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The problem of constructing universal two-nucleon momentum distributions for main NN-configurations
 and –  used to describe short-range nucleon correlations in nuclei has been studied. A new method

for calculating such distributions has been proposed, and their properties have been studied. As illustrations,
calculations for several modern realistic NN potentials, including non-nucleon degrees of freedom, have been
provided. A new characteristic that determines the ratio of the fractions of high-momentum components for
spin-singlet and spin-triplet NN distributions at low energies, which can be useful for comparative evaluation
of the isospin dependence of short-range correlations in calculations with different NN interaction potentials,
has been proposed.
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1. INTRODUCTION
In recent years, the problem of short-range correla-

tions (SRC) in nuclei [1, 2] has become very relevant
due to exclusive experiments on the electrodisintegra-
tion of nuclei  in quasi-elastic kinematics
with the registration of three particles in coincidence
[3]. Data on inclusive and semi-exclusive reactions are
also continuing to be refined [4, 5]. The SRC problem
is also studied in  experiments curried out at
the NICA facility [6, 7].

Comparison of experimental data with theoretical
predictions based on the exact solution of the many-
body problem with different nucleon–nucleon (NN)
interactions would allow solving the SRC problem.
However, due to the complexity of solving the scatter-
ing problem involving  nucleons, approximations are
inevitably used to analyze SRC in nuclei with .
The simplest of them is the plane-wave impulse
approximation (PWIA), in which the quasi-elastic
knock-out cross section  is proportional to
the spectral function of nucleons in a nucleus or, with
further simplification, to the corresponding two-
nucleon momentum distribution . Up to this
approximation, new exclusive experiments make it
possible to reconstruct the momentum distributions of
nucleons and to study the isospin dependence of SRC.

Two-nucleon momentum distribution  in the
nucleus depends on the relative momentum of nucle-
ons k, the momentum of their center of mass Q, and
the  angle between them. An important property of

these distributions is their factorization at high relative
momenta  and low momenta of the center of mass Q,
as well as scaling for two-nucleon ( , , and )
momentum distributions in the region of high relative
momenta. In a series of works by the research team
headed by C. Ciofi degli Atti (see, for example, [8]),
based on microscopic calculations for systems of 
nucleons, it was shown that the momentum distribu-
tions for a number of light nuclei (3H, 3He, 4He, 12C,
16O, and 40Ca) at  fm–1 and  fm–1

do not depend on the angle  and are factorized as
follows:

(1)

where  is a constant depending on the nucleus 
(the so-called nuclear contact),  is the center-
of-mass momentum distribution of a pair of nucleons,
and  is the function independent of the
nucleus, i.e., a universal  distribution. In the case
of triplet  pairs, this universal distribution coincides
with the distribution of nucleons in the deuteron:

.
Obviously, the factorization property of the two-

nucleon momentum distribution assumes the exis-
tence of a similar universal distribution for spin-singlet
pairs, i.e., pp and  pairs, as well as spin-singlet 
pairs. Since a pair of nucleons does not form a bound
singlet state, the problem of obtaining such a universal
distribution for a singlet pair arises. One of the possi-
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ble solutions is to use the wavefunction of a virtual sin-
glet state, an approximation of which can be con-
structed in the case of a separable NN interaction of
nucleons [9]. Another option proposed within the
generalized contact formalism [10, 11] is to use the
scattering functions at zero energy that are normalized
by the integral over the high-momentum part, both in
the singlet and triplet channels. In this formalism, the
nuclear momentum distributions (1) integrated over
the momentum of the center of mass of the pair Q are
used, which also turn out to be proportional in the
high-momentum part to the constructed two-particle
universal distributions for both the triplet and singlet
channels. Note that the generalized contact formalism
is widely employed at present to calculate various
characteristics of SRCs in nuclei, as well as to param-
eterize electrodisintegration cross sections [12].

The aim of this work is to study in detail the prop-
erties of relative momentum distributions in bound
and unbound pairs of nucleons interacting in vacuum,
as well as to develop an alternative method for their
calculation. According to the generalized contact for-
malism [10, 11], such distributions in the high-
momentum region are be called universal momentum
distributions (UMDs). Below, we will show that there
is no need to solve the scattering problem strictly at
zero energy to construct these distributions, and one
can consider scattering wavefunctions at low energies,
which expands the range of methods that can be used
to calculate these distributions. Besides, we consider
the effect of the nuclear medium on momentum dis-
tributions in infinite nuclear matter. In this paper, we
also introduce a quantity that allows a quantitative
comparison of the contributions from the high-
momentum parts of the functions in the discrete and
continuous spectra, which will be useful for estimating
the relations between the  and  correlations in
nuclei for various  interactions. Universal func-
tions are calculated using the wave-packet continuum
discretization method [13, 14], which is suitable for
calculating scattering wavefunctions in free space and
in nuclear matter.

2. METHOD FOR CONSTRUCTING 
UNIVERSAL MOMENTUM DISTRIBUTIONS

We consider the Lippmann–Schwinger equation
for the wavefunction of a two-nucleon system with the
definite values of spin  in the momentum representa-
tion (we use units, where ):

(2)

where  is the free motion function (plane wave), 
is the  potential, m is the nucleon mass, and

 is the relative on-shell momentum corre-
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sponding to the energy E. Below, for convenience, we
will use the superscripts s and t to denote functions for
the singlet  and coupled triplet channels – ,
respectively, and omit the superscript (+) in the wave-
function.

After the partial wave expansion, we obtain equa-
tions for the partial components of the wavefunction.
Such an equation for the  (l = 0 and ) channel
has the form

(3)

These functions are normalized as

 =  and have a dimension

different from the dimension of the discrete spectrum
functions.

We define the high-momentum part of the integral
of the square of the modulus of such a wavefunction as
follows:

(4)

where  defines the boundary of the high-momen-
tum region. Note that  is a dimensional quantity
and has the dimension of fm3.

In the generalized contact formalism [11], the
UMD for - and  pairs is defined through the
square of the modulus of the wavefunction obtained
from the solution of equation (3) at p = 0 and normal-
ized to unity in the high-momentum region. We con-
sider such distributions for nonzero p as well. They can
be obtained from the scattering wavefunctions by
renormalization:

(5)

Note that since the momentum distribution is defined
as the square of the modulus of the wavefunction, it
does not matter which boundary condition the wave-
function satisfies.

It is convenient to use the wave-packet continuum
discretization method [13] to calculate the wavefunc-
tions. This method consists in dividing the momen-
tum space (in each partial wave) into non-intersecting
intervals of  and introducing basis
functions (free wave packets), the radial parts of which
have the form:

(6)
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Fig. 1. (Color online) Momentum distributions in the
channel constructed from continuum wavefunctions

obtained with the Nijmegen potential at energies of (solid
line) 0.0004, (dashed line) 0.62, (dash-dotted line) 2.5,
and (dash-dot-dotted line) 17.15 MeV.

s

1
0S
where the -function is non-zero and equal to unity if
k belongs to the  interval.

In the wave-packet basis, the wavefunction is rep-

resented as an expansion of , and
equa-tion (3) is reduced to a system of algebraic equa-
tions:

(7)

where  are the diagonal matrix elements of the
resolvent of the free Hamiltonian,  are the matrix
elements of the interaction potential while the index 
determines the on-shell interval to which p belongs
(see details in [13]). Thus, when projecting into the
wave-packet basis, the delta function included in the
inhomogeneous term of equation (3) is averaged so
that equation (7) in the wave-packet basis does not
contain singularities.

3. EXAMPLES OF MOMENTUM
-DISTRIBUTIONS FOR DIFFERENT 

INTERACTIONS AND THEIR PROPERTIES

We consider momentum  distributions (5),
which are obtained from the solution of equation (7) at
low energies. In this paper, we will use the value of

 fm–1 as the boundary of the high-momentum
region.

Such distributions for channel  found for the
Nijmegen  potential (type II) [15] are shown in
Fig. 1. As can be seen in this figure, all distributions
differ only at low momenta, and the functions have
characteristic spikes near the on-shell momentum p
corresponding to the averaged delta function included
in the solution. However, in the high-momentum
part, at , all distributions coincide.

This property of wavefunctions becomes obvious if
we consider the Schrödinger equation in the momen-
tum representation:

(8)

It is easy to see that the solution of this equation in the
region of  is practically independent of p.
Therefore, under the condition of normalization “to
the tail” according to (5), all functions with 
actually coincide with each other in the high-momen-
tum region of . This property can be written as
follows:

(9)

where the high-momentum part of the  distribu-
tion is independent of the on-shell momentum .
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According to the factorization property, two-nucleon
momentum distributions in nuclei at high momenta k
are proportional to  [10].

Thus, to construct high-momentum parts of uni-
versal momentum  distributions, there is no need to
solve the Lippmann–Schwinger equation (or the
Schrödinger equation) strictly at zero energy; it is suf-
ficient to satisfy the condition of .

We calculate the UMD for four types of potentials:
Nijmegen (Nijm II) [15], CD Bonn [16], and two ver-
sions of the dibaryon model: Dib I [17] and Dib II
[18]. The dibaryon model assumes the possibility of
formation of an intermediate six-quark state
(dibaryon) when nucleons approach each other. This
leads to an effective  interaction dependent on
energy. Nevertheless, the wavefunctions for this model
can be found by the same scheme as for energy-inde-
pendent potentials. Both variants of the model consid-
ered here make it possible to reproduce the scattering
amplitudes for the two main -configurations, but
the corresponding wavefunctions differ in the region
of high momenta.

Figure 2 shows the momentum distributions for
NN-channel  obtained in the wave-packet basis for
the four considered potentials. As can be seen in this
figure, the differences in the distributions under con-
sideration are mainly determined by the positions of
the minima (i.e., the zeros of the wavefunctions). The
first minimum will determine the region of the mini-
mum of  correlations in nuclei, i.e., the region of
the observed dominance of  correlations over 
correlations. For a “softer” CD Bonn potential, this
minimum is shifted to the right while for the dibaryon
model I, it is noticeably shifted to the left, to the region
of lower momenta.
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Fig. 2. (Color online) Momentum distributions in the

channel evaluated with different  potentials indi-
cated in the legend.

s

1
0S NN

Fig. 3. (Color online) Momentum distributions in the
3S1–3D1 channels constructed from functions obtained
with the Nijmegen potential at energies of (solid line) –2.22,
(dashed line) 0.275, (dash-dotted line) 4.52, and (dash-
dot-dotted line) 25.96 MeV.

Fig. 4. (Color online) Momentum distributions in the
3S1–3D1 channels evaluated with different  potentials
indicated in the legend.

NN
4. MOMENTUM DISTRIBUTIONS 
FOR THE SPIN-TRIPLET CHANNEL 3S1–3D1

It should be noted that the momentum  distribu-
tions for the coupled channels 3S1–3D1 have a similar
property: the coincidence of high-momentum parts
for the wavefunctions having the same normalization.
Here, however, there is a bound state function, for
which the momentum distribution is calculated
through the square of the modulus of the momentum
dependence of the deuteron wavefunction,

, as follows:

(10)

where  is a dimensionless quantity that determines
the contribution of high-momentum components to
the momentum distribution for the deuteron [19].

We also construct the UMD from the scattering
wavefunctions similarly to (5) with the inclusion of the
S- and D-wave components of the wavefunction. In
this case, the a2 functions will be determined accord-
ing to:

(11)

where the square of the modulus of the continuum
wave function consists of the sum of the S- and D-
components while the index  defines the channel
with the incident wave.1

1 Recall that at each p, there are two linearly independent solu-
tions here.
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The corresponding functions for the Nijmegen
potential are shown in Fig. 3 in comparison with the
momentum distribution for the deuteron that is nor-
malized according to (10). Since all functions are the
same in the high-momentum part, it is convenient to
use the deuteron one as the universal  distribution.

Figure 4 shows the UMDs for triplet  pairs, i.e.,
for the coupled channels 3S1‒3D1, which are obtained

from the deuteron momentum distribution  for
various  potentials with the normalization condi-
tion (10).

It should be noted that in [20, 21], the proportion-
ality of the scattering wave functions at small distances

np
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Fig. 5. (Color online) Ratios  for the singlet and triplet
channels obtained with different  potentials indicated
in the legend.

η( )q
NN
(at low energies) and the bound state function in the
coordinate space for the triplet -wave interaction was
proven based on the analytical continuation of the
scattering wavefunctions to the deuteron pole. In
essence, this is the same property that we demon-
strated in this study for the high-momentum parts of
the momentum distributions for the triplet channel,
including the - and -wave components for realistic

 interaction potentials.

5. COMPARATIVE ESTIMATES
OF HIGH-MOMENTUM CONTRIBUTIONS

The  quantity determines the fraction of the
high-momentum part in the total momentum distri-
bution of the deuteron. The values of this quantity dif-
fer significantly for different  interaction models
[19]. They are: 0.032 for the CD Bonn potential, 0.041
for the Nijmegen potential, 0.039 for the dibaryon
potential II, and 0.068 for the dibaryon potential I.

The question arises of how to estimate the fractions
of the high-momentum components for the scattering
wave functions and, in particular, for the singlet chan-
nel. As was noted above, the quantities  that we
introduced for the scattering wavefunctions are
dimensional and cannot be compared directly with the

 quantities for the bound state. However, it is possi-
ble to consider the total (integral) contribution from
high-momentum components in each channel from
the states with the on-shell momentum less than or
equal to some q value ( ), through the integrals:

(12)

The ratio of these integral quantities in different chan-
nels (with the inclusion of the contribution from the
bound state):

(13)
makes it possible to estimate the ratio of high-momen-
tum components of the wavefunctions for the singlet
and triplet channels at low energies for the considered

 interaction potential.
The ratio  is given in Fig. 5 for four considered
 interaction models. As can be seen in the figure,

this ratio between the fractions of high-momentum
components for the singlet and triplet channels turns
out to be different for different potentials, i.e., is
model-dependent. In this case, the contributions from
the high-momentum components for the singlet
channel at low energies are significantly smaller than
those for the triplet channel ( ) for all consid-
ered interactions. It is also clear that for the dibaryon
model potentials, the relative high-momentum com-
ponents for the singlet channel functions are larger
than those for the traditional meson-exchange poten-
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tials. In this case, although the universal functions for
the dibaryon potential II and for the Nijmegen poten-
tial for the singlet and triplet channels are very close to
each other (see Figs. 2 and 4) up to momenta about
7 fm–1, the ratio  for the dibaryon potential turns
out to be noticeably larger, which will most likely lead
to stronger  correlations in nuclei.

Thus, the proposed  value complements the 
parameter used in the literature for the bound state
and allows a preliminary comparative estimate of the
isospin dependence of the SRC for different NN inter-
action potentials.

6. MOMENTUM DISTRIBUTIONS
OF NUCLEONS IN A NUCLEAR MEDIUM

As another illustration, we consider the high-
momentum behavior of momentum distributions in
nuclear medium. It was shown earlier [14] that it is
possible to determine the effective Hamiltonian for a
pair of nucleons above the Fermi surface. In a certain
range of densities, this Hamiltonian has bound states
(states with energies below the double Fermi energy
2 ), both for the triplet and singlet channels.2

Next, we study the high-momentum components
of the wavefunctions of such bound states. In the
momentum representation, the wavefunction of such a
state in the 1S0 channel at zero momentum of the cen-
ter of mass satisfies the equation:

(14)

2 Such states correspond to the eigenfunctions of the kernel of the
Bethe–Goldstone equation with unit eigenvalues.
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Fig. 6. (Color online) (Solid lines) Momentum distribu-

tions in the (a)  and (b) –  channels that were
found in calculations in a nuclear medium based on
Eq. (14) with the CD Bonn potential in comparison with
(dashed lines) the universal momentum distribution for
the same potential.

s
t

1
0S 3

1S 3
1D
where  is the Fermi momentum for the considered
medium while the equation is solved in a subspace of

 (the so-called Pauli-allowed subspace). In
this case, the energy of the bound state is negative and

is determined from the relation: , where

.

A method for calculating such states in the same
wave-packet basis that we used above is described in
[14]. These functions are normalized to unity, so
dimensionless factors  can be introduced to nor-
malize them to the high-momentum part. Figure 6
shows the momentum distributions for the bound
states of two nucleons in the nuclear medium in the
singlet and triplet channels at the Fermi momentum of

 0.6 fm–1 for the CD Bonn potential in compari-
son with the UMD for the same interaction obtained
above. In the high-momentum parts, the compared
functions are practically indistinguishable, which con-
firms the universality of two-nucleon SRCs. The
obtained fractions of the high-momentum compo-
nents for the singlet and triplet functions are

 and , respectively. Despite the
fact that the singlet nucleons are bound here, a signif-
icant excess of the contribution of the high-momen-
tum component for the triplet channel is again
observed compared to the singlet one. We also found
the fractions of the high-momentum components for
the other two interactions considered in this study.
The  ratios at  fm–1 for different
NN potentials are as follows: 0.044 (CD Bonn),
0.058 (Nijm II), and 0.142 (Dib II). As we can see,

Fk
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these ratios are arranged in the same sequence as the
 curves shown in Fig. 5 for NN interactions in

vacuum.

7. CONCLUSIONS
It has been shown that, under the selected condi-

tion of normalization to the high-momentum part,
two-particle scattering wavefunctions can be used as
universal momentum distributions at any sufficiently
low energy. This property opens wide possibilities for
calculating such distributions. In this study, the wave-
packet continuum discretization method was used, but
any other approaches that are traditionally used to cal-
culate scattering wavefunctions can also be employed
here. In particular, pseudo-states of the Hamiltonian
obtained in the L2 basis can be used to construct uni-
versal distributions if the basis allows describing the
high-momentum region. We are planning this study in
the future.

In the paper, we have also proposed the ratio 
that allows comparing the contributions of the high-
momentum components for the spin-singlet and spin-
triplet channels at low energies. Such a function
depends on the used  interaction model and can
serve as an additional characteristic of the isospin
dependence of the SRC.

Besides, we have studied the momentum distribu-
tions corresponding to bound states of correlated pairs
of nucleons above the Fermi surface in the nuclear
medium. The momentum distributions for such states
in the region of large momenta have been shown to be
proportional to the universal NN distributions.
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