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Abstract

In this thesis we present precision benchmark calculations for two-component

fermions in the unitarity limit using an ab initio method, namely Hamiltonian lattice

formalism. We calculate the ground state energy for unpolarized four particles (Fermi gas)

in a periodic cube as a fraction of the ground state energy of the non-interacting system for

two independent representations of the lattice Hamiltonians. We obtain the values 0.211(2)

and 0.210(2). These results are in full agreement with the Euclidean lattice and fixed-node

diffusion Monte Carlo calculations. We also give an expression for the energy corrections to

the binding energy of a bound state in a moving frame. These corrections contain informations

about the mass and number of the constituents and are topological in origin and will have

a broad applications to the lattice calculations of nucleons, nuclei, hadronic molecules and

cold atoms. As one of its applications we use this expression and determine the low-energy

parameters for the fermion dimer elastic scattering in shallow binding limit. For our lattice

calculations we use Lüscher’s finite volume method. From the lattice calculations we find

κafd = 1.174(9) and κrfd = −0.029(13), where κ represents the binding momentum of dimer

and afd (rfd) denotes the scattering length (effective-range). These results are confirmed by

the continuum calculations using the Skorniakov-Ter-Martirosian integral equation which

gives 1.17907(1) and −0.0383(3) for the scattering length and effective range, respectively.

Both results for the fermion dimer effective range are not in agreement with the previous

calculation [86] which have found κrfd ≈ 0.08(1).
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Chapter 1

Overview

1.1 Standard model

The standard model (SM) unifies three of four forces of nature. The SM is a local

gauge theory with the gauge group SU(3)× SU(2)×U(1) specifying the interactions among

the basic constituents of matter. These basic constituents (see figure 1.1) are six quarks, each

in three colors, and six leptons. The quarks and leptons are classified into three generations.

The interactions between the particles are mediated by vector bosons; 8 gluons mediate

the strong interactions, W± and Z mediate the weak interaction, and the electromagnetic

interaction is transmitted by the photon γ. The weak bosons become massive through the

Higgs mechanism.

1.2 Strong interactions

The strong interactions between the elementary particles are described by quantum

chromodynamics (QCD). At the fundamental level, this is the gauge interaction based on

the SU(3)c color group, which is a part of the gauge group SU(3)× SU(2)× U(1) of the

SM [1,2]. The Lagrangian of QCD (without gauge fixing and CP-violating term) is given by

L = ψ̄i
[
i(γµDµ)ij −mδij

]
ψj −

1

4
GaµνGaµν , (1.1)

where the ψi(x) are the quark fields in the fundamental representation of the SU(3) gauge

group, indexed by i, j, . . . and these indices are summed over. The covariant derivative

is given by Dµ = ∂µ − igτaGaµ, where g is the coupling constant of the strong interaction

2



Chapter 1: Overview 3

1/2 2/3

u

up

2.4 MeV

1/2 -1/3

d

down

4.8 MeV

1/2 0

νe

electron neutrino

<2.2 eV

1/2 -1

e

electron

0.511 MeV

1/2 2/3

c

charm

1.27 GeV

1/2 -1/3

s

strange

104 MeV

1/2 0

νµ

muon neutrino

<0.17 MeV

1/2 -1

µ

muon

105.7 MeV

1/2 2/3

t

top

171.2 GeV

1/2 -1/3

b

botton

4.20 GeV

1/2 0

ντ

tau neutrino

<15.5 MeV

1/2 -1

τ

tau

1.777 GeV

1 0

γ

photon

0

1 0

g

gluon

0

1 0

z

weak boson

91.2 GeV

1 ±1

w±

weak boson

80.4 GeV

quarks, 1. gen.

quarks, 2. gen.

quarks, 3. gen

leptons, 1. gen.

leptons, 2. gen.

leptons, 3. gen

gauge bosons
spin charge

symbol

name

mass

Figure 1.1: Basic constituents of matter.

and τa, which obey
[
τa, τ b

]
= ifabcτ c, are the independent generators of the SU(3)c

symmetry. Gaµν , represents the gauge invariant gluonic field strength tensor and is defined

by
[
Dµ,Dν

]
= −igτaGaµν or more explicitly, Gaµν = ∂µGaν − ∂νGaµ − gfabcGbµGcν , where Gaµ are

the gluon fields in the adjoint representation of the SU(3) gauge group, indexed by a, b, . . .

and fabc are the structure constants of SU(3). QCD is an asymptotically free theory which

means the coupling constant of QCD decreases at higher energies as we can see in figure

1.2. This weakness of the interactions allows one to apply perturbative calculations at high

energies. However at low energies the strong interaction becomes stronger, and perturbation

theory is no longer applicable. To deal with this problem one can use the effective field theory

technique or non-perturbative methods like lattice QCD.

1.3 Effective field theories

An astonishing fact about the world we live in is the existence of interesting physics

at all scales. From the size of the universe to the size of nucleons, we can find fascinating
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Figure 1.2: Summary of measurements of αs as a function of the respective energy scale
Q. The respective degree of QCD perturbation theory used in the extraction of αs is
indicated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to leading order; res.
NNLO:NNLO matched with resummed next-to-leading logs; N3LO: next-to-NNLO). Picture
from [3]

physical phenomena. The effective field theory (EFT) idea emanates from this fact that

scales much bigger or smaller than the ones we are interested in do not affect the dynamics

of the system in question too strongly [4–6]. This fact might be one of the reasons why

two revolutionary ideas in physics, quantum mechanics and relativity, did not come earlier

since the quantum mechanics and relativity are relevant in very tiny and large distances,

respectively. Lets make the idea of EFT more clear by an example. Assume we have a theory

with a set of light and heavy fields, their respective masses well separated by a scale Λ. In

the low-energy regime, which means energies well below Λ, the heavy degrees of freedom can

be integrated out of the generating functional. What remains is an effective Lagrangian with

only light degrees of freedom. This procedure can produce a non-renormalizable theory. To

build an effective theory we need to choose the suitable degrees of freedom. We can construct

the Lagrangian based on the symmetries of the fundamental theory. Certainly an effective



Chapter 1: Overview 5

theory must be consistent with the full theory and experiments. In other words since the

only content of quantum field theory (QFT) are unitarity, analyticity, cluster decomposition

and symmetries, to build an effective Lagrangian one must take the most general Lagrangian,

which contains these principles [7]. Two examples of effective theories are Fermi’s theory of

beta decay (weak interaction) and chiral perturbation theory (QCD).

Any EFT builds on a basic physics principle that underlies every low-energy

effective model or theory. A high-energy, short-wavelength probe sees details down to scales

comparable to the wavelength. Thus, electron scattering at sufficiently high energy reveals

the quark substructure of protons and neutrons in a nucleus. But at lower energies, details

are not resolved, and one can replace short-distance structure with something simpler, as

in a multipole expansion of a complicated charge or current distribution. This means it is

not necessary to calculate with full QCD to do accurate strong interaction physics at low

energies; we can replace quarks and gluons by neutrons and protons (and maybe pions and

. . . ). EFT provides a systematic, model-independent way to carry out this program starting

with a local Lagrangian framework.

An EFT is formulated by specifying appropriate low-energy degrees of freedom and

then constructing the Lagrangian as a complete set of terms that embody the symmetries of

the underlying theory. There is not a unique EFT for nuclear physics. In different applications

the relevant degrees of freedom might be neutrons and protons only, or neutrons, protons,

and pions, or neutrons, protons, pions, and ∆’s or quasi-nucleons [13]. The form of the

EFT can be chosen to readily expose universal behavior, such as features in dilute neutron

matter that are common with phenomena seen in cold atom experiments. We will come back

to this later on. In applying an EFT Lagrangian, one must confront in a controlled way

the impact of excluded short-distance physics. Quantum mechanics implies that sensitivity

to short-distance physics is always present in a low-energy theory, but it is made manifest

in an EFT through the dependence on a cutoff or other regulator instead of being hidden

in phenomenological form factors. Removing this dependence necessitates a well-defined

regularization and renormalization scheme as part of the EFT. This necessity becomes a

virtue as residual regulator dependence can be used to assess truncation errors and many-body

approximations. Furthermore, the freedom in how to regulate coupled with the freedom to

make unitary transformations can be exploited by renormalization group methods to greatly

simplify few- and many-body nuclear calculations.

For an EFT calculation to be improvable order-by-order, one needs a scheme to



6 Chapter 1: Overview

organize the infinity of possible terms in the Lagrangian based on an expansion parameter.

Such a scheme is called a power counting. Power counting tells us what terms (or Feynman

diagrams) to include at each order and lets us estimate the theoretical truncation error.

The radius of convergence associated with the expansion means that the EFT predicts it

own downfall, in contrast to phenomenological models. EFT expansion parameters most

commonly arise as a ratio of disparate physical scales rather than as a small coupling

constant (e.g., as in Coulomb systems); a many-body example is the ratio of the range of

the interaction to the interparticle spacing in a dilute system. The power counting for this

example is particularly simple when the scattering length is roughly the same size as the

interaction range (called "natural") but changes dramatically if the scattering length is much

larger (called "unnatural"). In the following we give a brief overview of the concept of the

scattering length and the effective range expansion and the application of EFT to cold atoms.

1.3.1 Scattering length and effective range expansion

The scattering length is one of the central observables in nuclear physics. The

concept of the scattering length is introduced in every graduate quantum mechanics course.

Here we will briefly reintroduce this quantity [16, 17]. Consider a system of two identical

particles moving in their center-of-mass system with momentum p. The asymptotic wave

function is of the form

Ψ ∼ eip·r +A(p, θ)
eipr

r
, (1.2)

where θ represents the scattering angle and p and r denote |p| and |r|, respectively. This

wave function is the superposition of an incident plane wave and a scattered wave function.

In Eq. (1.2), A(p, θ) is called the scattering amplitude and is related to the differential

cross-section via
dσ

dΩ
= |A(p, θ)|2. (1.3)

The scattering amplitude can be written as a sum of contributions from different partial

waves

A(p, θ) =
1

2ip

∞∑

l=0

(2l + 1)
(
e2iδl − 1

)
Pl(cos θ), (1.4)

where Pl(cos θ) denote the Legendre polynomials and δl is the scattering phase shift. The

partial wave amplitude can be defined as

Al(p, θ) =
e2iδl(p) − 1

2ip
, (1.5)
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which can be written as

Al(p, θ) =
1

p cot δl − ip
. (1.6)

At very low energies the cross-section for 2-body scattering is dominated by the S-wave

amplitude. The higher partial waves are suppressed by powers of the relative momentum.

The S-wave scattering amplitude for two particles with relative momentum p is

A0(p) =
1

p cot δ0 − ip
, (1.7)

where δ0 is the S-wave phase shift. At low momentum the S-wave phase shift for 2-body

scattering with short-range interactions can be characterized in terms of the effective range

expansion,

p cot δ0 = − 1

as
+

1

2
reff p

2 + · · · . (1.8)

Here, as is the S-wave scattering length, and reff is the S-wave effective range. The radius of

convergence of the effective range expansion is controlled by the characteristic length scale

of the interaction. For example in low-energy nuclear physics the range of the two-nucleon

interaction is set by the Compton wavelength of the pion.

1.3.2 Effective field theory for cold atoms at unitarity

The EFT for the unitarity limit can be derived from any theory of two-component

fermions with infinite scattering length and negligible higher-order scattering effects at the

relevant low-momentum scale. For example the two fermion components may correspond to

dressed hyperfine states
∣∣F ,mF

〉
=
∣∣9/2,−9/2

〉
and

∣∣9/2,−7/2
〉
of 40K with interactions given

either by a full multi-channel Hamiltonian or a simplified two-channel model. We should

remind that the hyperfine levels of an atom are labeled by the set of quantum numbers

(F,mF ). Here F is the quantum number for the total angular momentum of the atom. The

total angular momentum, F is given by

F = J + I = L + S + I, (1.9)

where L represents the sum of the electronic angular momenta, S denotes the sum of the

electronic spins and I is the nuclear spin. mF is the quantum number of the third component

of the total angular momentum.

The starting point to drive the EFT for the unitarity limit does not matter so long

as the S-wave scattering length is tuned to infinity to produce a zero-energy resonance. In
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this work m represents the atomic mass and ai and a
†
i are annihilation and creation operators

for two hyperfine states. We label these as up and down spins, i =↑, ↓, even though the

connection with actual intrinsic spin is not necessary. The free non-relativistic effective

Hamiltonian in momentum space can be written as

Hfree =
∑

i

∫
d3~p

~p 2

2m
a†i (~p)ai(~p). (1.10)

In position space the annihilation and creation operators can be expressed as

ai(~r) =
1√
V

∫
d3~p ei~p·~rai(~p), a†i (~r) =

1√
V

∫
d3~p e−i~p·~ra†i (~p). (1.11)

Combining Eqs. (1.10) and (1.11) the free Hamiltonian in configuration space is then given

by

Hfree = − 1

2m

∑

i

∫
d3~r a†i (~r)~∇2ai(~r) (1.12)

=
1

2m

∑

i

∫
d3~r

(
~∇a†i (~r)

)
·
(
~∇ai(~r)

)
.

The effective potential can be written as

V (~r, ~r ′) =
1

2

∑

i,j=↑,↓

∫
d3~r

∫
d3~r ′ : a†i (~r)ai(~r)V(~r − ~r ′)a†j(~r ′)aj(~r ′) :, (1.13)

where : · · · : denotes normal ordering. The leading order (LO) potential can be achieved by

VLO(~r − ~r ′) = C0 δ(~r − ~r ′). (1.14)

C0 denotes the 2-body coupling constant and is directly related to the 2-body scattering

length. The exact value of C0 depends on the scheme used to regulate the short distance

behavior in the effective theory. The effective Hamiltonian at LO is

HLO = − 1

2m

∑

i

∫
d3~r a†i (~r)~∇2ai(~r) +

C0

2

∑

i,j

∫
d3~r : a†i (~r)ai(~r)a

†
j(~r)aj(~r) : . (1.15)

Higher-order effects may be introduced systematically as higher-dimensional local operators

with more derivatives and/or more local fields.

1.4 Lattice QCD

Lattice QCD (LQCD) is a non-perturbative method to deal with QCD. It is a discrete

gauge theory formulated on the lattice of points in space and time. One of the first questions



Chapter 1: Overview 9

that might come to one’s mind is why using a lattice, although all physical experiments show

no deviation from the continuous symmetries of the Lorentz group? The primary goal of

LQCD is to test if QCD is the correct theory of strong interaction. One of the best evidences

that we have for confinement in non-Abelian gauge theory comes by the Wilson formulation

of a gauge theory set up on a four-dimensional Euclidean lattice. The lattice provides a

natural cutoff removing the ultraviolet infinities. The lattice eliminates all wavelengths

less than twice the lattice spacing alatt, before any expansions or approximations and thus

on a lattice, a field theory becomes mathematically well-defined. A lattice formulation

emphasizes the close connections between field theory and statistical mechanics. Indeed,

the strong coupling treatment is equivalent to a high temperature expansion. The deep ties

between these disciplines are manifest in the Feynman path integral formulation of quantum

mechanics. In Euclidean space, a path integral is equivalent to a partition function of an

analogous statistical system. After a Wick rotation the phase in the path integral becomes

an exponential damping factor. One of the advantages of lattice formulation of a gauge

theory is that the path integral transforms into an ordinary multiple integral over the fields.

The starting point of lattice calculation is the partition function in Euclidean space-time

Z =

∫
DAµ Dψ̄ Dψ e−S , (1.16)

where S is the QCD action and is given by

S =

∫
d4x
(1

4
GµνG

µν − ψ̄Mψ
)
, (1.17)

and M is the Dirac operator. The Grassmann fermionic fields, ψ and ψ̄, can be integrated

out from Eq. (1.16) and will be contained in a highly non-local term (detM),

Z =

∫
DAµ detM e−

1
4

∫
d4x GµνGµν . (1.18)

So the partition function is an integral over only background gauge configurations. Results

for physical observables can be obtained by calculating expectation values

〈
O
〉

=
1

Z

∫
DAµ O e−S , (1.19)

where O is any given combination of operators expressed in terms of time-ordered products

of gauge and quark fields. Now the question is, how to extract physical observables from the

expectation values? The correlation function gives the amplitude for creating and annihilating
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Figure 1.3: Two-dimensional-lattice

a state with definite quantum numbers between two points. The evaluation between these

two points occurs via the QCD Hamiltonian. The physical observables can be extracted from

the rate of the exponential fall-off in time and form the amplitude. There are three sources

of uncertainty in LQCD. The first error source is coming from finite volume. The number

of lattice points in the LQCD simulations are of course finite. The second one is caused by

non-zero lattice spacing and the third source is non-physical quark masses. It is very difficult

to go to the large boxes and make lattice spacing very small and take the physical quark

masses. These limitations produce artifacts in the measurements of the LQCD which should

be removed by extrapolations.

1.5 Effective field theory on the lattice

We discuss methods which combine EFT with lattice methods and which can be

applied to both cold atomic systems and low-energy nuclear physics [26–30]. Unfortunately

lattice QCD calculations of few- and many-body systems are at the present time hardly

possible. Such simulations require pion masses at or near the physical mass and lattices

several times longer in each dimension than used in current simulations. Another significant

computational challenge is to overcome the exponentially small signal-to-noise ratio for

simulations at large quark number. For few- and many-body systems in low-energy nuclear

physics one can make further progress by working directly with hadronic degrees of freedom.

Lattice effective field theory [28] provides an alternative method to describe few- and many-

body systems at low energy without losing connection to QCD. In the lattice effective field

theory approach we have effective field theory up to a given order in expansion parameter

with lattice regularization. This approach uses low-energy scattering data as input and we

can systematically improve the accuracy in describing low-energy phenomena by increasing
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Figure 1.4: A schematic diagram of different lattice formulations. Using the Hubbard-
Stratonovich-transformation 2-body problem can be transformed to the 1-body interacting
with a background field (auxiliary field). Picture inspired by [26].

the order in power counting. In our discussion of the lattice formalism we use dimensionless

parameters and operators corresponding with physical quantities multiplied by the appropriate

power of the spatial lattice spacing alatt. ~n denote spatial lattice points on a three-dimensional

L3 periodic cube and µ̂ = 1̂, 2̂, 3̂ represent unit lattice vectors in the spatial directions. The

temporal lattice spacing is denoted by at. We define αt as the ratio of the lattice spacing,

αt = at/alatt. We also define h = αt/(2m), where m is the fermion mass in lattice units. In

the following we will introduce a number of different lattice formulations for a system of

two-component fermions with attractive zero range interaction. These lattice formulations

are shown schematically in 1.4. One can see in 1.4 that some of these formulations are

equivalent or can merge to another.

1.5.1 Lattice regularization and Hamiltonian lattice formalism

At sufficiently low energies usually the short distance quantum structure of the

particles is not important. Often the physical mass can be taken as input parameter to

determine other physical observables like the energy spectrum. Assume we have one particle

system on one spatial dimension of length L with periodic boundary condition. One of the

physical observables which we are interested in is the energy spectrum. The energy in such

systems is given by the following dispersion relation

E(p) =
√
p2 +m2, p =

2π

L
n, n ∈ Z, (1.20)
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where m is the physical mass of the particle and p is the one-dimensional momentum and is

discrete. For low energies (energies much smaller than the mass m) the spectrum is given by

E(p) = m+
p2

2m
+O(p4). (1.21)

The determination of the physical observables in more than the 1-body sector is usually

followed by complications. Suppose we have a 2-body system on a one dimensional torus of

length L. The non-interacting Hamiltonian in momentum space can be derived as

Hfree =
∑

p

p2

2m
a†pap. (1.22)

The interaction term can be defined through a delta-function potential. At low energies one

can neglect the higher terms in the effective range expansion formula and so

pcm cot δ0(pcm) ≈ −1

a
, (1.23)

where pcm represent the center-of-mass momentum. This allows us to take a contact

interaction as the interaction term. In 2-body sector the general form of the potential is then

given by

V =
1

2

∫ L

0
dx1

∫ L

0
dx2 : a†(x1)a(x1)V (x1, x2)a†(x2)a(x2) : . (1.24)

By replacing V (x1, x2) with a delta-function we will obtain

V =
1

2
C0

∫ L

0
dx :

(
a†(x)a(x)

)2
: . (1.25)

In the momentum basis the annihilation and creation operators are defined as

a(x) =
1√
L

∑

p

eipxap, a†(x) =
1√
L

∑

p

e−ipxa†p. (1.26)

By replacing the annihilation and creation operators for momentum space in Eq. (1.25) we

can find the interaction term in momentum space,

V =
1

2

C0

L

∑

p1,p2,p′1,p
′
2

a†
p′1
a†
p′2
ap2ap1 δp1+p2,p′1+p′2

, (1.27)

where pi and p
′
i denote the momentum before and after the interaction. To find the physical

observables for such systems we need to get rid of the ultraviolet divergences. One way

to avoid them is to introduce a cutoff momentum, Λ. That means we will have ΛL/π
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momentum modes (p = 0,±2π
L ,±4π

L , · · · ,±Λ) which resulting (ΛL/π)3 interaction terms.

One should note that this number of interaction terms is just for one spatial dimension. In

D spatial dimensions we will have (ΛL/π)3D interaction terms. As we can see the number

of interaction terms depends on cutoff and volume. Through this dependence the number

of terms can explode rapidly and this makes the computation expensive. The other way

to avoid the divergences is to use lattice regularization. To discretize the space we use the

following transformations

∫ L

0
dx→ alatt

N−1∑

n=0

, (1.28)

a(x)→ a(n), n = 0, 1, · · · , N − 1, a(N) = a(0),

∂

∂x
a(x)→ a(n+ 1)− a(n)

alatt
or

a(n)− a(n− 1)

alatt
,

[a(n), a†(n)] = δn,n′ .

For a torus the lattice spacing is alatt = L/N . The free Hamiltonian of the system in position

space is

Hfree = − 1

2m

∫ L

0
dx a†(x)

∂2

∂x2
a(x) =

1

2m

∫ L

0
dx
( ∂
∂x
a†(x)

)( ∂
∂x
a(x)

)
. (1.29)

The discretized non-interacting Hamiltonian is given by

Hfree = − 1

2m

N−1∑

n=0

[
a†(n+ 1)a(n) + a†(n)a(n+ 1)− 2a†(n)a(n)

]
. (1.30)

It is easy to show that the energy spectrum of the free Hamiltonian is given by

E(p) =
1

m

∑

i

(
1− cos pi

)
. (1.31)

where i is the number of particles. In the 1-body sector we can immediately see that the

energy spectrum which we find from the lattice method is the same as the energy spectrum

found in Eq. (1.21)
1

m

(
1− cos p

)
=

p2

2m
+O(p4). (1.32)

After including the interaction term we can find the lattice Hamiltonian of the system

H = Hfree +
C0

2

N−1∑

n=0

:
(
a†(n)a(n)

)2
: . (1.33)
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For a system of two-component fermions the free lattice Hamiltonian on a three dimensional

lattice can be written as

Hfree =
3

m

∑

~n,i

a†i (~n)ai(~n)− 1

2m

∑

~n,i

∑

µ̂=1̂,2̂,3̂

[
a†i (~n)ai(~n+ µ̂) + a†i (~n)ai(~n− µ̂)

]
, (1.34)

and so the interacting lattice Hamiltonian will be

H = Hfree +
C0

2

∑

~n

a†↑(~n)a↑(~n)a†↓(~n)a↓(~n). (1.35)

1.5.2 Grassmann path integral without auxiliary field

The simplest formulation to derive the Feynman rules is the lattice Grassmann

path integral without auxiliary field [26]. Let ci and c∗i be anticommuting Grassmann fields

for two-component fermions with spin up and down. These Grassmann fields are periodic

with respect to the spatial lengths and antiperiodic along the temporal direction,

ci(~n+ Lµ̂, nt) = ci(~n, nt), c∗i (~n+ Lµ̂, nt) = c∗i (~n, nt),

ci(~n, nt + Lt) = −ci(~n, nt), c∗i (~n, nt + Lt) = −c∗i (~n, nt). (1.36)

The Grassmann path integral can be written as

Z =

∫
DcDc∗ exp[−S(c, c∗)], (1.37)

where the action and the measure of integral are given by

S(c, c∗) = Sfree(c, c
∗) + C0αt

∑

~n,nt

ρ↑(~n, nt)ρ↓(~n, nt).

DcDc∗ =
∏

~n,nt,i

dci(~n, nt)dc
∗
i (~n, nt). (1.38)

The free, non-relativistic fermion action is

Sfree(c, c
∗) =

∑

~n,nt,i

[
c∗i (~n, nt)ci(~n, nt + 1)− (1− 6h)c∗i (~n, nt)ci(~n, nt)

]

− h
∑

~n,nt,i

[
c∗i (~n, nt)ci(~n+ µ̂, nt) + c∗i (~n, nt)ci(~n− µ̂, nt)

]
. (1.39)
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The local Grassmann densities are defined in terms of bilinear products of the Grassmann

fields,

ρ↑(~n, nt) = c∗↑(~n, nt)c↑(~n, nt),

ρ↓(~n, nt) = c∗↓(~n, nt)c↓(~n, nt),

ρ(~n, nt) = ρ↑(~n, nt) + ρ↓(~n, nt). (1.40)

The coefficient C0 in Eq. (1.38) denotes the 2-body coupling constant and its exact value

depends on the scheme used to regulate the short distance behavior.

1.5.3 Transfer matrix operator without auxiliary field

Assume the annihilation and creation operators of fermions satisfy the usual anti-

commutation relations,

{a, a†} = 1,

{a, a} = {a†, a†} = 0. (1.41)

As we know there is an identity for any function f(a†, a), which gives the relation between

the Grassmann path integral and products of operators [31]. This identity is

Tr
[

: f(a†, a) :
]

=

∫
dcdc∗ e2c∗cf [c∗, c], (1.42)

where c and c∗ are Grassmann variables and : · · · : indicates normal ordering. The trace in

Eq. (1.42) is evaluated over all possible fermion states. Using the complete set of possible

functions {1, a, a†, a†a} we can immediately see the correctness of Eq. (1.42). One can rewrite

Eq. (1.42) in a way that resembles a path integral over a short time interval with antiperiodic

boundary condition,

Tr
[

: f(a†, a) :
]

=

∫
dc(0)dc∗(0) ec

∗(0)[c(0)−c(1)]f [c∗(0), c(0)],

c(1) = −c(0). (1.43)

This result can be generalized for arbitrary numbers of operators. If ai(~n) and a†i (~n) represent

fermion annihilation and creation operators for spin i at lattice site ~n, we can rewrite any
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Grassmann path integral as the trace of a product of operators by using the identity

Tr
[

: FLt−1

[
a†i′(~n

′), ai(~n)
]

: × · · ·× : F0

[
a†i′(~n

′), ai(~n)
]

:
]

=

∫
DcDc∗ exp

{
c∗i (~n, nt)

[
ci(~n, nt)− ci(~n, nt + 1)

]}

×
Lt−1∏

nt=0

Fnt
[
c∗i′(~n

′, nt), ci(~n, nt)
]
, (1.44)

with antiperiodic boundary condition,

ci(~n, Lt) = −ci(~n, 0). (1.45)

To rewrite the path integral Z, defined in Eq. (1.37) as a transfer matrix partition function,

we use Eq. (1.34) and define the lattice density operators

ρa
†a
↑ (~n) = a†↑(~n)a↑(~n),

ρa
†a
↓ (~n) = a†↓(~n)a↓(~n),

ρa
†a(~n) = ρa

†a
↑ (~n) + ρa

†a
↓ (~n). (1.46)

After using Eq. (1.44) the transfer matrix partition function is,

Z = Tr
(
MLt

)
, (1.47)

where M is the normal-ordered transfer matrix operator and is given by

M =: exp
[
−Hfreeαt − C0αt

∑

~n

ρa
†a
↑ (~n)ρa

†a
↓ (~n)

]
: . (1.48)

1.5.4 Grassmann path integral with auxiliary field

By coupling an auxiliary field to the particle density we can rewrite the Grassmann

path integral. Due to the properties of the action such as simple contact interaction and

anticommutiation of Grassmann variables, there is a large class of auxiliary-field transforma-

tions which let the action invariant. We consider a general auxiliary-field transformation A.

Let us define the Grassmann action

S(c, c∗) = Sfree(c, c
∗)−

∑

~n,nt

A[s(~n, nt)] · [ρ↑(~n, nt) + ρ↓(~n, nt)], (1.49)
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and the Grassmann path integral

Z =
∏

~n,nt

[ ∫
ds(~n, nt)

] ∫
DcDc∗ exp

[
− S(c, c∗, s)

]
, (1.50)

where s is real-valued over all lattice sites. If we define the auxiliary-field transformation so

that
∫
ds(~n, nt)1 = 1,

∫
ds(~n, nt)A[s(~n, nt)] = 0, (1.51)

we can factor out the term in Eq. (1.50) involving the auxiliary field s at ~n, nt. We find
∫
ds exp

[
A(s)(ρ↑ + ρ↓)

]
=

∫
ds
[
1 +A(s)(ρ↑ + ρ↓) +A2(s)ρ↑ρ↓

]

= 1 +

∫
ds A2(s)ρ↑ρ↓ = exp

[ ∫
dsA2(s)ρ↑ρ↓

]
. (1.52)

Therefore the last condition needed to recover Eq. (1.37) is

−C0αt =

∫
ds A2(s). (1.53)

1.5.5 Transfer matrix operator with auxiliary field

Using the exact formula in Eq. (1.44) we can write the Grassmann path integral Z
as a product of transfer matrix operators that depend on the auxiliary fields

Z =
∏

~n,nt

[ ∫
ds(~n, nt)

]
Tr{M(s, Lt − 1) · · ·M(s, 0)}, (1.54)

where

M(s, nt) =: exp

{
−Hfreeαt +

∑

~n

A[s(~n, nt)] · [ρa
†a
↑ (~n) + ρa

†a
↓ (~n)]

}
: . (1.55)

By taking the limit αt → 0 we will obtain the lattice Hamiltonian formalism. In the grand

canonical ensemble at chemical potential µ the partition function is

Z(µ) =
∏

~n,nt

[ ∫
ds(~n, nt)

]
Tr{M(s, Lt − 1, µ) · · ·M(s, 0, µ)}, (1.56)

where

M(s, nt, µ) = M(s, nt) exp

{
µαt

∑

~n

ρa
†a(~n)

}
. (1.57)
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To find the ground state energy, let
∣∣Ψ0,free

N,N

〉
be the normalized Slater-determinant representing

the ground-state wave function on the lattice for a noninteracting system of N up spins and

N down spins. After constructing the Euclidean time projection amplitude we will have

ZN,N (t) =
∏

~n,nt

[ ∫
ds(~n, nt)

]〈
Ψ0,free
N,N

∣∣M(s, Lt − 1) · · · M(s, 0)
∣∣Ψ0,free

N,N

〉
, (1.58)

where t = Ltαt. We have only single-particle operators interacting with the background

auxiliary field and no direct interactions between particles. This is a result of normal ordering.

We find
〈
Ψ0,free
N,N

∣∣M(s, Lt − 1) · · · M(s, 0)
∣∣Ψ0,free

N,N

〉
=
[

detM(s, t)
]2
, (1.59)

where
[
M(s, t)

]
k′,k =

〈
~pk′
∣∣M(s, Lt − 1) · · · M(s, 0)

∣∣~pk
〉
, (1.60)

for matrix indices k, k′ = 1, · · · , N .
∣∣~pk′
〉
and

∣∣~pk
〉
are single-particle momentum states

comprising the Slater-determinant initial/final state. The single-particle interactions in

M(s, t) are the same for both up and down spins, and this is why the determinant in

Eq. (1.59) is squared. For the interacting lattice system, we label the energy eigenstates
∣∣Ψk

N,N

〉
with energies EkN,N in order of increasing energy,

E0
N,N ≤ E1

N,N ≤ · · · ≤ EkN,N . (1.61)

In the transfer matrix formalism these energies are defined in terms of the logarithm of the

transfer matrix eigenvalue,

M
∣∣Ψk

N,N

〉
= e−E

k
N,Nαt

∣∣Ψk
N,N

〉
. (1.62)

We define ckN,N as the inner product with the initial free fermion ground state,

ckN,N =
〈
Ψk
N,N

∣∣Ψ0,free
N,N

〉
. (1.63)

Assume that ckN,N , the overlap between free fermion ground state and the interacting ground

state, is nonzero. Now we define a transient energy expectation value that depends on the

Euclidean time t,

EN,N =
1

αt
ln
ZN,N (t− αt)
ZN,N (t)

. (1.64)

After spectral decomposition of ZN,N (t) we have

ZN,N (t) =
∑

k

∣∣ckN,N
∣∣2e−EkN,N t, (1.65)
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Figure 1.5: Sum of bubble diagrams contributing to two-particle scattering.

and at large Euclidean time t significant contributions come from only low energy eigenstates.

For large t we find

EN,N (t) ≈ E0
N,N +

∑

k 6=0

∣∣ckN,N
∣∣2

∣∣c0
N,N

∣∣2
e(EkN,N−E0

N,N )αt − 1

αt
e(EkN,N−E0

N,N )t. (1.66)

For low energy excitations EkN,N −E0
N,N is much smaller than the energy cutoff scale α−1

t

imposed by the temporal lattice spacing. Therefore

EN,N (t) ≈ E0
N,N +

∑

k 6=0

∣∣ckN,N
∣∣2

∣∣c0
N,N

∣∣2
(
EkN,N − E0

N,N

)
e(EkN,N−E0

N,N )t. (1.67)

The ground state energy E0
N,N is given by the limit

E0
N,N = lim

t→∞
EN,N (t). (1.68)

1.5.6 Lüscher finite volume formula

In the previous section we have talked about effective theories regularized by lattice

regularization in finite volume (periodic cube). From those methods we can find the energy

levels of the system. But these energy levels are measured in finite volume and real physics

happens in infinite volume. Now the question is how to connect the measurements in finite

volume to the physics. This was done brilliantly by Lüscher [32,33]. Almost three decades

ago Lüscher studied the box size dependence of the energy spectrum in finite volume. He

derived a relation connecting the energy levels of an interacting 2-body system in a periodic

cube to the infinite volume scattering matrix. Over the years different modifications and

generalization to Lüscher’s formula have been proposed [34–38]. In the following we will

summarize Lüscher’s method. We consider two distinguishable particles in a periodic box

of length L. The two-particle energy levels in the center-of-mass frame are related to the

S-wave phase shift [39],

p cot δ0(p) =
1

πL
S(η), η =

(
Lp

2π

)2

, (1.69)
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where S(η) is the three-dimensional zeta function with the momentum cutoff Λ,

S(η) = lim
Λ→∞

[∑

~n

θ(Λ2 − ~n2)

~n2 − η − 4πΛ

]
. (1.70)

For |η| < 1 we can expand S(η) in powers of η,

S(η) = −1

η
+ lim

Λ→∞

[∑

~n6=0

θ(Λ2 − ~n2)

~n2 − η − 4πΛ

]
,

= −1

η
+ S0 + S1η + S2η

2 + S3η
3 + · · · , (1.71)

where

S0 = lim
Λ→∞

[∑

~n6=0

θ(Λ2 − ~n2)

~n2
− 4πΛ

]
, Si =

∑

~n6=0

1
(
~n2
)i+1

. (1.72)

The first few coefficients are

S0 = −8.913631, S1 = 16.532288, S2 = 8.401924, S3 = 6.945808,

S4 = 6.426119, S5 = 6.202149, S6 = 6.098184, S7 = 6.048263. (1.73)

Lüscher’s formula does not include the contribution from higher partial waves but at asymptot-

ically small momenta we can neglect such corrections. The S-wave effective range expansion

gives another expression for the left-hand side of Eq. (1.69),

p cot δ0(p) ≈ − 1

as
+

1

2
r0p

2 + · · · . (1.74)

In terms of η, the energy of the two-particle scattering state is

Epole =
p2

m
=

η

m

(
2π

L

)2

. (1.75)

For the case of zero-range interactions, the location of the two-particle scattering pole is

calculated by summing the bubble diagrams shown in figure 1.5.

1.6 Ultracold quantum gases

Ultracold atomic gases have been proven to be excellent model systems for studying

quantum mechanical phenomena. A system behaves quantum mechanically when the de

Broglie wavelength of the particles λ = 2π~/p, where p is the momentum of the particles, is of

comparable size to the typical spacing between particles. So at sufficiently low energies, the
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Figure 1.6: Fermionic condensates, shown in surface plots of time-of-flight absorption images.
These condensates of generalized Cooper pairs are created at different interaction strengths
in the strongly interacting BCS-BEC crossover regime. Picture from [21].

matter wavelength of the particles is the governing length scale of the quantum behavior. For

a gas of atoms, with relatively heavy particles and low density, exploring quantum behavior

requires cooling the atom gas to extraordinarily low temperatures near absolute zero. This

can be achieved with cooling methods like laser cooling, evaporative cooling, Doppler cooling.

Only at very low temperatures does it become important that the atoms making up our

gas are either bosons or fermions, which are the two classes of quantum particles found in

nature. Bosons are particles with integer spin and can occupy identical quantum states.

If they are trapped at low enough temperatures, they macroscopically occupy the lowest

possible energy state and form a Bose-Einstein condensate (BEC). This condensation elevates

quantum behavior to a macroscopic scale and results in fascinating phenomena such as

coherent matter waves and superfluidity. On the other hand, fermions have half-integer

spin. Fermions must obey the Pauli exclusion principle, which means two indistinguishable

fermions are not allowed to occupy the same quantum state. In the limit of absolute zero

temperature fermions fill the lowest states with one particle per state in an arrangement

known as the Fermi sea.

In many areas of physics such as condensed matter physics, nuclear physics, el-

ementary particle physics, astrophysics, and atomic physics one can see the phenomenon

of Bose-Einstein condensation. For example in condensed matter physics we have Cooper

pairs of electrons in superconductors, 4He atoms in in superfluid liquid He and excitons or
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Figure 1.7: Feshbach Resonances and the BEC-BCS crossover. Picture from Lithium-Lab
(BEC I).

biexcitons in semiconductors. In nuclear physics and astrophysics we can see neutron pairs

or proton pairs in nuclei and also in neutron stars, mesons in neutron star matter, 3He atom

pairs in superfluid 3He. As an example in the atomic physics field we have alkali atoms in

ultracold atom gases.

These are bosons which condense to a BEC, not fermions. But in many cases an

even number of fermions build a composite particle with bosonic quantum number, which

can form a Bose-Einstein condensate (See figure 1.6). The fermionic nature of the constituent

particles and bosonic nature of the composite particle both play essential roles in condensation

phenomena [21,44,45]. For instance by studying a system of 87Rb or 7Li (bosonic systems)

the underlying fermionic degrees of freedom are irrelevant since the energy which we need to

break the atom into two fermions is 10 orders of magnitude larger than the condensation

energy. But in a fermionic gas like 40K or 6Li the physicist can explore the connection

between fermionic superfluidity (BCS regime) and Bose-Einstein condensation (BEC regime).

These can happen through controlling the interaction using a Feshbach resonance [24, 25].

A Feshbach resonance occurs when the energy associated to the 2-body scattering

(open channel) becomes close to the bound state energy of the pair in a different spin state

(close channel). With other words this resonance happens if two slow atoms which collide,

may make a transition to a quasi-bound state. As we know in 2-body systems at low energies

the only relevant length scale is the scattering length. Using external magnetic fields the
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Figure 1.8: (a) In BEC side composite bosons are tightly bound pairs. (c) BCS pairs
are correlations of particles on the opposite side of the Fermi momentum sphere. (b) two
seemingly distinct regimes of BEC of molecules and BCS superfluidity of Cooper pairs are
continuously connected through a BCS-BEC crossover. Picture from [46].

scattering length can be tuned. Since there is a difference between the magnetic moments

of the pairs of atoms in the open and closed channel, one can use external magnetic fields

to make a transition between these two channels. This transition takes place at some value

(B0) of the magnetic field. We should mention here that if there is no coupling, the existence

of the bound state in the closed channel does not affect the scattering in the open channel.

The scattering length can be parametrized as a function of the magnetic field B,

a(B) = abg

(
1− ∆

B −B0

)
, (1.76)

where ∆ is the width of the resonance and abg is the background scattering length away from

the resonance. By tuning the external magnetic field, the 2-body S-wave scattering length

can be varied from noninteracting to strongly interacting. This is shown in figure 1.7. The

condensation of Fermi gases is especially interesting. In the strong coupling regime (BEC)

the size of the composite particle is smaller than the average interparticle spacing. But in the

weak coupling regime (BCS) there is a weak attractive interaction that leads to the formation

of Cooper pairs which simultaneously Bose condense. The size of the Cooper pairs is one

order of magnitude larger than the average spacing between fermions. At first moment one

could think there is no connection between these two cases but actually these two pictures

are limiting cases of a more general picture [40], the so called BCS-BEC crossover picture. In

this picture the condensation behavior in Fermi systems depending on the coupling strength

between fermions involves smoothly the well-understood limiting cases. The difference in the

size of both sides is shown schematically in picture 1.8.

The last two decades were marked by remarkable experimental achievements in the
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physics of cold Fermi gases. Several groups succeeded in cooling trapped fermionic atoms to

well below the temperature of quantum degeneracy [18–23]. Fermi systems with essentially

any interaction strength can be realized experimentally with ultracold atomic gases. In

most experiments, large samples of Alkali atoms (6Li and 40K) are trapped optically in two

different hyperfine states. Using the Feshbach resonance, the inter-species S-wave scattering

length can be tuned.
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Low-Energy Scattering

At sufficiently low energies, the de Broglie wavelength λ = 2π~/p, where p is the

momentum of the particles, is the governing length scale of the quantum behavior. If the

particles interact through a short-range potential with range r0 and their relative momentum

p satisfies p � ~/r0, then their de Broglie wavelength prevent them from resolving the

structure of the potential. The most important parameter of low-energy interacting particles

is the 2-body S-wave scattering length. It can be defined in terms of a partial wave expansion

for the scattering amplitude. The natural low-energy length scale ` sets the natural scale for

the coefficients in the low-energy expansion of the scattering amplitude. If the magnitude |a|
of the scattering length is comparable to `, we say that a has a natural size. If |a| � `, we

call the scattering length unnaturally large, or just large to be concise. In the following we

will explain some aspects of of low energy physics.

2.1 Unitarity, zero-range limit and universality

The idea of universality has its origin in low-energy nuclear physics and has many

application in nuclear and particle physics. In modern physics universality refers to situations

in which the properties of the system are independent of the dynamical details of the system.

In such situations the systems are very different at short distances but they have identical

long-distance behavior [41]. In the generic case one can see the universality as a perturbative

weak-coupling phenomenon. The role of the coupling constant is played by the scattering

length a. There are exceptional cases in which the scattering length can be much larger than

the range of interaction, |a| � `. In such cases the concept of universality is still applicable,

26
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but it is a much richer phenomenon. Universal observables are insensitive to the details of

short-range interaction. In the 2-body sector, the consequences of universality are simple but

nontrivial. For instance, in the case of identical bosons with positive scattering length, there

is a 2-body bound state near the scattering threshold with the binding energy

ED =
~2

ma2
. (2.1)

The corrections to this formula are small. They are suppressed by powers of r0/a. We

should notice here the dependence of the binding energy on the scattering length a. This

dependence is nonperturbative and reflects the fact that universality in the case of a large

scattering length is a nonperturbative strong-coupling phenomenon. A classical example of

such a system are 4He atoms.

In the 3-body sector the first evidence for universality was the discovery of the

Efimov effect. This effect is predicted by the Russian physicist V. N. Efimov in the early

70ties [42]. The Efimov effect can occur in 3-body systems if at least two of three pairs

have a large S-wave scattering length. If the Efimov effect occurs, there are infinitely many,

arbitrary-shallow 3-body bound states. These bound states have binding energies which have

an accumulation point at the 2-body scattering threshold. As the threshold is approached,

the ratio of the binding energies of successive states approaches a universal constant. The

corrections to the universal behavior are suppressed by powers of `/|a|. There are two limits

in which the size of these corrections decreases to zero, the resonant limit (a→ ±∞ with

fixed `) and the scaling limit (`→ 0 with fixed a).

The resonant limit describes interacting systems where the range of the interaction

is zero and the scattering length is infinite. This limit is also called the unitarity limit, because

the S-wave cross section saturates the limit imposed by unitarity, σ(L=0) ≤ 8π/k2, for low

momenta k. The resonant limit can be approached usually by tuning a single parameter.

This parameter could be the depth of interaction or an overall rescaling of the potential. In

figure 2.1 (b), the parameter must be tuned to a critical value for which there is a 2-body

bound state exactly at the 2-body threshold (Feshbach resonance). In the case of Feshbach

resonance, the resonant limit can be approached by tuning the magnetic field. Since a→ ±∞
in the resonant limit, the only length scale at low energies in the 2-body system is the

natural low-energy length scale `. In the 3-body system the Efimov effect reveals that there

is another length scale. Physics near the unitarity limit has been experimentally observed

in cold degenerate gases of 6Li and 40K atoms. The scaling limit, also sometimes is called
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Figure 2.1: (a) A square-well potential with a single shallow bound state, (b) a potential
with the same range r0 that is approaching the resonant limit ED → 0, and (c) a potential
with the same binding energy ED as in (a) that is approaching the scaling limit r0 → 0.
Inspired by [41]

zero-range limit, is another powerful concept. It can be defined by specifying the phase shifts

for 2-body scattering. In this limit, the S-wave phase shift δ0(k) has the simple form

k cot δ0(k) = −1/a, (2.2)

and the phase shifts for all higher partial waves vanish. To approach the scaling limit one

needs to tune multiple parameters in the interparticle potential. For example, as illustrated

in figure 2.1 (c), it can be reached by simultaneously tuning the range of the potential to zero

and its depth to ∞ in a such way that the binding energy of the shallowest 2-body bound

state remains fixed. In the scaling limit the scattering length a sets the scale for low-energy

observables in the 2-body sector. In the 3-body sector, observables can also have logarithmic

dependence on a second scale because of the Efimov effect.

2.2 Fermi gas at unitarity

In this part of the thesis we consider the unitarity limit of two-component fermions.

Throughout our discussion we refer to the two degenerate components as up and down

spins, though the correspondence with actual spin is not necessary. In the unitarity limit

details about the microscopic interaction are lost, and the system shows universal properties.

At sufficiently low temperatures the spin-unpolarized system is an S-wave superfluid with

properties in between a BCS fermionic superfluid at weak coupling and a BEC of dimers
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at strong coupling. As we mentioned before the ground state in the BCS limit has a large

size since the Cooper pairs are very shallow bound and the ground state in the BEC limit is

tightly bound. At the unitarity limit the ground state has strongly interacting pairs. The

size of these pairs are comparable to the Fermi momentum. This is shown schematically in

figure 2.2.

In nuclear physics the phenomenology of the unitarity limit approximately describes

cold dilute neutron matter which is believed to be relevant physics of the inner crust of the

neutron stars [43]. The scattering length for elastic neutron-neutron collisions is ann ' −18 fm.

For densities ρ > 10−4ρN , with ρN ' 0.16 fm−3 the saturation density of nuclear matter,

the dimensionless parameter kF |ann| is much bigger than one. Here kF represents the Fermi

momentum. On the other hand the effective range of elastic neutron-neutron collisions is

rnn ' 2.8 fm and so for densities like ρ < 0.1ρN , the dimensionless parameter kF |rnn| is very
small. For densities like 10−4ρN < ρ < 0.1ρN the neutron matter is very close to the limit in

which kF |ann| → ∞ and kF |rnn| → 0 and so the unitarity limit is approximately realized.

These conditions cannot be produced experimentally, neutrons at around this density can

be found in the inner crust of neutron stars. At the unitarity limit the scattering length

diverges while the range of interaction vanishes. From the effective range expansion Eq. (1.8)

we know that for the S-wave, p cot δ0 ≈ 0. As we know the S-wave scattering amplitude is

given by

A0 =
1

p cot δ0 − ip
(2.3)

and so at the unitarity limit the S-wave amplitude, A0 → i/p, dose not depend on details of

the interaction.

Experimental probes of the unitarity limit are now well established using trapped

ultracold Fermi gases of alkali atoms. The characteristic length scale for the interatomic

potential is the van der Waals length `vdW . In the dilute limit the spacing between atoms

can be made much larger than `vdW and the interatomic potential is well approximated

by a zero-range interaction. The S-wave scattering length can be tuned using a magnetic

Feshbach resonance. This technique involves setting the energy level for a molecular bound

state in a "closed" hyperfine channel to cross the scattering threshold for the "open" channel.

The total magnetic moments for the two channels are different, and so the crossing can be

produced using an applied magnetic field.

Back to the theory, it was in the late nineties that George Bertsch asked himself what
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Figure 2.2: BCS-BEC crossover. Picture from [47]

are the ground state properties of the many-body system made of fermions at the unitarity

limit. The ground state for two-component fermions in the unitarity limit has no physical

length scales other than the average distance between particles. The scaling properties in the

unitarity limit are the same as that of a non-interacting Fermi gas and therefore the ground

state properties are proportional with a dimensionless universal parameter as proportionality

constant. At the unitarity limit this universal constant gives the thermodynamic quantities

and it is called Bertsch parameter.

For N↑ up spins and N↓ down spins in a given volume we write the energy of the

unitarity-limit ground state as E0
N↑,N↓ . For the same volume we call the energy of the free

non-interacting ground state E0,free
N↑,N↓

. In the following we write the dimensionless ratio of the

two energies as ξN↑,N↓ ,

ξN↑,N↓ = E0
N↑,N↓/E

0,free
N↑,N↓

. (2.4)
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The parameter ξ is defined as the thermodynamic limit for the spin-unpolarized system,

ξ = lim
N→∞

ξN,N . (2.5)

There are several experimental measurement for the Bertsch parameter, ξ using different

methods like using the expansion rate of 6Li and 40K released from a harmonic trap or

sound propagation [50–52, 54–56, 58]. There are also numerous analytical and numerical

calculations of ξ in the literature which can be found in [48]. We summarized most of these

measurements and calculations in tables 2.1, 2.2 and 2.3. Our goal is to find a benchmark

for ξ by calculating it for the smallest possible system namely the 4-body system. We start

with the free nonrelativistic lattice Hamiltonian and the spin-density operators which we

defined in Eq. (1.34) and Eq. (1.46). We consider two different lattice Hamiltonians, each

of which yield the unitarity limit in the low-energy limit. The first Hamiltonian H1 has a

single-site contact interaction,

H1 = Hfree + C1

∑

~n

ρ↑(~n)ρ↓(~n). (2.6)

The second Hamiltonian H2 has a contact interaction as well as nearest-neighbor interaction

terms,

H2 = Hfree + C2

∑

~n

ρ↑(~n)ρ↓(~n)

+ C ′2
∑

µ=1,2,3

∑

~n

[ρ↑(~n)ρ↓(~n+ µ̂) + ρ↑(~n+ µ̂)ρ↓(~n)]. (2.7)

We use Lüscher’s formula Eq. (1.69) to determine the coefficients of interaction in Eq. (2.6)

and Eq. (2.7). The coefficient of C1 is tuned to set the S-wave scattering length as to

infinity. The coefficients C2 and C ′2 are tuned so that as goes to infinity while the S-wave

effective range parameter r0 vanishes. Setting as to infinity requires p cot δ0(p) to vanish at

threshold. Setting both as to infinity and r0 to zero requires that p cot δ0(p) is O(p4) near

threshold. The plots for p cot δ0(p) versus p2 are shown in figure 2.3. The values we find for

the interaction coefficients are

mC1 = 3.9570, (2.8)

mC2 = 3.7235, mC ′2 = 0.3008. (2.9)

We have computed the ground-state energy for two spin-up and two spin-down particles in
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Method Collaboration ξ

measurement of energy of trapped Fermi gas O’Hara et al. [49] 0.6(1)

measurement of the size of the atomic cloud Bartenstein et al. [50] 0.27+0.12
−0.09

measurement of speed of sound in trapped Fermi gas Kinast et al. [51] 0.430(15)

measurement of the cloud size of the Fermi gas Thomas et al. [52] 0.39(2)

measurement of energy-entropy of trapped unitary Fermi gas Thomas et al. [53] 0.41(2)

measurement of energy of Fermi gas from expansion energies Bourdel et al. [54] 0.360(15)

measurement of potential energy of ultra-cold trapped Fermi gas Stewart et al. [55] 0.46+0.05
−0.12

measurement of speed of sound in trapped Fermi gas Joseph et al. [56] 0.435(15)

direct measurement the equation of state of the uniform gas Nascimbene et al. [57] 0.51(2)

measurement of the spatial size of the paired Fermi gas Partridge et al. [58] 0.46(5)

Table 2.1: Experimental measurements of ξ.

Method Collaboration ξ

calculation based of Galitskii resummation Heiselberg et al. [59] 0.68

calculation based of Pade’ approximants Baker et al. [60] 0.68

calculation that includes pairing fluctuations beyond mean field Perali et al. [61] 0.455

NSR approximation of T-matrix (fully-self-consistent scheme) Drummond et al. [62] 0.36

density functional equation Adhikari et al. [63] 0.35

ε expansion including the next-to-next-to-leading-order Nishida et al. [64] 0.36(2)

density-functional theory for fermions in the unitary regime Papenbrock et al. [65] 0.42

renormalization group Krippa et al. [66] 0.62

Large-N expansion for unitary superfluid Fermi gases Veillette et al. [67] 0.28

applying effective field theory to finite-density systems Steele et al. [68] 0.54

Table 2.2: Analytical calculation of ξ.

a periodic cube of length L by diagonalizing the scattering matrix using Lanczos algorithm.

For both lattice Hamiltonians, H1 and H2, we have computed ξ2,2 as defined in Eq. (2.4)

for values of L = 4, 5, 6, 7, 8. The results are shown in figure 2.4. We have fitted the data

using polynomials in 1/L up to third order and extrapolate to the infinite L limit with an

estimated extrapolation error of ±0.002. We note that this extrapolation should remove all
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Method Collaboration ξ

fixed-node Green’s function Monte Carlo Carlson et al. [69] 0.42(1)

determinant diagrammatic Monte Carlo method Burovski et al. [70] 0.493(14)

auxiliary field quantum Monte Carlo Bulgac et al. [71] 0.37(5)

fixed-node diffusion Monte Carlo method Astrakharchik et al. [72] 0.42(1)

Hybrid Monte Carlo Lee et al. [73] 0.25(3)

Restricted Path Integral Monte Carlo Akkineni et al. [74] 0.42

Monte Carlo calculation Abe et al. [75] 0.292(24)

the heavy-light ansatz Lee et al. [76] 0.31(1)

sign-restricted mean-field lattice calculation Juillet et al. [77] 0.449(9)

fixed-node Green’s function Monte Carlo Chang et al. [78] 0.44(1)

Table 2.3: Numerical determination of ξ.
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Figure 2.3: Plot of p cot δ0(p) versus p2 for the lattice Hamiltonians H1 and H2.

measurable lattice discretization effects. For H1 we find

ξ2,2 = 0.211(2), (2.10)
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Figure 2.4: Ground-state energy ratio ξ2,2 for lattice Hamiltonians H1 and H2. We show
results for values of L = 4, 5, 6, 7, 8 and extrapolate to the infinite volume limit.

and for H2 we get

ξ2,2 = 0.210(2). (2.11)

The agreement between these two independent calculations is consistent with our estimate

of the systematic errors. For the extrapolation to the continuum we use a third-degree

polynomial function. This is made possible by the high-precision data obtained for each L

using the Lanczos eigenvector iteration. For the H2 data we note the small slope in 1/L

near 1/L = 0. This is expected due to the effective range r0 being set to zero for H2. The

small amount of linear dependence in 1/L that remains is likely due to other lattice artifacts,

such as the breaking of Galilean invariance. This numbers are in excellent agreement with

the Euclidean lattice and diffusion Monte Carlo calculations. The values calculated for

the Bertsch parameter using Euclidean lattice and diffusion Monte Carlo are 0.206(9) and

0.212(2) respectively. Also this benchmark is used to confirm another study [79].

2.3 Bound States moving in a finite volume

In this section we consider finite-volume effects of composite particles in motion. We

discuss corrections to the binding energies of bound states in a moving frame. We also show
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how the finite-volume scattering method is modified if one or both particles are composite.

This modification of Lüscher’s formula has an immediate application in nuclear and cold

atom physics. As derived by Lüscher the energy shift for a dimer at rest when it is placed in

a periodic cube of volume L3 is

∆E~0 ≈
∑

|~n|=1

∫
d3r φ∗∞(~r )V (~r )φ∞(~r + ~nL), (2.12)

where V (~r) is the interaction potential and φ∞ is the infinite-volume wavefunction as a

function of the relative separation ~r. The summation is over integer vectors ~n with magnitude

1. Throughout our discussion, we assume that the energies and momenta are nonrelativistic.

For finite-range interactions Eq. (2.12) gives a correction which scales as e−κL/L in the large

volume limit, where κ is the binding momentum.

We now consider a dimer moving in the same periodic cube with momentum 2π~k/L

for integer ~k. In the dimer wavefunction we can factorize out the phase dependence due to

the center-of-mass motion,

ψL(~r1, ~r2) = ei2πα
~k·~r1/L ei2π(1−α)~k·~r2/LφL(~r1 − ~r2), (2.13)

where α = m1/(m1 + m2). Since ψL(~r1, ~r2) is periodic in ~r1 and ~r2, φL gets a nontrivial

phase for each winding around the toroidal topology of the periodic cube,

φL(~r + ~nL) = e−i2πα
~k·~n/LφL(~r), (2.14)

for all integer ~n. We should mention here that the phase factors have been previously studied

in consideration of finite-volume scattering in moving frames [80, 81]. However, the effect

of phase factors on bound-state is a qualitatively different effect. The effect of the phase

factors is similar to the situation in which we have twisted boundary condition. Each phase

twist induces a measurable shift in the binding energy. Now we combine Eq. (2.14) with

Eq. (2.12) in order to find the S-wave finite-volume correction in a moving frame. For ` = 0

(S-wave) the asymptotic wavefunction φ∞(~r) is given by

φ∞(~r) = φ∞(|~r |) =

√
1

4π

u0(r)

r
=

√
1

4π

γe−κr

r
for r > R. (2.15)

Here, R represents the range of the potential. Since the potential has a finite range, R� L,

there will be contribution only with |~r ′ + ~n ′L| > R in ∆E~k. So we have for ∆E~k

∆E~k =
γ√
4π

∑

|~n|=1

∫
d3~r

∫
d3~r ′ φ∗∞(|~r |)V (~r, ~r ′)e−i

~θ·~n e
−κ|~r ′+~nL|

|~r ′ + ~nL| +O
(
e−
√

2κL
)
, (2.16)
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where ~θ = 2πα~k. Using the equation of motion we can eliminate the potential. So for the

energy shift we will obtain

∆E~k =
γ√
4π

∑

|~n|=1

∫
d3~r

[(∇2

2µ
− E

)
φ∗∞(|~r |)

]
e−κ|~r

′+~nL|

|~r ′ + ~nL| e
−i~θ·~n +O

(
e−
√

2κL
)
. (2.17)

We shift the integration variable and use the partial integration and the fact that exp (−κr)/(4πr)
is the Green’s function of the operator

(
∇2 − κ2

)
. So we get

∆E~k =
γ√
4π

∑

|~n|=1

∫
d3~rφ∗∞(|~r − ~nL|) 1

2µ

(
∇2 − κ2

)e−κr
r

e−i
~θ·~n +O

(
e−
√

2κL
)
,

= −
√
πγ

µ

∑

|~n|=1

φ∗∞(|~nL|)e−i~θ·~n +O
(
e−
√

2κL
)
,

= −
√
πγ

µ
φ∗∞(L)

3∑

`=1

(
eiθ` + e−iθ`

)
= −2

√
πγ

µ
φ∗∞(L)

3∑

`=1

cos θ`. (2.18)

The finite-volume correction in the binding energy of a dimer with momentum 2π~k/L in

terms of the energy shift in the rest frame is given by

∆E~k
∆E~0

≈ 1

3

3∑

`=1

cos(2παk`) ≡ τ(~k, α). (2.19)

The computational advantage of this approach is that finite-volume effects can be

directly removed from lattice data without extrapolating to large lattice volumes. This is

especially useful for the case with more than two constituents where the analytic form for

the finite-volume L-dependence is a priori unknown. These corrections have a universal

dependence on momentum determined by the number and mass of the constituents. In

asymptotically large volumes the corrections are exponentially small and can be neglected.

But if the volume is relatively small, this shift can be comparable to that of the scattering

process of the dimer. This is shown in figure 2.5.

We now turn our attention to the scattering of composite states in a finite periodic

cube. We consider the scattering between states A and B in the center-of-mass frame. Let

µAB be the reduced mass, and let EAB(p, L) be the total energy of the A-B scattering system

with radial momentum p in a periodic cube of length L. The states A and B can be point

particles or composite bound states. We assume that the constituent particles comprising

the states have finite range interactions. The composite structures of A and B, however, will

in general produce effective interactions with exponential tails extending to infinity. These
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Figure 2.5: Ground-state energy of the dimer with the binding energy of −0.025 in lattice
units in the rest and moving frame.

tails generate exponentially small finite-volume corrections to EAB(p, L) associated with the

binding energies of A and B separately as well as the scattering of A and B together. We

will not be concerned with exponentially small corrections to the scattering of A and B.

If the interactions between A and B are very strong, then it is theoretically possible that

the finite-volume scattering corrections we neglect are comparable to the binding energy

shifts. However, in such cases the part of the energy shift due to scattering which is not

exponentially suppressed will be much larger still, and so the loss of accuracy in the scattering

analysis will be small.

In order to calculate finite-volume corrections due to the binding energy, it suffices

to consider singular solutions of the free Helmholtz equation. Let ~r be the separation between

the center of masses of the two states. In the following we assume that p is sufficiently small

so that angular momentum mixing with higher-order singular solutions can be neglected.

For S-wave scattering between states A and B with radial momentum p, the position-space

scattering wavefunction is

〈
~r
∣∣Ψp

〉
= c

∑

~k

ei(2π
~k/L)·~r

(2π~k/L)2 − p2
(2.20)

with some normalization constant c. Let EA~k (L) and EB−~k(L) be the finite-volume energies
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due to binding for bound states A and B with momenta 2π~k/L and −2π~k/L, respectively.

For point particles without internal structure, these energies are by definition zero for all

momenta. The total energy EAB(p, L) is then

EAB(p, L) =

〈
Ψp

∣∣H
∣∣Ψp

〉
〈
Ψp

∣∣Ψp

〉 =
1

N
∑

~k

p2

2µAB
+ EA~k

(L) + EB−~k(L)

(~k2 − η)2
, (2.21)

where N = (~k2 − η)−2 and η = p2L2/(2π)2. The finite-volume correction can be written as

EAB(p, L)− EAB(p,∞) = τA(η)∆EA~0 (L) + τB(η)∆EB~0 (L), (2.22)

where ∆EA~0 (L) and ∆EB~0 (L) are the finite-volume corrections for states A and B at rest,

and we have defined the topological volume factor as

τ(η) =
1

N
∑

~k

3∑

`=1

cos(2παk`)

3(~k2 − η)2
. (2.23)

The finite-volume correction in Eq. (2.22) has nothing to do with the interaction between

states A and B and should therefore be subtracted from the total energy before using

Lüscher’s scattering relation. This subtraction should reduce systematic errors in lattice

calculations. This is demonstrated in the following section.

2.4 Elastic fermion-dimer scattering

The scattering between a fermion and a weakly bound dimer consisting of two

fermions is important in nuclear physics (neutron matter) and in the physics of ultracold

Fermi gases. This kind of scattering was first explored by Skornyakov and Ter-Martirosian

[82] in connection with neutron-deuteron scattering. Since then such systems are investigated

by many other groups in the context of nuclear physics or ultracold Fermi gases [83–86,88,89].

Because of the Pauli principle 3-body bound states (Effimov states) are not permitted.

The solution of such scattering systems give the atom-dimer scattering length which is

proportional to the 2-body scattering length a,

afd ' 1.18a or κafd ' 1.18, (2.24)

where κ represents binding momentum of the dimer and is given by

κ =
√
mED =

1

a
. (2.25)
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There is a very good agreement between the results of all groups for the fermion-dimer

scattering length. But for the effective range the situation is totally different. There is only

one reported determination of effective range [86]. This calculation found κrfd ≈ 0.08(1) fm.

The small value of effective range is also favored by neutron-deuteron scattering data but

the sign of the effective range still remains an open question. In this part we will consider

elastic fermion-dimer scattering and calculate the scattering length and effective range of such

system. In the analysis presented here we consider scattering between a fermion and a bound

dimer composed of two fermions. In order to test the precision of our lattice calculations, we

compare it the result of calculations using the Skorniakov-Ter-Martirosian (STM) integral

equation.

We consider two component fermions. We will refer to the two fermion components

as spin up and spin down and consider the case when the masses are equal, m↑ = m↓. We

assume finite-range attractive interactions and consider the universal shallow binding limit.

If R is the range of the interactions and κ is the binding momentum of the dimer, then

the shallow binding limit corresponds to κR→ 0. We show that finite-volume topological

corrections to the dimer binding energy must be considered in order to obtain accurate

results. Once these topological corrections are included in the finite-volume analysis, we find

that the lattice and continuum calculations are in full agreement.

The free non-relativistic Hamiltonian of two-component fermions with only short-

range interaction corresponding to the Hamiltonian and spin density operators on the three

dimensional lattice is defined in Eq. (1.34) and Eq. (1.46). We consider two independent

lattice Hamiltonian Eq. (2.6) and Eq. (2.7). The free Hamiltonian was given as

Hfree =
3

m

∑

~n,i

a†i (~n)ai(~n)− 1

2m

∑

~n,i

∑

µ̂=1̂,2̂,3̂

[
a†i (~n)ai(~n+ µ̂) + a†i (~n)ai(~n− µ̂)

]
, (2.26)

as well as the lattice density operators

ρa
†a
↑ (~n) = a†↑(~n)a↑(~n),

ρa
†a
↓ (~n) = a†↓(~n)a↓(~n). (2.27)
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The two independent Hamiltonian H1 and H2 were

H1 = Hfree + C1

∑

~n

ρ↑(~n)ρ↓(~n), (2.28)

H2 = Hfree + C2

∑

~n

ρ↑(~n)ρ↓(~n)

+ C ′2
∑

µ=1,2,3

∑

~n

[ρ↑(~n)ρ↓(~n+ µ̂) + ρ↑(~n+ µ̂)ρ↓(~n)]. (2.29)

The finite lattice spacing error in these two Hamiltonians is of order a2
latt. The next step is

to determine the interaction coefficients, C1, C2 and C ′2 using Lüscher’s formula Eq. (1.69).

The interaction coefficient C1 is tuned to construct 2-body binding states (dimers) comprised

of one spin-up and one spin-down fermion of energies −1.5 MeV, −2.0 MeV, −2.5 MeV,

−3.0 MeV, −3.5 MeV and −4.0 MeV in a large volume (L = 80) using the Lanczos method.

In such a large volume the finite volume corrections to the dimer binding energy are negligible.

In our calculation we take m = 939 MeV and a−1
latt = 100 MeV. To find the interaction

coefficients of lattice Hamiltonian H2 we proceed as follows. Setting the effective range to

zero requires that the following relation should be satisfied near threshold

1

πL
S(η) = p cot δ0(p) ' −1

a
+O(p4). (2.30)

The interaction coefficients C2 and C ′2 are tuned in order to give the binding energies listed

above for the ground state in a large volume (L = 80) and to fulfill Eq. (2.30) for the

first excited state. The plot for p cot δ0(p) versus p2 for the first excited state is shown in

figure 2.6. The different values of p are generated by calculating for different box sizes. We

note that p cot δ0(p) has zero slope near threshold since we set the effective range to zero.

Both Hamiltonians reproduce the same continuum limit of fermions with attractive zero-

range interactions. The corresponding values for the interaction coefficients are summarized

in table 2.4. We use the interaction coefficients in the table 2.4 and diagonalize both

Hamiltonians Eq. (2.28) and Eq. (2.29) utilizing the Lanczos method to determine the

ground state energy at rest for the six considered dimers in the periodic volumes L3 ranging

from L = 6 to L = 17. We also use the same interaction coefficients and diagonalization

method to find the ground state energy of the fermion-dimer systems. Now we turn our

attention to the fermion-dimer scattering in a periodic cube. It is known that there are

exponentially small corrections to the scattering energy of the fermion-dimer system at finite

volume due to range effects. We can remove this error by extrapolation to the infinite volume.
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Figure 2.6: Plot of p cot δ0(p) versus p2 for the lattice Hamiltonian H2.

ED mC1 mC2 mC ′2

−0.015 −4.51091 −4.34554 −0.30082

−0.020 −4.61299 −4.45733 −0.34273

−0.025 −4.70675 −4.55883 −0.34658

−0.030 −4.79466 −4.64749 −0.36339

−0.035 −4.87817 −4.73801 −0.36452

−0.040 −4.95823 −4.82374 −0.36696

Table 2.4: The values of interaction coefficients for the six considered dimers. All quantities
are given in units of the lattice spacing alatt = (100 MeV)−1.

However, there is another error which is independent of the fermion-dimer scattering process,

namely the finite volume error in the dimer binding energy. We calculate the scattering

process in the center-of-mass frame and therefore the dimer has some recoil momentum.

In order to find the radial momentum, p, in the fermion-dimer systems, we subtract the

binding energies of the dimers in the moving frame from the total scattering energies of the

fermion-dimer systems. This difference, ∆E(L), is the kinetic energy of the fermion-dimer

system. We use this to find the radial momentum p.

Now we use the Lüscher’s formula with this energy and calculate p cot δ0(p) for six
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Figure 2.7: Plot of p cot δ0(p) versus p2 for the lattice Hamiltonian H1 without topological
correction.
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Figure 2.8: Plot of p cot δ0(p) versus p2 for the lattice Hamiltonian H1 with topological
correction.

different lattice spacings. Here we should mention that calculating p cot δ0(p) for six different

dimers is equal to calculating p cot δ0(p) for six different lattice spacing. We also calculate

p cot δ0(p) for the case in which we subtracted only the binding energy of the dimer at rest
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Figure 2.9: Plot of p cot δ0(p) versus p2 for the lattice Hamiltonian H2 without topological
correction.
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Figure 2.10: Plot of p cot δ0(p) versus p2 for the lattice Hamiltonian H2 with topological
correction.

frame from the total energy.

To extrapolate to the infinite volume we fit a polynomial of second order to the

data points. We write this results as dimensionless combinations multiplied by powers of the
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dimer binding momentum κ. By comparing the naive calculation plots in figures 2.7 and

2.9 with the full calculation plots 2.8 and 2.10, we clearly see the effect of the topological

phase factor. This correction is quite large for scattering in smaller volumes. The change

in slope in plot 2.10 compared to plot 2.8 is expected since we tuned the effective range of

interaction to zero for H2. From these results, we determine the low-energy parameters for

fermion-dimer scattering and extrapolate to the continuum limit.

From the lattice calculation of the phase shifts we can extract the effective range

parameters. Our results for the scattering length, afd, and the effective range parameter,

rfd, are shown in figures 2.11 and 2.12. We analyze only the plots in figures 2.8 and 2.10

which contain the full calculations corresponding to H1 and H2, respectively. By fitting a

polynomial of second order to each set of data we find a scattering length and a effective

range in infinite volume for both lattice Hamiltonians. These data points are plotted in

figures 2.11 and 2.12. In order to extrapolate to the continuum limit alatt → 0, we use a linear

function. The results for the low-energy parameters that we get for these two independent

representations of the lattice Hamiltonians are

κafd = 1.162(13), κrfd = −0.041(16) for H1, (2.31)

κafd = 1.181(7), κrfd = −0.016(16) for H2. (2.32)

To extrapolate to the continuum limit in the lattice Hamiltonian calculations we used only

the data points corresponding to the four smallest lattice spacings. For the other data points,

the Compton wavelength of the bound state is comparable to the lattice spacing. We estimate

the systematic errors in the continuum extrapolation of the fermion-dimer scattering length

and effective range by extrapolation to the continuum limit using only the first two data

points and taking the interval between these extrapolation values and the central values

obtained using all four data points as the systematic errors. The agreement between these

two independent calculations is consistent with our estimate of the systematic errors. As we

see from figures 2.11 and 2.12 the inclusion of the topological volume factor τD(η) improves

the accuracy, especially in the calculation of the effective range parameter. With a very

conservative estimation of the systematic error we are able to say that the value of the

the fermion-dimer scattering length in units of the dimer binding momentum is in between

1.149 and 1.188. The value of fermion-dimer effective range in units of the dimer binding

momentum is between zero and −0.057. Our final result is given by the weighted averages of
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Figure 2.11: Lattice results and continuum extrapolation with error estimates for the
fermion-dimer scattering length.
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Figure 2.12: Lattice results and continuum extrapolation with error estimates for the
fermion-dimer effective range.

the values in Eq. (2.31) and Eq. (2.32):

κafd = 1.174(9), κrfd = −0.029(13). (2.33)
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In calculating the average, we assumed that the statistical probability distribution of the

measured variables are Gaussian and independent of each other. Using standard error

propagation, we find the uncertainty in the average values. Our results Eq. (2.33) are in

excellent agreement with the continuum calculation using the STM integral equation

κafd = 1.17907(1), κrfd = −0.0383(3). (2.34)

The method which we have presented is also used by Rokash et al. to study the low-energy

neutron-deuteron scattering [87].





Chapter 3

A new look at the polaron problem

One of the fundamental problems in many-body physics is the dynamics of a single

impurity in an environment. The impurity couples to the environment and builds up a

quasi-particle, a polaron. The polaron was first introduced in condensed matter physics and

recently has been studied in strongly interacting ultracold Fermi gases [90], a system with

many similarities with dilute neutron matter. For ultracold atoms and neutron matter, the

polaron can be formed by a spin-down fermion in a sea of N↑ spin-up fermions. Characteristic

quantities of a polaron are the interaction energy or binding energy and the effective mass.

In three dimensions the polaron state splits into two branches, a low-energy state interacting

attractively with the bath of fermions and the repulsive polaron, which is an excited,

metastable state [91–93]. In the following we will talk only about attractive polarons.

3.1 Polaron in three dimensions

Until now we talked about balanced Fermi gases but from now on we will consider

the extreme case of imbalanced Fermi gases in three dimensions. We study the problem

of a single spin-down fermion resonantly interacting with a Fermi gas of spin-up particles.

We consider the system of an unitary Fermi gas in three dimensions. The system we are

interested in has zero-range interaction and is in the continuum limit. This system has N↑
spin-up particles and one spin-down. One of the characteristic quantities of polaron is the

polaron energy which is defined as the energy difference of the system with the polaron added

48
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compared to the free Fermi sea of N↑ spin-up fermions,

Epol = EN↑+1 − EN↑ . (3.1)

We find the polaron energy in terms of the Fermi energy of the non-interacting system which

is given by

EF =
k2
F

2m
, kF =

(
6π2N↑

L3

)1/3

. (3.2)

In the attractive regime, Epol < 0 estimates the polaron binding in the Fermi sea. At the

limit, where the S-wave scattering length diverges, a→∞ (unitary limit), the polaron energy

is an universal quantity and scales with the Fermi energy, Epol = ηEF. In the attractive

regime η is negative and universal.

There are many calculation for the universal polaron energy in three dimensions. A

diagrammatic Monte Carlo (DMC) measurement [94] gives η = −0.618 which is very close

to a full-body treatment [95] giving η = −0.6158 and other quantum Monte Carlo (QMC)

calculations [69,96,97]. Another study made by Chevy [98] leads to η = −0.6066. All these

theoretical calculations are in very good agreement with each other and all of them are

consistent with experimental measured values η = −0.58(5) [99] and η = −0.64(7) [100]. In

[101] the authors generalized the polaron to strongly interacting neutrons when the effective

range of the impurity-fermion interaction becomes important.

We begin with the leading order effective Hamiltonian of the system of fermions

on the lattice which we represented in the first chapter by Eq. (1.34) and Eq. (1.35) and

construct the transfer matrix. The Hamiltonian defined in Eq. (1.35) is also the defining

Hamiltonian for the attractive Hubbard model in three dimensions. Roughly speaking the

transfer matrix operator is the exponential of the Hamiltonian operator over one Euclidean

lattice time step, e−Hαt . The transfer matrix operator is given by

M =: exp
[
−Hαt

]
:, (3.3)

where : · · · : denotes normal-ordering. Knowing the transfer matrix lets us to find the

correlation function of the system which is given by

ZLt =
〈
Ψinit

∣∣M(Lt − 1) · · ·M(0)
∣∣Ψinit

〉
, (3.4)
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Figure 3.1: Sample worldlines of spin-down fermion on a 1 + 1 dimensional lattice. The
circles denote a hop during a time step to the neighbor site. On the left hand side worldline
the initial point stays the same and on the right hand side the worldline end point remains
unchanged.

where
∣∣Ψinit

〉
is the initial wave function. This initial wave function is the Slater determinant

for the non-interacting system. As we mentioned before from the asymptotic behavior of the

correlation function we can determine the energy at time t,

E(t) =
1

αt
ln
Z(t− αt)
Z(t)

. (3.5)

At large Euclidean time t significant contributions to the energy come from only low energy

eigenstates and so as we have shown before the ground state E0 is given by the limit

E0 = lim
t→∞

E(t). (3.6)

Now we calculate the correlation function by considering explicit spin down fermion worldline.

We approximate the value of the correlation function by performing Monte Carlo sampling

of the worldlines. In figure 3.1 we show some sample worldlines. The updating procedure for

the spin down fermion worldlines are very simple. The time derivative of the worldline at

each time step is an hopping index. If the time derivative is not zero, the spin down fermion

will hops to the neighbor lattice site and if it is zero, the fermion will stay on the same lattice

site. The update simply picks a new value for the hopping index at some given time step.
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The new worldline corresponds with regenerating the worldline with the new time derivatives

while keeping the initial point or the end-point of the worldline the same.

One general problem by simulating the fermionic systems is so called sign oscillation

which is a consequence of the identical particle permutations and there is no general method

known for eliminating it in fermionic systems. In our case we have N spin up fermions and

one spin down fermion. Suppose we would have N up spins and 0 down spins. Then we

would have free gas and the determinant for our given initial/final state would be a positive

number. Now consider N up spins and 1 down spin. It seems that the single down spin is

not able to change the determinant very much, since it is just 1 down spin compared with

N up spins. In the next section we will present some results for three dimensional polaron

which are a nice check for the precision of our method.

3.2 Numerical results

We run the simulation for the Fermi systems with different number of down spins

in different volumes. This make us able to find the physical value for the polaron energy.

First we keep N and L fixed and find the polaron energy of the systems by taking the limit

Lt → ∞. We fit the function form ε + α exp(−δ · t) to determine the asymptotic value of

the ground state energies for each system. We take the continuum limit by extrapolating

the energy of each system in L→∞ limit. We fix the number of particles, N , and set the

scattering length equal to infinity, then taking L→∞ is the same as taking the continuum

limit of zero-range interaction. So it is not really an infinite volume limit, but rather a

continuum limit. In the three dimensional polaron problem the system is scale-invariant and

so we do not have to extrapolate to the limit where the physical volume is infinite. As we

mentioned before, the reason we take the limit L→∞ is so that we can get the continuum

limit where the lattice spacing is zero.

In the three dimensional polaron problem the polaron energy in the thermodynamic

limit will be some universal constant η times the Fermi energy, EF. We will determine

this universal constant η by varying the the number of particles in the box, N , and the

length of the box in lattice units, L. By taking L→∞ we get the continuum limit, and by

taking N →∞ we get the thermodynamic limit. The extrapolation to the continuum limit

for four Fermi systems with different number of down spin is shown in figure 3.2. For the

extrapolation to the continuum and thermodynamic limit we fit a linear function to the data.
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Figure 3.2: The polaron energies as a fraction of Fermi energy for different number of
particles.

The value which we obtain for η is

η = −0.622(11). (3.7)

The results of our calculation are shown in figure 3.3. For the comparison we have shown the

results of the diagrammatic Monte Carlo (DMC) method done by Prokof’ev and Svistunov

[94]. As we can see we have a very good agreement with this value and also the other results

in the literature. This shows that the precision of our method is good enough to make

further studies particularly the polaron in two spatial dimensions in the future works. In

the following we will briefly discuss the two dimensional polaron as an interesting future

extension of our method.

3.3 Future extension: polaron in two dimensions

The polaron problem in two dimensions is one of the interesting future applications

of our method. Due to the discovery of high-temperature superconductivity of copper oxide

compounds [102] fermion’s pairing in two dimensions has become one of the interesting themes

in physics. Spatial dimensions are very important in polaron physics since the many-body
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Figure 3.3: The polaron energy as a fraction of Fermi energy.

ground state is affected due to presence of the quantum fluctuations in low dimensions. The

properties of Fermi polaron in three dimensions were theoretically predicted [90,94,96,97]

and observed experimentally [99, 100]. In one dimension the exact solution to the impurity

Hamiltonian can be determined and it does not show any interesting future. The situation

in two dimensions is different. There are several theoretical calculations and models which

predict different properties for the polaron [103–106].

Experimentally the ultracold atoms are an ideal tool to test various pairing mecha-

nism. In the recent years several experiments probed the Fermi polaron in two dimensions

[107–109]. This had led to deeper insight of the Fermi gas in two dimensions. But some

questions like the scale invariance (or not) of the two-dimensional Fermi gas [110] remain still

open. To this point there is no adequate Monte Carlo simulation for the two-dimensional

polaron problem. To clarify the situation and answering the open questions a proper Monte

Carlo simulation is missing. Our goal in the future work is to provide a Monte Carlo approach

to this problem.



Chapter 4

Summary and outlook

In this work we have presented benchmark calculations for the low-energy scattering

regime. Since there is a wide spread in the determined value of the universal constant (Bertsch

parameter) in the unitarity limit (0.2 to 0.7) there was a need of a benchmark calculation.

We have provided a benchmark result for four unpolarized particles using Hamiltonian lattice

eigenvector iteration. We have determined the universal parameter ξ2,2 in the unitarity limit

for two different Hamiltonians, both of these two Hamiltonians give the unitarity limit in the

low-energy limit. We have found

ξ2,2 = 0.211(2), ξ2,2 = 0.210(2). (4.1)

These results have been confirmed by other calculations such as auxiliary-field projection

Monte Carlo and fixed-node diffusion Monte Carlo. We have also given a relation for the

energy correction to the bound state moving in a periodic cube. We have shown that these

corrections contain information about the mass and the number of constituents of the bound

states. Since the origin of these corrections is topological we have called them topological

volume corrections. Using this relation one can improve the accuracy of the calculations

without the need to go to bigger volumes. In figures 2.11 and 2.12 we have demonstrated

how the topological volume corrections improved the accuracy of the low-energy parameters

in fermion-dimer system. In this thesis we have also demonstrated the lattice calculations

for the elastic scattering between a fermion and a bound state in the shallow binding limit.

There have been many calculations of the fermion dimer scattering length in this limit. From

the very first work done by Skorniakov-Ter-Martirosian [82] to the recent works [83–89] one

can find a very nice agreement between all calculated scattering lengths. Neutron-deuteron
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scattering in the spin-quartet channel can be described approximately by the fermion-dimer

results in the shallow binding limit. Experimental measurements find 4and/
3anp = 1.17(1),

where 4and is the neutron-deuteron scattering length in the spin-quartet channel and 3anp

denotes the neutron-poroton scattering length in the spin-triplet channel. For the effective-

range the situation is completely different. There is only one calculation [86]. In this work

we have also determined the effective-range in the shallow binding limit. We have used the

finite-volume method of Lüscher and extracted the low-energy parameters from the phase

shift calculated for two independent representations of the lattice Hamiltonians. A weighted

average of our two calculations gives

κafd = 1.174(9), κrfd = −0.029(13). (4.2)

As we mentioned before in order to obtain these values we have used the topological volume

corrections. These results have been confirmed by the continuum calculation done by

H. -W. Hammer using the STM equation

κafd = 1.17907(1), κrfd = −0.0383(3). (4.3)

Both calculations support a small negative effective-range in contrast to the result of [86]

which gives a positive small value. In this thesis we have also began the investigation of the

Fermi polaron in two dimensions. The quantities which we are interested in are the polaron

binding energy and the effective mass of the polaron. We will find these quantities using

the Monte Carlo technique to approximate the correlation function. To check the accuracy

of our Monte Carlo simulations we have found the binding energy of the attractive Fermi

polaron in three dimensions. The value which we have determined for the polaron binding

energy in terms of the Fermi energy is

Ep/EF = −0.622(11). (4.4)

This value is in excellent agreement with the calculations or measurements of other groups

[69,94–100] which shows the very good accuracy of the method we use. For the next step we

will make a proper Monte Carlo simulation for the two dimensional case since there is no

adequate Monte Carlo simulation for the polaron problem in two dimensions. So our goal in

future work would be to provide a Monte Carlo approach to this problem.
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