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Abstract: We present the construction of ground state equilibrium configurations of the Schrodinger—
Poisson (SP) system in the Madelung frame and evolve such configuration using finite volume
methods. We compare the behavior of these configurations when evolved within the SP and Madelung
frames, in terms of conservation of mass and energy. We also discuss the issues of the equations in
the Madelung frame and others inherent to the numerical methods used to solve them.
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1. Introduction

The Schrodinger-Poisson (SP) system of equations has recently attracted attention
because these equations rule the dynamics of the fuzzy dark matter model (FDM), which
proposes that dark matter is an ultralight spinless boson (e.g., [1-4]). In this model, the
Schrodinger equation plays the role of the Gross—Pitaevskii equation for a Bose gas and the
Poisson equation provides the potential trap that contains the bosons, whose source is the
bosonic gas density itself. The solution of the SP system of equations is the essence of the
analyses of this dark matter candidate.

Among the most interesting discoveries within this model is that structures resulting
from the evolution of dark matter fluctuations accommodate in density configurations with
a core and tail (e.g., [5,6]). The core happens to have the profile of ground state equilibrium
configurations of the SP system [7,8], which have been found, in isolated scenarios, to be
late-time attractor solutions [9,10].

Now, on the numerical aspect of the simulations based on the numerical solution of
the SP system under various astrophysical scenarios, it happens that different numerical
methods and approaches are used; see, e.g., [11,12] for reviews on the subject. The various
analyses use two main frames for the solution of the SP system, some of them consist of the
direct solution of the SP equations, whereas others solve the hydrodynamical Madelung
version of the equations [13,14].

Examples solving the SP system include [15], where the first structure formation
with ultralight dark matter was examined in [5], where the structure formation within
the FDM model using high-resolution simulations receives an important boost; in [16],
the oscillation mode spectrum of cores is studied; in [17], the solitonic behavior of cores
is revised; the attractor nature of cores is first presented in [10], for the collapse of non-
spherical fluctuations; in [18], the star forming structures in FDM filaments is presented;
in [19], a zoom in simulation of a galactic halo formation solves the SP equations together
with SPH methods; simulations of core mergers are developed in [20,21], where a tidal
disruption of FDM subhalo cores is studied.

On the other hand, equations in the Madelung frame have been used to study various
other problems. For example, the core-halo mass relations and the possible formation
of supermassive black holes [22]; in [23], the existence of vorticity is analyzed in core
structures; in [24], local properties of cores are studied, including random motion and
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collisions; in [25], the Jeans mass shrinking is studied within the scalar field dark matter
model; the merger of cores was seen in [26,27]; the equations are solved using the SPH
method; in [28], the Schrodinger—Poisson Vlasov—Poisson correspondence is proposed.

Interesting issues emerge in the Madelung frame though. First of all is that Schrodinger
equation is cast in an analog fashion to the Euler equations, and therefore the methods
developed for the evolution of fluids can be applied. On the other hand, an important
drawback of the Madelung frame is that, unlike Euler evolution equations of a compressible
fluid, there is not an equation for the balance of energy, and there is no clear Equation of
State (EoS) for this quantum fluid analog. Various proposals starting from the Boltzmann
equation indicate an EoS, for example, in [25,28], where the SP system is identified with
the Poisson—Vlasov system. In our approach below, no EoS or microscopic approach is
considered.

Amid the important advances in FDM simulations, the comparison of numerical solu-
tions in the SP and Madelung frames are needed in order to learn about the pros and cons
of each approach, and some studies have started in the structure formation scenario [29].
In this paper, we go slightly back and practice a comparison in the simplest of scenarios
where the two frames can be compared, namely, the construction and evolution of ground
state equilibrium configurations, which, as said before, plays an essential role as galactic
cores in the FDM astrophysics. We construct the ground state equilibrium configurations
directly on the Madelung frame and evolve them with a code that implements methods
used in hydrodynamics in order to compare the dynamics in the two frames.

The paper is organized as follows. In Section 2, we rewrite the SP equations in the
Madelung frame and construct the ground state equilibrium solutions. In Section 3, we
draw a numerical method suitable for the evolution of these configurations and compare
the dynamics of equilibrium configurations in the two frames. Finally, in Section 4, we
draw some conclusions.

2. Madelung Transform
We start by writing the SP equations in the FDM regime:

2
ot
V2V = 4n|¥|?, 2)

1
= fEVZ‘Y + VY, (1)

where Y is the wave function or parameter order of the boson gas and V is the potential
trap, which is the gravitational potential sourced by the gas mass itself. These equations
are already scaled so that constants are absorbed.

The Madelung transformation defines the wave function in terms of new variables
0,0,5 Y= \/ﬁeis , and transforms the Schrodinger equation into [13]:

dp+V - (o7) =0,

1
S +5|VSP+V+Q=0,

Equations for p and the phase S. By further defining ¥ = VS, the SP system is finally
transformed into the constrained evolution system

o+ V- (pd) =0, 3)
0T +7-Vi=-V(Q+V), 4)
V2V = 4mp, ®)
where
VZ
g _LVIVP 6)

v
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is known as the quantum potential. In this frame, p is interpreted as the density of a fluid
and 7 as its velocity field. Equations (3) and (4) correspond to the transformed Schrodinger
equation, which looks now as a set of two flux balance laws corresponding to the mass
conservation and a momentum density balance, analog to Euler equation for a fluid, except
by the quantum potential. Notice that unlike the fluid dynamics equations, there is no
equation for the balance of an energy nor an equation of state for the fluid, although in some
regimes it is possible to identify the fluid with a polytrope with adiabatic index I' = 2 [30].

2.1. Diagnostics

The quantities to monitor in both frames are the mass of the system M, and its total
energy E = K+ W, where K and W are the kinetic and potential energies defined in each

frame by

M= / ¥ 2d%x = / odx, @)

1 * 72 3

K = ——/‘I’ V2¥ iy

2
= [elarex 5 [ 1V pPes, ®)
1 sg . L 3

WZE/TV‘I’deE/dex, )

That hold when integrated in the spatial domain.

2.2. Ground State Equilibrium Configurations in the SP Frame

We briefly summarize the well-known construction of equilibrium configurations in
the SP frame; this is extensively described in, e.g., [7,8]. The first assumption is spherical
symmetry, and thus spherical coordinates (7,6, ¢, t) are appropriate, so that the wave
function depends on the radial coordinate and time ¥ = ¥ (r, t). The second assumption
is that the wave function depends harmonically of time, that is ¥(r, t) = e/“!y(r), which
ensures |¥|? is time independent and consequently the gravitational potential as well.
Equations (1) and (2) are reduced to

@y 24y _

a2 Ty =2Vl (10)
A’V 2dv )

which define an eigenvalue problem for i(r) provided suitable boundary conditions for
the wave function ¢(0) = . and dy/dr(0) = 0 at the origin, and isolation, which means
Y(r — c0) — 0and dy/dr(r — oo) — 0. For the gravitational potential, the conditions
at the origin are V(0) = V., dV /dr(0) = 0 and at infinity, a monopolar condition is used
V(r — o) = —M/r where M = [ ||??dr. Fulfillment of these conditions imply that for
each central value of the wave function ¢, there is a unique eigenfrequency w that satisfies
the equations. In this sense, one can construct a one parameter family of solutions labeled
by the central value .

Finally, unlike excited state solutions, ground state configurations are characterized by
the condition that 1(7) has no zeroes within the domain of integration, otherwise solutions
that satisfy the boundary conditions and has zeroes, are known as excited states (see,
e.g., [7-9]).

This eigenvalue problem is solved on a discrete domain r € [0, 74x] using the shooting
method as described in [8], with a tolerance on the fulfillment of boundary conditions at
large radius. The solution for ¢, = 1 in Figure 1.



Universe 2022, 8, 432

40f12

1

made\ﬂng frame ---2---
SP frame

09

0.8

0.7 |

06 -

a 05

04

0.3 |

02

0.1

0 ! ! ! !
0 1 2 3 4 5

Figure 1. Densities ||? and p of the ground state equilibrium solution in the SP and the Madelung
frames, respectively. In the SP frame, Equations (10) and (11) are solved for the central wave function
e = 1. In the Madelung frame Equations (14)—(18), we use the central density p. = 1. The numerical
solution is constructed on a discrete domain with resolution Ar = 2.5 x 10~

2.3. Ground State Equilibrium Configuration in the Madelung Frame

These are spherically symmetric stationary solutions of Systems (3)—(5). For the con-
struction of a stationary configuration we also assume spherical symmetry and use spherical
coordinates. The flow is assumed to be stationary, which drops the time derivatives in
Equations (3) and (4). The mass conservation reduces to an identity whereas the momentum
density balance becomes the equation

d

QM+ V() =0, (12)
which can be integrated immediately to obtain a constraint between the gravitational and
quantum potentials Q(r) + V(r) = V, where V} is a constant of integration. Considering
the quantum potential is given by (6), this equation is a second-order differential equation
for the density p:

20'(r) | p'(r)?

" _ _ _

(1) = 4(V() = Vo)p(r) - T+ £ 13)
Notice that substitution of p = /1 in this equation gives the stationary Schrédinger

Equation (10) with w = —Vj. In order to solve this equation, we write it down as a

first-order system by defining u(r) = p’(r). In this way, Equation (13) becomes

{0 =40 0) - Vo) - 210 4 20T

p'(r) = u(r). (15)

Now, Poisson Equation (5) is rewritten also as a first order system using the definition
of m'(r) = 47tr?p(r), which leads to the equations

(14)

N

m' (r) = 4rr’p(r), (16)

V' (r) = . (17)
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The Systems (14)—(17) is the set of equations for equilibrium configurations to be
solved; however, notice that their form is not suitable for numerical integration at the origin.
Expansion of u/(r) near zero gives:

r—0 r—0

limu'(r) = lim (4(V(1’) —Vo)p(r) —

= 4(V. —Vp)pc —2lim ur)
r—0 7

= 4(V.—Vy)pc —2limu'(r) = (18)
r—0
limu'(r) = é(Vc —Vo)pe,
r—0 3

This is the equation to be solved at the origin instead of (14).

The boundary conditions imposed to these equations are m(0) = 0, p(0) = p, p’(0) =
u(0) = 0, and V(0) = V,, a value that can be arbitrary, and at infinity lim, ;e 0(7) = poo,
lim,_,o u(r) = 0. With these conditions Systems (14)—(18) becomes an eigenvalue problem
for the eigenvalue V.

We numerically integrate the system and approximate the value of Vj using the
shooting method, on a discrete domain r € [0, 745 ], with the condition of minimizing the
value of the function E(Vp) = % (p(re; Vo) — poo)? + 314(reo; Vo)?, where pos is a finite small
value that helps approximate the solution to zero at infinity with finite numerical precision.

In Figure 1, we show a zoom of the density profile p obtained for the solution with
central density p. = 1, and po = 0 within a small tolerance. Superposed, we show the
solution of the eigenvalue Problems (10) and (11) for ¢, = 1. The eigenvalue of the solution
in the two frames is — V) = w = —0.6922.

3. Evolution

A further comparison between the solutions in the SP and Madelung frames is the
evolution of these configurations. In fact, using one or the other frame motivates the use of
different numerical methods. In the SP frame, it is common to use finite difference methods,
with a variety of time integrators, explicit or implicit, because Schrédinger equation is
dispersive, which prevents the formation of discontinuities. On the contrary, Equation (4) is
quasilinear, which may lead to the formation of discontinuities and shocks even for smooth
initial data, and then other numerical methods are needed.

In the SP frame, it is possible to show that when solving (1) and (2), the wave function
Y oscillates with a frequency that coincides with w obtained from the solution of the
eigenvalue problem of Equations (10) and (11). Nevertheless, in the Madelung frame, there
are no equivalent diagnostics.

A very important aspect is the differentiation of the wave function ¥, since in general,
it can be considered for an equilibrium configurations as a smooth function. On the other
hand, in the Madelung framework, some of the variables are not even continuous. We
can see this from the definition of S, namely the argument of the function ¥, which is
not defined at the origin, and therefore, for all cases where S is not spatially constant,
it will lead to initial data with discontinuous velocities that will tend to produce shock
waves, which do not appear in the SP framework. A discontinuity of the velocity leads to a
discontinuity of the density, and consequently, Q and VQ are undefined for the right-hand
side of Equation (4). Only in cases where the function S is constant can the evolution lead
to a solution, even a weak solution.

We then consider that problems in which SP and Madelung frames can be compared,
which need to be those with a constant velocity field. In what follows, we describe a
comparison of the evolution of the ground state configuration in each of the frames,
accompanied with a description of the respective numerical methods.

To start the evolution, we interpolate the equilibrium solutions from Figure 1, con-
structed in spherical coordinates into a 3D cubic domain described with Cartesian coordi-
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nates D = X, xmax]3, uniformly discretized with N cells along each direction that defines
the numerical domain Dy = {(x;, ¥}, 2k ) [Xi = Xpuin + DX, Yj = Xpin + JAX, 2k = Xppin + jAXY},
j=0,..,N, where Ax = Tmax-Zuin js the spatial resolution along the three directions and
At = CFLAX? is the time resolution. In the scenarios explored, the domain D = [—20,20]?
is used with a resolution Ax = 0.4 and a Courant number CFL = 0.25.

Once the equilibrium configurations in the SP frame is interpolated into the 3D domain
described in Cartesian coordinates, we solve Systems (1) and (2) to evolve the configuration
in the SP frame using appropriate numerical methods. Likewise, when the equilibrium
configuration constructed within the Madelung frame is interpolate into the 3D domain we
solve Equations (3)—(6).

3.1. Evolution in the SP Frame

The wave function evolves according to Schrodinger Equation (1), whereas Poisson
Equation (2) is a constraint. For the evolution two methods are common and implemented
here: the method of lines (MoL) and the implicit Cranck-Nicholson (CN).

For the MoL, the semi-discrete version of the equations uses finite differences with
second-order accurate spatial derivatives in Schrodinger equation:

oY i Yigrjh = 2%+ Yio1jk
ot 2 Ax2
i Yijre = 2%+ Yij1k
ek kY gk T ChL 19
+ 5 Ay (19)
iYijern = 2%+ ¥ije—1 .
+ E AZ2 — ZV"PZ',]',k

where ¥ is the wave function at point (x;,y;,zx) € Dy at time t". We integrate this
equation from time #" to time #"*! using a third-order Runge-Kutta explicit integrator.

The Crank—Nicholson method assumes that the evolution of the wave function from
time " to time t"*! is constructed as follows

nt1 _ ¢ '2 n
‘I’i,j,k = SiLAAt ik = (20)
n+1 _ yn
ik — Cijk 1 [ Argn+l L frgn }
i A7 = 3 HY e + HY k|-
where we add the upper label to the wave function indicating the time. We solve for ‘I’?].*kl
using the alternating direction implicit (ADI) strategy, that splits the application of the
Hamiltonian H = —% (% + % + %) + V, along each of the three spatial dimensions

as follows:

ik

Jar = (1 40r5)
i, 02 i, 02
( T

(1 + %At V) yril
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where R; i, S;j x, and T; ;x are auxiliary numbers that store the values of the wave function
after applying the der1vat1ve operator along each of the spatial directions. Each of the three
first equations defines a tridiagonal system of equations when derivatives are discretized:

(—)Ri—1jk + (1 +20)R; jx + (—a)Riyp ik =
() ¥i e+ (1= 20)¥7;  + () ¥
(—a)Sij 1k + (1+20)S; jx + (—a)S;jy1x = (22)
()R;j1x+ (1 —20)R;jx + ()R j 1 ks
i,jk—1 i,ik ijk+1 =
(=) Tijk—1+ (1 +20)T; jx + (=) Tj
ijk—1 ijk ijk+1s
()8 jk—1+ (1 —2a)S;j,+ (2)S;,

_ n+1/2
n+1 __ ﬁvr]k T . P
ik n1/2 ik
1+ pV/h

where & = %i% and B = }iAt, which we solve using forward and backward substitution.

Notice that the potential is evaluated at the intermediate time V"+1/2, which is important
because the potential is time-dependent. We calculate this potential as the average V"+1/2 =
T(vn+l 4+ vm), where V'*1 is calculated by solving System (22) for ¥"*1, then solving
Poisson equation for the source [¥"*1|2 to obtain V!, going back the time-step, and
integrating in time with the averaged potential.

In both MoL and CN methods, the Poisson equation is solved using a multigrid
method that uses a two-level V-cycle as in [31]. For the evolution of the equilibrium
configuration, we impose a boundary condition consistent with the isolation of the system
and use a monopolar boundary condition for the gravitational potential V3p = —M/ryp,
where r;p is the distance from the origin to a given point of the numerical boundary and
M is given by Equation (7).

For the wave function, we implement a sponge that absorbs the modes approaching
the faces of the boundary and prevents their reflection. This sponge consists in the addition
of an imaginary potential that acts as a sink as described in [8,32]. Briefly, the potential V
in (1) is redefined as V — V 4 V;;,,, where V is the solution of (2) and V}, is a spherical
function with a tanh profile that goes from zero within a sphere containing the region
where the interesting physics happens and minus one near the boundary of the domain,
which absorbs the wave function if it approaches the boundary.

3.2. Methods for the Madelung Frame

In this frame, the evolution of the system for density p and velocity field 7 is ruled by
Equations (3) and (4), whereas again, Poisson Equation (5) is a constraint that has to be
fulfilled at each time step during the evolution of density and velocity.

We use a finite volume discretization to solve Systems (3) and (4) following [33]. Essen-
tial to the method is the appropriate construction of numerical fluxes and the characteristic
structure of the equations, which can be cast in the form

ol

ot
where 7 is a vector of conserved variables, F = [Fx, ﬁy, I_-“;] a vector of fluxes and S a vector
of sources. These elements for Systems (3) and (4) read as follows

+V.-F=5, (23)
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P PUx [ poy
T I T A Y P T
POy PUx Dy POy Oy
| 002 0UxVz | pvyv;
00 0 i
2o PUzVx a_ | —p9:(V+Q)
E = , §S= . 24
: 0020y _Pay(V+Q) @)
L 000z —paz(V + Q) |

We calculate the numerical fluxes using the HLLE formula [34], according to which
the fluxes at the left i} and at the right i/r from each intercell boundary, along each of the
three Cartesian directions are

B Ay Fi(iiy) — A_Fi(ilg + Ay A (ilg — iiL))
1 )\Jr _/\7 7

wherei = x,y,z, A_, and A are the approximations of the characteristic velocities, which
are calculated as

(25)

A~ =min(0, (v;)1, (vi)r), (26)
Ay = max(0, (v;)L, (vi)R)- (27)

Notice that with this approach we have not involved the pressure of the fluid; in this
case, the pressure-like tensor associated to the quantum fluid within the fluxes. Instead,
the gradient of Q is assumed to contribute as a source.

Atmosphere. An inherent ingredient of FV methods is the use of an atmosphere, which
is defined as a minimum value of the fluid density, set to ps¢,. In fluid dynamics it is useful
to avoid the divergence of temperature T = p/p, with p the pressure, which leads to the
divergence of all other involved state variables. In our case, there is no pressure, but there
is the quantum potential Q in (6), which diverges or is undefined for p = 0, unless V?,/p
compensates the divergence.

Boundary conditions. In order to implement the isolation condition of the system, unlike
the sponge in the SP frame, we impose outflow boundary conditions on the fluid variables.
In order to solve the Poisson equation, we use a monopolar boundary condition for the
gravitational potential Vyp = —M/ryp, where r;p is the distance from the origin to a given
point of the numerical boundary and M is given by Equation (7), and solve using the same
multigrid two-level V-cycle method used for the SP frame.

3.3. Evolution of an Equilibrium Configuration

In order to compare the essentials of ground state configurations, we evolve the
equilibrium configurations from Section 2 and track their behavior. Using the numerical
methods described above for the evolution, we integrate in time the equations for these
configurations centered at the coordinate origin, and in Figure 2, we show the central
value of the density, ['¥(0,t)|? in the SP frame and p(0, t) in the Madelung frame. The
result indicates that the configuration remains nearly stationary with an oscillation mode
consistent with the dominant spherical mode of the configuration with period T = 21.64 as
pointed out in [16] using the SP frame, with both the MoL and CN methods. When using
the Madelung frame, there is a reduction in the period in time.

In Figure 3, we show the evolution of the mass M and total energy E = K+ W as
functions of time. We can see that in the Madelung frame, the mass is slightly bigger than
in the SP frame, which is due to the contribution of the atmosphere. Since this atmosphere
is of the order of pgtm ~ 108, it contributes with a mass of order My, ~ 1073, On the
other hand, the mass in the SP frame decreases when using the MoL, which is due to the
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dissipation of the time integration with the explicit RK3 method, whereas the conservation
is better when using the CN method, indicating the evolution is closer to unitary.

Concerning the total energy, the values in the two frames disagree due to the difference
in mass, which contributes to the gravitational energy W. For this reason, in the Madelung
frame the total energy E is smaller than in the SP frame.

1.18

Madelung frame
SP frame with RK3 --------

1.16 - SP frame with CN i

114

112 - |

11 F i g ; Pl b H
© ‘ f : FooL : : ‘A | { ]
< o108 Lo i (- ‘ [
a f i g L Pl

1.06 - ‘ i ! L O O L A

1.04 H ] L L L i

102 4 \ 1 3,‘; 1 W i

15 4
0.98 L L L
0 50 100 150 200

t

Figure 2. Central density [¥(0, t)|? for the solution in the SP frame and p(0, t) in the Madelung frame,
as functions of time. This plot shows that the first oscillation mode is similar, although not perfectly
equal in the two frames. In the SP frame, the period coincides with that in [16], whereas the period in
the Madelung frame shrinks in time.

-0.47 2.066
Madelung frame Madelung frame

SP frame with RK3 -------- SP frame with RK3 --------
SP frame with CN 2.065 |- SP frame with CN

-0.475 e so6s | |
2.063 - 1

-0.48 1
2,062 - g

K+W

E=

2061 ]
-0.485 1

2.06 | ]
049 | ] 2.059 - |

2,058 |- A

-0.495 - - - 2.057 - - L -
0 50 100 150 200 0 50 100 150 200

t t
Figure 3. Evolution of the total energy E = K + W and the mass M of the equilibrium configuration in
the two frames.

3.4. Boosted Equilibrium Configuration

A second comparison is dynamical and corresponds to a boosted equilibrium configu-
ration. For this, we apply an initial velocity v = 1 to the equilibrium configuration placed
at the initial position (—10, 0, 0), in order to obtain a configuration traveling to the right
along the X-axis.

The linear momentum at the initial time is applied to the equilibrium configuration
in the SP frame as ¥(%,0) = ¢Oeiv2x/ where 1y is the wave function obtained from the
solution of eigenvalue Problems (10) and (11). In the Madelung frame, the density is
p(%,0) = po, and the initial speed is set to 7(¥,0) = (v),0,0), where py is that of the
solution of eigenvalue Problems (14)—(18).

Snapshots of the density are shown in Figure 4. Notice that the maximum of the
configuration using the hydrodynamical method in the Madelung frame locates at the
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appropriate position, since the velocity field is one. On the other hand, the configurations
evolved in the SP frame retard with respect to the appropriate location of the maximum
density. Nevertheless, this is due to the implementation of the momentum, which actually
is a phase, and not a true velocity field at initial time.

1.4 T

t=0

A MSP frame

i SP frame with RK3 -------
SP frame with CN

PN

0.8

p/pe

0.6

0.4

0.2

-20

Figure 4. Snapshots of the density profile every t = 5 time units in the Madelung frame (solid line)
and the SP frame (dotted lines).

In Figure 5, we show the evolution of the total energy E = K + W and the mass M in
the two frames. Notice that the energy is well preserved in the two frames and the three
methods. The mass decreases in a small fraction in the SP frame that we attribute to the
sponge, whereas in the Madelung frame the mass remains relatively constant.

0.58

Madelung frame Madelung frame
SP frame with RK3 -------- 2.0634 SP frame with RK3 -------- |
SP frame with CN SP frame with CN

0.575 |- s 1 2.0632 /

2.063 |- 1

0.57 | 1

z 2.0628 |- —
x =
n
w
0.565 | q 2.0626 q
2.0624 |- —
0.56 —
\v/ 2.0622 |- R
0555 ! ! ! 2.062 ! ! !
0 5 10 15 20 0 5 10 15 20

Figure 5. Evolution of the total energy E = K + W and the mass M as a function of time in the two
frames for the boosted configuration.

4. Conclusions

We have described the construction of ground state equilibrium configurations of
the Schrédinger—Poisson system directly from the equations in the Madelung frame and
verified that the solutions in both frames coincide within numerical accuracy.

Since the equations in the Madelung frame are similar to those of a fluid, we implement
a simple scheme involving shock capturing methods used in fluid dynamics to simulate
the evolution in time. We compare the evolution in SP and Madelung frames using the
evolution equilibrium configuration when at rest and when the configuration is boosted.

We find that important limitations of the FV method arise. One of them is the need of
an atmosphere used to avoid the singularity of the quantum potential at rarified regions.
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We notice that this also happens in simple cases within quantum mechanics, for example, in
excited states for a particle in a box or a harmonic oscillator potential, where the density has
zeroes, then using an atmosphere is needed to avoid the singularity 1/,/p of Q; however,
the use of the atmosphere introduces a non-derivable ,/p that will spoil the factor Vz\/ﬁ of
Q in the intersection between the atmosphere and higher values of p. It seems that using
solely the Madelung frame leads to a dilemma.

This type of problem seems to motivate the use of patches to the FV method, such as
in [35], where in low density regions the smoothed particle hydrodynamics (SPH) method
is used; or the use the SPH method to solve the evolution equations in the Madelung frame
for p and 7 in [27]. It would be interesting to investigate how SPH develops in these simple
scenarios.
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