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Abstract 

The hadroproduction of heavy quarks is studied in the kinematic regime in 
which J; is very much greater than the mass of the produced heavy quark. We 

introduce a modification of the normai Lipatov equation which allows a factor- 

ization between the short distance and long distance physics. Numerical results 
are provided using the cross section for b quark production as an exampie. 
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1 Introduction 

As the energy of hadron-hadron and lepton-hadron colliders increases, an impor- 

tant new regime of QCD physics opens up: that of “semihard” processes[l]. By 

definition, these contain a hard scattering whose scale, Q, is much less than the total 

center-of-mass energy &. To say that there is a hard scattering means that Q is 

large compared with Am. At the Tevatron and at HERA, semihard processes in- 

clude the production of charm and bottom quarks and the production of jets of ET 

of a few GeV. At the SSC (& = 40TeV) even the production of W and Z bosons is 

a semihard process. 

One reason that semihard processes are important is that their cross sections are 

large compared with the intrinsic cross section (of order Q-a) of the hard scattering, 

because of the large number of gluons that can participate. As is well-known, minijet 

cross sections are a significant fraction of the total cross section at center-of-mass 

energies around a TeV. 

An important challenge to QCD is to predict the properties and cross sections 

for semihard processes. Difficulties with conventional calculations arise because of 

large higher order corrections, both in the short-distance cross sections (coefficient 

functions) and in the kernel of the Altarelli-Parisi evolution equation[2]. For example, 

calculations of bottom quark production at hadron colliders have next-to-leading 

order corrections that are larger than the lowest order cross section, and the problem 

gets worse as s/m’ gets larger [3,4]. (H ere m is the mass of the heavy quark.) In this 

paper we make some first calculations of heavy quark production in hadron-hadron 

collisions using a formalism[fj] we have developed to resum the large order corrections. 

Our formalism is set up so that standard methods for analytic calculations of 

inclusive cross sections can be used. Higher order corrections can be incorporated 

systematically. Our procedure is therefore potentially more powerful than leading 

logarithm Monte-Carlo calculations. 

The central element is a modification[5] of the Lipatov equation[6]. The original 

version of this equation was applied to complete cross sections, and thus entwined 

together infrared and ultraviolet behavior. Our modification of the equation applies 

directly to the short distance coefficients and to the evolution kernel of the Altarelli- 

Parisi equation. Thus only contributions on a specified scale are important in our 



-2- FERMILAB-Pub-91/22-T 

equation. The solution of our modified Lipatov equation can then be made with a 

fixed coupling instead of a running coupling, and a substantial reduction in labor 

results. Moreover, the infrared-dependent part of the calculation resides solely in the 

initial conditions for the Altarelli-Parisi equation (with a resummed kernel). The 

evolution of parton distributions at small I has been considered by Kwiecinski[?]. 

Catani et ar[8] have developed a different, but undoubtedly equivalent formalism. 

When this is converted to a Monte-Carlo algorithm[9,10] problems occur because of 

sensitivity to the infrared cutoff. Preliminary results on the hadroproduction of heavy 

quarks have also been presented by Levin, Ryskin, Shabelski and Shuvaevjll]. 

To simplify our first attempt at numerical calculations, we work to leading order 

throughout. We also neglect quarks, since the large s/m’ behavior is dominated by 

the effects of gluons on the evolution. The three-gluon vertexis of course the dominant 

physical object here. Our approximation should be sufficient to indicate the expected 

size of the corrections to the corresponding calculation using Born graphs. 

The outline of our paper is as follows. In Sec. 2, we summarize the equations in 

our formalism, starting with the conventional factorization theorem. Then, in Sec. 3, 

we explain our ladder equation, and show how to solve it analytically. In Sec. 4, we 

explain the definition of the impact factor, and, in Sec. 5, we present our algebraic 

calculations of the lowest order impact factor for heavy quark production in hadron- 

hadron collisions. In Sec. 6, we show our results for the modification of the kernel 

of the Altarelli-Parisi equation. In Sec. 7, we present numerical calculations for the 

evolution of the gluon density and for the cross section for heavy quark production 

in hadron-hadron collisions, and compare the results with those from conventional 

calculations. Finally, in Sec. 8, we state our conclusions. 

2 Basic formalism 

The standard factorization formula for the production of a heavy quark of mass 

m in a collision of hadrons HI and H2 with momenta pl and pz is 

(2.1) 

where j = zrzas, and n is an arbitrary renormalization scale that should be chosen 

to be of order the mass of the heavy quark. The hard cross section & will contain 
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the kinematic constraint 2 E +izas 2 4m*, so that the integrals over zr and za 

effectively have nonzero lower limits. For the purposes of this paper, we will consider 

only the integrated cross section for heavy quark production. We could also consider 

a differential single-heavy-quark-inclusive cross section. 

The parton densities fi/~(z, n) satisfy the Altarelli-Parisi equation 

For the remainder of this paper, we will consider the only light partons to be 

gluons, so that the indices in Eqs. (2.12.2) will only have the values i = j = 9. 

When s > 4mZ, there are important contributions in Eq. (2.1) from regions where 

21 << 1, +a < 1, or i > 477~~. Consequently, we need to know &(i, m) for i > 4ms, 

and to know the Altarelh-Parisi kernel y(r/t ,a~) for z << t. In both cases, higher 

order terms in the expansion in powers of as have logarithms of the large ratios. Thus 

lixed low order perturbation theory becomes a poor approximation at high enough 

energy. 

Our result with these large corrections resummed, can be expressed in the form 

+)=%dz~/dr$-dk;$ dk; F(~I, kl, P)F(Q, kz,p)h(ww, kl, k,), 

(2.3) 

where ki and ka are transverse momentum variables. In the following, vectors in 

the transverse plane will always be denoted by boldface letters. Since we choose to 

work with unpolarized hadrons and with an azimuthally averaged cross section, we 

have performed the integrals over the azimuths of the transverse momenta ki and kz 

before writing Eq. (2.3). Is is called the impact factor. It is, in effect, an off-shell, 

but gauge-invariant, cross section, and we will define it and calculate the lowest order 

contribution in Sets. 4 and 5. When i -+ 00, the impact factor falls off like a power of 

i, even when higher order corrections are added, unlike the complete hard scattering 

cross section. The ranges of integration in Eq. (2.3) are restricted by kinematic 

constraints which are implicit in the impact factor. The Lipatov resummation of 

the large i region for the hard scattering coefficient generates gluons of transverse 

momenta comparable to m. This is accounted for by 7(z,k,p), which is to be 

considered as the number density for a parton with longitudinal momentum fraction 
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z, transverse momentum k and renormalization scale p. 

The function 7 is the convolution of the ordinary parton density and the solution 

of our ladder equation, and it satisfies 

4 

I 
f(+,p) = dk’F(z,k,p). (2.4) 

The precise form of the ladder equation and its solution are given in Sec. 3. 

Since the integrals extend down to small k, it is inappropriate to use fixed coupling 

methods in Eq. (2.3) as it stands. Moreover the integrals become almost singular at 

k = 0, so that numerical calculations are not well behaved. It is therefore convenient 

to rewrite Eq. (2.3) by adding and subtracting the k + 0 pieces: 

U(8) = jkjk{ j-dk:$ dk: 7(21,k,,ll)T(zl,k,,~L)I,S(1121arkl,k~) 

+ dk: fhdWw~[l( I zxw,h) - +’ - k:)L(=lw) 1 
+ dk: ?+I>~I,P)~(G,F) [‘( I aw,h) - 6(p2 - k:)Zo(wu) I 

+f(~l,~)f(~z,~)lO(tl~Z~) 1 
1 

(2.5) 

where 

Zo(ww) = 12(212*5,0, O), 

b(vw,k) = Ig(z1w, k, 0), 

I;(=m,k,kz) = Ia(zrzra,kt,ka) + 8(p* - k:)B(pr - k;)&,(+izss) 

-8($ - k;)&(z,zas,k,) - B(,u* - k;)l,(r,zzs, k,). (2.6) 

We regard Eq. (2.5) as the most fundamental equation in our formalism. It is the 

one for which we expect to be able to systematically calculate higher order corrections. 

3 The ladder equation 

In Sec. 2 we presented our fundamental equation, Eq. (2.5), that is to be used 

for calculating semihard processes, and we asserted that the transverse momentum 
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distribution Jr(z, k, p) is the convolution of the ordinary parton density f (3, IL) with 

the solution of a ladder equation. In this section we write the ladder equation, and 

show how to solve it and combine it with the parton density to obtain 3. The details 

of the derivation of the ladder equation will not be presented in this paper. 

3.1 Equation 

Our starting point is an arbitrary off-shell hard scattering coefficient i(i, k;4m”). 

This is defined gauge invariantly in an exactly analogous fashion to the impact factor 

(to be defined in Sec. 4), except that -% contains no subtractions to remove the large 

s behavior. We use the ladder equation to resum the large logarithms of 2/4mr that 

occur in the perturbation expansion of i. 

The quantity i is given by the impact factor coupled to a sum over ladder graphs 

for each incoming off-shell gluon. To simplify the formulae we explicitly treat the 

case of a single ladder, as in Eq. (3.2) below, instead of two ladders, as in Eq. (3.3). 

The ladders are all of the same form. 

Because we are calculating a hard scattering coefficient, there will be no mass 

singularities when k -+ 0. According to the rules for computing hard scattering 

coefficients, subtractions are applied to higher order graphs, and these cancel the 

mass singularities. When we set k = 0 in ,?(.G, k; 4mZ), we obtain the usual hard 

scattering cross section c+, as in Eq. (2.1). 

We define the moments of .? by 

J%, k; W(P)) = dp pj-‘T?(i, k; 4m*; a.&)), (3.1) 

where p = 4mZ/s. Functions with a tilde superscript are all defined in the space of 

moments. Diagrammatically, 2 is a convolution of an impact factor and a sum over 

ladder-like graphs, so that it can be represented in the form 

k(j, k) = J dl’ [i(j,l) - 0(p2 - l”)i(j,O)] i(j,l, k), (3.2) 

where i is the sum over the ladder graphs, and i is the moment of the appropriate 

impact factor. Since we are working with a short distance coefficient function, we 

have displayed the subtraction that cancels the collinear mass singularity. When 
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k = 0, graphs for i have singularities when some loop transverse momenta go to 

zero. Within the ladder i and the impact factor i, there are subtractions that cancel 

all the singularities, except for the one from the region where both 1 and all the 

transverse momenta in t go to zero together. The explicit subtraction in Eq. (3.2) 

cancels this remaining singularity. 

In the particular case of heavy quark production, i could be equal to jr, as used 

in Eq. (2.5). We would also have a similar equation with two ladders attached to is: 

2z;(j, kl, k,) = J J & & &iL,h) i~(j,h,L) &L,h), (3.3) 

where the impact factor is the subtracted one defined in Eq. (2.6). (In the general 

case of a cross section differential in a heavy quark momentum, we would need two 

Mellin transform variables jr and js instead of the single variable j in Eq. (3.3).) 

In moment space 2 satisfies a modified Lipatov equation (ES s N.ns(~)/x) 

*(j, k) = i(j,k) + & 
*(j, 1) - -%, k) + % k) 

11’ - ksJ dii 

-x(j B(p’ - 1’) - B(p’ - ks) + B($ - ks) 
11s - k’J JT2is 

I) 
(3.4) 

By definition, the function j(j, k) is free of poles at j = 1. 

Compared with the usual Lipatov equation, Eq. (3.4) has a subtraction that pre- 

vents regions with strong ordering in transverse momenta from contributing, as is 

appropriate for a hard scattering coefficient. This has the following consequence: 

Given that i(j, k) is nonsingular at k = 0, the solution z(j, k) of the ladder equation 

is also nonsingular at k = 0. Note also that subtraction in the transverse momentum 
- 

at scale p corresponds in lowest order with the normal MS scheme. 

3.2 Solution 

The equation can be solved by making a further Mellin transform of ,f and i with 

respect to k’: 

(3.5) 
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G7) = 7$ g (~)~~(j,k). (34 

These integrals are convergent for 0 < 7 < 7,, where 7. is determined by the large k 

behavior of Y? and i. Since ,f and i are finite at k = 0, we have 

Fzx(j,y) = J?(j, k = 0), 

and similarly for i. 

After this transformation we notice that functions which are a power of k are 

eigenfunctions of the unmodified Lipatov equation. Then Eq. (3.4) becomes 

%x(r) 
z(j,7) = %r) + 

- 
3 _ 1 

[ 
X(3,7) - X(j,O) I? (34 

where the function x is defined as[6] 

x(7)= dz 
$1 

Z-f - 1 

[r-l1 +& 1 =2$(l) - Il(7) -$,(I -7). (3.9) 

Here li, is the digamma function, for which +(l) = -7E. The function x has the 

following limiting behaviors: 

x(7) + 4log(2)+14((3)(7-;)*+0((7-;)I, when7-+:; (3.10) 

x(7) --+ 7-l +x(3)72 +0(74), when 7 -+o, 

where C(3) = 1.20206. 

(3.11) 

We now introduce the anomalous dimension function rC(j,zs) which is defined 

implicitly by the equation 

j - 1 - Zsx(7,(j,Zs)) = 0. (3.12) 

The resummed anomalous dimension 7C has a branch point singularity at j = Jo E 

1 + 4Bs In 2. For j close to the branch point, the behavior is 

rJj,ss) -+ i - 
j - ji 

J 
14&C(3) 
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The behavior of 7= for small iiis is given by 

rJj,&) = -7--- as +X(3) 
3 

(3 - 1) (3 - 1)’ 
+ o(g). 

Eq. (3.8) can be rewritten as 

X(j,7) = (j - l)T(j,7) -K9x(7)X(j,O) 

j - 1 - Cx(7) 

One solution is 
xi(j 7) = (j - l)f(i7) - ~isx(7)f(i774d) 

j - 1 - %x(7) 
> (3.16) 

where we have used the property of x given in Eq. (3.11) to compute x(j, 0). The 

most general solution of the equation is obtained by adding to Eq. (3.16) 

where F(j) is an arbitrary function of j. Our first solution has no pole at j = 

1 +&x(7), but the added term does have such a singularity. This pole can be moved 

to arbitrarily large j by making 7 small enough. Such a property appears to be 

unphysical. Moreover, if one expands the ladders in powers of CYS, then low order 

terms in Eq. (3.16) reproduce terms in the series that is obtained by direct evaluation 

of the ladders. Thus one must set F(j) to zero. 

3.3 Definition of 3 

We use 2 in a factorization equation similar to Eq. (2.1). For the case of a process 

with a single parton external leg the cross section is 

u(s,4d) = 
4 

dzf(z,~),~(LS,0,4mZ). (3.18) 

After taking the M&n transform of the cross section the convolution integral becomes 

a simple product of moments 

f(j,,)*(j, 0). (3.19) 
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Here the definition of the moments of the parton distributions f is 

iCi PI = dt zj-'f(z,p) (3.20) 

and 2 is given by Eq. (3.1). From Eq. (3.19) we therefore need the limit of 2 

as k’ -+ 0. After Mellin transformation on k, this is equal to the 7 -t 0 limit, 
cj Eq. (3.7). Using the solution Eq. (3.16), we find that 

%i,O) = X(j,O) = T(i,rJj)). (3.21) 

Since the ladder part of our solution for ‘?, Eq. (3.2), is universal, it is convenient 

to combine it with the parton density f(z) by defining 

%, k, PI = -%, k O)f(j, p) 

(3.22) 

Then 

f(j)*(j,O) = J dk’ ?(j,k,p) [i(l) - B(p - k)i(O)]. 

Notice that the definition Eq. (3.22) satisfies 

(3.23) 

4 
’ dk2 i(j, k PI = iCj, PI. (3.24) 

Expanding in ijzs, we may define the lowest order perturbative result for the parton 

distribution with off-shellness 

@(j,k,p) = zs cl _ l)k2 f(i PI. 

This is the explicit form used in the perturbative calculations of ref. [12]. 

4 Theory of Impact Factor 

(3.25) 

We now explain how we define the impact factor for hard scattering. Although all 

our considerations are rather general, we will treat the case of production of heavy 

quarks in a hadron-hadron collision for the sake of definiteness. 
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In a general Feynman graph for heavy quark production there will be logarithms 

from integrals over transverse momenta and over rapidity. The ordinary factorization 

theorem, Eq. (2.1), plus the Altarelli-Parisi equation, Eq. (2.2), solve the problem 

of disentangling the transverse momentum logarithms, as is well known. Given this 

decomposition, our modified Lipatov equation separates out the logarithms from the 

rapidity integrals. So far, we have shown how this works for the hard scattering, 

in Sec. 3. In Sec. 6, we will perform the corresponding task for the Altarelli-Parisi 

kernel. 

After this is all done, it remains to calculate the impact factor that appears in 

Eqs. (2.3) and (2.5). Fundamentally, the impact factor is an off-shell cross section 

in which subtractions have been made to cancel the logarithms from the rapidity 

integrals and the transverse momentum integrals. It is necessary to ensure that its 

definition is gauge invariant, since off-shell quantities in a gauge theory are not, in 

general, gauge invariant. Note that in lowest order for heavy quark production, there 

are no subtractions to be made, but that gauge invariance is, a priori, a problem. 

We will parameterize a general momentum kg by a Sudakov decomposition: 

k’ = a& + P& + k”, (4.1) 

where k” is a vector transverse to both of the momenta of the incoming hadrons, pl 

and ps. It will be convenient to make pl and p1 exactly light-like: this will simplify 

the technical details of our discussion. Then the actual momenta of the incoming 

hadrons will differ slightly from pl and pl. 

4.1 Definition of impact factor 

The impact factor in Eq. (2.3) contains the core of the hard scattering, and it is 

attached to each of the parton densities 3 by a pair of gluons, in lowest order. The 

definition of the impact factor requires an approximation to the coupling of these 

gluons that is valid when the gluons connect lines in the impact factor to lines of 

very different rapidity. It should remain a good approximation when the gluon has 

a virtuality or a transverse momentum comparable with the kinematic scale of the 

hard scattering, via., m. The approximation should make enough simplification in 

the structure of the loop integrals that we can derive the ladder equation that we use 
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Figure 1: Gluon connecting lines of very different rapidity. 

to resum the rapidity logarithms. 

It does not matter whether the approximation is good outside the region with a 

large rapidity gap. There is no large logarithm in such a region. We compensate 

for the error in the approximation when we calculate the subtraction term for the 

next order graphs. Thus the error is genuinely higher order in as. We will set up 

the approximation so that it is exact in the limit that the external gluons have zero 

transverse momentum. This will ensure that we do not need to add correction terms 

to make our fancy factorization theorem, Eq. (2.5), agree with the standard one, 

Eq. (2.1), when we are not in the semihard regime. 

In Fig. 1, we show one particular gluon that connects a line in the impact factor 

to one of the lines in the attached ladders. We need to investigate the situation when 
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the lines 1 and 1’ have very different rapidity. First, we decompose the momenta as 

follows: 

q’ = WC; + &Pi + q”, 

lP = alp! + P& + l’, 

I” = avp: + Pf& + 1’“. (4.2) 

We choose I’ to be the momentum of a line in the impact factor, and I to be the 

momentum of a line in the ladder attached to hadron HI. It is sufficient to assume that 

all three transverse momenta are of order the scale of the hard scattering: Q = O(m). 

Then, because 1 and 1’ are final state momenta, both a& and aefli, are of order Q’/s. 

Moreover a, is of order al,, while p, is of order @l. The strong ordering in rapidity 

means that cx~ > a,, and pi << P~J, so that q2 = -q2 up to power law corrections. 

From Fig. 1 we may write the contribution of one rung as 

V’U, 4 1v,.(p)-$ V”‘(% I’), 

where W”(q) is the numerator factor of the gluon propagator and V' and V'" rep- 

resent the parts of the graph above and below the exchanged gluon. We now define 

momenta q1 and qz. These are obtained from q by setting one of the longitudinal 

components to zero: 

qr = 4 + q’, 

ql” = PP; + 9’1. 

(4.4) 

(4.5) 

Then to a good approximation, in the region of strongly ordered rapidity, Eq. (4.3) is 

Our ladder equation, Eq. (3.4), is exactly true for ladders in which the above 

approximation is made for all gluons that connect lines of widely different rapidities, 

if the ladder rung is taken to lowest order in as. 

The operation of making this replacement we call the Lipatov approximation. It 

involves making an approximation to the attachment to the upper part of the graph 
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Figure 2: Action of Lipatov approximation. 

and a conjugate approximation at the lower end. The result is very conveniently 

summarized in an operator language, which is pictured in Fig. 2. There, we consider 

a contribution to the cross section, so we have an amplitude such as we have just 

considered times a hermitian conjugated amplitude. 

Consider the gluon q as coming from the bottom line and attaching to the top 

line. Instead, let it be absorbed by the following gluon operator, which carries the 

burden of projecting out the correct polarization and momentum components: 

O;(ql) E -i J da2 e--iPl.. (P=xp [-ig~dr’“Ab,(z’)Tb]}~~, SAA:;(z). (4.7) 

Here T* is a generator of the SU(3) g rou in the adjoint representation, and C, the p 

path of integration in the path-ordered exponential, is a straight line that starts at 
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Ql *P2 = 
Pl *P2 

plv dab 

a .,l b = i 6 
ab 

1 .pl+k 

b C 

=T= = -k (Tab PI’ 

t-ha 

Figure 3: Feynman rules and typical diagrams for the operator Oy(ql). The label ‘1’ 

on the top vertex is to distinguish the vertex for the operator O1 from the vertex for 

the operator Oz. 

the space-time point t” and goes out to infinity in a direction parallel to the vector 

pl. Because q1 .pl = 0 and because we have projected the gluon field with p,, this 

operator is, in fact, gauge invariant, except for a surface term at infinity. The surface 

term will cancel against the corresponding term in the hermitian conjugate operator 

that is on the opposite side of the final-state cut. 

Operators like this, but with a slightly different momentum, appear in the gauge- 

invariant definition of the parton densities given in Ref. [15]. From the Feynman rules 

given in that paper, we can extract the Feynman rules for our operator 0:. Note, 

however, that our convention for the coupling CJ is reversed compared with Ref. 1151. 
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Ql a 

I-- 

k 

v,b 

(cl 

Figure 4: Examples of application of Feynman rules for O;(ql). 

The Feynman rules are as given in [16,17]. The Feynman rules for O1 are shown in 

Fig. 3. These contain a vertex for the A,p; factor, into which the momentum q1 flows. 

To this vertex is attached a double line that represents the path-ordered exponential. 

There are any number of p1 . A vertices on the double line; they are joined by eikonal 

propagators. The lowest order vertex reproduces the right-hand factor in Eq. (4.6). 

We show some examples of the application of these Feynman rules in Fig. 4. The 

values of the graphs in this figure are: 

Graph (a) = ep;&b 
Pl . Pa 

= W’:‘%b, (4.8) 
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Graph (b) = -W”b)ac:pr;k. p; + & (Ql - k) . Pz pl p2 

= gf.aP:P; 
i (a - k) . PZ 

k.p, +ic Pl ‘Pa ’ 

Graph (6) = -ig(T=),bpr; 
(q~ - k;. pl + ic”,“l .Tz ’ 

= SfoaP:P; 
i k . PZ 

k.p, -icG’ 

(4.9) 

(4.10) 

In these examples, we have chosen q1 = qp; + ql, so that pl q1 = 0. 

A corresponding operator is used at the other end of the gluon line q: 

Ot(q2) z -i/d’= e-ip’~z { Pexp [-igJcd=‘“A~(=‘)T*]}_, %&A:(:; 11) 

where now the path C starts at .z* and goes out to infinity in a direction parallel to 

the vector pa. 

We can now make a gauge-invariant definition of the impact factor for gluon-gluon 

fusion to heavy quarks, by attaching the gluons to these path-ordered exponentials. 

To lowest order, the impact factor is the square of an amplitude given by the sum 

of the graphs in Fig. 5. Schematically, we can represent this as the lowest order 

approximation to the following Green’s function: 

,if 5; (OlT O~+(k~)O~+(k~)l~)(~I~O~(k,)O~(k,)lo)/[(~n)46(4)(o)], (4.12) 

where the sum over final states is over those that contain the heavy quark that defines 

the cross section we are calculating, and rzl is a normalization factor that we will define 

in a moment. In lowest order, we mean to define the impact factor by exactly the 

above equation. But in higher order we must impose subtractions that cancel all the 

transverse momentum and rapidity logarithms. 

In accordance with the prescription for defining the operators 0, and 02, the 

external momenta of the impact factor have the forms 

kl = +m + k,, 

kz = xapz + k,, 

(4.13) 

(4.14) 
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,’ 
b Y 

,,[; K -i"" 

E== k===== 
f - 

bkl g&k2 

,W 
J- 

2 

d) e) 

Figure 5: Lowest order graphs for amplitude for impact factor for production of heavy 

quarks, in gauge-invariant formalism. 

so that p1 . kl = 0 = p2 . k2. 

We define the normalization factor to be 

kaka 
hf= 1’ 

4=1z2p1 ’ PaV=. 
(4.15) 

Here V c Nj’ - 1 = 8, so that the factor l/V’ represents an average over the colors 

of the incoming gluons. ti is chosen so that when we take the limit that kl = kl = 0, 

we obtain a properly normalized cross section, which is exactly the usual gluon- 

gluon fusion cross section, when we work in lowest order. The argument is a little 

subtle, because the external gluons have polarizations proportional to pl or pz, and 

are therefore longitudinal when kl = kz = 0. 
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The first three graphs in Fig. 5 are the conventional ones for gluon-gluon fusion, 

with some appropriate polarization vectors, and with off-shell gluons. The last two 

graphs are needed to preserve gauge invariance, and contain couplings to the path- 

ordered exponentials in 01 and Oz. 

We can eliminate graphs (d) and (e) and put the others in a form that more closely 

resembles the calculation of a cross section with transverse polarizations, by applying 

Ward identities, as follows. First, consider graphs (a) to (d) where only one gluon 

attaches to the lower eikonal. These graphs have the form 

wiG,(h) where G’ = Gym, + Gb, + Grc, + Grd, (4.16) 

G is the sum of the upper parts of the four graphs. Since G is gauge invariant, at 

this order, there is a Ward identity 

k;G,(kl) = 0. (4.17) 

Since kl has no component proportional to pl, this implies that the contribution of 

the sum of the first four graphs may be written as 

&Z,(h) = -W,(b). (4.18) 

However since Grd, cx zlpt; in Feynman gauge, graph (d) makes no contribution to the 

right hand side of the above equation. We apply the same Ward identity argument 

to the other external gluon line in the sum of graphs (a), (b) and (c). In this fashion 

we express the result as transverse projections of graphs (a), (b) and (c) plus a single 

term left over in the Ward identity that exactly cancels graph (e), in Feynman gauge. 

The final result, at lowest order, is that the impact factor is given by the off-shell 

graphs for gluon-gluon fusion , that is graphs (a) to (c). They are to be computed 

in Feynman gauge with amputated external gluon propagators. The incoming gluon 

momenta satisfy pl . kz = p1 . kl = 0. The gluon polarization vectors are kl/lklj for 

ICI and kz/lkzl for kl, there is a color average for the incoming gluons, and there is an 

overall flux factor of 1/(221+~s). This implies that the impact factor is normalized 

appropriately for a cross section, so that when kl = ka = 0 we recover the usual 

gluon-gluon fusion result for on-shell gluons. 

There is somewhat of a convention in our normalization. It is defined so that the 
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flux factor for the off-shell cross section is l/(2z1z2s) rather than a more complicated 

expression such as 1/[2(kl + kl)‘]. Thi s makes our algebra a little simpler. 

When we put the appropriate compensating factors into the ladder graphs, the 

remaining factors in the modified factorization can be interpreted as parton number 

densities. 

5 Calculation of Impact factor 

We now summarize the lowest order calculation of the cross section for two off- 

shell gluons to make a pair of heavy quarks (the impact factor). First, we make a 

Sudakov decomposition for the incoming gluon momenta k,, ka and the momenta of 

the produced heavy quarks, parpI, (which have mass m): 

h = rlpl +k,, 

ks = zapa + k,, 

2)3 = aazlpl + bmpz + ks, 

P4 = ~GIPI + haps + kr. (5.1) 

AS explained in Sec. 4, the longitudinal component of k,, (kz) is only in the direction of 

the light-like vector ~1, (~2). This together with the choice of gluon polarizations to be 

in the transverse plane ensures that the impact factor is gauge invariant. Momentum 

conservation gives as + a, = 1, b3 + br = 1 and kl + kl = ks + k,. 

We define the longitudinal contribution to the square of the total incoming four 

momentum to be 

SL = 2qzz pl . pz = ll+*s. (5.2) 

It is convenient to introduce a notation for the resealed propagators of the graphs, 

using 3~ to set the scale, 

~ = (hi- kg)‘, T;j = mz - (k - Pi)* 
9L 

I 
SL 

(5.3) 

so that by momentum conservation T 1s = rzr and ~2s = 714. We further define 

4d k: k: 
r=-, n*=--, nl=-, 

3L SL SL 
(5.4) 
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Figure 6: Graphs for impact factor for gluon-gluon fusion to heavy quarks. 

As described in Sec. 4, we are interested in a definite polarization projection of 

the invariant matrix element squared. The matrix element h4 is calculated using the 

diagrams of Fig. 6. The result can be expressed in terms of the function AZ, 

A, = &~I'ZiYvhkliw~) k! ktll* 

Here, zindicates an average over the V E N: - 1 = 6 colors of both incoming gluons, 

with NC = 3 being the number of quark colors. The result for Az is 

As = 4n xw + Ed - 2K , 1 
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where Yi is 

4 1 
- - - + (aa - a4 - b3 + b,) 1 
I7 mm3 d (, - & 9 1 -A’ , (5.7) 

with 

A= baa, 
--b’“l+~~~s-?,+(b,-b3)(1-nl)+(as-a,)(l-rrl)) , (5.8) 

T13 7-23 1 
and Ya is 

( 
1A!?2-- has 2 . 

7-13 T23 )I 
If we take the limit of zero k,, and if we average over the transverse directions of 

kt, we obtain the invariant matrix element with one gluon off-shell: 

(!q=; (-“““Pa.y) 
I 9 (5.10) 

A 1 = ~~lM,v(n,b,,p~) @‘(p&l’. 
c now indicates an average over spins and colors of line one and an average over 

colors of line two. The result for Al is 

A1 = 
1 

2b,b,iV, - $) [(G+ a:) + Sb3;111S3(a3 + b3 - aa - b,)’ 1 
N. KS 

+2Vbsb, (1 - Q) (4 + a: + r)(aabr + adb3) + T(2bsb4 -- 1) + ,;A;$ 1 
-&(h - br)(as + b3 - aa - b,)(a; + a: + T). (5.12) 

If we further take the limit ks --t 0 in Eq. (5.12) and average over the transverse 
plane, we recover the normal on-shell matrix element, 

Ao = $gM,(PbPo,P3,Pr) @(PMP2)12, (5.13) 

where c now indicates an average over colors and spins of both initial gluons. We 

find the standard result[13,14], 

1 
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The impact factors for total heavy quark production are defined in analogy with 

normal cross sections: 

I dcosB d4 AO, 

i Ir(aL,kr) = & 
L 

Ir(sL,k,,kr) = ‘2 
2sr, 2 

dcos8dd* AZ. 
27r 

(5.15) 

Here, we have chosen the flux factor to be 23~~ and 9 and C$ are the scattering angles in 

the center of mass system of the two incoming gluons. In defining IS, we have averaged 

over the angle between the two incoming gluons in the transverse plane, $11. The 

first moment of 21, which is relevant in O((L~) perturbation theory, was calculated 

in ref. [12]. 10 is the normal total cross section. Impact factors for the differential 

cross sections may be obtained directly from Ao, Al and AS. In the present paper 

we concentrate on the integrated cross sections. Using the explicit expressions given 

in Eqs. (5.6,5.12+X13), it is straightforward to derive analytic expressions for the 

impact factors for the total production of heavy quarks. These expressions are too 

complicated to publish in closed form. Fortran routines for the integrated impact 

factors Ii are available on request. 

6 Evolution Equation 

In analogy with the off-shell cross section, we can define a generalized off-shell 

anomalous dimension r(r/[, k; as): We will mostly work with its Mellin transform: 

=r(j, k; ‘1s) = 
% 

dz z+~)~(z, k; as), 

r(z, k; as) = & /j r-j?(j, k; as). J 
At zero k this is the ordinary anomalous dimension - the Altarelli-Parisi kernel. It 

enters in the renormalization group equation (Altarelli-Parisi equation) for the parton 

distribution function: 

+ P(Q)--- ,:,] h(j,$) = p(j, 0; w)f;(j,$). (6.2) 
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where i, k = g in the present paper. 

In moment space, the off-shell anomalous dimension satisfies a modified Lipatov 

equation: 

?(i k) = 4r(j, k) + -% =dj,l) - =/(A k) + =di k) 
b-11) 11” - kal Jii 

-+(j B(P’ - 1’) - W - k’) + f’b* - W 
lla - kll dm . 11 (6.3) 

The function Tl(j, k) is defined in an analogous fashion to the impact factor for the 

hard scattering cross section. It is free of poles at j = 1. 

After defining moments of + with respect to kZ, 

=?(j,f) = fj- $ (+j,k,, (6.4) 

we obtain from Eq. (6.3) the transformed equation 

3% f) = TI(i f) + ;;yf,’ $i f) - =T(i 0) . 
[ 1 (6.5) 

This leads to the following solution, at zero k, ck Eq. (3.21): 

GO) = CO) = ~~(j,,C(j,s-)). (6.6) 

In perturbation theory 71 has the expansion: 

+(j, k) = p26(kZ - /J’) + 
F 

E; $‘)(j,k). 
n= 

Using Eq. (6.4) this gives in transform space 

r,(j,f) = f[l+zE;[ g ($)‘$n)(j,k)]. (6.8) 

This solution of the ladder equation for the anomalous dimension may be written 

as 

350) = -k:(j) + 
U 

a; Ij!“‘( j, 0) 
n= 
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+rc(j) r $f (5) 7d”~~n)(j, k’) - O(pz - k’)i/“)(j, 0)) } (6.9) 

The third term is nonleading both in C?S and in as/(j - 1) and will hence be neglected 

in the following. For the purposes of this paper we restrict the sum in Eq. (6.9) to 

the n = 1 term: 

T(j, 0) --t r=(j) + G$)(j, 0). (6.10) 

Note that if we were to include higher order corrections, we would also need the higher 

order corrections to our ladder equation, in order to be completely consistent in the 

accuracy of our perturbative approximations. 

By comparing the expansion of Eq. (6.10) with the standard perturbative result 

for the one loop anomalous dimension[l’l] we can identify the impact factor r;l” 

-(I) 6 (j,O) = 11 2 E - : + 
3 (I+l;(j+2)+~(l)--ui(j)-- 

(6.11) 

Here, n, is the number of active light flavors. 

7 Numerical Results 

7.1 Modified evolution equation 

The numerical work which we report will be mainly illustrative in nature. We use 

the one loop form of the running coupling, 

1 

ijiso= 
61n $ , 

0 
(7.1) 

where 
33 - 2nt 

6= 36 (7.2) 

We work in the limit of zero light quarks (nf = 0) but choose A = 0.215 GeV. This 

gives a coupling which at 5 GeV is equal to the two loop coupling calculated with 

four flavors using A(nf = 4) = 0.19 GeV. It therefore gives a reasonable coupling in 

the range of interest for bottom quark production. We will choose p = m = 5 GeV. 
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In moment space the solution to the Altarelli-Parisi equation, Eq. (2.2) or (6.2) 

with the lowest order kernel, is 

(7.3) 

If we take T to be the standard perturbative anomalous dimension, d is as given 

below: 

'r(j) = 
F(')(j) 

E:p(")(j), d(j) = ~ . (7.4) 

When we substitute for 7 the solution to the modified Lipatov equation, Eq. (6.10), 

we obtain 

idi,) = f&b) ln E /In [ (*) e)]““j)exp (!j$“:y), (7.5) 

where 

so that 

and J is 

d(j) = h(j) + - ’ a(3 - 1) ’ 
(7.6) 

(7.8) 

with x as given in Eq. (3.9). 

Numerical work is done by working in the j-plane, and by performing the Mellin 

transform numerically. We take the starting distributions at p. = 2 GeV to be of the 

form 

f#(% PO) = ; $: $i6) e-“(l - z)“, (7.9) 
We will consider the two extreme cases a = 1 and a = 1.5. In both cases, the 

gluon density is normalized to carry half the total hadron momentum. In Fig. 7 

we show evolution starting from the distribution with a = 1. The resummed formula 

introduces a singularity at j = j,. This explains the substantial difference between 

the modified and the standard AP evolution shown in Fig. 7. Despite the fact that 

the singularity at j = j, is quite weak, it has immediate effect because for a = 1 

all other singularities are at j = 1. In Fig. 8 we show evolution starting from the 
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Starting distribution at pO=2 GeV u l/x 

-------Modified evolution 
-AP evolution 

100 

z 
x 

10 

1 
104 10-* 10+ lo-* 10-l 

X 

Figure 7: Evolution of gluon from starting distribution with l/z behavior at small z. 

distribution with a = 1.5. Because the distribution abeady contains a singularity at 

j = 1.5 the Lipatov singularity is less important. 

Note that the rapid growth of the gluon density shown in these figures cannot 

continue unchecked[l]. When the packing fraction of the gluons within the hadron 

exceeds unity the partons interact with one another. An estimate of the position of 

the onset of this saturation is 

(No. of partons per unit rapidity) x (transverse area of parton) = (area of hadron) 

zfs(+,P) = P2R2, (7.10) 

where R is the hadron radius. For p = 5 GeV this limit will occur when zf,(z, p) % 

10s. We make no attempt to include this saturation effect in our numerical work. 
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I 

Evolution to ~=5, 50, 500 and 5000 GeV - 

Starting distribution at ps=Z GeV N l/x’.’ 

-Ap evolution 

Figure 8: Evolution of gluon from starting distribution with l/r’.s behavior at small 

2. 

The above figures make it clear that the two distributions are very different below 

1: = 10-s. This immediately leads to a sizeable uncertainty in the bottom cross- 

section. Accurate predictions for bottom quark production at the energy of the 

Tevatron (and above) will require experimental information on the gluon distribution 

below L = 10-r. Alternatively bottom quark production can be used to determine 

the gluon distribution in this region. 

7.2 Cross sections 

In Fig. 9 we show the bottom cross section as calculated using the less singular 

gluon distribution. We show three plots. The highest curve, o7 is calculated using 
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10000 t , , , , / , I I ’ ““‘I / 

1 b6 cross section 
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- Starting distribution l/x 

1000 : 
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=2 

1 II1111 I I 1 I11111 I I I 
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:S [TeV] 
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Figure 9: Bottom cross section starting with l/z behavior at small z. 02, us, and 

CT, are the cross section calculated with respectively the lowest order approximations 

everywhere, with the order cxi approximation to our resummation, and with the fu.U 

resummation. 

the full resummation formula, Eq. (2.5), and parton distributions obtained with the 

modified evolution equation. The lowest curve displays ol, which is calculated using 

lowest order approximations everywhere, without resummation: 

d~a~Lo(21,11)fLo(Za,11)10(11z:15). (7.11) 

Here fLo is the gluon density calculated using the standard Altareili-Parisi evolution, 

Eq. (7.3). The Lipatov ladder (with no rungs) first shows up in a fixed order c&u- 

lation at order ai. It is interesting to try and estimate how much of the effect of the 

resummation is already included in an order a3, calculation. Therefore the remaining 
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- Starting distribution 1,‘~“~ 

1000 z- 

I’ .---- g3 
- - - - - - . 

CT2 

1 II1111 I I I I11111 I I I 
1 

?S [TeV] 
10 30 

Figure 10: Bottom cross section starting with l/z’.’ behavior at small I. 

curve shows ~3 

a(s) = 
JdZ’4 l{ 

d+ fLo(zl,~)fLo(rl,~)lo(~~~l~) 

+ 
A- 

dk: fLo(~l,p)P(~l,kl,p)~~(~~z~a,k~) - QJ* - k:)h(.rw)] 

+ dk: p(,,,kl,~)fl’(ll,l~)[I( 1 tlzls, k,) - B($ - k;)lo(rlzzs) 
I 

(7, S2) 

with fLo given by Eq. (7.3) and 7J given by Eq. (3.25). The results at fi = 1.8 TeV 

are shown in Table 1. We see that 03 is smaller than o, especially for the less steep 

starting distribution. 
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Table 1: Cross sections at the Tevatron in various orders in perturbation theory 

In Fig. 10 we show the bottom cross section as calculated using the more singular 

gluon distribution. The cross sections are larger than in the previous case, and the 

influence of the resummation is smaller. These two figures show that the size of the 

cross section is dependent on the form of the gluon distribution. Note however that 

the inclusion of the resummation reduces the sensitivity to the form of the gluon 

distribution. 

8 Conclusions 

We have presented au outline of a new method of dealing with small + physics 

which clearly separates the short and long distance components of the calculation. 

It represents a generalization of the normal QCD parton model to the case where 

gluons which have a transverse momentum of the order of the hard interaction scale 

are important. Our formalism allows the inclusion of higher order effects. 

We have presented some illustrative numerical results, using bottom quark pro- 

duction at fi > 1 TeV as an example. Our results include neither higher order effects 

nor light flavors of quarks, both of which are known to be important at the energy of 

the Tevatron. Furthermore, no attempt has been made to include saturation effects 

which are important at higher energies. Despite these deficiencies we believe that our 

numerical results are sufficient to demonstrate two qualitative features about bot- 

tom production at the Tevatron. First, resummation effects are already important 

at the energy of the Tevatron. Secondly, the calculations performed through O(aJs) 

include part but not all of the small-z physics. Bottom quark production at the 

Tevatron is not adequately described either by fixed order perturbation theory or by 

the resummed formula without higher order terms. 

There are a number of further developments of our methods that must be made. 
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First, we must extend the formalism to include light quarks as partons. This is an 

elementary extension of the results presented in this paper, since only gluon exchange 

generates the rapidity logarithms that we have resummed. Then we must calculate 

impact factors for other processes of interest, like Drell-Yan and jet production. It 

would also be useful to do calculations with a more differential heavy quark cross 

section. 

A most important task is to devise convenient methods of calculating higher order 

corrections in as for the impact factors and for the kernels of our ladder equation. 

We believe that our gauge invariant definition of the impact factors is an important 

step forward for this. 
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