SLAC-PUB-11445
LBNL-PUB-925

AN ACCELERATOR CONTROL MIDDLE LAYER USING MATLAB*

G. Portmann LBNL, Berkeley, CA 94720, U.SA.
J. Corbett, A. Terehilo, SRRL/SLAC, Stanford, CA, 94309,U.S.A.

Abstract

Matlab is a matrix manipulation language originally
developed to be a convenient language for using the
LINPACK and EISPACK libraries. What makes Matlab
so appealing for accelerator physics is the combination of
a matrix oriented programming language, an active
workspace for system variables, powerful graphics
capability, built-in math libraries, and platform
independence. A number of software toolboxes for
accelerators have been written in Matlab -- the
Accelerator Toolbox (AT) for machine simulations,
LOCO for accelerator calibration, Matlab Channel Access
Toolbox (MCA) for EPICS connections, and the Middle
Layer. This paper will describe the “middle layer”
software toolbox that resides between the high-level
control applications and the low-level accelerator control
system. This software was a collaborative effort between
ALS (LBNL) and SPEAR3 (SSRL) but easily ports to
other machines. Five accelerators presently use this
software. The high-level Middle Layer functionaity
includes energy ramp, configuration control (save/restore),
globa orbit correction, local photon beam steering,
insertion device compensation, beam-based alignment,
tune correction, response matrix measurement, and script-
based programs for machine physics studies.

INTRODUCTION

Matlab started to be used at the ALS in the early 1990's
shortly after commissioning. In the beginning it was
primarily used as a scripting language for machine
physics shifts but since the reliability was very good
Matlab was used in operations as well. Present, Matlab is
used for storage ring operations (energy ramp,
configuration save/restore, global orbit correction, slow
orbit feedback, and insertion device orbit and tune
compensation) as well as machine setup (beam-based
alignment, tune correction, chromaticity correction,
response matrix measurement, LOCO, local photon beam
steering, etc.) and as a scripting language for machine
physics studies. The method to connection Matlab to the
control system has changed over the years. Presently, the
ALS uses EPICS and a version of simple channel access
(SCAIII). For algorithm development the combination of
a matrix oriented programming language, an active
workspace for system variables, powerful graphics
capability, built-in math libraries, and platform
independence is quite desirable. The fact that Matlab is
reliable enough to run operational code allows one to
develop and deliver algorithms using the same language.

At SSRL, pardlel Matlab developmentsin the late 90's
led to the Accelerator Toolbox (AT) for machine

* Thiswork was supported U.S. Department of Energy under Contract
No. DE-AC03-76SF00098 and DE-AC02-76SF00515.

simulations [8], Matlab Channel Access Toolbox (MCA)
for EPICS connections [9], and LOCO for accelerator
calibration, [10,11]. In a collaborative effort between
ALS and SSRL, many of the control functions developed
a the ALS were ported to SSRL, re-structured to
incorporate MCA, and made machine independent. As a
result, the methodology and structure of the control
routines and functions can now be easily ported to other
machines. The resulting “Middle Layer” software
simplifies application program development, buffers the
user from the details of EPICS, and hides cumbersome
control system channel names. The naming scheme used
by the Middle Layer has been adopted from accelerator
tracking codes.

SOFTWARE OVERVIEW

As shown in Fig. 1 the Middle Layer software provides
a library of functions that access either the machine
hardware viaEPICS (MCA, LabCA, or SCAIII) or the AT
simulator. It can also connect to a remote AT simulator
serving Channel Access, [12]. The ability to switch
between online and simulate modes is helpful for analysis
and debugging prior to deployment on am operating
accelerator. One of the fundamental purposes of the
Middle Layer is to simplify the hardware channel naming
scheme used by the control system. Channel names are
often quite obtuse so it is best not burden too many people
with deciphering what names goes with what piece of
hardware. The Middle Layer organizes channel names
into groups (families), subgroups (fields), and devices.
The Middle Layer tries to mimic naming schemes
commonly used in particle tracking codes. Severd
naming options are provided for programming flexibility.
Hence, the same language or terminology of accelerator
tracking codes can be used to communicate with the
online accelerator.

At the heart of the Middle Layer is a data structure
containing the necessary information to setup the mapping
from the Family/Device syntax to the control system
hardware. The Matlab structure has been named the
Accelerator Object (AO). The AO contains attributes for
each Family (device list, channel names, etc.), hardware-
to-physics conversion factors, range information, etc. The
AO resides in a hidden memory location for application
data associated with the Matlab command window. A
parallel structure, called Accelerator Data (AD), contains
directory locations, file names, and basic accelerator
parameters. The Accelerator Data structure also residesin
the application data location of the command window.
Running the Matlab command aoinit will load both
structures for access from the Middle Layer. The details
of how to setup the AO and AD structures can be found in
the Matlab Middle Layer Manual, [1].

Presented at 5th International Workshop On Personal Computers And Particle Accelerator Controls (PCaPAC 2005) ,
22-25 Mar 2005, Hayama, Japan

High Level Matlab Applications
(Scripts and Functions)

v

Matlab Middle Layer

v v

Matlab to EPICS Accelerator Toolbox
(MCA, LabCA, SCAIlI) (AT Mode!)
_ .
\ 4 v
Channel Accessto AT Server
Accelerator Hardware (Simulator)

Figure 1: Software Flow Diagram.

MIDDLE LAYER NOMENCLATURE

In the EPICS environment each hardware device is
referenced via a channel name. Accelerator physicists,
however, often think in terms of hardware families
(dipoles, quadrupoles, BPMs, etc) and attributes of the
family elements (length, strength, gain, etc). In the
Middle Layer, each family is represented by a structure
with a nominal set of fields (element names, element
indices, channel names, etc). Specific hardware elements
in afamily are referred to by { Family, DevicelList} where
Devicelist is an integer doublet {Sector, Index}. A
further division of the family structures into Monitor and
Setpoint sub-structures keeps element attributes well
organized and fits neatly into the middle layer function
architecture. The EPICS setpoint channel names, for
instance, are found in Family.Setpoint.Channelnames.

Middle Layer function names are characterized by a
prefix to indicate action: get=retrieve vaue; set=deposit
value]; meas=measure; calc=calculate. getsp retrieves a
setpoint, whereas measchro measures chromaticity.
Wherever possible, functions are written in machine-
independent format so that the machine dependence can
reside completely in the AO and AD structures.

MODES OF OPERATION

Middle layer software can be run in several modes of
operation. The online mode broadcasts get/set calls to
EPICS Channel Access over ethernet. The servers can be
connected to live hardware modules or a model server
[12]. The simulation mode directs get/set calls directly to
the local AT model. This mode is useful to develop and
test control programs prior to deployment and for
programs not intended for online use. In practice, get/set
calls check if the mode is 'onling, 'simulator’, 'manual’, or
'specia.’ The 'manual’ mode prompts the user for manual
datainput (e.g. tunes) while the 'specia’ mode allows the
user to define an in-line function to numerically process
data (e.g. special unit conversion procedures).

MIDDLE LAYER FUNCTIONS

The middle layer function toolbox is well established
and continues to expand. At present, it contains over 100
functions.

Get and Set Functions

These core functions communicate with Channel Access
Servers or the MATLAB Accelerator Toolbox. The two
main functions are getpv (get EPICS process variable) and
setpv (set EPICS process variable). Both functions accept
a variety of input formats via the Family/DevielList
convention. Rather general calls are permitted and timing
requests are possible.

Utility Functions

Utility functions allow easy conversion between fields
in an Accelerator Object family. Examples include
family2channel (convert family/Device to channel names).
getfamilydata is a particularly important utility function
used to access any information contained in the
Accelerator Object families.

Shortcut Functions

Shortcut functions are designed to reduce number of
parameters required in a function call. Examples include
getsp and setsp which communicate with setpoint, and
getx/gety which return horizontal and vertical beam
position values. Shortcut functions are used widely in
application development and for script development
during machine physics studies.

Unit Conversion Functions

Unit conversions play an important role in modeling the
on-line machine. For this purpose, the Middle Layer
supplies two functions hw2physics (hardware-to-physics)
and physics2hw (physics-to-hardware). The data flow
diagram (below) shows the conversion algorithm and
associated parameters. Keeping track of the magnet
hysteresis loops can be cumbersome and is usualy
machine dependent. For instance, at SPEAR3 polynomial
current-to-field transfer functions based on magnet
measurements are used. These details get programmed
into the amp2k and k2amp conversion functions. The
software user decides what unit to operate the Matlab
session in — switch2hw or switch2physics. The units can
also be controlled by an optional override keyword on the
input line in functions calls such as getpv.

Smulator Functions

These functions communicate directly with the AT
model to return simulated physics parameters. For
example, getbeta calculates the beta function of the mode.
Many Middle Layer functions alow for a model override.
For instance, measbpmresp(‘ model’) and
meastuneresp(‘ model’) will compute the BPM and Tune
response matrices of the model where as getbpmresp and

gettuneresp will return the default saved matrices. These
functions are quite useful during commissioning or when
the working point of the accelerator is changed. All
Matlab function in the AT toolbox are also available.

Soecial Functions

Some devices do not conform neatly with the
Family/Index formalism so specia functions are created
to access the data. For example, the tune could be a
typical Accelerator Object family using channel names or
it could be a specia function getting data via a totally
different mechanism (e.g., a GPIB connection to a signal
analyzer).

DATA MANAGEMENT

Data management for measurement and control can be
a challenging task. As describe above, the Accelerator
Objects framework organizes element names and
attributes in alocal database. The AO can be loaded from
a text file or created from a master database of the
accelerator control system. The Accelerator Data
structure contains the file organization scheme, machine-
and Middle Layer specific data Examples include
caculated physics parameters (eg., momentum
compaction factor) and directory locations to store
measured data. Another important aspect of the Middle
Layer is that it provides a framework for saving
operationa files, like lattice saves, golden orbits, BPM
gain errors, response matrices, etc.

APPLICATION PROGRAMS

A primary reason for middle layer software is to
simplify script construction for machine studies and high-
level application programming for machine control.
Scripts rely heavily on Middle Layer software to perform
correlated perturb/measure studies. Application programs
can be dominated by user-interface software but again
benefit from the Middle Layer for machine control and
data handling. In both cases the Middle Layer buffers the
user from detailed Channel Access calls and greatly
simplifies communication with the accelerator hardware.
The Middle Layer also provides high-level functions for
common accelerator physics tasks. Examples include:

(1) measrespmat - measure response matrix

(2) getrespmat - read response data from files

(3) measdisp - measure the dispersion function

EPICSOR NOT

The Middle Layer typically works with EPICS,
however, this is certainly not a requirement. There are
only two core functions that need to be reprogrammed to
work with a different control system protocol —
getpvonline and setpvonline. This was done without
much effort at Brookhaven for the X-ray and VUV rings.

PERFORMANCE
The question of speed often gets asked when discussing

Matlab or any interpreted language. In general, Matlab is
not usualy the bottleneck. Usually waiting for the
hardware to reach a setpoint is the time consuming task.
For instance, waiting for a power supplies to ramp to a
setpoint. For this reason, a series of “WaitFlags’ are
included in the Middle Layer communication routines for
careful time sequencing of an experiment. Acquiring data
is usually quite fast. It the ALS, or instance, one can
acquire 120 BPMs at about 100 Hz with Matlab.

SUMMARY

The various Matlab toolboxes written for accelerator
physics applications (Middle Layer, AT, MCA, LOCO,
etc) are well integrated and have proven to be quite useful
for machine studies and control at several operating
machines. The relatively user-friendly software and
amost machine-independent programming language have
fostered a number of collaborations. Most scientists find
the syntax quite intuitive making it possible for visitors to
participate in machine development studies with minimal
training. To date, the software has been installed on five
machines (ALS, CLS, SPEARS3, NSLS VUV and X-ray
rings) and has received large interest from other
laboratories. The Austraian light source, DIAMOND,
Soleil, and ALBA al have plans to use the Middle Layer
software at some level. In principle the Middle Layer can
be applied to linear accelerators and transport lines as well.

The Middle Layer does take some upfront effort and
expertise to install on a new accelerator. Typically, one of
the authors will work with a laboratory during the
installation phase. The software can be made functional
for most applications within a few days and fully
operational in a few weeks. Developing a fully calibrated
online model (magnet hysteresis, calibration factors, BPM
errors, etc) is the most time consuming part of the
software setup.

Having multiple laboratories use the same high level
software has proven to be quite useful.

¢ Not every laboratory has to spend the resources to
write the same algorithms. For new laboratories
it'savery inexpensive and fast way to acquire high
level control and simulation software that has also
been thoroughly tested on other machines. Also,
software development is not only expensive from a
labor point of view, it is very expensive to test and
commission new software from a beam time
perspective.

e Having one software package that is debugged at
many laboratories is improves reliability.
Thousands of dedicated accelerator hours have
been spent testing, improving, debugging, and
exercising the Middle Layer/MCA/AT software
packages.

e As with the EPICS collaboration, software
expansion, suggestions, and new ideas come from a
bigger pool of people.

e The number of physicists and engineers trained on
the Middle Layer is growing rapidly. That way

visiting scientists can work immediately on the
new accelerator with very little hand-holding. This
was very useful for commissioning SPEARS.

e Since it's easy to switch between different
accelerators in a simulated mode, it's easy to test
agorithms on different accelerators. This is often
an informative procedure when developing new
agorithms. Writing software in a machine
independent way is somewhat more time
consuming but the final product tends to be better
written and more robust. Orbit correction, beam
based alignment of quadrupoles, and LOCO are
examples of agorithms where effort was spend to
make them machine independent.

ACKNOWLEDGEMENTS

The authors would like to thank the ALS/LBNL and
SPEAR/SLAC management for encouraging and
supporting a productive collaboration on the Middle
Layer. We would also like to thank the staff members at
the laboratories that use the Middle Layer for the helpful
suggestions that everyone has made along the way. And
we would like to thank them in advanced for any future
software developments that organically emerge from the
collaborations. We are especially thankful for the free
flow of ideas between all the physicists and engineers that
we have worked with.

REFERENCES

[1] G. Portmann, J. Corbett, A. Terebilo, “Middle Layer
Software Manual for Accelerator Physics,” LBNL Internal
Report, LSAP-302, 2005.

[2] J. Corbett, A. Terebilo, G. Portmann, “Accelerator Control
Middle Layer,” PAC 2003.

[3] J. Corbett, G. Portmann, A. Terebilo, J. Safranek, "SPEAR
3 Commissioning Software" Proc. of EPAC 2004.

[4] G. Portmann, J. Corbett and A. Terebilo, "Middle Layer
Software for Accelerator Control." SSRL Memo, March,
2004.

[5] G. Portmann, “Slow orbit feedback at the ALS using
MATLAB”, PAC 1999.

[6] J. Safranek, et. a., "Spear 3 Commissioning," Proc. of
APAC 2004.

[7] G. Portmann, "ALS Storage Ring Setup and Control Using
Matlab." LBNL LSAP Note #248, 1998.

[8] A. Terebilo, "Channel Access Toolbox for
ICALEPCS 2001, San Jose, CA.

[9] A. Terebilo “Accelerator Modeling with MATLAB
Accelerator Toolbox,” PAC'01, May 2002, pg. 3203.

[10] J. Safranek, et al., “Linear Optic Correction Algorithm in
MATLAB,” PAC 2003.

[11] J. Safranek, G. Portmann, A. Terebilo and C. Steier,
"Matlab Based LOCO." Proc. of EPAC 2002, p. 1184.

[12] A. Terebilo, “Simulated Commissioning of SPEAR 3,”
PAC 2003.

[13] J. Corbett, et al., “Orbit Control Using MATLAB,” PAC'01,
Chicago, May 2002, pg. 813.

Matlab,"

MiddleLayer Data Flow Diagram

Accelerator
Hardware

Data flow for getpv and setpv

AT Model

7 Y
getpvonline
setpvonline

A
BPM and Corrector
Coordinate Change

getpvmodel
setpvmodel

A 4 A
hw2physics 4

< physics2hw d . .

Hardware pread Physics Units
raw2rea .
Units real2raw Calibrated

(qual Commgnd Hardw are B (Opt. Command

Window Location) Units Window Location)

RealData = Gain*(RawData - Offset)

BPM
*Gain (LOCO)
*Offset (BBA)

Correctors
*Gain (LOCO)

Lattice Magnets
*Gain (LOCO)

BPM
*Roll, Crunch

BPM
*«Gain (Units scaling)

Correctors
*Roll
«Correction offset

Correctors

(amp2k, k2amp)
«Gain (amps to rad.)
*Energy Scaling
Lattice Magnets
*Correction offset
*All other known
errors are already in
the AT model.

Lattice Magnets
(amp2k, k2amp)
«Gain (amp to K)
*Energy Scaling

*Hysteresis
_——

