EPJ Web of Conferences 337, 01339 (2025) https://doi.org/10.1051/epjconf/202533701339
CHEP 2024

Physics Data Forge: Unveiling the Power of 1/0 Systems
in CERNs Test Infrastructure

Guilherme Amadio'*, Luca Mascetti!, Andreas Joachim Peters!, Andrea Sciaba', and
David Smith!

1CERN

Abstract. Efficient remote file access is essential for High Energy
Physics (HEP) experiments, particularly with the anticipated tenfold
increase in data volume for Run 4 of the LHC. XRootD and EOS are
critical components of the HEP ecosystem, enabling remote data ac-
cess via XRootD and HTTP protocols. In this work, we evaluate the
performance of various client implementations over these protocols us-
ing an XRootD server with a high-performance tmpfs mount. In order
to ensure an infrastructure-independent assessment, benchmarking is
conducted in a controlled 100GbE networking environment, eliminat-
ing external bottlenecks and isolating software performance. Network
integrity was first validated using iperf3 before executing the bench-
marks. Our study identifies a performance bottleneck in multi-stream
data transfers at high rates within the XRootD client. A fix has been
developed and will be included in XRootD 5.8.0, significantly improving
high-throughput data access.

1 Introduction

XRootD [1-3] is a scalable, high-performance data access system developed to ad-
dress the challenges of distributed storage in High Energy Physics (HEP). Originally
designed at SLAC [4], it has become a cornerstone of CERN’s computing infras-
tructure [5, 6], enabling efficient remote access to petabyte-scale datasets. XRootD
provides a modular architecture, its own native XRootD protocol for data access as
well as HTTP, and is integral to EOS [7, 8], CERN’s flagship storage solution.

With the upcoming High Luminosity Large Hadron Collider (HL-LHC) [9], data
rates are expected to increase by an order of magnitude. This surge necessitates op-
timizations in data access strategies, including enhanced protocol implementations,
improved client-server interactions, and advancements in storage and networking in-
frastructure.

In this study, we evaluate the performance of XRootD and HTTP clients, focusing
on benchmarking throughput, identifying bottlenecks, and implementing performance
optimizations. To ensure accurate results, all tests are conducted in a controlled high-
performance networking environment, minimizing external interference and isolating
software-specific performance characteristics.

*e-mail: amadio@cern.ch

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative
Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 337, 01339 (2025) https://doi.org/10.1051/epjconf/202533701339
CHEP 2024

2 Test Environment and Hardware Configuration

The benchmarking tests were conducted on two high-performance computing nodes
at CERN, each designed to sustain the high-throughput demands of a 100GbE net-
working environment.

100Gbps : 100Gbps [~~~

Figure 1: CERN test environment: two compute nodes connected to each other with
100GbE networking via a single network switch.

Both nodes are equipped with dual AMD EPYC 7302 16-core processors, a Mel-
lanox ConnectX-5 network adapter supporting 100Gbps Ethernet connectivity, and
256GB of RAM. For storage, each node features two 2TB NVMe SSDs. It is important
to note that the network adapters are attached to the first socket in each compute
node, while the storage devices are attached to the second socket, as shown in figure 2
below. This means that to serve data from the storage devices, the data needs to pass
through the interconnect between the two sockets after being read before being sent
out to the network, which negatively affects performance.

Machine (251GB total)

Package L#0
| NUMANode L#0 P#0 (125GB) |
| L3 (16MB) ” L3 (16MB) | s"—‘{-‘t‘:‘ll L3 (16MB) 39 [3.9|pci21:000| |16 16 |PCI41:00.0 02 02
X total
Core L#0 || CoreL#1 || coreL#2 || core L#3 Core L#14 || Core L#15 et Netielil
PUL#0 PUL#2 PUL#4 PUL#6 puL#28 | ||| PuL#30 BT ri e OpenFabrics mix5_0
P#0 P#1 P#2 P#3 P#14 P#15
Net eth2 ==)
PUL#1 PUL#3 PUL#5 PUL#7 PUL#29 PUL#31 PCI 44:00.0
P#32 P#33 P#34 P#35 P46 P47
32 32|pci2a:000| 32 32 |peias:0]
32 32| Pci25:00.0
Package L#1
| NUMANode L#1 P#1 (126GB) |
[z aoms) [z asmey] 800 [15 ems) 3.9 3.9(PClal:00.0 52 32 | pCic3:00.0]
8x total
Core L#16 || Core L#17 | | Core L#18 || Core L#13 Core L#30 || Core L#31 ‘i'?";:é‘;"‘eu"l 32 32| PCIc4:00.0
puL#32 ||| PuL#a34 ||| PuL#3s |||/ PuLH3s PUL#60 | ||| PUL#62
P#16 P#17 P#18 P#19 P#30 P#31 397 3.9] PO 22:00.0
puL#33 | ||| PuLass | ||| PuLss7 | ||| PuLs3e puL#61 | ||| PUL#63 e ——
P#48 P#49 P#50 P#51 P#62 P#63 2D D
32 32 |Pcia7:00.0
32 32 | PCla8:00.0

Host: st-srv-100-181bc.cern.ch
Date: Thu Oct 17 11:11:15 2024

Figure 2: Node topology. Each node is dual socket, with networking devices attached
to the first socket, and storage devices attached to the second socket.

The software stack included Alma Linux 8.10, running Linux kernel 4.18.0-553,
alongside XRootD 5.7.1 [3] (latest available version at the time the work was car-
ried out) and the following HTTP client implementations: Davix 0.8.7 [10, 11], curl
7.61.1 [12], and wget 1.19.5 [13]. Some benchmarks also feature a comparison with
scp, from OpenSSH 8.0pl [14].

The server node was configured with a 128GB tmpfs mount to serve files directly
from memory. The client node was used to download 10GB and 100GB files from the
server node under various scenarios.

EPJ Web of Conferences 337, 01339 (2025) https://doi.org/10.1051/epjconf/202533701339
CHEP 2024

3 Network Configuration and Optimization

In order to minimize network-related bottlenecks, we applied some standard optimiza-
tions for 100GbE networks to our testing environment. First, however, we validate
the speed of the network using iperf3:

Number of iperf3 server/client instances
4

1

100

80

60

40

Data Transfer Rate [Gbps]

20

12

Time [s]

Figure 3: Network speed verification with iperf3 (MTU=1500).

Although we can achieve the maximum speed of the link using 16 iperf3 processes,
we note that for 1, 4 and 8 processes the performance is not as stable as it could be.
Network adapters are connected only to the first socket, so we use a fixed number
of 8 iperf3 processes to verify that stability improves by pinning each process to a
physical core on the first socket (light blue line in figure 4 below). In subsequent tests,
processes are pinned in the best configuration, that is, one process per physical core.

iperf3 scheduling affinity
Every 2nd core Every 4th core

First 8 cores

Every 8th core

100 =

80

60

40

Data Transfer Rate [Gbps]

20

0 2 4 6 8 10 12

Time [s]

Figure 4: Network speed with iperf3 with different scheduling affinity.

EPJ Web of Conferences 337, 01339 (2025) https://doi.org/10.1051/epjconf/202533701339
CHEP 2024

Next, we increase the MTU (Maximum Transmission Unit) to 9000 bytes (Jumbo
Frames) to reduce packet overhead and improve efficiency for large data transfers.

Number of iperf3 server/client instances
1

100

80

60

40

Data Transfer Rate [Gbps]

20

0 2 4 6 8 10 12

Time [s]

Figure 5: Network speed verification with iperf3 (MTU=9000).

Finally, we optimize other parameters of the network. TCP congestion control
was set to BBR, an advanced algorithm designed to optimize throughput over high-
bandwidth links by dynamically adjusting congestion windows. TCP buffer sizes were
increased, ensuring that large amounts of in-flight data could be efficiently managed
without hitting system-imposed limits. The list below shows the actual settings ap-
plied:

net.ipvé4.tcp_wmem = 4096 65536 2147483647
net.ipv4.tcp_rmem = 4096 87380 2147483647
net.core.rmem_max = 2147483647
net.core.wmem_max 2147483647
net.core.default_qdisc = fq
net.ipvé4.tcp_congestion_control = bbr
net.ipv4.tcp_mtu_probing = 1
net.core.optmem_max = 1048576

Additionally, NIC ring buffers were expanded to their maximum allowable size to
prevent packet drops and improve performance during high-throughput operations.

$ ethtool -g ethO
Ring parameters for ethO:
Pre-set maximums:

RX: 8192
TX: 8192
Current hardware settings:
RX: 8192
TX: 8192

These optimizations helped create an ideal testing environment, allowing precise
evaluation of different client implementations without interference from underlying
network bottlenecks.

EPJ Web of Conferences 337, 01339 (2025) https://doi.org/10.1051/epjconf/202533701339
CHEP 2024

4 XRootD and HTTP Client Benchmarks

To assess the performance of different remote data access clients, we conducted a
series of benchmarks. Each benchmark involves downloading the same files containing
randomly generated data, and writing the output into /dev/null in order to avoid
performance bottlenecks from storage devices. No authentication mechanisms were
enabled, since we are only interested in pure data transfer performance. However,
some tests use TLS encryption to evaluate its impact on transfer speeds. XRootD
also supports a mode with TLS encryption on the control stream, while data streams
remain unencrypted. We added this mode to our tests for completeness. Figures 6
and 7 below show the download speed and download time for a single-stream transfer
of a 10GB and a 100GB file, respectively. Each measurement is the average of 3
consecutive runs of the client.

Control TLS / Data No TLS s
NoTLS mmmmm
TLS =

scp
wget wget
curl curl
davix

davix

xrdcp xrdcp

0 5 10 15 20 25 30 35 40 0 2 4 6 8 10 12 14 16 18
Data Transfer Rate [Gbps] Download Time [s]

Figure 6: Download speed and download time for 10GB file.

Control TLS / Data No TLS i
NoTLS mmmmm

scp
TLS mmmm

scp
wget wget
curl curl
davix

davix

xrdcp xrdcp

) 5 10 15 20 25 30 35 0 20 40 60 80 100 120 140 160
Data Transfer Rate [Gbps] Download Time [s]

Figure 7: Download speed and download time for 100GB file.

Davix is the best performing client, while XRootD comes in second with similar
performance to curl. The performance difference between XRootD and Davix can be
explained at least in part by the fact that HTTP clients only have to issue a single

EPJ Web of Conferences 337, 01339 (2025) https://doi.org/10.1051/epjconf/202533701339
CHEP 2024

GET request to the server to get the file streamed back to them, while the XRootD
client normally divides the file to be downloaded into chunks and issues a read request
to the server for each chunk.

Since single-stream transfers are not suffient to saturate the speed of the network
link, we achieve saturation by running concurrent transfers. Figure 8 shows the
aggregated transfer speeds for up to 32 concurrent transfers with and without TLS
encryption enabled.

xrdep —s— davix —e— curl —e— wget —e—

100

//

80
@
a
a
o

o 60
2
©
-
3
173
s

E 40
2
©
a

20

0

4 8 12 16 20 24 28 32
Number of Concurrent Transfers
xrdcp —=— davix —— curl —=— wget —— scp ——
100
80 dé

@
Q.
2
o

@ 60
k]
-3
K
173
8

= 40
]
©
a

20

Number of Concurrent Transfers

Figure 8: Concurrent transfers without (top) and with (bottom) TLS encryption.

With the exception of wget, all other clients can reach near saturation at 8 con-
current transfers when TLS encryption is not enabled. Due to its high CPU cost,
transfers with TLS enabled reach a plateau of about 75Gbps after 12 concurrent
transfers.

EPJ Web of Conferences 337, 01339 (2025)

CHEP 2024

Another way to achieve saturation, or so we thought, would be to use the multi-
stream feature of the XRootD client. We measured transfer rates varying the number
of data streams up to 16 to analyze its effect on throughput. To our surprise, on this
optimized networking setup, adding streams did not significantly change performance:
Upon analyzing the client performance, we could see that on high-speed networks, the

No PgRead / No TLS —@— PgRead / Control TLS / Data No TLS —@&—
PgRead/No TLS —@— No PgRead / Full TLS —8—

30
25 ’—‘/\.__,__——a\o——o—q

ZOW

Data Transfer Rate [Gbps]
a
3,

0o 1 2 4 6 8 10 12 14 16

Number of Streams

Figure 9: Multi-stream download performance of XRootD 5.7.1 client.

client quickly becomes CPU-bound. This is shown in figure 10 below. There is one
thread that is always busy (shown continuously in blue in the inset), while other
threads remain mostly idle (scattered blue boxes show their sparse activity). The

. i |
H =
; =
¥ U — T —
3 /]
¥ [T Jl g [] I
¥ |
¥ | 0N O NN | IN0
ML 1 N O 0 (LI
LE ¥ || 0 N 0T 0 O . O ™S AN |
cpu6 ¥ I A T |

-

1111 W]
[T T

) [T [T AT [T [

| IIIII\I%IIII‘I‘-IIIIIIIII‘IIIIIII‘II‘III‘IIFII“lII‘IIIIIIIII‘IIl‘III‘II‘I‘I‘l‘Ilrlllirlll!llll’-llH)

I | | I | 1 | E | |
IIHIIIIHI+II"+IHI+III!IIﬂIé‘IHIIIHIIII_L-II_I!FIIH!I‘Iﬂill
- | | [+ | 1 == | | I | \‘ ‘ :: |

| | 0 | | 22| | B3

o e

| | | | i [

Figure 10: XRootD client in 100GbE networking environment. One thread is CPU
bound, while other threads remain mostly idle.

reason for the client becoming CPU-bound was well understood, however. For each
connection (i.e. channel), additional data streams are created by opening additional

https://doi.org/10.1051/epjconf/202533701339

EPJ Web of Conferences 337, 01339 (2025) https://doi.org/10.1051/epjconf/202533701339
CHEP 2024

sockets. However, these sockets were all mapped to use the same polling thread,
which is the thread that becomes CPU bound in the end. A fix for this issue involved
remapping sockets to pollers based not on their channel, but on their file descriptors
instead, as shown on the right in figure 11. After this performance bug was fixed, we

Event Loop Thread
Poller

Channel

Socket 0
Stream 0 /
Socket 1

Stream 1

Socket 0

Stream 0

Socket 1

Stream 1

PostMaster PostMaster

Stream 2

Stream 2

Socket2

Event Loop Thread

Socket2

Event Loop Thread

Streamn Socketn Streamn Socketn

Polier

Figure 11: XRootD client architecture before (left) and after (right) the performance
bugfix.

obtained the expected results when using multiple streams for data transfers, shown
in figure 12 below. Now using 8 streams is sufficient to saturate the link with a single
multi-stream transfer when TLS encryption is not enabled.

No PgRead / No TLS —@— PgRead / Control TLS / Data No TLS —@—
PgRead /No TLS —@— No PgRead / Full TLS —@—

100
920
80
70
60
50

40

Data Transfer Rate [Gbps]

30

20

10

0o 1 2 4 6 8 10 12 14 16

Number of Streams

Figure 12: Multi-stream download performance before (left) and after (right) perfor-
mance bugfix in XRootD client.

5 Conclusion

Our study demonstrates that while XRootD can sustain high-performance data ac-
cess for HL-LHC workloads, optimizations in networking, multi-threading, and client
implementations are still necessary as we move to high-performance networking en-
vironments. Future work will explore further performance testing on high-speed net-
works beyond 100Gbps speeds and in realistic situations, as recently done in [15, 16],
simulating packet loss and latency, as well as adding support for disk and network
io_uring [17] to XRootD and to achieve throughputs beyond 200Gbps for HL-LHC.

EPJ Web of Conferences 337, 01339 (2025) https://doi.org/10.1051/epjconf/202533701339
CHEP 2024

References

[1] A. Hanushevsky, A. Dorigo, F. Furano, The next generation root file server, in
14th International Conference on Computing in High-Energy and Nuclear Physics
(2005), pp. 680—683, https://cds.cern.ch/record/865679/files/p680.pdf
XRootD Project, https://xrootd.org

XRootD 5.7.1 (2024), https://doi.org/10.5281/zenodo. 13682245

A. Hanushevsky, A. Trunov, L. Cottrell, Peer to peer computing for secure high

performance data copying, in 12th International Conference on Computing in

High-Energy and Nuclear Physics (2001)

[5] R. Gardner, S. Campana, G. Duckeck, J. Elmsheuser, A. Hanushevsky, F.G.
Hoénig, J. Iven, F. Legger, I. Vukotic, W. Yang (ATLAS), Data federation strate-
gies for ATLAS using XRootD, in J. Phys. Conf. Ser., edited by D.L. Groep,
D. Bonacorsi (2014), Vol. 513, p. 042049

[6] S. Campana, D.C. van der Ster, A. Di Girolamo, A.J. Peters, D. Dullmann,
M. Coelho dos Santos, J. Iven, T. Bell, Commissioning of a CERN production and
analysis facility based on XRootD, in 18th International Conference on Computing
in High-Energy and Nuclear Physics, edited by S.C. Lin (2011), Vol. 331, p.
072006

[7] A. Peters, L. Janyst, Ezabyte Scale Storage at CERN, in International Conference

on Computing in High Energy and Nuclear Physics (CHEP 2010) (2011), Vol.

331, p. 052015, https://doi.org/10.1088/1742-6596/331/5/052015

EOS Open Storage, https://cern.ch/eos

G. Apollinari, I.B. Alonso, O. Briining, T. Nakamoto, L. Rossi, High- Luminosity

Large Hadron Collider (HL-LHC): Technical Design Report V.0, Number CERN-

2017-007-M in CERN Yellow Reports: Monographs (2017), https://dx.doi.o

rg/10.23731/CYRM-2017-004

[10] A. Devresse, F. Furano, Efficient HTTP Based I1/0 on Very Large Datasets for

High Performance Computing with the Libdaviz Library, in Big Data Benchmarks,
Performance Optimization, and Emerging Hardware, edited by J. Zhan, R. Han,
C. Weng (Springer International Publishing, 2014), pp. 194-205, ISBN 978-3-
319-13021-7

[11] F. Furano, A. Devresse, O. Keeble, M. Hellmich, A. . Ayllén, Towards an HTTP

Ecosystem for HEP Data Access, in Journal of Physics: Conference Series (2014),

Vol. 513, p. 032034, https://dx.doi.org/10.1088/1742-6596/513/3/032034

] D. Stenberg, curl and libcurl, https://curl.se

3] GNU Wget, https://www.gnu.org/software/wget/

]
]

EESEENS)

ENC)

OpenSSH 8.0pl1, https://www.openssh.com/releasenotes.html#8.0pl

Fajardo, Edgar, Arora, Aashay, Davila, Diego, Gao, Richard, Wiirthwein, Frank,

Bockelman, Brian, Systematic benchmarking of HTTPS third party copy on

100Gbps links using XRootD, in 25th International Conference on Computing

in High Energy and Nuclear Physics (CHEP 2021) (2021), Vol. 251, p. 02001,

https://doi.org/10.1051/epjconf /202125102001

[16] A. Aroral, J. Guiang, D. Davila, F. Wiirthwein, J. Balcas, H. Newman, 400Gbps
benchmark of XRootD HTTP-TPC, in 26th International Conference on Com-
puting in High Energy and Nuclear Physics (CHEP 2023) (2024), Vol. 295, p.
01001, https://doi.org/10.1051/epjcont /202429501001

[17] J. Axboe, Efficient 10 with io_uring, https://kernel.dk/io_uring.pdf

https://cds.cern.ch/record/865679/files/p680.pdf
https://xrootd.org
https://doi.org/10.5281/zenodo.13682245
https://doi.org/10.1088/1742-6596/331/5/052015
https://cern.ch/eos
https://dx.doi.org/10.23731/CYRM-2017-004
https://dx.doi.org/10.23731/CYRM-2017-004
https://dx.doi.org/10.1088/1742-6596/513/3/032034
https://curl.se
https://www.gnu.org/software/wget/
https://www.openssh.com/releasenotes.html#8.0p1
https://doi.org/10.1051/epjconf/202125102001
https://doi.org/10.1051/epjconf/202429501001
https://kernel.dk/io_uring.pdf

	Introduction
	Test Environment and Hardware Configuration
	Network Configuration and Optimization
	XRootD and HTTP Client Benchmarks
	Conclusion

