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概 要
エンタングルメントエントロピーは量子もつれを測る量であり、重要な物理量の一つである。エ
ンタングルメントエントロピーは素粒子物理だけでなく、物性物理や情報理論の分野にも活用さ
れている。
可換な空間上の基底状態のエンタングルメントエントロピーの主要項が、着目している領域と

それ以外の領域の境界面積に比例する事が知られている。一方で、非可換な空間上での基底状態
のエンタングルメントエントロピーの主要項が、着目している領域の体積に比例する事が推測さ
れている。この振る舞いは、相互作用の非局所性に由来すると考えられている。
この論文では、非可換球面上でスカラー場のエンタングルメントエントロピーを、行列模型を

用いて計算した。
エンタングルメントエントロピーの計算には、自由な理論と相互作用を持つ理論の両方で、レ

プリカ法を用いた。この方法は、先行研究と異なる方法である。
自由場に対しては、先行研究と矛盾しない結果を得た。また、エンタングルメントエントロ

ピーへの有限温度の効果が、一般的な場の理論と同じく、着目する領域の体積に比例する事を発
見した。
相互作用場に対しては、モンテカルロシミュレーションを使うことにより、初めて計算結果を

得る事が出来た。この時のエンタングルメントエントロピーの振る舞いは、明らかに自由場の場
合と異なる。特に、エンタングルメントエントロピーの値が、自由場に比べ、1/10程度となる。
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1 序論

近年、研究が盛んに行われている物理量の一つにエンタングルメントエントロピーという量があ

る。量子多体系において、量子状態が個々の状態のテンソル積で書き表す事が出来ない場合、この状

態はエンタングルしている（もつれている）、という。量子のもつれの度合いを示す量の一つがエン

タングルメントエントロピーである。エンタングルメントエントロピーは素粒子理論の発展の中で、

重力理論に関連して発展してきた。一方で物性物理や情報理論の分野にも活用されている重要な物理

量である。

素粒子理論において、エンタングルメントエントロピーは以下の様に研究されてきた。

万有引力とも呼ばれる様に、重力（一般相対論）は我々の宇宙の空間法則を記述する理論である。

宇宙論における大きな課題の一つがブラックホールである。ブラックホールは非常に重く、サイズが

とても小さい天体で、中心では重力場が非常に強い為、質量０の光さえもブラックホールから抜け出

す事が出来ない。その為、ブラックホールの内部の情報を得る事は出来ない。一方、ブラックホール

が熱力学を満たす事が発見され、ブラックホールエントロピーは次のベッケンシュタイン・ホーキン

グの公式を満たす事が知られている [1, 2]。

SBH =
kBc

3

4Gn~
·ABH (1.1)

ここで、ABH はブラックホールの表面積である。また、kB はボルツマン定数、cは光速、GN は重

力定数、~はプランク定数である。この公式は、体積に比例するエントロピーを持つ通常の熱力学と

は異なった性質を示し、ブラックホールの熱力学やエントロピーに対して、更なる理解が必要な事が

分かる。

一方、(1.1)をミクロに理解するためには、量子重力が必要である。他の３つの相互作用と同様に

重力の量子化を行うと、高エネルギースケールの寄与が大きくなり、紫外発散が存在し、繰り込む事

が出来ない。

そのような中で、(1.1)を場の理論のエンタングルメントエントロピーを計算する事によって理解

しようという研究がなされてきた。量子系では、系の一部が観測出来ない場合に生じるエントロピー

をエンタングルメントエントロピーと呼ぶ。ブラックホールの内部が見えない事が、ブラックホール

エントロピーの元と考えられる。これに習い、系を球殻を用いて２つに分け、球殻内の領域を観測出

来ないブラックホールに見立てた研究が行われてきた [3]。

重力が繰り込み可能でないと言う問題を解決する理論の一つに、超弦理論がある。物質の最小単位

を、今までの粒子から、1次元に広がった弦（ひも）であるとする理論で、統一理論の最有力候補で

ある。実際、BPS状態に対応する、ある種のブラックホールに対しては、超弦理論を用いて (1.1)を
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ミクロに導出する事が出来た [4]。

超弦理論の研究の中で、AdS/CFT対応が発見された [5]。AdS/CFT理論とは、AdS時空におけ

る重力理論が、それよりも 1次元低い時空の共形場理論と等価であるという予測である。その中で、

AdS/CFT対応による笠-高柳公式

SA =
Area(γA)

4GN
. (1.2)

が発見された [6]。SA は場の理論の領域 A についてのエンタングルメントエントロピーであり、

Area(γA)はバルクの重力側における面で、その境界が領域Aの境界に一致し、面積が極小である面の

面積である。この式は、エンタングルメントエントロピーが面積に比例する、という事を示し、(1.1)

に類似している。この公式は、場の理論に置けるエンタングルメントエントロピーを幾何の情報で書

き表す事が出来る事を示しているが、更なる研究から、エンタングルメントエントロピーが様々な幾

何の情報を与える事が明らかになってきた。

これにより、エンタングルメントエントロピーを始めとする量子エンタングルメントの研究が量子

重力の構築に繋がっていくと期待される。

本論文における、もう一つの重要な概念である非可換空間も、量子重力との間に深い関係がある。

量子重力を考えると、時空の不確定性から、何らの意味で可換でない時空が自然に現れる事が期待さ

れる。また、超弦理論ではB場が非自明な背景においては、非可換空間上のゲージ理論が自然に現れ

る事が知られている [12]。超弦理論を非摂動的に定義すると期待されている行列模型 [7–9]において

も、非可換空間上のゲージ理論が自然に現れる [10,11]。よって、非可換空間上の場の理論によって、

量子重力のある本質的な側面が捉えられていると期待される。

非可換空間上の場の理論は、可換な空間上の場の理論と異なる性質を持つ。その一つが UV/IR

mixingと呼ばれる効果である [13]。可換な空間上の積は、非可換空間上でスター積となる。スター

積は微分を含んでおり、場の 3次以上の項を持つ場合、相互作用が非局所的になり、影響が表れる。

スター積の効果を考えると、紫外発散に由来する、赤外発散が出現する。この現象をUV/IR mixing

と呼ぶ。

エンタングルメントエントロピーの性質の一つに面積則と呼ばれる物がある。全領域を Aと Bの

二つの領域に分ける事を考える。領域Aに制限されたエンタングルメントエントロピー SAの主要項

は、領域Aの境界の面積 |∂A|に比例する、という性質である。

SA ∼ ∂A

εD−1
(1.3)

εは紫外のカットオフであり、Dは空間の次元である。

また、一方で、相互作用が非局所的な場の理論では、エンタングルメントエントロピーの主要項が

体積に比例しうる事が予測されている。この事は体積則と呼ばれる。文献 [14]では、具体的な非局所
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的な理論のモデルから体積則が計算されている。また、非局所的な理論の一つである非可換空間上の

理論に対して、文献 [15,16]で、非可換空間上の超対称Yang-Mills理論の重力双対の解析が行われて

おり [17, 18]、体積則が成立する事が予想されている。体積則は、このUV/IR mixingに由来すると

考えられる。

ここまでで、エンタングルメントエントロピーと量子重力の繋がり、および非可換幾何と量子重力

との繋がりを見た。従って、非可換幾何におけるエンタングルメントエントロピーを研究する事に

よって、量子重力への新しい知見を得る事が出来ると期待される。

本論文で、我々は、非可換球面上のスカラー理論で、エンタングルメントエントロピーを計算す

る [19]。非可換球面は非可換空間の簡単な例であり、非可換球面上の場の理論は行列模型で記述出来

る。そこでは、行列サイズで紫外発散のカットオフが自然に導入されるため、非可換平面などに比べ

て、量子論的に扱いやすい。文献 [20,21]では、自由場の場合にエンタングルメントエントロピーが

計算された。（文献 [22,23]も参照）UV/IR mixingは非局所的な相互作用に由来するため、我々は相

互作用がある場合に特に興味がある。

文献 [20,21]で用いられた、エンタングルメントエントロピーの計算方法は以下の様な物である [3]。

この方法は、今まで自由な理論のエンタングルメントエントロピーの計算に用いられてきた。自由な

理論のハミルトニアンは、以下の様に与えられる。

H =
1
2

N∑
i,j=1

(δijpipj + xiKijxj) (1.4)

ここで、交換関係は [xi, pj ] = iδijを満たし、Kijは positive definite matrixである。基底状態のエン

タングルメントエントロピーを計算する。測定する領域 I に対して、変数XI と PI を以下の様に定

義する。

[XI ]ij =
1
2
[K−1/2]ij , [PI ]ij =

1
2
[K1/2]ij , i, j ≤ I (1.5)

XI と PI を用いると、エンタングルメントエントロピーは以下の様に計算する事が出来る。

SI = Tr
{(

XI · PI +
1
2
1l
)

log
(
XI · PI +

1
2
1l
)
−
(
XI · PI −

1
2
1l
)

log
(
XI · PI −

1
2
1l
)}

(1.6)

この計算方法は、自由場の場合にしか適用出来ない。また、有限温度の場合には適用出来ない。

我々の用いた計算方法はレプリカ法に基づいており、自由場のみならず、相互作用場に対しても適

用可能である [24, 25]。特に相互作用がある場合には、ハイブリッドモンテカルロ法による、数値シ

ミュレーションを行い、エンタングルメントエントロピーを計算した。1これは、非可換空間上の相

互作用のある理論における、エンタングルメントエントロピーの初めての計算例である。
1特にスカラー場の場合は、文献 [26–31]を参照。また、非可換球面に関する数値シミュレーションについては文献 [32,33]

を参照。
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我々の計算結果は以下の物である。

自由場の場合では、時間の連続極限を取ると、エンタングルメントエントロピーが境界の面積の 2

乗と行列サイズに比例する事を観察した。この結果は、既出の結果と一致している [20, 21]。エンタ

ングルメントエントロピーが、観測する領域の温度に依存する事を観測し、有限温度の寄与が領域の

体積に比例する事を発見した。また、有限温度効果は行列模型のサイズN と時間方向のカットオフ

に依存しない事が分かった。

相互作用のある場合では、エンタングルメントエントロピーの振る舞いが自由場と異なる事を観測

した。この結果から、非局所的な理論の効果が見て取れた。また、エンタングルメントエントロピー

の値は、自由場の理論のエンタングルメントエントロピーの約 1/10の値を取る事が分かった。

この論文は、以下の様な構成である。

・第 2章では研究で扱ったエンタングルメントエントロピーの一般的な性質のレビューを行う。例

として 2粒子系のエンタングルメントエントロピーの計算を行った。また、エンタングルメントエン

トロピーを計算する一般的な手法であるレプリカ法を解説した。そして、レプリカ法の計算例とし

て、場の理論におけるエンタングルメントエントロピーを計算した。

・第 3章では非可換空間の例として非可換平面についてレビューを行う。その中でも、非可換空間

上の場の理論で特徴的な効果であるUV/IR mixingについて非可換平面上で議論する。

・第 4章では、、我々が行列模型を用いて計算したモデルである、非可換球面上のスカラー φ4理論

について説明した。S1× S2 の多様体上で定義される可換な空間上のモデルを、行列模型を用いて、

どのように非可換球面上へ拡張するかを述べる。特に、非可換球面上ではスター積が存在する事を示

し、非局所的な効果が存在するモデルである事を示した。また、エンタングルメントエントロピーを

求めるためには、領域を分ける必要がある。領域の分け方と計算に用いる行列模型の対応について、

コヒーレント状態を用いて説明する。そして、非可換空間上で相互作用を持つ理論の場合の、補間作

用 (interpolating action)を用いる計算法を述べる。

・第５章では、実際に非可換な理論の計算に用いた、ハイブリッドモンテカルロシミュレーション

の説明を行う。この計算法では、新しい変数としてガウス分布で決まる共役運動量を用いる事により、

一つの変数にのみよる場合に比べ、より効率的に結果を得る事が可能となる。

・第 6章では自由場の理論と相互作用場の理論のシミュレーション結果を説明する。

・第 7章では計算の結果に対するまとめと考察を行い、今後の展望について記述している。

・付録 Aでは宇宙論についての研究について述べている [34]。エンタングルメントエントロピー

は宇宙論にも深く関係がある。その宇宙論の中の大きな問題の一つに、宇宙項問題がある。宇宙項問

題とは、宇宙の加速度的膨張に対する問題である。我々の住む宇宙は de Sitter時空と呼ばれる、曲

がった時空で記述する事が出来る。曲がった時空の効果を考慮し、物質場の宇宙項への寄与を計算し
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ている。

・付録Bでは、自由場の場合のエンタングルメントエントロピーの計算法を説明した。時間に対し

て離散化した自由場の作用を用い、直接自由エネルギーを計算する。そして、自由エネルギーをレプ

リカ法に代入し、エンタングルメントエントロピーを計算している。

・付録 Cでは、誤差計算の方法の一つであるジャックナイフ法を説明した。ジャックナイフ法は、

複雑な物理量を計算する際に用いられる誤差の計算方法であり、また、自己相関を含んだデーターか

ら得られる物理量の誤差を求める方法である。我々は相互作用場の理論での誤差計算に、この方法を

用いた。

・付録Dでは、近似法の一つである、シンプソン法を説明した。シンプソン法は、２次曲線によっ

て近似する方法である。研究では、相互作用場の理論で補間作用の積分に用いた。

・付録 Eでは、相互作用場の計算に用いた、ハイブリッドモンテカルロ法のコードをもせている。
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2 エンタングルメントエントロピー

本章では研究で扱ったエンタングルメントエントロピーの一般的な性質について述べる。例として

2粒子系のエンタングルメントエントロピーの計算を行った [35]。また、エンタングルメントエント

ロピーを計算する一般的な手法であるレプリカ法を解説した後に、場の理論におけるレプリカ法の計

算例を述べる。

2.1 エンタングルメントエントロピーの性質

量子多体系全体が二つの系 Aと Bに分ける事が可能な時を考える。すなわち、全体系のヒルベル

ト空間Hが各系のヒルベルト空間HAとHB の積で書けるとする。

H = HA ⊗HB . (2.1)

例として、場の理論において考えてみると、系Aと系Bへの分解として、図 2.1の様に空間の領域が

分解されている状況を考える事が出来る。

(2.1)式が成立している時、系 Aにおけるエンタングルメントエントロピー SAは、以下の様に定

義される。

SA = −Tr[ρA log ρA] . (2.2)

ここで ρAは系全体の密度行列 ρtotについて、領域HB でトレースを取った物である。

ρA = TrB[ρtot] . (2.3)

また、密度行列 ρtotが純粋状態である場合、エンタングルメントエントロピーは以下の性質を満たす。

SA = SB . (2.4)

次に、エンタングルメントエントロピー SAの主要項については以下の様な性質がある。(d+ 1)次

元の局所的な場の理論の場合は境界面積に比例した主要項を持つ（|∂A|/εd−1）。|∂A|は領域 Aと B

の境界の面積であり、ε はUVのカットオフである。この振る舞いは相互作用の局所性を反映してい

る。一方で、相互作用が非局所的な場の理論では、エンタングルメントエントロピーの主要項が体積

に比例しうる事が予測されている。この事は体積則と呼ばれる。文献 [14]では、体積則を示す具体的

な非局所的な理論のモデルが提示された。また、非可換空間上の理論は非局所的な理論の一つである

が、文献 [15,16]では、非可換空間上の超対称Yang-Mills理論の重力双対の解析から、この理論にお

いては体積則が成立する事が予想されている。我々は、非可換空間の一つである非可換球面上の場の

理論で、直接エンタングルメントエントロピーを計算し、主要項の振る舞いを調べる。
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B

A

図 2.1: 全体に対する領域Aと B

2.2 ２粒子系のエンタングルメントエントロピー

この節では、具体例としてスピン 1/2を持つ二つの粒子 Aと Bからなる系でのエンタングルメン

トエントロピーを計算する。まず、スピン 1に合成された固有状態は、規格化すると次の 3重項で書

き表される。

|1, 1〉 = |1
2
〉A|

1
2
〉B. (2.5)

|1, 0〉 =
1√
2

(
|1
2
〉A| −

1
2
〉B + | − 1

2
〉A|

1
2
〉B
)
. (2.6)

|1,−1〉 = | − 1
2
〉A| −

1
2
〉B. (2.7)

次に |1, 1〉に対応する純粋状態を考える。|1, 1〉の密度行列は、

ρtot = |1, 1〉〈1, 1| = |1
2
〉A|

1
2
〉B A〈

1
2
|B〈

1
2
|, (2.8)

である。(2.3)式の定義より、領域 Bについてトレースを取ると、

ρA = TrB[ρtot]

= B〈
1
2
|ρtot|

1
2
〉B + B〈−

1
2
|ρtot| −

1
2
〉B

= B〈
1
2
|1
2
〉A|

1
2
〉B A〈

1
2
|B〈

1
2
|1
2
〉B + B〈−

1
2
|1
2
〉A|

1
2
〉B A〈

1
2
|B〈

1
2
| − 1

2
〉B

= |1
2
〉A A〈

1
2
|, (2.9)

となる。よって、ρAは |12〉についての純粋状態である。そのため、エンタングルメントエントロピー

は 0となる (SA = 0)。

次に |1, 0〉についての純粋状態を考える。ρtotは |1, 0〉〈1, 0|で書き表される。

ρtot = |1, 0〉〈1, 0|
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=
1
2

(
|1
2
〉A| −

1
2
〉B + | − 1

2
〉A|

1
2
〉B
)(

A〈
1
2
|B〈−

1
2
| +A 〈−1

2
|B〈

1
2
|
)

=
1
2

(
|1
2
〉A| −

1
2
〉B A〈

1
2
|B〈−

1
2
| + |1

2
〉A| −

1
2
〉B A〈−

1
2
|B〈

1
2
|

+| − 1
2
〉A|

1
2
〉B A〈

1
2
|B〈−

1
2
| + | − 1

2
〉A|

1
2
〉B A〈−

1
2
|B〈

1
2
|
)
. (2.10)

このとき、領域Aに制限された密度行列は同様にして計算される。

ρA = TrB[ρtot]

=
1
2

(
| − 1

2
〉A A〈−

1
2
| + |1

2
〉A A〈

1
2
|
)

=
1
2

((
0
1

)(
0 1

)
+

(
1
0

)(
1 0

))

=
1
2

(
1 0
0 1

)
. (2.11)

以上より、密度行列は |12〉と | − 1
2〉の混合状態となる。この時のエンタングルメントエントロピー SA

は定義式より、求められる。

SA = −TrA[ρA log ρA]

= Tr

[
1
2

(
1 0
0 1

)]
· log 2

= log 2. (2.12)

全体系では |1, 0〉に対応する純粋状態であったが、領域Aから見ると混合状態であった。以上より、全

体系が純粋状態であっても、部分的な系のエンタングルメントエントロピーが消えない事（SA 6= 0）

が確かめられた。全体系は純粋状態であっても、部分形は混合状態と見なせるという理由で、一般的

にエンタングルメントエントロピーは消えない。

2.3 レプリカ法

エンタングルメントエントロピーを計算する際、一般的な手法としてレプリカ法という方法があ

る [24]。この方法はエンタングルメントエントロピーの定義式 (2.2) を以下の様に定義を書き換える

事から始める。

SA = lim
n→1

[
− ∂

∂n
Trρn

A

]
= lim

n→1

[
− ∂

∂n
log(Trρn

A)
]
, (2.13)

ここで nはレプリカの数であり、元の理論を n個コピーした事を示す。また nは、自然数から実数に

拡張されている。(2.13)より、Trρn
Aの計算方法を考えれば良い。
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以下では、基底状態に対するエンタングルメントエントロピーを取り扱う。まず、場の理論にお

ける経路積分を考える。理論に現れる場を総称して φと書く。また、時間についてはウィック回転

(t → −ix0)を行い、時間 1次元+空間 d次元上で定義されていた φを、空間 d+ 1次元上の場と定

義する。今回は簡単のために d = 1の場合で考える (φ = φ(x0, x1))。分配関数は作用を S[φ]とした

場合、

Z =
∫ ∏

−∞<x0<0

∏
x1

[Dφ(x0, x1)]e−S[φ], (2.14)

と、経路積分より表される。

次に、場の理論における基底状態の波動関数を経路積分を使って書き表す事を考える。時刻x0 = X0

の波動関数は、場の配位 φ(X0, x1)の汎関数である。理論が並列対称性を持つ時、時刻をX0 = 0と

してもよい。従って、これをΨ[φ(x1)]と書く事にする。基底状態の波動関数は以下の様に書ける。

Ψ[φ(x1)] =
1√
Z

∫ ∏
−∞<x0<0

∏
x1

[Dφ(x0, x1)]e−S[φ]δ[φ(0, x1) − φ(x1)]. (2.15)

ここでは、δは δ汎関数であり、任意の汎関数G[φ̃(x1)]に対して、

∫ ∏
x1

[Dφ(x1)]G[φ(x1)] · δ[φ(x1) − φ̃(x1)] = G[φ̃(x1)], (2.16)

を満たす。経路積分の意味を考えると、ある状態 |ϕ〉を用いて以下の様に書く事が出来る。

lim
x0→−∞

〈φ(x1)|e−H(−x0)|ϕ〉. (2.17)

|ϕ〉は、ハミルトニアンH の固有状態 |i〉で展開出来る。

|ϕ〉 =
∑

i

ci|i〉. (2.18)

(2.17)は |0〉を基底状態として、

lim
x0→−∞

eE0x0
∑

i

cie
(Ei−E0)x0〈φ(x1)|i〉 = lim

x0→−∞
c0e

E0x0〈φ(x1)|0〉, (2.19)

となる。(2.15)における因子 1/
√
Zを考慮すると、Ψ[φ(x1)]は基底状態の波動関数 〈φ(x1)|0〉に位相

因子を除いて一致する事が分かる。

また、(2.15)の複素共役は

Ψ∗[φ(x1)] =
1√
Z

∫ ∑
0<x0<∞

∑
x1

[Dφ(x0, x1)]e−S[φ]δ[φ(0, x1) − φ(x1)], (2.20)
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図 2.2: レプリカ法の積分領域

と書ける。

この波動関数を用いて全体の密度行列は以下の様に書く事が出来る。

[ρtot]φ−(x1),φ+(x′
1) = Ψ[φ−(x1)]Ψ∗[φ+(x′1)]. (2.21)

ここで、場の理論のヒルベルト空間は x0 = 0における場の配位 φ(x1)の関数全体で張られる空間で

ある。そのため、密度行列 ρtotの足は、この空間で書く事が出来る。

計算を進めるために、領域 Aをリーマン面上の線分とする。領域を図示すると、図 (2.2)となる。

このA領域に制限される密度行列 ρAは時刻 x0 = 0において、次の様に表される。

[ρA]φ−,φ+ = [TrBρtot]φ−,φ+

=
1
Z

∫ ∏
−∞<x0<∞

∏
x1

[Dφ(x0, x1)]e−S[φ]

×
∏

x1∈A

δ[φ(−0, x1) − φ−(x1)] · δ[φ(+0, x1) − φ+(x1)] (2.22)

また、この式より TrρA = 1と規格化されている事が分かる。

次に ρn
Aのトレースを取る事を考える。(2.22)の経路積分を n個並べ、隣り合った物同士の上側と

下側の境界を張り合わせる。これを、 n∏
j=1

[Dφj ]

 [ρA]φ1,φ2 [ρA]φ2,φ3 · · · [ρA]φn,φ1 , (2.23)

と書く事が出来る。この式を図示すると、図 (2.3)となる。

以上より、Trρn
Aは、n枚のシートを領域Aで張り合わせ、2次元リーマン面Σn上の分配関数と見

る事が出来る。以上より書き換えると、

Trρn
A = (Z)−n

∫ ∏
(x0,x1)∈Σn

[Dφ(x0, x1)]e−S[φ], (2.24)
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図 2.3: n枚コピーしたリーマン面

図 2.4: 分割法の違いはこのように図示される。領域Aにおけるエンタングルメントエントロピーは
領域 Bを n個コピーする事で記述される。

となる。今までは n枚の各シートに場がある事を考えたが、これは 1枚のシートに対して n個の場

を導入する事によっても表す事ができる。具体的には、後述する (4.63)式の境界条件を与える事によ

り、領域Aに対するエンタングルメントエントロピーを計算出来る。

2.4 場の理論におけるエンタングルメントエントロピーの計算

場の理論のエンタングルメントエントロピーの解析的な計算を、d+ 1次元、自由スカラー場理論

について考える。まず、系を図 (2.5)の様に分ける。

時間一定面は d− 1次元平面であり、x1 = 0を境に半分に分け、AとBを定義する。また、前節と

同様に計算の為に全体の次元Rd+1をユークリッド化し、時間を空間的に扱える様にする（t→ −iτ）。

τ, x1 ∼ xd の各座標に対応する運動量（フーリエ変換時の波数）を k0, k1, · · · , kd とする。この際、

ユークリッド空間Rd+1における自由スカラー場の分配関数を計算する。

自由場の作用は以下の様に書き下される。

S[φ] =
∫
dτddx

[
1
2
(∂τφ)2 +

1
2
(∂iφ)2 +

m2

2
φ2

]
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図 2.5: 部分系の分割方法

=
1
2

∫
dd+1xφ(x)[−(∂2

τ + ∂2
i ) +m2]φ(x)

=
1
2

∫
dd+1φ(x)[−∆ +m2]φ(x)

(2.25)

ここで、ラプラシアン∆ = ∂2
τ + ∂2

i を導入した。分配関数は、

Z =
∫

Dφe−S

= e−
1
2
Tr log[−∆+m2]

= e−
1
2

R

dd+1x〈x| log[p2+m2]|x〉 (2.26)

となる。肩の積分に着目する。完備性
∫

dd+1k
(2π)d+1 |k〉〈k| = 1を用いて計算すると、

−1
2

∫
dd+1x

∫
dd+1k

(2π)d+1

∫
dd+1k′

(2π)d+1
〈x|k〉〈k| log[p2 +m2]|k′〉〈k′|x〉

= −1
2

∫
dd+1x

∫
dd+1k

(2π)d+1

∫
dd+1k′

(2π)d+1
eik

′x log[k2 +m2](2π)d+1δd+1(k′ − k)e−ikx

= −1
2
Vd+1

∫
dd+1k

(2π)d+1
log[k2 +m2]

. (2.27)

ここで、Vd+1は d+ 1次元の全空間の体積である。よって、分配関数の対数は以下の様に表される。

logZRd+1 = −1
2

Vd+1

(2π)d+1

∫
|k|≤λ

dd+1k log(k2 +m2). (2.28)

Λ = 1/εは運動量の最大値（カットオフ）である。この式をシュインガーパラメータ sを用いて書き
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換える。

logZRd+1 =
Vd+1

(2π)d+1

∫ ∞

ε2

ds

2s

∫
|k|≤λ

dd+1ke−s(m2+k2)

= Vd+1

∫ ∞

ε2

ds

2s
(4πs)−

d+1
2 e−sm2

, (2.29)

となる。エンタングルメントエントロピーの計算時の微分により定数項は落ちるため、定数項は無視

している。

ここではレプリカ法を使ってエンタングルメントエントロピーを計算する為、Trρn
Aを計算すれば良

い。nが自然数の場合はTrρn
Aを ∂Aの周りにn重巻きで出来る、d+1次元での分配関数と解釈出来る。

n = 1/N(Nは自然数)と取る場合はTrρn
AはRd+1をN等分したオービフォールド空間R2/ZN ×Rd−1

の分配関数と考える事が出来る。R2/ZN は (x0, x1)で張られる空間 R2 を、角度 θ = 2π/N の回転

変換 g

g : (x0, x1) → (cos θx0 − sin θx1, sin θx0 + cos θx1), (2.30)

で同一視出来る空間である。gN = 1なので群としては ZN となる。

この場合に、log Trρn
Aは以下の様に計算出来る。

log Trρn
A = logZR2/ZN×Rd−1 − n logZRd+1 . (2.31)

2項目は計算済みであるので、1項目に着目して計算する。

まず、演算子
∑N−1

j=0
gj

N を考えると、次の関係が成り立つ。

g
N−1∑
j=0

gj

N
=

N−1∑
j=0

gj+1

N

=
N∑

l=1

gl

N

=
N−1∑
l=0

gl

N
. (2.32)

また、この関係を用いると、

N−1∑
i,j=0

gi

N

gj

N
=

N−1∑
i,j=0

gi+j

N2

=
N−1∑
i=0

Ngi

N2
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=
N−1∑
l=0

gl

N
, (2.33)

となる。これより、この演算子は射影演算子であることがわかる。これより、logZR2/ZN×Rd−1 の計

算は

logZR2/ZN×Rd−1 = −1
2
Tr

log(−∆ +m2)
N−1∑
j=0

gj

N


= −1

2

∫
dd+1x〈x| log(p2 +m2)

N−1∑
j=0

gj

N
|x〉, (2.34)

となる。さらに、完備性を用いて計算を行うと、以下の結果が得られる。

logZR2/ZN×Rd−1 = −1
2

∫
dd+1x

∫
dd+1k

(2π)d+1

∫
dd+1k′

(2π)d+1

∫
dd+1k′′

(2π)d+1

×〈x|k′〉〈k′| log(p2 +m2)|k〉〈k|
N−1∑
j=0

gj

N
|k′′〉〈k′′|x〉

= −1
2

∫
dd+1x

∫
dd+1k

(2π)d+1

∫
dd+1k′

(2π)d+1

∫
dd+1k′′

(2π)d+1

×e−k′x log(k2 +m2)(2π)d+1δd+1(k′ − k)

× 1
N

(2π)d+1δd+1(k − gik′′)eik
′′x

= −1
2

∫
dd+1k

(2π)d+1

∫
dd+1k′′(2π)d+1(2π)d+1δd+1(k′′ − k) log(k2 +m2)

× 1
N

N−1∑
j=0

(2π)d+1(2π)d+1δd+1(k − gjk)

= −1
2

∫
dd+1k

(2π)d+1
log(k2 +m2)

1
N

N−1∑
j=0

(2π)d+1δd+1(k − gjk)

= −1
2

∫
dd+1k

(2π)d+1
log(k2 +m2)

1
N

(2π)d+1δd+1(0) +
N−1∑
j=1

(2π)d+1δd+1(k − gjk)


=

1
N

logZRd+1

− 1
2N

∫
dd+1k

(2π)d+1
log(k2 +m2)

N−1∑
j=1

(2π)d−1δd−1(0) · (2π)2δ2(k − gjk)


=

1
N

logZRd+1

− 1
2N

Vd−1

∫
dd+1k

(2π)d+1
log(k2 +m2)

N−1∑
j=1

(2π)2δ2(k − gjk). (2.35)
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ここで、デルタ関数の性質を使って計算を行うと、

δ2(k − gjk) = δ2((I − gj)k)

=
1

| det(I − gj)|
δ2(k) (2.36)

となる。θ = 2π/N を使って計算する。

| det(I − gj)| = | det

1 − cos jθ sin jθ 0
− sin jθ 1 − cos jθ 0

0 0 Id−1

 |

= |(1 − cos jθ)2 + sin2 jθ|

= 2(1 − cos jθ)

= 4 sin2 jπ

N
. (2.37)

以上より、まとめると、

1
N

N−1∑
j=1

δ2(k − gjk) =
1
N

N−1∑
j=1

δ2(k)
4 sin2 πj

N

=
N2 − 1
12N

δ2(k), (2.38)

となる。ここで、
N−1∑
j=1

1
sin2 πj

N

=
N2 − 1

3
, (2.39)

を用いて計算している。

次に運動量 kについて 2次元R2/ZN 方向（k‖）と d-1次元方向Rd−1方向（k⊥）に分けて考える。

この時、k2 = k2
‖ + k⊥となるので、

logZR2/ZN×Rd−1 =
1
N

logZRd+1

−1
2
Vd−1

∫
d2k‖

(2π)2

∫
dd−1k⊥
(2π)d−1

log(k2
‖ + k2

⊥ +m2)
1
12

(
N − 1

N

)
(2π)2δ2(k‖)

=
1
N

logZRd+1

−1
2
Vd−1

∫
dd−1k⊥
(2π)d−1

log(k2
⊥ +m2)

1
12

(
N − 1

N

)
. (2.40)

ここで、Schwingerパラメータ sを使って書き直す。

(2.40) =
1
N

logZRd+1
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+
1
12

(
N − 1

N

)
Vd−1

∫
dd−1k⊥
(2π)d−1

∫ ∞

ε2

ds

2s
e−s(k2

⊥+m2)

=
1
N

logZRd+1

+
1
6

(
N − 1

N

)∫ ∞

ε2

ds

s
e−sm2 · 1

(2π)d−1

√
(2π)d−1

(2s)d−1

=
1
N

logZRd+1

+
1
6

(
N − 1

N

)∫ ∞

ε2
ds

π

(4πs)
d+1
2

e−sm2
. (2.41)

以上より、

log Trρn
A =

π

6

(
1
n
− n

)
Vd−1

∫ ∞

ε2

ds

(4πs)
d+1
2

e−sm2
, (2.42)

が得られるので、レプリカ法の公式に代入する。

SA = − ∂

∂(1/N)

(
logZR2/ZN×Rd−1 −

1
N

logZRd+1

)
=
π

3
Vd−1

∫ ∞

ε2

ds

(4πs)
d+1
2

e−m2s. (2.43)

ここで紫外極限について考える (ε→ 0)。(2.43)は d > 1の場合で

SA =
Vd−1

6(d− 1)(4π)
d−1
2

· 1
εd−1

+ O(ε−(d−3)), (2.44)

となる。ε→ 0で第一項目は明らかに発散する。また、d = 1の場合では

SA = −1
6

log(mε), (2.45)

となる為、この場合も ε→ 0で発散する。以上より、自由場の理論でのエンタングルメントエントロ

ピーはO(ε−(d−1))の紫外発散を持つ事が確かめられた。また、主要項が境界の面積 Vd−1に比例する

事が確かめられた。
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3 非可換空間上の場の理論

我々は非可換空間上の場の理論のエンタングルメントエントロピーの計算を行った。そのため、非

可換空間の例として非可換平面についてレビューを行う [36]。また、非可換空間上の場の理論で特徴

的な効果であるUV/IR mixingについて非可換平面上で議論する [13]。

3.1 非可換平面の幾何

非可換平面は、最も簡単な非可換空間である。簡単の為、まず２次元で考える。二つの座標を x̂1, x̂2

とする。（演算子である事を明確にする為、^ を付けている。）この時、座標は交換しない。

[x̂1, x̂2] = iθ. (3.1)

θは実の定数であり、可換極限は θ → 0に対応している。各座標に対し、共役運動量を以下の様に定

義する。

p̂1 = θ−1x̂2, p̂2 = −θ−1x̂1. (3.2)

(3.1)と (3.2)より、次の式が導かれる。

[x̂i, p̂j ] = iδij (i, j = 1, 2). (3.3)

この式は 2次元での 1粒子の量子力学の交換関係の形をしている。しかし、運動量 p̂1, p̂2は x̂2, x̂1と

関係づいており、独立でない。つまり、ヒルベルト空間としては 1次元の量子力学で考えている事に

相当する。また、運動量同士の交換関係は以下の様になる。

[p̂1, p̂2] = iθ−1. (3.4)

今、このヒルベルト空間に作用する演算子 f̂ を座標 x̂iでフーリエ展開する事を考える。

f̂ =
∫

d2k

(2π)2
f(k)eik·x̂. (3.5)

f(k) = f(k1, k2), k · x̂ = kixiを表す。非可換である為、フーリエ変換の指数関数は eik1x1 · eik2x2 と

分解する事が出来ない事に注意する。f(k)を使って f̂ に対応する 2次元平面上の関数 f(x)は以下の

様に定義出来る。

f(x) =
∫

d2k

(2π)2
f(k)eik·x. (3.6)

ここで、逆フーリエ変換 f(k) =
∫
d2xf(x)e−ik·xを用いて f̂ と f(x)の関係を書き直す。

f̂ =
∫

d2k

(2π)2

∫
d2xf(x)e−ik·xeik·x̂. (3.7)
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まず、非可換平面上における微分について述べる。(3.3)と (3.7)より、p̂i と f̂ の交換関係を計算

する。

[p̂i, f̂ ] = [p̂i,

∫
d2k

(2π)2

∫
d2xf(x)e−ik·xeik·x̂]

=
∫

d2k

(2π)2

∫
d2xe−ik·x[p̂i, e

ik·x̂]f(x)

=
∫

d2k

(2π)2

∫
d2xe−ik·xkie

ik·x̂f(x)

=
∫

d2k

(2π)2

∫
d2xe−ik·x(−i∂x)f(x)eik·x̂. (3.8)

ここで ∂x = ∂/∂xであり、k = −i∂xの書き換えと、次の式を用いる。

[p̂i, e
ik·x̂] =

∞∑
n=0

1
n!

[p̂i, (ik · x̂)n]

= kie
ik·x̂. (3.9)

(3.8)より、関数からオペレータで書き換えた場合における、R2上の計算において、以下の対応が分

かる。

[p̂i, ] ↔ −i∂xi . (3.10)

つまり、交換子を取る事が微分に対応する事が示された。

次に、演算子の積の表し方を示す。(3.7)より、

f̂ ĝ =
∫

d2k

(2π)2

∫
d2l

(2π)2

∫
d2x

∫
d2yf(x)g(y)e−ik·xe−il·yeik·x̂eil·x̂

=
∫

d2k

(2π)2

∫
d2l

(2π)2

∫
d2x

∫
d2yf(x)g(y)e−ik·xe−il·ye−

iθ
2

(k1l2−k2l1)ei(k+l)·x̂

=
∫

d2k

(2π)2

∫
d2l

(2π)2

∫
d2x

∫
d2ye−

iθ
2

(∂x1∂y2−∂x2∂y1 )f(x)g(y)ei(k+l)·x̂e−ik·x−il·y.

(3.11)

この計算では、[[A,B], A] = [[A,B], B] =の時に成り立つ、ベーカー・ハウスドルフの公式の特別な

場合

eAeB = eA+Be
1
2
[A,B], (3.12)

を用いた。ここで、積分の変数変換を行う。p = k+ l,q = k−l
2 と置き、k = 1

2(p+2q),l = 1
2(p−2q)と

書き換える。この時、ヤコビアンは 1である。演算子を含まない指数関数部分については、k ·x+ l ·y =
p
2(x+ y) + q(x− y)となる為、q積分はデルタ関数となる。その為、

(3.11) =
∫

d2p

(2π)2

∫
d2q

(2π)2

∫
d2x

∫
d2ye−

iθ
2

(∂x1∂y2−∂x2∂y1 )f(x)g(y)ei(p)·x̂e−i( p
2
(x+y)+q(x−y))
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=
∫

d2p

(2π)2

∫
d2x

∫
d2ye−

iθ
2

(∂x1∂y2−∂x2∂y1 )f(x)g(y)ei(p)·x̂e−i( p
2
(x+y))δ(x− y)

=
∫

d2p

(2π)2

∫
d2x(e−

iθ
2

(∂x1∂y2−∂x2∂y1 )f(x)g(y))y=xe
ik·x̂e−k·x, (3.13)

が得られる。最後に k + lを改めて kと置いている。以上より、演算子の積を整理すると、

f̂ ĝ ↔ f(x) ? g(x) = e−
iθ
2

(∂x1∂y2−∂x2∂y1 )f(x)g(y)|y=x

= f(x)g(x) − iθ

2
(∂x1∂y2 − ∂x2∂y1)f(x)g(y) + · · · , (3.14)

となる。このように書き表される積は、Moyal 積 (スター積) と呼ばれる。式の形より、明らかに

f(x) ? g(x) 6= g(x) ? f(x)である。一方で演算子の積は結合則を満たす ((f̂ ĝ)ĥ = f̂(ĝĥ))ため、Moyal

積も結合則を満たす ((f(x) ? g(x)) ? h(x) = f(x) ? (g(x) ? h(x)))。また、Moyal積を用いた場合の交

換関係は以下の様になる。

1
iθ

[f(x), g(x)]? =
1
iθ

(
iθ

2
(∂x1∂x2 − ∂x2∂x1 + ∂x1∂x2 − ∂x2∂x1) + O(θ2)

)
f(x)g(x)

= ∂x1f(x)∂x2g(x) − ∂x2f(x)∂x1g(x) + O(θ). (3.15)

最後に演算子のトレースの意味について考える。ヒルベルト空間において、基底を以下の様に考

える。

x̂1|x〉 = x1|x〉. (3.16)

x̂2|x〉 = x2|x〉. (3.17)

量子力学とのアナロジーより、正規直交条件については以下の様に書ける。∫
dx1√
2πθ

|x1〉〈x1| = 1 (3.18)∫
dx2√
2πθ

|x2〉〈x1| = 1 (3.19)

〈x1|x2〉 = eiθ
−1x1x2 ↔ 〈x|p〉 = eipx. (3.20)

これらの性質を用いる事により、トレースは書き直す事が出来る。

tr(f̂) =
∫

d2k

(2π)2

∫
d2xf(x)e−k·x

∫
dx′1√
2πθ

〈x′1|eik·x̂|x′1〉

=
∫

d2k

(2π)2

∫
d2xf(x)e−k·x

∫
dx′1√
2πθ

〈x′1|eik1x̂1eik2x̂2e−
1
2
i[k1x̂1,k2x̂2]|x′1〉

=
∫

d2k

(2π)2

∫
d2xf(x)e−k·x

∫
dx′1√
2πθ

〈x′1|eik1x̂1eik2x̂2e−
1
2
i[k1x̂1,k2x̂2]|x′1〉
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=
∫

d2k

(2π)2

∫
d2x

∫
dx′1√
2πθ

∫
dx′2√
2πθ

f(x)e−k·xe−
iθ
2

k1k2〈x′1|eik1x̂1eik2x̂2 |x′2〉〈x′2|x′1〉

=
∫

d2k

(2π)2

∫
d2x

∫
d2x′

2πθ
f(x)e−k·xe−

iθ
2

k1k2eik1x1eik2x2〈x′1|x′2〉〈x′2|x′1〉

=
∫

d2k

(2π)2

∫
d2x

∫
d2x′

2πθ
f(x)e−k·xe−

iθ
2

k1k2eik1x1eik2x2

=
∫

d2x

2πθ
f(x). (3.21)

以上より、トレースがR2上の積分に対応する事が分かる。

tr ↔
∫

d2x

2πθ
. (3.22)

右辺は位相空間の体積を 2π~で割った物に相当する。

Moyal積で表される物の積分を行う事を考える。トレースは巡回性 (tr[ABC] = tr[BCA] = tr[CAB])

を持つため、以下の性質が成り立つ。∫
d2xf1(x) ? f2(x) ? · · · ? fn(x) =

∫
d2xfn(x) ? f1(x) ? · · · ? fn−1(x). (3.23)

特に、二つの場のMoyal積の場合について積分を考えると、

f(x) ? g(x) = f(x)g(x) − iθ

2
(∂x1f(x)∂x2g(x) − ∂x2f(x)∂x1g(x)) + · · · , (3.24)

である為、第二項目以降は部分積分を使う事によって打ち消す事が出来る。以上より、∫
d2xf(x) ? g(x) =

∫
d2xf(x)g(x), (3.25)

が成り立つ。

以上の性質を用い、外場 p̂iが入った行列模型を考える。

S =
√

(2π)2 det(θij)tr
(
−1

2
[p̂i, φ̂]2 +

m2

2
φ̂2 +

λ

4
φ̂4

)
. (3.26)

対応関係を用いて関数の形で書き換えると、

S =
∫
d2x

(
1
2
(∂xiφ(x)) ? (∂xiφ(x)) +

m2

2
φ(x) ? φ(x) +

λ

4
φ(x) ? φ(x) ? φ(x) ? φ(x)

)
=
∫
d2x

(
1
2
(∂xiφ(x))2 +

m2

2
φ(x)2 +

λ

4
φ(x) ? φ(x) ? φ(x) ? φ(x)

)
. (3.27)

場の 2次の項は、可換な場の理論の場合の φ4理論と一致しているが、相互作用項はMoyal積より、

微分を含む項が余分に出てくる為一致しない。
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3.2 UV/IR mixing

非可換空間上の場の理論の性質として重要な、UV/IR mixingについて述べる。紫外発散と赤外発

散が混ざる現象の事で、今は非可換空間上でプロパゲータに対する 1-loop補正を計算する中で確認

する。

二次元非可換空間上の φ4理論で考える。

S =
∫
d2x

(
1
2

(∂xiφ(x))2 +
m2

2
φ2(x) +

λ

4
φ(x) ? φ(x) ? φ(x) ? φ(x)

)
. (3.28)

(3.28)の前二項は自由な理論であり、φ4項は相互作用項である（S = Sfree + Sint）。Sfreeでは φの

二乗のみ存在する。前節より、Moyal積は部分積分を用いる事で、二乗についてはただの積に置き換

える事が出来るので、(3.28)の様に書ける。この作用をフーリエモードで書き換えると、以下の様に

なる。

Sfree =
∫

d2p

(2π)2

∫
d2q

(2π)2
(2π)2δ(2)(p+ q)

1
2
(p2 + q2)φ(p)φ(q). (3.29)

Sint =
λ

4

∫
d2p

(2π)2

∫
d2q

(2π)2

∫
d2r

(2π)2

∫
d2s

(2π)2
(2π)2δ(2)(p+ q + r + s)

× e
iθ
2

(p1q2−p2q1+(p1+q1)(r2+s2)−(p2+q2)(r1+s1)+rqs2−r2s1)

× φ(p)φ(q)φ(r)φ(s). (3.30)

ここで SintのMoyal積の計算は (3.14)式を用いた。

φ(x) ? φ(y) = e
iθ
2

(∂x1∂y2−∂x2∂y1 )φ(x)φ(y) (3.31)

φ(z) ? φ(l) = e
iθ
2

(∂z1∂l2
−∂z2∂l1

)φ(z)φ(l) (3.32)

(φ(x) ? φ(y)) ? (φ(z) ? φ(l)) = e
iθ
2
{(∂x1+∂y1 )(∂z2+∂l2

)−(∂x2+∂y2 )(∂z1+∂l1
)} (3.33)

×e
iθ
2

(∂x1∂y2−∂x2∂y1 )φ(x)φ(y) (3.34)

×e
iθ
2

(∂z1∂l2
−∂z2∂l1

)φ(z)φ(l). (3.35)

以上の様に計算し、フーリエモードに移せば良い。

プロパゲータの 1-loop補正を計算する。Moyal積が非可換なので、行列と同様に二重線を用いてダ

イアグラムを書くのが妥当である。このとき、図 (3.1)の二種類の 1-loopダイアグラムが出てくる。

図 (3.1)のように、プラナーダイアグラム (a)は

2λ
∫

d2q

(2π)2
1

q2 +m2
(3.36)
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図 3.1: (a):プラナーダイアグラム (b):非プラナーダイアグラム

であり、非プラナーダイアグラム (b)は

λ

∫
d2q

(2π)2
e−iθ(p1q2−p2q1)

q2 +m2
, (3.37)

である。今、piは外線の運動量である。この二つの式の間の大きな違いは e−iθ(p1q2−p2q1)の位相因子

の有る無しである。(3.36)は位相因子を持っておらず、図 (3.1)(a)は通常の場の理論における φ4理論

の寄与と一致する。一方で、(3.37)は位相因子を持っている、また、通常の場の理論における φ4理

論では図 (3.1)(a)と (b)は同じダイアグラムとなる。図 (3.1)(b)は行列模型特有の効果を示す。その

ため、以下では (3.37)について計算する。

計算には Schwinger表示
1

q2 +m2
=
∫ ∞

0
dse−(q2+m2)s, (3.38)

を用いて非可換空間上の特性を見る。(3.37)は以下の様に計算される。

(3.37) = λ

∫
d2q

(2π)2
eiθ(p1q2−p2q1) ·

∫ ∞

0
dse−(q2+m2)s

= λ

∫ ∞

0
dse−m2s

∫
d2q

(2π)2
e−q2s+iqp†

= λ

∫ ∞

0
dse−m2s

∫
d2q

(2π)2
e−s(q−i θp†

2s
)2e−

θ2p2

4s

= λ

∫ ∞

0
dse−m2s

∫ ∞

0

dq

(2π)2
q(2π)e−s(q−i θp†

2s
)2e−

θ2p2

4s

= λ

∫ ∞

0
dse−m2s− θ2p2

4s × 1
2π

[
0 +

1
2s

]
=

λ

2π

∫ ∞

0
ds

1
2s
e−m2s− θ2p2

4s . (3.39)
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途中で運動量 qについての積分は極座標で書き換えた。∫
d2q =

∫ ∞

0
dq

∫ 2π

0
dϕq =

∫ ∞

0
dqq(2π). (3.40)

まずこの計算結果に対して、可換な理論 (θ = 0)との対応を見る。

(3.39) →θ→0
λ

2π

∫ ∞

0
ds

1
2s
e−m2s, (3.41)

ここで、sについての積分は、積分の下端を xとすると、∫ ∞

x

ds

s
e−s =

1
a

[
γ + log x+

∞∑
k=1

xk

k k!

]
. (3.42)

となる。ここで γはオイラーの数である。今、x→ 0なので、(3.42)は対数発散を取る。この事は可

換な理論における紫外発散と一致する。

次に、UVのカットオフ (Λ)を導入し、この紫外発散を正則化する事を考える。

(3.37) =
λ

2π

∫ ∞

0

1
2s

exp[−m2s− θ2p2

4s
− 1

4Λs
]

=
λ

2π

∫ ∞

0

ds′

m2

m2

2s′
exp[−s′ − m2θ2p2

4s′
− m2

4Λs′
]

=
λ

2π

∫ ∞

0
ds′

1
2s′

exp[−s′ − 1
4s′

{m2(θ2p2 +
1
Λ2

)}]. (3.43)

第二種ベッセル関数

K0(x) =
1
2

∫ ∞

0
dt

1
t
e−t−x2

4t , (3.44)

を用いると、（3.43）は次の様に書き換えられる。

(3.43) =
λ

2π
K0

(
m

√
θ2p2 +

1
Λ2

)
. (3.45)

ベッセル関数の展開

K0(x) =
∞∑

a=0

1
a!2
(x

2

)2a
(
−γ +

a∑
b=1

1
b
− log

x

2

)
, (3.46)

を用いると、UVのカットオフを導入した非プラナーダイアグラムの 1-loopの寄与は

(3.45) = − λ

2π

(
γ + log

(
m

2

√
θ2p2 +

1
Λ2

))(
1 + O

(
m

√
θ2p2 +

1
Λ2

))
, (3.47)

となる。

θ = 0の時は (3.47)は対数発散を持ち、可換な理論の場合と一致する。
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θ 6= 0の位相がある場合については、紫外極限 Λ → ∞においても
√
θ2p2 + 0より log 0とならず

発散しない。つまり、p 6= 0ならば紫外発散が存在しない。これは、θ 6= 0より、位相因子 θが存在

し、紫外発散を抑制しているために起こる現象である。ところが、Λ → ∞かつ p→ 0の時に、発散

する。つまり、可換な理論の紫外発散に由来する、赤外発散が出てきてしまった。この現象をUV/IR

mixingと呼ぶ。

今回、我々の研究では非可換空間として非可換球面を扱っている。この時、体積が有限となるため、

赤外領域のカットオフが自動的に導入される。我々の計算についてはUV/IR mixingによる発散はな

いが、可換な理論との有限の差が出る事が考えられ、この違いをUV/IRアノマリーと呼ぶ [37,38]。
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4 スカラー場の理論と非可換球面

この章では、我々が行列模型を用いて計算したモデルである、非可換球面上のスカラー φ4理論に

ついて述べる。まず、4.1節ではブロッホコヒーレント状態についてレビューを行い、状態の広がり

について述べる [39]。次に、4.2節では S1× S2 の多様体上で定義される可換な空間上のモデルを、

行列模型を用いて、どのように非可換球面上へ拡張するかを述べる。特に、非可換平面で取り扱った

Moyal積と同様に、非可換球面上ではスター積が存在する事を示した。そして、4.3節では領域の分

け方と行列模型の対応について、コヒーレント状態を用いて説明する。4.4節では研究において実際

に計算した物理量について説明する。最後に 4.5節では非可換空間上で相互作用を持つ理論 (λ = 1.0)

の場合の、補間作用 (interpolating action)を用いる計算法を述べる。

4.1 コヒーレント状態

この節では、ブロッホコヒーレント状態の時がどのような性質を持っているか、レビューを行う [39]。

まず最初に、ブロッホコヒーレント状態について述べる。ここで SU(2)の代数のスピン j 表現を

考える。一般的な基底 |jm〉 (m = −j,−j + 1, · · · , j)は、以下の関係式を満たす。

L±|jm〉 =
√

(j ∓m)(j ±m+ 1)|jm± 1〉, (4.1)

L3|jm〉 = m|jm〉 , (4.2)

ここで、L± = L1 ± iL2である。図 (4.1)のように、z方向の単位ベクトルに対応する状態を |jj〉と

する。この状態は単位球の北極点に対応する。すると、単位球面上の他の点に対応する状態は、回転

演算子 (R = e−i
−→
θ ·−→L )を |jj〉に作用させる事によって得られる。以下では、図 (4.1)の破線矢印で示

した、単位球面上の点 Ω = (θ, ϕ)に対応する状態を、|Ω〉と記す。|Ω〉は以下の様に与えられる。

|Ω〉 = eiθ(sin ϕL1−cos ϕL2)|jj〉 . (4.3)

この事より、以下の式が得られる。

niLi|Ω〉 = j|Ω〉 . (4.4)

ここで、~n = (sin θ cosϕ, sin θ sinϕ, cos θ)である。状態に対して回転を行った分、演算子 Liに対し

ても回転を行っている事に相当する。

ここで、角運動量演算子の固有値の分散
∑

i(∆Li)2を考える。
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図 4.1: |jj〉は z軸方向の大きさ 1の実線の矢印に対応する。|Ω〉は大きさ 1の破線の矢印に対応する。

∑
i

(∆Li)2 =
∑

i

〈(Li − 〈Li〉)2〉

=
∑

i

(
〈L2

i 〉 − 〈Li〉2
)

=
∑

i

(
〈Ω|L2

i |Ω〉 − (〈Ω|Li|Ω〉)2
)

= j(j + 1) −
∑

i

(〈Ω|Li|Ω〉)2 (4.5)

∑
i(∆Li)2が最小値を取る時、この状態 |Ω〉はブロッホコヒーレント状態（the Bloch coherent states）

と呼ばれる。つまり、Liの揺らぎが最も小さい状態である。

次に、コヒーレント状態の性質を述べる。(4.3)をベーカー・ハウスドルフの公式と z = tan θ
2e

iϕ

を使い書き換えると、

|Ω〉 = ezL−e−L3 log(1+|z|2)e−z̄L+ |jj〉 , (4.6)

となる。指数関数部分について、e−zL+ = 1 − zL+ + · · · と展開する。この時、ケットに L+が掛か

ると L+|jj〉 = 0より、展開の第一項目しか残らない。また、L3|jj〉 = j|jj〉である事より、

(4.6) =
1

(1 + |z|2)j
ezL− |jj〉

=
1

(1 + |z|2)j

2j∑
n=0

1
n!
znL−

n|jj〉

=
1

(1 + |z|2)j

j∑
m=−j

1
(j −m)!

zj−mL−
j−m|jj〉 . (4.7)
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となる。

L−
n|jj〉 =

√
(j + j)!

(j + j − n)!
(j − j + n)!

(j − j)!
|jj − n〉

=

√
2j!n!

(2j − n)!(0)!
|jj − n〉

=

√
2j!(j −m)!
(j +m)!

|jm〉 , (4.8)

を (4.7)に代入すると、

(4.7) =
1

(1 + |z|2)j

j∑
m=−j

1
(j −m)!

zj−m

√
2j!(j −m)!
(j +m)!

|jm〉

=
1

(1 + |z|2)j

j∑
m=−j

(
2j

j +m

) 1
2

zj−m|jm〉

=
(

cos
θ

2

)2j j∑
m=−j

(
2j

j +m

) 1
2 (

tan
θ

2

)j−m

ei(j−m)ϕ|jm〉

=
j∑

m=−j

(
2j

j +m

) 1
2 (

cos
θ

2

)j+m(
sin

θ

2

)j−m

ei(j−m)ϕ|jm〉 . (4.9)

となり、(4.9)式で |Ω〉を書き換えられる。

状態の性質は (4.9)を用いて、以下の様に求める事が出来る。

〈Ω1|Ω2〉 =
j∑

m=−j

(
2j

j +m

)(
cos

θ1
2

cos
θ2
2

)j+m(
sin

θ1
2

sin
θ2
2

)j−m

ei(j−m)(ϕ2−ϕ1)

=
(

cos
θ1
2

cos
θ2
2

+ ei(ϕ2−ϕ1) sin
θ1
2

sin
θ2
2

)2j

, (4.10)

ここで、2項展開を用いた。これより、

|〈Ω1|Ω2〉| =
(

cos2
θ1
2

cos2
θ2
2

+ sin2 θ1
2

sin2 θ2
2

+ cos
θ1
2

cos
θ2
2

sin
θ1
2

sin
θ2
2

(2 cos(ϕ2 − ϕ1))
)j

=
(

1 + cos θ1
2

1 + cos θ2
2

+
1 − cos θ1

2
1 − cos θ2

2
+

1
2

sin θ1 sin θ2 cos(ϕ2 − ϕ1)
)j

=
(

1
2
(1 + cos θ1 cos θ2) +

1
2

sin θ1 sin θ2 cos(ϕ2 − ϕ1)
)j

, (4.11)

となる。ここで、χ = arccos(~n1 · ~n2)とすると、

cosχ = sin θ1 sin θ2 cos(ϕ2 − ϕ1) + cos θ1 cos θ2 , (4.12)
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であり、これより

cos
χ

2
=

√
1 + cosχ

2

=

√
1
2
(1 + cos θ1 cos θ2) +

1
2

sin θ1 sin θ2 cos(ϕ2 − ϕ1) , (4.13)

となるので、以下の式が成り立つ。

|〈Ω1|Ω2〉| =
(
cos

χ

2

)2j
. (4.14)

最後に完全性について計算を行う。(4.9)で書き換えると、

2j + 1
4π

∫
dΩ|Ω〉〈Ω| =

2j + 1
4π

∫ 1

−1
d cos θ

∫ 2π

0
dϕ

j∑
m=−j

j∑
m′=−j

(
2j

j +m

) 1
2
(

2j
j +m′

) 1
2

(
cos

θ

2

)2j+m+m′ (
sin

θ

2

)2j−m−m′

ei(j−m−j+m′)|jm〉〈jm′|

=
2j + 1

2

∫ 1

−1
d cos θ

j∑
m=−j

(
2j

j +m

)(
cos2

θ

2

)j+m(
sin2 θ

2

)j−m

|jm〉〈jm|

=
2j + 1
22j+1

j∑
m=−j

∫ 1

−1
dx

(
2j

j +m

)
(1 + x)j+m(1 − x)j−m|jm〉〈|

=
2j + 1
22j+1

j∑
m=−j

∫ 1

−1
dx

(
2j

j +m

)
(j +m)!

(2j)!
dj−m

dxj−m
(1 + x)2j

(−1)j+m 2j!
(j −m)!

dj+m

dxj+m
(1 − x)2j |jm〉〈jm|

=
2j + 1
22j+1

j∑
m=−j

1
(2j)!

∫ 1

−1
dx(1 + x)2j(−1)j+m+j−m d2j

dx2j
(1 − x)2j |jm〉〈jm|

=
2j + 1
22j+1

j∑
m=−j

1
(2j)!

∫ 1

−1
dx(1 + x)2j |jm〉〈jm|

=
j∑

m=−j

|jm〉〈jm| = 1 , (4.15)

となる。以上より完全性が確かめられた。

χ = 2√
j
を (4.14)の右辺に代入する。jが大きい極限で

(
cos

χ

2

)2j
≈
(

1 − 1
2j

)2j

≈ e−1 (4.16)

が得られる。(4.16)より、ブロッホコヒーレント状態の有効な幅がスピン jに依存しており、 1√
j
に比

例している事を示している。
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4.2 可換な理論と非可換な理論

最初に、可換な空間上の理論として、S1 × S2上のスカラー φ4理論を考える。

SC =
R2

4π

∫ β

0
dt

∫
dΩ
(

1
2
φ̇2 − 1

2R2
(Liφ)2 +

µ2

2
φ2 +

λ

4
φ4

)
, (4.17)

ここで β は時間方向 S1の円周であり、系の温度の逆数である（β = 1/T）。Rは空間方向の多様体

S2の半径であり、S2の積分測度は R2
∫
dΩ = R2

∫ 2π
0 dϕ

∫ π
0 dθ sin θと与えられる。また、時間 tの

微分は ˙、空間微分は以下の Li (i=1,2,3)を用いて書き表す。

L± ≡ L1 ± iL2 = e±iϕ

(
± ∂

∂θ
+ i cot θ

∂

∂ϕ

)
,

L3 = −i ∂
∂ϕ

. (4.18)

この理論に対応する非可換球面上の理論を以下の様に導入する。

SNC =
R2

2j + 1

∫ β

0
dt tr

(
1
2
Φ̇2 − 1

2R2
[Li,Φ]2 +

µ2

2
Φ2 +

λ

4
Φ4

)
, (4.19)

ここで、jはスピンを表す0以上の整数、または半整数であり、Φは (2j+1)×(2j+1)の大きさのエルミー

ト行列である。このエルミート行列は時間によっている。LiはSU(2)のリー代数（[Li, Lj ] = iεijkLk）

の生成子であり、今はスピン j表現で書かれている。この理論 (4.19)を行列サイズを大きくする極限

を取る（連続極限、j → ∞）と、連続な理論 (4.17)と古典論のレベルで一致する。しかし量子論レベ

ルで考えると、非可換空間上の場の理論によるUV/IRアノマリーの為に、連続極限は一致しない。

(4.17)と (4.19)の対応を見る為に Berezin symbol fφ̂(Ω) = 〈Ω|φ̂|Ω〉 [45]を導入する。以下で

f[Li,φ̂](Ω) = Lifφ̂(Ω) . (4.20)

である事を示す。前節の (4.9)式を用いて |Ω〉の計算を進める。

〈Ω|[L3, φ̂]|Ω〉 = 〈Ω|(L3φ̂− φ̂L3)|Ω〉

=
∑
m,m′

(
2j

j +m

) 1
2 (

cos
θ

2

)j+m(
sin

θ

2

)j−m

e+imφ

(
2j

j +m′

) 1
2 (

cos
θ

2

)j+m′ (
sin

θ

2

)j−m′

e−im′φ(m−m′)〈jm|φ̂|jm′〉

= −i ∂
∂φ

〈Ω|φ̂|Ω〉
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= −i ∂
∂φ
fφ̂(Ω)

= L3fφ̂(Ω) . (4.21)

同様にして、L±についても考える。

〈Ω|[L+, φ̂]|Ω〉

=
∑
m,m′

(
2j

j +m

) 1
2 (

cos
θ

2

)j+m(
sin

θ

2

)j−m

(
2j

j +m′

) 1
2 (

cos
θ

2

)j+m′ (
sin

θ

2

)j−m′

ei(m−m′)φ〈jm|L+φ̂− φ̂L+|jm′〉

=
∑
m,m′

( 2j
j +m+ 1

) 1
2
(

2j
j +m′

) 1
2 (

cos
θ

2

)2j+m+m′+1(
sin

θ

2

)2j−m0m′−1

eiφei(m−m′)

√
(j +m+ 1)(j −m)

=
∑
m,m′

(
2j

j +m+ 1

) 1
2
(

2j
j +m′

) 1
2 (

cos
θ

2

)2j+m+m′+1(
sin

θ

2

)2j−m0m′−1

eiφei(m−m′)

√
(j +m+ 1)(j −m)

]
〈jm|φ̂|jm′〉

=
∑
m,m′

(
2j

j +m+ 1

) 1
2
(

2j
j +m′

) 1
2

ei(m−m′)φ

[
eiθ(j −m)

(
cos

θ

2

)2j+m+m′+1(
sin

θ

2

)2j−m−m′−1

−eiφ(j +m′)
(

cos
θ

2

)2j+m+m′−1(
sin

θ

2

)2j−m−m′+1
]
〈jm|φ̂|jm′〉 . (4.22)

以上よりまとめ直す。

cot θ =
cos θ
sin θ

=
1
2

(
cos θ

2

sin θ
2

−
sin θ

2

cos θ
2

)
, (4.23)

も用いて書くと、

L+fφ̂(Ω) = eiφ
(
∂

∂θ
+ i cot θ

∂

∂φ

)
〈Ω|φ̂|Ω〉

=
∑
m,m′

(
2j

j +m

) 1
2
(

2j
j −m′

) 1
2

ei(m−m′)φ

[
(2j +m+m′)

(
−1

2

)(
cos

θ

2

)2j+m+m′−1(
sin

θ

2

)2j−m−m′+1
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(2j −m−m′)
1
2

(
cos

θ

2

)2j+m+m′+1(
sin

θ

2

)2j−m−m′−1

−(m−m′)

(
1
2

(
cos

θ

2

)2j+m+m′+1(
sin

θ

2

)2j−m−m′−1

−1
2

(
cos

θ

2

)2j+m+m′−1(
sin

θ

2

)2j−m−m′+1
)]

〈jm|φ̂|jm′〉

= 〈Ω|[L+, φ̂]|Ω〉 , (4.24)

となる。L−についても同様である。よって、(4.20)が示された。

次に非可換球面上では、UV/IR mixingがどうなるかを述べる。非可換平面上ではUV/IR mixing

はMoyal積の計算から導いた。同様に非可換球面上のスター積を考える。非可換球面上では二つの

行列A、Bに対して、スター積が以下の様に定義される。

fA(Ω) ∗ fB(Ω) ≡ fAB(Ω) =
2j + 1

4π

∫
dΩ′ 〈Ω|A|Ω′〉〈Ω′|B|Ω〉 , (4.25)

各状態 |Ω〉を複素平面上で記述し、スター積の効果を見る。

射影にはステレオ射影 (sterepgraphic projection)を用いる。複素座標として、z = tan θ
2e

iθを導入

する。測度の変換を考えると、

dzdz̄ =

∣∣∣∣∣∂z
∂θ

∂z
∂ϕ

∂z̄
∂θ

∂z̄
∂ϕ

∣∣∣∣∣ dθdϕ
=

tan θ
2

cos2 θ
2

· 1
sin θ

· sin θdθdϕ

=
1
2

1
cos4 θ

2

sin θdθdϕ

=
1
2
(1 + |z|2)2 sin θdθdϕ , (4.26)

となる。また、dxdy = 2d2zである事を考慮すると、積分測度の変換は

4
1

(1 + |z|2)2
dzdz̄ = sin θdθdϕ (4.27)

となる。

次に各状態を z平面上の座標で書き表す事を考える (|Ω〉 = |z〉)。(4.9)式より、

|Ω〉 = |z〉

=
j∑

m=−j

(
2j

j +m

) 1
2 (

cos
θ

2

)j+m(
sin

θ

2

)j−m

ei(j−m)ϕ|jm〉
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=
(

1
2

sin θeiϕ
)j j∑

m=−j

(
2j

j +m

) 1
2
(

1
tan θ

2

)m

e−imϕ|jm〉 ,

(4.28)

となる。状態 |Ω〉は zのみで書き表す事が出来ない。

次に 〈β|A|α〉/〈β|α〉を考える。(4.28)より、ᾱと βが分母と分子で打ち消し合うため、αと β̄で表

記される。従って、

〈β|A|α〉
〈β|α〉

= eβ
∂

∂α
〈β|A|α+ β〉
〈β|α+ β〉

= eβ
∂

∂α e
α ∂

∂β
〈β|A|β〉
〈β|β〉

= eβ
∂

∂α e
α ∂

∂β 〈β|A|β〉

= eβ
∂

∂α e
α ∂

∂β fA(β, β̄) (4.29)

となる。ここで、Berezin symbolfA(Ω)を fA(β, β̄)と書き換えている。同様に計算すると、

〈α|A|β〉
〈α|β〉

= eβ̄
∂

∂ᾱ e
ᾱ ∂

∂β̄ 〈β|A|β〉

= eβ̄
∂

∂ᾱ e
ᾱ ∂

∂β̄ fA(β, β̄) , (4.30)

が得られる。また、完全性関係についていは、パラメータを Ωから zに書き換えて、

2j + 1
4π

· 4
∫
d2z

1
(1 + |z|2)2

|z〉〈z| = 1 , (4.31)

となる。(4.31)式は次の様に書き換えられる。

fA(β, β̄) ? fB(β, β̄) = 〈β|AB|β〉

= 4
2j + 1

4π

∫
d2α

1
(1 + |α|2)2

〈β|A|α〉
〈β|α〉

〈α|B|β〉
〈α|β〉

|〈β|α〉|2

= 4
2j + 1

4π

∫
d2α

(1 + |α|2)2
e−β ∂

∂α e
α ∂

∂β fA(β, β̄)e−β̄ ∂
∂ᾱ e

ᾱ ∂
∂β̄ fB(β, β̄)|〈β|α〉|2 .

(4.32)

(4.32)を、非可換球面上で β積分すると 4π
2j+1Tr(AB)となる事は以下の様に示される。

4π
2j + 1

Tr(AB) =
4π

2j + 1

(
4
2j + 1

4π

)2 ∫
d2αd2β

1
(1 + |α|2)2

1
(1 + |β|2)2

Tr(|β〉〈β|A|α〉〈α|B|β〉)

=
2j + 1

4π
42

∫
d2αd2β

1
(1 + |α|2)2

1
(1 + |β|2)2
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e−β ∂
∂α e

α ∂
∂β fA(β, β̄)e−β̄ ∂

∂ᾱ e
ᾱ ∂

∂β̄ fB(β, β̄)|〈β|α〉|2

= 4
∫

d2β

(1 + |β|2)2
fA(β, β̄) ? fB(β, β̄) . (4.33)

(4.33)について、j → ∞で、非可換平面と類似の以下の式が成り立つ事を示す。

4
∫

d2β

(1 + |β|2)2
fA(β, β̄) ? fB(β, β̄) = 4

∫
d2β

(1 + |β|2)2
fA(β, β̄)fB(β, β̄) . (4.34)

(4.34)が言えたとすると、(4.33)と (4.26)、および次の同一視

fΦ(t)(Ω) = φ(t,Ω) (4.35)

より、(4.25)の自由場部分 (Φ2の部分)は (4.23)の自由場部分に一致する。

(4.33)の積分を計算する際に部分積分を行う。α, ᾱについて考えると、部分積分の微分は 〈β|α〉と
1

(1+|α|2)2
1

(1+|β|2)2
にしか掛からない。

(4.33) =
2j + 1

4π
42

∫
d2αd2β

1
(1 + |α+ β|2)2

1
(1 + |β|2)2

|〈β|α+ β〉|2

e
α ∂

∂β fA(ββ̄)eᾱ
∂

∂β̄ fB(ββ̄) . (4.36)

|Ω〉を zを用いて書き換える。

1
2

sin θ = cos2
θ

2
tan θ =

z

1 + |z|2
, (4.37)

を用いると、

|z〉 =
(

z

1 + |z|2

)j j∑
m=−j

(
2j

j +m

)
1
zm

|jm〉 , (4.38)

となり、

〈β|α〉 =
(

α

1 + |α|2

)j ( β̄

1 + |β|2

)j j∑
m=−j

(
2j

j +m

)
1

β̄mαm

=
(

α

1 + |α|2

)j ( β̄

1 + |β|2

)j 2j∑
n=0

(
2j
n

)
1

(β̄α)j−n

=
(

α

1 + |α|2

)j ( β̄

1 + |β|2

)j 1
(β̄α)j

(1 + β̄α)2j

=
(

1
(1 + |α|2)(1 + |β|2)

)j

(1 + β̄α)2j , (4.39)

となる。
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次に、|〈β|α+ β〉|2を計算する。eα
∂

∂β と e
ᾱ ∂

∂β̄ が作用し、β → β − α、β̄ → β̄ − ᾱとずらす事を考

えると、

|〈β|α+ β〉|2 = 〈β|α+ β〉〈α+ β|β〉

=
(

1
(1 + |α+ β|2)(1 + |β|2)

)2j

(1 + β̄(α+ β))2j(1 + β(ᾱ+ β̄))2j

→
(

1
(1 + (ᾱ+ β̄)(α+ β − α))

1
(1 + β̄(β − α))

)2j

(1 + β̄(α+ β − α))2j(1 + (β − α)(ᾱ+ β̄))2j

→
(

1
(1 + (ᾱ+ β̄ − ᾱ)β)

1
(1 + (β̄ − ᾱ)(β − α))

)2j

(1 + (β̄ − ᾱ)β)2j(1 + (β − α)(ᾱ+ β̄ − ᾱ)2j ,

(4.40)

となる。この結果を (4.33)に代入すると以下の様になる。

(4.33) =
2j + 1

4π
42

∫
d2αd2β

1
(1 + |β|2)2

1
(1 + |β − α|2)2(

1
(1 + |β|2)(1 + |β − α|2)

)2j

(1 + (β̄ − ᾱ)β)2j(1 + (β − α)β̄)2jfA(β, β̄ − ᾱ)fB(β − α, β̄) .

(4.41)

新しい変数 γ = β − αと置いて、更に書き換えると、

(4.41) =
2j + 1

4π
42

∫
d2βd2γ

1
(1 + |β|2)2

1
1 + |γ|2)2

|〈β|γ〉|2fA(β, γ̄)fB(γ, β̄) , (4.42)

となる。

非可換平面のMoyal積と比較すると、自由な理論については積分が一つであったので、γ積分を実

行する事を考える。|β〉を北極 (|0〉)とし、図 (4.2)の様に二つの状態間の角度 θを設定すると、

|〈β|γ〉|2 =
(

cos
θ

2

)4j

(4.43)

である。これは j → ∞で θ = 0となり、鋭いピークを持つ。これを用いると、

2j + 1
4π

4
∫

d2γ

(1 + |γ|2)2
|〈0|γ〉|2 =

2j + 1
4π

∫
dθdϕ sin θ

(
cos

θ

2

)4j

=
2j + 1

2

∫ ε

0
dθ2 sin

θ

2
cos

θ

2

(
cos

θ

2

)4j

= 2(2j + 1)
∫ 1

cos ε/2
dxx4j+1

= (2j + 1)2
1

4j + 2
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図 4.2: 状態間の角度

→ j→∞1 , (4.44)

となる。以上より、2j+1
4π 4 1

(1+|γ|2)2
|〈β|γ〉|2が j → ∞で、デルタ関数の様に振る舞う事が分かった。こ

れを用いると、

4π
2j + 1

Tr(AB) = 4
∫
d2β

1
(1 + |β|2)2

fA(β, β̄) ? fB(β, β̄)

= 4
∫
d2β

1
(1 + |β|2)2

fA(β, β̄)fB(β, β̄)

=
∫
dΩfA(Ω)fB(Ω) . (4.45)

となる。以上より (4.34)が示された。

次に、相互作用項について考える。φ4理論より φの 4乗項が存在し、スター積は複雑になる。こ

の事を理解するために 2乗の場合のスター積は微分を含めた形で書くと、

fA ? fB(0, 0) ≈ e
1
2j

∂
∂α

∂
∂β fA(α, ᾱ)fB(β, β̄)|α=β=0 , (4.46)

となる。(4.46)は j → ∞の極限で、4乗より (4.46)のスター積 (fA ? fB(0, 0)) ? (fC ? fD(0, 0))を考

える。この時、部分積分を用いて、スター積から微分をなくす事が出来ない。よって、非可換平面上

と同じく、非可換球面上で、4乗項は可換な空間上の理論と一致しない。

以上の様に、非可換球面上で考えた場合でも、物理量の 3乗以上を計算すると、スター積の寄与が

存在する事が分かった。3.2節で述べた様に、この非可換な効果のために、UV/IRアノマリーが存在

する。ただし、fAと fBが緩やかに変化している場合（運動量が小さい場合）では、j → ∞で (4.46)

は通常の積に帰着する。これにより、非可換な理論と可換な理論では j → ∞で treeレベルでは一致

する。
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4.3 行列模型と二つの領域

この節では、非可換球面を二つの領域に分け、行列模型と領域の対応を見る [20]。Berezin symbol

と行列要素 〈jm|Φ|jm′〉 の関係は以下の様に与えられる。

fΦ(Ω) =
∑
m,m′

〈Ω|jm〉〈jm|Φ|jm′〉 〈jm′|Ω〉. (4.47)

ここで、(4.9)を使う事により、

〈Ω|jm〉〈jm′|Ω〉 ∼
(

cos
θ

2

)2j+m+m′ (
sin

θ

2

)2j−m−m′

ei(m−m′)ϕ , (4.48)

が得られる。

〈Ω|jm〉〈jm′|Ω〉の振る舞いについて cos θ = yとし考える。

cos
θ

2
=

√
1 + y

2
(4.49)

sin
θ

2
=

√
1 − y

2
, (4.50)

の書き換えと、x = (m+m′)/2jと置く事によって、(
cos

θ

2

)2j+m+m′ (
sin

θ

2

)2j−m−m′

=
1

22j
(1 + y)j(1+x) (1 − y)j(1−x) . (4.51)

となる。(4.51)がどこで極値を取るのか調べる。

f(y) = (1 + y)j(1+x) (1 − y)j(1−x) . (4.52)

y微分を行う。

f ′(y) = (1 + y)j(1+x)−1(1 − y)j(1−x)−1{j(1 + x)(1 − y) − j(1 − x)(1 + y)} . (4.53)

ここから、y = xで f(y)は極値を持つ事が分かる。極値の周りで展開する事を考える。

ln f = ln
[
(1 + y)j(1+x) (1 − y)j(1−x)

]
= j(1 + x) ln (1 + y) + j(1 − x) ln (1 − y)

= j(1 + x) ln (1 + x+ ∆y) + j(1 − x) ln (1 − x− ∆y)

= j(1 + x) ln (1 + x) + j(1 + x) ln
(

1 +
∆y

1 + x

)
+ j(1 − x) ln (1 − x) + j(1 − x) ln

(
1 − ∆y

1 − x

)
= j(1 + x) ln (1 + x) + j(1 − x) ln (1 − x)

+j(1 + x)
(

∆y
1 + x

− 1
2

(∆y)2

(1 + x)2
+ O((∆y)3)

)
+ j(1 − x)

(
− ∆y

1 − x
− 1

2
(∆y)2

(1 − x)2
+ O((∆y)3)

)
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= j(1 + x) ln (1 + x) + j(1 − x) ln (1 − x) − 1
2
j

(
1

1 + x
+

1
1 − x

)
(∆y)2 + O((∆y)3)

= j(1 + x) ln (1 + x) + j(1 − x) ln (1 − x) − 1
2
j

2
1 − x2

(∆y)2 + O((∆y)3) . (4.54)

今、yと角度 θに対しては、以下の様な関係が成り立つ。

y = cos(θ0 + ∆θ)

= cos θ0 − sin θ0∆θ + O((∆θ)2)

= x−
√

1 − x2∆θ + O((∆θ)2) (4.55)

∆y = −
√

1 − x2∆θ + O((∆θ)2) . (4.56)

これを代入すると、

(4.54) = j(1 + x) ln (1 + x) + j(1 − x) ln (1 − x) − j
1

1 − x2
(1 − x2)(∆θ)2 + O((∆θ)3)

= j(1 + x) ln (1 + x) + j(1 − x) ln (1 − x) − j(∆θ)2 + O((∆θ)3) , (4.57)

となる。以上より f の形に書き直す。

f = (1 + x)j(1+x)(1 − x)j(1−x)e−j(∆θ)2 . (4.58)

この事から∆θの幅が 1/
√
j である事が求まる。すなわち、(4.54)より j → ∞で鋭いピークを持つ

事が分かる [20]。以上より、

cos θ =
m+m′

2j
. (4.59)

の関係が成り立ち、この幅は∆θ ∼ 1√
j
である。この事は、行列要素 〈jm|Φ|j n−m〉が cos θ = n

2j に

おける場 φに対応する事を示している [20]。行列サイズはN と記す。N = 2j + 1である。

ここまでの議論より、行列要素と θの関係を示す事が出来る。

我々の研究では、非可換球面を二つの領域に分けた [20]。対応は図 (4.59)である。領域Aと Bを

指定するために、我々は新しいパラメータ xを導入する。図の角度のパラメータ θとは、以下の様な

関係を持つ。

x = 1 − cos θ . (4.60)

xは 2πによって分けられた領域 Aの面積を表す。行列で書き表す為の行列 Φのパラメータ (m,m′)

は、以下の不等式を用いて領域Aと Bを区別する。領域Aの場合は

m+m′ > 2j − u , (4.61)
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N = 2j + 1
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θ

A

B

図 4.3: 非可換球面上の二つの領域A, Bと、行列模型の二つの領域A, B

を満たす。ここで、u = 0, 1, 2, · · · , 4j であり、uが領域 Aの大きさを記述する。ここで、この事は

(4.59)、(4.60) 、 (4.61) に従い、uと xの関係は以下の様になる。

x =
u

2j
. (4.62)

4.4 実際の計算量

(4.19)において、Φ(t)をどのようにおくかを述べる。今、領域 Bに対して n個のレプリカがある

と考える。よって、Φ(t) = ΦI(t)に対して、以下の様な周期境界条件を課す。この事は図 2.4に対応

する。

ΦI(β,m,m′) = ΦI+1(0,m,m′) 領域A ,

ΦI(β,m,m′) = ΦI(0,m,m′) 領域 B , (4.63)

I = 1, · · · , nであり、n+ 1は I = 1に対応する。その際、我々は以下の関係式を得る。

Trρn
A =

Z(x, n)
Zn

, (4.64)

ここで、Zは xを変数として持ちZ(n = 1)である。(4.64)を (2.13)に代入して、SAを書き換えると

SA(x) = − lim
n→1

∂

∂n
ln
(
Z(x, n)
Zn

)
. (4.65)

ここから、β → ∞の極限を取る事により、基底状態のエンタングルメントエントロピーを得る事が

出来る。有限の βを考えると、β = 1/T の関係より、有限温度の効果を見る事が出来る。
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今回エンタングルメントエントロピー SAをパラメータ xで微分した量を計算した。

∂SA(x)
∂x

=
∂

∂x

[
− lim

n→1

∂

∂n
ln
(
Z(x, n)
Zn

)]
= lim

n→1

∂

∂x

∂

∂n
F [x, n] , (4.66)

ここで、F [x, n]は図 2.4で指定される系の自由エネルギーである。計算時、n微分に対し近似を用い

ると、以下の様になる。2

lim
n→1

∂

∂x

∂

∂n
F [x, n]

→ ∂

∂x
(F [x, n = 2] − F [x, n = 1]) = lim

j→∞

F [x+ ε, n = 2] − F [x, n = 2]
ε

, (4.67)

ε = 1
2j である。ここで、(2.4) より、 β → ∞の極限を取ると、

SA(x) = SA(2 − x) ,
∂SA

∂x
(x) = −∂SA

∂x
(2 − x) , (4.68)

である。これは θ → π − θの元での系の対称性を反映している。

4.5 非可換空間上の場の理論の計算方法

エンタングルメントエントロピーは前出の様に、レプリカ法を用いて計算した。相互作用項を持つ

場の理論 λ 6= 0の場合は、補間作用 (interpolating action) Sint = (1 − γ)Sx+ε + γSxを導入して計

算する。ここで Sx+εと Sxは、領域Aのサイズ u = 2j(x+ ε), 2jxにそれぞれ対応する作用であり、

自由エネルギー F [x+ ε, n = 2]と F [x, n = 2]にも対応している。数値的に計算をする為に、以下の

様な積分を行う。

F [x+ ε, n = 2] − F [x, n = 2] =
∫ 1

0
dγ 〈Sx+ε − Sx〉γ , (4.69)

ここで、〈· · · 〉γ はカノニカル分布 e−Sint の重みで計算した期待値を表す。実際の計算においては、γ

は 0から 1まで、0.1刻みで計算している。また、〈Sx+ε − Sx〉γ を各 γ について数値計算しており、

最後の積分については、シンプソン公式を用いる。

自由場の理論 λ = 0の場合、我々は直接 F [x, n = 2]を数値的に計算した。詳しくは付録 Bに記述

する。

どちらの場合についても、時間方向について格子理論を用いて計算しており、格子間隔は aである。

2厳密には、レンニエントロピーの x微分を計算している。ここではレンニパラメータは n = 2である。
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5 ハイブリッドモンテカルロシミュレーション

λ = 1のモデルに対しては、ハイブリッドモンテカルロ法を用いた計算機シミュレーションで計算

を行った [40]。モンテカルロ法は、様々な状態の平均が、マルコフ過程で生成された状態の列での平

均で近似される事を利用している。マルコフ過程とは、、その状態になる前の状態にのみよる遷移確

率を持つ理論である。

その中でも、ハイブリッドモンテカルロ法を実際には用いて計算を行った。この計算法では、新し

い変数としてガウス分布で決まる共役運動量を用いる事により、一つの変数にのみよる場合に比べ、

より効率的に結果を得る事が可能となる。変数 φは与えられた物を用い、補助変数である共役な運動

量 πを含めた作用は以下の様になる。

H[φ, π] =
1
2
π2 + S(φ) . (5.1)

S(φ)は理論より決まる作用である。このハミルトニアンから、古典的な理論を考える。運動方程

式から、以下の式を得る。
dφ

dτ
=
∂H

∂π
= π,

dπ

dτ
= −∂H

∂φ
= −∂S

∂φ
. (5.2)

(5.2)に従い、状態は発展する。実際はコンピュータを用いた数値的な計算のため、離散的な扱いが

必要となる。その為、我々はリープフロッグ法（かえる跳び法）を用いた。この方法は時間に対して

可逆性を持つ理論である。今、二つの変数 φと πを τ = 0, τf の間で発展させる事を考える。この時

間間隔をステップ数Ntで分割する。この間隔をステップサイズ ε = τf/Ntとし、εごとに φと πを

更新する事を考える。

まず、時間 τ = 0に対し、与えられた φとガウス分布で生成される運動量 πを設定する。φ(0) = φ

π(0) = π
(5.3)

次に、(5.2)式より以下の様に発展を行う。

第一ステップ

π(1/2) = π(0) − 1
2
ε
∂S(φ(0))
∂φ(0)

(5.4)

主ステップ 
φ(n+ 1) = φ(n) + επ(n+ 1/2)

π(n+ 3/2) = π(n+ 1/2) − ε
∂S(φ(n+ 1))
∂φ(n+ 1)

(5.5)

最終ステップ

φ′ = φ(Nt) = φ(Nt − 1) + επ(Nt − 1/2) (5.6)
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π′ = π(Nt) = π(Nt − 1/2) − ε
∂S(φ(Nt))
∂φ(Nt)

(5.7)

時間をNt等分している為、Nt回に分けて発展を行っている。また、φ(n) ≡ (t = nε)と略記して

いる。

最後にこの発展結果が受け入れられるかどうかをメトロポリステストで決める。ハミルトニアンは

古典的に連続的に解かれる場合は保存される。この時、ハミルトニアンの発展の前後の差、

∆H = H(φ′, π′) −H(φ, π) , (5.8)

は０になる。しかし、シミュレーションでは連続でなく離散であるから δH 6= 0である。今回の様な

離散的な計算では、運動エネルギーが保存せず正しい確率分布による発展にならない。この欠点を克

服する為、乱数を用いて受け入れるか否かのテストを行う。このテストはメトロポリステストと呼ば

れる。まず、∆H < 0の場合は、無条件で受け入れる。また、∆H > 0の場合では乱数 rを用いて

r < e−∆H の場合は受け入れる。そして、受け入れられた場合は新しく φ = φ′, π = π′と置き、1ス

イープが終了する。次のスイープは (5.3)から行う。

十分に小さい∆τ を選ぶ事で φ′と π′を受け入れる回数を増やす事は出来る。この事をアクセプタ

ンスを大きくするという。アクセプタンスを大きくすると、計算時間も長くなるため、通常は適切な

アクセプタンスを選び計算を行う。
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6 数値解析の結果

この章では、自由場の理論 (λ = 0)の結果と相互作用がある理論 (φ4理論)の結果を述べる。相互

作用がある場合は、φ4項の結合定数を λ = 1.0として計算を行った。これは強結合の場合に対応す

る。また、全ての理論で質量 µ = 1.0で計算を行った。

6.1 λ = 0

我々は最初に F [x, α = 2]を数値計算した。詳しい方法は付録Bに示している。LAPACを用いて、

LU 分解から、付録 Bにある、行列 T の対数を求めた。そこから、測定値であるエンタングルメン

トエントロピー SAの x微分 ∂SA/∂xを (4.67)式を用いて求めた。領域を分けるパラメータ uの定義

式 (4.62)より、以降のグラフに対し、uを 2jで割った物 xが、横軸のパラメータである。縦軸はエ

ンタングルメントエントロピー SAを xで微分し、2jで割った量を表す。

行列サイズN = 16、β = 1.0, 2.0, 3.0、時間方向の格子間隔 a = 3.125× 10−2場合のグラフは図 6.1

となる。β = 1.0のグラフから、uが奇数の場合と偶数の場合とで、振る舞いが異なる事が見て取れ

る。また、奇数のみ、偶数のみのグラフでは滑らかになる事が見て取れる。一方で、βを大きくする

と、偶奇の違いによる振る舞いの違いが小さくなる事が見て取れる。

我々は様々な βの値でエンタングルメントエントロピーを測定したため、また、シミュレーション

との関係により、以下は uが奇数の場合に着目して議論を進める。

図 6.2と図 6.3では、時間方向の格子間隔を変える事により、時間方向の連続極限を調べた。図 6.2

はN = 16, β = 1.0の結果を示している。また、図 6.3ではN = 16, β = 3.0の結果を示している。グ

ラフにおいては、４つの異なる格子間隔 aのデータを示した。両方のグラフにおいて a = 3.125×10−2

と a = 4.167× 10−2のデータがほぼ重なっている事が見て取れる。これは、連続極限がとれている事

を意味する。

a = 3.125×10−2に対して直線 1
2j

∂SA
∂x = cx+dでフィッティングを行った。この際、端である x = 0

と x = 2.0の近くのデータを除いて行っている。x = 0と x = 2.0の近くは、Aまたは B領域がとて

も狭い事に対応する。この時、行列のサイズN が有限である事からくる 2つの領域の曖昧さのため

に、これらのデータを取り除く事は妥当である。

具体的には β = 1.0に対し領域 0.333 ≤ x ≤ 1.8で、β = 3.0に対し領域 0.2 ≤ x ≤ 1.8でフィッティ

ングを行った。その結果 β = 1.0に対して、c = −0.1672(26)かつ d = 0.2623(32)、β = 3.0に対し

て c = −0.1612(29)かつ d = 0.1629(33)となる事が分かった。図 6.3ではN = 16、β = 3.0に加え、

N = 16、β = 4.0、a = 4.167 × 10−2のデータを示している。また、この結果はN = 16、β = 3.0、

a = 4.167 × 10−2の結果とほぼ等しい事が見て取れる。これより、β = 3.0は十分低温極限 (β → ∞
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図 6.1: 縦軸は 1
2j

∂SA
∂x ,横軸は xを表す全てのデータに対して、行列サイズN = 16、時間方向の格子

間隔 a = 4.167× 10−2は一定である。三角形、円の各点はそれぞれ β = 1.0, 4.0に対応している。今、
x = u/2jであるので、uが奇数に対応するデータ、または偶数に対応するデータがそれぞれ滑らかに
振る舞う事が分かる。また、グラフから分かる様に βを大きくするに従い、偶奇の差は小さくなる。

の極限)に近いと言える。確かに、N = 16, β = 3.0、a = 3.125 × 10−2のデータをフィットした関数
1
2j

∂SA
∂x = cx + d、c = −0.1612(29)、d = 0.1629(33)は低温極限で成立する (4.68)を満たす。また、

この関数は誤差の範囲内で、1 − xに比例している。この事より、エンタングルメントエントロピー

の振る舞いとして、

SA ∝ 2x− x2 = sin2 θ . (6.1)

が予測される。この振る舞いは [20, 21]において観測された結果と係数を除いて等しい。β = 1.0と

β = 3.0のフィッティングによって得られた cと dの値を比較する事により、二つの関数 1
2j

∂SA
∂x = cx+d

の違いが定数である事が分かった。この事はエンタングルメントエントロピーへの有限温度効果が x

に比例している事を示す。すなわち、有限温度効果は体積に比例する事が分かった。我々は今回 uが

奇数の場合に着目したが、偶数の場合も同様に有限温度の寄与が存在する。

また、図 6.2では、異なる aに対して、x = 1で同じ値を取っている。この値を異なる aの各デー

タから引くと、x = 0, 2の近傍を除いて式 (4.68)を満たす。この事より、有限温度効果は aによらな

い事が分かる。

最後に N → ∞ の極限を調べる。図（6.4）は行列サイズ N = 16, 24, 32 に対して、β = 1.0、
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図 6.2: 縦軸は 1
2j

∂SA
∂x ,横軸は xを表す。全てのデータに対して、行列サイズ N = 16、時間方向の

長さ β = 1.0で一定である。菱形、三角形、円、四角形の各点は時間方向の格子間隔 aがそれぞれ
a = 0.125, 6.250 × 10−2, 4.167 × 10−2, 3.125 × 10−2の場合に対応する。また、直線は四角形のデー
タ (a = 3.125× 10−2)を、領域 0.333 ≤ x ≤ 1.800で 1

2j
∂SA
∂x = cx+ dにフィッティングした結果であ

る。c = −0.1672(26)、d = 0.2623(32)の値を取る。

α = 4.167 × 10−2のグラフである。この図では、他の図と異なり、縦軸が 2jで割られていない。こ

の３つのグラフは x = 1.0で重なる。この値の平均を各データから引き、縦軸を 1
2j

∂SA
∂x としたグラフ

を、図 (6.5)に描いた。すると、すべての点がほぼ重なる事が分かった。以上より、有限温度の効果

がN に依存しない事、低温極限で β → ∞ではエンタングルメントエントロピー SAはN に比例す

る事が分かった。
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図 6.3: 縦軸は 1
2j

∂SA
∂x 、横軸は xを表す。全てのデータに対して、行列サイズN = 16で一定である。

菱形、三角形、逆三角形、円の各点は時間方向の長さ β = 3.0で一定であり、時間方向の格子間隔 a

はそれぞれ a = 0.125, 6.250 × 10−2, 4.167 × 10−2, 3.125 × 10−2の場合に対応する。また、直線は円
のデータ (β = 3.0, a = 3.125 × 10−2)を、領域 0.200 ≤ x ≤ 1.800で 1

2j
∂SA
∂x = cx+ dにフィッティン

グした結果である。c = −0.1612(29)、d = 0.1629(33)の値を取る。四角形の点は時間方向の長さは
β = 4.0、時間方向の格子間隔 aは a = 4.167 × 10−2の場合に対応する。
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図 6.4: 縦軸は ∂SA
∂x ,横軸は xを表す。全てのデータに対して、時間方向の長さ β = 1.0、時間方向

の格子間隔 a = 4.167 × 10−2で一定である。三角形、円、四角形の各点は行列サイズN がそれぞれ
N = 16, 24, 32の場合に対応する。全てのデータは x = 1で重なっている。

6.2 λ = 1.0

この節では、λ = 1.0の場合についての結果を述べる。第５章で説明した、ハイブリッドモンテカ

ルロ法を使い、シミュレーションを行った。この計算には京都大学基礎物理学研究所のスーパーコン

ピュータ SR16000と東京大学情報基盤センターのスーパーコンピュータ FX10を利用した。付録 C

にある、ジャックナイフ法による誤差の解析には、東京大学情報基盤センターのスーパーコンピュー

タ SR16000を利用した。また、プログラム言語には Fortranを利用し、OpenMPによるスレッド並

列化を用いて、計算の高速化を行った。プログラムコードについては、付録 Eに載せている。

モンテカルロシミュレーションで用いたパラメータは、以下の表 (6.6)の通りである。λ = 0の節

では、有限温度効果が βの値でコントロール出来る事が分かった。その為、計算にかかる時間との関

係上、N = 16、β = 1.0、a = 0.125の場合とN = 16、β = 1.0、a = 6.250 × 10−2の場合をモンテ

カルロシミュレーションで計算した。図 (6.7)で、縦軸は 1
2j

∂SA
∂x 、横軸は xを表す。λ = 1.0におい

ても、λ = 0の場合と同じく uが奇数の場合にのみ着目した。有限温度効果を別に考える。

まず、N = 16、β = 1.0、a = 0.125の場合について述べる。この際、各 u = 2j × xに対し、(4.69)

式の 〈Sx+ε − Sx〉を計算した。γ = 0.0, 0.1, · · · , 1.0として、11の試行を行った。各試行に対しては

3, 000, 000回のトラジェクトリを取っている。また、最初の 100, 000回は熱平衡になる過程であると
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図 6.5: 縦軸は 1
2j

∂SA
∂x ,横軸は xを表す。全てのデータに対して、時間方向の長さ β = 1.0、時間方向

の格子間隔 a = 4.167 × 10−2で一定である。三角形、円、四角形の各点は行列サイズN がそれぞれ
N = 16, 24, 32の場合に対応する。各データから ∂SA

∂x |x=1.0の平均値を引いた値を、改めて ∂SA
∂x と定

義しプロットしている。

行列サイズ N 時間方向長さ β 時間格子間隔 a 時間間隔 τf ステップ数 Nt スウィープ数
16 1.0 0.125 3.0 20 3, 000, 000
16 1.0 6.250 × 10−2 3.0 20 5, 000, 000

図 6.6: 相互作用のある理論 (λ = 1.0)に対するハイブリッドモンテカルロシミュレーションのパラ
メータ。各場合におけるアクセプタンスは、共に約７０％である。

見なし、残りの 2, 900, 000回のデータを用いた。

有限温度の効果より、グラフ全体が y方向に定数分大きな値を持つと考える。この値を考慮すると、

x = 0.867, 1.000, 1.133のデータを除いて (4.68)を満たす。

図 (6.2)のN = 16、β = 1.0、a = 0.125と比較すると、同じN, β, aであっても λ = 1.0の結果は

λ = 0と異なる振る舞いをする事が分かる。x = 0.0, 1, 0の近傍では、一定値を取る傾向がある。こ

れは、非局所的な相互作用の寄与のためと考えられる。3絶対値は自由場の場合に比べ、10分の 1程

度となっている。これは、強結合及び非可換性の効果のためと考えられる。

次に、N = 16、β = 1.0、a = 6.250× 10−2の場合について述べる。この際も、各 u = 2j × xに対

し、(4.69)式の 〈Sx+ε − Sx〉を計算した。γ = 0.0, 0.1, · · · , 1.0として、11の試行を行った。各試行に
3これは、素朴に期待される体積則と矛盾しない。ただし、この点に対しては第 7章における議論を参照
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図 6.7: 縦軸は 1
2j

∂SA
∂x ,横軸は xを表す。このデータは、行列サイズN = 16、時間方向の長さ β = 1.0、

時間方向の格子間隔 a = 0.125の場合に対応する。

対しては 5, 000, 000回のトラジェクトリを取っている。また、最初の 100, 000回は熱平衡になる過程

であると見なし、残りの 4, 900, 000回のデータを用いた。

このグラフからは、a = 0.125の場合と同じく、非局所的な相互作用のため、λ = 0と異なる振る

舞いをする事が見て取れた。絶対値は自由場の場合に比べ、10分の 1程度となっている。これも、強

結合及び非可換性の効果のためと考えられる。
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図 6.8: 縦軸は 1
2j

∂SA
∂x ,横軸は xを表す。このデータは、行列サイズN = 16、時間方向の長さ β = 1.0、

時間方向の格子間隔 a = 6.250 × 10−2の場合に対応する。
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7 まとめと展望

本研究において、スカラー場の理論におけるエンタングルメントエントロピーを、レプリカ法を用

いて、非可換球面上で計算した。[20, 21]では自由場でのみ使える方法を用いていたが、我々は相互

作用がある場合にも適用出来る異なった方法を用いた。数値計算の方法としては、相互作用場の理論

ではハイブリッドモンテカルロ法を用いた [24,25]。

自由場の理論 (λ = 0)については、低温極限では計算結果が既出の結果 [20, 21]と係数を除いて等

しくなった。このことから、我々の計算方法が正しい事を保証している。また、エンタングルメント

エントロピーのスケールが行列サイズに比例する事を再現したが、行列サイズN = 16が、球面上の

連続極限に十分近い事が分かった。

有限温度については、本研究により新しく計算された。自由場の理論については、一般的な場の理

論と同じく、有限温度によるエンタングルメントエントロピーへの効果が体積に依存する事を発見し

た。また、有限温度効果が行列サイズN と格子間隔 aに依存しない事が分かった。相互作用場の理

論についても、グラフの振る舞いが中心を除いて (4.68)を満たすため、有限温度効果は同様に体積に

依存する事が分かった。また、aには依存しない事も明らかにした。

相互作用場の理論（λ = 1.0）については、強結合の理論であると考えられる。行列サイズN = 16、

時間方向の長さ β = 1.0、時間方向の格子間隔 a = 0.125, 6.250 × 10−2のデータは明らかに自由な場

のエンタングルメントエントロピーの振る舞いと異なる。(特に a = 0.125の場合は、x = 0.0, 1.0の

近傍で、一定値を取る傾向がある。)これは非局所的な相互作用に由来すると考えられる。また、エ

ンタングルメントエントロピーの絶対値が自由場の場合の 10分の 1になっている。この大きな違い

は、強結合及び非局所的な相互作用の効果であると考えられる。

自由場の理論のエンタングルメントエントロピーが (6.1)となった理由を、以下考察する。第 6章

で見た様に、非可換球面上の自由場の理論の作用は、j → ∞で可換な理論の作用と一致する。このた

め、カットオフに依存しない量は、可換な場合と同じ事が期待される。実際、本論文で示した様に、

エンタングルメントエントロピーの有限温度効果はカットオフに依存せず、可換な理論と同じく領域

の体積に依存する。また、文献 [21]では、可換球面上と非可換球面上のスカラー理論で自由場の場

合にカットオフに依存しない量である情報量が計算され、両者が一致する事が示された。非可換球面

上のエンタングルメントエントロピーの主要項は、自由場の場合には可換球面上の結果と一致する、

すなわち、境界の面積である sin θに比例することが素朴には期待される。しかし、エンタングルメ

ントエントロピーの主要項はカットオフに依存する量であるため、注意が必要である。つまり、正則

化された理論である、行列模型に立ち戻って議論しなくてはならない。

まず行列模型で、自由場の場合、Liが 3重対角である事を考慮すると、作用は行列要素に対して、
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局所的になっている。角度 θが一定の円周上で（図 (4.3)(a)）、この円周の上にあるブロッホコヒーレ

ント状態を考える。(4.16)とその下の考察より、独立なブロッホコヒーレント状態は、sin θに依存し

た数だけとれる。そのため、この円周上では sin2 θに比例した数の行列要素 〈jm′|Φ|jm〉が局所的に

相互作用している事になる。よって、エンタングルメントエントロピーは sin2 θに比例すると考えら

れる。

これより、非局所的な相互作用の効果は“体積則”

SA ∝
∫

sin2 θ′dθ′ , (7.1)

として現れると考えるのが自然である。

また、エンタングルメントエントロピーが N に比例する事は、次の様に理解出来る。sin2 θは円

周の 2乗であるので、長さの 2乗の次元を持つ。これを無次元化するには、長さのカットオフである

1/
√
jの 2乗で割る事になり、エンタングルメントエントロピーは、j、すなわちN に比例している。

今後の展望について述べる。相互作用場の理論については、行列サイズN = 16、時間方向の長さ

β = 1.0、時間方向の格子間隔 a = 0.125, 6.250 × 10−2についてのみデータを得た。更に異なる時間

方向の格子間隔 aについてと異なる行列サイズN について計算を行い、連続極限について調べたい。

この際、aとN の値に応じて、λと µの値を調整する必要がある可能性がある。これにより、図 ()と

()のデータがより近づく事が期待される。また、β → ∞の極限について調べる事も重要である。こ

れらの極限を取る事によって、非局所的な相互作用の効果が、xに比例する素朴な体積則か、(7.1)式

の様な“体積則”のどちらとして現れるのかを、明らかにしたい。さらに、エンタングルメントエン

トロピーの µと λ依存性を調べたいと考えている。特に、相転移があるかどうかを調べたいと考えて

いる。

また、Li → Li ⊗ 1kとモデルを変更し、k → ∞を取る事により、プラナーの寄与のみを取り出し、

可換な S2上の相互作用場の理論が得られるが、この時のエンタングルメントエントロピーを計算し、

非可換な場合との比較を行うのも興味深い。また、相互情報量がどのように非可換性の影響を受ける

のかも、調べたい。
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A de Sitter時空上の場の理論

非可換空間上のエンタングルメントエントロピーの研究の他に、曲がった空間である de Sitter時

空上の場の理論についても研究を行ってきた。参考の為に以下に簡単に述べる。

A.1 序論

近年の宇宙物理学における観測技術の発展は目覚ましい。我々の宇宙の大部分が物質ではなく、ダー

クエネルギーが占めるという事実がWMAPという衛星の宇宙背景放射の観測結果から得られてい

る。ダークエネルギーは宇宙項Λとも呼ばれており、とても小さな正の値を持つ。この事は、我々の

住む宇宙が de Sitter空間である事を示す。また、宇宙の膨張する測度を決めるハッブル定数H の 2

乗は、宇宙項となる。その宇宙項には、宇宙項の理論値が測定値に比べ１２０桁ほど大きいという問

題があり、宇宙項問題と呼ばれている。宇宙項問題の解決法としては、宇宙項への量子効果により、

宇宙項が小さな値を取る事が提案されてきた。

今日の宇宙項への量子補正を計算するには、de Sitter時空上で量子論を計算する必要がある。この

方法は in-in formalism、または Schwinger-Keldysh formalismと呼ばれる [46–51]。また、時間とと

もに広がる空間の性質より、超波長をもつばの数は、時間経過とともに増えていく。この事を原因と

した、de Sitter時空特有の赤外発散が量子補正となり、宇宙項を遮蔽する効果 (赤外遮蔽効果)に着目

して、計算を行った。具体的には、我々は 2次元時空上で、matter場によるエネルギー運動量テンソ

ルを計算した。これは、エネルギー運動量テンソルが宇宙項 Λへの量子補正と見なせるためである。

計算法の違いもあるが、計算する時空の違いより、masslessの de Sitter時空上のプロパゲータは

de Sitter不変性を保たない事は、一般的な理論と大きく異なる。そのため、de Sitter対称性を保つ

様に理論を考えるべきかどうか、という問いも提起されてきた [52–64]。この問いに対する議論も行

われてきたが [66]、完全な決着には至っていない。

我々の重力とmatter場の結合するモデルは、2次元Liouville理論に基づいている [71]。このLiouville

場は、計量をWeyl変換する事で導く事が出来る。我々はLiouville理論を2次元重力として扱い、matter

場の寄与が大きい極限を見た。

2次元モデルを Liouville理論に基づいて考えることは、文献 [74]の宇宙項への赤外遮蔽効果の研究

に関連する。そこでは、計量のWeylファクターが主要な役割をする。同様の事は、4次元においても

試みられている [75–77]。2次元においても、Liovulle重力は特別な場合として考えられている [78]。

このような機構が de Sitter時空上でも働くならば、宇宙項問題に大きく影響すると予想される。4

4文献 [70]では、ユニタリーでない time-likeな Liouville理論の宇宙項について議論している。
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我々の研究では、matter場の摂動効果に限定して、結果を見ている。具体的な例として、スカラーφ4

理論を用い、de Sitter時空上で計算を行った。エネルギー運動量テンソルへのループ補正は、massless

場 φのプロパゲータによって計算される。このプロパゲータは de Sitter対称性を破っている。従っ

て、エネルギー運動量テンソルは量子補正として、赤外の対数発散 ln a(t)を持つ。我々の計算結果

は、2次元 de Sitter時空において、λ3のオーダーで、Liouville重力に対しては、赤外遮蔽効果を見る

事が出来た。一方 4次元で考えると、スカラー φ4理論は赤外遮蔽効果を持たない。これは、Liouville

重力による宇宙項の違いのためである。また、我々は n次の理論における赤外発散の強さを発見し

た。この結果は摂動論の限りは 4次元と等しくなった。

また、de Sitter対称性については [81]に記述されている疑問がある。Sine-Gordon理論の計算時

に、φ4理論と同じくmasslessスカラー場のプロパゲータを用いると、de Sitter対称性は破れる。一

方で、伝統的な方法と異なり、時間依存性を持つ結合定数を用いる事によって、Sine-Gordon理論の

de Sitter対称性を回復する様子が見られた。

de Sitter対称性を破るプロパゲータを使う方法と、時間依存する結合定数を導入する事により、de

Sitter対称性を保つ方法の、どちらを使うべきなのかは、異なる原理より導かれなければならない。

de Sitter対称性を保つ理論に対しては、他の主要な理論と矛盾しない様に思える。この方法は限られ

た場合のみを考えたので、異なる次元についても考える必要がある。

de Sitter対称性を保つという我々の予測は、λφ4 理論についても言える。古典的な赤外発散の相

殺項を加える事によって、de Sitter対称性を破る遮蔽効果を取り除く事は可能である。しかしなが

ら、Sine-Gordon理論と異なり、局所的な相殺項でしか対称性を保つ事を見つけられなかった。その

ため、摂動論では、λφ4理論の赤外発散効果は自然に消す事が出来ていない。

以下に本付録の流れを示す。

・A.2節では、我々の宇宙を記述する de Sitter時空の性質について述べた。Minkowski時空との大

きな違いである in-in formalismを用いると、プロパゲータの形がどのようになるかを説明している。

・A.3節では、宇宙項 Λへの量子補正について説明している。アインシュタイン方程式を用いて、

宇宙項とmatter場のエネルギー運動量テンソルの関係を示した。

・A.4節では、Liouville重力を導入した。また、Weyl変換を用いる事で、Liouville重力とmatter

場が結合する項が現れる事を示している。

・A.5節では、2次元の de Sitter時空上で、masslessスカラー φ4理論による量子補正を計算した。

・A.6節では、de Sitter対称性を保つ理論が作れないか、議論を行った。例として Sine-Gordon理

論とスカラー φ4理論について、対称性を議論している。

・A.7節では、本付録のまとめと展望を述べた。
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A.2 de Sitter時空上の赤外発散

研究においては、2次元の de Sitter時空で計算を行った。また、座標は Poincaré座標を用いてい

図 A.1: D+1次元Minkowski空間の中のD次元 de Sitter空間

る。de Sitter時空の計量は

ds2 = −dt2 + a2(t)d~x · d~x, (A.1)

である。ここで、aはハッブル定数H で与えられ, 共形時間 ηは以下の様に決まる。

a = eHt = − 1
Hη

, H(t) ≡ ȧ(t)
a(t)

. (A.2)

このように ηは物理的時間と t以下の様に関係づいている。

η = − 1
H
e−Ht, (A.3)

tの変域より、−∞ ≤ η ≤ 0である。強刑事間を用いて de Sitter時空の計量を書くと、

ds2 = a2(η)(−dη2 + d~x · d~x). (A.4)

となる。この座標形は de Sitter時空の上半分をカバーしている。de Sitter時空上では、massless粒

子の赤外発散の効果がMinkowski理論と異なる事が知られている。なぜなら、赤外発散が寄与する

長距離の効果が de Sitter時空の曲率を受けて変わるためである。この違いは、運動量のループ計算

によって発生する [82]。

ループ計算の際には、運動量を二つの領域に分けると便利である。地平線を利用すると、紫外領域

|P | > H と赤外領域 |P | < H に分ける。4次元では、∫
d3P =

∫
|P |>H

d3P +
∫
|P |<H

d3P. (A.5)
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と書く事が出来る。Rとmatter場が結合していないmasslessスカラー場の理論について、場 φは

φD=4
~k

(η) =
Hη√
2k

(
1 − i

kη

)
e−ikη, (A.6)

と、書く事が出来る。ここで、kは共形運動量 P = k/a(η) = −kHηである。また、真空としては

Bunch-Davies真空を用いている [83]。(A.6)式を赤外領域で積分すると、P → 0で対数発散がでて

くる事が簡単に分かる。

我々は実際にはD = 2で計算を行った。この時、masslessスカラー場 φは

φD=2
~k

(η) =
−i√
2k
e−ikη. (A.7)

となる。φの形はMinkowski時空の場合と、同じになる。なぜなら、自由なmassless理論では共形

な真空が de Sitter時空の場合と等しいためである。真空のループは、以下の様に計算出来る。∫ ∞

0
dP

1
2P

=
∫ ∞

H
dP

1
2P

+
∫ H

0
dP

1
2P

, (A.8)

ここで、物理的な運動量 P = k/a(η)を用いている。(A.8)の場合も赤外領域において、対数発散を

持つ事が分かる。

同様に、de Sitter時空上のプロパゲータにも赤外発散が存在する。masslessで、Rとmass場が結

合していないスカラー場のプロパゲータは計算されている [84, 85]。これを用いて、D − ω次元のプ

ロパゲータは以下の様に書ける。

i∆(x, z) = α{γ(y) + β ln(a(η)a(ηz))}, (A.9)

ここで、

y ≡ −(η − ηz)2 + (~x− ~z)2

ηηz
, (A.10)

α =
1
4π

(
H2

4π

)−ω

, β =
Γ(1 − ω)
Γ(1 − ω

2 )
, (A.11)

かつ

γ(y) = −
Γ(1 − ω

2 )
ω

(y
4

)ω
2 −

Γ(2 − ω
2 )

1 + ω
2

(y
4

)1+ω
2 + βδ

+
∞∑

n=1

[
Γ(1 − ω + n)
nΓ(1 − ω

2 + n)
−

Γ(2 − ω
2 + n)

(1 + ω
2 + n)(n+ 1)!

(y
4

) 2+ω
2

](y
4

)n
+ O(k2

0), (A.12)

δ ≡ −π cot
(
π − ω

2
π
)

+ C, (A.13)
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C ≡ 1
2

ln
(
H

k0

)
+ ψ

(
1
2
− ω

2

)
− ψ

(
1 − ω

2

)
+ ψ(1 − ω) − γ, (A.14)

である。ここで、赤外のカットオフ k0は共形運動量である。また、ψ(x)はディガンマ関数、γはオ

イラー定数である。de Sitter時空上の距離は yを用いて書かれている。このプロバゲータ (A.9)は第

一項目に対しては deyだけで書ける事より、 Sitter不変である [56,57,81]。一方で、2項目は a(η)に

よっており、de Sitter不変でない。この効果は赤外の発散からきている。

また、時間発展をする時空上での計算を行うため、我々は in-in formalismと呼ばれる手法を用い

た。時間に対して、+の面と−の面を考え、時間の経路を以下の様に考える。∫
C
dη =

∫ 0

−∞
dη+ +

∫ −∞

0
dη−. (A.15)

時間の面に対して+と−があるため、演算子O(x)の期待値については、

〈Ω|O(x)|Ω〉 = 〈T{O(x)e−i
R

C Hintdη}〉

= 〈T̃{ei
R 0

ηi
Hint−dη−}T{O(x)e−i

R 0
ηi

Hint+dη+}〉, (A.16)

と計算される。ここで、T と T̃ は時間順序積と逆時間順序積を表す。|Ω〉が元々は真空であったと考

えているので、〈O(x) · · · 〉 についてはWickの定理を使って計算が出来る。二つの時間面を考えてい

るので、２点間の距離は以下の 4種類を考える事が出来る [84]。

y++(x, x′) ≡ a(η)a(η′)H2[(~x− ~x′)2 − (|η − η′| − ie)2],

y+−(x, x′) ≡ a(η)a(η′)H2[(~x− ~x′)2 − (η − η′ + ie)2],

y−+(x, x′) ≡ a(η)a(η′)H2[(~x− ~x′)2 − (η − η′ − ie)2],

y−−(x, x′) ≡ a(η)a(η′)H2[(~x− ~x′)2 − (|η − η′| + ie)2],

(A.17)

ここで、yab(x, x′)は各座標のある面を示している (y(xa, x
′
b) (a, b = ±))。eはとても小さい整数であ

る。これら 4種類の距離をプロパゲータに代入する事が出来るので、de Sitter時空上のプロパゲータ

は 4種類存在する事となる。

i∆++(y++) ≡ 〈T{φ(x+)φ(x′+)}〉,

i∆+−(y+−) ≡ 〈φ(x′−)φ(x+)〉,

i∆−+(y−+) ≡ 〈φ(x−)φ(x′+)〉,

i∆−−(y−−) ≡ 〈T̃{φ(x−)φ(x′−)}〉.

(A.18)

距離が短い極限 (y → 0)である紫外極限に対して、プロパゲータ (A.9)の次元正則化を行っている。

この時プロパゲータは+と−に関係なく

lim
x→z

i∆(x, z) = αβ

(
2 ln(a(η)) +

2
ω

+ C + γ + O(ω)
)
. (A.19)
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となる。

A.3 宇宙項Λへの量子補正

Matter場が存在する場合のアインシュタイン方程式は以下の様に、時空のリッチテンソルRµν と、

matterのエネルギー運動量テンソル Tµν の関係を記述する。

Rµν − 1
2
gµνR+ Λgµν = κTµν , (A.20)

ここで、Rはスカラー曲率、κ = 8πGでGはニュートン定数、Λは宇宙項である。真空状態では Tµν

は軽量に比例しており、Tµν を移行する事によって、(A.20)は以下の様に書き換えられる。

Rµν − 1
2
gµνR+ Λeffgµν = 0, (A.21)

ここで、

Λeff = Λ − κ

D
T ρ

ρ . (A.22)

以上より、Tµν は宇宙項Λへの量子補正と見る事が出来る。有効な宇宙項Λeff がこのような形で書け

ると、宇宙項には Tµν を通して、de Sitter時空特有の赤外発散の寄与が存在すると考えられる。この

効果を調べ、宇宙項問題の解決の糸口にしたいと考えている。

A.4 Liouville重力とmatterの結合項

2次元において、重力場の作用である、アインシュタイン-ヒルベルト作用は以下の様に書ける。

S[gµν ] =
∫
d2x

√
−g 1

2κ
(R− 2Λ) , (A.23)

2次元重力は自由度を持たない。一方で量子論で考えると、ワイル変換を行うと、Φという場が計量

からでてくる。

gµν = e2Φĝµν (A.24)

この時、重力は自由度を持ち、2次元の重力はLiouville場の理論によって書き表される。ここで、ĝµν

は任意にとれる、基準を表す計量である。この任意性より、Liouville重力のWeyl対称性が自然と保

証される。(例えば、ĝµν → e2σ ĝµν かつ Φ → Φ − σ である。)

簡単に Liouville理論について述べる。まず、2次元重力場 gµν とmatter場Xがカップリングして

いる作用を考える。この作用の分配関数は

S2D[gµν , X] =
∫
d2x

√
−g
(

1
2κ

(R− 2Λ)
)

+ Smatter[gµν , X], (A.25)
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Z =
∫
DXDgµνe

iS2D[gµν ,X] . (A.26)

と与えられる。2次元では、重力効果をWeyl変換 gµν = e2Φĝµν によって書き表す事が出来る。この

共形ゲージにおいては、gµν に対する経路積分が Liouville場 Φに対する経路積分に置き換わってい

る。また、トポロジーの効果より、 R
2κ の効果はなくなる。

我々の目標は宇宙項への量子効果を調べる事である。そのため、主な興味は重力とmatterの赤外

領域での量子効果を計算する事である。2次元の宇宙項は二つの顔を持つ。Liouville理論のポテン

シャルの係数である事と、エネルギー運動量テンソルのトレースである事である。次の式から初めて

考える。

SL+mat[Φ, φ]

= −
∫
d2x

√
−g
[

1
4πb2

gµν∂µΦ∂νΦ +
Q

4πb
RΦ +

Λ
κ

+
1
2
gµν∂µφ∂νφ+ V (φ)

]
. (A.27)

計量のWeyl変換を行った後は、以下の式を得る。

SL+mat[Φ, φ]

= −
∫
d2x
√

−ĝ
[

1
4πb2

ĝµν∂µΦ∂νΦ +
Q

4πb
R̂Φ +

Λ
κ
e2Φ +

1
2
ĝµν∂µφ∂νφ+ e2ΦV (φ)

]
. (A.28)

Φは Liouville場、φはmatter場である。５項目は 2次元 Liouville重力項と、matter場の相互作用

を示している。

アインシュタイン重力の場合では、有効な宇宙項は

Λeff = Λ + κ〈V (φ)〉

= Λ − κ

2
〈T ρ

ρ 〉 . (A.29)

となる。ここで、Liouville理論の方程式は以下の形を取る。

− 1
2πb2

�̂Φ +
Q

4πb
R̂ = −2Λeffκ

−1e2Φ , (A.30)

ここで、Λeff は (A.29)の様に、matter場の赤外領域における de Sitter対称性の破れの効果を受ける。

この場合は、Liouville場がただの定数ではない。準古典的な極限で物理的な計量 gµν は de Sitter対

称性を持たない。この時、宇宙項に対する遮蔽効果は Liouville重力に対して、高次元の Einstein重

力と同じである。

ただ、Liouville重力とEinstein重力の間には、違いも存在する。Einstein重力では、空間がde Sitter

解を持つ時は宇宙項が正となる。正の宇宙項は宇宙の膨張を意味している。しかしながら、Liouville
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重力で考えると、宇宙項と空間の関係が逆となる。もし、宇宙が負のエネルギーを持っていたとした

ら、Liouville方程式は de Sitter解を持つ。この違いは、準安定真空での、非摂動 Liovulle重力で面

白い結果を与える [90, 91]。我々の研究では、符号の違いから、masslessスカラー場の寄与の遮蔽と

反遮蔽を入れ替えている。

A.5 2次元matter場による量子補正

我々は具体例として、2次元のmasslessスカラー場の λφ4 理論での量子効果を計算した。そのた

め、以下のラグランジアンを用いる。

L = −1
2
gµν∂µφ∂νφ

√
−g − 1

4!
λφ4√−g + ∆L, (A.31)

ここで、∆Lは相殺項を含む。

∆L = −1
2
δZgµν∂µφ∂νφ

√
−g − 1

4!
δλφ4√−g − 1

2
δm2φ2√−g

+δξ(R−D(D − 1)H2)φ2√−g − δΛ
8πG

√
−g. (A.32)

エネルギー運動量テンソルは

Tmat
µν (x) = (1 + δZ)

(
δρ

µδ
σ
ν − 1

2
gµνg

ρσ

)
∂ρφ∂σφ− gµν

(
λ+ δλ

4!
φ4 +

1
2
δm2φ2 +

δΛ
8πG

)
−2δξ

[
gµν((D − 1)H2φ2 + (φ2);ρρ) − (φ2);µν

]
, (A.33)

と与えられる。ここで、共形微分 ;は de Sitter空間上での微分を表している（gµν = a(η)2ηµν）。こ

の式の第一項は運動項、第 2、3、4項はポテンシャル項の喜代を示す。ポテンシャルの中の最終項 δξ

は共形な相殺項である。

ポテンシャル項に由来する、エネルギー運動量テンソルはこの様になる。

Tmat
µν (x)pot. = −gµν

(
λ+ δλ

4!
φ4 +

1
2
δm2φ2 +

δΛ
8πG

)
−2δξ

[
gµν((D − 1)H2φ2 + (φ2);ρρ) − (φ2);µν

]
. (A.34)

この期待値を求めるために、我々は時間発展演算子を展開する。

〈Ω|Tmat
µν (x)|Ω〉 ' 〈T{Tmat

µν (x)
(

1 + i

∫
C

√
−gd2zLint

)
}〉, (A.35)

ここで、Lintは (A.31)より λの項を作る。これは、摂動展開の第一次の効果である。展開を考える

と、エネルギー運動量テンソルの寄与には λ2, λ3, · · · の効果が存在する。
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図 A.2: O(λ)の寄与

最初のオーダーである λに対しては、エネルギー運動量テンソルの期待値 (A.34)は、自由なスカ

ラー場の真空から計算する事が出来る。

(A.34)より、摂動展開を行うと、以下の様になる。

−gµν〈Ω| λ
4!
φ4(x) +

1
2
δm2φ2(x)|Ω〉

= −gµν

[
λ

4!
〈φ4(x)〉 +

1
2
δm2〈φ2(x)〉

+i
(
λ

4!

)2 ∫
d2z

√
−g〈T{φ4(x)φ4(z)}〉 − i

(
λ

4!

)2 ∫
d2z′

√
−g〈φ4(z′)φ4(x)〉

+i
λ

4!
δm2

2

∫
d2z

√
−g〈T{φ2(x)φ4(z)}〉 − i

λ

4!
δm2

2

∫
d2z′

√
−g〈φ4(z′)φ2(x)〉

+i
λ

4!
δm2

2

∫
d2z

√
−g〈T{φ4(x)φ2(z)}〉 − i

λ

4!
δm2

2

∫
d2z′

√
−g〈φ2(z′)φ4(x)〉

+i
(
δm2

2

)2 ∫
d2z

√
−g〈T{φ2(x)φ2(z)}〉 − i

(
δm2

2

)2 ∫
d2z′

√
−g〈φ2(z′)φ2(x)〉

+O(λ3)
]
. (A.36)

ここで、気をつける事は in-in formalismを使って計算する事である。つまり、頂点は+の頂点と−

の頂点の 2種類があると考えられる。今は zは+の頂点、z′は−の頂点として考えている。また、測

定するエネルギー運動量テンソルの点 xは+城野店として暑かって計算した。

さて、(A.36)の最初の２つの項のオーダーは λである。この二つの項に対応するダイアグラムは

図 (A.2)の a1と a2である。最初に質量への相殺項 δm2を考える。これは、時間 ηi = −1/H で質量

mが 0である事から繰り込む事が出来る。繰り込みの条件は [84, 92]と同じである。

1-loopのダイアグラムは図 (A.3)で記述されている。質量については、

−iM2
1−loop(x, x

′) = −i
[
λ

2
∆(x, x) + δm2

]
δ2(x− x′). (A.37)

となる。(A.19)を (A.37)に代入すると、

M2
1−loop(x, x

′) =
[
λ

2
αβ{2 ln(a(η)) +

2
ω

+A′} + δm2

]
δ2(x− x′), (A.38)
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図 A.3: 1-loopの質量への補正 (δm)

となる。ここで、A′ = C − γである。質量に対する繰り込みの条件より、

δm2 = −λ
2
αβ

(
2
ω

+A′
)

+O(λ2). (A.39)

となる必要がある。以上より、

M2
1−loop(x, x

′) =
λ

4π
ln(a(η))δ2(x− x′). (A.40)

紫外領域の発散をエネルギー運動量テンソルから取り除くために、宇宙項に対する相殺項 δΛを加え

る必要がある。図 (A.2)のダイアグラム a1と a2に質量の相殺項 (A.39)を導入する事により、

λ

4!
〈φ4(x)〉 +

1
2
δm2〈φ2(x)〉 =

λ

4!
· 3∆2

++(x, x) +
1
2
δm2∆++(x, x)

=
λ

2

(
1
4π

(
H2

4π

)ω
2 Γ(1 − ω)

Γ(1 − ω/2)

)2

×
(
− 1
ω2

− 1
ω
A′ + ln2 a(η) − A′2

4

)
. (A.41)

となる。それに従って δΛは条件

−gµν

[
λ

4!
〈φ4(x)〉 +

1
2
δm2〈φ2(x)〉

]
− δΛ

8πG
gµν = (finite). (A.42)

によって決まる。それ故に

δΛ
8πG

=
λ

32π2

(
H2

4π

)−ω Γ2(1 − ω)
Γ2(1 − ω/2)

[
1
ω2

+
1
ω
A′
]

+
δΛfin

8πG
, (A.43)

となる。ここで δΛfinは、相殺項の有限値部分を示している。以上より、O(λ)のエネルギー運動量テ

ンソルへの寄与は

〈Tmat
µν 〉pot. O(λ) = −gµν

λ

32π2
ln2 a(η). (A.44)

となる。

宇宙項の繰り込みを O(λ2)で計算するために、3-loopダイアグラムを計算する必要がある。結合

定数 δλへの相殺項と共形結合 δξは我々の計算にはでてこない。1-loop補正では、λφ4の相互作用場
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は紫外発散を持たず、また、紫外発散と赤外発散が混ざる項 ω−1 · ln a(η)を持たない。このような項

は δξによって打ち消されている [84]。O(λ)の場合と同様に計算を行うと、エネルギー運動量テンソ

ルは

〈Tmat
µν 〉pot. O(λ2) ∼ −gµν

1
8π

λ2

(4π)2H2
ln4 a(η). (A.45)

となる。λ/H2での展開は無次元量となり、我々の見たい赤外領域においては長さ ln a(η) < Hλ−1/2

の範囲を見ている。

(A.44)と (A.45)より、我々が最終的に見たいO(λ2)で、量子効果を含めた宇宙項は

Λeff = Λ − κ

2
〈Tmat ρ

ρ 〉

∼ Λ + (Weyl anomaly) +
κλ

32π2
ln2 a(η) +

1
8π

κλ2

(4π)2H2
ln4 a(η), (A.46)

となる。ここで、Weylアノマリーは 〈Tmat ρ
ρ 〉 = R/(24π) [93]である。この有効な宇宙項は時間依存

性を持っている。また、時間経過とともに大きくなる。そのため、宇宙項の赤外遮蔽効果を見る事は

出来ていない。

一方で、Liouville重力の事を思い出すと、de Sitter時空を解として持つ場合、宇宙項が負の値を

持っている。それ故に Liouville重力に対しては宇宙項の絶対値を小さくする方向に量子効果が働く。

この事は、2次元のmasslessな λφ4理論で赤外遮蔽効果があると考えられる。既出の結果と比較する

と、[82]では 4次元の摂動論で反遮蔽効果が見て取られている。

A.6 de Sitter対称性の回復

de Sitter時空上で λφ4理論のポテンシャルと Sine-Gordonのポテンシャルが同時に存在する場合

について計算する。

SSG =
1
2

∫
dηdx

(
∂ηφ∂ηφ− ∂xφ∂xφ− λ

(Hη)2
cos(βφ)

)
. (A.47)

Sine-Gordon項 λ cos(βφ)を λφ4と同じく、自由なスカラー場の理論からの摂動展開で考えてみる。

λについての摂動論において、赤外のカットオフを加えた繰り込まれたプロパゲータは

G12 = 〈φ(η1, x1)φ(η2, x2)〉 = − 1
4π

ln
(
−(η1 − η2)2 + (x1 − x2)2

H−2

)
, (A.48)

と書ける。λφ4 理論と同じく、de Sitter対称性は Sine-Gordonにおいて破れている [81]。ここから

de Sitter対称性を得る事を考える。de Sitter対称性を保つには理論が de Sitter不変距離

y =
−(η1 − η2)2 + (x1 − x2)2

η1η2
, (A.49)
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で書き表される必要がある。しかし、単純にプロパゲータを

Ginv
12 = 〈φ(η1, x1)φ(η2, x2)〉 = − 1

4π
ln
(
−(η1 − η2)2 + (x1 − x2)2

η1η2

)
(A.50)

と置き換えた所で、質量 0の運動方程式を満たさない (�φ = 0 )

しかしながら、我々は以下の可能性を考えた。結合定数が時間依存性を持つ様な場合を考える。

Smodified
SG =

1
2

∫
dηdx

(
∂ηφ∂ηφ− ∂xφ∂xφ− λ(Hη)β2/4π

(Hη)2
cos(βφ)

)
, (A.51)

このとき、相関関数の de Sitter対称性が回復している。時間依存する結合定数は、質量 0の理論の

プロパゲータに現れる赤外発散を打ち消す。

この視点から λφ4理論について、再度考える。問題は Sine-Gordon理論の様に de Sitter対称性の

破れを取り除く事が出来ないかという事である。宇宙項に関する限りは、時間依存する赤外発散の相

殺項を加える事で、de Sitter対称性の破れを取り除く事が出来る。

−δΛ(η) =
κ

2
〈T ρ

ρ 〉 =
κλ

32π2
ln2 a(η) +

1
8π

κλ2

(4π)2H2
ln4 a(η) + · · · (A.52)

しかしながら、この効果は限定的な物である。一般には、de Sitter不変なプロパゲータを作り、de

Sitter対称性を破る項を体系的に取り除く事が望ましい。この場合であれば、運動方程式を犠牲にし

ても、de Sitter対称性を保つ事を優先するモチベーションとなる。

A.7 まとめと展望

この研究では、低次の de Sitter時空の赤外発散の効果を見るために、2次元 de Sitter時空上での

重力とmatter場の結合するモデルを作った。我々の作ったモデル (A.28)は Liouville場とmatter場

が空間のスカラー曲率Rと結合しておらず、Liouville場は計量から導かれる。我々の作ったモデルの

特徴は、Liouville場の方程式より、宇宙項が負になる事である。この宇宙項の性質は、2次元以上の

アインシュタイン重力とは逆の結果を示している。具体的なmatter場として、masslessなスカラー

φ4理論と Liouville重力が結合しているモデルを用いた。de Sitter時空上では、masslessスカラー場

のプロパゲータは赤外発散を持っている。In-in formalismに従い、我々はエネルギー運動量テンソル

の期待値をO(λ2)で行った。計算結果 (A.45)は、時間依存する対数の形の赤外発散を持ち、Liouville

重力が時間発展とともに小さな値となる、赤外遮蔽効果を示した。この事は、3次元以上の宇宙項と

比べる必要がある。しかし、宇宙項の符号が 2次元と 3次元以上で異なるため、λφ4理論は遮蔽効果

を持っていない。

また、このモデルに対しては、matter場が Liouville重力場にどのような影響を与えるのかを、計

算したいと考えている。
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計算結果を既存の研究と比べると、2次元における赤外発散の強さは、4次元 [84]と同じ事が計算

から分かった。平坦な時空であるMinkowski時空上では、4次元に比べ、2次元における赤外発散の

発散の度合いは強くなる。一方 de Sitter時空上では、我々が着目した、対数で表される赤外発散の効

果 ln aは、2次元と 4次元で変わらない。更に、次元が低い事が原因で、de Sitter時空上の赤外発散

の度合いが強くなる様子は、エネルギー運動量テンソルの期待値の計算の中では観測出来なかった。

また、この計算に用いたプロパゲータは対数の形の赤外発散を持っており、発散の強さは 2次元と 4

次元で等しい。これらの理由についても更なる議論を行いたいと考えている。

最後に de Sitter対称性を保つ理論を考えた。masslessスカラー場の φ4理論について計算を行った

が、de Sitter不変距離 yで全ての項を書く事は出来ず、de Sitter対称性を保つ事が出来なかった。し

かし、Sine-Gordon理論については、時間依存する結合定数を導入する事で、de Sitter不変に取り扱

う事が出来た。なぜ、Sine-Gordon理論では可能で φ4理論では不可能なのか、理由を求めたいと考

えている。
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B 計算法 (λ = 0)

この付録においては、自由な場の理論の場合、どのように F [x, α = 2]を計算したかを記述する。

今、レプリカの数は 2個であるので、Φは Φ1と Φ/2によって成り立つと考える。系全体に対し、

時間方向の長さを βから 2βに延長し、2M 個に分ける。すると、Φ1と Φ/2に対しては、時間方向

の長さは βで時間方向の分割数はM となる。時間方向の格子間隔 aは a = β
M である。

Φ1とΦ2を一本化し、Φ(n) (n = 1, 2, · · · , 2M)として計算する。n = 1, · · · ,M に対してはΦ(n) =

Φ1(na)であり、n = M + 1, · · · , 2M に対しては Φ(n) = Φ2((n −M)a)となる。このとき λ = 0で

の離散化した作用は、以下の様に書ける。

SNC =
a

2

 ∑
m+m′≤2j−u

{
M−1∑
n=1

∣∣∣∣Φmm′(n+ 1) − Φmm′(n)
a

∣∣∣∣2 +
∣∣∣∣Φmm′(1) − Φmm′(M)

a

∣∣∣∣2

+
2M−1∑

n=M+1

∣∣∣∣Φmm′(n+ 1) − Φmm′(n)
a

∣∣∣∣2 +
∣∣∣∣Φmm′(M + 1) − Φmm′(2M)

a

∣∣∣∣2
}

+
∑

m+m′>2j−u

{
2M−1∑
n=1

∣∣∣∣Φmm′(n+ 1) − Φmm′(n)
a

∣∣∣∣2 +
∣∣∣∣Φmm′(1) − Φmm′(2M)

a

∣∣∣∣2
}

+
∑
mm′

2M∑
n=1

{
Φmm′(n) [Li, [Li,Φ(n)]]m′m +m2|Φmm′(n)|2

}]
. (B.1)

ここで、計算の為に行列 Tnij,mklを導入する。定義は以下の式で与えられる。

SNC =
∑

n,l,m1,m2,m3,m4

Φ∗
m1m2

(n)Tnm1m2,lm3m4Φm3m4(l) . (B.2)

行列 T を (B.1)から読み取り、行列式を計算した。そこから、以下の様に自由エネルギーを計算した。

F [x, α = 2] =
1
2

log detT + const. . (B.3)

ここで右辺の定数が存在するが、実際の計算量は差を取る為、寄与しない。
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C 誤差計算（ジャックナイフ法）

我々はコンピュータシミュレーションを行い、エンタングルメントエントロピーを計算した。この

エンタングルメントエントロピーの誤差の計算にはジャックナイフ法を用いた [40]。

一般的な誤差は、平均値と統計誤差を用いた誤差伝播の式によって計算される。

〈O〉 =
1
N

N∑
i=1

Oi , (C.1)

δ〈O〉 =

√
〈(O − 〈O〉)2

N − 1
=

√
〈O2〉 − 〈O〉2

N − 1
, (C.2)

δ〈f({Oa}) ≡
∑

a

|〈 ∂f
∂Oa

〉δ〈Oa〉| . (C.3)

ここでOaは f を決める為に必要な物理量の集まりであり、f はOaの関数である。

今回我々が計算したエンタングルメントエントロピーは測定された値同士に相関があり、一般的な

誤差伝播の計算では、誤差の一部が相殺されてしまい、誤差を小さく見積もってしまう。この欠点を

補う誤差評価の方法がジャックナイフ法である。得られたデータを、ある大きさのまとまりに分け、

そのまとまり間の相関を見る事で、実際に独立したデータの数と、真の誤差が計算出来る。

まず、全データを大きさnに分ける。このデータの大きさはbin-sizeと呼ばれている。例えばn = 3、

データを A(i)(0 ≤ x ≤ N)の際は、一つ目のビンには A(1)から A(3)が該当し、二つ目のビンには

A(4)から A(6)が該当する。つまり、全データは Nn = N/n個のビンに分けられる。１つのビンの

データに対する添字の集合をBbとし、そのビンのデータを除いた物で平均を定義する。

〈O〉 =
1

N − n

∑
k∈/Bb

Ok . (C.4)

この平均を用いて、物理量 f の平均と誤差を求める。

〈f(O)〉 =
1
Nn

Nn∑
i=1

f(〈Ob〉) . (C.5)

δ〈f(O)〉 =
√

(Nn − 1){〈f(O)2〉 − 〈f(O)〉2} . (C.6)

この方法が bin-size nの場合のジャックナイフ法で導いた誤差である。実際に物理量に用いる際は、n

を増加させて、δ〈f(O)〉が一定になる nの値を求める。そして、求めた nの時のNnが、独立なデー

タの数を表す。また、相関しあう物理量を取り除いて計算するため、δ〈f(O)〉は物理量の真の誤差で
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ある。ただし、本論文の場合は f(O) = O場合を扱う事に相当するので、このような相関はそもそも

存在しない。ここではむしろ、ジャックナイフ法のもう一つの側面、すなわち、自己相関を取り入れ

た誤差を与えるという特性を利用する。(C.6)にある、ジャックナイフ誤差を bin-sizeの関数と見た

時、bin-sizeを大きくしていくと、一般に誤差が一定になる傾向がある。この一定値が自己相関を取

り入れた誤差と見なせ、誤差が一定になり始める bin-sizeの大きさが自己相関の大きさと見なせるの

である。

一般的に、δ〈f(O)〉は bin-sizenの増加とともに大きくなる。また、(C.6)より、データ数を 2倍に

すると、誤差は
√

2倍となる性質を持つ。そのため、十分多くのデータを計算する必要がある事が分

かる。
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D 補間計算（シンプソン法）

近似法には一次曲線を用いる台形法の他に２次曲線を用いるシンプソン法がある。台形法に比べ誤

差が小さくなるシンプソン法を我々の計算では用いた。

図 (D.1)の様に、３点を用いて、1区間の面積を求める為、必ず 2N + 1個の点が必要となる。

具体的に区間の中点が xiとなる様な面積 Siを求める事を考える。今、３点 xi−1, xi, xi+1を通る関

数を y = px2 + qx+ rと置く。この区間の面積を、積分で求める事を考える。各点 xの間の間隔は h

である。

S =
∫ x+1

x−1
[px2 + qx+ r]dx

=
[
1
3
px3 +

1
2
qx2 + rx

]xi+1

xi−1

=
1
3
P (xi + h)3 +

1
2
q(xi + h)2 + r(xi + h)

−
{

1
3
P (xi − h)3 +

1
2
q(xi − h)2 + r(xi − h)

}
=

1
3
p
{
x3

i + 3x2
ih+ 3xih

2 + h3 − x3
i + 3x2

ih− 3xih
2 + h3

}
1
2
q
{
x2

i + 2xh
i + h2 − x2

i + 2x2
ih− h2

}
r
{
x+

i h− xi + h
}

=
1
p
(6x2

ih+ 2h3) +
1
2
(2xih) + 2rh

=
h

3
{
6px2

i + 6qxi + 2ph2 + 6r
}

(D.1)

また、この曲線は pi−1, pi, pi+1の３点を通るので、yで書き直す事を考える。

yi+1 = p(xi + h)2 + q(xi + h) + r, (D.2)

yi = px2
i + qxi + r, (D.3)

yi−1 = p(xi − h)2 + q(xi − h) + r. (D.4)

(D.2)、（D.3）、（D.4）を用いて（）を書き換えられないか考える。定数Ci+1, Ci, Ci−1を (D.2)、（D.3）、

（D.4）に掛け、各 xの次数で比較すると、以下の式が得られる。

Ci+1p+ Cip+ Ci−1p = 2hp (D.5)

2Ci+1ph+ Ci+1q + Ciq − 2Ci−1ph+ Ci−1q = 2hq (D.6)
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図 D.1: A and B

Ci+1ph
2 + Ci+1qh+ Ci+1r + Cir + Ci−1ph

2 − Ci−1qh+ Ci−1r =
2
3
ph3 + 2rh.

(D.7)

この連立方程式を解くと、Ci+1 = h/3, Ci = 4h/3, Ci−1h/3が求められる。よって Siの面積は以下の

様に書き表される。

S =
h

3
(yi−1 + 4yi + yi+1) (D.8)

この式はシンプソンの公式と呼ばれる。計算時に各点 xの間隔が等しい（今は h）事を用いる事に注

意する。つまり、この公式を用いる際は偶数個の等分割が必要となる。

Siが求まった為、全体の面積 Sは Siの和で与えられる。

S =
h

3
(y0 + 4y1 + y2) +

h

3
(y2 + 4y3 + y4) + · · · + h

3
(y2N−2 + 4y2N−1 + y2N )

=
h

3

[
y0 + 4

N∑
i=1

y2i−1 + 2
N−1∑
i=1

y2i + y2N

]
. (D.9)

今回は離散的な積分の為に、このシンプソン法 (D.9)を用いる。また、実際に計算する際には誤差の

伝播の考慮に入れ、結果を出している。
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図 D.2: xiを中心とする面積 Si
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E ハイブリッドモンテカルロ法のコード

λ = 1.0の理論に対しては、以下のコードを用いてハイブリッドモンテカルロ法を実行した。

module subprog
implicit none
integer, parameter :: dim=3,k=1,m=16,Nb=1,alpha=1
double precision, parameter :: j=7.5d0,l=1.0d0,rad=1.0d0
integer(8), save::rd

contains
subroutine rn(o)!乱数生成のための randomseedまた、行列 uはファイル rs.dから読んでいる

integer o,n
integer , allocatable :: u ( : )
call random_seed(size = o )
allocate (u ( o ))
open(1,file=’rs1-gamma00-Nb=1-20.d’)
do n=1,o

read(1,*) u(n)
enddo
close(1)
call random_seed (put = u ( : ) )
write(*,*)’rsno.’,o

end subroutine rn

![Lj_μ,phi]^2の計算
subroutine action(phi,Lj,A2,cc,m,q)

integer mati,matj,matm,mu,cc,it,m
complex(kind(0d0)) Lj(cc,cc,dim),phi(cc,cc,0:m+1),A2(cc,cc,m),q(cc,cc,0:m+1,dim),
q2(cc,cc,0:m+1,dim)
A2(:,:,:)=cmplx(0.0d0,0.0d0,kind(0d0))
q(:,:,:,:)=cmplx(0.0d0,0.0d0,kind(0d0))

do mu=1,dim
!$omp parallel

!$omp do
do it = 1,m

do matj= 1,cc
do mati=1,cc

do matm=1,cc
q(mati,matj,it,mu) = q(mati,matj,it,mu)+Lj(mati,matm,mu)*phi(matm,matj,it)
enddo

enddo
enddo

enddo
!$omp end do

!$omp end parallel
enddo
q2(:,:,:,:) = conjg(q(:,:,:,:))
do mu=1,dim

!$omp parallel
!$omp do

do it = 1,m
do matj= 1,cc
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do mati=1,cc
q(mati,matj,it,mu) = q(mati,matj,it,mu)-q2(matj,mati,it,mu)

enddo
enddo

enddo
!$omp end do
!$omp end parallel

enddo
do mu=1,dim
!$omp parallel

!$omp do
do it=1,m

do mati=1,cc
do matm=1,cc

A2(mati,mati,it)=A2(mati,mati,it)+q(mati,matm,it,mu)*q(matm,mati,it,mu)
enddo

enddo
enddo
!$omp end do

!$omp end parallel
enddo
!do it=1,m

!do mati=1,cc
!A2(mati,mati,it)=dble(c)*A2(mati,mati,it)

!enddo
!enddo
!A2(:,:,:)=dble(c)*A2(:,:,:)
end subroutine action

![Lj,[Lj,Φ]]の計算
subroutine com(phis,sLj,A3,cc)

integer mati,matj,mu,matm,it,cc
complex(kind(0d0)) phis(cc,cc,0:m+1),sLj(cc,cc,dim),&
&A3(cc,cc,m),A32(cc,cc,m),q(cc,cc,m,dim),q2(cc,cc,m,dim)
q(:,:,:,:) = cmplx(0.0d0,0.0d0,kind(0d0))
!まず、φと Ljの交換関係を計算して q_\iを作る

do mu=1,dim
!$omp parallel

!$omp do
do it = 1,m

do matj= 1,cc
do mati=1,cc

do matm=1,cc
q(mati,matj,it,mu) = q(mati,matj,it,mu)+sLj(mati,matm,mu)*phis(matm,matj,it)
enddo

enddo
enddo

enddo
!$omp end do

!$omp end parallel
enddo

q2(:,:,:,:) = conjg(q(:,:,:,:))
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do mu=1,dim
!$omp parallel

!$omp do
do it=1,m

do matj=1,cc
do mati=1,cc

q(mati,matj,it,mu) = q(mati,matj,it,mu)-q2(matj,mati,it,mu)
enddo

enddo
enddo
!$omp end do
!$omp end parallel

enddo
!次に A_lambdaと qの交換関係を計算
A3(:,:,:)=cmplx(0.0d0,0.0d0,kind(0d0))
do mu=1,dim
!$omp parallel
!$omp do
do it=1,m

do matj=1,cc
do mati=1,cc

do matm=1,cc
A3(mati,matj,it)=A3(mati,matj,it)+sLj(mati,matm,mu)*q(matm,matj,it,mu)

enddo
enddo

enddo
enddo
!$omp end do
!$omp end parallel
enddo
A32(:,:,:)=conjg(A3(:,:,:))
do it=1,m

do matj=1,cc
do mati=1,cc

A3(mati,matj,it)=A3(mati,matj,it)+A32(matj,mati,it)
enddo

enddo
enddo

end subroutine com

!phi^2,phi^4の計算
subroutine square(phi,phi2,phi4,n,m)
integer mati,matj,matm,n,it,m,matl

complex(kind(0d0)) phi(n,n,0:m+1),phi2(n,n,1:m),phi4(n,n,m)
phi2(:,:,:)= cmplx(0.0d0,0.0d0,kind(0d0))
phi4(:,:,:)= cmplx(0.0d0,0.0d0,kind(0d0))
!$omp parallel
!$omp do
do it=1,m

do mati= 1,n
do matj=1,n

do matm=1,n
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phi2(matj,mati,it)=phi2(matj,mati,it)+phi(matj,matm,it)*phi(matm,mati,it)
enddo
enddo
enddo

enddo
!$omp end do
!$omp end parallel
phi4(:,:,:)=cmplx(0.0d0,0.0d0,kind(0d0))
!$omp parallel
!$omp do
do it=1,m

do mati=1,n
do matl=1,n
phi4(mati,mati,it)=phi4(mati,mati,it)+phi2(mati,matl,it)*phi2(matl,mati,it)
enddo

enddo
enddo
!$omp end do
!$omp end parallel
end subroutine square

!SU(2)行列の作成
subroutine su2(Lj,n,cc,sLj)

integer mati,matj,i,g,a,matk,matl,cc,n
double precision l1,l2
complex(kind(0d0)) Lj(n,n,dim)
complex(kind(0d0))sLj(cc,cc,dim)
sLj(:,:,:)= cmplx(0.0d0,0.0d0,kind(0d0))
Lj(:,:,:)= cmplx(0.0d0,0.0d0,kind(0d0))
do mati=1,cc

sLj(mati,mati,3) = cmplx(-j-1+mati,0.0d0,kind(0d0))
enddo
do mati=1,cc-1

l1 = mati*(2*j-mati+1)
l2 = sqrt(l1)/2.0d0

sLj(mati,mati+1,1) = cmplx(l2,0.0d0,kind(0d0))
sLj(mati,mati+1,2) = cmplx(0.0d0,l2,kind(0d0))
enddo
do mati=2,cc

sLj(mati,mati-1,1) = sLj(mati-1,mati,1)
sLj(mati,mati-1,2) = -sLj(mati-1,mati,2)

enddo
do i=1,k

g=(i-1)*cc+1
a=i*cc
do mati=g,a

do matj=g,a
matk=mati-(i-1)*cc
matl=matj-(i-1)*cc
Lj(mati,matj,1)=sLj(matk,matl,1)
Lj(mati,matj,2)=sLj(matk,matl,2)
Lj(mati,matj,3)=sLj(matk,matl,3)
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enddo
enddo

enddo
end subroutine su2

!δ S/δ phi(mati,matj)の計算
subroutine diffarentiation(Lj,phi,mass,lambda,delS,eps,n,cc,e,gamma)

integer mati,matj,matm,it,n,cc
double precision mass,lambda,c,eps,gamma,ieps2,irad2,mass2,e
complex(kind(0d0)) phi(n,n,0:m+1),phi3(n,n,1:m)&
&,delS(n,n,1:m),delK(n,n,1:m),Lj(n,n,dim),&
&phisq1(n,n,m)
!φ＿ ijで微分した物を、delK(i,j,μ)として計算している。
phisq1(:,:,:)= cmplx(0.0d0,0.0d0,kind(0d0))
ieps2=(1.0d0/eps**2)
irad2=(1.0d0/rad**2)
mass2=mass**2
!$omp parallel
!$omp do
do it=1,m

do mati= 1,n
do matj=1,n

do matm=1,n
phisq1(matj,mati,it)=phisq1(matj,mati,it)+phi(matj,matm,it)*phi(matm,mati,it)
enddo
enddo
enddo

enddo
!$omp end do
!$omp end parallel
phi3(:,:,:) = cmplx(0.0d0,0.0d0,kind(0d0))

call com(phi,Lj,delK,n)
!$omp parallel

!$omp do
do it=1,m
do mati = 1,n

do matj = 1,n
do matm = 1,n

phi3(matj,mati,it) = phi3(matj,mati,it)+ phi(matj,matm,it)*phisq1(matm,mati,it)
enddo

enddo
enddo

enddo
!$omp end do

!$omp end parallel
!$omp parallel

!$omp do
do it=1,m

do matj = 1,n
do mati = 1,n

delS(mati,matj,it) = (dble(k)/dble(cc))*eps*((2.0d0*phi(matj,mati,it)&
&-phi(matj,mati,it-1)-phi(matj,mati,it+1))*ieps2+&

79



&irad2*delk(matj,mati,it)+mass2*phi(matj,mati,it)+lambda*phi3(matj,mati,it))
enddo
enddo
enddo
!$omp end do
!$omp end parallel
end subroutine diffarentiation

subroutine boundarycondition(phi1,phi2,Nb,n,cc,m)
integer mati,matj,smati,smatj,cc,n,m,Nb
complex(kind(0d0)) phi1(n,n,0:m+1), phi2(n,n,0:m+1)
!周期境界条件
!全体でエルミート行列なので、全面を計算する

do mati=1,n
smati=mod(mati,cc)
if (smati==0)then

smati=cc
endif
do matj = 1,n

smatj=mod(matj,cc)
if (smatj==0)then

smatj=cc
endif
if((smati+smatj) <= (2.0d0*cc-Nb))then
phi1(mati,matj,m+1)=phi1(mati,matj,1)
phi2(mati,matj,m+1)=phi2(mati,matj,1)
phi1(mati,matj,0)=phi1(mati,matj,m)
phi2(mati,matj,0)=phi2(mati,matj,m)

else
phi1(mati,matj,0)=phi2(mati,matj,m)
phi1(mati,matj,m+1)=phi2(mati,matj,1)
phi2(mati,matj,0)=phi1(mati,matj,m)
phi2(mati,matj,m+1)=phi1(mati,matj,1)

endif
enddo

enddo
end subroutine boundarycondition

subroutine calaction(phi1,phi2,ac1,ac2,Nb,n,cc,m,Lj,eps,mass,lambda)
integer Nb,n,cc,m,it,mati,matl
complex(kind(0d0)) first(n,n,m),phi1(n,n,0:m+1),phi2(n,n,0:m+1),Lj(n,n,dim),A2(n,n,m),qq(n,n,0:m+1,dim),&
&phi4(n,n,m),phisq(n,n,m)
double precision ac1,ac2,eps,mass,lambda,ieps,irad2,mass2
!周期境界条件
call boundarycondition(phi1,phi2,Nb,n,cc,m)
ieps=(1.0d0/eps**2)
irad2=(1.0d0/rad**2)
mass2=mass**2
!S_1の計算
ac1 = 0.0d0
first(:,:,:) =cmplx(0.0d0,0.0d0,kind(0d0))
![Lj,Φ]^2の計算 (A2)
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call action(phi1,Lj,A2,n,m,qq)
!Φ^2,Φ^4の計算
call square(phi1,phisq,phi4,n,m)
!$omp parallel

!$omp do
do it=1,m

do mati=1,n
do matl=1,n

first(mati,mati,it)=first(mati,mati,it)+&
&(phi1(mati,matl,it+1)-phi1(mati,matl,it))*(phi1(matl,mati,it+1)&
&-phi1(matl,mati,it))*ieps

enddo
enddo

enddo
!$omp end do

!$omp end parallel
do it=1,m

do matl = 1,n
ac1 = ac1 +(dble(first(matl,matl,it))&
&-irad2*dble(A2(matl,matl,it))&
&+mass2*dble(phisq(matl,matl,it))&
&+0.5d0*lambda*dble(phi4(matl,matl,it))&
&)

enddo
enddo
ac1=(dble(k)/dble(cc))*eps*ac1*0.50d0
!S_2の計算
ac2 = 0.0d0
first(:,:,:) =cmplx(0.0d0,0.0d0,kind(0d0))
![Lj,Φ]^2の計算 (A2)
call action(phi2,Lj,A2,n,m,qq)
!Φ^2,Φ^4の計算
call square(phi2,phisq,phi4,n,m)
!$omp parallel

!$omp do
do it=1,m

do mati=1,n
do matl=1,n

first(mati,mati,it)=first(mati,mati,it)+&
&(phi2(mati,matl,it+1)-phi2(mati,matl,it))*(phi2(matl,mati,it+1)&
&-phi2(matl,mati,it))*ieps

enddo
enddo

enddo
!$omp end do

!$omp end parallel
do it=1,m

do matl = 1,n
ac2 = ac2 +dble(first(matl,matl,it))&
&-irad2*dble(A2(matl,matl,it))&
&+mass2*dble(phisq(matl,matl,it))&
&+0.50d0*lambda*dble(phi4(matl,matl,it))
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enddo
enddo
ac2=(dble(k)/dble(cc))*eps*ac2*0.50d0

end subroutine calaction

subroutine mom2(P1,P2,n,ham1,ham2)
integer n,matj,matl,it
complex(kind(0d0)) P1(n,n,m),P2(n,n,m)
doubleprecision ham1,ham2
ham1=0.0d0
ham2=0.0d0
do it=1,m
do matj=1,n

do matl=1,n
ham1=ham1+dble(conjg(P1(matl,matj,it))*P1(matl,matj,it))

enddo
enddo

enddo
do it=1,m

do matj=1,n
do matl=1,n

ham2=ham2+dble(conjg(P2(matl,matj,it))*P2(matl,matj,it))
enddo

enddo
enddo
end subroutine mom2

end module subprog

program HM
!!$ use omp_lib
!use ieee_arithmetic
use subprog
implicit none
integer kt,sw,i,acsp,v,Nt,st,z,t1,t2,t_rate,t_max,diff,mati,matj,mato,matl,j2,n,cc,it,&
&even
integer, allocatable::u(:)
complex(kind(0d0)) , allocatable :: Lj(:,:,:),A2(:,:,:),delS1_Nb(:,:,:)&
&,delS2_Nb(:,:,:),delS(:,:,:)&
&,phi1(:,:,:),phi2(:,:,:),first(:,:,:),sLj(:,:,:),phisq1(:,:,:),phisq2(:,:,:)&
&,P1(:,:,:),P2(:,:,:),phisave1(:,:,:),phisave2(:,:,:),&
&phisq(:,:,:),delS1_Nb1(:,:,:),delS2_Nb1(:,:,:)
double precision ha,ha2,r,r2,pi,delh,e,t,tn,lambda,mass,c,a,eps,ac1,ac2,ham1,ham2&
&,gamma,delac,ac11,ac22,sumphisq1,sumphisq2,ee,ac1save,ac11save,ac22save,ac2save
!call ieee_set_halting_mode(ieee_underflow, .true.)
!最初にいくつのスレッドを使えるかを書いておく
!$omp parallel
!write(*,*) ’omp_get_num_threads’,omp_get_num_threads()
!$omp end parallel
!最初にγを置いておく
gamma=0.0d0
!時間の計測を行う
call system_clock(t1)
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pi = 2.0d0*acos(0.0d0)
a = (j+j)+1
cc = floor(a)
eps=l/dble(m*alpha)

!行列サイズ nを決定する
n=cc*k
write(*,*) ’j,a,cc,n’
write(*,*) j,a,cc,n

!lworkはとりあえず、テストデータと同じ値とした
!いろいろな情報

!write(3,*) ’size of matrix’
!長さ lを alpha個に分割した後、m等分した物で考える

allocate (Lj(1:n,1:n,1:dim),phisq1(n,n,m),phisq2(n,n,m))
Allocate(A2(n,n,m),delS1_Nb(1:n,1:n,m),delS2_Nb(1:n,1:n,m),delS1_Nb1(1:n,1:n,m)&
&,delS2_Nb1(1:n,1:n,m),delS(1:n,1:n,m))
Allocate(phi1(n,n,0:m+1),phi2(n,n,0:m+1),phisave1(n,n,0:m+1),phisave2(n,n,0:m+1))
Allocate(first(1:n,1:n,1:m),sLj(cc,cc,dim),P1(n,n,m),P2(n,n,m),phisq(n,n,m))
call rn(v)
allocate(u(v))
open(2,file=’HMin1-gamma00-Nb=1-20.d’)
read(2,*) Nt
!’time interbal’
read(2,*) t
e = t/dble(Nt)
!write(3,*) e
!以下の試行を繰り返す
!write(3,*) ’number of trials’
read(2,*) kt
!write(3,*) ’coupling constant for kinetic term’
read(2,*) c
!write(3,*) ’mass’
read(2,*) mass
!write(3,*) ’coupling constant for phi^4’
read(2,*) lambda

!書き込むファイル名を指定
!境界条件 Nbの場合の ac1+ac2
open(3,file=’theta6-1-gamma00-Nb=1-20-2.d’)
!境界条件 Nb+1の場合の ac1+ac2
open(7,file=’theta6-2-gamma00-Nb=1-20-2.d’)
!差の平均
open(8,file=’delac-gamma00-Nb=1-20-2.d’)

!φについても計算する
open(100,file=’phi1-gamma00-Nb=1-20-2.d’)
open(130,file=’phi2-gamma00-Nb=1-20-2.d’)

!何回スイープするかによる様にする
!write(3,*) ’sweep times’
read(2,*) st
read(2,*) tn
close(2)
acsp = st*kt
!行列 Ljを定める

call su2(Lj,n,cc,sLj)
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deallocate(sLj)
do z=1,st
if (z<2) then

!作用全体の coupling constantの分母を決める
cc = 2.0d0*j+1

!行列 phiを定める。初期状態から始める
phi1(:,:,:) = cmplx(0.0d0,0.0d0,kind(0d0))
phi2(:,:,:) = cmplx(0.0d0,0.0d0,kind(0d0))
else

t=tn
e=t/dble(Nt)

endif
do sw = 1,kt

!πを定める
do it=1,m

do matl = 1,n
call random_number(r)
call random_number(r2)
P1(matl,matl,it) = cmplx(sqrt(-2.0d0*log(r))*cos(2.0d0*pi*r2),0.0d0,kind(0d0))

enddo
do matj = 2,n

do matl = 1,matj-1
call random_number(r)
call random_number(r2)

P1(matl,matj,it) = cmplx(sqrt(-log(r))*cos(2.0d0*pi*r2),sqrt(-log(r))*sin(2.0d0*pi*r2),&
&kind(0d0))
P1(matj,matl,it) = conjg(P1(matl,matj,it))
enddo

enddo
enddo
do it=1,m

do matl = 1,n
call random_number(r)
call random_number(r2)
P2(matl,matl,it) = cmplx(sqrt(-2.0d0*log(r))*cos(2.0d0*pi*r2),0.0d0,kind(0d0))

enddo
do matj = 2,n

do matl = 1,matj-1
call random_number(r)
call random_number(r2)

P2(matl,matj,it) = cmplx(sqrt(-log(r))*cos(2.0d0*pi*r2)&
&,sqrt(-log(r))*sin(2.0d0*pi*r2),&
&kind(0d0))
P2(matj,matl,it) = conjg(P2(matl,matj,it))
enddo

enddo
enddo

!ハミルトニアンの計算
!まず、Φに寄る項を計算する。
!周期境界条件 Nbの場合
call calaction(phi1,phi2,ac1,ac2,Nb,n,cc,m,Lj,eps,mass,lambda)
!また、周期境界条件を Nb+1に書き換えた場合
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call calaction(phi1,phi2,ac11,ac22,Nb+1,n,cc,m,Lj,eps,mass,lambda)
ha = (1-gamma)*(ac1+ac2)+gamma*(ac11+ac22)
!共役運動量を含んでのハミルトニアン
call mom2(P1,P2,n,ham1,ham2)
ha = ha +0.5d0*ham1
ha=ha+0.5d0*ham2

!行列の保存 (ウイングは Nb+1になっている事に注意)
phisave1 = phi1
phisave2 = phi2

!計算結果も残しておく
ac1save=ac1
ac2save=ac2
ac11save=ac11
ac22save=ac22

!Ljとπの更新リープフロッグ法
!第一ステップ

!運動量について
!Nbの場合
!周期境界条件を課す
ee=0.50d0*e
call boundarycondition(phi1,phi2,Nb,n,cc,m)

call diffarentiation(Lj,phi1,mass,lambda,delS1_Nb,eps,n,cc,ee,gamma)
call diffarentiation(Lj,phi2,mass,lambda,delS2_Nb,eps,n,cc,ee,gamma)
!Nb+1の場合
call boundarycondition(phi1,phi2,Nb+1,n,cc,m)
call diffarentiation(Lj,phi1,mass,lambda,delS1_Nb1,eps,n,cc,ee,gamma)
call diffarentiation(Lj,phi2,mass,lambda,delS2_Nb1,eps,n,cc,ee,gamma)
!P1について

!$omp parallel
!$omp do
do it =1,m

!対角成分
do mati = 1,n

P1(mati,mati,it) = P1(mati,mati,it)-ee*(1.0d0-gamma)*delS1_Nb(mati,mati,it)&
&-ee*gamma*delS1_Nb1(mati,mati,it)

enddo
!非対格成分
do matj=2,n

do mati=1,matj-1
P1(mati,matj,it) = P1(mati,matj,it)-ee*(1.0d0-gamma)*delS1_Nb(mati,matj,it)&
&-ee*gamma*delS1_Nb1(mati,matj,it)
P1(matj,mati,it) = conjg(P1(mati,matj,it))

enddo
enddo

enddo
!$omp end do
!$omp end parallel

!P2について
!$omp parallel
!$omp do
do it =1,m

!対角成分
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do mati = 1,n
P2(mati,mati,it) = P2(mati,mati,it)-ee*(1.0d0-gamma)*delS2_Nb(mati,mati,it)&
&-ee*gamma*delS2_Nb1(mati,mati,it)

enddo
!非対格成分
do matj=2,n

do mati=1,matj-1
P2(mati,matj,it) = P2(mati,matj,it)-ee*(1.0d0-gamma)*delS2_Nb(mati,matj,it)&
&-ee*gamma*delS2_Nb1(mati,matj,it)
P2(matj,mati,it) = conjg(P2(mati,matj,it))

enddo
enddo

enddo
!$omp end do
!$omp end parallel
!write(*,*)P2(1,2,3)

!主ステップ
do j2 = 1,Nt-1
!Φ 1について
!対角成分
!$omp parallel
!$omp do
do it=1,m

do mato=1,n
phi1(mato,mato,it) = phi1(mato,mato,it)+e*cmplx(dble(P1(mato,mato,it)),0.0d0,kind(0d0))

enddo
do matj=2,n

do mati=1,matj-1
phi1(mati,matj,it) = phi1(mati,matj,it) + e*P1(matj,mati,it)

phi1(matj,mati,it) = conjg(phi1(mati,matj,it))
enddo

enddo
!φ 2について
!対角成分
do mato = 1,n

phi2(mato,mato,it) = phi2(mato,mato,it)+e*cmplx(dble(P2(mato,mato,it)),0.0d0,kind(0d0))
enddo
!非対格成分
do matj=2,n

do mati=1,matj-1
phi2(mati,matj,it) = phi2(mati,matj,it) + e*P2(matj,mati,it)

phi2(matj,mati,it) = conjg(phi2(mati,matj,it))
enddo

enddo
enddo
!$omp end do
!$omp end parallel
!運動量について
!まず、Nbの場合を考える

!周期境界条件を課す
call boundarycondition(phi1,phi2,Nb,n,cc,m)
call diffarentiation(Lj,phi1,mass,lambda,delS1_nb,eps,n,cc,e,gamma)
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call diffarentiation(Lj,phi2,mass,lambda,delS2_nb,eps,n,cc,e,gamma)
!Nb+1の場合を考える
!周期境界条件を課す
call boundarycondition(phi1,phi2,Nb+1,n,cc,m)
call diffarentiation(Lj,phi1,mass,lambda,delS1_nb1,eps,n,cc,e,gamma)
call diffarentiation(Lj,phi2,mass,lambda,delS2_nb1,eps,n,cc,e,gamma)

!$omp parallel
!$omp do
do it =1,m

!対角成分
do mati = 1,n

P1(mati,mati,it) = P1(mati,mati,it)-e*(1.0d0-gamma)*delS1_nb(mati,mati,it)&
&-e*gamma*delS1_nb1(mati,mati,it)

enddo
!非対格成分
do matj=2,n

do mati=1,matj-1
P1(mati,matj,it) = P1(mati,matj,it)-e*(1.0d0-gamma)*delS1_nb(mati,matj,it)&
&-e*gamma*delS1_Nb1(mati,matj,it)
P1(matj,mati,it) = conjg(P1(mati,matj,it))

enddo
enddo

enddo
!$omp end do
!$omp end parallel

!P2について
!$omp parallel
!$omp do
do it =1,m

!対角成分
do mati = 1,n

P2(mati,mati,it) = P2(mati,mati,it)-e*(1.0d0-gamma)*delS2_Nb(mati,mati,it)&
&-e*gamma*delS2_Nb1(mati,mati,it)

enddo
!非対格成分
do matj=2,n

do mati=1,matj-1
P2(mati,matj,it) = P2(mati,matj,it)-e*(1.0d0-gamma)*delS2_Nb(mati,matj,it)&
&-e*gamma*delS2_Nb1(mati,matj,it)
P2(matj,mati,it) = conjg(P2(mati,matj,it))

enddo
enddo

enddo
!$omp end do
!$omp end parallel

enddo
!最終ステップ

!Φ 1について
!対角成分
!$omp parallel
!$omp do
do it=1,m
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do mato=1,n
phi1(mato,mato,it) = phi1(mato,mato,it)&
&+e*cmplx(dble(P1(mato,mato,it)),0.0d0,kind(0d0))

enddo
!非対格成分
do matj=2,n

do mati=1,matj-1
phi1(mati,matj,it) = phi1(mati,matj,it) + e*P1(matj,mati,it)

phi1(matj,mati,it) = conjg(phi1(mati,matj,it))
enddo

enddo
!φ 2について
!対角成分
do mato = 1,n

phi2(mato,mato,it) = phi2(mato,mato,it)&
&+e*cmplx(dble(P2(mato,mato,it)),0.0d0,kind(0d0))

enddo
!非対格成分
do matj=2,n

do mati=1,matj-1
phi2(mati,matj,it) = phi2(mati,matj,it) + e*P2(matj,mati,it)

phi2(matj,mati,it) = conjg(phi2(mati,matj,it))
enddo

enddo
enddo
!$omp end do
!$omp end parallel

!運動量について
!Nbの場合

!周期境界条件を課す
call boundarycondition(phi1,phi2,Nb,n,cc,m)

call diffarentiation(Lj,phi1,mass,lambda,delS1_Nb,eps,n,cc,ee,gamma)
call diffarentiation(Lj,phi2,mass,lambda,delS2_Nb,eps,n,cc,ee,gamma)
!Nb+1の場合
!周期境界条件を課す

call boundarycondition(phi1,phi2,Nb+1,n,cc,m)
call diffarentiation(Lj,phi1,mass,lambda,delS1_Nb1,eps,n,cc,ee,gamma)
call diffarentiation(Lj,phi2,mass,lambda,delS2_Nb1,eps,n,cc,ee,gamma)
!P1について

!$omp parallel
!$omp do
do it =1,m

!対角成分
do mati = 1,n

P1(mati,mati,it) = P1(mati,mati,it)-ee*(1.0d0-gamma)*delS1_Nb(mati,mati,it)&
&-ee*gamma*delS1_Nb1(mati,mati,it)

enddo
!非対格成分
do matj=2,n

do mati=1,matj-1
P1(mati,matj,it) = P1(mati,matj,it)-ee*(1.0d0-gamma)*delS1_Nb(mati,matj,it)&
&-ee*gamma*delS1_Nb1(mati,matj,it)
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P1(matj,mati,it) = conjg(P1(mati,matj,it))
enddo

enddo
enddo
!$omp end do
!$omp end parallel

!P2について
!$omp parallel
!$omp do
do it =1,m

!対角成分
do mati = 1,n

P2(mati,mati,it) = P2(mati,mati,it)-ee*(1.0d0-gamma)*delS2_Nb(mati,mati,it)&
&-ee*gamma*delS2_Nb1(mati,mati,it)

enddo
!非対格成分
do matj=2,n

do mati=1,matj-1
P2(mati,matj,it) = P2(mati,matj,it)-ee*(1.0d0-gamma)*delS2_Nb(mati,matj,it)&
&-ee*gamma*delS2_Nb1(mati,matj,it)
P2(matj,mati,it) = conjg(P2(mati,matj,it))

enddo
enddo

enddo
!$omp end do
!$omp end parallel

!ハミルトニアンの計算
ac1=0.0d0
ac2=0.0d0
!S_1の計算
first(:,:,:) =cmplx(0.0d0,0.0d0,kind(0d0))
!まず、Nbの場合のハミルトニアンを計算する
call calaction(phi1,phi2,ac1,ac2,Nb,n,cc,m,Lj,eps,mass,lambda)
!また、周期境界条件を Nb+1に書き換えた場合
call calaction(phi1,phi2,ac11,ac22,Nb+1,n,cc,m,Lj,eps,mass,lambda)
ha2 = (1.0d0-gamma)*(ac1+ac2)+gamma*(ac11+ac22)
!共役運動量を含んでのハミルトニアン
call mom2(P1,P2,n,ham1,ham2)
ha2 = ha2 +0.5d0*(ham1+ham2)

!ハミルトニアンの比較
delh = ha2 - ha
call random_number(r)
if (delh >0.0d0) then

if (r>=exp(-delh)) then
phi1=phisave1
phi2=phisave2
ac1=ac1save
ac2=ac2save
ac11=ac11save
ac22=ac22save
acsp = acsp - 1

endif
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endif
!結果の記述
ha = ac1+ac2
ha2= ac11+ac22
delac=delac+ha2-ha
write(8,*) ha2-ha
write(3,*) ac11+ac22
write(7,*) ac1+ac2
phisq1(:,:,:)= cmplx(0.0d0,0.0d0,kind(0d0))

!$omp parallel
!$omp do
do it=1,m

!do matj= 1,n
do mati=1,n

do matj=1,n
phisq1(mati,mati,it)=phisq1(mati,mati,it)&
&+phi1(mati,matj,it)*phi1(matj,mati,it)
enddo
enddo
!enddo

enddo
!$omp end do
!$omp end parallel
sumphisq1=0.0d0
do it=1,m
do mati=1,n

sumphisq1=sumphisq1+phisq1(mati,mati,it)
enddo
enddo
write(100,*)sumphisq1

phisq2(:,:,:)= cmplx(0.0d0,0.0d0,kind(0d0))
!$omp parallel

!$omp do
do it=1,m

!do matj= 1,n
do mati=1,n

do matj=1,n
phisq2(mati,mati,it)=phisq2(mati,mati,it)&
&+phi2(mati,matj,it)*phi2(matj,mati,it)
enddo
enddo
!enddo

enddo
!$omp end do
!$omp end parallel
sumphisq2=0.0d0
do it=1,m
do mati=1,n

sumphisq2=sumphisq2+phisq2(mati,mati,it)
enddo
enddo
write(130,*)sumphisq2
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even=even+1
!ファイルに書き出す

!write(3,*) w
enddo
enddo
!phiを書き出す
open(4,file=’a1-gamma00-Nb=1-20-2.d’)

do it=1,m
do mati=1,n
do matj = 1,n

write(4,*) phi1(matj,mati,it)
enddo

enddo
enddo
do it=1,m

do mati=1,n
do matj = 1,n

write(4,*) phi2(matj,mati,it)
enddo

enddo
enddo

close(4)
!random_seedを書き出す

open(1,file=’rs1-gamma00-Nb=1-20.d’)
call random_seed(get = u(:))
do i=1,v

write(1,*) u(i)
enddo
close(1)
write(3,*) ’acseptance’
write(3,*) acsp
write(*,*) ’acseptance’
write(*,*) acsp
call system_clock(t2,t_rate,t_max)
if (t2<t1) then

diff=t_max-t1+t2
else

diff=t2-t1
endif
write(3,*) ’time it took was’
write(3,*) dble(diff)/dble(t_rate)
write(3,*) ’j’
write(3,*) j
write(3,*) ’eps’
write(3,*) eps
close(3)

end program HM

91



参考文献

[1] J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973). doi:10.1103/PhysRevD.7.2333

[2] S. W. Hawking, Commun. Math. Phys. 43, 199 (1975) [Commun. Math. Phys. 46, 206 (1976)].

doi:10.1007/BF02345020

[3] M. Srednicki, Phys. Rev. Lett. 71, 666 (1993) doi:10.1103/PhysRevLett.71.666 [hep-

th/9303048].

[4] A. Strominger and C. Vafa, Phys. Lett. B 379, 99 (1996) doi:10.1016/0370-2693(96)00345-0

[hep-th/9601029].

[5] J. M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999) [Adv. Theor. Math. Phys. 2, 231 (1998)]

doi:10.1023/A:1026654312961 [hep-th/9711200].

[6] S. Ryu and T. Takayanagi, Phys. Rev. Lett. 96, 181602 (2006) [hep-th/0603001].

[7] T. Banks, W. Fischler, S. H. Shenker and L. Susskind, Phys. Rev. D 55, 5112 (1997) [hep-

th/9610043].

[8] N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, Nucl. Phys. B 498, 467 (1997) [hep-

th/9612115].

[9] R. Dijkgraaf, E. P. Verlinde and H. L. Verlinde, Nucl. Phys. B 500, 43 (1997) [hep-th/9703030].

[10] A. Connes, M. R. Douglas and A. S. Schwarz, JHEP 9802, 003 (1998) doi:10.1088/1126-

6708/1998/02/003 [hep-th/9711162].

[11] H. Aoki, N. Ishibashi, S. Iso, H. Kawai, Y. Kitazawa and T. Tada, Nucl. Phys. B 565, 176

(2000) doi:10.1016/S0550-3213(99)00633-1 [hep-th/9908141].

[12] N. Seiberg and E. Witten, JHEP 9909, 032 (1999) doi:10.1088/1126-6708/1999/09/032 [hep-

th/9908142].

[13] S. Minwalla, M. Van Raamsdonk and N. Seiberg, JHEP 0002, 020 (2000) [hep-th/9912072].

[14] N. Shiba and T. Takayanagi, JHEP 1402, 033 (2014) [arXiv:1311.1643 [hep-th]].

[15] W. Fischler, A. Kundu and S. Kundu, JHEP 1401, 137 (2014) [arXiv:1307.2932 [hep-th]].

92



[16] J. L. Karczmarek and C. Rabideau, JHEP 1310, 078 (2013) [arXiv:1307.3517 [hep-th]].

[17] A. Hashimoto and N. Itzhaki, Phys. Lett. B 465, 142 (1999) [hep-th/9907166].

[18] J. M. Maldacena and J. G. Russo, JHEP 9909, 025 (1999) [hep-th/9908134].

[19] S. Okuno, M. Suzuki and A. Tsuchiya, to be published in PTEP [arXiv:1512.06484 [hep-th]].

[20] J. L. Karczmarek and P. Sabella-Garnier, JHEP 1403, 129 (2014) [arXiv:1310.8345 [hep-th]].

[21] P. Sabella-Garnier, JHEP 1502, 063 (2015) [arXiv:1409.7069 [hep-th]].

[22] D. Dou and B. Ydri, Phys. Rev. D 74, 044014 (2006) [gr-qc/0605003].

[23] D. Dou, Mod. Phys. Lett. A 24, 2467 (2009) [arXiv:0903.3731 [gr-qc]].

[24] P. V. Buividovich and M. I. Polikarpov, Nucl. Phys. B 802, 458 (2008) [arXiv:0802.4247 [hep-

lat]].

[25] Y. Nakagawa, A. Nakamura, S. Motoki and V. I. Zakharov, PoS LATTICE 2010, 281 (2010)

[arXiv:1104.1011 [hep-lat]].

[26] T. Azuma, S. Bal, K. Nagao and J. Nishimura, JHEP 0405, 005 (2004) [hep-th/0401038].

[27] T. Azuma, S. Bal and J. Nishimura, Phys. Rev. D 72, 066005 (2005) [hep-th/0504217].

[28] J. Medina, W. Bietenholz, F. Hofheinz and D. O’Connor, PoS LAT 2005, 263 (2006) [hep-

lat/0509162].

[29] F. Garcia Flores, X. Martin and D. O’Connor, Int. J. Mod. Phys. A 24, 3917 (2009)

[arXiv:0903.1986 [hep-lat]].

[30] M. Panero, JHEP 0705, 082 (2007) [hep-th/0608202].

[31] C. R. Das, S. Digal and T. R. Govindarajan, Mod. Phys. Lett. A 23, 1781 (2008)

[arXiv:0706.0695 [hep-th]].

[32] H. Steinacker, Nucl. Phys. B 679, 66 (2004) [hep-th/0307075].

[33] S. Kawamoto and T. Kuroki, JHEP 1506, 062 (2015) [arXiv:1503.08411 [hep-th]].

93



[34] T. Inami, Y. Koyama, Y. Nakayama and M. Suzuki, PTEP 2015, no. 5, 053B05 (2015)

doi:10.1093/ptep/ptv062 [arXiv:1412.2350 [hep-th]].

[35] 高柳匡,“ホログラフィー原理と量子エンタングルメント”, サイエンス社 (2014年)

[36] 土屋麻人,“弦理論と行列模型　弦理論の非摂動定式化と新しい時空と物質の捉え方”, サイエ

ンス社 (2014年)

[37] C. S. Chu, J. Madore and H. Steinacker, JHEP 0108, 038 (2001) [hep-th/0106205].

[38] P. Castro-Villarreal, R. Delgadillo-Blando and B. Ydri, Nucl. Phys. B 704, 111 (2005) [hep-

th/0405201].

[39] J. P. Gazeau. Coherent states in quantum physics - 2009. Weinheim, Germany: WileyVCH.

[40] 青木慎也,“格子上の場の理論”, シュプリンガー・フェアラーク東京 (2005年)

[41] G. Alexanian, A. prodnzul and A. Stern, Nucl. Phys. B 600, 531 (2001) [hep-th/0010187].

[42] A. B. Hammou, M. Lagraa and M. M. Sheikh-Jabbari, Phys. Rev. D 66, 025025 (2002) [hep-

th/0110291].

[43] P. Presnajder, J. Math. Phys. 41, 2789 (2000) [hep-th/9912050].

[44] G. Ishiki, Phys. Rev. D 92, no. 4, 046009 (2015) [arXiv:1503.01230 [hep-th]].

[45] F. A. Berezin, Commun. Math. Phys. 40, 153 (1975).

[46] J. S. Schwinger, J. Math. Phys. 2, 407 (1961).

[47] L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 (1964) [Sov. Phys. JETP 20, 1018 (1965)].

[48] K. C. Chou, Z. B. Su, B. L. Hao and L. Yu, Phys. Rept. 118, 1 (1985).

[49] E. Calzetta and B. L. Hu, Phys. Rev. D 35, 495 (1987).

[50] R. D. Jordan, Phys. Rev. D 33, 444 (1986).

[51] S. Weinberg, Phys. Rev. D 72, 043514 (2005).

[52] L. H. Ford and L. Parker, Phys. Rev. D 16, 245 (1977).

94



[53] B. Allen and A. Folacci, Phys. Rev. D 35, 3771 (1987).

[54] B. Allen, Nucl. Phys. B 287, 743 (1987).

[55] B. Allen and M. Turyn, Nucl. Phys. B 292, 813 (1987).

[56] G. Kleppe, Phys. Lett. B 317, 305 (1993).

[57] S. P. Miao, N. C. Tsamis and R. P. Woodard, J. Math. Phys. 51, 072503 (2010).

S. P. Miao, N. C. Tsamis and R. P. Woodard, J. Math. Phys. 52, 122301 (2011).

S. P. Miao, N. C. Tsamis and R. P. Woodard, Class. Quant. Grav. 28, 245013 (2011).

[58] A. Rajaraman, J. Kumar and L. Leblond, Phys. Rev. D 82, 023525 (2010).

[59] A. Higuchi, D. Marolf and I. A. Morrison, Class. Quant. Grav. 28, 245012 (2011).

[60] S. Hollands, Annales Henri Poincare 13, 1039 (2012).

[61] S. B. Giddings and M. S. Sloth, Phys. Rev. D 86, 083538 (2012).

[62] S. P. Miao and R. P. Woodard, JCAP 1207, 008 (2012).

[63] A. Youssef, Phys. Lett. B 718, 1095 (2013).

[64] I. A. Morrison, arXiv:1302.1860 [gr-qc].

[65] D. Seery, Class. Quant. Grav. 27, 124005 (2010).

[66] Y. Urakawa and T. Tanaka, Prog. Theor. Phys. 122, 779 (2009).

Y. Urakawa and T. Tanaka, Phys. Rev. D 82, 121301 (2010).

T. Tanaka and Y. Urakawa, PTEP 2013, 083E01 (2013).

T. Tanaka and Y. Urakawa, PTEP 2013, 063E02 (2013).

T. Tanaka and Y. Urakawa, PTEP 2014, 073E01 (2014).

[67] N. C. Tsamis and R. P. Woodard, Nucl. Phys. B 474, 235 (1996).

N. C. Tsamis and R. P. Woodard, Phys. Rev. D 78, 028501 (2008).

N. C. Tsamis and R. P. Woodard, Int. J. Mod. Phys. D 20, 2847 (2011).

[68] J. Garriga and T. Tanaka, Phys. Rev. D 77, 024021 (2008).

[69] H. Kitamoto and Y. Kitazawa, Phys. Rev. D 87, 124007 (2013).

95



[70] H. Kitamoto and Y. Kitazawa, Int. J. Mod. Phys. A 29, 1430016 (2014).

[71] Y. Nakayama, Int. J. Mod. Phys. A 19, 2771 (2004).

[72] A. M. Polyakov, Mod. Phys. Lett. A 2, 893 (1987).

[73] J. Distler and H. Kawai, Nucl. Phys. B 321, 509 (1989).

[74] A. M. Polyakov, Sov. Phys. Usp. 25, 187 (1982) [Usp. Fiz. Nauk 136, 538 (1982)].

[75] I. Antoniadis and E. Mottola, Phys. Rev. D 45, 2013 (1992).

[76] R. Jackiw, C. Nunez and S.-Y. Pi, Phys. Lett. A 347, 47 (2005).

[77] I. Antoniadis, P. O. Mazur and E. Mottola, New J. Phys. 9, 11 (2007).

[78] J. Govaerts and S. Zonetti, Class. Quant. Grav. 28, 185001 (2011).

J. Govaerts and S. Zonetti, Phys. Rev. D 87, 084016 (2013).

[79] P. Di Francesco, P. Mathieu and D. Senechal, New York, USA: Springer (1997) 890 p

[80] A. B. Zamolodchikov, Sov. J. Nucl. Phys. 44, 529 (1986) [Yad. Fiz. 44, 821 (1986)].

[81] M. Bander, Phys. Rev. D 82, 024003 (2010).

M. Bander, PoS HRMS 2010, 026 (2010).

[82] H. Kitamoto and Y. Kitazawa, Phys. Rev. D 83, 104043 (2011).

H. Kitamoto and Y. Kitazawa, Phys. Rev. D 85, 044062 (2012).

[83] T. S. Bunch and P. C. W. Davies, Proc. Roy. Soc. Lond. A 360, 117 (1978).

[84] V. K. Onemli and R. P. Woodard, Class. Quant. Grav. 19, 4607 (2002).

[85] T. M. Janssen, S. P. Miao, T. Prokopec and R. P. Woodard, Class. Quant. Grav. 25, 245013

(2008).

[86] J. Polchinski, hep-th/0603249.

[87] R. P. Woodard, arXiv:1407.4748 [gr-qc].

[88] D. Klemm and L. Vanzo, JCAP 0411, 006 (2004).

96



[89] A. M. Polyakov, hep-th/0602011.

[90] A. Zamolodchikov and A. Zamolodchikov, Conf. Proc. C 060726, 1223 (2006).

[91] Y. Nakayama, Nucl. Phys. B 846, 100 (2011).

[92] T. Brunier, V. K. Onemli and R. P. Woodard, Class. Quant. Grav. 22, 59 (2005).

[93] N. D. Birrell and P. C. W. Davies, “Quantum Fields in Curved Space”.

Cambridge Monogr.Math.Phys.1982. 340 pp.

[94] A. A. Starobinsky and J. Yokoyama, Phys. Rev. D 50, 6357 (1994).

[95] C. P. Burgess, L. Leblond, R. Holman and S. Shandera, JCAP 1003, 033 (2010).

[96] 橋本直彌,“エンタングルメントエントロピーの重力双対による記述”, 2014年度修士論文

[97] Birrell N. D and Davies P. C. W 1982 Quantum Fields In Curved Space (Cambridge: Cam-

bridge University Press)

97


	非可換球面上のエンタングルメントエントロピー
	K0893.pdf
	K0893ny.pdf
	K0893sy.pdf


