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Abstract. Efficient remote file access is essential for High Energy
Physics (HEP) experiments, particularly with the anticipated tenfold
increase in data volume for Run 4 of the LHC. XRootD and EOS are
critical components of the HEP ecosystem, enabling remote data ac-
cess via XRootD and HTTP protocols. In this work, we evaluate the
performance of various client implementations over these protocols us-
ing an XRootD server with a high-performance tmpfs mount. In order
to ensure an infrastructure-independent assessment, benchmarking is
conducted in a controlled 100GbE networking environment, eliminat-
ing external bottlenecks and isolating software performance. Network
integrity was first validated using iperf3 before executing the bench-
marks. Our study identifies a performance bottleneck in multi-stream
data transfers at high rates within the XRootD client. A fix has been
developed and will be included in XRootD 5.8.0, significantly improving
high-throughput data access.

1 Introduction

XRootD [1-3] is a scalable, high-performance data access system developed to ad-
dress the challenges of distributed storage in High Energy Physics (HEP). Originally
designed at SLAC [4], it has become a cornerstone of CERN’s computing infras-
tructure [5, 6], enabling efficient remote access to petabyte-scale datasets. XRootD
provides a modular architecture, its own native XRootD protocol for data access as
well as HTTP, and is integral to EOS [7, 8], CERN’s flagship storage solution.

With the upcoming High Luminosity Large Hadron Collider (HL-LHC) [9], data
rates are expected to increase by an order of magnitude. This surge necessitates op-
timizations in data access strategies, including enhanced protocol implementations,
improved client-server interactions, and advancements in storage and networking in-
frastructure.

In this study, we evaluate the performance of XRootD and HTTP clients, focusing
on benchmarking throughput, identifying bottlenecks, and implementing performance
optimizations. To ensure accurate results, all tests are conducted in a controlled high-
performance networking environment, minimizing external interference and isolating
software-specific performance characteristics.
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2 Test Environment and Hardware Configuration

The benchmarking tests were conducted on two high-performance computing nodes
at CERN, each designed to sustain the high-throughput demands of a 100GbE net-
working environment.

100Gbps : 100Gbps [~~~

Figure 1: CERN test environment: two compute nodes connected to each other with
100GbE networking via a single network switch.

Both nodes are equipped with dual AMD EPYC 7302 16-core processors, a Mel-
lanox ConnectX-5 network adapter supporting 100Gbps Ethernet connectivity, and
256GB of RAM. For storage, each node features two 2TB NVMe SSDs. It is important
to note that the network adapters are attached to the first socket in each compute
node, while the storage devices are attached to the second socket, as shown in figure 2
below. This means that to serve data from the storage devices, the data needs to pass
through the interconnect between the two sockets after being read before being sent
out to the network, which negatively affects performance.
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Figure 2: Node topology. Each node is dual socket, with networking devices attached
to the first socket, and storage devices attached to the second socket.

The software stack included Alma Linux 8.10, running Linux kernel 4.18.0-553,
alongside XRootD 5.7.1 [3] (latest available version at the time the work was car-
ried out) and the following HTTP client implementations: Davix 0.8.7 [10, 11], curl
7.61.1 [12], and wget 1.19.5 [13]. Some benchmarks also feature a comparison with
scp, from OpenSSH 8.0pl [14].

The server node was configured with a 128GB tmpfs mount to serve files directly
from memory. The client node was used to download 10GB and 100GB files from the
server node under various scenarios.
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3 Network Configuration and Optimization

In order to minimize network-related bottlenecks, we applied some standard optimiza-
tions for 100GbE networks to our testing environment. First, however, we validate
the speed of the network using iperf3:
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Figure 3: Network speed verification with iperf3 (MTU=1500).

Although we can achieve the maximum speed of the link using 16 iperf3 processes,
we note that for 1, 4 and 8 processes the performance is not as stable as it could be.
Network adapters are connected only to the first socket, so we use a fixed number
of 8 iperf3 processes to verify that stability improves by pinning each process to a
physical core on the first socket (light blue line in figure 4 below). In subsequent tests,
processes are pinned in the best configuration, that is, one process per physical core.
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Figure 4: Network speed with iperf3 with different scheduling affinity.
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Next, we increase the MTU (Maximum Transmission Unit) to 9000 bytes (Jumbo
Frames) to reduce packet overhead and improve efficiency for large data transfers.
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Figure 5: Network speed verification with iperf3 (MTU=9000).

Finally, we optimize other parameters of the network. TCP congestion control
was set to BBR, an advanced algorithm designed to optimize throughput over high-
bandwidth links by dynamically adjusting congestion windows. TCP buffer sizes were
increased, ensuring that large amounts of in-flight data could be efficiently managed
without hitting system-imposed limits. The list below shows the actual settings ap-
plied:

net.ipvé4.tcp_wmem = 4096 65536 2147483647
net.ipv4.tcp_rmem = 4096 87380 2147483647
net.core.rmem_max = 2147483647
net.core.wmem_max 2147483647
net.core.default_qdisc = fq
net.ipvé4.tcp_congestion_control = bbr
net.ipv4.tcp_mtu_probing = 1
net.core.optmem_max = 1048576

Additionally, NIC ring buffers were expanded to their maximum allowable size to
prevent packet drops and improve performance during high-throughput operations.

$ ethtool -g ethO
Ring parameters for ethO:
Pre-set maximums:

RX: 8192
TX: 8192
Current hardware settings:
RX: 8192
TX: 8192

These optimizations helped create an ideal testing environment, allowing precise
evaluation of different client implementations without interference from underlying
network bottlenecks.
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4 XRootD and HTTP Client Benchmarks

To assess the performance of different remote data access clients, we conducted a
series of benchmarks. Each benchmark involves downloading the same files containing
randomly generated data, and writing the output into /dev/null in order to avoid
performance bottlenecks from storage devices. No authentication mechanisms were
enabled, since we are only interested in pure data transfer performance. However,
some tests use TLS encryption to evaluate its impact on transfer speeds. XRootD
also supports a mode with TLS encryption on the control stream, while data streams
remain unencrypted. We added this mode to our tests for completeness. Figures 6
and 7 below show the download speed and download time for a single-stream transfer
of a 10GB and a 100GB file, respectively. Each measurement is the average of 3
consecutive runs of the client.
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Figure 6: Download speed and download time for 10GB file.
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Figure 7: Download speed and download time for 100GB file.

Davix is the best performing client, while XRootD comes in second with similar
performance to curl. The performance difference between XRootD and Davix can be
explained at least in part by the fact that HTTP clients only have to issue a single
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GET request to the server to get the file streamed back to them, while the XRootD
client normally divides the file to be downloaded into chunks and issues a read request
to the server for each chunk.

Since single-stream transfers are not suffient to saturate the speed of the network
link, we achieve saturation by running concurrent transfers. Figure 8 shows the
aggregated transfer speeds for up to 32 concurrent transfers with and without TLS
encryption enabled.
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Figure 8: Concurrent transfers without (top) and with (bottom) TLS encryption.

With the exception of wget, all other clients can reach near saturation at 8 con-
current transfers when TLS encryption is not enabled. Due to its high CPU cost,
transfers with TLS enabled reach a plateau of about 75Gbps after 12 concurrent
transfers.
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Another way to achieve saturation, or so we thought, would be to use the multi-
stream feature of the XRootD client. We measured transfer rates varying the number
of data streams up to 16 to analyze its effect on throughput. To our surprise, on this
optimized networking setup, adding streams did not significantly change performance:
Upon analyzing the client performance, we could see that on high-speed networks, the
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Figure 9: Multi-stream download performance of XRootD 5.7.1 client.

client quickly becomes CPU-bound. This is shown in figure 10 below. There is one
thread that is always busy (shown continuously in blue in the inset), while other
threads remain mostly idle (scattered blue boxes show their sparse activity). The
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Figure 10: XRootD client in 100GbE networking environment. One thread is CPU
bound, while other threads remain mostly idle.

reason for the client becoming CPU-bound was well understood, however. For each
connection (i.e. channel), additional data streams are created by opening additional

https://doi.org/10.1051/epjconf/202533701339
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sockets. However, these sockets were all mapped to use the same polling thread,
which is the thread that becomes CPU bound in the end. A fix for this issue involved
remapping sockets to pollers based not on their channel, but on their file descriptors
instead, as shown on the right in figure 11. After this performance bug was fixed, we
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Figure 11: XRootD client architecture before (left) and after (right) the performance
bugfix.

obtained the expected results when using multiple streams for data transfers, shown
in figure 12 below. Now using 8 streams is sufficient to saturate the link with a single
multi-stream transfer when TLS encryption is not enabled.
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Figure 12: Multi-stream download performance before (left) and after (right) perfor-
mance bugfix in XRootD client.

5 Conclusion

Our study demonstrates that while XRootD can sustain high-performance data ac-
cess for HL-LHC workloads, optimizations in networking, multi-threading, and client
implementations are still necessary as we move to high-performance networking en-
vironments. Future work will explore further performance testing on high-speed net-
works beyond 100Gbps speeds and in realistic situations, as recently done in [15, 16],
simulating packet loss and latency, as well as adding support for disk and network
io_uring [17] to XRootD and to achieve throughputs beyond 200Gbps for HL-LHC.
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