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Abstract: The self-similar gravitational collapse solutions to the Einstein-axion—-dilaton system have
already been discovered. Those solutions become invariants after combining the spacetime dilation
with the transformations of internal SL(2, R). We apply nonlinear statistical models to estimate the
functions that appear in the physics of Black Holes of the axion-dilaton system in four dimensions.
These statistical models include parametric polynomial regression, nonparametric kernel regression
and semi-parametric local polynomial regression models. Through various numerical studies, we
reached accurate numerical and closed-form continuously differentiable estimates for the functions
appearing in the metric and equations of motion.

Keywords: mathematical physics; black holes; statistical analysis
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1. Introduction

As the end state of gravitational collapse, black holes are defined by their mass, angular
momentum and their charge. M. Choptuik [1] explored the so-called critical phenomena
in gravitational collapse, as well as Choptuik scaling. He made a breakthrough in the
subject of numerical relativity. Indeed, Choptuik scaling [1,2] is a property that occurs in
various systems that experience gravitational collapse. He discovered that there might be
a fourth universal quantity that establishes the critical collapse. Choptuik followed the
study of the spherically symmetric collapse of scalar fields and explored a critical behaviour
that demonstrates the discrete spacetime self-similarity. By taking the amplitude of the
scalar field p, he derived a critical value p.i where a black hole forms as p exceeds peit.
Furthermore, as p goes beyond the threshold, the mass of the black hole My}, illustrates the
scaling law

Mph(p) < (P = Perit)” 1)

where the Choptuik exponent was found to be ¢y ~ 0.37 [1] in four dimensions and for a
real scalar field. Various numerical computations with different matter content have also
been discovered [3-7].

Motivated by string theory, the axion—dilaton system can also experience the same
gravitational collapse process. The study of the Choptuik phenomenon in the axion-dilaton
system was initiated in [8-10]. The AdS/CFT correspondence [11-13] is viewed as the first
motivation to investigate critical collapse solutions, especially for the axion-dilaton system.
The AdS/CFT correspondence correlates the critical exponent and the imaginary part of
quasi normal modes, as well as the dual conformal field theory [14]. The second motivation
relies on the holographic description of black hole formation [15], particularly in the physics
of black holes and their implications [16-18]. From the IIB string theory point of view, we
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look for the gravitational collapse for the special spaces that could asymptotically approach
AdSs x S°. The matter field in the IIB string theory arises from the self-dual five-form
field strength and the axion—dilaton configuration. In recent research [19,20], the whole
families of Continuous Self-Similar (CSS) solutions of the Einstein-axion-dilaton system
were explored for all the three conjugacy classes of SL(2, R). Some remarks about critical
exponents and higher dimensional solutions have been made in [21,22]. For more details
about the other systems experiencing gravitational collapse, readers are referred to [23-27].

To our best knowledge, there is no research article in the literature investigating
the properties of nonlinear statistical models to estimate the critical collapse functions in
Einstein-axion—dilaton. In this paper, for the first time, we utilise parametric polynomial
regression, non-parametric kernel regression and semi-parametric local polynomial regres-
sion models to develop a closed form and continuously differentiable functional forms of
the critical collapse functions.

This article is organised as follows. We describe the axion-dilaton system and its
different continuous self-similar ansatzé in Section 2. The initial conditions and prop-
erties of the critical solutions for all three conjugacy classes are discussed in Sections 3
and 4, respectively. The nonlinear statistical estimation methods are then discussed in
Section 5. The performance of the proposed statistical models are finally investigated in
Section 6. Concluding remarks are presented in Section 7.

2. Axion-Dilaton Configuration

One can combine the axion a and dilaton ¢ field into a single complex field T =
a+ie~?, and its coupling to four-dimensional gravity is given by

s:/d4xﬁ(R;?§;a:;>. @)

where R is the scalar curvature. The above action describes the effective action of type II
string theory [28,29]. This action respects SL(2,R) symmetry, which means that if we
consider the following
at+b
ct+d’

the action remains invariant where a, b, c, d are real parameters satisfying ad — bc = 1. The
equations of motion can be read as follows

T—=T=

®)

1 _ _
Rﬂb — W(ag’fabf + aaTahT) == O (4)
7a
Vov, 4 Y Vel ()
Imt

We have looked for critical solutions by dealing with spherical symmetry and continu-
ous self-similarity. Following [8-10], one can choose the metric as

ds? = (1+u(t,r)) (—b(t, r)zdt2 + drz) +12d0? . (6)

We might consider a scale invariant variable as z = —r/t, and hence, the continuous
self-similarity of the metric actually means that all functions u(t, ), b(t,r) can be expressed
just in terms of z, thatis, b(t,r) = b(z), u(t,r) = u(z).

This continuous self-similarity condition for T was described in detail in [30]. The
axion—dilaton system does have a global SL(2, R)-symmetry, which is broken into an
SL(2,Z) by taking into account the non-perturbative phenomena in type II string theory.
If we take the quantum effects, SL(2, R) symmetry reduces to SL(2, Z), for which it is
believed to be the non-perturbative symmetry of string theory [31-33]. Therefore, one
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might compensate the action by means of an SL(2, R)-transformation, that is 7(t, z) must
respect the following equation

ad
taf(t,z) =004+ 0T+ aT (7)
with «g 1 » real numbers. The above equation has two roots that are related to compensating
the scaling transformation. Having set that, we find three different ansatzé, which are
related to the fact that the chosen SL(2, R)-transformation is either an elliptic, hyperbolic
or parabolic transformation. The elliptic ansatz is defined as

el G €
T R

where w is a real constant that will be known by the regularity conditions for the critical
solution. On the other hand, for the hyperbolic case, T(t,r) is given by

1- (0°F(2)
5 (09 )
Eventually the parabolic ansatz is illustrated by 7(t,7) = f(z) + wlog(—t). Note that

the function f(z) needs to satisfy |f(z)| < 1 for the elliptic case, whereas Im f(z) > 0 for
hyperbolic and parabolic cases.

©®)

T(t,r) = ©)

3. Equations of Motion and Initial Conditions

In this section, we first study the equations of motion and then explain the properties
of solutions. Replacing CSS into the equations of motion, we derive a system of differential
equations just for b(z), f(z). Using Einstein equations for angular variables, one can express
u(z),b(z) just in terms of f(z), which means that

zb'(z)

u(z) = bz (10)

Hence, 1(z) and its derivatives can be eliminated from equations of motion. The other
equations of motion involve b(z), f(z). Hence, we are left with various ordinary differential
equations (ODEs)

b'(z) = B(b(2), f(2), f'(2)), (11)
f(2) = F(b(2), f(2), f'(2)). (12)

Since, in this paper, we are looking for an estimation of the function of b(z) and real
and imaginary parts of f(z) for elliptic and hyperbolic cases in four dimensions, we just
generate those equations as follows. Indeed, the equations of motion are derived in [30].
The equations for the elliptic case are
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0 = Y itire T e I e
o (b2+z ) 12 7 2 . zw(b2+z )\ 72
O = P e <1 2b2<1—|f|2>>ff
zw(b2+2z ) iwz*(14f]?)
e T 17P) A ( W= 21— 17
+ 4|f‘2 >f/+ w?z fzf/'f'
Ty i w3
2iw 1 iw(1+|f]?) w?2?|f|?
—22) <z‘ 2117 zb2<—1+|f|2>2>f ' (13)

Using time scaling, one can set b(t,0) = 1. In the elliptic case, by writing f(z) =
f(z)efa(?), the regularity conditions imply:

b(0) =1, £,(0) = f4(0) =0 (14)

The above equations are invariant under a global phase of f(z), so we can choose

fa(o):O (15)
For a hyperbolic case, the equations are determined by
_ / Z(b2 ) (b —z ) £/ Fel c‘)22|f‘2
R ke T I h=
o 2(b* +2%) . 1 w(b®+2%) 2
o= S w A G s )
w(b? +222) w2?(f + f)
FRr-7e I (- ”( =) J)
+ 4|f|2 _ )f/_ f2f+
bz(b2 —2)(f=f)? (f f)2
2w 1 w(f+f) 2|f?
(a5 - w ) 1

They are invariant under a constant scaling f — Af, and applying regularity at the
origin, we find that f’(z = 0) should vanish. Thus, the initial conditions for the hyperbolic
case are:

b(0) =1,f(0) =0 (17)

Finally, in the parabolic ansatz, the equations of motion are invariant under arbitrary
shifts of f(z).

4. Properties of the Critical Solutions

The properties of the solutions and the physical and geometrical behaviours of the
solutions for the elliptic case are explained in detail in [9,10]. Naturally, for the hyperbolic
case, the same properties are being held. In all equations, we have five singularities where
z = %0 corresponds to the origin, and we have dealt with them by making the regularity
conditions. On the other hand, the point z = oo related to t = 0. By the change in variables
and redefinition of the fields f(z), b(z), one can show that [34] the equations remain regular
there as well.
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The singularities b(z+ ) = £z are the locations where the homothetic killing vector is
null, as explained in [30]. For b(z4) = z., the solution must be smooth within this surface,
and we need to have the continuity of f,b in this region. b(z4) = z is related to the
homothetic horizon, and it is indeed a mere coordinate singularity [30,35], so T must be
finite across it, which becomes interpreted as the finiteness of f(z) once z — z. Another
constraint comes from the fact that the vanishing of the divergent part of f”(z) generates
one complex valued constraint at z; that can be defined by G(b(z+), f(z+), f'(z+)) =0,
where the definitions of G are given in Equations (49)—(51) of [19]. If we use regularity
at z = 0, as well as the residual symmetries, then we find out the initial conditions
b(0) =1, f(0) = 0 and the value of f(0) is shown by

X0 elliptic (0<xy<1)
f(0) =< ixg parabolic (0 < xq) (18)
1+ixp hyperbolic (0 < xp)

where x is a real parameter. Thus, we have two constraints as the real and imaginary parts
of G must be vanished and two parameters (w, xp) are to be known.

The entire solutions for the hyperbolic case in four and five dimensions have been
derived in [20]. These solutions are obtained by making use of numerical integration from
the equations of motion. For instance, for four-dimensional elliptic cases, just one solution
is determined [10,30], and it is given by

w = 1.176,
zy = 2.605, (19)
fO)] = 089,

Using this new search methodology, we are able to explore the entire families of
solutions for the hyperbolic case in four dimensions, which are three cases called «, B, ¥
solutions. The & solution is given by

w = 1362, z,=1440, Imf(0) =0.708. (20)
The B solution is determined by

w = 1003, z; =329, Imf(0)=0.0822. (21)
Finally, the v solution is explored to be

w = 0541, z4 =844, Imf(0)=0.0059. (22)

5. Statistical Estimation Methods

Throughout this section, we use the following notations to present the statistical
estimation methods. Let (X,y) denote a multivariate random variable from a random
sample of size n. Supposey = (y1...,yn) and X = (xy,...,Xp) represent, respectively,
the vector of response variable of size n and (n x p) dimensional design matrix with p
explanatory variables, where rank(X) = p < n.

5.1. Polynomial Regression Model

Linear regression models are among the most popular statistical methods for mod-
elling data. One can address the relationship between response variable i and the explana-
tory variables xq, ..., x, by the linear regression model

yi:xiT,BJrei, i=1,...,n, (23)
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where B is the unknown parameters (hence-after called coefficients) of the model, xiT
indicates the transpose of x; and that €; iid N(0,1);i =1,...,n; that is, the error terms are
independent and identically distributed from standard normal distribution [36].

It is easily seen that linear regression model (23), as a parametric method, translates
the prediction problem of the response function y = g(x) (as a function of explanatory
variable x) to the estimation problem of the unknown parameters/coefficients of the model.
The least square (LS) method [36] is one of the most common approaches to estimating
the coefficients of model (23). Given the design matrix X and response vector y from n
observations, the least squares estimate of j is given by

prs = arg min [[y — XB|[3, (24)
p
where || - ||3 denotes the I, norm. It is easy to show that the solution to (24) is given by
BLs = (XTx)'xTy. (25)

Once model (23) is trained, the response can be predicted at a new value Xxpew by
Jnew = §(¥new) = TnewPLs. (26)

It is evident that the functional forms of |fy(z)|, arg(fo(z)) and b3(z) — 22, as our
underlying statistical population to be estimated, are clearly nonlinear functions of space-
time. Hence, the simple linear regression model (23) based on z is not flexible enough
to estimate the nonlinearity of critical collapse functions. One can employ a polynomial
regression model to deal with the nonlinear critical collapse functions. The polynomial
regression model enables us to incorporate the higher orders of explanatory variable x to
better approximate the nonlinear response function y = g(x). A polynomial regression
model of order [ is given by

1

vi=), xfﬁj + €, (27)
=0

where g = (Bo, ..., B1) represent the unknown coefficients of the model. Note that we only
focus on the main effects of explanatory variables (and their higher orders) in estimating
the critical functions. First, in the estimating of the critical functions, there is only a single
explanatory variable, that is, the spacetime z. Hence, no interaction term is defined in
the regression models. When there is a single explanatory variable in the regression, the
higher orders of the explanatory variable can very well accommodate the nonlinearity of
the population. Finally, the interaction terms typically contribute to the refinement of the
estimates at the price of introducing more parameters in the model and reducing the degree
of freedom in the estimation. For the above reasons, throughout this manuscript, we do
not include the interaction terms in the statistical models.

The polynomial regression model, as a special case of model (23), can be written as a
linear model again by

y=2ZB+¢,

where the columns of matrix Z are the copies of explanatory variable x; taken to various

powersj =0,...,[. Similarly, from the least squares method (24), the polynomial regression
at Xpew is produced by

Fnew = 8(Xnew) = ¥new(Z72)'ZTy. (28)

The polynomial regression model provides a flexible solution to estimate a nonlinear

function at the price of higher orders of explanatory variable x in the model. Therefore, the



Mathematics 2022, 10, 4537

7 of 21

estimation performance of the polynomial proposal depends on the order of the polynomial
regression [. In Section 6, we perform a cross validation to select the best order of the
polynomial estimators.

5.2. Kernel Regression Model

Linear regression and polynomial regression models translate the estimation problem
of the response function y = g(x) to the estimation problem of parameters . Non-
parametric regression models can be considered as another approach to estimate the
nonlinear critical collapse functions. A kernel regression model is one of the most common
non-parametric estimation methods. Kernel regression approximates the response function
at new observation xpew by a weighted average of observed responses in a neighbourhood
of Xpew. A kernel function is non-negative symmetric function around the origin (i.e., the
centre of the neighbourhood). Kernel function is typically re-scaled to result in a legitimate
probability density function in each neighbourhood. There are various choices for the
kernel function; however, in this manuscript, we focus only on Epanechnikov kernel [37]
given by

Kp(x) = 3/4(1 - (x/h)2>1(|x/h| <1), (29)

where h denotes the bandwidth parameter of the kernel function K. and I is an indicator
function such that I(u) = 1 if u=true otherwise I(u) = 0. It is at once apparent that the
kernel function (29) tunes the width of neighbourhoods based on the bandwidth parameter
h. When an observation falls out of the bandwidth, the kernel function assigns a very small
weight to the observation to reduce its impact on the function estimate.

Given a training data set of size n with explanatory variable x and response y, the
Nadaraya—Watson kernel regression estimates [38,39] the response function at new obser-
vation Xpew as
i nKh(|xi — Xnew|)Vi ) (30)
= 2o Ki([xr — xnewl)

y\new = g(xnew) =

where Kj,(+) is obtained from (29).

Note that the kernel regression estimator (30) deals with the nonlinearity of response
function at the price of selecting the bandwidth parameter. To this end, when small & is
selected, the weights assigned by kernel regression estimator are more concentrated around
the new observation (i.e., shorter neighbourhoods will be declared). In contrast, when large
h is selected, the weights will be more spread out and, consequently, wider neighbourhoods
are declared. Hence, for a piece of given training data, we carry out a cross validation to
find out the optimal bandwidth.

5.3. Local Regression Model

As another approach, we study the local regression model to earn the curvature of the
response function y = g(x). Local regression, as a semi-parametric approach, combines the
parametric advantages of the polynomial regression and non-parametric properties of the
kernel regression in estimating the response function. Local regression can be intuitively
explained by the Taylor expansion of g(x) around Xnew as follows:
0g 6% 92

8 3
i (Xnew) +0(87),

g(xnew+5) = g(xnew) +6 (xnew) + ?ﬁ
where kernel regression can be viewed as an estimator that only utilises the constant term to
approximate g(x). The local regression method exploits the high orders of x by polynomial
regression and then estimates the coefficients (of the polynomial regression) by the kernel

regression in each neighbourhood.
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Given a training data set of size n with explanatory variable x and response variable y,
the local regression estimator [37] of order / at xpew is given by

[
Vnew = g(xnew) = Z x%ﬁj(xnew)/ (31)
j=0

o~

where the vector of coefficients estimate B(Xnew) = (Bg(xnew), B (xnew)) is obtained
as a solution to:

=R n 1 . 2
B(Xnew) = arg min ZKh(‘xi — Xnew|) (]/i - Z x?ﬁj) ’ (32)

B i=1 j=0

where Kj,(+) obtained from (29).

The estimator (31) can be used to estimate the response function at any value of xpew-.
Accordingly, the estimator (31) enables us to approximate the response function y = g(x)
throughout the domain. Note that the local regression smoother (31) requires two tuning
parameters. These tuning parameters include the bandwidth parameter of kernel part i
and the order of the polynomial part /.

6. Numerical Studies

R. Antonelli and E. Hatefi in [19] recently studied the black hole solutions of an axion—
dilaton system in elliptic and hyperbolic cases in four and five dimensions. Through the
numerical optimisation of [10], they found only one solution to equations of motion for
four dimensions of elliptic cases. As discussed in [20], the unperturbed critical collapse
functions play a key role in the location of the critical solutions and critical exponents.
Despite the importance of these unperturbed critical collapse functions, little information is
known in the literature about the structure and closed form of these functions. It is, thus,
of high importance for researchers to numerically estimate the functional form of these
unperturbed functions so that the critical solutions and critical exponents, as well as the
mass of black holes and universality of Choptuik exponents, will be more tractable. In
this section, we employ nonlinear statistical methods, including polynomial regression,
non-parametric kernel regression and local polynomial regression methods to estimate the
functional forms of the unperturbed critical collapse functions.

Using the optimisation techniques of [10], a numerical search is carried out to find
the critical solution on various intervals in the domain of forward singularity ([0, z-]).
Accordingly, they showed that there was a unique critical solution in elliptic space. This
results in the interval [0, 2.5] as the domain of the critical collapse functions in elliptic space
in four dimensions, where this unique solution was also confirmed in [19]. Similarly, R.
Antonelli and E. Hatefi [19] explored three solutions (say «, 8 and v critical solutions) to
the equation of motion in the hyperbolic case. This leads to three corresponding domains,
including [0, 1.44], [0,3.30] and [0, 8.45] for the unperturbed functions. In a similar vein
to [19], we carried out the optimisation search and obtained 2000 observations from the
critical functions b — 22, | fo| and arg f; in all elliptic and hyperbolic domains. These obser-
vations were treated as the (unknown) underlying statistical populations to be estimated.

For each observation in the population, we generated four characteristics from the
valid domain of unperturbed critical solutions of [0,z ]. These characteristics include
the realisations of critical functions b3 — z%, |fy|,arg fp and z. In the statistical analysis,
we considered spacetime z as the single explanatory variable (x) and the realisation of
the critical collapse functions b3 — z%, |fo|,arg fo as the responses (observed from the
corresponding critical function) in the regression models. We fitted one regression model
for each critical function. We independently generated (i.e., with replacement) training
samples of size n = 100 from each population. For the validation of the estimation, we
generated (independent from the training data) test data (Xtest, Ytest) Of size n = 100 from
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the entire domains of the critical functions. As described in Section 5, to estimate the critical
function by the polynomial regression, we first applied Equation (25) to the training data
and estimated the coefficients of the model. Using the estimated coefficients  and (26), we
then predicted the response of the critical function (ﬁtest) at xyes¢. For the Kernel regression
method, we applied Equation (30) to the training data and predicted the value of the critical
function (¥est) at test point x¢est. According to the definition of the local regression, the
coefficients of the model are treated as the functions of the test data. Hence, we used
the training data and estimated the coefficients using (32). From (31) and the estimated
the coefficients E (xtest), we then predicted the critical collapse function (Fest) at Xzest. We
finally implemented the above prediction procedures sequentially for all the points in the
test data to estimate all the critical collapse functions over their entire domains.

To assess the accuracy of the proposed estimators, we used the measure of square root
of the mean squared errors +MSE as follows

n

1/2
VMSE = (1/11 Y (Fresti — %est,i)) ,

i=1

Note that the trained model will be more accurate in estimating the critical collapse
response function when +MSE is small. To investigate the impact of tuning parameters
on the performance of the estimators, similar to above, we generated training data and
validation data of sizes n = 100 from the population and computed the v/ MSEs of estimates
of critical collapse functions for h = {0.01,0.02,...,0.5} and I = {1,2,...,10}.

Tables 1-9 show the results of the numerical studies forall/ =1, ..., 10 and the top ten
h values. It is at once apparent that all the proposed estimators (excluding the polynomial
of order I = 1) perform very well in predicting the critical collapse functions in all elliptic
and hyperbolic domains. The v MSEs of estimators are very small such that the polynomial
regression, kernel regression, and local regression estimators can be considered almost
unbiased in the estimation of critical collapse functions even in the neighbourhood of the
critical singularities. For a graphical comparison of the proposed methods in estimating
the critical functions, we presented the performance of the estimates in Figures 1-12 for
each combination of the statistical methods, critical collapse functions and spaces. For
example, Figure 1 shows the performance of the local regression model in estimating the
critical collapse functions. The best performance of the local estimate appeared when h was
between (0.07, 0.08); however, we intentionally selected more widely spaced h vales, namely
0.07,0.10,0.25,0.5,0.75, 1.0 so that the human eyes can visually distinguish the curves. From
Figure 1, it is clear the & values greater than 0.10 result in over-smoothed estimates and
consequently the prediction error increases. From Figures 3-5, one can graphically compare
the performance of polynomial, kernel and local regression models in estimating the critical
functions in elliptic space. From Figures 1, 2 and 6, one can graphically compare the
performance of the proposed models in estimating the critical functions corresponding
to a-solution of the hyperbolic space. From Figures 7-9, we can graphically compare
the performance of the proposed statistical models in estimating the critical functions
corresponding to the B-solution of the hyperbolic space. From Figures 10-12, we can,
finally, graphically compare the performance of the statistical models in estimating the
critical functions corresponding to the y-solution of the hyperbolic space.
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Table 1. The v/MSE of local regression method with I = 1 and bandwidth & (presented in parenthesis)
in estimating the critical collapse response function g(z) = b3(z) — z? in elliptic and hyperbolic cases
based on a training sample of size n = 100.

Hyperbolic
Elliptic
a-Solution B-Solution 7v-Solution
0.00370 (0.10) 0.00040 (0.060) 0.00681 (0.140) 0.13307 (0.29)
0.00438 (0.11) 0.00043 (0.062) 0.00702 (0.142) 0.13375 (0.30)
0.00521 (0.12) 0.00045 (0.064) 0.00723 (0.144) 0.13450 (0.31)
0.00608 (0.13) 0.00048 (0.066) 0.00743 (0.146) 0.13532 (0.32)
0.00693 (0.14) 0.00050 (0.068) 0.00763 (0.148) 0.13909 (0.33)
0.00780 (0.15) 0.00053 (0.070) 0.00782 (0.150) 0.14370 (0.34)
0.00870 (0.16) 0.00055 (0.072) 0.00801 (0.152) 0.14677 (0.35)
0.00980 (0.17) 0.00058 (0.074) 0.00820 (0.154) 0.14910 (0.36)
0.01093 (0.18) 0.00060 (0.076) 0.00839 (0.156) 0.15134 (0.37)
0.01203 (0.19) 0.00063 (0.078) 0.00861 (0.158) 0.15342 (0.38)

Table 2. The v/MSE of local regression method with I = 1 and bandwidth & (presented in parenthesis)
in estimating the critical collapse response function g(z) = |fp(z)| in elliptic and hyperbolic cases
based on a training sample of size n = 100.

Hyperbolic
Elliptic - - -
a-Solution B-Solution 7v-Solution
0.00052 (0.10) 0.00021 (0.060) 0.00024 (0.140) 0.00005 (0.29)
0.00059 (0.11) 0.00022 (0.062) 0.00025 (0.142) 0.00006 (0.30)
0.00069 (0.12) 0.00024 (0.064) 0.00025 (0.144) 0.00006 (0.31)
0.00080 (0.13) 0.00025 (0.066) 0.00026 (0.146) 0.00006 (0.32)
0.00090 (0.14) 0.00026 (0.068) 0.00027 (0.148) 0.00006 (0.33)
0.00099 (0.15) 0.00027 (0.070) 0.00027 (0.150) 0.00006 (0.34)
0.00109 (0.16) 0.00028 (0.072) 0.00028 (0.152) 0.00006 (0.35)
0.00121 (0.17) 0.00029 (0.074) 0.00028 (0.154) 0.00006 (0.36)
0.00132 (0.18) 0.00030 (0.076) 0.00029 (0.156) 0.00006 (0.37)
0.00143 (0.19) 0.00031 (0.078) 0.00029 (0.158) 0.00006 (0.38)

Table 3. The v/MSE of local regression method with I = 1 and bandwidth & (presented in parenthesis)
in estimating the critical collapse response function g(z) = arg fo(z) in elliptic and hyperbolic cases
based on a training sample of size n = 100.

Hyperbolic
Elliptic
«-Solution B-Solution v-Solution
0.00020 (0.10) 0.00026 (0.060) 0.00074 (0.140) 0.00138 (0.29)
0.00024 (0.11) 0.00028 (0.062) 0.00077 (0.142) 0.00138 (0.30)
0.00028 (0.12) 0.00030 (0.064) 0.00079 (0.144) 0.00138 (0.31)
0.00032 (0.13) 0.00032 (0.066) 0.00082 (0.146) 0.00138 (0.32)
0.00037 (0.14) 0.00034 (0.068) 0.00084 (0.148) 0.00140 (0.33)
0.00041 (0.15) 0.00036 (0.070) 0.00086 (0.150) 0.00143 (0.34)
0.00047 (0.16) 0.00037 (0.072) 0.00088 (0.152) 0.00145 (0.35)
0.00053 (0.17) 0.00039 (0.074) 0.00090 (0.154) 0.00146 (0.36)
0.00060 (0.18) 0.00041 (0.076) 0.00092 (0.156) 0.00147 (0.37)
0.00067 (0.19) 0.00043 (0.078) 0.00094 (0.158) 0.00148 (0.38)
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Table 4. The v/MSE of polynomial regression method of orders I = 1,...,10 in estimating the critical

2

collapse response function g(z) = b3(z) — z? in elliptic and hyperbolic cases based on a training

sample of size n = 100.

Hyperbolic
1 Elliptic
«-Solution B-Solution 7v-Solution
1 0.7063268 0.0819795 1.0307328 6.3570261
2 0.0559801 0.0029784 0.0726698 0.5711519
3 0.0548808 0.0024525 0.0459405 0.2627902
4 0.0334353 0.0003811 0.0432772 0.1278611
5 0.0174070 0.0002913 0.0294283 0.0666275
6 0.0066110 0.0001207 0.0155586 0.0428675
7 0.0019199 0.0000196 0.0077121 0.0315803
8 0.0006227 0.0000030 0.0033251 0.0210668
9 0.0006231 0.0000026 0.0012466 0.0125086
10 0.0004316 0.0000018 0.0004576 0.0080795

Table 5. The v/MSE of polynomial regression method of orders I = 1,...,10 in estimating the critical
collapse response function g(z) = |fy(z)| in elliptic and hyperbolic cases based on a training sample
of size n = 100.

Hyperbolic
1 Elliptic
«-Solution B-Solution 7v-Solution
1 0.0519709 0.0188249 0.0073093 0.0044686
2 0.0118848 0.0092961 0.0051240 0.0012997
3 0.0056050 0.0054771 0.0042886 0.0002376
4 0.0053751 0.0020169 0.0021204 0.0000318
5 0.0039364 0.0001069 0.0008176 0.0000250
6 0.0020805 0.0001055 0.0002720 0.0000202
7 0.0009439 0.0000180 0.0002590 0.0000148
8 0.0002851 0.0000179 0.0002272 0.0000092
9 0.0000928 0.0000055 0.0001656 0.0000047
10 0.0000915 0.0000043 0.0000998 0.0000027

Table 6. The v/MSE of polynomial regression method of orders I = 1,...,10 in estimating the critical
collapse response function g(z) = arg f(z) in elliptic and hyperbolic cases based on a training sample
of size n = 100.

Hyperbolic
1 Elliptic
«-Solution B-Solution v-Solution
1 0.0191634 0.0415803 0.0441231 0.0190365
2 0.0124265 0.0200282 0.0151237 0.0046392
3 0.0044581 0.0041933 0.0049122 0.0017751
4 0.0011409 0.0011059 0.0043728 0.0008067
5 0.0009282 0.0006399 0.0037591 0.0004130
6 0.0007546 0.0000730 0.0024571 0.0002704
7 0.0004682 0.0000358 0.0014501 0.0002036
8 0.0001987 0.0000206 0.0007639 0.0001393
9 0.0000671 0.0000197 0.0003697 0.0000851
10 0.0000268 0.0000113 0.0001545 0.0000566
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Table 7. The +/MSE of kernel regression method evaluated at bandwidth 1 (presented in parenthesis)
in estimating the critical collapse response function g(z) = b3(z) — z? in elliptic and hyperbolic cases
based on a training sample of size n = 100.

Hyperbolic
Elliptic
a-Solution B-Solution 7v-Solution
0.03150 (0.06) 0.00531 (0.042) 0.05777 (0.110) 0.45314 (0.20)
0.03291 (0.07) 0.00525 (0.044) 0.05781 (0.112) 0.46026 (0.21)
0.03414 (0.08) 0.00524 (0.046) 0.05783 (0.114) 0.44735 (0.22)
0.03359 (0.09) 0.00527 (0.048) 0.05775 (0.116) 0.43467 (0.23)
0.03413 (0.10) 0.00525 (0.050) 0.05767 (0.118) 0.43196 (0.24)
0.03585 (0.11) 0.00528 (0.052) 0.05761 (0.120) 0.43750 (0.25)
0.03823 (0.12) 0.00537 (0.054) 0.05764 (0.122) 0.45320 (0.26)
0.04059 (0.13) 0.00539 (0.056) 0.05777 (0.124) 0.47516 (0.27)
0.04272 (0.14) 0.00539 (0.058) 0.05775 (0.126) 0.49798 (0.28)
0.04479 (0.15) 0.00539 (0.060) 0.05767 (0.128) 0.51837 (0.29)

Table 8. The v/ MSE of kernel regression method evaluated at bandwidth / (presented in parenthesis)
in estimating the critical collapse response function g(z) = |fp(z)| in elliptic and hyperbolic cases
based on a training sample of size n = 100.

Hyperbolic
Elliptic - - -
a-Solution B-Solution 7v-Solution
0.00324 (0.06) 0.00088 (0.032) 0.00227 (0.07) 0.00088 (0.20)
0.00346 (0.07) 0.00088 (0.034) 0.00230 (0.08) 0.00086 (0.21)
0.00339 (0.08) 0.00087 (0.036) 0.00240 (0.09) 0.00082 (0.22)
0.00342 (0.09) 0.00087 (0.038) 0.00248 (0.10) 0.00078 (0.23)
0.00350 (0.10) 0.00085 (0.040) 0.00250 (0.11) 0.00075 (0.24)
0.00380 (0.11) 0.00085 (0.042) 0.00249 (0.12) 0.00072 (0.25)
0.00411 (0.12) 0.00086 (0.044) 0.00250 (0.13) 0.00070 (0.26)
0.00437 (0.13) 0.00087 (0.046) 0.00249 (0.14) 0.00070 (0.27)
0.00452 (0.14) 0.00090 (0.048) 0.00248 (0.15) 0.00070 (0.28)
0.00471 (0.15) 0.00092 (0.050) 0.00255 (0.16) 0.00072 (0.29)

Table 9. The v/ MSE of kernel regression method evaluated at bandwidth / (presented in parenthesis)
in estimating the critical collapse response function g(z) = arg fo(z) in elliptic and hyperbolic cases
based on a training sample of size n = 100.

Hyperbolic
Elliptic
«-Solution B-Solution v-Solution
0.00273 (0.06) 0.00379 (0.024) 0.00742 (0.10) 0.00397 (0.20)
0.00293 (0.07) 0.00379 (0.026) 0.00725 (0.11) 0.00403 (0.21)
0.00307 (0.08) 0.00350 (0.028) 0.00709 (0.12) 0.00392 (0.22)
0.00310 (0.09) 0.00352 (0.030) 0.00705 (0.13) 0.00378 (0.23)
0.00309 (0.10) 0.00356 (0.032) 0.00699 (0.14) 0.00373 (0.24)
0.00316 (0.11) 0.00366 (0.034) 0.00688 (0.15) 0.00376 (0.25)
0.00323 (0.12) 0.00374 (0.036) 0.00697 (0.16) 0.00387 (0.26)
0.00333 (0.13) 0.00379 (0.038) 0.00714 (0.17) 0.00405 (0.27)
0.00344 (0.14) 0.00373 (0.040) 0.00745 (0.18) 0.00424 (0.28)
0.00356 (0.15) 0.00364 (0.042) 0.00801 (0.19) 0.00439 (0.29)
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Figure 3. The estimates of critical collapse functions based on a polynomial regression method of
orders! = {1,...,6} in elliptic case based on a training sample of size n = 100.
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Figure 4. The estimates of critical collapse functions based on a kernel regression method with
bandwidth parameters i = {0.05,0.06,0.07,0.08,0.09,0.10} in elliptic case based on a training sample
of size n = 100.
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Figure 5. The estimates of critical collapse functions based on a local regression method of order ! =1
with bandwidth parameters i = {0.11,0.12,0.13,0.14,0.15,0.16 } in elliptic case based on a training
sample of size n = 100.
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Figure 6. The estimates of critical collapse functions corresponding to an & solution of
a hyperbolic case based on a kernel regression method with bandwidth parameters i =
{0.05,0.06,0.07,0.08,0.09,0.10} based on a training sample of size n = 100.
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Figure 7. The estimates of critical collapse functions corresponding to a 8 solution of a hyperbolic
case based on a polynomial regression method of orders | = {1,...,6} based on a training sample of
size n = 100.
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Figure 8. The estimates of critical collapse functions corresponding to a B solution of a hyperbolic case
based on a kernel regression method with bandwidth parameters i = {0.05,0.06,0.07,0.08,0.09,0.10}
based on a training sample of size n = 100.
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perbolic case based on a local regression method of order | = 1 with bandwidth parameters
h = {0.14,0.15,0.16,0.17,0.18,0.20} based on a training sample of size n = 100.
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Figure 10. The estimates of critical collapse functions corresponding to a <y solution of a hyperbolic
case based on a polynomial regression method of orders I = {1,...,6} based on a training sample of
size n = 100.
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Figure 11. The estimates of critical collapse functions corresponding to a < solution of
a hyperbolic case based on a kernel regression method with bandwidth parameters 1 =
{0.05,0.10,0.15,0.20,0.25,0.30} based on a training sample of size n = 100.
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Figure 12. The estimates of critical collapse functions corresponding to a <y solution of ahy-
perbolic case based on a local regression method of order I = 1 with bandwidth parameters
h = {0.30,0.35,0.40, 0.45,0.50,0.60} based on a training sample of size n = 100.

The local regression estimators outperform the kernel and polynomial counterparts in
estimation in almost all three critical collapse functions in both elliptic and hyperbolic do-
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mains. This superiority relies on the fact that the local regression estimator takes advantage
of polynomial and kernel regression methods in estimation.

While local and kernel regression methods more accurately estimate the critical col-
lapse functions than the polynomial regression method, the polynomial regression method
proposes closed form (and continuously differentiable) estimates for the critical functions.
These closed and differentiable forms are of high importance to make the critical solutions,
critical exponents and the mass of black holes more tractable.

The closed form polynomial regression estimates of order | = 6 for critical collapse
functions in the elliptic domain are given by

b()(/:z)\z = 0.9791 + 0.4049z + 8.5099z% — 10.66262> + 6.2498z* — 1.8050z° + 0.2057z°. (33)

[fo(z)| = 0.9010 — 0.2098z — 1.0300z2 + 1.67852° — 1.1133z* + 0.346225 — 0.04142°. (34)

arg fo(z) = 0.0037 — 0.1021z + 0.32302% — 0.0578z% — 0.0719z* + 0.0398z° — 0.0060z°. (35)

The closed form polynomial regression estimates of order | = 6 for critical collapse
functions corresponding to the a-solution domain in hyperbolic space are given by

bo(2)2 = 1.0004 — 0.0138z + 0.578722 — 0.39372% + 0.70782* — 0.46322% + 0.1001z°. (36)

fo(z)| = 1.2258 — 0.0136z — 0168122 — 0.34952° + 0.6597z* — 0.245025 — 0.00252°. (37)

arg fo(z) = 0.6167 — 0.0157z + 0.58342% — 0567223 + 1.1055z* — 0.9240z5 + 0.24122°. (38)

The closed form polynomial regression estimates of order | = 6 for critical collapse
functions corresponding to the B-solution domain in hyperbolic space are given by

bo(2)2 = 0.9051 + 1.9207z + 5.692122 — 6.37682% + 3.15512% — 0743425 + 0.067825. (39)

[fo(z)| = 1.0055 — 0.0828z + 0347622 — 0.2714z3 + 0.1069z* — 0.02132 + 0.00172°. (40

arg fo(z) = 0.0672 + 0.3845z + 0.38602% — 0.60772> + 0.3346z* — 0.0830z° + 0.0078z°. (41)

And eventually, the closed form polynomial regression estimates of order I = 6 for
critical collapse functions corresponding to the y-solution domain in hyperbolic space are
given by

bo(2)2 = 1.9715 + 20.9801z — 7.293022 + 2.2654z° — 0.3955z* + 0.03502° — 0.00122°. (42)

[fo(z)| = 0.9997 + 0.0092z + 0.0024z2 + 0.0001z3 — 0.0001z%. (43)
arg fo(z) = 0.0237 + 0.1287z — 0.0204z2 + 0.0023z3 — 0.0001z%. (44)

7. Conclusions

The black hole solutions of the axion—dilaton system were recently investigated in
elliptic and hyperbolic cases in four and five dimensions [19]. It is crucial for researchers to
estimate the functional form of the critical collapse functions. These estimates pave the path
to make the critical solutions, critical exponents, the mass of black holes and universality
of Choptuik exponents more tractable. To our best knowledge, no research article in the
literature investigated the properties of nonlinear statistical models in estimating the critical
collapse functions in the Einstein-axion—dilaton system.

In this paper, we employed parametric polynomial regression, non-parametric kernel
regression and semi-parametric local polynomial regression for the first time to estimate
the functional forms of the critical collapse functions. From numerical studies, we observe
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that the local regression estimators outperform the kernel and polynomial counterparts
in estimating almost all critical collapse functions in elliptic and hyperbolic domains.
While local and kernel methods more accurately estimate the critical collapse function,
the polynomial regression method enables us to obtain the closed-form and continuously
differentiable estimates for the critical functions. Given the closed forms of critical functions,
a pressing question is if one can algebraically derive the critical exponents for the axion—
dilaton system. Note that these methods are applied not only for the Einstein-axion-dilaton
system and similar solutions but also for other potential systems. These methods are
generic and can be used for any matter content for any spacetime dimensions. This is a
path that we plan to follow in the near future.
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