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Abstract
Quantum key distribution (QKD) promises theoretically secure communication.
However, it encounters challenges in implementation security and performance due
to inevitable device imperfections. Since the proposal of
measurement-device-independent (MDI) QKD, the critical step toward practical
security is to secure QKD with imperfect sources. The source imperfections manifest
as state-preparation uncertainty (SPU) in various aspects, e.g., encoding uncertainty,
intensity fluctuation, and imperfect vacuum states. Here, we perform an MDI-QKD
experiment and achieve both high practical security and superior performance. We
address the general form of SPU and guarantee a tight estimation of the secret key
rate based on the operator dominance method. We achieve secure key distribution
over 303.37 km, which not only represents the farthest distance in experiments
involving SPU but also considers the most SPU scenarios. Our experimental results
represent a significant step toward promoting practical and secure quantum
communication.
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1 Introduction
Quantum key distribution (QKD) [1–4] enables two remote parties, Alice and Bob, to
achieve information-theoretically secure communication. Despite its promise, the practi-
cal application of QKD faces various theoretical and experimental challenges. The dispar-
ity between idealized theoretical models and real-world QKD systems may compromise
practical security and limit performance metrics such as the secret key rate (SKR) and
transmission distance. While measurement-device-independent (MDI) QKD [5, 6] has
significantly mitigated quantum attacks on the receiver, addressing imperfections at the
source remains an urgent task to ensure robust security and optimal performance.
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Many breakthrough experiments in MDI-QKD have been demonstrated, significantly
improving key aspects such as SKR, transmission distance, repetition frequency, and in-
tegration [7–15]. These advancements highlight the potential for efficient long-distance
quantum communication networks. However, strict assumptions are required on the
source side that the quantum states are prepared without flaws. Hence, a crucial step to
enhance practical security is securing MDI-QKD with imperfect sources. The role of the
source is to prepare pure states according to predefined settings. In the widely employed
decoy-state QKD [16–18], this involves preparing weak coherent states with precise in-
tensity and encoding parameters, e.g., polarization [19–21], phase [22–24], or time-bin
encoding [25–28]. However, the practical prepared states may be uncertain due to limita-
tions in modulation precision and environmental disturbances. The experimental results
indicate that the state-preparation uncertainties (SPUs) of both encoding and intensity fol-
low the Gaussian distribution [29]. Addressing this discrepancy is crucial for enhancing
both the practical security and performance of MDI-QKD systems.

Several security proofs have been developed to address SPU in QKD systems. The
Gottesman-Lo-Lütkenhaus-Preskill (GLLP) security analysis [30] could accommodate
these issues through fidelity analysis, but the provable SKR decreases rapidly as channel
loss increases. Some proofs provide conservative analysis based on simple characteriza-
tions of SPU intervals [29, 31, 32]. On the one hand, certain security proofs offer security
analysis of QKD with only encoding SPU. For instance, the loss-tolerant (LT) method can
achieve a high SKR by characterizing the encoding SPU [31, 33–37]. Alternatively, the vir-
tual mutually unbiased bases method [38] can be employed to address the characterized
encoding imperfections. It also could address the encoding SPU by regarding the encod-
ing SPU as uncharacterized qubit sources [39–42]. Besides, the issue of unbalanced basis
misalignment, a specific case of encoding SPU, has been analyzed with tolerant analysis in
MDI-QKD [43]. On the other hand, current methods to address intensity SPU (i.e., inten-
sity fluctuations) involve estimating the counting rates of single-photon states by consid-
ering the worst-case scenario using analytical formulas or linear programming [44–47].
Additionally, the issue of imperfect vacuum states is particularly critical due to the finite
extinction ratio. However, the vacuum state is essential and serves as the signal state in the
time-bin encoding scheme. The issues of the imperfect vacuum states have been analyzed
in twin-field QKD [48] and side-channel-free QKD [49].

At present, some MDI-QKD experiments have been performed to address only the en-
coding SPU [36, 43, 50, 51]. In this work, to obtain both high performance and enhanced
practical security, we perform an MDI-QKD experiment by considering the general form
of SPU, including encoding uncertainty, intensity fluctuation, and the imperfect vacuum
state. The core idea of our method is to construct operator inequalities, known as oper-
ator dominance method [52], to provide a tight estimation of the amount of secure keys.
The operator dominance method was proposed in Ref. [52] to simplify the security proof
of twin-field QKD in the finite-size regime. It could estimate the counting rate of one
state by simply constructing the operator inequality with test states. Here, we employ this
method to address the SPUs, leveraging its simplicity to accommodate various types of
SPUs within a unified theoretical framework. To validate the proposed framework, we
have successfully achieved a 303.37 km MDI-QKD over standard single-mode optical fiber
in our experiment. Compared with previous MDI-QKD experiments which only consider
the encoding SPU with a maximum distance of 170 km [51], our results not only address
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more imperfect issues but also greatly extend the distance by 83.56 km in the finite case.
Furthermore, compared to long-distance experiments that do not consider SPUs [8], our
system maintains a similar secret key rate even at approximately 250 km. This shows that
our approach performs robustly over long distances, paving the way for future advance-
ments in secure quantum communication.

2 Results
2.1 Protocol
Step 1 (State preparation and characterization). In every round, Alice first selects a ran-
dom bit 0 or 1, and determines the Z or X basis with probabilities pz or px, respectively.
In Z basis, Alice selects a intensity pair (τa1 , τa2 ) which will be (μ, o), (ν, o), (o, o), (μ,ω),
(ν,ω), (ω,ω), (μ,μ) or (ν,ν) with intensity μ > ν > ω > o ≳ 0 and the random phases
θ , θ ′ ∈ [0, 2π). Here the state o is supposed to be 0 under the ideal condition. Then she pre-
pares the coherent states |eiθ√τa1⟩|eiθ ′√

τa2⟩ or |eiθ ′√
τa2⟩|eiθ√τa1⟩ when the random bit is

0 or 1. In X basis, Alice selects a intensity τa ∈ {ν,ω, o} and the random phase θ ∈ [0, 2π),
then prepare the coherent states |eiθ√τa⟩|eiθ√τa⟩ or |eiθ√τa⟩|ei(θ+π )√τa⟩ when the ran-
dom bit is 0 or 1. In practical systems, the intensity and phase may be mixed. Alice could
characterize the actual prepared states. In Z basis, as the phases are both random in two
bins, the state when the random bit is 0 can be expressed as

ρz
τa1 τa2

=
∞∑︂

i,j=0

qi,τa1
qj,τa2

|ij⟩⟨ij|. (1)

The state ρz
τa2 τa1

when the random bit is 1 can be defined similarly. Here, we have defined
that qi,τ =

∫︁
x∈Πτ

fxpi,xdx, where Πτ represents the set of intensity distribution correspond-
ing to the setting τ , fx denotes the probability density function, and pi,x = e–xxi/i! is the
Poisson distribution probability. In X basis, the relative phase between two bins is fixed as
0 or π in the ideal case, but the actual states with encoding SPU can be defined as ρx0

τa and
ρx1

τa when the random bit is 0 and 1 with

ρ
x0(1)
τa =

∞∑︂

k=0

qk,τa

∫︂

y∈Λ0(1)

gy|χk,y⟩⟨χk,y|dy ≜
∞∑︂

k=0

qk,τaρ
x0(1)
k , (2)

where Λ0(1) represents the set of phase distribution and gy denotes the probability density
function, and the two-mode k-photon state is defined as

|χk,y⟩ =
1√
2k

k∑︂

r=0

√︂
Cr

keiry|r, k – r⟩. (3)

Bob independently selects the parameters and prepares the states in the same way. The
prepared states are sent to Charlie through the quantum channel. Here, we note that the
prepared states in Eqs. (1) and (2) implicitly imply that the states are independent and
identically distributed (i.i.d.) and do not include the potential side-channels. These are
summarized as the i.i.d. assumption and the qubit assumption, enabling us to confine our
analysis to the modulation spaces.



Lu et al. EPJ Quantum Technology          (2025) 12:103 Page 4 of 19

Step 2 (Measurement). Charlie is supposed to perform the interference measurement
and announce the measurement results {0, 1,⊥}. Here, 0 and 1 corresponds to a measure-
ment of the Bell state |ψ0⟩ = (|01⟩ + |10⟩)/√2 and (|01⟩ – |10⟩)/√2, and ⊥ corresponds to
other failed measurements. The honesty of Charlie is not necessary and the deception will
affect the SKR but will not cause security issues.

Step 3 (Sifting). Alice and Bob sift the effective rounds when the measurement results
are 0 or 1, and announce the selected intensity and basis for those rounds. They generate
the bits for those effective rounds when both are Z basis and the intensity pairs are (μ, o)

or (o,μ). They keep these bits as raw bits while Bob flips all of his bits. Other effective
rounds are used to estimate the parameters.

Step 4 (Parameter estimation and postprocessing). They estimate the counting rate s11

and phase error rate ex when both sides sent the single-photon states. The detailed es-
timation methods can be found in Sect. 3. By applying the error correction and privacy
amplification methods, they distill the secret key bits from the raw bits, and the SKR is
shown as [5, 53]

RMDI ≥ p2
z p2

μ{q(1,1)s11[1 – h(ex)] – fQ[μ,μ]h(Ez)}, (4)

where pz is the probability of selecting the Z basis and pμ is the probability of choosing
the intensity pairs (μ, o) or (o,μ), q(1,1) = q2

1,μq2
0,o, and Q[μ,μ] and Ez are the counting rate

and error rate when both sides choosing the intensity pairs (μ, o) or (o,μ).

2.2 Experimental setup
As illustrated in Fig. 1(a), the MDI-QKD experimental setup consists of two senders,
Alice and Bob, and a measurement node, Charlie. Each sender employs a free-running
continuous-wave (CW) laser with a central wavelength of 1550.12 nm. The two lasers are
independent without frequency locking. For this setup, we choose time-bin encoding as
the Z basis and phase encoding as the X basis. A pulse train is modulated by two cas-
caded intensity modulators (IMs) with a temporal width of 400 ps and a repetition rate of
500 MHz. The first IM chops the CW light into fixed-intensity or vacuum pulses. Then
the second IM modulates the fixed-intensity pulses into the signal or decoy states and
enhances the extinction ratio of the vacuum pulses. In this way, we could generate four
different intensity levels of optical pulses, and the intensity pairs fulfill the requirements
of step 1 in Sect. 2.1. Note that the intensity pairs in Z and X bases are different. Two
phase modulators (PMs) then randomize the phase of the pulses and modulate the phase
difference between the two time bins. When the Z basis is selected, the two pulses in a pair
are independently modulated with random phases. When the X basis is chosen, the first
pulse in a pair is modulated with a random phase θ , while the second pulse is modulated
with either θ or θ + π , depending on the random bit. The modulators are driven by an ar-
bitrary waveform generator and the IMs are biased with bias controllers. Two electrically
polarization controllers (EPCs) compensate for polarization drift based on feedback from
Charlie. Finally, the light pulses are attenuated to the single-photon level using electrically
variable optical attenuators (EVOAs).

The quantum channel is the standard single-mode fiber with a typical loss coefficient
of 0.2 dB/km. At the receiver, the light pulses first pass through polarization beam split-
ters (PBSs) to ensure identical polarization. Then the pulses interfere at the 50:50 beam
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Figure 1 Experimental set-up. (a) MDI-QKD experimental system. The MDI-QKD system is controlled by three
computers located at Alice, Bob, and Charlie. At the senders (Alice and Bob), the AWG and hardware drivers
are employed to provide modulation signals while enabling system tracking, compensation, and precise
calibration. At the receiver (Charlie), it performs interference measurement, samples the detection results, and
provides feedback control information. The entire system is capable of continuous and stable operation.
Within the system’s optical path, the continuous-wave light is chopped into a train of pulses with four
intensities by two IMs. Then the phases are modulated by two PMs for phase encoding and phase
randomization. These four modulators are driven by an AWG, and the biases of the IMs are controlled by a bias
controller. The polarization and time delay are compensated according to the feedback from Charlie. The
encoded pulses are attenuated to the single-photon level by an EVOA and transmitted to Charlie. Bob’s setup
is the same as Alice’s, but their modulations are independent. Alice, Bob, and Charlie are connected with the
standard single-mode fiber. Charlie aligns the pulses from Alice and Bob with two PBSs and performs
interference with a 50:50 BS. The interference pulses are detected with two SNSPDs. The electrical output
signals of SNSPDs are processed with TCSPC and FPGA. The counting rate within 300 milliseconds of a SNSPD
is sent to Alice and Bob for polarization compensation. The delay between Alice and Bob is sent to Alice for
delay compensation. (b) Phase characterization scheme. The pulse is first split into two pulses, then one arm is
modulated by PMs and the other arm serves as the reference pulses without phase modulation. After phase
modulation, the signal pulse is then split with one for QKD and the other for characterization. The delay and
attenuation of the two arms are balanced with fiber and VOA. The phase difference between two arms can be
calculated according to the intensity ratio of two PDs. Then the modulated phase difference between the two
bins is obtained. (c) Intensity characterization scheme. The signal pulses without attenuation are directly split
with one detected with a PD and the other for QKD. AWG, arbitrary waveform generator; IM, intensity
modulator; PM, phase modulator; EPC, electrically polarization controller; EVOA, electrically variable optical
attenuator; PBS, polarization beam splitter; BS, beam splitter; PC, polarization controller; SNSPD,
superconducting nanowire single-photon detector; TCSPC, time-correlated single-photon counting system;
FPGA, field programmable gate array; PD, photodetector

splitter (BS). After adjusting the polarization with polarization controllers (PCs), the in-
terference pulses are detected using superconducting nanowire single-photon detectors
(SNSPDs). Considering that the period of the light pulses is 2 ns while the dead time of the
SNSPDs is around 50 ns, Charlie will only announce the detection results of the Bell state
|ψ1⟩ = (|01⟩ – |10⟩)/√2 or the failed detection ⊥. The detection efficiency and dark count
rate of the SNSPDs are calibrated to approximately 55% and 3E–8 in the sample interval.
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The detection signals are sampled and processed with a time-correlated single-photon
counting system (TCSPC) and a field programmable gate array (FPGA).

Charlie provides feedback to Alice and Bob on the counting rate of the one SNSPD ev-
ery 300 milliseconds. Alice and Bob alternately adjust the EPCs to maximize the detector
counting rate for polarization compensation, thereby achieving polarization tracking and
compensation. Besides, Charlie provides feedback on the delay of Alice and Bob’s pulses,
and Alice adjusts the delay to achieve alignment. Alice and Bob both synchronize their
operations with Charlie.

Alice and Bob characterize the SPUs with setups in Figs. 1(b) and (c). The phase charac-
terization setup is shown in 1(b). In MDI-QKD, the two PMs will modulate the phase of
two time bins, with the encoding based on the phase difference between them. To charac-
terize the SPU, we split the pulses into two arms: one for phase modulation and the other
serving as a reference. Then the split pulses are interfered with at a 50:50 beam splitter
(BS). The pulses after interference are detected with classical photodetectors (PDs). We
could calculate the phase difference of the interfered pulses. The difference in the phase
differences calculated from the two bins represents the modulated phase. The intensity
characterization setup is shown in 1(c), where a PD is directly used to measure pulses of
varying intensities.

In the above steps, it can be seen that the entire QKD process can be divided into two
phases: the key distribution mode and the SPU characterization mode. The switching be-
tween the two modes can be efficiently implemented using the optical switch or BS. As
shown in the Figs. 1(b) and (c), we present a BS-based implementation for the two op-
erational modes, enabling simultaneous source characterization and key generation. The
brown lines represent the link for key generation, which incorporates additional BSs. The
only cost of this configuration is the introduction of additional attenuation at the source
side, which will not affect the key generation and can be compensated by adjusting the
EVOA at the output. The characterization of SPUs can be flexibly conducted at any point
during the key distribution process, allowing for precise and thorough assessment without
compromising efficiency.

2.3 Experimental results
We implement the experiment with the standard single-mode fiber at the transmission
distances of 101.15, 152.40, 202.31, 253.56, and 303.57 km. The frequency difference be-
tween Alice and Bob’s lasers is kept within 4 MHz without frequency locking, which is
shown in Fig. 5. We note that the frequency drift is caused only by the internal opera-
tion of the lasers. This means that the frequency drift is independent from the QKD set-
ting choices and hence the impact of frequency drift is uniform across different encoded
states. Besides, as the phase randomization is additionally performed in the state prepa-
ration step, there are no phase correlations between different pulses. Therefore, the i.i.d.
assumption can be guaranteed in the presence of frequency drift.

Before the experiments at every distance, we characterize the modulated phase and in-
tensity. The results show that the phase and intensity of the light pulses obey the Gaussian
distribution. The characterized intensity SPU in the 303.57 km experiment and the char-
acterized phase SPU are shown in Fig. 2. The detailed results are listed in Tables 2 and 3.

The simulated and experimental SKR results are shown in Fig. 3. The SKR is simulated
based on the characterized results at 253.56 km in both the asymptotic and finite cases.
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Figure 2 Results of intensity and phase characterization. The first two rows illustrate the intensity distribution,
where intensity μ represents the signal state, while the others denote the decoy states. The last row shows
the phase distribution. The subscripts a and b indicate Alice and Bob, respectively

And the simulation method is given in App. C. The experimental SKR results are repre-
sented by red dots and green triangles for the asymptotic and finite cases, respectively. The
results show that a secure key distribution distance of 303.57 km can still be achieved even
when simultaneously accounting for the encoding SPU, intensity modulation SPU, and
the effects of non-ideal vacuum states. More experimental details are shown in App. A.
In addition, we consider the finite effects [54] with security coefficient ε = 1E–10, and
perform experiments with the total number N = 7.68E12, 7.50E13, 9.67E13, 5.08E14, and
5.34E14 at 101.15, 152.40, 202.31, 253.56 km, respectively. In the finite case, the achievable
distance remains at 253.56 km. This distance is a significant improvement over previous
experiments, demonstrating the robustness and reliability of our system under realistic
conditions.

We compare our results with recent MDI-QKD experiments that consider SPUs in Ta-
ble 1. Current experiments primarily focus on encoding SPU while neglecting the is-
sues related to intensity modulation and non-ideal vacuum states. Our work accounts
for the largest variety of SPUs while achieving the longest secure key distribution dis-
tance. At present, the farthest distance achieved in MDI-QKD experiments considering
only encoding SPU is 170 km. We have significantly extended this distance to 303.37 km,
demonstrating a substantial improvement in transmission capability. Moreover, our sys-
tem achieves higher secret key rates. For instance, at a distance of 152.40 km, the rate
reaches 23.9 bps, which surpasses the rate previously reported for a 50 km distance. Fur-
thermore, when compared to long-distance experiments that do not account for SPUs
[8], our system achieves a rate that remains on the same order of magnitude even at ap-
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Figure 3 Secret key rate (SKR) in logarithmic scale versus transmission distance between Alice and Bob. The
SKR is simulated according to the characterized results in our experiments in the asymptotic and finite cases.
The experimental SKR results are shown with red dots and green triangles in the asymptotic and finite cases,
respectively

Table 1 List of recent MDI-QKD experiments with SPUs. Three types of SPUs are considered: the
encoding SPU, the intensity modulation SPU, and the effects of imperfect vacuum states

Reference Encoding Intensity Vacuum Distance (km) Rate (bps) Year Notes

Yin [8] × × × 259 0.221 2016 Without SPU
404a 3.21E–04

Tang [36] ✓ × × 40b 10 2016 /

Wang [50] ✓ × × 50 18.8 2019 /

Zhou [51] ✓ × × 170 3.53 2020 /

Wei [12] × × × 180 31 2020 Without SPU

Lu [43] ✓ × × 50 21.4 2022 /

This work ✓ ✓ ✓ 101.15 510 2025 /
152.40 23.9
202.31 4.58
253.56 0.11
303.37b 0.0157

aUltra-low-loss fiber.
bAsymptotic.

proximately 250 km. This indicates that our approach maintains robust performance and
efficiency over extended distances, highlighting its superiority in practical long-distance
quantum communication scenarios.

3 Methods
Following the security analysis framework [33, 55, 56], a key step is to estimate the count-
ing rate and error rate of the single-photon states. To facilitate this analysis, we consider
the virtual entanglement version of the MDI-QKD protocol in the presence of SPU. In both
the prepare-and-measure and entanglement versions, the classical and quantum informa-
tion available to Eve, and the ultimate results for Alice and Bob are consistent. In the entan-
glement version, the phase error rate can be defined to quantify the information leakage
to Eve. Therefore, the security is equivalent and the security of the QKD protocol can be
guaranteed by proving the virtual entanglement version. When utilizing the weak coher-
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ent source in MDI-QKD systems, it is crucial to estimate the single-photon counting rate
under various conditions to obtain the counting rate and error rate of the single-photon
states. In this scenario, the SPU occurs in both the encoding space and the intensity space.
Especially, the vacuum states are essential for time-bin encoding but are impractical due
to the limited extinction ratio. To tightly bound the observations of single-photon states
in the presence of encoding and intensity SPUs, we construct operator dominance condi-
tions, as summarized in Eqs. (9) and (12). This could relax the stringent requirements on
state preparation while ensuring the robustness and performance of QKD systems.

3.1 Estimation of the phase error rate
To analyze the phase error rate, we consider the single-photon MDI-QKD where both Al-
ice and Bob prepare the single-photon state and send them to Charlie. The single-photon
states in Z basis are ρ

z0
1 = |01⟩ or ρ

z1
1 = |10⟩, a fraction in Eq. (1). The encoding states in

these forms are guaranteed with the qubit assumptions, such that the states in high dimen-
sion is identical. We note that the qubit assumption can be removed by decomposing the
non-qubit states into a direct sum of two states with one in a qubit space and the other one
in the complementary space [57, 58], enabling a more general practical security analysis.
In the entanglement protocol, Alice prepares the general state in Z basis as

|ϕ⟩ac1 =
∑︂

i∈{0,1}

√
pi|i⟩a|ī, i⟩c1 , (5)

where p0 and p1 are the probabilities of random bits 0 and 1, and are equal to 0.5 ideally.
Here the ancillary system a is kept secretly and the actual system c1 is sent to Charlie.
Similarly, Bob prepares the states |ϕ⟩bc2 and sends system c2 to Charlie.

Then the untrusted Charlie is supposed to perform the interference measurement and
announce the results. The channel evolution and Charlie’s operation on the composite
systems c1c2 can be characterized by the POVM {Ĉ0, Ĉ1, Ĉ⊥}, corresponding to the an-
nouncement of the measurement results {0, 1,⊥}. Note that there is no assumption about
POVM due to the feature of measurement device independent.

The phase error rate corresponding to the measurement results 0 and 1 can be shown
as

ex0 =
Tr[(| + –⟩⟨+ – | + | – +⟩⟨– + |) ⊗ Ĉ0P̂(|ϕ⟩ac1 ⊗ |ϕ⟩bc2 )]

Tr[Ĉ0P̂(|ϕ⟩ac1 ⊗ |ϕ⟩bc2 )]
,

ex1 =
Tr[(| + +⟩⟨+ + | + | – –⟩⟨– – |) ⊗ Ĉ1P̂(|ϕ⟩ac1 ⊗ |ϕ⟩bc2 )]

Tr[Ĉ1P̂(|ϕ⟩ac1 ⊗ |ϕ⟩bc2 )]
,

(6)

where P̂(|·⟩) = |·⟩⟨·|. The overall phase error rate can be defined based on the convexity of
the binary entropy function as

ex =
∑︁

i exi Tr[Ĉi(ρc1 ⊗ ρc2 )]

Tr[(𝕀 – Ĉ⊥)(ρc1 ⊗ ρc2 )]
. (7)

Note that due to the dead-time of SPDs, the announcement of the Bell state |ψ0⟩ may
be impossible and ex1 is just the final phase error rate in most MDI-QKD systems. The
denominators in Eq. (6) are just the counting rate of announcing 0 and 1 when Alice and
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Bob prepare the composite states |ϕ⟩ac1 ⊗|ϕ⟩bc2 . The elements in the numerators in Eq. (6)
are shown as

Tr[|jk⟩⟨jk| ⊗ ĈiP̂(|ϕ⟩ac1 ⊗ |ϕ⟩bc2 )] =
1
4

Tr[Ĉi(ϱj ⊗ ϱk)], (8)

where i ∈ {0, 1}, j, k ∈ {+, –}, and ϱ± = P̂[(|01⟩ ± |10⟩)/√2].
To estimate the phase error rate, we analyze the states in X basis. The single-photon

states in X basis are ρ
x0
1 and ρ

x1
1 , a fraction of the states in Eq. (2). To obtain the upper

bound of the phase error rate, we give the operator dominance condition as

ϱ± ≤ σ± ≜
∑︂

d∈{z0,z1,x0,x1}
β±

d ρd
1 , (9)

with βd ∈ℝ. The details for the contribution of Eq. (9) are shown in App. B. Then we can
obtain that

ϱj ⊗ ϱk ≤ ϱj ⊗ σk ≤ σj ⊗ σk , j, k ∈ {+, –}. (10)

This can be used to estimate the upper bound of Eq. (8) as

Tr[Ĉi(ϱj ⊗ ϱk)] ≤ Tr[Ĉi(σj ⊗ σk)] =
∑︂

d,d′∈{z0,z1,x0,x1}
β

j
dβ

k
d′Tr[Ĉi(ρ

d
1 ⊗ ρd′

1 )], (11)

where Tr[Ĉi(ρ
zi
1 ⊗ρ

zi′
1 )] is the probability of announcing measurement result i when Alice

and Bob prepare the states ρd
1 and ρd′

1 , respectively. As these probabilities can be obtained
directly in the single-photon MDI-QKD, the phase error rate can be estimated in the pres-
ence of encoding SPU. In the coherent source MDI-QKD, the phase error rate can be es-
timated in the same way on condition that the bounds of the probability Tr[Ĉi(ρ

zi
1 ⊗ ρ

zi′
1 )]

are estimated with the decoy-state method. We present the analysis in the next subsection.

3.2 Estimation of the single-photon counting rate
In the coherent source MDI-QKD, the actual prepared states are shown in Eqs. (1) and (2).
The decoy-state method [16–18] can be applied to estimate different counting rates of the
single-photon states. Below we show how to estimate the bounds of the single-photon
counting rate to calculate the lower bound of s11 and the upper bound of the phase error
rate ex. As we consider the SPUs of the encoding, intensity modulation, and imperfect
vacuum states, the decoy-state estimation should be modified.

To estimate these parameters, we give the operator dominance conditions as

ρd
1 ≥

∑︂

(τ1,τ2)

βd,0
τ1,τ2ρ

z
τ1,τ2 , d ∈ {z0, z1},

ρd
1 ≤

∑︂

(τ1,τ2)

βd,1
τ1,τ2ρ

z
τ1,τ2 , d ∈ {z0, z1},

ρd
1 ≥

∑︂

τ

βd,0
τ ρx

τ , d ∈ {x0, x1},

ρd
1 ≥

∑︂

τ

βd,1
τ ρx

τ , d ∈ {x0, x1},

(12)
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with proper βd,0
τ1,τ2 ,βd,1

τ1,τ2 ,βd,0
τ ,βd,1

τ ∈ ℝ. The details for the contribution of Eq. (12) are
shown in App. B. The validity of Eq. (12) relies on the absence of correlations, such as those
introduced by the pattern effect [59]. When considering the pattern effect, we could utilize
the pattern sifting and alternate key distillation post-processing operations to remove the
impact of correlations [59]. Besides, we also could utilize reference technique [60] to ac-
commodate the correlations between setting choices, such as bit and basis choices. Here,
we consider that the i.i.d. assumption is guaranteed.

With the operator dominance conditions in Eq. (12), we show how to estimate the pa-
rameters. The counting rate of the single-photon state s11 is defined as

s11 =
1
4

∑︂

d,d′∈{z0,z1}
Tr[(Ĉ0 + Ĉ1)(ρd

1 ⊗ ρd′
1 )]. (13)

According to the first operator dominance condition in Eq. (12), we can conclude the fol-
lowing formula with d, d′ ∈ {z0, z1}

ρd
1 ⊗ ρd′

1 ≥
∑︂

(τ1,τ2)

∑︂

(τ3,τ4)

βd,0
τ1,τ2β

d′ ,0
τ3,τ4ρ

z
τ1,τ2 ⊗ ρz

τ3,τ4 . (14)

Then the lower bound of the single-photon counting rate s11 is given by

s11 ≥1
4

∑︂

d,d′∈{z0,z1}

∑︂

(τ1,τ2)

∑︂

(τ3,τ4)

βd,0
τ1,τ2β

d′ ,0
τ3,τ4 × Tr[(Ĉ0 + Ĉ1)(ρz

τ1,τ2 ⊗ ρz
τ3,τ4 )], (15)

where Tr[(Ĉ0 + Ĉ1)(ρz
τ1,τ2 ⊗ ρz

τ3,τ4 )] is the counting rate of announcing 0 and 1 when Alice
and Bob prepare the states ρz

τ1,τ2 and ρz
τ3,τ4 , respectively.

According to Eqs. (6)-(11), to obtain the upper bound of the phase error rate ex, we only
need to estimate the lower or upper bounds of Tr[Ĉi(ρd

1 ⊗ ρd′
1 )] with d, d′ ∈ {z0, z1, x0, x1}

according to the sign of the coefficient βdβd′ in Eq. (11). The bounds can be calculated the
same as Eq. (14). We directly give the results in the following. For d, d′ ∈ {z0, z1}, we have

Tr[Ĉi(ρ
d
1 ⊗ ρd′

1 )] ≥
∑︂

(τ1,τ2)

∑︂

(τ3,τ4)

βd,0
τ1,τ2β

d′ ,0
τ3,τ4 Tr[Ĉi(ρ

z
τ1,τ2 ⊗ ρz

τ3,τ4 )],

Tr[Ĉi(ρ
d
1 ⊗ ρd′

1 )] ≤
∑︂

(τ1,τ2)

∑︂

(τ3,τ4)

βd,1
τ1,τ2β

d′ ,1
τ3,τ4 Tr[Ĉi(ρ

z
τ1,τ2 ⊗ ρz

τ3,τ4 )].
(16)

For d ∈ {z0, z1} and d′ ∈ {x0, x1}, we have

Tr[Ĉi(ρ
d
1 ⊗ ρd′

1 )] ≥
∑︂

(τ1,τ2)

∑︂

τ

βd,0
τ1,τ2β

d′ ,0
τ Tr[Ĉi(ρ

z
τ1,τ2 ⊗ ρx

τ )],

Tr[Ĉi(ρ
d
1 ⊗ ρd′

1 )] ≤
∑︂

(τ1,τ2)

∑︂

τ

βd,1
τ1,τ2β

d′ ,1
τ Tr[Ĉi(ρ

z
τ1,τ2 ⊗ ρx

τ )].
(17)

For d ∈ {x0, x1} and d′ ∈ {z0, z1}, we have

Tr[Ĉi(ρ
d
1 ⊗ ρd′

1 )] ≥
∑︂

τ

∑︂

(τ3,τ4)

βd,0
τ βd′ ,0

τ3,τ4 Tr[Ĉi(ρ
x
τ ⊗ ρz

τ3,τ4 )],

Tr[Ĉi(ρ
d
1 ⊗ ρd′

1 )] ≤
∑︂

τ

∑︂

(τ3,τ4)

βd,1
τ βd′ ,1

τ3,τ4 Tr[Ĉi(ρ
x
τ ⊗ ρz

τ3,τ4 )].
(18)
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And for d, d′ ∈ {x0, x1}, we have

Tr[Ĉi(ρ
d
1 ⊗ ρd′

1 )] ≥
∑︂

τ

∑︂

τ ′
βd,0

τ β
d′ ,0
τ ′ Tr[Ĉi(ρ

x
τ ⊗ ρx

τ ′ )],

Tr[Ĉi(ρ
d
1 ⊗ ρd′

1 )] ≤
∑︂

τ

∑︂

τ ′
βd,1

τ β
d′ ,1
τ ′ Tr[Ĉi(ρ

x
τ ⊗ ρx

τ ′ )].
(19)

These parameters Tr[Ĉi(ρz
τ1,τ2 ⊗ ρz

τ3,τ4 )], Tr[Ĉi(ρz
τ1,τ2 ⊗ ρx

τ )], Tr[Ĉi(ρx
τ ⊗ ρz

τ3,τ4 )] and
Tr[Ĉi(ρx

τ ⊗ ρx
τ ′ )] can be obtained directly in MDI-QKD systems, which are the probabili-

ties of announcing result i when Alice and Bob prepare the states ρz
τ1,τ2 ⊗ρz

τ3,τ4 , ρz
τ1,τ2 ⊗ρx

τ ,
ρx

τ ⊗ ρz
τ3,τ4 and ρx

τ ⊗ ρx
τ ′ , respectively.

4 Discussion
In this work, we have significantly advanced the MDI-QKD experiment by addressing the
SPUs in various aspects and extending the maximum transmission distance to 303.37 km.
To address these practical issues, we construct the operator dominance method and give
a tight estimation of the amount of secure keys. While considering more kinds of SPUs, an
improvement of 83.56 km has been achieved over previous MDI-QKD experiments that
only considered encoding SPU. Additionally, even at the extended distance, our system
maintains a rate comparable to long-distance MDI-QKD experiments that do not account
for SPUs. These results highlight the practicality and robustness of our approach in practi-
cal MDI-QKD systems. Our work improves the practicality of current MDI-QKD systems
and provides a foundation for future development and deployment in secure quantum
communication.

As we aim to provide a comprehensive solution to the specific class of practical source
imperfection only in the modulation spaces, there remain several crucial research direc-
tions in other aspects for future work. First, the encoding may be correlated with other
degrees of freedom and hence introduces side channels, which might violate the qubit as-
sumption [57, 58, 61–63]. Second, the correlations may also occur between nearby pulses,
e.g., the pattern effect [59, 64], the setting choice correlations [60, 65], and the phase corre-
lations [66]. This will undermine the condition that the quantum states are i.i.d. At present,
a number of approaches can be employed to remove these assumptions [57–60, 63, 65].
Therefore, extending our framework to incorporate these methods and account for such
imperfections will be an essential direction for achieving higher practical security in QKD
for future research.

Appendix A: Detailed experimental results
In this section, we present the detailed experimental results. The Tables 2 and 3 give the
parameters of Gaussian approximation of the phase and intensity distributions, respec-
tively. The Table 4 lists the probabilities and the Table 5 shows the detailed experimental
results.

Besides, as shown in Fig. 4, we measure the frequency difference of two independent
lasers through beat frequency without feedback every 0.1 seconds in 30 minutes. The two
lasers beat at a 50:50 BS and the results are detected with the classical PDs. The frequency
difference then is analyzed with the detected time domain signals. Figure 5 shows the
frequency difference between two free-running lasers.
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Table 2 Parameters of Gaussian approximation of phase distributions. x̄: mean, σ : standard deviation

0a πa 0b πb

x̄ –0.0017 3.1253 0.0015 3.1293
σ 0.0172 0.0143 0.018 0.0245

Table 3 Parameters of Gaussian approximation of intensity distributions. x̄: mean, σ : standard
deviation

Distance μa νa ωa oa μb νb ωb ob

101.15 x̄ 0.204089 0.060832 0.005893 9.15E–5 0.206184 0.060095 0.005776 9.93E–5
σ 0.001058 0.000417 0.000307 0.000375 0.001186 0.000737 0.000453 0.000461

152.40 x̄ 0.200601 0.062914 0.006276 6.29E–5 0.204206 0.062903 0.006111 0.000137
σ 0.001027 0.000603 0.000427 0.000439 0.001096 0.000607 0.000449 0.000511

202.31 x̄ 0.205472 0.061212 0.006039 7.98E–5 0.206309 0.061031 0.006095 7.33E–5
σ 0.00097 0.000585 0.000409 0.00037 0.001148 0.0006 0.000457 0.000453

253.56 x̄ 0.198356 0.063045 0.008034 5.90E–5 0.200584 0.064894 0.007884 7.82E–5
σ 0.000843 0.000899 0.000203 0.000132 0.000698 0.000611 0.000214 0.000226

303.57 x̄ 0.199829 0.072682 0.009065 9.20E–5 0.186857 0.072263 0.009337 0.000118
σ 0.000847 0.000537 0.000407 0.000320 0.000763 0.000712 0.000348 0.000272

Table 4 Experimental parameters of the probability. p(τ1,τ2) denotes the probability of preparing the
states with intensities τ1 and τ2, where the order of τ1 and τ2 is random

p(μ,o) p(ν ,o) p(o,o) p(ν ,ν) p(μ,μ) p(μ,ω) p(ν ,ω) p(ω,ω)

Alice 0.7574 0.0382 0.0360 0.033 0.0284 0.0278 0.0408 0.0384
Bob 0.7460 0.0394 0.0378 0.035 0.0306 0.0326 0.0384 0.0402

Table 5 Experimental results of MDI-QKD at various quantum link fiber lengths

Distance (km) Q[μ,μ] Ez s11 ex RMDI

101.15 1.44E–5 0.0047 2.83E–4 0.0939 2.06E–6
152.40 1.78E–6 0.0036 3.55E–5 0.0845 2.80E–7
202.31 1.82E–7 0.0025 1.21E–5 0.1880 5.51E–8
253.56 1.89E–8 0.0027 1.30E–6 0.2331 3.92E–9
303.37 1.83E–9 0.0043 4.80E–8 0.2703 6.26E–11

Appendix B: Construction of operator dominance conditions
In this section, we analyze how to construct the operator dominance conditions in Eqs. (9)
and (12).

For Eq. (9), we could restrict it as equality, i.e., ϱ± =
∑︁

d∈{z0,z1,x0,x1} βdρ
d
1 . Then it is equiv-

alent to the following linear equations

1
2

⎡

⎢⎢⎢⎢⎣

2 0 1 1
0 0

∫︁
y∈Γ0

gyeiydy
∫︁

y∈Γ1
gyeiydy

0 0
∫︁

y∈Γ0
gye–iydy

∫︁
y∈Γ1

gye–iydy
0 2 1 1

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

β±
z0

β±
z1

β±
x0

β±
x1

⎤

⎥⎥⎥⎦ =
1
2

⎡

⎢⎢⎢⎣

1
±1
±1
1

⎤

⎥⎥⎥⎦ , (B.1)
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Figure 4 Schematic diagram of the frequency difference characterization
scheme. BS, beam splitter; PD, photodetector

Figure 5 The frequency difference of two free-running lasers

which is also equivalent to the following real version as

⎡

⎢⎢⎢⎢⎣

2 0 1 1
0 0

∫︁
y∈Γ0

gy cos ydy
∫︁

y∈Γ1
gy cos ydy

0 0
∫︁

y∈Γ0
gy sin ydy

∫︁
y∈Γ1

gy sin ydy
0 2 1 1

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

β±
z0

β±
z1

β±
x0

β±
x1

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

1
±1
0
1

⎤

⎥⎥⎥⎦ . (B.2)

We could sovle this linear equations to obtain the coefficients β±
d with d ∈ {z0, z1, x0, x1}

for Eq. (9).
The contributions for Eq. (12) are a little complex due to the imperfect vacuum states.

We first define the following two operators

ρμ ≜
ρz

μo

q0,μ
–

ρz
oo

q0,o
=

∞∑︂

j=1

αj,μ|j⟩⟨j| ⊗ ρo,

ρν ≜ ρz
νo

q0,ν
–

ρz
oo

q0,o
=

∞∑︂

j=1

αj,ν |j⟩⟨j| ⊗ ρo

(B.3)

where the coefficients αj,τ = qj,τ /q0,τ – qj,o/q0,o and the operator ρo =
∑︁∞

i=0 qi,o|i⟩⟨i|. Then
the linear combination of these two operators is given as

α2,νρ
μ – α2,μρν =

∞∑︂

j=1

βj|j⟩⟨j| ⊗ ρo, (B.4)

where the coefficient is defined as

βj = α2,ναj,μ – α2,μαj,ν =
1

q0,μq0,νq0,oq0,o2!j!

∫︂

μ,ν,o,o′
fμfν fofo′

G(μ,ν, o, o′, j)
eμ+ν+o+o′ dμdνdodo′.

(B.5)
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The polarity of βj is determined by the numerators G(μ,ν, o, o′, j) ≜ (ν2 – o′2)(μj – oj) –
(μ2 – o2)(ν j – o′ j). It is easy to verify that G(μ,ν, o, o′, 1) < 0 and G(μ,ν, o, o′, 2) = 0 with
the conditions in Eq. (B.15). This means that β1 < 0 and β2 = 0. The numerators of
g(μ,ν, o, o′, j) can be re-expressed by changing the order of summation as G(μ,ν, o, o′, j) =
(ν2 – o′2)(μj – oj) – (μ2 – o′2)(ν j – oj). Note that

μj+1 – oj+1

ν j+1 – oj+1 –
μj – oj

ν j – oj =
(μ + o)(ν + o)

(ν j+1 – oj+1)(ν j – oj)
×

j–1∑︂

k=0

oj–k–1(μjνk – ν jμk) ≥ 0. (B.6)

Hence we can prove that

βj+1 ≥ βj × min
ν,o

{︂ ν j – oj

ν j–1 – oj–1

}︂
. (B.7)

Based on the mathematical induction method, we can conclude that βj ≥ 0 when j ≥ 2.
Therefore, based on Eq. (B.4), the following operator dominance conditions is valid

|1⟩⟨1| ⊗ ρo ≥ α2,νρ
μ – α2,μρν

β1
=

α2,νρ
μ – α2,μρν

α2,να1,μ – α2,μα1,ν
. (B.8)

At the same time, it is easy to verify that αj,ν > 0, hence the following operator dominance
condition is valid

|1⟩⟨1| ⊗ ρo ≤ ρν

α1,ν
. (B.9)

If the vacuum state is perfect, hence Eqs. (B.8) and (B.9) give the first two operator dom-
inance conditions in Eq. (12). Actually, Eq. (B.9) is irrelevant of the form of the state ρo,
we could obtain the following condition as

ρ
z0
1 ≤ 1

q0,o

∞∑︂

j=1

αj,ν |j⟩⟨j| ⊗ q0,o|0⟩⟨0| ≤ ρν

q0,oα1,ν
, (B.10)

which gives the second condition in Eq. (12).
To prove the first condition in Eq. (12), we first give the operator inequalities for the

(unnormalized) state q0,o|10⟩⟨10| + q1,o|11⟩⟨11| according to Eqs. (B.8) and (B.9), which
are shown as

Υo,0 ≜ (q0,o + q1,o – 1)𝕀 +
α2,νρ

μ – α2,μρν

α2,να1,μ – α2,μα1,ν
≤ q0,o|10⟩⟨10| + q1,o|11⟩⟨11|

Υo,1 ≜
∑︂

(τ0,o)∈Π′
β ′

τ0o,1κτ0 ⊗ κo ≥ q0,o|10⟩⟨10| + q1,o|11⟩⟨11|.
(B.11)

If we prepare another decoy states with preset intensity ω to replace the vacuum states,
we also could obtain the operator inequalities for the (unnormalized) state q0,o|10⟩⟨10| +
q1,o|11⟩⟨11| similar to Eq. (B.11) as q0,ω|10⟩⟨10|+q1,ω|11⟩⟨11| ≥ Υω,0 and ≤ Υω,1. Therefore,
the following operator dominance condition holds

ρ
z0
1 ≥ q1,ωΥo,0 – q1,oΥω,1

q1,ωq0,o – q1,oq0,ω
, (B.12)
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which gives the first condition in Eq. (12). The reason that the estimation is tight is that
q0,o + q1,o – 1 is close enough to 0.

As the vacuum state is nonessential for X basis, the last two operator dominance con-
ditions in Eq. (12) can be directly obtained according to Eqs. (B.8) and (B.9) as

ρd
1 ≥ α2,νσ

μ,d – α2,μσ ν,d

α2,να1,μ – α2,μα1,ν
,

ρd
1 ≤ σ ν,d

α1,ν
,

(B.13)

where the operators are defined similarly to Eq. (B.3) as

σμ,d ≜
ρd

μ

q0,μ
–

ρd
o

q0,o
,

σ ν,d ≜ ρd
ν

q0,ν
–

ρd
o

q0,o
.

(B.14)

The simple and sufficient but not necessary conditions for the above analysis are that
for any μ ∈ Πμ, ν ∈ Πν , o, o′ ∈ Πo, and ω,ω′ ∈ Πω the following formulas hold

μ > o,

ν > o,

μ + o > ν + o′,

μ > ω,

ν > ω,

μ + ω > ν + ω′.

(B.15)

In perfect QKD systems, the intensities are fixed satisfying μ > ν > ω > o, and the condi-
tions in Eq. (B.15) are trusted. However, the set Πτ (τ ∈ {μ,ν,ω, o}) becomes complex due
to the intensity fluctuation. At this time, the conditions in Eq. (B.15) are still reasonable.
Even in the case that Eq. (B.15) can not be satisfied, the invalidity is only due to a small
portion of states. That is, considering the Gaussian distribution, the probability of prepar-
ing those states is small as the actual intensity deviates from the nominal intensity. And
the contribution of those partial states is negligible. It is easy to verify the polarity of βj

and αj,ν based on the mathematical induction method. Considering the worst case that the
polarity of βj and αj,ν do not satisfy the above analysis, we could optimize the intensities
in advance.

Appendix C: Simulation method
We give the simulation method for Tr[Ĉi(ρz

τ1,τ2 ⊗ ρz
τ3,τ4 )], Tr[Ĉi(ρz

τ1,τ2 ⊗ ρx
τ )], Tr[Ĉi(ρx

τ ⊗
ρz

τ3,τ4 )], and Tr[Ĉi(ρx
τ ⊗ ρx

τ ′ )] in Eqs. (16), (17), (18), and (19). As their are two bins, we
define a unified definition as Qzz(zx,xz,xx)

τa1 τa2 ,τb1 τb2
, where (τa1 , τa2 ) and (τb1 , τb2 ) are Alice and Bob’s

intensity choices in two bins, and the superscript denotes the bases. The counting rate can
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be simulated as

Qzz(zx,xz,xx)
τa1 τa2 ,τb1 τb2

= Intτa1 ,τa2 ,τb1 ,τb2 ,θ ,ϑ
{︁

e–L(τa1 ,τb1 ,θ )(1 – pd)

× [1 – e–R(τa1 ,τb1 ,θ )(1 – pd)] × [1 – e–L(τa2 ,τb2 ,ϑ)(1 – pd)]

+ [1 – e–L(τa1 ,τb1 ,θ)(1 – pd)] × e–R(τa1 ,τb1 ,θ )(1 – pd)

× [1 – e–R(τa2 ,τb2 ,ϑ)(1 – pd)]
}︁

,

(C.1)

where Int denotes the integral and the probability density functions are omitted, and we
have defined that

L(τa, τb, θ ) =
η

2
(τa + τb) + η

√
τaτb cos θ ,

R(τa, τb, θ ) =
η

2
(τa + τb) – η

√
τaτb cos θ .

(C.2)

Here, θ ,ϑ ∈ [0, 2π) for zz, zx, xz. But for xx, ϑ = θ +ϑa +ϑb, where ϑa, ϑb denotes the phase-
encoding uncertainty. The counting rate Q[μ,μ] and the bit error rate Ez can be simulated
as

Q[μ,μ] = p0p1Qzz
μaoa ,μbob

+ p0p0Qzz
μaoa ,obμb

+ p1p1Qzz
oaμa ,μbob

+ p1p0Qzz
oaμa ,obμb

,

Ez =
1

Qz
(p0p1Qzz

μaoa ,μbob
+ p1p0Qzz

oaμa ,obμb
).

(C.3)
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