symmetry that protects the electroweak scale is the (approximate) shift invariance
associated to the Goldstone nature of the SM scalars. This scenario is naturally realized in theories with
strongly-interacting new physics, among which composite Higgs models emerge as particularly attractive
realizations, being reminiscent of the successful description of QCD pions. A characteristic of this class of
theories is that the Higgs boson observed at low energy does not necessarily arise as a component of an
exact SU(2) doublet. In contrast with the framework presented above, we referred to this second type of
construction as the non-linear scenario.

Our main goal was to identify EW-scale signals that could distinguish between both realizations, in a
way as model-independent as possible. To this aim, we have used the techniques of effective Lagrangians.
On one hand we have the linear effective theory, constructed with the SM fields (in particular the Higgs
doublet Φ) and organized as an expansion in canonical dimensions, where the leading corrections to the SM
Lagrangian are parameterized by operators with d = 6. On the other, the non-linear (chiral) Lagrangian in
which the physical Higgs is treated as a generic singlet of the EW group and it is independent of the three
EW Goldstone bosons. The structure of the latter Lagrangian is thus more complex than that of the linear
one and, in particular, it is not possible to identify a unique expansion parameter. In fact, this is rather the
convolution of a momentum expansion, typical of chiral Lagrangians, with a linear expansion, in order to
account for Higgs and transverse gauge bosons couplings.
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8. Summary and Conclusions

We presented two complete, non-redundant sets of non-linear operators: in a first stage (Chapter 4) we
restricted to the bosonic sector, where the largest effects are determined by operators with up to four deriva-
tives. Focusing on CP-even terms, we considered the basis previously derived in Ref. [25]. Subsequently
(Chapter 7) we extended the analysis and constructed the complete chiral Lagrangian at next-to-leading
order, including CP-odd and fermionic terms, namely bilinears with up to two derivatives and four-fermion
operators. The overall basis is composed of 148 invariants, up to flavor indices. The inclusion of fermionic
terms turned out to have a particularly significant impact on the results of the global fit to electroweak
precision data. For instance, we found that an the presence of fermionic operators that modify indepen-
dently the Fermi constant GF (which occurs only in the chiral case) can weaken the bounds on the oblique
parameters S, T, U by up to a factor 20 compared to the usual analysis, due to the larger parameter space
available to the fit.

A phenomenological comparison between the chiral set of operators and its linear homologue was carried
out in both setups, with and without the inclusion of fermionic invariants. As a general result, the non-linear
EFT contains a much larger number of free parameters, compared to the linear basis at d = 6 and the two
EFTs predict different patterns of signals. Two main categories of discriminators were identified:

(a) Couplings that are expected to be correlated in the linear expansion but that are in general independent
in the non-linear description.

As an example, we have shown that in a general non-linear scenario, there is a priori no correlation
between triple gauge vertices (TGV) and couplings of the Higgs to gauge bosons pairs. This correlation
is instead predicted in the linear formulation. This particular decorrelation can be tested thanks to
the fact that both TGV and Higgs couplings are accessible experimentally: this was done for the first
time in Fig. 2 of Chapter 4 using the Higgs data available at the end of 2013. The same plot has been
updated more recently in Fig. 3 of Chapter 7: this latest result shows a striking improvement with
respect to the previous analysis, which is mainly due to the inclusion of information extracted from
the kinematic distributions in Higgs decays. The advancement observed is an encouraging indication,
as it seems to confirm the feasibility of this kind of study for the extraction of information about the
structure of the EWSB sector.

(b) Characteristic signatures of the non-linear expansion, induced by interactions contained in four-
derivative chiral operators, but that would appear only at higher orders (d ≥ 8) of the linear La-
grangian. These effects typically concern anomalous Lorentz structures that cannot be constructed in
the d = 6 linear expansion.

An example was identified in the triple and quartic gauge couplings contained in a chiral operator
named P14. This operator contributes, in particular, to a TGV with a peculiar Lorentz structure,
which is not generated by d = 6 linear operators nor it is induced at tree-level in the SM. This
coupling (sometimes denoted by gZ5 in the literature [113]) violates both C and P while preserving CP
invariance. In presence of non-linearity, this particular interaction may be detected with a strength
comparable to that of effects emerging at the d = 6 level. This event would indeed disfavor a linear
scenario. It was shown that significant information about this vertex can be extracted at the LHC,
which has the potential for observing gZ5 with an accuracy up to the percent level, well below the
bounds inferred from LEP data.

Another set of differentiating signatures was pointed out in Chapter 5, that contained a detailed analysis
of the linear operator �Φ†�Φ and of its non-linear counterpart �h�h. Both terms induce higher derivative
contributions to the Higgs propagator and their impact was evaluated applying the corresponding equations
of motion (or equivalently integrating out a Lee-Wick ghost). The non-linear operator was found to produce
a much larger amount of anomalous couplings compared to the linear one: in the latter case, in fact, the
SU(2) properties of the Higgs field determine a large number of cancellations that, in general, do not
occur in the non-linear scenario. This would have several physical effects, among which the most promising
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signatures are represented by a subset of quartic-gauge boson, Higgs-gauge boson and fermion-gauge boson
couplings, that are unique in resulting from the leading chiral corrections, while they cannot be induced
neither by SM couplings at tree-level nor by d = 6 operators of the linear expansion.

Although our main focus was to juxtapose the phenomenological features of linear vs. non-linear EWSB
scenarios in an effective approach, in Chapter 6 we explored a complementary aspect of the electroweak chiral
Lagrangian, namely its relation to explicit BSM theories and, more precisely, to concrete composite Higgs
models. Applying the CCWZ formalism, we constructed a very general “high-energy” effective Lagrangian
for the bosonic sector, roughly valid at energies above the Goldstone bosons’ scale f > v. Interestingly, this
Lagrangian turns out to contain only up to 10 CP-even operators for any symmetric coset, a number that
can be further reduced upon choosing a given realization. In particular, we specialized the discussion to the
context of three specific models: the original SU(5)/SO(5) proposed by Georgi and Kaplan [90], the minimal
custodial preserving SO(5)/SO(4) [92] and the very minimal, custodial violating, SU(3)/(SU(2) × U(1)).
For each of these setups, we explored the connection between the high energy description and the low-
energy, bosonic Lagrangian of Chapter 4. Besides representing a validation of the latter, the results of the
projection uncovered strong relations existing among the low-energy Wilson coefficients in the specific models
considered. This was expected given that the most general low-energy basis contains 33 free parameters,
that are in correspondence with only 8 or 9 high-energy coefficients depending on the specific model. A
striking result, on the other hand, is the universality in the structure of the functionals F(h) that encode
the dependence on the Higgs boson: in fact these were found to be intriguingly identical for all models, up
to a rescaling of the parameter f .

We conclude with an eye to the future, discussing the prospects for this work. The first results from the
LHC Run II have already been released by the ATLAS and CMS Collaborations between December 2015
and March 2016 and important updates are expected in the next months. A very timely and reasonable
question is therefore if and how the tools developed in this work and the results of our analysis can be
impacted by these upcoming results.

If, once again, no direct evidence of new physics is found, the effective Lagrangians considered in this work
would continue to hold and the validity of the methods proposed for disentangling the origin of EWSB would
remain intact. Indeed it will be particularly important to search for the discriminating signals identified
in this work, as they may assume a dominating role as probes of the EWSB, benefiting of more and more
precise measurements in the EW and Higgs sectors. Nonetheless, an enhanced experimental precision would
also imply that the theoretical error due to the tree-level approximation of the numerical analysis becomes
more and more important. Beyond a certain threshold, for instance when a precision of a few percent is
reached, it may be necessary to consider perturbative corrections to the operator coefficients discussed. At
the same time, as the energy at which the relevant processes are produced increases, the impact of higher
order operators is expected to become more and more important. At some point, linear operators with
d = 8 and chiral invariants classified as NNLO terms will have to be included in our analysis. This may
have a non-negligible impact on our results, as it is possible that the enlargement of the parameter space
deteriorates the discriminating power of the effective approach and reduces many of the effects predicted.

In a completely different scenario, the discovery of a new exotic state would certainly revolutionize the
picture outlined above. With a new resonance in our hands, the most direct way of exploring the EWSB
nature would be to study the properties of the new state in depth and try to establish whether it can be
linked to one of the previously proposed models. However, this program is not at all in contrast with the
EFT approach. For instance, it would be useful to check the compatibility of the existing bounds on the
Wilson coefficients with the expected contribution of the new particle to the corresponding couplings (see
e.g. Ref. [114]); conversely, the EFT constraints may be used to set limits on unknown couplings of the new
state. Another viable application of the effective approach is to extend the Lagrangians considered here by
introducing an extra degree of freedom: this can be done fixing only spin and SM quantum charges for the
new state. In particular, the strategy developed in this work for investigating the nature of the Higgs boson
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could be applied in an almost identical way in the examination of another arbitrary scalar, or it may be
adapted to the cases of a fermion or vector resonance.

The power of EFTs in this context has been recently emphasized in a long series of papers where
this approach has been applied to the case of an excess around 750 GeV in the diphoton mass spectrum
reported by both the ATLAS and CMS Collaborations [115, 116] in December 2015. This result sparked the
interest of the HEP community, despite its yet low significance (in the spin-0 hypothesis and including the
look-elsewhere effect, ATLAS and CMS currently report a significance of 2.0 σ and 1.6σ respectively [117,
118]). Effective theory considerations (see for example Refs. [114, 119–124]) immediately indicate, via trivial
arguments of SM gauge-invariance and using exclusively SM fields, that, would this hint become evidence,
correlated excesses should be expected in other di-boson channels (Zγ, ZZ, WW ). In fact, the four decay
processes are described in terms of only three effective operators, in which the new boson is coupled to
the structures BµνB

µν , BµνW
µν , WµνW

µν . This simple result is a clear example of how the symmetry
principle, put into effect in the formulation of gauge-invariant EFTs, will serve as a guidance for future
searches, irrespective of what their outcome will be.
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Resumen y Conclusiones

Esta tesis se ha centrado en una clase particular de escenarios de f́ısica de part́ıculas más allá del Modelo
Estándar, concretamente aquellos en que el problema de la jerarqúıa se resuelve adoptando un principio
de simetŕıa. En estas teoŕıas, el campo de Higgs está incrustado en un multiplete más grande de una
nueva simetŕıa, de forma que los cuatro escalares del ME vienen acompañados de algunos estados nuevos.
La presencia de estos últimos ayuda técnicamente a proteger la masa del Higgs de grandes correcciones
radiativas. En particular, estábamos interesados en discriminar entre los dos paradigmas principales del uso
de simetŕıas en el sector de la ruptura espontánea de la simetŕıa electrodébil (RESE). Una posible aplicación,
implementada por ejemplo en supersimetŕıa, se realiza en un régimen perturbativo y preservando, a baja
enerǵıa, la estructura de doblete de SU(2) del campo de Higgs, que se asume un estado elemental. Por lo
que a las propiedades de transformación del Higgs bajo el grupo electrodébil se refiere, denotamos este tipo
de construcción escenario linear.

Una opción alternativa es la de asumir que el Higgs es un bosón de Goldstone de la ruptura de una simetŕıa
más grande, de forma que la simetŕıa que protege la escala electrodébil es la invariancia de translación (aprox-
imada) asociada a la naturaleza Goldstone de los escalares del ME. Este escenario se realiza naturalmente
en teoŕıas de nueva f́ısica con interacciones fuertes, entre las cuales los modelos de Higgs compuestos con-
stituyen realizaciones particularmente atractivas que evocan la exitosa descripción de los piones de QCD.
Una caracteŕıstica de esta clase de teoŕıas es que, en ellas, el Higgs f́ısico no emerge necesariamente como
una componente de un doblete exacto de SU(2). En contraste con el marco presentado anteriormente, nos
referimos a este segundo tipo de construcción como escenario no-lineal.

Nuestro objetivo principal era el de identificar señales a la escala electrodébil que puedan distinguir
entre ambas realizaciones, de la manera más “independiente del modelo” posible. Con esta finalidad, hemos
utilizado Lagrangianos efectivos. Por un lado tenemos la teoŕıa efectiva lineal, construida con los campos
del ME (en particular el doblete de Higgs Φ) y organizada en una expansión en dimensiones canónicas,
donde las correcciones dominantes al Lagrangiano del ME están parametrizadas por operadores con d = 6.
Por el otro, el Lagrangiano no-lineal (quiral) en que se trata el Higgs f́ısico como un singlete genérico del
grupo electrodébil y se considera a éste independiente de los tres bosones de Goldstone electrodébiles. En
consecuencia, la estructura de este Lagrangiano es más compleja que la del lineal y, en particular, no es
posible identificar un único parámetro de expansión. De hecho, ésta es más bien la convolución de una
expansión en momentos t́ıpica de los Lagrangianos quirales con una expansión lineal para los acoplos del
Higgs y de los bosones de gauge transversos.

Hemos presentado dos conjuntos completos y no-redundantes de operadores no-lineales: en una primera
fase (Capitulo 4) nos restringimos al sector bosónico, donde los efectos dominantes están determinados por
operadores con hasta cuatro derivadas. Centrando nuestra atención en términos pares bajo CP, consideramos
la base derivada previamente en [25]. A continuación (Capitulo 7) extendimos el análisis construyendo el
Lagrangiano quiral completo hasta el primer orden subdominante, incluyendo términos que violan CP y
términos con fermiones, espećıficamente bilineares con hasta dos derivadas y operadores de cuatro fermiones.
La base resultante está compuesta globalmente por 148 invariantes, sin considerar ı́ndices de sabor. La
inclusión de términos fermiónicos resultó tener un impacto particularmente significativo sobre los resultados
del ajuste global a los datos de precisión electrodébiles. Por ejemplo, encontramos que la presencia de
operadores fermiónicos que modifican independientemente la constante de Fermi GF (cosa que ocurre solo
en el caso quiral) puede suavizar los ĺımites sobre los parámetros oblicuos S, T, U hasta en un factor 20
comparado con el análisis habitual debido a un aumento en el espacio de parámetros disponible.

Se ha realizado una comparación fenomenológica entre el conjunto de operadores no-lineales y su homólogo
lineal en ambas configuraciones: incluyendo y no los invariantes fermiónicos. Como resultado general, la
TEC no-lineal contiene un número mucho más alto de parámetros libres, comparado con la base lineal a
d = 6 y las dos TECs predicen tendencias diferentes en las señales. Se han identificado dos categoŕıas
principales de discriminantes:
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8. Summary and Conclusions

(a) Acoplos que se espera estén correlacionados en la expansión lineal, pero que son en general indepen-
dientes en la descripción no-lineal.

Como ejemplo, hemos mostrado que en el escenario general no-lineal no hay a priori ninguna cor-
relación entre los vértices triples de gauge (VTG) y los acoplos del Higgs con pares de bosones de
gauge. Correlación que, al contrario, se predice en la formulación lineal. Esta descorrelación particu-
lar se puede poner a prueba gracias al hecho de que, tanto los VTG como los acoplos del Higgs son
accesibles experimentalmente: esto se hizo por primera vez en la Figura 2 del Capitulo 4 usando los
datos de Higgs disponibles a finales de 2013. La misma gráfica se ha actualizado recientemente en la
Fig. 3 del Capitulo 7: este último resultado muestra una mejora notable con respecto al análisis ante-
rior, que se debe principalmente a la inclusión de información extráıda de las distribuciones cinemáticas
en las desintegraciones del Higgs. Esto parece confirmar la viabilidad de este tipo de estudios para
la extracción de informaciones sobre la estructura del sector de RESE, lo cual se interpreta como un
hecho prometedor.

(b) Señales caracteŕısticas de la expansión no-lineal, inducidas por interacciones contenidas en operadores
quirales de cuatro derivadas, que por otro lado apareceŕıan solo a ordenes más altos (d ≥ 8) del
Lagrangiano lineal. Estos efectos involucran t́ıpicamente estructuras de Lorentz anómalas que no
pueden aparecer en la expansión lineal a d = 6.

De esto se ha identificado un ejemplo en los acoplos triples y cuárticos de gauge contenidos en un
operador quiral llamado P14. Este operador contribuye, en particular, a un VGT con una estructura
Lorentz particular, que no aparece entre los operadores lineales a d = 6, ni tampoco es inducida a
nivel-árbol en el ME. Este acoplo (a veces referido como gZ5 en la literatura [113]) viola tanto C
como P mientras que preserva la invariancia bajo CP . En presencia de no-linealidad, esta interacción
concreta se puede detectar con una fuerza comparable a la de efectos que emergen a nivel d = 6, lo que,
de hecho, desfavorece el escenario lineal. Se mostró que es posible extraer información significativa
sobre este vértice en el LHC, que tiene el potencial para observar gZ5 con una precisión de hasta unos
percentiles, bastante por debajo de los ĺımites inferidos de los datos de LEP.

Se ha mostrado otra serie de señales distintivas en el Capitulo 5, que conteńıa el análisis detallado del
operador lineal �Φ†�Φ y de su homólogo no-lineal �h�h. Ambos términos inducen contribuciones con
más de dos derivadas al propagador del Higgs. Se ha valorado su impacto aplicando las ecuaciones del
movimiento asociadas (o equivalentemente eliminando un ghost “Lee-Wick” del espectro). El operador no-
lineal resultó producir un número mayor de acoplos anómalos comparado con el lineal: de hecho, en este
último caso, las propiedades de SU(2) del campo de Higgs determinan un número mayor de cancelaciones
que, en general, no ocurren en el escenario no-lineal. Esto podŕıa tener varios efectos f́ısicos, entre los cuales
las señales más prometedoras las representan un grupo de acoplos cuárticos de gauge y acoplos de bosones
de gauge a Higgs y a fermiones, que son únicos en el sentido de que aparecen al orden dominante de la
expansión quiral, mientras no pueden ser inducidos ni por acoplos del ME a nivel-árbol, ni tampoco por
operadores de la expansión lineal a d = 6.

Aunque el acento se ha puesto principalmente en contraponer las caracteŕısticas fenomenológicas de los
escenarios de RESE lineal vs. no-lineal con un enfoque eficaz, en el Caṕıtulo 6 exploramos un aspecto
complementario del Lagrangiano electrodébil quiral, a saber, su relación con teoŕıas MME expĺıcitas y, más
precisamente, a modelos concretos de Higgs compuesto. Aplicando el formalismo CCWZ, construimos un
Lagrangiano eficaz “de alta enerǵıa” muy general para el sector bosónico, que es aproximadamente válido
para enerǵıas superiores a la escala de los bosones de Goldstone f > v. Un resultado interesante es que este
Lagrangiano contiene un máximo de 10 operadores pares bajo CP para cualquier grupo cociente simétrico,
un número que se puede incluso reducir eligiendo una realización determinada. En particular, centramos
la discusión en tres modelos espećıficos: el original SU(5)/SO(5) propuesto por Georgi y Kaplan [90], el
mı́nimo que preserva la simetŕıa “custodial” SO(5)/SO(4) [92] y el más mı́nimo posible, que no respeta
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la simetŕıa “custodial”, SU(3)/(SU(2) × U(1)). Para cada una de estas construcciones, exploramos la
conexión entre la descripción a alta enerǵıa y el Lagrangiano bosónico a baja enerǵıa del Capitulo 4. Aparte
de validar éste último, los resultados de la proyección desvelaron la existencia de fuertes relaciones entre los
coeficientes de Wilson en los modelos considerados. Esto era de esperar, debido a que el Lagrangiano más
general a baja enerǵıa contiene 33 parámetros libres que se corresponden con solamente 8 o 9 coeficientes a
alta enerǵıa, dependiendo del modelo concreto. Un resultado llamativo, por otra parte, es la impresionante
universalidad en la estructura de los funcionales F(h) que codifican la dependencia del bosón de Higgs: de
hecho, las funciones resultaban ser intrigantemente idénticas en todos los modelos, salvo por redefiniciones
de la escala f .

Concluimos con una mirada al futuro, discutiendo las previsiones de este trabajo. Las colaboraciones
ATLAS y CMS estrenaron ya los primeros resultados del Run II del LHC entre diciembre de 2015 y marzo
de 2016 y se esperan aún importantes actualizaciones en los próximos meses. Una pregunta oportuna y
razonable es, pues, qué impacto tendrán los resultados inminentes sobre los instrumentos desarrollados en
este trabajo y los resultados de nuestro análisis.

Si, de nuevo, no se encontrara evidencia directa de nueva f́ısica, los Lagrangianos eficaces considerados en
este trabajo seguiŕıan vigentes y la validez de los métodos propuestos para desanudar el origen de la RESE
permaneceŕıan intactos. De hecho se volveŕıa particularmente importante buscar las señales discriminantes
que hemos identificado en este trabajo, ya que éstas podŕıan asumir un papel dominante en el sondeo de
la RESE, beneficiándose de medidas experimentales más y más precisas en los sectores electrodébil y del
Higgs. Sin embargo, una mejora substancial en la precisión experimental implicaŕıa también que el error
teórico debido a la aproximación de nivel-árbol en el análisis numérico se volveŕıa más importante. Mas
allá de un cierto umbral, por ejemplo cuando se llegue a alcanzar una precisión de unos percentiles, podŕıa
ser necesario considerar correcciones perturbativas a los coeficientes de los operadores discutidos.Al mismo
tiempo, a medida que crece la enerǵıa a la que se producen los procesos relevantes, cobra importancia el
impacto de operadores de órdenes más altos. En algún momento se deberán incluir operadores lineales
con d = 8 e invariantes quirales clasificados como términos sub-subdominates en el análisis. Esto podŕıa
tener un impacto no-despreciable en nuestros resultados, ya que es posible que la ampliación del espacio
de parámetros reduzca el poder discriminativo del método eficaz y que desaparezcan algunos de los efectos
predichos.

En un escenario completamente distinto, el descubrimiento de un nuevo estado exótico revolucionaŕıa
ciertamente el panorama descrito anteriormente. Con una nueva resonancia entre manos, la manera mas
directa de explorar la naturaleza de la RESE seŕıa estudiando a fondo las propiedades del nuevo estado,
intentando establecer si se puede relacionar con alguno de los modelos previamente propuestos. Aún aśı, este
programa no está completamente enfrentado con el enfoque de las TECs. Por ejemplo, seŕıa útil averiguar la
compatibilidad de los ĺımites preexistentes sobre los coeficientes de Wilson con la contribución esperada de la
nueva part́ıcula a los acoplos correspondientes (véase por ej. Ref. [114]); e inversamente, las restricciones en
la TEC podŕıan utilizarse para hallar ĺımites sobre los acoplos desconocidos del nuevo estado. Otra posible
aplicación del método efectivo es la de extender los Lagrangianos considerados aqúı introduciendo un grado
de libertad adicional: esto se puede hacer fijando simplemente un esṕın y unas cargas cuánticas del ME
para el nuevo estado. En particular, la estrategia desarrollada en este trabajo para investigar la naturaleza
del bosón de Higgs se puede aplicar de manera casi idéntica a la exploración de otro escalar arbitrario, o
podŕıa más bien ser adaptada a los casos de una resonancia fermiónica o vectorial.

El poder de las TECs en este contexto ha sido recientemente enfatizado en una larga serie de art́ıculos
que aplicaron este método al caso de un exceso alrededor de 750 GeV en el espectro de masa de dos fo-
tones anunciado por ambos ATLAS y CMS [115, 116] en diciembre del año pasado. Este resultado ha
despertado el interés de la comunidad de f́ısica de altas enerǵıas, a pesar de su aún limitada significancia
(en la hipótesis de esṕın-0 e incluyendo el “look-elsewhere effect”, ATLAS y CMS presentan actualmente
2.0 y 1.6σ respectivamente [117, 118]). Según consideraciones de teoŕıas efectivas (véase por ejemplo las
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Refs. [114, 119–124]) mediante argumentos de invariancia gauge del ME y utilizando exclusivamente cam-
pos del ME, se apunta a que, si este indicio se llegara a convertir en señal, debeŕıan esperarse excesos
correlacionados por lo menos en otros canales di-bosón (Zγ, ZZ, WW ). De hecho, los cuatro procesos de
desintegración están descritos en términos de sólo tres operadores efectivos, en los que el nuevo bosón se
acopla con las estructuras BµνB

µν , BµνW
µν y WµνW

µν . Este simple resultado es un ejemplo muy claro de
cómo el principio de simetŕıa, puesto en acción en la formulación de TEC invariantes gauge, servirá de gúıa
en búsquedas futuras, independientemente de cuales lleguen a ser sus resultados.
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