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Abstract With the discovery of Dark Energy, ΛDE, there is now a universal length
scale, `DE = c/(ΛDEG)1/2, associated with the universe that allows for an exten-
sion of the geodesic equations of motion. In this paper, we will study a specific
class of such extensions, and show that contrary to expectations, they are not
automatically ruled out by either theoretical considerations or experimental con-
straints. In particular, we show that while these extensions affect the motion of
massive particles, the motion of massless particles are not changed; such phenom-
ena as gravitational lensing remain unchanged. We also show that these extensions
do not violate the equivalence principal, and that because `DE = 14010800

820 Mpc, a
specific choice of this extension can be made so that effects of this extension are
not be measurable either from terrestrial experiments, or through observations of
the motion of solar system bodies. A lower bound for the only parameter used in
this extension is set.

Keywords Dark energy, Geodesic equations of motion

1 Introduction

The recent discovery of Dark Energy (see [1; 2] and references therein) has broad-
ened our knowledge of the universe, and has demonstrated once again that it can
hold surprises for us. This discovery has, most assuredly, also brought into sharp
relief the degree of our understanding of the universe. In this paper, we will study
one specific implication of this discovery: with the discovery of Dark Energy,
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ΛDE, there is now a universal length scale, `DE = c/(ΛDEG)1/2,1,2 associated
with the universe that allows for extensions of the geodesic equations of motion
(GEOM). We find that contrary to expectations, these extensions are not automat-
ically ruled out by theoretical considerations, nor are they ruled out by experimen-
tal constraints either through terrestrial experiments or through solar system tests
of general relativity. Indeed, we show in this paper that one specific extension of
the GEOM is a viable alternative to the GEOM, and we obtain a lower bound for
the only free parameter used in its construction, a power-law exponent, αΛ .

There are good theoretical and physical reasons for studying the range of
extensions of the geodesic equations of motion that are allowed. Arguments for
the use of the geodesic equations of motion to describe the motion of massive test
particles in curved spacetime are based on various statements of the equivalence
principle, and the principle of general covariance (see chapter 4 of [5]), along
with arguments in favor of simplicity and aesthetics. Importantly, these arguments
are made in addition to those made in favor of Einstein’s field equation. Namely,
these is no unique way of deriving the geodesic equations of motion from the field
equations. Indeed, in 1938 Einstein, Infield and Hoffman attempted to show that
as a consequence of the field equations, massive test particles will travel along
geodesics in the spacetime [6]. These attempts have continued to the present day
[7; 8].

Extensions and modifications of the GEOM have been made before, of course.
On the level of Newtonian dynamics, Modified Newtonian Dynamics (MOND)
[9; 10; 11] has been proposed as an alternate explanation of the galactic rotation
curves. On the relativistic level, there has been recent efforts [12] to develop a
general framework to study modifications to the GEOM in the weak field, lin-
earized gravity limits. The major impetus for this work has been to describe a
series of dynamical anomalies—the Pioneer anomaly (see [13] and [14]), the flyby
anomaly [15], and the lengthening of the Astronomical Unit [16]—that have been
observed at the Solar system scale.

The focus of this paper is to establish the underlying theoretical framework
that can be used to describe structures and dynamics at the galactic length scale
and above. In a future paper (A. D. Speliotopoulos, in preparation) this framework
will be applied to an analysis of the galactic rotation curves, and the impact that
this extension has on phenomena at cosmological length scales will be studied.
As such, we focus here on the Dark Energy energy length scale, and on how the
existence of this scale allows for extensions of the GEOM. Indeed, we find that
with this length scale, `DE, extensions of the GEOM are not difficult to construct.
The quotient c2R/ΛDEG is dimensionless, and functionals of this quotient can
easily be used to extend the GEOM. What is more relevant is whether or not the
resultant equations of motion will be a physically viable alternative to the GEOM.
As such we will be guided in our extension of the GEOM by the four conditions
listed below. They are deliberately chosen to be conservative in scope, and thus
stringent in their application. Somewhat surprisingly, we will show that there is at
least one extension of the GEOM that satisfies all four.

1 Our `DE differs from the length scale, rΛ , defined in [3] by a factor of
√

3.
2 It is also possible to construct the length scale (h̄c/ΛDE)1/4 ≈ 85 µm. Experiments have

shown that this scale does not affect the Newtonian potential [4].
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First, we require that the extension preserve the equivalence principle, which is
one of the underlying principles on which general relativity is founded. In the fol-
lowing sections of the paper, we will explicitly see that this preservation is assured
by the fact that `DE is the same for all test particles. This universal nature of `DE
is crucial. While other length scales—say, the proton mass—could be used for
the extension, the resultant equations of motion would depend on this mass. They
could not then be applied to the motion of protons without explicitly violating the
uniqueness of free fall condition.

Second, we require that the extension not change the equations of motion for
massless test particles; such particles must still follow the GEOM. All astronomi-
cal observations—of which gravitational lensing is playing an increasingly impor-
tant role—are based on the motion of photons of various wavelengths. Modifica-
tions to the equations of motion for photons will require a reinterpretation of these
observations, a daunting step not to be taken without good reason. We will show
that by considering a class of extensions that is based on conformally scaling the
rest mass of the test particle, we arrive at extended GEOMs that, on the one hand,
will not change the motion of massless test particles, but will, on the other, change
the motion of massive ones. Being conformal, the motion of photons will not be
affected by this class of extensions, and they will still travel along null geodesics;
phenomena such as gravitational lensing will remain unchanged. While in form
this class of extensions resembles a scalar field theory that is non-minimally and
nonlinearly coupled to the scalar curvature, R, such theories are constructed at the
quantum level. Our extension of the GEOM is done at the classical, h̄ = 0, level,
with the scale of the coupling set by `DE.

The third condition involves the attempts [6; 7; 8] at proving that the GEOM
are the unique consequence of the Einstein field equations (see also p. 72 of [5]).
These proofs would seem to rule out any physically relevant extension of the
GEOM, and by necessity, our extension of the GEOM cannot be precluded by such
proofs. That the extension is possible is because these proofs focus on the motion
of test particles in regions where the Einstein tensor, Gµν , vanishes. We will see
that in these regions the extended GEOM reduce to the GEOM, and thus do not
violate these proofs. Indeed, we will explicitly construct the energy–momentum
tensor for an inviscid fluid of massive particles propagating under the extended
GEOM.

The fourth condition is the most stringent of the four. With the exception of the
as-yet unexplained anomalies described above, we require that the extension of the
GEOM not produce effects that are measurable either in terrestrial experiments, or
through the motion of bodies in the solar system that have traditionally been used
to test general relativity. While stringent, we will nevertheless show explicitly that
a choice of extension can be made which satisfies it. Physically, this choice is pos-
sible because at (7.21+0.83

−0.84)10−30 g/cm3 [17], ΛDE is orders of magnitude smaller
than the density of matter, ρlimit, either currently achievable in terrestrial experi-
ments (where densities exceed 10−18 g/cm3), or present in the solar system (where
the density of matter in Mercury’s orbit exceeds 10−23 g/cm3). Correspondingly,
at 14010800

820 Mpc `DE is more than three times larger than the observed size of the
universe, and is orders of magnitude larger than the solar system. Nevertheless, we
find that even though the disparity between the magnitude of ΛDE and ρlimit—or,
equivalently, between `DE and the size of the solar system—is large, a nonlinear
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function of c2R/ΛDEG is needed in constructing the extension for its effects not to
have already been seen in terrestrial experiments. The simplest of these extensions
has only one free parameter, αΛ , a power-law exponent that determines the behav-
ior of the function at densities both much larger than ΛDE, and much smaller than
it. Lower bounds for αΛ are set by requiring that the extension does not produce
observable effects in current terrestrial experiments.

While it may be possible to apply the analysis in this paper to the explanation
of Solar system anomalies such as the Pioneer anomaly, the focus of this research
is on phenomenon at the galactic scale or longer. It is for this reason that we require
our extension to be constrained only by experiments and observations that are
currently well-understood, and for which the underlying physics is well-known.
We leave to future work the question of whether or not our analysis can be applied
to explaining the Pioneer and other Solar-system-scale anomalies.

2 Extending the Geodesic Lagrangian

We begin our extension of the GEOM with Einstein’s field equation in the pres-
ence of a cosmological constant

Rµν −
1
2

gµν R+
ΛDEG

c2 gµν =−8πG
c4 Tµν , (1)

where Tµν is the energy–momentum tensor for matter, Rµν is the Ricci ten-
sor, Greek indices run from 0 to 3, and the signature of gµν is (1,−1,−1,−1).
While there is currently no consensus as to the nature of Dark Energy (propos-
als have been made that identify it with the cosmological constant ΛDE [3], with
quintessence [18; 19; 20], or even as a consequence of loop quantum cosmology
[21]), modifications to Einstein’s equations to include the cosmological constant
are well known and are minimal. We will thus identify Dark Energy with the cos-
mological constant in this paper, and require only that ΛDE changes so slowly that
it can be considered a constant in our analysis.

Requiring that Eq. (1) still holds under the extension of the GEOM is a choice,
one which, we will see below, is the simplest. Although it may seem surprising
that we can still make this choice even though we will be changing the GEOM,
extensions of the GEOM need not change the relation between Rµν and Tµν given
in Eq. (1). They can rather change the precise form that Tµν takes for matter. To
see this, consider the following.

The total action, S, for a system consisting of gravity, radiation, and matter
can be written as a sum of three parts: S = Sgrav +Sradiation +Smatter. Here, Sgrav is
the action for gravity, Sradiation is the action for radiation, and Smatter is the action
for matter. We will show below that the class of extended GEOM we consider
here will not change the equations of motion for radiation so that Sradiation will not
be changed. The extension will certainly change Smatter, however, and in the next
section we will explicitly construct the energy–momentum tensor for an inviscid
fluid whose constituents follow an extended GEOM. For the present argument,
we only need to note that whatever the form taken for Smatter, we are still free to
choose Sgrav to be the Hilbert action; Eq. (1) then follows after taking the func-
tional derivative of S with respect to the metric.
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This ability to change Smatter while leaving Sgrav, and thus Eq. (1), unchanged
was explicitly exploited in the construction of minimally coupled scalar fields, φR.
There, the mass term of the scalar field, m2φ 2

R , is replaced by Rm2φ 2
R in the action

for matter, and yet Sgrav is still taken to be the Hilbert action (see Sect. II.D).
Einstein’s field equations, Eq. (1), still hold; the only change is the form that Tµν

takes.
Both the geodesic Lagrangian

L0 ≡ mc
(

gµν

dxµ

dt
dxν

dt

)1/2

, (2)

and the GEOM

vν
∇ν vµ ≡ Dvµ

∂ t
= 0, (3)

(where vµ = ẋµ is the four-velocity of the test particle), have natural geometric
meaning. The first is a proper time interval, while the second is the equation for
parallel transport, which determines the shortest time-like path connecting two
points. But, aside from their inherent geometric meaning, there is also a good
physical reason to take Eq. (3) as the equations of motion for a test particle. In
the absence of Dark Energy, Eq. (3) is the most general form that a second-order
evolution equation for a test particle can take which still obeys the equivalence
principle.

Any extension of L0 would require a dimensionless, scalar function of some
fundamental property of the spacetime folded in with some physical property of
the universe. In our homogeneous and isotropic universe, there are few opportu-
nities to do this. A fundamental vector certainly does not exist in the spacetime,
and while there is a scalar (the scalar curvature, R) and three tensors (gµν , the Rie-
mann tensor, R β

µν ,α , and the Ricci tensor, Rµν ), R β

µν ,α has units of inverse length
squared. While it is possible to construct a dimensionless scalar m2G2R/c4 for
the test particle, augmenting L0 using a function of this scalar would introduce
additional forces that will depend on the mass of the test particle, and thus vio-
late the uniqueness of free fall principle. It is also possible to construct the scalar
gµν vµ vν/c2, but because of the mass-shell condition, vµ vµ = c2, any such exten-
sion of L0 will not change the GEOM. Scalars may also be constructed from Rµν

and powers of R β

µν ,α by contracting them with the appropriate number of vµ/c’s,
but these scalars will once again have dimension of inverse length raised to some
power, and, as with the Ricci scalar, once again a rest mass m is needed to con-
struct the dimensionless quantity.

The situation changes dramatically in the presence of Dark Energy. With a uni-
versal length scale, `DE, it is now possible to construct from the Riemann tensor
and its
contractions dimensionless scalars of the form,

c2R
ΛDEG

,
Rµν vµ vν

ΛDEG
,

c2vµ vν

(ΛDEG)2 Rµα,βγ R α,βγ

ν ,
vµ vν vγ vδ

(ΛDEG)2 Rµα,νβ Rγα,δβ , . . . .

(4)
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Although extensions to L0 can be constructed with any of these terms, we look at
extensions with the form:

LExt ≡ mc
[
1+D

(
c2R/ΛDEG

)] 1
2

(
gµν

dxµ

dt
dxν

dt

) 1
2
≡R[c2R/ΛDEG]L0, (5)

with the implicit condition that v2 = c2 for massive test particles. We make this
choice for the following reasons.

First, having R be a function only of c2R/ΛDEG is the simplest extension
that can be chosen; other choices will induce velocity-dependent effects in the
extended GEOM. Second, we will find below that any extension of L0 of the
form Eq. (5) will not change the equations of motion for massless test particles;
they can still be reduced to the GEOM. Extensions of the form Eq. (5) will only
affect the motion of massive test particles. Third, we require that the extension of
the GEOM not produce effects that should have already been seen in terrestrial
experiments; these experiments are done in the nonrelativistic and weak gravity
limits. Constraints in the choice of R are thus found in these limits, where it is
clear from Eq. (4) that the second term reduces to the first, while the other terms
are higher order in the curvature. We are thus left with c2R/ΛDEG with which to
construct an extension of the GEOM.

As `DE = 14010800
820 Mpc, the question remains whether it is possible to use

another, shorter length scale in its place to extended the GEOM; this extension
could then be used to describe deviations from geodesic motion on shorter length
scales. One such application would be in explaining Solar system scale anomalies
such as the Pioneer and flyby anomalies. At this scale, a natural length scale would
be M�G/c2 = 1,480 m, where M� is the mass of the Sun, and the resultant exten-
sion of the GEOM may be applicable to the description of motion on the Solar
system scale (see [12]). Its application to the description of motion at the galactic
scale or longer is more problematic, however, and it is precisely on these length
scales that we are concerned with here. On the galactic scale, stars can be treated
as test particles, and as M�G/c2 depends explicitly on the mass of the Sun, the use
of this length scale in extending the GEOM would mean that the motion of stars
in galaxies would depend on the mass of the Sun. This would not be physically
reasonable, and would also violate the uniqueness of free fall condition.

If D(x) is the constant function, then LExt differs from L0 by an overall con-
stant that can be absorbed through a reparametrization of time. Only non-constant
D(x) are relevant. It is how fast D(x) changes that will determine its effect on the
equations of motion, and not its overall scale. Indeed, in extending L0 we have
in effect performed a conformal scaling of L0 by replacing the constant rest mass
m of the test particle with a curvature-dependent rest mass mR

[
c2R/ΛDEG

]
. All

dynamical effects of this extension can therefore be interpreted as the rest energy
gained or lost by the test particle due to the local curvature of the spacetime. The
scale of these effects is of the order of mc2/L, where L is some relevant length
scale of the dynamics. The additional forces from LExt are thus potentially very
large. For these effects not to have already been seen, D(c2R/ΛDEG) must change
very slowly at current limits to experimental measurements.

As mentioned above, using Einstein’s field equations, Eq. (1), was a choice.
In particular, notice that because LExt is the result of conformally scaling the rest
mass by R, we may choose to instead reduce LExt to L0 through the conformal
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transformation of the metric g̃µν = R1/2gµν . However, doing so will result in a
Ricci tensor R̃µν that is nonlinearly related to Rµν :

R̃µν = Rµν −
1
2

∇µ ∇ν logR− 1
4

gµν ∇α ∇
α logR

+
1
8

∇µ logR∇ν logR− 1
8

gµν ∇α logR∇
α logR. (6)

where ∇µ is the covariant derivative for gµν . As Eq. (1) holds for Rµν , it cannot
hold for R̃µν . It will instead be replaced by a nonlinear relation between R̃µν and
Tµν , resulting in a higher-order theory of gravity. Thus, instead of choosing Eq. (1)
to hold for the Ricci tensor and extend the GEOM, we could have chosen a higher
order theory of gravity from the start while preserving the GEOM. We would
argue, however, that making this second choice would change the foundations of
classical general relativity—a much more drastic step—that would also result in a
less tractable theory.

2.1 The extended GEOM for massive test particles

For massive test particles, the extended GEOM from LExt is

D2xµ

∂ t2 = c2
(

gµν − vµ vν

c2

)
∇ν logR[c2R/ΛDEG], (7)

where we have explicitly used v2 = c2. It has a canonical momentum with a mag-
nitude of

p2 = pµ pµ = m2c2 [1+D(c2R/ΛDEG)
]
, (8)

and the interpretation of mR[c2R/ΛDEG] as an effective rest mass can be readily
seen. What also can be readily seen is that LEXT and Eq. (7) have lost the geo-
metrical meaning that L0 and Eq. (3) have. Namely, the worldline of a massive
test particle is not that which minimizes the proper time between two points; it is
instead one that is either attracted to, or repelled from (depending on the choice of
R), regions where the scalar curvature is extremized.

The dynamical implications of the new terms in Eq. (7), along with the
conditions under which they are relevant, can most easily be seen by noting
that R = 4ΛDEG/c2 + 8πT G/c4, where T = T µ

µ . Then R[c2R/ΛDEG] = R[4 +
8πT/ΛDEc2], where the ‘4’ comes from the dimensionality of spacetime. Thus, in
regions of spacetime where either Tµν = 0 or when T is a constant, the right hand
side of Eq. (7) vanishes, and our extended GEOM reduces back to the GEOM.

2.2 Dynamics of massless test particles

For massless test particles, we note that LExt is related to L0 by a scaling of the
rest mass. This scaling can be formally interpreted as a conformal transforma-
tion of the metric, gµν . As null geodesics are preserved under conformal transfor-
mations up to an affine transformation, the extended GEOM is equivalent to the
GEOM, and we still have vν ∇ν vµ = 0.
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This result can be shown explicitly in the following analysis. Because massless
particles follow null geodesics, for these particles we consider extensions of the
form

L γ

Ext = R[c2R/ΛDEG]L γ

0 , (9)

where we have taken

L γ

0 =
1
2

gµν

dxµ

dt
dxν

dt
. (10)

As usual, the GEOM comes from L γ

0 , while the equations of motion that come
from L γ

Ext are

0 = R

(
d
dt

δL γ

0
δ ẋµ

−
δL γ

0
δxµ

)
+

δL γ

0
δ ẋµ

dR

dt
−L γ

0 ∇µR. (11)

Taking now the mass-shell condition, L γ

0 = 0, Eq. (11) reduces to simply

0 =
D
∂ t

(
R

dxµ

dt

)
. (12)

After the reparametrizing dt → Rdt [5], we arrive at the expected result,
vν ∇ν vµ = 0. Importantly, this result means that the usual general relativistic
effects associated with photons—the gravitational redshift and the deflection of
light—are not effected by our extension of the GEOM.

2.3 Impact on the equivalence principles

The statements [22] of the equivalence principal we are concerned with here are
the following:

Uniqueness of free fall It is clear from Eq. (7) that the worldline of a freely falling
test particle under the extended GEOM does not depend on its composition or
structure.

The weak equivalence principle Our extension also satisfies the weak equivalence
principle to the same level of approximation as the GEOM. The weak equivalence
principle is based on the ability to choose a frame in a neighborhood of the world-
line of the test particle where Γ

µ

αβ
≈ 0; the Minkowski metric, ηµν , is then a good

approximation to gµν in this neighborhood. However, as one deviates from this
world line corrections to ηµν appear, and since a specific coordinate system has
been chosen, they appear as powers of the Riemann tensor (or its contractions),
and its derivatives (see [22] and [23]). This means that the larger the curvature,
the smaller the neighborhood about the world line where ηµν is a good approx-
imation of the metric. Consequently, the weak equivalence principle holds up to
terms first order in the curvature. As the additional terms in Eq. (7) are first order
in R as well, our extension of the GEOM satisfies the weak equivalence principle
to the same order of approximation as the GEOM does.
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The strong equivalence principle Because we only change the geodesic Lagrangian,
all nongravitational forces in our theory will have the same form as their special
relativistic counterparts. Moreover, the extended GEOM reduces to the GEOM in
the R→ 0 limit.

2.4 Connections with other theories

As unusual as the extended GEOM, Eq. (7), may appear to be, there are connec-
tions between this extension and other theories.

2.4.1 The class of scalar field theories in curved spacetimes

The Klein–Gordon equation corresponding to the extended GEOM is

∇
2
φ +

m2c2

h̄2

[
1+D

(
c2R

ΛDEG

)]
φ = 0. (13)

This is the equation of motion for a scalar field φ that is non-minimally and
nonlinearly coupled to R. Scalar field theories of this class have been studied
before, the most
notable of which is

∇
2
φR +

(
m2c2

h̄2 +ξ R
)

φR = 0. (14)

When ξ = 1/6, the scalar field will be conformally invariant even though m 6= 0
[24].

There are important differences between these theories and the theory we are
considering here, however. Scalar field theories of the form Eq. (14) were pro-
posed at the quantum level and h̄ appears explicitly; we are focused on the classi-
cal, h̄ = 0, level. Note also that the scale of the coupling in Eq. (13) is set by `DE.
This is a macroscopic in length scale, and if we expand R about 4ΛDEG/c2, Eq.
(13) reduces to Eq. (14) with a

ξ = D′(4)
m2c2`2

DE

h̄2 , (15)

which has a magnitude ∼1075—indicative of an inherently classical theory—if φ

has the mass of a proton. This value for ξ is 75 orders of magnitude larger than the
values of ξ usually considered. It also signifies that a perturbative solution of Eq.
(13) would be of limited use at best, and the non-linearity of the coupling must be
explicitly taken into account.
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2.4.2 The f (R) theory

Proposals for modifying the Hilbert action by considering functions, f (R), of the
Ricci scalar have been made before (see [25] and [26] for reviews). These theories
were first introduced to explain cosmic acceleration without the need for Dark
Energy using a 1/R action [27; 28], and further extensions of this model have
been made [29; 30] since then. They are now being studied in their own right,
and various functional forms for f (R) are being considered. Indeed, connection
to Modified Newtonian Dynamics has been made for logarithmic f (R) terms [31;
32], while with other choices of f (R) connection with quintessence has been made
[33; 34; 35; 36; 37; 38] as well. Importantly, issues with the introduction of a “fifth
force”, and compatibility with terrestrial experiments have begun to be addressed
through the Chameleon Effect (see [39; 40; 41; 42] and an overview in [33]),
which is used to hide the effects of field with a small mass that would otherwise
be seen.

It is also important to note that while f (R) theories change the action for
gravity, in our approach we do not; we still take the action for gravity to be the
Hilbert action with the addition of a cosmological constant. We instead change
the response of matter to gravity by extending the equations of motion for test
particles, and thus change the energy–momentum tensor for matter.

3 The energy–momentum tensor

Beginning with [6], there have been a number of attempts to show that the GEOM
are a necessary consequence of the Einstein’s field equations, Eq. (1). Modern
attempts at demonstrating such a linkage [7; 8] focus on the energy–momentum
tensor, and consider the motion of a test particle moving in a region of spacetime
where Tµν = 0 outside of a “worldtube” that surround the test particle; inside this
worldtube,
Einstein tensor Gµν 6= 0. In fact, this tensor must satisfy the strong energy con-
dition Gµν tµ t ′ν ≤ 0 (for our signature for the metric) there, where tµ and t ′ν are
two arbitrary, time-like vectors. As shown in [8], the test particle then necessarily
moves along a geodesic. While this proof do not explicitly include the cosmologi-
cal constant term, replacing G̃µν = Gµν +ΛDEgµν does not materially change the
nature of the proof given in [8]; since ΛDE > 0, G̃µν satisfies the strong energy
condition as long as Gµν does.

If Tµν = 0 then R[4+8πT/ΛDE] = R[4], and is a constant. We then see explic-
itly from Eq. (7) that the extended GEOM reduces to the GEOM. As the Tµν = 0
case is precisely the situation covered by [8], the extended GEOM does not violate
these theorems. Indeed, in the following we will explicitly construct the energy–
momentum tensor for dust within the extended GEOM framework.

Consider a collection of massive particles that can be treated as an inviscid
fluid with density ρ , pressure p, and fluid velocity, vµ(x). We consider the space-
time to be spatially symmetric, so that the most general form that the energy–
momentum tensor for this fluid is the usual

Tµν = ρvµ vν −
(

gµν −
vµ vν

c2

)
p. (16)
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We emphasize that this form for Tµν depends only on the spatial isotropy of the
fluid, and thus holds for both the GEOM and the extended GEOM.

Following [22], energy and momentum conservation, ∇ν Tµν = 0, requires that

0 = vν ∇
ν(ρ + p/c2)vµ +(ρ + p/c2)∇ν vν vµ +(ρ + p/c2)vν

∇ν vµ −∇µ p. (17)

Since v2 = constant even within the extended GEOM formulation, projecting the
above along vµ gives once again the first law of thermodynamics

d(V ρc2) =−pdV, (18)

where V is the volume of the fluid. This analysis holds for both the GEOM and
the extended GEOM, and thus the first law of thermodynamics holds for both
equations of motion. The standard analysis of the evolution of the universe under
the extended GEOM therefore follows much in the same way as before.

Next, projecting Eq. (17) along the subspace perpendicular to vµ gives the
relativistic version of Euler’s equation

0 =
(

ρ +
p
c2

)
vν

∇ν vµ −
(

gµν −
vµ vν

c2

)
∇

ν p. (19)

Once again, Eq. (19) holds for both sets of equations of motion.
Consider now the simplest case when the constituent test particles in the fluid

do not interact with one another except under gravity. This corresponds to the case
of “dust”. If test particles in this dust follow the GEOM, the solution to Eq. (19)
gives the usual T GEOM−Dust

µν = ρvµ vν with p ≡ 0. If, on the other hand, the test
particles follow the extended GEOM, the situation changes. Using Eq. (7), Eq.
(19) becomes

0 =
(

gµν −
vµ vν

c2

){
(ρc2 + p)∇ν logR−∇

ν p
}

, (20)

so that

(ρc2 + p)∇µR−R∇µ p = ξDE ΛDE cvµ , (21)

where ξDE is a constant. By contracting the above with vµ , it is straightforward to
see that if ξDE 6= 0, p will increase linearly with the proper time. This would be
unphysical, and we conclude that ξDE must be zero.

Taking the pressure as a function of only the density, Eq. (21) reduces to a
nonlinear, first order, ordinary differential equation. We will not solve this equa-
tion in general. Instead, we look at the nonrelativistic limit where ρc2 � 3p. Then
T ≈ ρc2, and R can be approximated as a function of ρ only. Equation (21) can
then be solved implicitly to give

p(ρ) =−ρc2 + c2R[4+8πρ/ΛDE]

ρ∫
0

ds
R[4+8πs/ΛDE]

. (22)

Given the density, the pressure is then determined once a form for R is known. The
energy–momentum tensor for dust, T Ext−Dust, under the extended GEOM can then
be constructed using ρ , and the resultant p from Eq. (22). Note also from Eq. (22)
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that p ≈ 4πR′[4]ρ2c2/R[4]ΛDE when ρ → 0, while p ≈ −ΛDEc2 (1−1/R[4])
when ρ �ΛDE/2π . Thus, T Ext−dust

µν ≈ ρvµ vν , and the solution Eq. (22) is consis-
tent with the approximation T ≈ ρc2.

The physical reason for the presence of this pressure term in T Ext−Dust
µν can

be seen from Eqs. (7) and (8). If the second equation is solved for the energy of
a particle, it is straightforward to see that under the extended GEOM a collec-
tion of test particles behave as though they were in an external potential set by
D(c2R/ΛDEG). As such, the particles no longer follow geodesics as they do in
the GEOM even though they only interact with each other through gravity. The
presence of the nonzero pressure term in T Ext−Dust

µν is a reflection of the presence
of this potential.

4 A form for D(x) and experimental bounds on αΛ

Our analysis up to now is valid for all D(x). Requiring that our extension of the
GEOM does not produce effects that would have already been observed in exper-
iments will fix a specific form for D(x).

Since our extension of the GEOM does not change the equations of motion
for massless test particles, we expect Eq. (7) to reduce to the GEOM in the ultra-
relativistic limit. It is thus only in the nonrelativistic limit where the effects of the
deviations from the GEOM due to the additional terms in Eq. (7) can be seen. We
therefore focus on the impact of the extension in the nonrelativistic, weak gravity
limit, and begin by expressing Eq. (7) in these limits.

4.1 Constructing D(x)

We first perturb off the Minkowski metric ηµν in the weak gravity limit by taking
gµν = ηµν +hµν , where the only nonzero component of hµν is h00 = 2Φ/c2, and
Φ is the gravitational potential. Equation (1) then gives

∇
2
Φ +2

ΛDEG
c2 Φ = 4πρG−ΛDEG, (23)

in the presence of a cosmological constant. Next, the temporal coordinate, x0, for
the extended GEOM in this limit will, as usual, be approximated by ct to lowest
order
in |v|/c. The spatial coordinates, x, on the other hand, reduce to

d2x
dt2 =−∇Φ−

(
4πc2

ΛDE

)[
D′(4+8πρ/ΛDE)

1+D(4+8πρ/ΛDE)

]
∇ρ. (24)

Here, we have assumed that the spacetime is spatially symmetric, and that the
particle moves through an ambient, nonrelativistic fluid with density ρ .

For the additional terms in Eq. (24) from the extension not to contribute sig-
nificantly to Newtonian gravity under current experimental conditions, D′(4 +
8πρ/ΛDE) → 0 when ρ � ΛDE/2π . We can now either choose D′(x) > 0 or
D′(x) < 0, as D′(x) → 0 from either above or below. This is an ambiguity in
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the construction of D(x) that cannot be resolved with our current analysis; for
now, we take D′(x) < 0. The simplest form for D′(x) with the correct asymptotic
properties is

D′(x) =− χ

1+ x1+αΛ
, (25)

where αΛ is a power-law exponent that determines how fast D′(x)→ 0 for x→∞,
and χ is the normalization constant

1
χ

=
∞∫

0

ds
1+ s1+αΛ

. (26)

To ensure nonzero effective masses, D(x) must be positive, and we integrate Eq.
(25) to get

D(x) = χ(αΛ )
∞∫

x

ds
1+ s1+αΛ

, (27)

with the condition that αΛ > 0 to ensure that the the integral is defined. With
this choice of integration constants, D(0) = 1 and D(x) → 0 as x → ∞. While
the precise form of D(x) is calculable, we will not need it. Instead, because
8πρ/ΛDE ≥ 0,

D(4+8πρ/ΛDE) = χ

∞

∑
n=0

(−1)n

n(1+αΛ )+αΛ

(
4+

8πρ

ΛDE

)−n(1+αΛ )−αΛ

, (28)

while

1
χ

= 1+2
∞

∑
n=0

(−1)n

[1+(n+1)(1+αΛ )][n(1+αΛ )+αΛ ]
. (29)

Notice that in the αΛ →∞ limit, D(x)→ 0, LExt →L0, and the GEOM is recov-
ered.

Bounds on αΛ will be found below. For now, we note that for αΛ > 1, χ ∼ 1
and D(4+8πρ/ΛDE)≈ 0. Thus,

d2x
dt2 ≈−∇Φ +

(
4πc2χ

ΛDE

){
1+
(

4+
8πρ

ΛDE

)1+αΛ

}−1

∇ρ. (30)

4.2 Constraints from terrestrial experiments

We now consider the constraints placed on D(x) due to terrestrial experiments.
From WMAP, ΛDE = 7.210.82

−0.84×10−30 g/cm3, which for hydrogen atoms cor-
responds to a number density of ∼ 4 atoms/m3. It is clear that the density of both
solids and liquids far exceed ΛDE, and in such media Eq. (30) reduces to what
one expects for Newtonian gravity. Only very rare gases, in correspondingly hard
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vacuums, can have a density that is small enough for the additional terms in Eq.
(24) to be relevant. The hardest vacuum currently attainable experimentally is
∼10−13 torr [43]. For a gas of He4 atoms at 4◦K, this corresponds to a density
of ρlimit ≈ 10−18 g/cm3, which is 11 orders of magnitude smaller than ΛDE. Nev-
ertheless, because the scale of the acceleration from the additional terms in Eq.
(30)—which goes as c2/L for the relevant length scale L in the experiment—is so
large, effects at these densities will nevertheless be relevant. Indeed, we will use
ρlimit to determine a lower bound to αΛ .

Consider a simple experiment that looks for signatures of the extension of
the GEOM Eq. (30) by looking for anomalous accelerations (through pressure
fluctuations) in a gas of He4 atoms at 4◦K with a density ρlimit. Inside this gas we
consider a sound wave with amplitude ερlimit propagating with a wavenumber k.
Suppose that the smallest measurable acceleration for a test particle in this gas is
abound. For the additional terms in Eq. (30) to be undetectable,

abound ≥
c2χ

2

(
ΛDE

8πρlimit

)αΛ

εk. (31)

This gives a lower bound on αΛ as

αΛ bound =
log
[
2abound/c2χεk

]
log [ΛDE/8πρlimit]

. (32)

For ε = 0.1, k = 1 cm−1, and abound = 1 cm/s2, αΛ bound ranges from 1.28 for
ΛDE = 10−32 g/cm3 to 1.58 for ΛDE = 10−29 g/cm3. Notice that because αΛ bound
depends only logarithmically on ε , k, and abound, the lower bound for αΛ is rela-
tively insensitive to the specific values taken for these parameters.

Adelberger has recently done state-of-the art, Eövtos-type experiments [44;
45; 46] to test the Newtonian, 1/r2 law for gravity. While the pressures under
which these experiments were performed were not explicitly stated, as far as we
know these experiments were not done at pressures lower than 10−13 torr; we thus
would not expect effects from extended GEOM to be apparent in these experi-
ments either.

4.3 Constraints from solar system observations

Most of the classical tests of general relativity are based on the motion of bodies
in the solar system. We now consider the constraints placed on D(x) due to these
tests.

We begin by noting that in idealized situations such as the analysis of the
advancement of perihelion of Mercury, the energy–momentum tensor is taken to
be zero outside of a massive body such as the Sun; the terms on the right hand side
of
Eq. (7) will clearly not affect these analyses. While this argument would seem
to hold for this and the other experimental tests of general relativity, it is much
too simplistic. In practice, the Tµν in each of these tests does not, in fact, vanish;
a background density is always present. Except for experiments involving elec-
tromagnetic waves, what is instead needed is a comparison of the background
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density with ΛDE. It is only when this density is much greater than ΛDE/2π that
the additional terms in Eq. (7) may be negligible. We present this analysis below.

Of the classical, solar system tests of general relativity, only in observations
or experiments involving motion of massive test particles can effects of the exten-
sion be seen. The extended GEOM does not affect the motion of electromagnetic
waves, and such tests of general relativity as the gravitational redshift and the
deflection of light by the Sun will not be affected by the extension. Considering
first the advancement of the perihelion of Mercury, we note that the density of
matter, ρorb, (due primarily to the solar wind) in the region of Mercury’s orbit is
∼ 10−23 g/cm3. This density is only five orders of magnitude smaller to ρlimit.
There is, then, a possibility that the extended GEOM could change the amount in
which the perihelion of Mercury advances due to general relativistic effects.

To show that our extension nevertheless does not change the advance of per-
ihelion, we follow extensively the derivation of the advancement of perihelion
given in [22]. In particular, we use a Hamilton–Jacobi-based analysis to calculate
the advancement and replace Eq. (8) by

m2
Mc2

[
1+D

(
4+

8πρorb

ΛDE

)]
=

[
1+2

GM⊙
c2r

+2
(

GM⊙
c2r

)2
](

∂SM

c∂ t

)2

−
[

1−2
GM⊙

c2r

]{(
∂SM

∂ r

)2

+
(

1
r

∂SM

∂φ

)2
}

.

(33)

Here, mM is the mass of Mercury, M⊙ is the mass of the Sun, and SM is the action
for the motion of Mercury about the Sun. We have used the usual Schwarzchild
solution for the region outside of the Sun, and kept terms up to second order in
GM/c2r. While in principal we would expect the extended GEOM to change the
solution of Einstein’s equations, we are working in both the weak gravity and
nonrelativistic limits, where, as we have shown above, T Ext−Dust ≈ ρorbc2; the
Schwarzchild solution is unchanged in these limits. We also note that because
ρorb ∼ 10−23 g/cm3, the additional matter in Mercury’s orbit will not affect the
form of the Schwarzchild solution, and can be neglected when determining the
metric outside of the Sun.

We next look for solutions of the following form:

SM =−mMc2Ẽt +mML̃ϕ +mMcS(r), (34)

where Ẽ is the energy per unit rest energy, L̃ the angular momentum per unit rest
mass, ϕ the azimuthal angle, and r the radial position of Mercury measured from
the Sun. Solution of Eq. (33) then gives

S = ±
r∫ {

− (1+D− Ẽ2)+2
GM
c2r

[
1−2(1− Ẽ2)

]
− L̃2

c2r2 +6
(

GM
c2r

)2
}1/2

dr, (35)
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after keeping terms up to order (GM⊙/c2r)2. In obtaining Eq. (35), we have used
the fact that 1− Ẽ2 ∼ GM⊙/c2a, where a is the semi-major axis of Mercury’s
orbit; observations set a = 57.91× 106 km [47], giving 1− Ẽ2 ∼ 10−8. We next
used the relation from Eq. (28), D[4 + 8πρorb/ΛDE] ≈ (χ/αΛ )(ΛDE/8πρorb)

αΛ .
Thus, D ∼ 10−10 − 10−12 for αΛ = 1.28− 1.58, so that GM⊙/c2a < D <

(GM⊙/c2a)2.
The shape of the orbit of Mercury is determined by minimizing the action,

∂S/∂ L̃ = 0, in Eq. (34). The resultant integral is straightforward to calculate, and
we obtain

ϕ =

[
1+3

(
GM⊙

cL̃

)2
]

cos−1
[
(1− e2)a

er
− 1

e

]
, (36)

where analytically

a =
GM⊙

c2
1−2(1− Ẽ2)
1+D− Ẽ2 ,

1− e2 =
(

cL̃
GM⊙

)2 (
1+D− Ẽ2)[1+4(1− Ẽ2)−6

(
GM⊙

cL̃

)2
]

,

(37)

and e is the eccentricity of the orbit. The advancement in the perihelion of Mercury
therefore still has the form

δϕ =
6πGM⊙

c2a(1− e2)
. (38)

Note, however, that the product a(1− e2) is independent of D. Thus, the amount
that the perihelion of Mercury’s orbit advances due to general relativistic effects
is not changed by the extended GEOM. Physically, this is because the extended
GEOM only modifies the rest mass in Eq. (8), and does not modify terms explicitly
dependent on the velocity of Mercury.

What the extended GEOM does affect is the analytical expressions for e and
a. However, in calculating the numerical value of δϕ , both e and a are taken as
measured quantities obtained from observations; they are not calculated from first
principles. The fact that there is now a slight different relationship between e and
a, and the total energy, mMc2Ẽ, and the angular momentum, mML̃, of Mercury
(by less than 0.01 % for αΛ = 1.58) would require an independent method of
determining Ẽ and L̃ to check. Such an independent determination is not currently
available.

There are three other potential solar system tests of general relativity that
could, in principal, be used to constrain the extended GEOM. The first is look-
ing at three-body effects in the lunar orbit due to the Sun, Earth and the Moon.
It is questionable whether such effects can be measured [22], however, and they
therefore cannot serve as a check on the extended GEOM. The second is frame
dragging, where the precession of a spinning object is caused azimuthal changes
in the local metric of spacetime by the rotating Earth; this effect is being measured
by Gravity Probe B [48]. The third also measures frame dragging, but uses two
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satellites—LAGEOS and LAGEOS 2—instead of a spinning body, to detect the
Lense-Thirring effect; frame dragging was recently seen [49] in this experiment.

Frame dragging, whether it is by a spinning object or by two orbiting satellites,
is inherently a velocity-dependent effect, however, that couples either to the spin of
the object or to the orbital angular momentum of the satellites with the spacetime
metric. Our extension of the GEOM changes the rest mass of the test particle,
and in a spherically symmetric geometry in the nonrelativistic limit, the additional
effects due to the extension is radial. We thus would not expect the effects from
our extension can be seen either from the precession of a spin, or through the
Lense-Thirring effect.

5 Concluding remarks

We have shown that because of the existence of a universal length scale, `DE, it is
now possible to construct an extension of the GEOM. This extension preserves the
equivalence principal, does not change the motion of massless test particles, and
does not produce effects that would be detectable in either terrestrial experiments,
or through observing the motion of bodies in the solar system. Our extension of
the GEOM is thus a physically viable alternative to the GEOM.

The question remains as to whether these equations of motion have any phys-
ical relevance. In short, is anything gained by using this extension? Because
`DE = 14010800

820 Mpc, we would expect that any effects from the extended GEOM
will become apparent at much longer length scales than those considered here.
Indeed, given the size of `DE the only reason why we would expect the extended
GEOM to be relevant at all is because D is a nonlinear function of the energy–
momentum tensor of ambient matter. This question of relevance will be addressed
in a future paper (A. D. Speliotopoulos, in preparation) where the extended GEOM
is applied to the motion of stars in the rotation curves of galaxies, and to the den-
sity of matter at cosmological length scales. These are the scales at which we
expect the effects from the extension to come into play, and where its relevance
can be assessed.

Finally, as noted in [22], Eq. (19) can be solved in general to give an equation
of motion for particles, vν ∇ν vµ = ∇µ p/(ρ + p/c2), and we see that the presence
of any pressure term in the energy–momentum tensor results in deviations from
geodesic motion. Given that ΛDE can also be used to construct a pressure, it is
natural to ask whether the effects of the extended GEOM can be obtained through
the introduction of an ad hoc pressure term in the energy–momentum tensor. Such
an ad hoc term can only be introduced to the energy–momentum tensor for mat-
ter, however; for the reasons given in the introduction, the equations of motion
for massless particles cannot be changed. In addition, because the behavior of any
massive particle approaches that of a massless one in the ultrarelativistic limit,
this ad hoc pressure term must be constructed so that irrespective of frame this
term contributes a negligible amount to the energy of the particle in this limit.
Moreover, even if such a construction can be accomplished at the ultrarelativistic
limit, hurdles remain at the nonrelativistic limit. While it is possible to construct
in the nonrelativistic limit an appropriate ad hoc pressure using ΛDE and D, when
the resultant equations of motion are applied to the same systems as the extended
GEOM in (A. D. Speliotopoulos, in preparation), effects are predicted at the cos-
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mological scale that either do not agree with experiment or are not physically rea-
sonable. This occurs even though the pressure is chosen so that at galactic scales
predicted effects will be in broad agreement with observations. For these reasons,
it is doubtful that introducing ad hoc pressure term in place of the extended GEOM
will be successful.
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