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A scaling spiral sector FFAG magnet has 
a magnetic field theat may be derived from 
the following magnetostatic potential 

V = 
r )k+1F( 1 ln r - Nθ, z ), V = r0 )k+1F( w ln r0 - Nθ, r ), 

where k is the field index, N is the sector 
number, r0 is any convenient radius such 

Fig. 1. Integral scaling pole face. 

as the average equilibrium orbit radius at 
full energy, and w is a measure of the pitch 
of the spiral [1]. The function F is periodic 
in its first variable, 1 w ln r 

r0 
— Nθ. In the 

infinite permeability approximation, this sca­
ling magnetic field may be realized by a se­
quence of spirals of iron that are alternately 
energized (plus poles) and neutral (zero poles), 
the surface of the iron being situated on 
cones of constant z/r. The plus poles, howe­
ver, must possess a surface potential that 
varies as (r/r0)k-1 along any spiral, a con­dition that is normally obtained by provi­
ding an excitation winding differentially gra­
ded through small radial slots in the plus pole. 

Any practical realization of a reasonably 
large spiral sector magnet must incorporate 
radial cuts (short straight sections) to modu­
larize the magnet into manageable units. Fig. 1 
indicates the nature of the approximation 
to the scaling field, which, since the scaling 
property obtains only for finite transforma­
tions, is termed integral scaling. The poten­

tials of the plus poles are adjus­
ted to give an rk+1 variation along 
each spiral ridge as one proceeds 
outward along the magnet blocks. 
A calculation of the particle mo­
tion in magnetic fields possessing 
integral scaling symmetry indica­
tes that the deviation from sca­
ling symmetry is acceptable so long 
as the straight sections are short 
and the number of radial cuts in 
relation to the number of sectors 
is made sufficiently large [2]. For 
instance, if 25% of the circumfe­
rence is removed by radial cuts and 
there are nine magnet blocks for 
every two spiral sectors, the change 
in tune is less than 0.07. 

Integral scaling symmetry has the property 
that the entire magnetic field may be found 
from the field existing in one cell by a simple 
multiplicative transformation. The ratio of fields 
at homologous points in any two cells is deter­
mined by the ratio of rk to the centers of each 
of the two cells. Fig. 2 shows an enlargement 
of the unit cell consisting of a plus pole around 
which is placed an excitation coil. The choice 
of cell boundaries is flexible so long as it is the 
same for all cells. We take a cell to consist 
of half of a zero pole and half of the radial 
cut on each side of the plus pole. The cell 
includes, in the vertical direction, the space 
between the median plane up to a distance 
sufficient to outline all of the important 
features of the magnet such as the coil slots. 

The magnetostatic problem of finding fields 
produced by distributed currents is formulated * Supported by the U. S. Atomic Energy Com­

mission. 
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in terms of a scalar function. In fact, the method 
employed constitutes a generalization 
of Ampere's method of solving magneto-static 
problems [3]. The notion, familiar in the 
decomposition of electromagnetic fields into 
transverse electric and transverse magnetic 

Fig. 2. Pole face unit cell. 
waves [4], is employed to decompose the current 
density vector 

= σ + × τ, 
where, in the cases of interest, 

= × ( = constant vector). 
For magnetic fields associated with circular 
accelerators, the vector is chosen most con­
veniently to be a unit vector along the verti­
cal or z-axis. In general, the determination 
of the scalar densities σ and τ that suitably 
represent is a relatively simple matter since 
the spatial variation of J usually is not complex. 
Given the densities σ and τ, Ampere's circuital 
relation insures that the magnetic field 
may be represented by 

— 4πτ — 4πσ — V, 
where the potential function is determined 
by the condition, •µ = 0, or, as is more 
convenient, its integral equivalent: 

µ(4πτ — 4πσ — V)• = 0. 

Since σ and τ are presumed known, having 
been determined in such a way as to represent 
the current density, the above relation pro­
vides an integral equation for the determina­
tion of the potential V. For the case of iron 
with infinite permeability, the magnetic field 

is calculated only within the 
air and conductor region. The 
integral equation applied to the 
surface surrounding any point in 
a mesh of points constructed to 
represent the region of interest, 
provides a means of obtaining 
a finite difference equation with 
which the potential V may be 
found by iterative techniques. 
For the magnet to be considered, 

a solution of the three-dimensional 
potential problem in 

the unit cell is carried out on a 
basic mesh of 80 radial units, 
26 azimuthal units, and 40 units 
in height giving a total of 

83,000 mesh points. The potential 
information at these points is 

handled in an IBM-704 computer 
by storing three adjacent radial planes of 
80 × 3 × 40 = 9600 mesh points in the core, 
the other planes remaining on call in the tape-handling 
units. An improvement in the ini­
tial guess for the potential distribution on the 
middle plane is effected by the application 
of the finite difference equation which relates 
the potential at the center point to a weigh­
ted sum of the potentials at neighboring points. 
This improvement is first iterated systemati­
cally throughout the center plane. The leading 
edge plane is returned to the tape and a new 
trailing edge plane brought in from the tape, 
thereby advancing the previous trailing edge 
to the center where its potential is systema­
tically improved in the manner just descri­
bed. This scanning process is repeated in a 
cyclical fashion until the change in poten­
tial distribution in one scan averaged over 
the mesh is less than some preassigned value. 
The process converges to a definite distribu­
tion by virtue of assigned boundary values 
for the potential on the iron and known source 
corrections to the finite difference equation 
within the distributed currents. 
The fields so calculated are not only useful 

for particle orbit studies but in further design 
of the magnet. It will be noted that, as one 
proceeds outward along the spiral ridges, 
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a point is reached where the flux density 
in the plus pole attains a high saturation 
level. This can be eased if one changes the 

Fig. 3. Nonscaling pole. 

pole shape to one that is determined by any 
one of the magnetostatic equipotentials. In so 
doing, fewer ampere turns are needed to excite 
the pole. Fig. 3 shows how the points on the 

equipotential surface are arranged into con­
tours. These lines are of two types, curves 
of constant height or J-cuts, and curves in the 
spiral surface or I-cuts. 
The next step is to erect a normal to this 

magnetic equipotential and is accomplished 
by calculating" the magnetic field. A surface 
one inch away from the desired surface out 
along the normal is constructed and organi­
zed into the same I and J cuts. This is the 
surface that must be traversed by the center 
of a ball milling cutter. Point-by-point infor­
mation for moving the center of a ball mill 
over the various contours was placed on pun­
ched tape to give machining instructions 
to a numerically controlled milling machine. 
In total about 3 500 instructions were required 
for each pole. 
Fig. 4 shows two magnet blocks whose 

fields have been computed as described and 
whose outer poles have been shaped by con­
tour milling. The various poles of the magnet 
may be seen together with the excitation coils, 
the return flux yoke, and the back leg. Fig. 5 
shows a more recent view of the same two 

Fig. 4. Spiral sector magnet model — during assembly. 
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magnets after the magnetic field measuring 
apparatus was added. The vertical field on the 
median plane was measured using a rotating 
coil-slip-ring assembly so designed as to reduce 
to negligible proportions all frequencies except 
the fundamental. This voltage was fed into 
an ac-dc converter and subsequently into a digi­
tal voltmeter. The system measures magnetic 
fields in the range of interest to a few parts 
in ten thousand. 
In order to determine the proper excitations 

for each pole of the magnet, it is necessary 
to account for the reluctance drops in the iron 
and add these to the theoretical predictions 
for ideal iron. Although, in the experimental 
magnet under study, these excitations may 
be found empirically, it is desirable to be able 
to predict the reluctance drops in order to 
complete the theoretical design of the magnet. 
Two paths were followed in accounting for 
the properties of real iron, both of which 
attempted to account for the magnetic proper­
ties of real iron through the use of the normal 
induction curve. First, a semi-empirical ap­
proach through the use of a network of non­
linear magnetic circuits was employed to deter­
mine the potential of the positive and zero 
poles. The input information made use of air 
gap reluctances as determined from three-dimen­
sional field computations for ideal iron and 
reluctance estimates of each iron segment from 
its area, length, and permeability. The per­
meability considered was an empirical func­
tion of the magnetic field. 
With an assumed normal induction curve 

appropriate to low carbon steel, the 15-loop non­
linear curcuit, whose elements constitute the 
various air gap and iron segment reluctances, 
is solved by an iterative process. The loop 
fluxes were found for a convenient set of coil 
excitations that were present on the magnet. 
From these loop fluxes the median plane mag­
netic fields under the centers of the plus poles 
and zero poles were calculated. Solutions were 
obtained for twenty excitation situations ranging 
from low excitation to high excitation. 
The circuit theory calculations were compared 
with the measured fields and slight adjustments 
made in the assumed B (H) curve until 
a reasonable agreement with the measured 
values was obtained. The results for the plus 
poles are shown in Fig. 6, where the overall 
agreement is seen to be good to a few percent 
out of about a 30 percent deviation from 
the ideal iron case. Similar results shown in 

Fig. 7 were obtained for the zero poles where 
the trend of the measurements is clearly seen 
to be given by the circuit theory calculations. 
The second path followed in tracing the 

effects of the magnetic flux flowing through 
iron was to solve the equivalent two-dimen­
sional magnetostatic problem neglecting temporarily 
the fringing flux end effects. First, 

Fig. 6. Plus pole excitation curves. Excitation of magnet 
block A. (Theory — curves, experiment — points): 

1 — nonscaling pole 53 turns; 2 — second plus pole 24 turns; 
3 — third plus pole 8 turns, buckleg 3 turns. 

the fields are found in the air assuming infinite 
permeability for the iron by the methods 
outlined previously. Next, the vector poten­
tial is found from this solution and, in par­
ticular, the values of this potential along the 
iron are used as boundary values for the solu­
tion of a vector potential problem within the 
iron. Since iterative methods are used through­
out, it is possible to use the measured normal 
induction curve to insert the actual permea­
bility at every point. The only approximation 
consists in assigning a constant vector potential 
to the outside edge of the iron thereby pre­
venting any leakage of flux from the iron 
and incidentally fixing the net flux in the 
iron. The discontinuity in the magnetic scalar 
potential at the iron-air boundary within the 
magnet then serves to determine what surface 
distribution of currents ought to be placed 
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on the iron to have the real magnet yield the 
fields in the air as calculated with ideal iron 
boundaries. Of course, these surface currents 
are customarily approximated by distributing 
reluctance correction coils in as many points 
as is convenient, the total ampere turns invol­
ved being equal to the total required by the 
surface currents. 

mates. In addition, however, it is possible 
to visualize the excessive potential gradients 
at the base of the shaped pole, a feature which 
will be employed to effect a redesign of the pole. 
Given the fair agreement between the cir­

cuit theory predictions and the measured fields 
at selected points, it is a relatively simple 
calculational matter to determine a set of coil 

Fig. 7. Zero pole excitation curves. Excitation of magnet block A. (Theory — curves, experiment — points): 
I — first zero pole; II — second zero pole; III — third zero pole. 

Fig. 8 shows the result of this type of cal­
culation as applied to a region of the magnet 
near the back leg. The shaped pole has been 
approximated by a beveled pole. In order 
to represent the flux flow in the actual mag­
net, the azimuthally fringing flux is accounted 
for approximately by seeking the vector poten­
tial distribution that yields a 14% higher 
maximum field, 14% being the percentage 
fringing flux involved as determined by com­
paring the flux from the three-dimensional 
calculation with flux per unit length from 
the two-dimensional calculation times the mag­
net width. The potential drops in the iron 
agree favorably with the circuit theory esti-

excitations that will yield the fields desired 
by the rk scaling property. With the fields 
set at the correct values under the centers 
of each pole, a radial field map was taken and 
compared with the detailed computer fields. 
This is shown in Fig. 9. Fig. 10 shows a simi­
lar set of measurements taken in a transverse 
run across the plus poles and the radial gap. 
The nature of the discrepancy between the 

measured and calculated fields in the radial 
run is shown in Figs. 11 and 12 for A and B mag­
net blocks at 100% excitation (12.5 kg at center 
of plus pole in A magnet). Figs. 13 and 14 show 
the same comparison at 50% excitation. When 
the 50% excitation runs were made, it was not 

751 



Fig. 8. Flux flow in nonscaling pole region. 

Fig. 9. Radial variation of median plane mag­
netic field. (Theory - curve, experiment - points). 

Fig. 10. Azimuthal variation of median plane mag­
netic field (Theory - curve, experiment - points). 



expedient to neutralize the zero poles; and 
similarly when the 100% excitation runs were 
made, the innermost zero pole was not neutra-

11-14. Since the change of rk from the center 
of a plus pole in magnet B to the center of the 
corresponding pole in magnet A is only 13% the 

Fig. II. Comparison with calculated fields, radial run, 100% excitation, middle of a magnet A. 

Fig. 12. Comparison with calculated fields, radial run, 100% excitation, middle of a magnet B. 

lized. These conditions plus the variation of the 
zero pole potential predicted by the magnetic 
circuit account completely for the variation 
and sign of the zero pole fields shown in Figs. 

radial runs in magnets A and B give essen­
tially identical effects for any given excitation. 
The observations then are that for a fixed 

excitation the discrepancy in the neighborhood 
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of the scaling poles is larger than in the shaped 
or nonscaling pole. As the excitation is incre­
ased from 50 to 100%, the variation of the 
discrepancy with radius becomes somewhat lar­
ger. It is, however, not proportional to the 
excitation. The general conclusion from the 

scaling features between cells such as different 
current slot depths. In making comparisons 
between calculations and measurements, a non-scaling 
pole cell calculation was available toge­
ther with a scaling pole cell calculation approp­
riate to the middle plus pole situation. The 

Fig. 13. Comparison with calculated fields, radial run, 50% excitation, middle of a magnet A. 

Fig. 14. Comparison with calculated fields, radial run, 50% excitation, middle of a magnet B. 

radial runs is that the deviation of the calcu­
lation from the measurement follows a smooth 
pattern whose maximum is 1.5%. 
Because the zero poles effectively shield one 

cell from its radially adjacent cell, if separate 
calculations are available for each cell, they 
are accurate within 0.1% regardless of non-

innermost cell comparison was made using the 
fields of the middle cell suitably adjusted 
to yield the innermost pole field at the center 
of the plus pole. Since the actual slots for 
this cell are less deep than those for the middle 
cell, the measured fields are smaller on this 
account. It is to be expected, therefore, that 
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the percentage discrepancy for both scaling 
cells would be the same if this nonscaling 
change in slot depth were accounted for. 
The remaining discrepancy of about 1% may 

be accounted for by some feature of the mag­
net structure such as the finite width of the 
potential grading slots, that was not taken 
into account in the calculation. Preliminary 

poles for 100% excitation. Again the discre­
pancies generally become smaller toward the 
nonscaling pole. These discrepancies are acco­
unted for by the following arguments. The 
potential on the vertical surface of the iron 
yoke in the straight sections varies from a posi­
tive potential near the back leg where the 
main reluctance correction coil was placed 

Fig. 15. Comparison with calculated fields, azimuthal runs, 100% excitation. 

estimates indicate that this feature can exp­
lain the effect. Furthermore, the finite poten­
tial grading slot effect was not present in the 
nonscaling pole where the agreement between 
calculations and measurement is best. Finally 
it is to be noted that, since there is very little 
difference in the variation of the discrepancy 
between 50 and 100% excitation, saturation 
on the edges of the scaling poles cannot 
be an important feature. 
Figs. 15 and 16 show the discrepancy 

between the calculated and measured median 
plane fields in transverse runs across each of 
the plus poles and the intermediate two zero 

to negative values as one proceeds to the in­
nermost radius. The sign of all the discrepan­
cies in Figs. 15 and 16 that are positive can 
be explained by the presence of a negative 
potential on the yoke surface. The zero pole 
discrepancy that is negative requires a posi­
tive potential on the yoke and hence one may 
assume that the change in sign from negative 
to positive occurs prior to reaching the zero 
pole adjacent to the nonscaling pole. This 
explanation requires that the nonscaling pole 
discrepancy be negative which it does not 
appear to be. It is to be noted, however, that 
the potential information used to construct 
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the equipotential surface of the nonscaling 
pole was obtained in an early stage of the 
calculation and actually was determined on too 
coarse a mesh in the azimuthal direction. This, 
together with the greater irregularity of the 
discrepancy with azimuth, makes it plausible 
to omit this pole run from the general argument. 

Fig. 16. Comparison with calculated fields azimuthal runs, 100% excitation (continued). 
Two-dimensional estimates of the effect to be 
produced by a negative potential just below 
the coil indicate magnitudewise that a yoke 
potential about 1000 A turns can explain the 
observed discrepancies. Since this is just the 
order of ampere turns that were required to 
neutralize the zero poles, it seems quite rea­
sonable to attribute all of the transverse run 
discrepancies to this effect. Of course, again 
the innermost pole measurements were com­
pared with the middle pole calculations ad­
justed to give the correct fields as in the radi­
al runs. This accounts for the unusually high 
discrepancy at this radius. 
As an aid in removing these discrepancies, 

it was noted that moving the excitation coils 

further into the slots by 0.25 inches reduced 
the plus pole transverse run discrepancies to 
about 1%. This, again, may be explained 
by noting that this depression exposed more posi­
tive pole thus tending to cancel the effect 
of the negative potential below the coil. 
Furthermore, the radial run measurements 

were not changed by more than 0.2%, pre­
sumably because the zero pole is sufficiently 
close to the plus pole to receive the added 
flux instead of letting it pass through the 
median plane. 
Fig. 17 shows the same plus pole transverse 

run discrepancies for 50 excitation. No runs 
were made across the zero poles since they 
were not neutralized. Again the discrepancy 
between calculated and measured fields impro­
ves as one moves toward the nonscaling pole 
and is generally understood by the previous 
arguments. 
In conclusion, the measured median plane 

fields in a spiral sector FFAG magnet struc­
ture agree with the calculated fields to the 
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Fig. 17. Comparison with calculated fields, azimuthal runs, 50% excitation. 

order of one percent. With small calculable 
adjustments of the coils this agreement may 
be of the order of 0.1%. 
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DISCUSSION 
A. P. Fateev 

At one time, the MURA group presented two 10 GeV 
accelerator projects. Why was this particular spiral vari­
ant chosen? 

S. C. S n o w d o n 
This question should be referred to Dr. Waldman, 

Director of MURA. 
B. W a l d m a n 

Originally M U R A designed and proposed a colli­
ding beam accelerator of the radial sector type. In 
1960 our objective was changed to that of producing 
a high intensity accelerator with a single beam. At the 
1961 International High Energy Accelerator Conferen­
ce a proposal was presented for a 10 GeV FFAG High 
Intensity proton accelerator. This has been changed 
recently to 12.5 GeV 
V. N. Kanunnikov 

Is it possible to name the basic parameters of the 
12.5 GeV accelerator taking into account the magnetic field 
and accuracy of the magnetic measurements ? 
S. C. S n o w d o n 

I shall answer only with respect to the magnet 
parameters: 
R. (EQU. ORB.) = 3488 inches 
H m a x (EQU. ORB.) = 12.5 Gs 
K (field index) = 85 
Tangent spiral angle with respect to circle = 48/54 
Number of spiral sectors = 48 
Number of magnet blocks = 264 
Rinj. = 3345.5 inches. 
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B. N. Yablokov 
What is the injection energy and what type of injector 

is chosen for the 12.5 GeV accelerator? 
S. C. S n o w d o n 

The injection energy is 200 MeV and is to be obtai­
ned from a linac. Other questions relative to the injec­

tor should be referred to Dr. Young. 
A. V. Crewe 

What is the weight of the magnet of the M U R A 
machine? 
S. C. S n o w d o n 

23.000 t approximately. 
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