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ABSTRACT: Starting from a recently proposed framework for the evaluation of the cosmological
averages, we evaluate the higher-order moments for the distribution of a given observable.
Then, we explicitly discuss the case of the Hubble-Lemaitre diagram and evaluate its skewness
at the leading order in the cosmological perturbative expansion of the gravitational potential.
In particular, we focus on perturbations of the luminosity distance due to gravitational
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late-time matter bispectrum, with other line-of-sight projection effects being sub-dominant.

KEYWORDS: cluster counts, weak gravitational lensing, cosmological simulations,
cosmological parameters from LSS

ARX1v EPRINT: 2307.13455

© 2024 The Author(s). Published by IOP Publishing

BY Ltd on behalf of Sissa Medialab. Original content from
this work may be used under the terms of the Creative Commons htt ‘//d : /10 1088/1475—7516/2024/02/050
Attribution 4.0 licence. Any further distribution of this work must ps: 01.0rg :

maintain attribution to the author(s) and the title of the work,
journal citation and DOI.


https://orcid.org/0000-0003-0569-9570
https://orcid.org/0000-0002-5803-1382
https://orcid.org/0000-0001-5173-3800
mailto:tschiavone@fc.ul.pt
mailto:enea.didio@cern.ch
mailto:gfanizza@fc.ul.pt
https://doi.org/10.48550/arXiv.2307.13455
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1475-7516/2024/02/050

Contents

1 Introduction 1
2 Leading-order terms review: average and dispersion 3
3 Next-to-leading order term: skewness 5
4 Higher-order moments for the distance-redshift relations 6
4.1 Infinitesimal redshift bin 8
5 Analytic expressions 9
5.1 ,u?(?: quadratic terms 11
5.2 ufB: Post-Born corrections 12
5.3 uk5S: the role of the bispectrum 13
6 Numerical results 15
6.1 The smoothing scale 15
6.2 Quadratic and Post-Born terms 16
6.3 Bispectrum 18
7 Comparison with numerical simulations 21
8 Summary and conclusions 22
A Fourth-order perturbations for the skewness 23
B Analytic proofs for the skewness in Fourier space 25
B.1 ,C(T’l,’l“g) 25
B.2 ukSS 27

1 Introduction

Luminosity-distance relations have been crucial in establishing the accelerating Universe [1, 2]
and the standard cosmological model ACDM. As observational cosmology has progressed, it
has moved from being an order-of-magnitude science to one of percent precision. To make
effective use of the wealth of unprecedented data now [3-5] and in the coming years [6-11], it is
essential that our theoretical tools evolve accordingly. With regard to the luminosity-distance
relation, a key focus is to understand how light propagates in an inhomogeneous Universe
and how such effects give rise to observable features. This requires a deeper understanding
of the interplay between cosmological structures and the propagation of light, enabling us
to identify the subtle signatures imprinted in the observational data.

While the CMB is very well described by linear physics, the study of the Large-Scale-
Structure (LSS) of the Universe requires going beyond the linear approximation to extend
the range of scales that we can use to constrain cosmological parameters. This can be
achieved either by analytical perturbative approaches or non-perturbatively by numerical
simulations. In both directions there has been a tremendous improvement in the last



decade. Although numerical simulations can, in principle, handle fully non-linear processes,
analytical approaches are computationally much simpler and provide valuable insights into
the underlying phenomena. In particular, the two approaches can be compared within the
range of validity of perturbation theory. When describing real observables, it is crucial to
consider that discrete sources (galaxies, supernovae, quasars, etc.) are observed through the
collection of photons emitted, travelled and detected in a clumpy Universe. Over the last
few decades, considerable effort has been devoted to providing a comprehensive relativistic
framework for describing LSS within perturbation theory. This began with the pioneering
work in the linear approximation [12-15] and then extended to higher orders in perturbation
theory [16-21]. In the meantime, progress has been made in numerical simulations, including
full relativistic simulations [22], as well as the adoption of appropriate gauges to reinterpret
Newtonian simulations [23, 24].

When interpreting observations, it is necessary to have a robust theoretical framework
to describe the statistical properties of the observed structures. This framework must
include not only their distribution across the sky (i.e. the geometric mean), but also their
intrinsic stochastic origin, which ultimately shapes the late-time structures. In the last
few decades, an active line of research has emerged, aiming at establishing a well-posed
mathematical prescription for the averaging of scalar quantities concerning both space-like
hypersurfaces [25-27] and, more recently, generalized also to light-like ones [28-33].

The geometry of the Universe, shaped by the distribution of matter, affects the path of
photons, leading to shifts in the mean or changes in the probability distribution function (PDF)
of observables. In particular, gravitational lensing and the Doppler effect have been studied
in relation to the Hubble-Lemaitre diagram [34-43] and weak lensing measurements [44—
47]. The non-linear evolution of gravity generates non-Gaussian distributions of matter
inhomogeneities, which are subsequently imprinted in the Hubble-Lemaitre diagram. In
addition, non-linear light propagation generates non-Gaussianity in the form of Post-Born
effects. These non-Gaussian features have also previously been considered in the context
of CMB power spectra [48-54] and shear weak lensing [55-58]. Furthermore, related to
fluctuations of the luminosity distance, the non-Gaussianities of the cosmic shear and the
local lensing convergence induced by source clustering were investigated in refs. [55, 59-61].

Non-Gaussian distributions are characterised by non-vanishing higher moments. In our
work, we introduce the formalism for evaluating the skewness of any cosmological observable
on the light cone at the leading order in perturbation theory. In applying this formalism
to the luminosity distance we are motivated by the numerical results presented in ref. [62],
which highlighted significant deviations from Gaussianity in the luminosity distance PDF.
We will show that the leading order terms solely involves second-order perturbations of the
luminosity distance. However, when dealing with 1-point functions, a direct comparison is
not possible due to the limitations within the validity of perturbation theory. To remove the
non-linear effects, small scales must be smoothed out in the analysis. Another key question
is whether these non-Gaussian features are a direct evidence of the expected late-time non-
Gaussianities or they are somehow sourced by spurious effects in the simulations, such as
the finite sampling, limited sky-coverage or redshift binning.

Despite these limitations, our results are in line with those obtained from the numerical
light tracing in ref. [62], especially as we approach higher redshifts, where the effect of



non-linearities diminishes at fixed scale. While a more direct comparison, where the numerical
and perturbative approaches are smoothed at the same physical scale, remains a prospect for
future work, our study confirms that the dominant contribution to the skewness comes from
the matter bispectrum, which affects the lensing propagation. Meanwhile, other relativistic
effects play a sub-dominant role in the observed skewness.

In summary, in this paper, motivated by the results obtained in [62], we are interested in
characterizing the distribution of the luminosity distance in order to quantify non-Gaussianities.
Our work aims to develop a general method to evaluate analytically non-Gaussianities for
any desired cosmological observables. Then, we will apply our general results to the Hubble-
Lemaitre diagram. In this regard, bearing in mind the general average prescription in
cosmology over the past light-cone [32], we will focus on the skewness of the distribution
of a generic scalar observable, like the luminosity distance-redshift relation, averaged over
a region of space-time.

This paper is organised as follows. In section 2, we review the general features of the
evaluation of the average and dispersion at the leading order in perturbation theory. In
section 3, we apply the same formalism for the evaluation of the average and dispersion to
the computation of the skewness at the leading order. Section 4 is devoted to the explicit
evaluation of the skewness for the distance-redshift relation in the perturbed FLRW Universe.
Here, we limit our computation to the lensing terms. Afterwards, we specialise our science
case to the number count weighted measure in the infinitesimal redshift bin limit. In section 5,
we explicitly evaluate the leading terms to the skewness and show how they are connected
to the matter power spectrum and to the matter bispectrum. Numerical results for a
fiducial ACDM model are presented in section 6, whereas section 7 is devoted to the (possible)
comparison with numerical simulations. Finally, our main conclusions are outlined in section 8.
Appendices A and B report explicit technical evaluations needed to derive our results.

In this work we adopt the following 3-D Fourier transform convention

3 . .
P = [ G Tk e pmk = [ ) (1

2 Leading-order terms review: average and dispersion

In this section, we will discuss how to evaluate the moments of a given observable. The specific
choice for the measure adopted for their evaluation will be left for later. In particular, we will
adopt the covariant prescriptions for different kinds of light-cone averages presented in [32].

Let us start then by considering a generic observable S. Its average over a given portion
of spacetime is given, in complete generality, by

_ JduS
Jdw '

where u represents the measure weighting the average procedure. Eq. (2.1) is exact but,

(S)

(2.1)

for our purposes, can be expanded perturbatively. We work in a perturbed FLRW metric
for scalar perturbations

ds? = a*(n) [~ (1 +20) dn? + (1 — 20) (dr* + 1*(d6* + sin? 0dp?) )| (2.2)



where! @ =", & and ¥ = D ¥ and i refers to the order of the perturbative expansion.
So by expanding to second order the observable & and the measure u, we have

S ~ 80 (1 +o 4 0(2)> ,
dp = dp® (14 p® 4 p) . (2.3)

The fundamental requirement to apply eq. (2.1) is that S transforms as a scalar field under
a generic coordinate transformation. With this proviso, eq. (2.1) can be applied to the
generic a-th power of S as well.

According to the perturbative scheme outlined in egs. (2.3), we can then rescale our
observable to its background value, namely apply eq. (2.1) to S/S© rather than S. On
one hand, this choice simplifies a lot the equations and is in line with previous estimations
provided in literature (see [34]). On the other hand, and more importantly, this is the
result that has been provided by numerical simulation (see, for instance, the histogram in
figure 2 of [62]). We then have

s oy Jdp© [1 + 1 +ao® 4+ 4@ 4 apMe) 4 g (2 c® 4 (a—1) 0(1)2)}
<<3<0>> >: [du® (1+ 1O 1 1@)

~1+alleW +alp® oM +alle®]+ 20" (0‘2_ oF [a<1>2] —alI[pM) 1[6M],
(2.4)
where we have defined
_ Sy

The average meant by (---) is a geometrical procedure which takes into the smoothing of an
arbitrary inhomogeneous manifold but does not specify the nature of these inhomogeneities.
This nature is given by a further ensemble average — .. which provides the stochastic
properties of the inhomogeneities. Having in mind that our perturbations will be sourced
by the fluctuations of the gravitational potentials ® and ¥, we just assume for now that
for the linear gravitational potentials ¢ = 1 = 0 and that higher-order powers of ® and
U can have a non-vanishining ensemble average. We will provide later the mathematical
properties for these operations. We then get

[e4 _ 1 . -
<(‘5-‘(9())> > =1+allp® oW +allc?@]+ a(a2) I [0(1)2} —allpM]I[eM®], (2.6)
where we used the abovementioned properties that the ensemble average of linear perturbations
vanishes.

Eq. (2.6) can be readily applied to the evaluation of the average of S/S©): for a@ = 1
indeed we have

m = <s‘<90>> — 1+ [ o] + T[o®)] — T[] TjoM]. (2.7)

'For the sake of simplicity, we will omit the index () for linear perturbations of the gravitational potentials.



This result already provides an important intermediate step to evaluate the generic a-th
moment p, of the distribution of §. In fact, this can be written as

(g -m) )= kfjo<—1>ak <Z> mkw

Hao

2

Eq. (2.8) is useful also for the evaluation of the variance, i.e. 0° = u9, where we have

o? = I[e(D)?] . (2.9)

However, all the higher moments p, with o > 2 vanish. This is due to the fact that in this
section we have limited our non-linearities to be at most of second-order in perturbation
theory. In the next section, we will show how the next-to-leading order terms will impact
the analytic estimation of higher-order multipoles, such as us.

3 Next-to-leading order term: skewness

In this section, we will provide the analytic evaluation for the skewness of a generic observable
S. As said in the previous section, we recall that we remove the background contribution for
the observable by studying S/S () rather than just S. In order to proceed to our end, we
first need to introduce, in complete generality, the standardized moments k, as

o= = gy () ) o

However, as we have pointed out in the previous section, second-order corrections are not

enough to evaluate higher-order moments. Naively, one would expect that each u, demands
a-th order perturbations to get the leading term. This estimation is accurate when « label
even moments. For what concerns the odd moments, however, leading terms are of o + 1-th
order in perturbation theory (as an instance, this occurs for the average and the dispersion).

This peculiar hierarchy is due to the fact the leading term for each moment i, is I[o(D?].
Therefore, since o1 ~ (1) we have that the a-th order term of p, is related to the a-point
correlation function of /(V: as a consequence of Wick theorem, by assuming Gaussian initial
conditions, the latter is non-null only when « is even.

According to what discussed so far, the evaluation of higher order moments would require
the estimation of perturbations for both the measure p and the observable & beyond the
second order at least for the leading terms. These quantities are not available in literature and
evaluating them is a non-trivial task which would be an interesting result per se. Fortunately,
it can be shown that the expansion in eqs. (2.3) still catches all terms for what concerns third
moment at leading order even when perturbations of § and du up to the fourth order are
consistently taken into account. The derivation is quite long but straightforward and the



interested reader can refer to appendix A for this proof. Hence, we get

3 = I[o’(l) 3] + I[o’(l) 3/1,(1)] — I[o’(l) 3][[#(1)] + 3][0‘(1)20(2)]
+3I[eM2] I[uMW] I[oeMW] = 3I[eM 2] I[uM) oMW] — 3I[c(M)2] [[o(2)]
= I[oMW3uM] + 3I[cM26@)] — I[eW3]T[uMV] - 36% (m —1) . (3.2)

where m and o2 are respectively given by eqgs. (2.7) and (2.9). We remark again the
disappearing of first term in the first line of eq. (3.2): this would be the only third-order
contribution but vanishes as a consequence of Wick theorem, as anticipated before. This
result is completely general in regard of the kind of observable & and the chosen prescription
of the spatial average p. In the next section, we will apply them to the specific cases of
the distance-redshift relations.

4 Higher-order moments for the distance-redshift relations

In this section, we want to apply the general formalism previously developed to the explicit
case of the luminosity distance-redshift relation di,(z). As recently pointed out in ref. [62], the
probability distribution of the luminosity distance dy,(z) exhibits a significant non-Gaussian
contribution. Our objective is to investigate the extent to which this behavior can be
captured within perturbation theory.

Linear and non-linear perturbations for the distance-redshift relation have been discussed
in several papers [35, 37, 63-66]. For the purposes of this work, we refer to the leading lensing
terms as given in egs. (B.1) and (B.2) of [40]. Moreover, we will assume that there is no
anisotropic stress at linear order, i.e. ¢ = 1. Then, we can express the luminosity distance
to second order in perturbation theory as follows?

di (2) = dy) (2) (140D +0@) (4.1)

with

U = / T T A ()
0

TrTrs

1
a2 — 50(1)2 + Y@ 4 U%)S , (4.2)
and where dg)) (z) is the luminosity distance in a FLRW background, rs is the comoving

distance to the source, As is the dimensionless angular Laplacian on the 2-sphere, and
P(r) = ¥(n, — r,r). We have also introduced?

1 /s r—rg
o= g [ a8 [6 + 6] (),

rTrg

2From now on, unless otherwise specified, ¢* and ¢ refer to the perturbations of the luminosity
distance-redshift relation.

3As a remark, here we have followed the same convention for the second order gravitational potential
as [67], differently from [40], where ® = ¢ + %d)m and ¥ = + %1/)@). This will lead to a difference in the

prefactor of 0'£2S)S later on.



2@ —2/ dr” ab [Agtb(r / dr T2 58084 (r)

s ool fusras)
+ / FRLL YN [ygbaa (/0 dr’¢(’r’)>8b ( /0 dr'w(r'))], (4.3)

where 78® = diag(1,sin2 ), and 'ygb = 258,

In order to evaluate the skewness of the PDF, we also need to choose a measure p,
according to eq. (3.2). Several possibilities have been discussed in [32] for measures, which
are general covariant and gauge invariant. In this work, we have chosen to utilize the galaxy
number count weighted measure for computing the averages. This measure has been discussed
for the backreaction of stochastic inhomogeneities to the mean value of the Hubble diagram in
the limit case of small width of the redshift bin [31, 32, 41]. However, it can be applied directly
also for the case of finite redshift bin, preserving the property of general covariance [32].

In regard to the comparison with numerical simulations, the adoption of the average
weighted with galaxy number count appears to be the most appropriate choice. This weighting
scheme naturally assigns more significance to regions with higher density contrasts, allowing
for a more accurate and meaningful comparison. The background term in the measure
is then given by

dp(© — p(z)d?q(z))] Y dzdS, (4.4)

(1+2)H(z

where df? is the infinitesimal solid angle, df) is the background angular distance, p(© is the

background density and the denominator comes from the background expansion of the number
counts. We are then left with reporting the linear order galaxy number counts [12-14, 68].
The leading terms in the weak field expansion are given by [18]

Ts —
uD =6+ H L9 + 2 / dr——*Ngy(r) = 3+ H 'Oy + 201, (4.5)
0 s
where ¢ is the matter linear perturbation (with the galaxy bias set to by = 1) and H*18TU||
accounts for the redshift space distortion.
With eqgs. (4.4) and (4.5), we can compute u3. In details, from eq. (3.2), we explicitly get

7 S e o390
ps = 5 ToM1] + 31 [0M20(%] + 31[eM2T@] + I[eM35] + 1 H] ~ 302 (m—1),
(4.6)
where leading order term for ¢ is given by eq. (2.9), and the average is given by
O'(l)ar’l)” 5

In the derivation of eq. (4.6) we made use of I[oc())] = 0. This is because we have considered
only lensing terms in egs. (4.2) and terms sourced by a Laplacian vanish when averaged



over spatial directions. The same result holds also in the derivation of eq. (4.7) in regard of

the term [ {O’I(_IQS)S}. In a similar manner, also terms as I[o(1)3]I[6] and I[o(M)3]T {”H‘lf)?«v”

do not contribute to eq. (4.6). This is because the ensemble average for these terms always
correlates the monopole of § or ’H_l@rvH with the Laplacian of ¢(1)| selecting then its null
eigenvalue. Sub-leading relativistic corrections to the distance-redshift relation, such as
Doppler effect, can contribute with a non-vanishing monopole, especially if sources at small
redshifts are taken into account. However, for the purposes of this pioneering work, we have
not considered them, even thought they can be of interest for the analysis of close sources.
We will investigate their presence in a forthcoming work.

4.1 Infinitesimal redshift bin

Before concluding this section, some comments about the integration domain are in order.
The integration over the solid angle d? in eq. (4.4) covers the entire solid angle. However, for
the integration over the redshift we adopt a redshift bin of width Az such that all the needed
averages are evaluated within a certain redshift range [zs, zs + Az]. In case of large value of
the redshift bin width, all the redshift dependent terms in eq. (4.4) needs to be integrated.
However, in the limit when Az becomes small enough to be considered infinitesimal,* i.e.
Az — dz, the measure in eq. (4.4) simplifies to

] (0) 0z dS2

dp®) = — [ p(z) d? (=) (1+ 25)H(zs)

(4.8)
and then the integrals in the definition of I[f] in eq. (2.5) reduce to simple angular integrals.
Moreover, within this limit, all the redshift dependent quantities and dz itself factorize
out of the integrals and cancel out in the ratio with the unconnected diagram in eq. (2.5),
returning then

nmnﬂ—;/Mﬂ%m. (4.9)

Az—6z a Z

In this limit, the non-purely second-order terms in the first equality of eq. (3.2) cancel.
To this end, we anticipate in the limit of eq. (4.9) that

I[e@3,M] = 37 [amu(l)g(n} = 3002 DD
= 3I[cM2] [[uMoM] = 352 I[uWaM], (4.10)

where we have used eq. (2.9) and the fact that the ensemble average can not have any
preferred direction due to statistical isotropy. This term exactly cancels the counterpart
coming from eq. (2.7) in eq. (4.6). Here, we make the first interesting remark that the weight
for the measure is irrelevant in the infinitesimal bin limit for the leading order terms of the
skewness for the luminosity distance-redshift case study. Moreover, in this limit, the third
moment reduces to the simpler expression

ps = psk + 5" + 5SS (4.11)

“This limit has been originally proposed in [41] and its covariance has been then proved in [32].



where we have defined

7T ———— 15 2
pt = S 1o - 2 (%),

us® = 3{I1lcM220)] - ?I[Z0)]}
5% =31 [0M20(Y] . (4.12)

We have combined egs. (4.6) and (4.7), adapted for an infinitesimal redshift bin by using

—Fa (1)
eq. (4.10), to cancel out terms like I[oc(1)3§] and I {01;8“]}, as previously mentioned.

Eq. (4.11) is entirely sourced by pure non-linear terms in the expression of the distance-
redshift relation. Indeed, when considering Gaussian initial conditions, linearly evolved
perturbations preserve their probability distribution. Consequently, they do not generate
any non-Gaussianity in the limit of infinitesimally narrow bins, where the hypersurfaces for
the averages are evaluated at constant redshift.

Hence, the terms in eq. (4.11) are sourced by pure non-Gaussian effects and their labels
follow accordingly: in eqs. (4.12) “Q”, “PB” ans “LSS” respectively stand for “Quadratic”,
“Post-Born” and “Large-Scale-Structure” since

. M;(;Q takes into account the non-Gaussianity coming from the quadratic term o(1)?2 /2

in eq. (4.2),

« 15B contains all the relevant terms due to the Post-Born corrections to the dr,(z), such

as multi-lens effects,

o 1555 catches the non-Gaussianities arising from the bispectrum of §(2)§(1)§(1),

Understanding how much the finite bin effect may mimic non-Gaussian behavior beyond
the fundamental non-linearities is of interest per se. We will present this study in a forthcoming
work. For the rest of this work, we will explicitly compute and numerically evaluate the
amplitude of the expected skewness in the infinitesimal redshift bin case, where the only
relevant effect is the one due to intrinsic non-Gaussianities in the inhomogeneities.

5 Analytic expressions

In this section, we provide the explicit expression for the leading order terms of the skewness
in the infinitesimal redshift bin limit. First let us remark that our derivation so far is
completely geometrical without any assumption on the underlying theory of gravity, with
the only assumption that light propagates along null geodesics. At this point we need to
use General Relativity to relate metric and matter perturbations. We first provide some
general preliminaries needed to follow our derivations. Technical details are reported in the
appendix B. In order to compute the different contribution to the third moment defined
in egs. (4.12), it is convenient to introduce the generalized Hankel transform of the matter
power spectrum at two given times n; and 7y, namely P(k,n1,1m2) = P(k)D1(n1)D1(n2), as

dk Je (k|r1 —r2])
v = [ —=K*P(k B 1
Tt (o) = [ kP ke, m) G T (5.1)



where r; = r(n;) = no — i, je(x) is the f-th order spherical Bessel function and D; the growth
function normalized to unity today. The reason why we decide to adopt the definition (5.1)
for the Hankel transform is that it can be easily generalised to the science case of non-linear
matter power spectrum, as we will discuss in section 6.

In evaluating eqgs. (4.12), we encounter the following terms

A (r1,n) Azt (r2,m) = W {27“1?”2%2 (1, m2) + J7 (1, m2) (1 — 7“2)2}
L(ry,m2) ,
76 0 A2t (r1,m) 0o (r2,m) = —L(r1,72) ,
Ay (§°0at) (r1,m) Bpt) (r2,m)) = 0
Aoy (r1,m) 0gp (r2,m) = ¢ (r1,n) 9 A1) (r2,n) = 0. (5.2)

We remark that

9

Azt (r1,m) Aot (r2,m) + 4670, A0t (r1, 1) Oat) (r2,m) = 0, (5.3)

whereas second last of egs. (5.2) vanishes since

Ag (Y80t (r1,m) ) (r2,m)) = Ag(Y8°0at) (1, 1) Dyt (r2,m)) (5.4)
ab

and (73°0,v (r1,1n) dp) (r2,n)) can not depend on the direction n due to statistical isotropy.

For the same reason

Aop@ ox Ag)p? = Agtp2 = 0. (5.5)

Last equality in eq. (5.2) can be understood in the following way: they always involve an odd
number of angular derivatives and hence they vanish due to statistical isotropy, since they
naturally introduce a preferred direction, which returns to 0 when the ensemble average acts.

The 2-point correlation functions in egs. (5.2) are enough also to evaluate the 4-point
correlation functions of interest for us. With the aim of Wick theorem, indeed, we can write

Agtp(r1,n)Agtp(r2,n)Agth (13, 1) Aot (ry, 1)
= L(r1,72) L(r3,74) + L (11,73) L (12,74) + L (71,74) L (73,72) . (5.6)

For the sake of completeness, we report in appendix B the derivation of eq. (5.6). In a
similar manner, we obtain also that

Aotp(r1, 1) Agih(ra, n) Ag (38°0ath (r3, ) Oyt (ra,m)) = L (r1,73) L (12, 74) + L (r1,74) L (r2,73)

(5.7)
It is interesting to notice that only two permutations survive in eq. (5.7) as a consequence
of the last two equalities in eqgs. (5.2). Looking at the structure of eq. (5.7), we notice that
only the permutations mixing Ast) with one of the term of Ay(91)? survive. Finally, last
4-point correlation function of our interest is

Agth(r1,n)Agth(r2, n)780 Aot (r3,1) Dgtp (14, 1)
= Aotp(r1,n) Agth(re, n) 330 Aotp (r3,n) atp (ra,m) = —L (r1,72) L (r3,74) . (5.8)

,10,



The interesting thing about eq. (5.8) is that only one permutation survives in the final
result and this is again a consequence of last of egs. (5.2). The structure of eq. (5.8) also
exhibits a complete factorization of the 2-point correlation function in the form (Age)?.
This situation is opposite to what we have shown for eq. (5.7), where only mixed terms
survive in the final permutations. The impact of these differences in the ultimate evaluation
of ug will be to significantly reduce the final number of non-null terms for the skewness,

as we will show in section 5.2.

These analytic preliminaries are enough to provide the explicit expressions for ,ug', ugB

in the infinitesimal bin case. The evaluation of ;555 is more delicate and will be treated

in a specific way.

5.1 u?: quadratic terms

The starting point for the computation of M3Q is its expression in egs. (4.12). To our hand,
we first evaluate the variance in the small bin limit. By making use of egs. (2.9), (4.2),
and (5.2), we get that

Ts rL—T Ts ro — 1T
02 = / dT’l & / d7“2 85(7"1, 7"2) . (5.9)
0 TTs JO T2Ts

In the same way, thanks to eq. (5.6), we have that

Ts r—-r Ts T — 7T Ts ryg—1r Ts Ty —T
1[0(1)4} = / d?“l 8/ d?“g S/ d?“g 8/ d7’4 >
0 rrs 0 rors 0 r3Ts 0 TaTs

X [ﬁ (7‘1, 7“2) L (7“3, 7'4) + L (7‘1, 7“3) L (7“2, 7'4) + L (7‘1, 7“4) L (7“3, 7'2)]

=3 (02)2 . (5.10)

Hence, the combination of egs. (4.2), (5.9) and (5.10) we get the quite simple result

ud =3 (02)2 . (5.11)

It is worth noticing what happens for the leading term of the standardized third moment.
For the quadratic terms coming from eq. (5.11), we get that

K= L8 34, (5.12)

namely the skewness of the distance-redshift relation due to the quadratic corrections is
proportional to the dispersion of dy (z). This result already allows us to estimate the amplitude
of H3Q. Indeed, in [36] the dispersion for the distance-redshift relation has been estimated for
the lensing contribution at higher redshift to be ~ 1%. This evaluation takes into account the
non-linear power spectrum for the gravitational potential as provided by the Halofit model [69].



5.2 ugB: Post-Born corrections

For the evaluation of the Post-Born terms ,ugB in eq. (4.12), we first look at the expression of
%) in eq. (4.3) and treat its terms separately. We divide %(2) = Eée%—l—E( ) where we defined

mix’

52 =2 / ar =120, [Agi(r / dr T35 0,0 (r)

+2/Sdr{73b8b UO dr'¢(r')]/ d’rr DAt (r )}
=0 = [Car s o, ([ arven) o ([Carven)] . 63)

such the total contribution to ,ugB is given by

uEB =3 {I[a<1>22§§%] - aQI[zéiﬁ,]} : (5.14)
and
5 =3 {10025 - 150 | (5.15

Thanks to egs. (5.7) and (5.8), ugf’ep and pufB. can be readily evaluated. In fact, since the
(2)

factorization in eq. (5.8) does not mix any term of Ysep with o), we can immediately factorize
[ (1)22&32)} =1[cM2]T [Eéﬁ%} as well. Then, using eq. (2.9), this automatically returns

ubs sep — 0. For what concerns pEB. ., we first notice that I {ng)x} = 0 as a consequence of
egs. (5.2). Moreover, from the structure of the 4-point correlation function already discussed

after eq. (5.7), we obtain

Ts ri—rg [T ro—rg [Tsdrr—rs [T r
PB 1 s 2 s s
U3 i = 6/ drq / dro / — / d?”g/ dry L(r1,73) L (ro,74) .
0 r1Ts 0 raTs o T rrs 0 0

(5.16)
Hence the total contribution of the Post-Born corrections to the third moment is
15D = My (5.17)
and the skewness is
PB _ MgB _ :uggix (5.18)

ks = (0_2)3/2 - (0_2)3/2 '

The structure of 5P reveals a sequence of five nested line-of-sight integrals, consistent
with our expectations from Post-Born corrections. These corrections effectively incorporate
the non-linearities arising from multi-lens effects. To address numerical challenges and
minimize the number of integrals, we propose an approximation based on the observation
that L£(r1,72) exhibits a strong peak near r; &~ ro. Thus, we can approximate £(r1,73) as
~ 6p(ry — rs), simplifying the calculations. We then have

/OT drsL(ri,r3) ~ f(r1)O(r —r), (5.19)
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where f(r1) is a function to be determined in a numerical way and ©(x) is the Heaviside
step function. This means that

PB s rL—1s [T ro — T ’"Sﬁr—rs B _
Wi~ 6 [ an D=t [Man, Bt [T )0 — ) fr)B(r — )
(5.20)

For what concerns f(ry), since the latter is not a function of  and the integrand £ contributes
to the integral in eq. (5.19) only around r3 ~ 71, we have that integral (5.19) is independent
of the value of r as long as r > r1. To this end, then, we can evaluate the function f once
for all by choosing an r equal or larger than a given comoving distance r* well-beyond the
highest redshift that we investigate. For our purposes, we have chosen r* = r(z = 4) but the
final results are clearly independent of this choice. In this way, we have that

,’,*
fo) = [ dracirra). (5.21)
Numerical results within this approximation will be discussed in section 6.

5.3 u%‘ss: the role of the bispectrum

The evaluation of ulgss is the more demanding, since involves the 3-point function

Agw (7“1, Il) Agw (7“2, Il) AQ\II(Z) (7“3, n) N (5.22)

where we have defined T3 = % (1/1(2) + <Z>(2)). To evaluate this correlation, we use again the

Poisson equation to relate U(?) to the second-order matter fluctuations (2. We then have that

Aot (r1,1) Aot (r2,n) Ao U (r3, n)

3 3 3 X X .
i U g b
™
d3ky d3ky &3k B (k1, ko, k3, 11,72, 73)
_ —C/ —5 k + k + k ) 9 9 9 )
aryp P tletke) T e
><A2eik1-nr1 A2eik2-nT2A26ik3-nT3 , (5.23)

6 O3
where® C = %Wg%, and we have introduced the (non-symmetrized) bispectrum

6(k1,71)8(ko,79)6) (k3,r3) = (21)® 6p (K1 + ko + k3) B (k1, ko, k3, 71,72,73) (5.24)

which at tree-level is given by

B (K1, ko, k3,m1,72,73) = 2D1 (r1) D1 (r2) DY (r3) F (k1, k2, k3) P (k1) P (ko) ,  (5.25)
with
5 1Rk -k (h k1 (B-K-i\
Fkkkf:fil?(12>312, 2
2 (k1, k2, ks3) 7+4 kyko k;2+l<;1 +14 K1k (>:20)

5This factor follows from the fact that the transfer function for §® is linked to the transfer function of
U? by the Poisson equation, which preserves the form as the linear one reported in eq. (B.10).
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Finally, accounting for the two other permutations of eq. (5.22) we need to simply replace
B(ky, ko, k3) with its symmetrized version
Bsym(k‘l, k‘Q, /{73, r1,7T2, 1"3) = B(k‘l, k‘g, k‘g, r1, T2, 7“3) + B(k‘g, k‘3, /{71, 2,73, 1"1)
+B(ks, k1, k2, 73,71,72) - (5.27)

From eq. (5.23), we can write the 3-point function as

Aot (r1,n) Aot (r2,n) AU (r3,n)+ O

:C(T17T2,T3)&4ﬂ-6) Z /q (61—1—1)52 (524-1)@3 (@34-1)

(2) 016505

2
X (fl f2 €3> (20, + 1) (205 + 1) (205 + 1)/dk1 dky dks dz 22 Beym (K1, ko, k3,71,72,73)

00O
X ey (k171) Jo, (k1) Je, (kar2) je, (ko) jeg (Kars) jey (ksz) (5.28)
where
(El 2 b ) : (5.29)
mi mg ms

denotes the so-called 3-j Wigner symbol, which is non-null only when m; + mo +ms3 =0
and ({1, 02, ¢3) satisfy the triangular inequality. The presence of these symbols selects only
specific shapes for the sums in ¢-space. The detailed derivation of eq. (5.28) can be found
in appendix B. Here we directly report the result which are useful for us to discuss the
underlying physics. Despite its compact form, eq. (5.28) is still quite demanding for our
scopes. Indeed, we still need to evaluate the contribution to the third moment as given in
eq. (4.12). This implies that three line-of-sight integrals must be performed over eq. (5.28). In
total, then, we have to numerically compute seven integrals for each non-null set of (¢, 2, ¢3)
and this is quite unpractical from the numerical viewpoint.

In order to face the dramatic need for reducing the number of integrals, we invoke the
Limber approximation for each integral in k-space in eq. (5.28). Thanks to it, in fact, we
can make the following approximation [70-72]

2 [ gt = U=y (FEL2) (530)

whenever the function g does not vary too much rapidly. In this way, the approximation (5.30)
can be used three times to get rid of the k-space integrals. This reduces the number of
remaining integrations to four. Hence, eq. (5.28) becomes

Aot (r1,m) Aot (r2,m) A3 (r3,m)+ O

8 (4m)
”g; ST (1) b (b + 1) by (6 + 1)
(27T) L1l203

2
0 0y 0 dz 22
X 01 02 03) (2f1‘|’1)(2€2+1)(2€3+1)/m5D(:L’—Tl)(SD(;I;—TQ)(SD(l»_T?))
rirar3

Bgym (kil, ko, ks, 1,72, 7“3)

Rk ks

X , (5.31)
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where k; = M The three delta Dirac distributions in eq. (5.31) simplify the three
line-of-sight integrals in the last relation of eq. (4.12), leading to the final expression for

the LSS contribution to the third moment

25 63

LSS
H3 000

2
) (2@1 + 1) (252 + 1) (253 + 1)

(47T)2 10203 (61 i 1) 62 (62 i 1) 63 (63 " 1) <

Ts C(m,x,a}) T —7Ts 3Bsym (kl,kz,kg,l’,l‘,l))
X/ de xt xr 72722
0 s ky ko ks

4 Z L+ 1) ez(£2+1)43(£3+1)<5152£3>2

2,55, 2+1 26+1 2641 \ 00 0
rs  Olx,x,x) (2 —15\° S
dz T ( Ts > BSym (k17k27k37$7w7x) ) (532)
where we used egs. (4.2) and (4.3), and we defined now k; = eitcl/z and 1, = 19 — x. Then,

we have that the skewness due to the non-linear structures is

LSS

LSS _ M3
K3 >® = (U )3/2 . (5.33)

6 Numerical results

In this section, we discuss the numerical integrations of the analytical results for the skewness
given by eqgs. (5.12), (5.18) and (5.33). We work with the fiducial cosmology given by
the ACDM parameters Q. = 0.2638, €, = 0.04827 h = 0.67556, A, = 2.215 x 10~ and
ns = 0.9619 in accordance with [62].

6.1 The smoothing scale

The evaluation of the skewness, or any other 1-point function, is strongly sensitive to the
non-linear nature of structure formation. However, by working in perturbation theory we
know that our prediction will fail beyond the mildly non-linear scale. Therefore, our prediction
can be compared to real observations only when the non-linear effects are filtered out, by
introducing a smearing scale in real space of size p. In this regard, we use a spherical top-hat
window function W(r, p) in real space. This procedure introduces a window function W (k, p)
in Fourier space given by

j (kp)
W (k 1
which affects the power spectrum as
P(k,n1,m2) = Py(k,mi,m2) = Pk, m)W3(k, p). (6.2)

With such smoothing scale, all the integrals over the momentum k converge quickly and
the choice of kpax become numerically irrelevant.
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LSS

For the term k3> we will consider also some non-linear fitting expression of the bispec-

trum, in particular BiHalofit [73]. For this reason, to smooth out small scales non-linearities
we apply directly the window functions as follows

[ B AW (e = 1] o) W (2 = ) W (2 151, )

x Aot (1}, m) Aot (rh, m) AW (14, )
/ d3k1 d?’kg d3k3

W(klv p)W(k27 p)W(k37 p)w(klv n)¢(k27 n)\:[l(2)(k3? Il)
XAQG'Lkl-nrl AQezkg-nrg Azeikg-nm . (63)

To include the window function we simply need to replace eq. (5.32) with

3T 2 204+1 25+1 25+1 \0 00

2
I ACESITACES ITACES) <€1 2 €3> (6.4)
£10203

rs Oz, z,x) (2 —15\° —— o~ ~ ~ ~
XA dx ( ) ( ) Bsym (k‘l,kg,k:;,.%',x,l') W(k17p>W(k27p)W(k37p)7

T Ts

In the following, we will investigate how suitable choices for p can be made: we will consider
the cases of p equal to 5, 10 and 20 Mpc/h.

6.2 Quadratic and Post-Born terms

We start our numerical investigation by looking at the contributions to the skewness arising
from the linear gravitational potential, derived in sections 5.1 and 5.2. For this discussion,
we will use the cutoff in real space on small scales as prescribed by eq. (6.2). Results are
shown in figure 1 respectively for the choices of p = 5,10,20 Mpc/h. For each case, we
consider linear matter power spectrum (left panels) and Halofit model for the matter power
spectrum (right panels).

With these results, we can spot Common features among the different cases. First of all,
we notice that quadratic terms in /{3 (blue solid lines in figure 1) are always positive and
lead to an increasing skewness with redshift. The order of magnitude of this term reaches
about 1072, In this regard, the positive sign was already expected just by looking at the
structure of /€3Q in eq. (5.12), since it is just proportional to the dispersion of the dr (z)
distribution. We have also checked that our framework is in a good agreement with [36]
when we push the coarse-graining scale up to 0.3 Mpc/h, roughly corresponding to the UV
cutoff kyy = 10h/Mpc used in [36].

For what concerns the Post-Born contribution to the skewness, namely x5 in eq. (5.18),
blue dashed lines in figure 1 show two important features. First of all, the Post-Born
contribution to the skewness is always negative. This is important to be addressed since
k5B in eq. (5.18) does not show any manifest sign, contrary to H3Q. As a second matter of
fact, Post-Born corrections contribute to the skewness with the same order of magnitude
of n3Q. This is somehow in line with the structure of K}g(? and HgB, since they just involve
different the line-of-sight integrals of the same kernels L(r,7’). Hence, these two features
lead to a competitive effect between /@B and I€3B Indeed, we have a neat effect for the linear
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Figure 1. Quadratic (blue), Post-Born (blue dashed) terms and their sum (red) for the skewness,
evaluated at with a coarse-graining scale p = 5 Mpc/h (top), p = 10 Mpc/h (center) and p = 20 Mpc/h
(bottom). Left panels are obtained with linear power spectrum, whereas right panels consider Halofit
model for the matter power spectrum.

gravitational potential skewness, which is still positive but attenuated (solid red lines in
figure 1). We remark that all the features are shared regardless the value of p and whether
linear or non-linear matter power spectrum is considered.

The actual contribution of the non-linear scales to the sum ng + KgB is quantified in

figure 2. Indeed, here we show the relative difference

(FL3Q + HgB)linear
(K3Q + /igB)

Afig =1- (65)

Halo

as for different smoothing scales p. For a value of p = 20Mpc/h, the non-linearities in

P,(k) marginally contribute to the total effect with a relative correction of ~ 0.1%. The
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Figure 2. Relative difference between the linear and non-linear matter power spectrum for the sum
kL 4+ kEB. We consider different coarse-graining scales: p = 5Mpc/h (orange), p = 10 Mpc/h (blue)
and p = 20 Mpc/h (red). Dashed curve refers to negative values.

non-linear scales happen to be more relevant when p decreases, namely with a few percent
and almost 10% relative correction respectively with a coarse-graining radius of 10 Mpc/h
and p = 5 Mpc/h. The impact of non-linearities in the matter power spectrum also decreases
by going to higher redshifts. Let us remark that, in principle, replacing the linear power
spectrum in the perturbative expansion with Halofit is not self-consistent. However this can
give us a rough estimation of the expected accuracy of our prediction based on perturbation
theory for different smoothing scales.

6.3 Bispectrum

The numerical evaluation of the k}55 from eq. (5.33) requires some subtleties to be accounted
for. In fact, from eq. (5.32) we have to specify the value of fy,x to effectively compute the
contribution of the bispectrum to the skewness. Since the physical cutoff is determined by
the smoothing scale p, we only need to ensure that {pax 2 7s/p, where the specific value
is chosen to guarantee a percent precision.

We perform numerical investigations by using linear matter power spectrum, Halofit
model and the BiHalofit fitting function for the bispectrum provided in [73]. For different
values of the coarse-graining scale p, the numerical results are reported in figure 3, where
we have adopted linear power spectrum in the left panel, Halofit model in the center and
BiHalofit in the right panel.

At first sight, a general feature is that the absolute value of x%¥55 is decreasing with the
redshift. In particular, whereas the values at z ~ 1 are of order 0.1, the skewness at lower

,18,



[ — p =20 Mpc/h
-1.5/ — p=10 Mpc/
20 | p=5Mpch |
0.5 1.0 1.5 2.0 0.5 1.0 15 2.0 0.5 1.0 15 2.0
z z z

Figure 3. Contribution to the skewness given by the bispectrum for the linear (left panel), the
Halofit (center panel) and BiHalofit from [73] (right panel) power spectrum for a coarse-graining scale
of p =20Mpc/h (red), p = 10Mpec/h (blue) and p = 5Mpc/h (orange).

redshifts varies more and becomes O(1) when p becomes smaller. Moreover, the value is
quite insensitive of the kind of spectrum adopted for p = 20 Mpc/h. This last feature is in
line with the fact that the involved scales still evolve almost linearly for this case.

A similar behavior occurs also for the case p = 10 Mpc/h. Even in this case, the value of
p is still such that non-linear features in the power spectrum are marginally relevant, and then
the Halofit and BiHalofit models return results that are almost alongside the ones obtained by
the linear power spectrum. However, we notice that the overall amplitude increases quite a lot
when we lower the coarse-graining scale from 20 to 10 Mpc/h. As a quantitative instance, the
comparison between red and blue curves in figure 3 at z = 0.1 exhibits an increasing in the
absolute value of the skewness that is of ~ 40%. This confirms that a significant amount of
information is encoded in the skewness within the scales of 10 to 20 Mpc/h. However, as the
prediction from linear theory does not deviate significantly from the estimations using both
Halofit and BiHalofit, we are still within a regime where perturbation theory has not yet failed.

Finally, with orange curves in figure 3 we report the numerical results for p = 5Mpc/h.
For this case study, we have new emerging features. First of all, we start to appreciate a
more prominent difference between the linear power regime and the non-linear one, and this
difference is more evident at smaller redshifts. In fact, here we have an enhancement when the
BiHalofit model is considered of ~ 10%, as can be appreciated also in figure 4, where we show
the analogous of figure 2 and compare the Halofit fitting formula against the BiHalofit one, but

only for n{;SS. This increasing of KZIg"SS, as given by eq. (5.33), follows the separate increasing

of the two quantities in its ratio, namely ;5 in eq. (5.32) and o as derived from eq. (5.9).
Given that, we have that the numerator and the denominator of this ratio separately increase
when we decrease p from 20 to 5 Mpc/h. Hence, by considering the discrepancy between the
linear power spectrum and BiHalofit as an indicator of the validity range of perturbation
theory, we observe that for p = 5Mpc/h, the accuracy of perturbation theory cannot be
trusted beyond approximately 10%. We also remark that at those redshifts our results are
only indicative of the order of magnitude, since other relativistic effects here neglected, such
as the Doppler correction might significantly alter the result. This is indeed the case for the
dispersion, as shown in figure 8 of [36]. We plan to investigate more in details the contribution
of other relativistic effects on small redshift in a forthcoming paper. On the other hand, we
also point out that the result is quite stable for z > 0.4 when we decrease the value of p.
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Figure 4. Relative difference between the Halofit and BiHalofit matter spectra for the sum x55S.

We consider different coarse-graining scales: p = 5Mpc/h (orange), p = 10Mpc/h (blue) and
p =20Mpc/h (red). Dashed curve refers to negative values.

Two final comments are in order before concluding the discussion devoted to x55. First
of all, we recall that our derivation is based on the Limber approximation for the lensing terms.
This gave us an appreciable speed-up of the numerical evaluation, since it reduces the number
of numerical integrations to one line-of-sight integral, as given in eq. (5.32). On the other
hand, for smaller redshift, the accuracy of this result might be somehow limited, especially
because the discrete sum is limited to larger angular scales when the Limber approximation
shows some issues. The second comment is about the use of the Halofit model to account
for the non-linearities in the matter power spectrum. This is clearly a limitation, again on
smaller redshifts, when the role of non-linearities in the LSS is more prominent and this is
also made manifest by the fact that BiHalofit enhances by almost 10% the amplitude of
obtained with Halofit at p = 5 Mpc/h. Both these shortcomings are less serious at higher
scales since (i) we weight more the smaller angular scales, where the Limber approximation
is more accurate, and (ii) we move the peak of the lensing kernel to higher redshifts, where
the impact of non-linearities is still relevant but attenuated.

Besides all the numerical limitations due to the usage of approximations, a take-home
message that emerges from this study is that /ilg‘ss is always dominant with respect to /<;3Q
and x5, regardless of the choice of the smoothing scale p and the use of linear or non-linear
matter power spectrum, as one can see from a direct comparison of figures 1 and 3. Hence,
the overall sign of the skewness in the investigated range of redshift due to the lensing
is always negative, in accordance with the indication of the numerical simulation of [62].
However, a deeper discussion about how to compare our results with [62] is in order. This

is the topic of the next section.
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Bin Redshift Range Skewness k3 from [62]
1 0-0.5 —2.27
2 0.5-1 —1.44
3 1-1.5 —0.72
4 1.5-2 —0.44

Table 1. Values of the skewness for the distance-redshift relation distribution obtained in [62] from
the ray-tracing of photons across a ACDM Universe simulated with gevolution. Results have been
obtained by binning the dataset in four redshift bins from 0 to 2 with bin width of 0.5.

7 Comparison with numerical simulations

In this section, we will address the challenges that arise when attempting to compare our
results with those obtained from ray-tracing across the numerical simulation presented
n [62]. We will also outline the recommended approach to ensure a valid and meaningful
comparison. To begin, we provide a brief overview of the key elements employed in [62]. The
ray-tracing of light-like geodesic in [62] has been performed through a relativistic Universe
simulated with gevolution [22], with the following cosmological parameters: the reduced
Hubble constant h = 0.67556, the cold dark matter density 2. = 0.2638, and the baryon
density € = 0.048275. Furthermore, the radiation density that includes massless neutrinos
with Neg = 3.046 and linear initial conditions are computed with CLASS [74-77] at redshift
Zini = 127, assuming a primordial power spectrum with amplitude A, = 2.215 x 10~ (at
the pivot scale 0.05 Mpc~!) and spectral index ny = 0.9619. In this regards, the skewness
has been obtained with the following remarks:

1. all the ray-traced light-like geodesics start from a point where a local overdensity has
created an Halo;

2. structures evolve in a box with size 2.4 Gpc/h whose grid space is 312.5kpc/h. Hence,
we expect that structures can be investigated roughly up to a scale in Fourier space of

3 h/Mpc;

3. the distribution of the obtained distance-redshift relation is binned in four bins of width
0.5, ranging from z = 0 until z = 2.

For the sake of completeness, we also report that the ray-tracing in [62] is performed
through a light-cone with a partial covering of the observed sky of 450 deg?. Moreover,
the simulations in [62] link the density contrast to the gravitational potential beyond the
Newtonian approximation through the second-order Hamiltonian constraint (see eq. (2.19)
of [78]).

With this in mind, we have then extrapolated from figure 2 in [62] the values for the
skewness in the four bins shown in table 1. The results of table 1 seem quite in disagreement
with what we have obtained in section 6 for the first two bins, whereas they match better at
higher redshifts. However, we have to keep in mind the previous bullet points to understand
how our results should (or better, could) be interpreted against [62].
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First of all, bullet point 1 states that only regions in the simulated Universe where the over-
density is high enough to have created Halos are spanned by the ray-traced distance-redshift
distribution. This motivates well the adoption of a number-count weighted prescriptions
for the averages in eq. (4.5) since this naturally weights more regions where structures are
more likely to have been created.

Moving forward with the discussion, bullet point 2 tells that no smoothing-scale procedure
has been introduced in [62], beyond the grid space of the numerical simulation. Moreover, this
implies that the expected results can probe scales up to the deeply non-linear regime and this
is somehow problematic for the analytic investigations, since the validity of our perturbative
scheme is at least questionable on those scales. However, this point could be easily overcame,
since a smoothing scale procedure could be applied as well to the simulated Universe.

Finally, for what concerns bullet point 3, the bin width adopted in [62] is quite large when
compared to our infinitesimal bin formalism and this can introduce spurious contamination to
the extrapolated skewness in two regards: first, by introducing background effects which are
not at all related to the LSS and, secondly, by introducing a plethora of other relativistic effects,
such as the contamination due to cross correlations with density fluctuations and redshift-
space-distortion in eq. (4.5), which could complicate the actual analysis. This point can be
treated either by slicing the redshift space with more narrow bins or by developing our analytic
formalism to the finite bin case. We plan to achieve the latter task in a forthcoming work.

Given all the assumptions and the intrinsic differences that are present between our
analytical findings and the numerical ones of [62], we believe that it is quite remarkable
that the two results share the same signature and differ only by an order unity factor. In
our opinion, our results open an interesting window to resolve the previous bullet points
and provide an ultimate comparison.

8 Summary and conclusions

In this work we have provided for the first time an analytic evaluation of the skewness
for the distance-redshift distribution in ACDM. The primary goal has been to provide an
analytic scheme to compare and understand the analogous results obtained from numerical
simulations [62]. To this end, we have applied the covariant and gauge-invariant formalism
for the light-cone averages detailed in [32] to evaluate the higher-order moments of the
distribution.

Within our framework, we have found that the second-order perturbations of the distance-
redshift relation are enough to evaluate the leading-order terms of the skewness, whereas only
linear-order corrections of the measure are needed. In this regard, among all the formally
viable prescriptions for these averages, we have adopted the number-counts weighted one for
our evaluation. This is of particular importance since it is ideally in line with the way the
ray-tracing of photons across the above-mentioned simulation is done.

Furthermore, we have focused our treatment to the infinitesimal bin width for the
redshift distribution. In this case, we have outlined several cancellations in the leading-order
terms, see section 4.1. According to these, we are left only with three terms in the final
formula (4.12) due to lensing, Post-Born corrections and higher-order gravitational potential.
In particular, the latter sources the total skewness with the matter bispectrum, integrated
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along the line-of-sight. Given that, what has emerged from numerical investigation is that this
also provides the biggest contribution among all. On the other hand, lensing and Post-Born
terms exhibit a competitive effect which turns out to be positive and small when compared
against the bispectrum one.

For what concerns a closer comparison with numerical simulations in [62], it turned out
that our analytical estimation of the skewness shares the same (negative) amplitude. This
is quite remarkable, given the number of approximation that we had to require to obtain
our results (see section 7 for a detailed discussion). From a physical viewpoint, our skewness
from the bispectrum exhibited a strong dependence on small scales and this is not surprising,
since it is a one-point function. What is important to remark is that, in order to get a
result independent of the UV behavior, we have introduced a coarse-graining (or smoothing)
scale in real space and quantified the impact of this smoothing scale on the final amplitude.
In this regard, we have shown that varying this coarse-graining scale from 20 to 10 Mpc/h
contributes to a 40% increasing of the total amplitude at small redshift (z ~ 0.1). This
dependence is still important even though less severe for distant sources (z ~ 1). This seems
to suggest that there is room for better agreement with the results of [62], since they have
probed smaller scales than ours (see again section 7).

Given this last point, we believe that it is worth to investigate in the future our results
along the following directions: include other relativistic effects that might be important at
smaller redshift, take into account the finite-bin effect and have a closer comparison with
numerical simulations where the coarse-graining scale could be introduced also in the analysis
of the simulated data. This work is the starting point for the latter tasks to be achieved.
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A Fourth-order perturbations for the skewness
In this appendix, we prove that eq. (3.2) can be equivalently computed holds also when third

and fourth order perturbations in the observable and the measure are considered. Hence, it is
consistent to consider only second-order perturbations to evaluate the leading order skewness.
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We then follow the same approach as the one adopted in section 2 and expand

S
i (1 ) 3) 4)
SO~ 1+ +0 40" +0'7,
dp = dp® (14 p0) 4 p@ 4 1 ® 4 @) (A1)
Hence, we obtain for the average m

m= <S(O)> = 1+ {T[o®] + I[o® u®] - 1[eO] T[]}

+{Tlo@] + T[o® u D] + I[o® 1] + 1o 1®] — T[o®)] 1]

~T[o® u] 1[u] ~ Tlo® u@] T[] ~ T[] I[u®] + o @] T[uV]?
Tl u] I[u@] + Tlo® pO] T[] — o] 1[0
2Tl O] T[] 1[a®] ~ T O] TP ~ T[]} . (A2)

First line manifestly reproduces eq. (2.7) whereas the other lines take into account the
next-to-leading order corrections. With eq. (A.2), we evaluate the a-th order moment of
the distribution of S/S© up to the fourth order as

S @ < a— « 2 4
<<S(O)—m) >:1§(_1) k<k> (1+42+B"), (A.3)
where we have defined
AP = o {T[o®] + 1lo® u®] - IO T[O]} + g (k=1 T2,  (A4)

and

B = a {I[o®] + I[o® p0] + I[o® @] + Ilo® pu®)] — Ile®] 1{u0]
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(2)

Again, the second-order correction A;” is consistent with eq. (2.8), whereas B,(f) are the

potential next-to-leading order corrections.
Now, we make use of the following relations for the sum of the Newton binomial

> (f) <o,
St ) =

k=0
Z(_l)a k:( )]{2

k=0 k

Z(_l)a k<k>k3 _5a1+65a2+65aSa
=0

k
> (-1 <k> k' = 601 + 14042 + 36 003 + 24 604, (A.6)
k=0

= 6a1+26a27

which tell us that for the skewness (o = 3), only the third and fourth power of the index
k in the sum in eq. (A.3) survive. It is already evident from eq. (A.5) that terms with &3
and k* only contain linear and second order perturbations. An explicit evaluations with
the use of egs. (A.6) for @ = 3 returns egs. (3.2).

To conclude, this proves that we need only corrections up to second-order for the
observable and linear in the measure perturbation to compute the high-order moments. We
remark that this is not ensured for the moments of S, since the quantity S(® —m(® does not
vanish on the background, and then the generic moment of the distribution of S includes
high-order corrections for the observable and the measure.

B Analytic proofs for the skewness in Fourier space

In this appendix, we provide the detailed derivations of £(r1,72) in eq. (5.2) and 55

in eq. (5.28).
B.1 [:(?“1,7“2)

We start from the Fourier modes of the linear gravitational potential ¢ (n, k) from egs. (1.1),
where we assume that ¥ (n, k) is a stochastic field such that

bk) =0 and ¢y, k)d( k) = (2m)*6p (ki + ko) Pyp(kr,m,m) . (B.1)
In this way, the 2-point function of a 2-D Laplacian in real space A, is given by
d3ky
(2m)3

At this point, we expand the exponentials in the Fourier transforms in terms of the spherical

Agtp(ry,n)Agtp(ro,m) = / Py(k1,m, m2) Age”F1mm Agetkinr (B.2)

harmonics as

e~ hnr = 47?2 ) e (kr)Yom (k) Yy, (n) (B-3)
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and keep in mind, for later uses, the following orthogonal relations

2 +1
}jnm )Y, (n) = = —,
[ Yoy ()Y, () = B8 (B.4)

In this way, eq. (B.2) becomes

Agth(r1,m)Agt(r2,n) = (477)2/ (d k)
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(v, me) T2 (= 1)y (6 + 102 (02 + 1)

k3dk
— dr [ TES P ) Y B+ 1220 + 1)
(27) 7
X jey (k171)je, (k1r2) - (B.5)
It is now worth to focus on the sum over ¢; appearing into eq. (B.5). To this end, we

recall that the Legendre polynomials Py(cosf) are eigenfunctions of the 2-D Laplacian with
eigenvalues —¢(¢ + 1) and that Py(1) = 1. Hence, we have

D200+ D) (0 + 1)jg, (kar1)je, (kara) =
41

A3 (201 + 1)y (ki) e, (kare) P (cos 9)]
n 6=0

= |:A%j0 <k1 \/7“% + 73 — 2ry7rg COS 9)] , (B.6)
6=0

where last equality holds since the 0-th order spherical Bessel functions can be written as

jo <k1 \/T’% + T’% — 2T17’2 COS 9) = 2(261 + 1)][1 (klrl)jgl (leQ)P[l (COS 9) . (B?)
01

Then, the explicit act of the 2-D Laplacians over jy returns

[A%jo (7431 \/1"% + 72 — 27179 cos ¢9>}
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sin [k1 (r1 — 72)]
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k -
—4riry (r% + 73+ 4r1r2) cos [k (r1 — r2))
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R = e D
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Now, thanks to the definition of the generalized Hankel transforms (5.1), we can insert
eq. (B.8) into (B.5) and prove then first of egs. (5.2). To this end, we relate the power
spectrum of the gravitational potential Py (k,n1,72) to the matter one P(k,ni,12) as

9 Hy
4k* a(m)a(n2)

where we have used the Poisson equation to link the growth factor of the gravitational

P¢(k77717772) = Q?nop(kv 7717772) ) (BQ)

potential Dy to the growth factor D; of the matter perturbations

3 HE
Dy = _2?2709%1)1 , (B.10)

as prescribed by the general dictionary provided in [79] for the relations among the different
cosmological transfer functions.

In this appendix, we want to provide the detailed evaluation of eq. (5.28). To this end, we
start by writing the Dirac-delta over the triangular shapes in Fourier space as

b1 +Llo+L * i * » * i
op (k1 +ka + ki) = 82 (—1) 1t ggft};gmgn1m1 (kl) Yiyms (k2> Yeimg <k3>
x / da 2%js, (1) je, (ko) o, (kzz) | (B.11)

where the integral over the auxiliary variable x runs from 0 to oo and the sums are over the
indexes ¢; and m; with ¢ = 1,2,3. We recall the definition of the Gaunt integral

gg?é;?;mg = /dQ sz177’11 (Il) )QQTTLQ (n) ngmg (Il)

) (gl l e3> (el t5 £3>¢<2l1+1)(2l2+1><213+1>, (B.12)

000 mi1 m9o2 M3 47

We remark that the integral over x automatically satisfies the triangle inequality over ki,
ko and ks and then there is no need to explicitly write any triangular condition. We
then compute the integrals over the angular directions k; in eq. (5.23). By making use of
eq. (B.11), we then have

/dﬂfil de{Z decg, op (k1 + ko + kg) A2€ik1-nr1 Azeik?nm A26ik3-nr3
= —8(4m)> > 01 (01 + 1) by (o + 1) L3 (U5 + 1) jg, (k1r1) oo (Kar2) je, (Ksrs)
X Yzml (Il) ngg (n) YZ;mg (1’1) Zé;?jmg /dl’ xzjh (k‘1$> jéz (ka) jZS (k3x) ) (Bl?’)

where we made use of the orthonormality of spherical harmonics in eqs. (B.4). In order to
move on with the evaluation, we notice that the we can get rid of the sum over m;’s, since
the following relation for the Gaunt integral holds

0 by 03\ (201 +1) (265 + 1) (205 + 1)
000 (47)?2 ’
(B.14)

Do G Y, ()Y, (0) Y, (n) =
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thanks to the following properties

SRR A) 2 (261 + 1) (262 + 1)
003 L.OmsM

M
I =

mima2

Yé1m1 (Il) Y@2m2 (n) = Z gz?l}gTrFMYikM (Il) : (B'15)
LM

Hence, by inserting eq. (B.14) into eq. (B.13), we have

/de(l de{def(d op (kl + ko + k3) A2eik1~nr1 A2€ik2-nr2 A2eik3-nr3
= —8(4m)° Y 01 (tr + 1) by (ba + 1) 3 (€3 + 1) joy (kar1) e, (Kar2) e, (Ksrs)

(zl 0 £3>2 (261 +1) (265 + 1) (

205+ 1 . . .
& )/dww2jz1 (k1) je, (k2) ey (k3z) -

000 (47)*
(B.16)
Then, by using this last equation into eq. (5.23), we finally obtain the desired result
of eq. (5.28).
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