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A scaling spiral sector FFAG magnet has
a magnetic field theat may be derived from
the following magnetostatic potential

Ve () F(inL—Ne, £,

N is the sector
radius such

where k is the field index,
number, r, is any convenient

as the average equilibrium orbit radius at
full energy, and w is a measure of the pitch
of the spiral [1]. The function F is periodic
in its first wvariable, — In %—NB. In the
infinite permeability approximation, this sca-
ling magnetic field may be realized by a se-
quence of spirals of iron that are alternately
energized (plus poles) and neutral (zero poles),
the surface of the iron being situated on
cones of constant z/r. The plus poles, howe-
ver, must possess a surface potential that
varies as (riro)*"! along any spiral, a con-
dition that is normally obtained by provi-
ding an excitation winding differentially gra-
ded through small radial slots in the plus pole.

* Supported by the U. S. Atomic Energy Com-
mission.
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Any practical realization of a reasonably
large spiral sector magnet must incorporate
radial cuts (short straight sections) to modu-
larize the magnet into manageable units. Fig. |
indicates the nature of the approximation
to the scaling field, which, since the scaling
property obtains only for finite transforma-
tions, is termed integral scaling. The poten-
tials of the plus poles are adjus-
ted to give an r"! variation along
each spiral ridge as one proceeds
outward along the magnet blocks.
A calculation of the particle mo-
tion in magnetic fields possessing
integral scaling symmetry indica-
tes that the deviation from sca-
ling symmetry is acceptable so long
as the straight sections are short
and the number of radial cuts in
relation to the number of sectors
is made sufficiently large [2]. For
instance, if 25% of the circumfe-
rence is removed by radial cuts and
there are nine magnet blocks for
every two spiral sectors, the change
in tune is less than 0.07.

Integral scaling symmetry has the property
that the entire magnetic field may be found
from the field existing in one cell by a simple
multiplicative transformation. The ratioof fields
at homologous points in any two cells is deter-
mined by the ratio of »* to the centers of each
of the two cells. Fig. 2 shows an enlargement
of‘the unit cell consisting of a plus pole around
which is placed an excitation coil. The choice
of cell boundaries is flexible so long as it is the
same for all cells. We take a cell to consist
of half of a zero pole and half of the radial
cut on each side of the plus pole. The cell
includes, in the vertical direction, the space
between the median plane up to a distance
sufficient to outline all of the important
features of the magnet such as the coil slots.

The magnetostatic problem of finding fields
produced by distributed currents is formulated




in terms of a scalar function. In fact, the me- Since ¢ and t are presumed known, having
thod employed constitutes a generalization been determined in such a way as to represent
of Ampere’s method of solving magneto- the current density, the above relation pro-
static problems [3]. The notion, familiar in the vides an integral equation for the determina-
decomposition of electromagnetic fields into tion of the potential V. For the case of iron
transverse electric and transverse magnetic with infinite permeability, the magnetic field
is calculated only within the
! air and conductor region. The
integral equation applied to the
surface surrounding any point in
a mesh of points constructed to
represent the region of interest,
provides a means of obtaining
a finite difference equation with
which the potential V may be
found by iterative techniques.
For the magnet to be conside-
red, a solution of the three-di-
mensional potential problem in
the unit cell is carried out on a
basic mesh of 80 radial units,
96 azimuthal units, and 40 units
in height giving a total of
83,000 mesh points. The poten-
tial information at these points is
handled in an IBM-704 computer
waves [4], is employed to decompose thecurrent by storing three adjacent radial planes of

Fig. 2. Pole face unit cell.

density vector 80 X 3 X 40 = 9600 mesh points in the core,
o - ~ the other planes remaining on call in the tape-

J=Lo-+V X Lrt, handling units. An improvement in the ini-

tial guess for the potential distribution on the

where, in the cases of interest, middle plane is eifected by the application
SN -~ of the finite difference equation which relates
L=axV (a=-constant vector). the potential at the center point to a weigh-

ted sum of the potentials at neighboring points.
> This improvement is first iterated systemati-
accelerators, the vector a is chosen most con- cally throughout the center plane. The leading
veniently to be a unit vector along the verti- edge plane is returned to the tape and a new
cal or z-axis. In general, the determination trailing edge plane brought in from the tape,
of the scalar densities ¢ and v that suitably thereby advancing the previous trailing edge
to the center where its potential is systema-
. tically improved in the manner just descri-
the spatial variationof J usually is not complex. bed. This scanning process is repeated in a
Given the densities ¢ and v, Ampere’s cir- cyclical fashion until the change in poten-
cuital relation insures that the magnetic field tial distribution in one scan averaged over

For magnetic fields associated with circular

represent Jisa relatively simple matter since

may be represented by the mesh is less than some preassigned value.
R R . The process converges to a definite distribu-
H =4nlt—4nca—VV, tion by virtue of assigned boundary values

' _ ) ) for the potential on the iron and known source
where the potential function is determined corrections to the finite difference equation

by the condition, 7-uH = 0, or, as is more Within the distributed currents.

convenient, its integral equivalent: The fields so calculated are not only useful
for particle orbit studies but in further design
5‘ u(4nzr—4noa—VV)-£:D of the magnet. It will be noted that, as one

proceeds outward along the spiral ridges,
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a point is reached where the flux density
in the plus pole attains a high saturation
level. This can be eased if one changes the

Fig. 3. Nonscaling pole.

pole shape to one that is determined by any
one of the magnetostatic equipotentials. In so
doing, fewer ampere turns are needed to excite
the pole. Fig. 3 shows how the points on the

equipotential surface are arranged inio con-
tours. These lines are of two types, curves
of constant height or J-cuts, and curves in the
spiral surface or [-cuts.

The next step is to erect a normal to this
magnetic equipotential and is accomplished
by calculating the magnetic field. A surface
one inch away from the desired surface out
along the normal is constructed and organi-
zed into the same [ and J cuts. This is the
surface that must be traversed by the center
of a ball milling cutter. Point-by-point infor-
mation for moving the center of a ball mill
over the various contours was placed on pun-
ched tape to give machining instructions
to a numerically controlled milling machine.
In total about 3 500 instructions were required
for each pole.

Fig. 4 shows two magnet blocks whose
fields have been computed as described and
whose outer poles have been shaped by con-
tour milling. The various poles of the magnet
may be seen fogether with the excitation coils,
the return flux yoke, and the back leg. Fig. 5
shows a more recent view of the same two

Fig. 4. Spiral sector magnet model — during assemblv.
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magnets after the magnetic field measuring
apparatus was added. The vertical field on the
median plane was measured using a rotating
coil-slip-ring assembly so designed as to reduce
to negligible proportions all frequencies except
the fundamental. This voltage was fed into
an ac-dc converter and subsequently into a digi-
tal voltmeter. The system measures magnetic
fields in the range of interest to a few parts
in ten thousand.

In order to determine the proper excitations
for each pole ol the magnet, it is necessary
to account for the reluctance drops in the iron
and add these to the theoretical predictions
for ideal iron. Although, in the experimental
magnet under study, these excitations may
be found empirically, it is desirable to be able
to predict the reluctance drops in order to
complete the theoretical design of the magnet.
Two paths were followed in accounting for
the properties of real iron, both of which
attempted to account for the magnetic proper-
ties of real iron through the use of the normal
induction curve. First, a semi-empirical ap-
proach through the use of a network of non-
linear magnetic circuits was employed to deter-
mine the potential of the positive and zero
poles. The input information made use of air
gap reluctances as determined from three-dimen-
sional field computations for ideal iron and
reluctance estimates of each iron segment from
its area, length, and permeability. The per-
meability considered was an empirical func-
tion of the magnetic field.

With an assumed normal induction curve
appropriate to low carbon steel, the 15-loop non-
linear curcuit, whose elements constitute the
various air gap and iron segment reluctances,
is solved by an iterative process. The loop
fluxes were found for a convenient set of coil
excitations that were present on the magnet.
From these loop fluxes the median plane mag-
netic fields under the centers of the plus poles
and zero poles were calculated. Solutions were
obtained for twenty excitation situations ran-
ging from low excitation to high excitation.
The circuit theory calculations were compa-
red with the measured fields and slight adjust-
ments made in the assumed B (H) curve until
a reasonable agreement with the measured
values was obtained. The results for the plus
poles are shown in Fig. 6, where the over-
all agreement is seen to be good to a few per-
cent out of about a 30 percent deviation from
the ideal iron case. Similar results shown in

Fig. 7 were obtained for the zero poles where
the trend of the measurements is clearly seen
to be given by the circuit theory calculations.

The second path followed in tracing the
effects of the magnetic flux flowing through
iron was to solve the equivalent two-dimen-
sional magnetostatic problem neglecting tem-
porarily the fringing flux end eflects. First,
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Fig. 6. Plus pole excitation curves. Excitation of mag-
net block A. (Theory — curves, experiment — po-
ints):
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the fields are found in the air assuming infi-
nite permeability for the iron by the methods
outlined previously. Next, the vector poten-
tial is found from this solution and, in par-
ticular, the values of this potential along the
iron are used as boundary values for the solu-
tion of a vector potential problem within the
iron. Since iterative methods are used through-
out, it is possible to use the measured normal
induction curve to insert the actual permea-
bility at every point. The only approximation
consists in assigning a constant vector poten-
tial to the outside edge of the iron thereby pre-
venting any leakage of flux from the iron
and incidentally fixing the net flux in the
iron. The discontinuity in the magnetic scalar
potential at the iron-air boundary within the
magnet then serves to determine what surface
distribution of currents ought to be placed
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on the iron to have the real magnet yield the
fields in the air as calculated with ideal iron
boundaries. Of course, these surface currents
are customarily approximated by distributing
reluctance correction coils in as many points
as is convenient, the total ampere turns invol-
ved being equal to the total required by the
surface currents.

mates. In addition, however, it is possible
to visualize the excessive potential gradients
at the base of the shaped pole, a feature which
will be employed to effect a redesign of the pole.

Given the fair agreement between the cir-
cuit theory predictions and the measured fields
at selected points, it is a relatively simple
calculational matter to determine a set of coil
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Fig. 7. Zero pole excitation curves. Excitation of magnet block A. (Theory — curves, experi-
ment — points):
I — first zero pole; II — second zero pole; III — third zero pole.

Fig. 8 shows the result of this type of cal-
culation as applied to aregion of the magnet
near the back leg. The shaped pole has been
approximated by a beveled pole. In order
to represent the flux flow in the actual mag-
net, the azimuthally fringing flux is accounted
for approximately by seeking the vector poten-
tial distribution that yields a 14% higher
maximum field, 14% being the percentage
fringing flux involved as determined by com-
paring the flux from the three-dimensional
calculation with flux per unit length from
the two-dimensional calculation times the mag-
net width. The potential drops in the iron
agree favorably with the circuit theory esti-

excitations that will yield fhe fields desired
by the r* scaling property. With the fields
set at the correct values under the centers
of each pole, a radial field map was taken and
compared with the detailed computer fields.
This is shown in Fig. 9. Fig. 10 shows a simi-
lar set of measurements taken in a transverse
run across the plus poles and the radial gap.

The nature of the discrepancy between the
measured and calculated fields in the radial
run is shown in Figs. 11 and 12 for A and B mag-
net blocks at 100% excitation (12.5 kg at center
of plus pole in A magnet). Figs. 13 and 14 show
the same comparison at 50% excitation. When
the 50% excitation runs were made, it was not
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Fig. 8. Flux flow in nonscaling pole region.
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expedient to neutralize the zero poles; and
similarly when the 100% excitation runs were
made, the innermost zero pole was not neutra-

11—14. Since the change of r* from the center
of a plus pole in magnet B to the center of the
corresponding pole in magnet A isonly 13% the
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Fig. 11. Comparison with calculated fields, radial run, 100% excitation, middle of a magnet A.
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Fig. 12. Comparison with calculated fields, radial run, 100% excitation, middle of a magnet B.

lized. These conditions plus the variation of the
zero pole potential predicted by the magnetic
circuit account completely for the variation
and sign of the zero pole fields shown in Figs.

radial runs in magnets A and B give essen-
tially identical effects for any given excitation.

The observations then are that for a fixed

excitation the discrepancy in the neighborhood
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of the scaling poies is larger than in the shaped
or nonscaling pole. As the excitation is incre-
ased from 50 to 100%, the variation of the
discrepancy with radius becomes somewhat lar-
ger. It is, however, not proportional to the
excitation. The general conclusion from  the

scaling features between cells such as different
current slot depths. In making comparisons
between calculations and measurements, a non-
scaling pole cell calculation was available toge-
ther with a scaling pole cell calculation approp-
riate to the middle plus pole situation. The
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Fig. 13. Comparison with calculated fields, radial run, 50% excitation, middle of a magnet A.
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Fig. 14. Comparison with calculated fields, radial run, 50% excitation, middle of a magnet B.

radial runs is that the deviation of the calcu-
lation from the measurement follows a smooth
pattern whose maximum is 1.5%.

Because the zero poles effectively shield one
cell from its radially adjacent cell, if separate
calculations are available for each cell, they
are accurate within 0.1% regardless of non-

innermost cell comparison was made using the
fields of the middle cell suitably adjusted
to yield the innermost pole field at the center
of the plus pole. Since the actual slots for
this cell are less deep than those for the middle
cell, the measured fields are smaller on this
account. It is to be expected, therefore, that

754



the percentage discrepancy for both scaling
cells would be the same if this nonscaling
change in slot depth were accounted for.

The remaining discrepancy of about 1% may
bz accounted for by some feature of the mag-
n>t structure such as the finite width of the
potential grading slots, that was not taken
ivto account in the calculation. Preliminary

poles for 100% excitation. Again the discre-
pancies generally become smaller toward the
nonscaling pole. These discrepancies are acco-
unted for by the following arguments. The
potential on the vertical surface of the iron
yoke in the straight sections varies from a posi-
tive potential near the back leg where the
main reluctance correction coil was placed
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Fig. 15. Comparison with calculated fields, azimuthal runs, 100% excitation.

estimates indicate that this feature can exp-
lain the effect. Furthermore, the finite poten-
tial grading slot effect was not present in the
nonscaling pole where the agreement between
calculations and measurement is best. Finally
it is to be noted that, since*there is very little
difference in the variation of the discrepancy
between 50 and 100% excitation, saturation
on the edges of the scaling poles cannot
be an important feature.

Figs. 15 and 16 show the discrepancy
between the calculated and measured median
plane fields in transverse rums across each of
the plus poles and the intermediate two zero

to negative values as one proceeds to the in-
nermost radius. The sign of all the discrepan-
cies in Figs. 15 and 16 that are positive can
be explained by the presence of a negative
potential on the yoke surface. The zero pole
discrepancy that is negative requires a posi-
tive potential on the yoke and hence one may
assume that the change in sign from negative
to positive occurs prior to reaching the zero
pole adjacent to the nonscaling pole. This
explanation requires that the nonscaling pole
discrepancy be negative which it does not
appear to be. It is to be noted, however, that
the potential information used to construct
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the equipotential surface of the nonscaling
pole was obtained in an early stage of the
calculation and actually was determined on too
coarse a mesh in the azimuthal direction. This,
together with the greater irregularity of the
discrepancy with azimuth, makes it plausible
to omit this pole run from the general argument.

further into the slots by 0.25 inches reduced
the plus pole transverse run discrepancies to
about 1%. This, again, may be explained
by noting that this depression exposed more posi-
tive pole thus tending to cancel the effect
of the negative potential below the coil.
Furthermore, the radial run measurements
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Fig. 16. Comparison with calculated fields azimuthal runs, 100% excitation (continued).

Two-dimensional estimates of the effect to be
produced by a negative potential just below
the coil indicate magnitudewise that a yoke
potential about 1000 A turns can explain the
observed discrepancies. Since this is just the
order of ampere turns that were required to
neutralize the zero poles, it seems quite rea-
sonable to attribute all of the transverse run
discrepancies to this effect. Of course, again
the innermost pole measurements were com-
pared with the middle pole calculations ad-
justed to give the correct fields as in the radi-
al runs. This accounts for the unusually high
discrepancy at this radius.

As an aid in removing these discrepancies,
it was noted that moving the excitation coils

were not changed by more than 0.2%, pre-
sumably because the zero pole is sufficiently
close to the plus pole to receive the added
flux instead of letting it pass through the
median plane.

Fig. 17 shows the same plus pole transverse
run discrepancies for 50 excitation. No runs
were made across the zero poles since they
were not neutralized. Again the discrepancy
between calculated and measured fields impro-
ves as one moves toward the nonscaling pole
and is generally understood by the previous
arguments.

In conclusion, the measured median plane
fields in a spiral sector FFAG magnet struc-
ture agree with the calculated fields to the
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Fig. 17. Comparison with calculated fields, azimuthal runs, 50% excitation.

order of one percent. With small calculable
adjustments of the coils this agreement may
be of the order of 0.1%.
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DISCUSSION

A. P. Fateev

At one time, the MURA group presented two 10 GeV
accelerator projects. Why was this particular spiral vari-
ant chosen?

S.C. Snowdon

This question should be referred to Dr. Waldman,
Director of MURA.

B. Waldman

Originally MURA designed and proposed a colli-
ding beam accelerator of the radial sector type. In
1960 our objective was changed to that of producing
a high intensity accelerator with a single beam. At the
1961 International High Energy Accelerator Conferen-
ce a proposal was presented for a 10 GeV FFAG High
Intensity proton accelerator. This has been changed
recently to 12.5 GeV

V. N. Kanunnikov

Is it possible to name the basic parameters of the
12.5 GeV accelerator taking into account the magnetic field
and accuracy of the magnetic measurements ?

S.C. Snowdon

I shall answer only with respect to the magnet
parameters:
R. (EQU. ORB.) = 3488 inches
Hpmax (EQU. ORB.) = 12.5 Gs
K (field index) = 85
Tangent spiral angle with respect to circle = 48/54
Number of spiral sectors = 48
Number of magnet blocks = 264
R = 3345.5 inches.

inj-
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B. N. Yablokov tor should be referred to Dr. Young.

What is the injection energy and what type of injector A V. Crewe
1s chosen for the 12.5 GeV accelerator? What is the weight of the magnet of the MURA
. FY
S.C. Snowdon -nachiner
S.C.Snowdon

The injeclionenergy is 200 MeV and is to be obtai-
ned from a linac. Other questions relative to the injec- 23.000 { approximately.
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