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1 Introduction

Theoretical physics is concerned with a mathematical description of the physical

world. Given the sheer size and complexity of the world we inhabit, it is only

natural that the mathematical descriptions of di�erent physical phenomena will vary

wildly. And indeed, if one were to chart the space of physical phenomena and their

descriptions, they would �nd a vast landscape, with many dark corners, deep rabbit

holes of highly complex mathematics, and surprising, enigmatic portals between

seemingly unrelated regions. Yet, the ultimate dream of most theoretical physicists is

a single uni�ed description of everything. So, among all pieces of theoretical physics,

some of the most valuable ones are those who reveal organising principles underlying

the map — one may call them meta-theoretical physics. And the main meta, the

crucial lesson that emerges upon reconciling centuries of theoretical physics is that

nature is organised by symmetry and by scale. This is still not capturing the entirety

of the map, but it makes is far less intimidating. What’s more, it makes the areas that

persist this organisation, even more intriguing.

Perhaps the most tangible example of how symmetry organises physical phenomena

is the microscopic structure of a solid versus that of a liquid or a gas. In solids, the

molecules are tightly packed, forming a crystal structure.1 In contrast, liquids and

gases have a much more �uid structure. Translating (pushing) individual molecules,

or clumps of molecules, by arbitrary amounts, or rotating them by arbitrary angles,

leaves the �uid invariant, as there is no �xed structure to disrupt. This is not true for

solids. In solids molecules, or clumps thereof can only be translated and rotated by

speci�c discrete amounts, due to the periodic arrangement of the crystal lattice. In

other words, solids break translational and rotational symmetries that liquids and

gases do not.

Another paradigmatic example occurs in ferromagnetic materials, such as iron, nickel,

1There are also amorphous solids, but the conclusion is identical.
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1. Introduction

or cobalt. Heating the material causes it to lose its magnetic properties, and cooling

it restores them. This phenomenon is known as a ferromagnetic to paramagnetic

phase transition. In that example the spins comprising the material, have a natural

order in the ferromagnetic phase — they all align in the same direction, pointing

towards the attractive magnet. In contrast, in the paramagnetic phase, this order is

lost, and the material is invariant upon �ipping the spins. This spin-�ip symmetry

distinguishes the two phases. More quantitatively, there is an order parameter, the
local magnetisation, which distinguishes the two phases: it is zero in the paramagnetic

phase and non-zero in the ferromagnetic phase.

Both examples are instances of spontaneous symmetry breaking and serve as a guide

to the general principle. The general principle, �rst put forward by Lev Landau [5]

and now a celebrated paradigm in theoretical physics, is that physical phenomena

should be labelled by their symmetries and how they realise them — speci�cally,

whether they break them or not. Furthermore, exactly at the critical point between the

symmetry-broken and symmetry-preserving phases, the degrees of freedom are the

�uctuations of the order parameter. This is a powerful classi�cation, with applications

spanning a whole range of phenomena from particle physics, to cosmology.

How nature is organised by scale is, to some degree, common knowledge. Particles

make atoms, atoms make molecules, molecules make larger structures. The chain

continues and goes from humans to galaxies, to cosmological scales, bit by bit. Physics

at each length scale emerges from the smaller one and a�ects the immediately larger

one. A key insight, here, is the immediate succession of scales. The intricacies and

complexities of physics at far smaller scales are washed away.

This last fact makes the overwhelming majority of theories describing natural phe-

nomena e�ective, rather than fundamental. A famous example is Fermi’s theory of

the weak interaction, which explains the beta decay of a neutron, by positing the

interaction of four fermions at a single point. This theory works remarkably well

for this process, but it predicts that the probability of such an interaction grows

unboundedly as the energies of the participating particles increase. It can, therefore,

not be correct at higher energy, or equivalently smaller length scales.2 It has to be

superseeded by a theory, valid at higher energies, that reduces to Fermi’s theory, at

low energies. Indeed, we now know that this superseeding theory is the standard

model of particle physics. This too, despite describing elementary particles, is not a

fundamental description, but rather an e�ective one.

2An aside on scales and measurement units. It is common in high-energy physics — and employed

throughout this thesis — to use natural units, where the speed of light, the reduced Planck constant,

and the Boltzmann constant are all set to one: c D ℏ D kB D 1. With these conventions energy, mass,

momentum, and temperature are measured in the same units, which are, moreover, the inverse of length,

and time. So short length scales are the same as large energy scales, and vice versa.
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The mathematical framework underlying this discussion is the notion of renorm-
alisation group, originally developed by Kenneth Wilson [6–8], which serves as a

cornerstone of modern theoretical physics. The renormalisation group provides a

systematic way to move between di�erent scales. Funnily, despite the name one

can only move towards longer scales; it is, in fact, a semigroup. Nonetheless, the

main qualitative virtue of the renormalisation group is that it gradates the space of

descriptions of physical phenomena according to their validity range and provides a

criterion to assess whether a description is an e�ective one, or a rare, fundamental

one, valid across all scales.

Most interesting are the endpoints of the renormalisation group: the in�nitely small,

playfully yet commonly known as the ultraviolet (UV), and the in�nitely large, the

infrared (IR). At these endpoints — or �xed points, as they are more properly termed

— there is no sense of scale, as all dimensionful parameters are either exactly zero

or exactly in�nite. Life at the endpoints is typically simpler. The UV endpoint,

despite involving in�nitely small, in�nitely high-energy physics, simpli�es because

everything else has completely disappeared. Conversely, the IR endpoint strips away

all the details and retains only the essential, scale-invariant information. In this sense,

theories valid at intermediate points can be viewed as �ows between a UV �xed point

and an IR �xed point. A UV �xed point contains all information of the theories that

�ow out of it, while an IR �xed point collects all universal features, of every theory,

e�ective of fundamental, that �ows into it.

Furthermore, out of these two organising principles, emerges another valuable fea-

ture of the physics map: its linguistics. Remarkably, there seems to be a universal

grammar, a framework that describes accurately a plethora of phenomena. This is

known as quantum �eld theory (QFT), a framework historically developed to describe

relativistic quantum mechanics by postulating that particles are merely excitations

of underlying quantum �elds. It has been extremely successful in understanding

elementary particles and their interactions, and indeed, its most notable application

is the development of the standard model of particle physics, which encompasses all

known elementary particles and three of the four fundamental forces of nature. How-

ever, its utility extends far beyond the realm of particle physics. A well-appreciated,

yet astounding fact is that the language of QFT is exactly the right language to

describe classical and quantum statistical mechanics.3 Combined with the fact that

most systems in nature have so many degrees of freedom that a statistical description

is far more powerful and useful than an exact one, this gives QFT immense power.

It describes high-energy particle physics through quantum �elds and low-energy

statistical regimes through statistical �elds.

Moreover, connecting with the renormalisation group, its interesting endpoints

3Though time needs to be a bit funny.
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1. Introduction

are described, in this language by special kinds of QFTs, known as conformal and
topological �eld theories (CFTs and TQFTs, respectively). While the essence of these

theories will be expounded later in the chapter, their spirit can be captured, brie�y,

by stating that these are theories enjoying more symmetries than generic QFTs.

Speci�cally, CFTs are invariant under rescaling the space they are de�ned on, while

TQFTs are invariant to any smooth deformation in their surroundings. This makes

them perfect candidates for renormalisation �xed points as they are both insensitive

to scales. This thesis is devoted to the study of such theories, and their universal

aspects, exploring their properties and applications.

However, while the perspective taken above is suitable for describing many physical

phenomena, it honestly fails to capture the entirety of theoretical physics in its current

state. There are outliers, either experimentally observed or theoretically proposed,

that break one or both of the organising principles or speak a di�erent language than

QFT. The most important and elusive phenomenon is, arguably, quantum gravity.
Gravity seems to be highly adept at evading the most sophisticated and intricate

attempts to describe it quantum mechanically. Despite signi�cant progress and the

exploration of promising avenues — most notably, string theory — there is still no

comprehensive understanding of quantum gravity in our universe. Although this

thesis does not touch upon quantum gravity, much of the underlying research has

been and continues to be motivated by this fundamental question.

1.1 Symmetry and topology

Symmetry4 serves as an organising principle for the mathematical description of the

physical world. Besides the arguments mentioned above, an important point is that

classical conservation laws, such as conservation of charge, momentum, and angular

momentum, are associated with symmetries via Noether’s theorem. Recent advance-

ments across various �elds such as high-energy physics, condensed-matter physics,

quantum information theory, and mathematics have induced a transformative gener-

alisation of the concept of symmetries. This broadeding of our understading has led

to notions such as higher-form symmetries, non-invertible symmetries, subsystem

symmetries and others, occuring both in quantum �eld theory (QFT) as well as in

microscopic, lattice, models. These generalised symmetries, have given back to the

�elds they owe their existence to, �nding applications in a wide array of quantum sys-

tems, such as the Ising model, topological phases of matter (cf. section 1.2), fractons,

gauge theory, and string and M-theory.

Ideas relating to generalised symmertries will be crucial and themes relating to them

4Throughout this thesis, symmetry will always refer to global symmetry. “Gauge symmetry” will

always be referred to as gauge redundancy or gauge invariance.
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1.1. Symmetry and topology

will be recurrent throughout this thesis. The scope of this section is to review some of

the recent advancements in this �eld. Given the quantum-�eld-theoretic language of

the later chapters of this thesis, the discussion of symmetries and their generalisations

will be given within the context of relativistic QFT, with departures from that context

mentioned explicitly, whenever necessary.

1.1.1 Ordinary symmetries

We begin the discussion by recalling the usual presentation of symmetries in QFT.

We will start with a d -dimensional QFT with a U.1/ symmetry. Associated with this

symmetry there is a current, J�.x/, (with x D .t;x/), that is conserved on-shell:

@�J�.x/ D 0: (1.1.1)

One then de�nes a charge operator:

Q.t/ ��D
Z

†t

dd�1x J0.t;x/; (1.1.2)

where the integral is taken over a spatial slice, †t , assumed closed, or equipped

with appropriate boundary conditions. As a consequence of (1.1.1), Q.t/ is actually

independent of t :

dQ.t/

dt
D 0: (1.1.3)

In a quantum theory, according to Wigner’s theorem, the symmetry is implemented

by unitary operators, acting on the Hilbert space. These are simply the exponentials

of the charge:

U
�
ei˛; t

� ��D exp.i˛Q.t//; ˛ 2 R=2�Z; (1.1.4)

where U
�
ei˛; t

�
is again, independent of t , due to (1.1.1). This operator implements a

rotation by an angle, ˛. One slight, for now merely notational, change one can make

to the above story is to write it in a coordinate-free way. That is, instead of talking

about the vector J�.x/, one can construct a one-form, JŒ1� 2 �1.X/, which in the

previous coordinate system is expressed as:

JŒ1� D J�.x/ dx
�
: (1.1.5)

Noether’s theorem is now expressed as the condition that the one-form JŒ1� be

coclosed, i.e.

d ? JŒ1� D 0; (1.1.6)

5



1. Introduction

where ? W �p.X/! �d�p.X/ is theHodge-star operator. We can then integrate ?JŒ1�
on any (closed or equipped with boundary conditions) codimension-one manifold,

†d�1, to obtain a charge operator:

QŒ†d�1� ��D
Z

†d�1

?JŒ1�: (1.1.7)

As a consequence of (1.1.6), the charge operator is insensitive to smooth deformations

of †d�1. Indeed:

QŒ@Yd � D
Z

@Yd

?JŒ1� D
Z

Yd

d ? JŒ1� D 0; (1.1.8)

implying that QŒ†d�1� D QŒ†0
d�1�, if, †d�1 and †0

d�1 di�er by a boundary. As

before, the charges are represented as topological operators acting on the Hilbert

space, as

U.ei˛; †d�1/ ��D exp.i˛QŒ†d�1�/; ˛ 2 R=2�Z: (1.1.9)

While for the most part of the thesis we will be in Euclidean signature, it is worth

mentioning that in Lorentzian signature, the operators U.ei˛; †d�1/ play a double

role, depending on the nature of †d�1. If †d�1 is a �xed-time slice, such operators

are genuine operators acting on the HIlbert space. On the other hand, if †d�1 is
extended in the time direction, it is a topological defect, that modifes the quantisation,

giving rise to a twisted Hilbert space. We will refer to U.ei˛; †d�1/, as the symmetry

operators.

Since we are in a quantum theory, the continuity equation, (1.1.6), is modi�ed in the

presence of a local operator, O.x/ to a Ward identity:

�
d ? JŒ1�

�
.y/O.x/ D q ıŒd�.x � y/ O.x/; (1.1.10)

where ıŒd�.x � y/ is a d -form delta function and q 2 Z is the charge of O.x/ under

the symmetry. Equation (1.1.10) and all the equations that follow, should be regarded

as operator equations, i.e. holding in arbitrary correlation functions, with insertions

away from y. Exponentiating the Ward identity we see that the symmetry operators,

inserted along a .d � 1/-dimensional sphere, act on local operators by linking with

the point x, as depicted in �gure 1.1:

U
�
ei˛;Sd�1

�
� O.x/ D U

�
ei˛; @Bd

�
� O.x/

D exp

�
iq˛

Z

Bd

ıŒd�.x � y/
�

O.x/ D eiq˛O.x/: (1.1.11)

6



1.1. Symmetry and topology

eiq ˛

U
�
ei˛;Sd�1�

O.x/eiq ˛O.x/

U
�
ei˛;Sd�1�

O.x/D D

Figure 1.1: Action of symmetry operator on a local operator. On the left-hand-side, the symmetry
operator is inserted on an Sd�1 that links with x. In the middle the symmetry operator is deformed
and unlinked, resulting in the charged operator picking a representation of the group element.
Finally, on the right-hand-side, the topological operator is shrunk to nonexistence.

From (1.1.11) we see that acting with U
�
eiˇ ;Sd�1�, after acting with U

�
ei˛;Sd�1�

is equivalent to acting with eiˇ � ei˛ D ei.ˇC˛/. In other words, the set of operators

U
�
ei˛;Sd�1�, together with their composition — usually called their fusion rules —

implement the action of the symmetry group; in this case, U.1/.

More generally, associated with any symmetry group, G, which can be abelian

or non-abelian, continuous or discrete, there exists a set of unitary topological

operators, supported on codimension-one manifolds, and labeled by group elements:

fU.g;†d�1/; g 2 Gg. These operators fuse according to the group multiplication of

G:

U.g;†d�1/˝ U
�
g0; †d�1

�
D U

�
g � g0; †d�1

�
: (1.1.12)

The operator U.1; †d�1/, where 1 is the identity element of G, acts as the identity

operator on the Hilbert space. As a consequence, the operator U.g�1; †d�1/ is the
inverse of U.g;†d�1/. This is to be contrasted with subsection 1.1.3, where not every

symmetry operator has an inverse. Local operators transform in representations of

the symmetry group:

U
�
g;Sd�1

�
� Oi .x/ D �.g/ij � Oj .x/; (1.1.13)

where i labels the multiplet that the operator transforms in, in terms of a repres-

entation �.g/ij of the group element g 2 G. The upshot of this de�nition is that it

does not rely on the existence of a conserved current, putting therefore discrete and

continuous symmetries on the same footing.

Before moving on with generalisations of symmetries, let us comment on how one

probes ordinary symmetries. In case the symmetry is continuous, one can couple the

7



1. Introduction

conserved current to background gauge �elds, AŒ1� D A�.x/ dx
�, for the symmetry,

by inserting in the path-integral an operator of the form5

exp

�
i

Z

X

ddx
p

jgj g��.x/A�.x/J�.x/
�

D exp

�
i

Z

X

AŒ1� ^ ?JŒ1�

�
: (1.1.14)

Note that A is not a dynamical gauge �eld. It is often natural — though not the

most generic option — to consider �at connections,
�
AŒ1�

�
2 H1.X IG/. These, one

can Poincaré-dualise6 AŒ1� to a .d � 1/-cycle,
h

yAd�1
i

2 Hd�1.X IG/, so (1.1.14) is

equivalent to inserting a symmetry operator supported on yAd�1:

U
�
1; yAd�1

�
D exp

�
i

Z

yAd�1

?J

�
: (1.1.15)

Computing the partition function in the presence of the background gauge �eld,

Z
�
AŒ1�

� ��D
D
U
�
1; yAd�1

�E
; (1.1.16)

allows one to study correlation functions of the currents, as well as to study the

anomaly structure of the theory. The latter presentation, (1.1.15), is in fact also

suitable for addressing the same quations also for discrete symmetries.

If the symmetry is not anomalous, the procedure outlined above serves as the �rst

step to gauging the symmetry. To gauge the symmetry one needs to, then, insert a

su�ciently �ne network of (1.1.15) [9–12]. In the case of continuous symmetries, this

is usually supplemented with adding kinetic terms for the gauge �elds, although some

times it su�ces to consider �at gauge �elds [13, 14]. The “su�ciently �ne” network,

becomes, in this case, a fully-�edged path integral over the gauge connections,

producing at the end the gauged theory. For a discrete symmetry, gauge �elds,

even when made dynamical, remain, necessarily, �at. The network of topological

operators, supported on Poincaré duals of gauge �elds implements, in this case the

sum over �at gauge bundles of G.

1.1.2 Higher-form symmetries

In their seminal work [15], Gaiotto, Kapustin, Seiberg and Willett formalised the �rst

important generalisation, dubbed higher-form symmetries, that sparked the recent

symmetry era. This generalisation built upon a collection of related ideas stemming

mostly from non-perturbative quantum �eld theory and string theory [16–34]. The

main idea, expressed again in terms of a conserved U.1/ current, is to replace the

5In some cases, speci�cally for shift symmetries (in some frame), one needs to also include quadratic

terms of AŒ1�, such as
R
AŒ1� ^ ?AŒ1�, in order to preserve background gauge invariance.

6Or Poincaré–Lefschetz in cases when spacetime has a boundary.

8



1.1. Symmetry and topology

D D eiq ˛eiq ˛D D eiq ˛eiq ˛

U
�
ei˛; †d�p�1

�
U
�
ei˛; †d�p�1

�

O.Cp/ O.Cp/ O.Cp/

Figure 1.2: Action of a p-form symmetry operator on a p-dimensional operator. On the left-hand-
side, the symmetry operator is inserted on an Sd�p�1 that links with the p-dimensional operator.
In the middle the symmetry operator is deformed and unlinked, resulting in the charged operator
picking a representation of the group element. Finally, on the right-hand-side, the topological
operator is shrunk to nonexistence.

one-form current, JŒ1�, by a .pC 1/-form one, JŒpC1�, with the conservarion equation

being, still, a coclosedness condition:

d ? JŒpC1� D 0: (1.1.17)

From here on, one can follow the same procedure as before. The �rst step is to

construct charge operators by integrating on a codimension-.p C 1/ manifold:

Q
�
†d�p�1

� ��D
Z

†d�p�1

?JŒpC1�; (1.1.18)

and exponentiate to obtain topological, symmetry operators:

U
�
ei˛; †d�p�1

� ��D exp
�
i˛Q

�
†d�p�1

��
; ˛ 2 R=2�Z: (1.1.19)

The main di�erence with the case of subsection 1.1.1, is that now the symmetry oper-

ators cannot link with local operators. They can link, however, with p-dimensional

extended operators (see �gure 1.2). They act, in a similar manner as before:

U
�
ei˛; †d�p�1

�
� O
�
Cp
�

D eiq ˛ Link.†d�p�1;Cp/O
�
Cp
�
; (1.1.20)

where now the charged operator, is supported on a p-dimensional manifold Cp . The

action of the topological operator picks up the charge, q 2 Z and the linking number

between †d�p�1 and Cp .

Similarly as before, the notion of a p-form symmetry group, GŒp� — continuous or

discrete — in a quantum �eld theory, can be formalised by the existence of a set

9



1. Introduction

U
�
eiˇ ; †d�p�1

�

D

U
�
ei˛; †d�p�1

�

O.Cp/

U
�
eiˇ ; †d�p�1

�

O.Cp/

U
�
ei˛; †d�p�1

�

Figure 1.3: Higher-form symmetries are abelian. On the left-hand-side, the operator
U.eiˇ ; †d�p�1/ acts after U.ei˛ ; †d�p�1/. On the right-hand-side, the topological operat-
ors were deformed, at no cost, so that the order of their action was reversed.

of codimension-.p C 1/ topological operators,
˚
U.g;†d�p�1/; g 2 GŒp�

	
, labelled

by group elements. The case p D 0 corresponds to the ordinary global symmet-

ries (henceforth referred to as zero-form symmetries), reviewed in subsection 1.1.1.

One key di�erence between the cases p > 0 and p D 0 is that, unlike zero-form

symmetries, higher-form symmetries are necessarily abelian. This is most easily

illustrated with a picture, see �gure 1.3. Nonetheless, the general story is similar.

The topological operators fuse according to the group multiplication:

U
�
g;†d�p�1

�
˝ U

�
g0; †d�p�1

�
D U

�
g � g0; †d�p�1

�
; (1.1.21)

and p-dimensional operators transform in representations of the symmetry group:

U
�
g;†d�p�1

�
� O.x/ D �.g/ � O.x/: (1.1.22)

Here, whenever p > 0, �.g/ is simply a phase, since higher-form symmetries are

abelian.

Before moving on, let us give a couple of examples of higher-form symmetries. These

examples will, on the one hand, illustrate the abstract discussion above, while on the

other hand, they will serve as an entrée to the later chapters of this thesis, where

slight alterations of these examples will be prevalent.

The prototypical example is that of Maxwell theory, in d -dimensions. This is a theory

of a free photon, i.e. a free one-form, a 2 �1.X/, with �eld-strength f 2 �2.X/.

The equations of motion are given by

d ? f D 0; (1.1.23)

10



1.1. Symmetry and topology

which we immediately recognise as the conservation equation for the two-form

current, f . This is a one-form U.1/Œ1� symmetry. The symmetry operators associated

with it are:

U
�
ei˛; †d�2

� ��D exp

�
i˛

Z

†d�2

?f

�
; ˛ 2 R=2�Z: (1.1.24)

The charged objects under this symmetry are Wilson lines:

Wqe.C1/ ��D exp

�
2�i qe

Z

C1

a

�
; (1.1.25)

where C1 is either an in�nitely extending line, or a closed loop. To measure the

charge, one has to link the Wilson line with the one-form symmetry operators. This

is Gauss’s law in action. The charge, qe 2 Z, of the Wilson line, is precisely its electric

charge. For that reason, this symmetry is called electric one-form symmetry, often

denoted as U.1/Œ1�(e) .

Maxwell theory also has another higher-form symmetry, stemming from the Bianchi

identity,

df D 0: (1.1.26)

This is a magnetic .d � 3/-form symmetry, U.1/Œd�3�
(m) . Its conserved current is

?f 2 �d�2.X/ and the symmetry operators are given by

U
�
ei˛; †2

� ��D exp

�
i˛

Z

†2

f

�
; ˛ 2 R=2�Z: (1.1.27)

What is charged under the magnetic one-form symmetry is ’t Hooft operators. One

way to see it, is within the electric presentation of the theory, where ’t Hooft operators

are de�ned by excising a .d � 3/-dimensional manifold, Cd�3, from spacetime and

imposing boundary conditions on a manifold †2, linking Cp�3, such that
Z

†2

f D qm 2 Z: (1.1.28)

This implies immediately that ’t Hooft loops carry charge under the magnetic .d �3/-
form symmetry; they carry magnetic charge. A di�erent, yet equivalent, way to see

this is in a magnetic presentation, where one exchanges the electric gauge potential,

a, for a magnetic one, La 2 �d�3.X/, whose �eld-strength is Lf D ?f 2 �d�2.X/.
In this presentation, the ’t Hooft operators are simply the Wilson operators of the

“magnetic photon,”

’tHqm.Cd�3/ ��D exp

�
2�i˛ qm

Z

Cd�3

La
�
; (1.1.29)

11



1. Introduction

which can be seen immediately to carry charge qm 2 Z, under the symmetry gener-

ators (1.1.27).

In four-dimensions, both the electric and the magnetic symmetries are one-form

symmetries. One may, therefore, have “dyonic” line-operators charged under both of

them. This is in fact the starting point of chapter 4, uncovering a richer structure

underpinning conformal �eld theories with continuous higher-form symmetries.

A second, paradigmatic, example of higher-form symmetries in quantum �eld theory

takes place in Chern–Simons theory. The relevant example in this case is abelian

Chern–Simons theory. This is a three-dimensional topological gauge theory, with

action

SCSŒa� D k

4�

Z

X

a ^ da : (1.1.30)

Here, a 2 �1.X/ is a one-form U.1/ connection, normalised as
R
a 2 2�Z, along

any one-cycle, and k 2 Z is called the level of the action. Integrality of the level is

required to guarantee gauge invariance. The theory, as written above, is de�ned on a

torsion-free manifold; this is su�cient for our purposes. Chern–Simons theories on

manifolds with torsion are treated, for example in [35, 36], and (brie�y, but in a more

general framework) in appendix A.1. The equation of motion for a is simply �atness

condition, k da D 0, and the observables are given by Wilson loops:

WnŒC1� ��D exp

�
in

Z

C1

a

�
: (1.1.31)

with n being an integer. These operators have a slightly peculiar property. They are

both the symmetry operators and the charged objects. Let us explain this. They are

naturally symmetry operators, as they are topological. Since they are supported on

lines, i.e. .d �2/-dimensional manifolds, in d D 3, they furnish a one-form symmetry.

Moreover, from the canonical commutation relations that follow from (1.1.30), one

can show that Wilson loops obey an algebra of the form:

WnŒC1�˝ Wm

h
zC1
i

D exp

�
�2�inm

k
Link

�
C1; zC1

��
Wm

h
zC1
i

˝ WnŒC1�: (1.1.32)

This algebra has three important consequences. Firstly it shows that the fundamental

Wilson loop,

WŒC1� ��D exp

�
i

Z

C1

a

�
; (1.1.33)

carries charge n under the one-form symmetry described above. Secondly, it is clear

that when n is an integer multiple of k, the corresponding Wilson loop is the identity

12



1.1. Symmetry and topology

operator. Therefore, n should be regarded only up to shifts by k. In other words, the

one-form symmetry is a �nite, Z
Œ1�

k
, symmetry. Finally, the interesting property that

the symmetry generators are charged, despite the abelian nature of the symmetry,

indicates that the one-form symmetry is anomalous.

These features, are exhibited in higher-dimensional generalisations of this theory,

involving two gauge-�elds, of di�erent form-degrees, known as BF theories. BF

theories, and their properties will occupy a large part of this thesis. In particular,

chapters 2 and 3 are devoted in a systematic study of those theories.

Before moving on to other generalisations of symmetries, it is worth mentioning a

few salient features of higher-form symmetries.

Higher-form symmetries can break spontaneously. A spontaneously broken continu-

ous higher-form symmetry gives rise to a gapless Nambu–Goldstone mode, which is

in this case a higher-form gauge �eld [15, 22, 37, 38]. Indeed, the free photon described

above, can be seen, in d ⩾ 4, as the Goldstone mode of the spontaneously broken

U.1/Œ1�(e) .
7 Spontaneously broken p-form symmetries imply decon�ned p-dimensional

operators, while, when unbroken, they imply con�nement of the charged extended

operators. This can be — and is in the case of one-form symmetries [42] — utilised,

to characterise phases of matter with higher-form symmetries in the spirit of an

extended Landau–Ginzburg theory.

Much like zero-form symmetries, higher-form symmetries can be coupled to back-

ground gauge-�elds, which are now given by .p C 1/-form gauge �elds, in the same

fashion as (1.1.14) and (1.1.15). In the absense of ’t Hooft anomalies, higher-form

symmetries, both discrete and continuous, can be, subsequently, gauged following the

same procedure outlined in subsection 1.1.1. In the case of gauging discrete p-form

symmetries, the gauged theory enjoys a .d � p � 2/-form global symmetry, given by

the Pontryagin dual of the original symmetry [15, 43]. Furthermore (discrete) p-form

symmetries can also be gauged on a submanifold of higher-codimension, producing

new topological defects, which are typically non-invertible [44–48]. This is a novel

property of higher-form symmetries, that is not present for zero-form symmetries.

1.1.3 Non-invertible symmetries

In this section we will discuss a di�erent interesting generalisation of symmetries,

which will be useful for a part of the main body of this thesis. Such symmetries are,

by now, mostly known as non-invertible symmetries, although in some parts of the

7More generally, a continuous p-form symmetry can break spontaneously in d ⩾ pC 2 dimensions,

while a discrete p-form symmetry can break spontaneously in d ⩾ pC 1 dimensions [15, 38]. This is a

higher-form version of the Coleman–Mermin–Wagner–Hohenberg theorem. [39–41]
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1. Introduction

phase space they are referred to as categorical symmetries.8 The main characteristic of

such symmetries is that, while they are still described by topological operators, their

fusion algebra has no inverse. Here, we will not attempt a mathematically rigorous

introduction to the various concepts, nor will we follow a historically precise timeline

of the developments of this �eld. Rather, we will present the main ideas, that are

relevant for this thesis, and outline their physical applications. For a more complete

introduction to non-invertible symmetries we refer the reader to [50, 51].

Perhaps the simplest physical model exhibiting non-invertible symmetries is is a

two-dimensional Ising model9 at the critical temperature, also known as the two-

dimensional Ising CFT. The main idea dates back to Fröhlich, Fuchs, Runkel, and

Schweigert [52] who reinterpret the classic Kramers–Wannier duality of the Ising

model in terms of topological operators. In the Ising model, correlation functions of

spins, at temperature inverse temperatureˇ, are equal to those of disorder operators at

inverse temperature ˇdual D �1
2
log tanhˇ, implying a high/low-temperature duality.

At the critical temperature, ˇcrit D �1
2
log tanhˇcrit, this duality gets upgraded to a

symmetry. The operator that performs this transformation is a topological operator

that has, nonetheless, a curious property. To describe this property we need to �rst

describe the �elds that parttake in the critical Ising model. At critical temperature,

the model is described by a two-dimensional conformal �eld theory (CFT), of central

charge c D 1
2
. This is a rational CFT, whose local primary operators are the identity

operator, a spin operator, �.x/, and a thermal operator ".x/. Correspondingly it

has three topological line operators. The identity line, 1, a spin-changing line, �,

implementing the usual Z2 symmetry of the Ising CFT, and the aforementioned

Kramers–Wannier defect, D , whose action we will now describe (and is illustrated in

�gure 1.4). Transporting D past ".x/, it �ips its sign into �".x/. Passing it through
�.x/, however, it deletes the operator, creating in its place a disorder operator, �.x/,

connected to D by an � line. �.x/ is a non-genuine operator, of the same scaling

weights as �.x/. Therefore, upon encircling �.x/ by the Kramers–Wannier defect,

it produces a “tadpole” diagram: a closed line of D attached to an � line. Such a

correlation function vanishes!10 In other words, the Kramers–Wannier operator, is a

non-invertible operator: its action on the state produced by �.x/ is zero.

Translated to fusion rules, what we described above can be summarised concisely to

the following algebra of topological operators:

�˝ � D 1; �˝ D D D ˝ � D D ; D ˝ D D 1 ˚ �: (1.1.34)

8Note, however, that in a small corner of phase space [47, 49] the name categorical symmetry is

reserved for a slightly di�erent concept.
9Here, and everywhere in this thesis we are using high-energy physics conventions for dimensions.

So “two-dimensional” refers to two spacetime dimensions.
10This can be seen by noting that this diagram should produce a state of conformal weights .h; Nh/ D

.0; 0/, in the Z2-twisted Hilbert space. But such a state does not exist.
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1.1. Symmetry and topology

�.x/ D �.x/

D D

�".x/ D �".x/

D D

Figure 1.4: The action of the Kramers–Wannier defect. Left: D �ips the sign of the thermal
operator. Right: D replaces �.x/ by a non-genuine operator, �.x/, connected to a Z2 line.

By the above algebra, and speci�cally by the last equation, we can see that the

operator D has no inverse. In other words, these topological operators do not

generate a group, but a fusion category, whose fusion ring is given by (1.1.34). This

category is known as .Z2;C/ Tambara–Yamagami category [53], or simply as Ising
fusion category.

The story described above is actually quite generic for two-dimensional rational

CFTs [54–56]. Such CFTs admit a set of topological lines, the Verlinde lines, [57, 58],

whose fusion ring is non-invertible and given by the Verlinde formula [57]. More

generally, two-dimensional, not necessarily conformal QFTs also enjoy non-invertible

topological lines [9, 12, 52, 59–63]. Such lines are interpreted as generalisations of

conventional symmetries, for the reason that, much like ordinary symmetries, they

are preserved under the renormalisation group �ow, constrain correlation functions,

and, when anomalous, give contstraints on the low-energy phases of quantum �eld

theories [60–63]. Themathematics of such symmetries is, generally, better understood

in cases when there are �nitely many (simple) topological operators, in which case the

symmetry is described by a fusion category. There are a lot of examples of continuous

non-invertible symmetries [59, 61, 64–66], but their mathematical description is less

clearly understood.

Non-invertible symmetries are also present in higher-dimensional QFTs. In fact, in

higher-dimensions there is also an interplay between higher-form, and non-invertible

symmetries, leading to topological operators, supported on higher-codimensional

manifolds, with a non-invertible fusion ring. We discuss here a few examples, with

many more to be found in the original papers (see for example [67] for a long list of

references).

Three-dimensional TQFTs are a prime example. The idea is parallel to the discussion
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1. Introduction

of abelian Chern–Simons theory in subsection 1.1.2, with the added generalisation

that the TQFTs can now be taken to be non-abelian. The natural operators of such

theories are topological, and because of the non-abelian nature of the TQFT, they

fuse non-invertibly. See e.g. [68–74], for examples with this perspecitve.

Another perspective involves gauging non-abelian invertible symmetries. Gauging

a non-abelian, �nite, p-form symmetry, GŒp�, in a d -dimensional QFT results in a

non-invertible .d �p�2/-form non-invertible global symmetry, whose fusion ring is

given by there representation ring, Rep
�
GŒp�

�
, ofGŒp� [12, 75–77]. The corresponding

topological operators are the Wilson operators of GŒp�.

Of relevance to this thesis, and particularly chapter 4, is the case of continuous

non-invertible symmetries, which is best illustrated by a concrete example. Consider

a compact scalar, � � � C 2� , in generic dimensions. This theory has a global U.1/

shift symmetry, � 7−! � C c, c 2 R=2�Z and a Z2 symmetry � 7−! ��. Gauging
the Z2 symmetry breaks the shift symmetry because the U.1/ charge is odd under

Z2. In other words, if

U
�
ei˛; †d�1

�
D exp.i˛QŒ†d�1�/; ˛ 2 R=2�Z; (1.1.35)

is the U.1/ generator, under a Z2 gauge transformation it maps to U.e�i˛; †d�1/.
However, there is a continuous family of topological operators, that survives the

gauging, given by:

D˛.†d�1/ ��D U
�
ei˛; †d�1

�
˚ U

�
e�i˛; †d�1

�
D 2 cos.˛ QŒ†d�1�/; (1.1.36)

with ˛ 2 R=�Z. These operators fuse, however, in a non-invertible fashion [63, 65,

78]:

D˛.†d�1/˝ Dˇ .†d�1/ D D˛Cˇ .†d�1/˚ D˛�ˇ .†d�1/: (1.1.37)

This story has a gauge-theory analogue, where the compact scalar is replaced by a

gauge �eld, in which case, the Z2 symmetry is interpreted as charge-conjugation. The

corresponding Z2-gauged theory, with its also has a continuous family of topological

operators fusing similarly to (1.1.37) [76, 79–82].

Finally, a striking appearance of non-invertible symmetries is in (four-dimensional)

quantum electrodynamics (QED) and quantum chromodynamics (QCD) [83, 84].

Let us sketch, in brief, the idea in QED. Classically, QED has an axial U.1/ sym-

metry rotating the participating Dirac fermions by a phase exp
�
i˛
2

5
�
. However,

this symmetry su�ers from the Adler–Bell–Jackiw (ABJ) anomaly [85, 86], implying

that the symmetry is broken, at the quantum level, by instanton e�ects. However,

what was shown in [83, 84] is that the symmetry can be restored by coupling the

non-topological operator

U˛.†3/ ��D exp

�
i˛

Z

†3

?Jaxial

�
; (1.1.38)
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1.1. Symmetry and topology

where Jaxial is the anomalously conserved axial current, for the value ˛ D 2�
N
, to a

three-dimensional fractional quantum Hall state with �lling fraction � D 1
N
. This

constructs a genuine topological operator in the theory. In this case, the response

�eld, A, of the quantum Hall state, is identi�ed with the dynamical photon of QED,

while the dynamical �eld a of the quantum Hall state is introduced, and integrated

out, only on the submanifold†3 of spacetime. More precisely the topological operator

produced by this construction is:

D 1
N
.†3/ ��D

Z

CŒ†3�

Da

vol.G /
exp

�Z

†3

�
2�i

N
? Jaxial C iN

4�
a ^ daC i

2�
a ^ dA

��
;

(1.1.39)

where C Œ†3� denotes the space of U.1/ connections on †3 modulo gauge transform-

ations. This operator is, however, non-invertible. This can be explicitly checked by

noting that D 1
N

˝D
�
1
N

¤ 1. A similar procedure can be performed to obtain D˛.†3/,

for all ˛ 2 2�Q=Z, by stacking with the e�ective TQFT for fractional quantum Hall

state at �lling � 2 Q=Z (this is known as a minimal TQFT [87]). The same construc-

tion works for QCD, in the massless quark limit, where, now, the axial symmetry

rotates the quark doublet. In this limit, it is suggested that spontaneous breaking

of this non-invertible axial symmetry explains the dominant decay channel of the

neutral pion into two photons. In this spirit, the neutral pion may be viewed as a

Nambu–Goldstone boson for this spontaneous symmetry breaking [83, 88, 89].

1.1.4 Symmetry topological �eld theory

In this section we will brie�y present an approach aimed at decoupling the symmetry

properties of a given quantum �eld theory from the dynamics. The idea, based on [90,

91] is to encode the symmetry operators of a given quantum �eld theory in a one-

higher-dimensional TQFT. In the TQFT all operators are, by de�nition, topological,

therefore one may think of them as symmetries of something. Another point-of-view,

is to generalise the spirit of anomaly in�ow. In an ’t Hooft anomalous theory one

can capture the anomaly in a one-higher-dimensional invertible TQFT; that is, the

low-energy description of an SPT phase (cf. section 1.2). Here, one captures the

symmetry by coupling to a topological order in one-higher-dimension.

Concretely, consider a d -dimensional quantum �eld theory, with a symmetry, C , on a

manifoldX . This symmetry can be grouplike, or non-invertible, zero-, or higher-form.

Typically, the construction works best for discrete symmetries, however proposals

for continuous symmetries appeared recently in the literature [14, 92–94]. One then

constructs a .d C 1/-dimensional topological �eld theory, the “symmetry topological

�eld theory” (symTFT.C/), with the following properties.

1. It admits topological boundary conditions, jtopi. These are sometimes referred
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jQFTihtopj symTFT.C/ ZQFTD

Figure 1.5: The symmetry TFT setup. Evaluating the symmetry TFT on an interval with topolo-
gical Dirichlet boundary conditions on the one side and dynamical boundary conditions on the
other side produces the QFT partition function.

to as gapped boundary conditions.

2. It admits the original d -dimensional QFT as a boundary condition, i.e. the

starting QFT is compatible with the variational principle of the symTFT.C/.

We will denote this boundary condition as jQFTi.

3. The partition function of the symTFT on X � Œ0; 1�, with boundary conditions

htopj at 0 and jQFTi at 1 gives the partition function of a global variant of

the original QFT. The modi�er “global variant” refers to di�erent topological

manipulations of the QFT, i.e. stacking with SPTs or discrete gaugings. Exactly

which global variant is produced depends on the form of topological boundary

conditions one chooses. Topological Dirichlet boundary conditions produce

the original QFT. This is illustated in �gure 1.5.

As an example, let us assume that the QFT has a �nite, grouplike symmetry, G. In

this case, the dynamical boundary condition, jQFTi is

jQFTi D
X

A

ZQFTŒA� jAi ; (1.1.40)

where ZQFTŒA� denotes the partition function of the QFT in the presence of back-

groundG-gauge �elds, in the sense of (1.1.16). An option for the topological boundary

condition is Dirichlet boundary condition, which can be represented as

jDŒA�i D
X

A0

ı
�
A0 � A

� ˇ̌
A0˛ : (1.1.41)
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1.1. Symmetry and topology

The sandwich of �gure 1.5 produces:

hDŒA�jQFTi D ZQFTŒA�: (1.1.42)

Other choices of boundary conditions produce the QFT with some subgroup of

G gauged. For example, if the group is non-anomalous, there exists a Neumann

boundary condition, given by

jNŒB�i D
X

A0

exp

�
i

Z
A0 Y B

� ˇ̌
A0˛ ; (1.1.43)

where Y is the cup product of cocycles and B is a background gauge �eld of the

Pontryagin dual group, yG, of G. This produces the partition function of QFT, with G

gauged:

hNŒB�jQFTi D
X

A

exp

�
i

Z
A Y B

�
ZQFTŒA� D ZQFT=G ŒB�: (1.1.44)

To further illustrate the idea, in an example that will appear prominently in this thesis,

let us take the global symmetry to be a p-form Z
Œp�

k
symmetry. The corresponding

symTFT is a Zk higher Dijkgraaf–Witten theory [95], or written in terms of U.1/

gauge �elds [34], it is a level-k, abelian, p-form BF theory. Its action is:

SBFŒA; B� ��D
k

2�

Z

X

BŒd�p�1� ^ dAŒp� ; (1.1.45)

where AŒp� is a p-form gauge �eld and BŒd�p�1� is a .d � p � 1/-form gauge �eld.

The observables, are a generalisation of the Chern–Simons Wilson loops (1.1.31),

namely Wilson operators for the A and the B �elds:

Wn

�
Cp
� ��D exp

 
in

Z

Cp

AŒp�

!
and Vm

�
Cp
� ��D exp

 
im

Z

Cd�p�1

BŒd�p�1�

!
:

(1.1.46)

The Dirichlet and Neumann boundary conditions are, in this case given by the

eigenstates of Wn

�
Cp
�
and Vm

�
Cd�p�1

�
, respectively:

Wn

�
Cp
�

jDŒA�i D exp

 
in

Z

Cp

A

!
jDŒA�i ; (1.1.47)

Vm
�
Cd�p�1

�
jNŒB�i D exp

 
im

Z

Cd�p�1

B

!
jNŒB�i : (1.1.48)

The important feature in this discussion, is that, in order to study symmetry-related

questions, we did not need to specify the dynamical quantum �eld theory. For
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example, this is the symmetry TFT for SU.N / Yang–Mills theory, as well as for

various pure N D 2 super-Yang–Mills theories with ADE gauge algebra [96].

More generally, the study of symmetry TFTs has become, in recent years, a very

active topic of research, seeing applications in various �elds, see [14, 89, 92, 93,

96–100] for a sample of the recent literature.

1.1.5 Honorable mentions

There are many more important developments concerning symmetries and their

generalisations, which, albeit exciting, are not directly connected to this thesis. In

this short section we brie�y comment on two of them.

An obvious generalisation concerns the interplay of grouplike symmetries acting on

objects of di�erent dimensions, or in other words, the mixing of higher-form sym-

metries of di�erent degree, into a structure that is not simply a direct product. This

structure is known as higher-group symmetry. For an incomplete list of references,

see [31–33, 75, 95, 96, 100–116].

A di�erent generalisation concerns what is known as subsystem symmetries. This
departs, slightly, from the point of viewwe advocated so far, namely that symmetry D
topological operators, in the sense that their symmetry generators are not entirely

topological, but are nevertheless, conserved in time. They appear in a large class

of condensed matter systems, such as fracton models see e.g. [117–123], for an

incomplete list. The most surprising feature of these models, which can be traced

back to subsystem symmetry is the sensitivity of the low-energy observables, to the

high-energy details. For example, such systems have exponentially large ground

state degeneracy [124, 125], excitations with restricted mobility, and exhibit UV/IR

mixing [120, 125–128], preventing a conventional e�ective �eld theory description

at low energies.

1.2 The gapless and the gapped

We have, thus far, explained the �rst half of the title of this thesis. The purpose of

this section is to explain the second half.

Let us begin with a quantum system, described by some microscopic Hamiltonian.

Given systems described by di�erent Hamiltonians, we can examine whether or not

they occupy the same quantum phase of matter by looking into their ground states.

One of two things can happen: (1) there is a discretuum of such states,11 or (2) there

is a continuum of such states. The �rst case is associated with the notion of a gapped

11Typically there are �nitely many states, but we are being generous and allow at most countably

in�nite states.
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1.2. The gapless and the gapped

phase of matter, while the second one with a gapless phase. In what follows we will

give a more precise de�nition of gapped and gapless phases of matter, explain their

origin, relevance and universality, and give examples of such phases.

1.2.1 Gapped phases

Let us �rst describe a gapped phase. A gapped phase can be de�ned as an equivalence

class of gapped, local Hamiltonians. To be precise, let us consider Hamiltonians

H.�1/ and H.�2/, with �i being a collection of parameters. Let us further denote by

GS1 ��D
˚

j0i.1/i
	N1

iD1 and GS2 ��D
˚

j0i.2/i
	N2

iD1 (1.2.1)

the collection of ground states of H.�1/ and H.�2/, respectively, where Ni denotes

the number of degenerate ground states of the Hamiltonian H.�i /. We say that

j0i.1/i is equivalent to j0j.2/i, denoted by j0i.1/i � j0j.2/i, if the two states are

related by adiabatic evolution for a �nite time, t 2 Œ0; T �, together with inclusion

or removal of product states. This is equivalent to saying that there is a path in

parameter space, i.e. �.t/, such that �.0/ D �1 and �.T / D �2, connecting the two

Hamiltonians without closing the gap. We further consider the two Hamiltonians

equivalent,H.�1/ � H.�2/, if for all j0i.1/i 2 GS1 there exists an j0j.2/i 2 GS2, such

that j0i.1/i � j0j.2/i. This allows us to de�ne a gapped phase as the equivalence class
of gapped Hamiltonians, with respect to the above equivalence relation:

ŒH.�1/� ��D fH.�/ j H.�/ � H.�1/g: (1.2.2)

This is illustrated in �gure 1.6. Note, however, that this is a coarse grained classi-

�cation of gapped phases, not accounting for phases that can be distinguished by

other means besides gap closing. We will come back to rectify that in the following

paragraphs.

This de�nition of a gapped phase, directly implies that Hamiltonians with di�erent

ground state degeneracy cannot be in the same phase. And indeed, this principle

lies behind the Landau paradigm for the classi�cation of phases: phases can be

distinguished by their spontaneous symmetry breaking (SSB) patterns. If a phase of

matter breaks spontaneously a discrete zero-form symmetry group,G, it will have jGj
ground states. It can therefore be distinguished from the trivial symmetry-preserving

phase, with a unique, product ground state.

It seems, however, that the above characterisation distinguishes phases further,

beyond the Landau paradigm, as it is not only the number of ground states that it

measures, but also other, �ner, yet robust, characteristics. Theword robust here, refers

to the fact that these are characteristics that are not a�ected by small perturbations of

the system, as these would be accounted for in the adiabatic evolution that connects
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H.�2/

H.�3/

H.�1/

Figure 1.6: A crude illustration of the quantum phases of matter. The coloured islands indicate
di�erent phases of matter, while the light rivers are gap-closing paths. The Hamiltonians H.�1/
and H.�2/ lie in the same phase, but H.�3/ does not.

the states. These characteristics indicate, therefore, something topological, something

that can only change under drastic changes of the physical system. In accordance

with the logic of section 1.1, symmetries are intimately connected to topological

properties of quantum systems and vice versa. It is therefore conceivable, that the

Landau paradigm can be modi�ed to capture this �ner distinction of phases of matter,

by enlarging the de�nition of symmetry and symmetry-breaking. Such a programme

is subject to intense recent research [42, 129–132].

Let us return to the classi�cation of gapped phases and consider, for now, phases that

do not break any ordinary symmetry. Moreover, let us momentarily choose ŒH.�1/�

to be the trivial phase, i.e. with a unique gapped vacuum in a product state. The

above de�nition guarantees, that, if the ground state of ŒH.�2/� is highly entangled, it

cannot be deformed to the trivial state through a �nite-time adiabatic evolution. This

is in fact easier to state in the language of [133], where it is shown that the action of

�nite adiabatic evolution on states is equivalent to the action of a constant-depth

quantum circuit. What the circuit does, is it attempts to disentangle pairs of states,

one step at a time. But being a constant-depth circuit, it can only disentangle �nitely

many such states. This leads to the de�nition of short- and long-range entangled
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1.2. The gapless and the gapped

states. Short-range entangled states are those that can be transformed into a product

state by a constant-depth quantum circuit. Long-range entangled are those that

cannot. The phases induced by the above ground states, are called, consequently,

phases with short- and long-range entanglement respectively. Phases with long-

range entanglement are also known as (intrinsically) topologically ordered phases [134]
(phases with short-range entanglement are sometimes known as non-intrinsically

topologically ordered). As is evident by the above criterion, topologically ordered

phases are characterised by their patterns of long-range entanglement. This will be a

recurrent theme in this thesis, occupying chapters 2 and 3.

We can add an extra layer of �ne-graining by supplementing the entanglement

classi�cation with symmetry constraints. This gives rise to symmetry-protected

and symmetry-enriched topological phases. Namely, given a symmetry, C ,12 of the

quantum system, represented by operators, D acting on the Hilbert space, that

commute with our starting local Hamiltonian,

ŒH.�1/;D � D 0; (1.2.3)

we de�ne a symmetry-enriched topologically ordered phase (SET phase) as

ŒH.�1/�C ��D
˚
H.�/

ˇ̌
H.�/ � H.�1/ and ŒH.�/;D � D 0; 8D 2 C

	
: (1.2.4)

In the case where ŒH.�1/� is the trivial phase, ŒH.�1/�C is known as symmetry-

protected topological phase (SPT phase).

1.2.2 Gapless phases

So far, the discussion was focussed on gapped phases, with gaplessness arising

only at boundaries between di�erent phases. From the point-of-view that we have

taken up until now, gapless phases are a bit more tricky to de�ne. They are more

natural in the quantum �eld theory point-of-view, that we will connect to in the

forthcoming paragraphs. Nevertheless, let us attempt a heuristic de�nition before

changing language. Ground states of gapped phases, have exponentially decaying

correlations — this statement was already anticipated by Haldane [135], and �nally

proven by Hastings and Koma [136]. On the other hand, correlations of ground states

of gapless Hamiltonians, generically decay as a power-law with distance. In other

words, the correlation length in such phases diverges. Often, this behaviour indicates

that the system is at a critical point, undergoing a (second order) phase transition.

Such points in the space of theories are described by conformal �eld theory. We will

return to that point in the forthcoming paragraphs and in chapter 4. Nevertheless, it

is worth mentioning that from the point-of-view of phases of matter, gapless points

are not only present at criticality, but can sometimes occupy stable phases of their

12C can, in general have a group-like, or categorical structure, cf. section 1.1
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own, such as gapless quantum spin liquids [137–139], non-Fermi liquids and strange

metals [140, 141], as well as gapless symmetry protected phases [142, 143].

1.2.3 Field theory description

At large distances, or equivalently, low energies, many of the quantum systems

described above, exhibit universal properties, that can be understood without ref-

erence to the original system. In other words, a lot of interesting questions can be

addressed without having access to the microscopic, “ultraviolet” (UV) description of

the system. Such, low-energy e�ective Hamiltonians, are often well-approximated

by local quantum �eld theories.13,14 We are therefore only given access to a quantum

�eld theory, describing our physical system up until some energy scale, ƒ, beyond

which, anything could happen. We are not interested in that now. What we are

interested in is actually the opposite regime, what happens at the “infrared” (IR),

i.e. at extremely low energies. To that end, we run the renormalisation group �ow,

to obtain the low-energy e�ective action. That is, assuming that we started with

an action principle, with some action SƒŒ��, describing the physics of the degrees

of freedom � whose energy/momentum, is at most ƒ, the renormalisation group

equation tells us, that the e�ective action at a lower energy, ƒ0 < ƒ is given by15

Sƒ0 Œ�light� D � log

�Z

CŒƒ0;ƒ�

D�heavy exp
�
�SƒŒ�light C �heavy�

��
: (1.2.5)

In doing so, we have split the degrees of freedom into light and heavy, with energy

below ƒ0, and between ƒ0 and ƒ respectively, and integrated out the heavy �elds.

This leaves us with an e�ective theory of the light modes. We can iterate this

procedure, going lower and lower in energy scales, until we reach a �xed point of

the renormalisation group. In this framework the million dollar question is what the

description of the IR phase of a generic QFT is.16

The �rst type of IR �xed points, are gapped �xed points. As alluded to above, these

are �xed points with vanishing correlation length. Let us begin the discussion by

asking the simplest possible question: What �xed point does the trivially gapped

phase �ow to? The answer is, naturally, that it �ows to a trivial QFT. Namely, a

QFT whose operator content is only the identity operator. The next-up question,

in terms of complexity, concerns the �xed-points of SPT phases. These are given

by invertible topological quantum �eld theories (iTQFT) [145]. Such theories, are

13There are, however, systems that evade such a description, such as fractonic phases, mentioned in

subsection 1.1.5.
14We will restrict to unitary QFTs, explicitly mentioning the lack of unitarity if needed.
15A word on notation. We are be in Euclidean signature and CŒƒ0;ƒ� denotes a functional space of

�elds with energy betweenƒ0 andƒ.
16Quite literally. There is a million dollar bounty on answering this question for Yang–Mills theory

[144].
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1.2. The gapless and the gapped

mild generalisations of the trivial quantum �eld theory, coupled to background

gauge-�elds, for the protecting symmetry, and account for the aforementioned �ner,

symmetry-protected, classi�cation of trivially gapped phases. Invertible TQFTs in

d dimensions — and by extension d -dimensional symmetry-protected topological

phases — protected by a �nite group, G, are classi�ed by cobordisms [146–149]. In

equations:

fŒH.�/�Gg Š hom
�
�Gd ;U.1/

�
; (1.2.6)

where the left-hand-side denotes the set of isomorphism classes of d -dimensional SPT

phases, and on the right-hand-side,�G
d
denotes the bordism groups of d -dimensional

manifolds with G-structure.

A more challenging question is describing the �xed point that corresponds to a

long-range entangled gapped phase. The mantra that follows this question is that

topologically ordered systems �ow in the IR to a topological �eld theory [145, 150]. A

more precise statement [44, 151], further attempting a classi�cation, is that topological

orders �ow in the IR to fully-extended TQFTs.17 Amore complete classi�cation, further

accounting for symmetry-enriched phases, protected by potentially non-invertible

�nite symmetries is given in [152], in terms of autoequivalences of the protecting

category.

The �xed points we have discussed so far exhaust the infrared fate of gapped phases

of matter. We are left to discuss the fate of gapless points. As we alluded to, above,

for such phases, the correlation length diverges. Therefore, the e�ective quantum

�eld theory description of the system, the system �ows to a scale invariant theory.18

Oftentimes, scale invariance, combined with Poincaré invariance, and unitarity,

enhance to conformal invariance. This is famously the case for all two-dimensional

theories, [155, 156], while there are also supporting arguments for four-dimensional

theories [157–160]. Therefore, the infrared behaviour of a large class of gapless

phases of matter can be described using the techniques of conformal �eld theory.

Many of the phases we discussed above present apparent exceptions to the Landau

paradigm. For instance, topologically ordered gapped phases have no local order

parameter. Even worse, there is no symmetry understanding of stable gapless phases.

However, a recent perspective advocated in [42, 161, 162] suggests that while the

traditional Landau paradigm cannot account for all phases of matter, a modi�ed

17In [151], the TQFT is further supplemented with the word anomalous. The word anomalous indicates,

there, that a topological order should be thought of up to stacking with a trivially gapped phase, since a

trivially gapped phase corresponds to the trivial QFT in the IR. In our discussion this is taken into account

by allowing the addition/removal of product states in the de�nition of the equivalence class de�ning the

phase.
18However, note that when the dispersion is not linear the e�ective �eld theory is not relativistic [153].

Fixed points of this sort are known as Lifshitz �xed points [154].

25



1. Introduction

Landau paradigm encompassing all generalised notions of symmetry can. Perchance.

Indeed, by including higher-form symmetries, one can understand in a uni�ed way

decon�ned states of gauge theory [15, 37, 42, 163]. Additionally, incorporating non-

invertible symmetries, provides a more complete picture of two-dimensional phases

of matter [132]. Importantly, this perspective opens a window towards understanding

gravity as a phase of matter [129].

1.3 Outline

The rest of this thesis is organised as follows. Chapters 2 and 3 are devoted to the

study of the gapped. In particular, they are concerned with topologically ordered

phases in higher-dimensions and their entanglement structure, focussing on their

low-energy topological �eld theory description. Then, in chapter 4, the focus shifts

to the gapless, where the interplay between conformal �eld theory and generalised

symmetries is examined and novel results about the structure of CFTs are presented.

In detail, chapter 2 presents a systematic study of the entanglement structure of

abelian topological order described by p-form BF theory in arbitrary dimensions. This

is done directly in the low-energy topological quantum �eld theory by considering the

algebra of topological surface operators. Two relevant notions of subregion operator

algebras are de�ned, which are related by a form of electric-magnetic duality. It

is subsequently shown that with each subregion algebra, there is an associated

entaglement entropy, termed essential topological entanglement (ETE). This re�nes
a well-known concept in .2 C 1/-dimensional topological orders: the topological

entanglement entropy. ETE is intrinsic to the theory, inherently �nite, positive, and

sensitive to more intricate topological features of the state and the entangling region.

Then, in chapter 3 an alternative perspective is explored. Remaining within the

setup of p-form abelian BF theory, the entanglement entropy arising from edge-

modes is considered. This is done on arbitrary spatial topology and across arbitrary

entangling surfaces. The entropy contains a series of descending area laws plus

universal corrections proportional to the Betti numbers of the entangling surface.

The calculation comes in two �avours: �rstly, through an induced edge-mode theory,

appearing on the regulated entangling surface in a replica path integral, and secondly

through a more rigorous de�nition of the entanglement entropy through an extended

Hilbert space. Along the way several key results are presented, that are of their own

merit. The edge-mode theory is given by a novel combination of .p � 1/-form and

.d � p � 2/-form Maxwell theories linked by a chirality condition, in what is termed

chiral mixed Maxwell theory. The thermal partition function of this theory is explicitly

evaluated. Additionally, it is shown that the extended Hilbert space is organised into

representations of an in�nite-dimensional, centrally extended current algebra which

naturally generalises 2d Kac–Moody algebras to arbitrary dimension and topology.
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1.3. Outline

Lastly, the two approaches are connected, showing that the thermal partition function

of the chiral mixed Maxwell theory is precisely an extended representation character

of the current algebra, establishing an exact correspondence of the edge-mode theory

and the entanglement spectrum.

Coming to chapter 4, the setup switches to conformal �eld theory, but the theme of

current algebras persists. The main result of this chapter is a one-to-one correspond-

ence between line operators and states in four-dimensional CFTs with continuous

1-form symmetries. Such CFTs enjoy an in�nite dimensional current algebra, closely

related to the algebras of chapter 3. The representation theory of this current algebra

is constructed, and the space of states on an arbitrary closed spatial slice is described

in detail. Then, the spectrum on S2 � S1 is rederived via a path integral on B3 � S1

with insertions of line operators. This leads to a direct and explicit correspondence

between the line operators of the theory and the states on S2 � S1. An interesting

conclusion is that the vacuum state is not prepared by the empty path integral, but

by a squeezing operator. Additionally, some of the above results are generalised

in two directions. Firstly, universal current algebras are constructed in .2p C 2/-

dimensional CFTs, with continuous p-form symmetry, and secondly non-invertible

generalisations are provided.

Chapter 5 summarises the salient points and the results of the thesis, and discusses

interesting future directions and generalisations.

Technical details are collected in the various appendices. Speci�cally, appendix A

contains a careful treatment of BF theory in di�erential cohomology, mathematical

proofs, and details on the decomposition of density matrices pertaining to the body

of chapter 2. Appendix B contains a comparison of p-form Maxwell theory and chiral

mixed Maxwell theory, and spectral properties of the Hodge Laplacian. Appendix C

expands further on the spectrum of the Hodge Laplacian, in particular in situations

relevant for chapter 4, discusses the current algebras of the body of the thesis in more

general situations, and provides details on the radial evolution, which is central to

the state-operator correspondence.
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2 Essential topological
entanglement

2.1 Introduction

Quantum entanglement is an invaluable framework for modern theoretical phys-

ics. This framework has led to profound insights into quantum information theory,

quantum �eld theory, and quantum gravity.1 Yet some of the most profound applica-

tions can be found in the theory of quantum phases of matter. In particular, in (2+1)

dimensional gapped systems the presence of topological order cannot be diagnosed

by any local order parameter. Entanglement is a non-local phenomenon. It stands to

reason that long-range entanglement can provide a clean signature of topological

order in (2+1) dimensions: the celebrated “topological entanglement entropy” (TEE)

[165, 166].

Low-energy e�ective �eld theories are potent tools for exploring TEE in manifestly

universal manner. These are topological quantum �eld theories (TQFTs), the pro-

totypical example being Chern-Simons theory in (2+1) dimensions. Topological

order in higher-dimensions is expected to be richer: already the discovery of (3+1)

dimensional systems displaying “fracton topological order” [167–169] has broadened

our understanding of gapped phases. Yet even the traditional classi�cation of TQFTs

can involve a large set of non-Gaussian interactions which induce richer forms of

operator statistics [170, 171]. It remains a broad open question as to what universal

entanglement signatures diagnose and distinguish topological order in higher dimen-

sions. Here we take modest steps towards understanding this question, focusing on

abelian topological orders described by abelian BF theory. This focus buys us some

muscle: we will be able to make broad statements about abelian topological order in

arbitrary dimensions and quantised on (almost) arbitrary manifolds.2 We will use this

muscle to address two conceptually puzzling aspects of the traditional treatements

1See [164] and references therein for an (obviously) non-exhaustive summary.
2We do restrict to torsion-free manifolds as well.
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of TEE.

The �rst conceptual puzzle we want to address is the area law. Traditional com-

putations of TEE involve an area law stemming from short-distance correlations

at the UV scale and to which the TEE appears as a subleading, scale-independent,

correction. Heuristically the scale-independence of this subleading correction is a

signal of its universality (however there are subtleties applying this argument to

lattice and tensor network models [172, 173]). It is initially surprising that a TQFT,

which has a �nite dimensional Hilbert space when quantised on a compact surface,

can support a divergent entanglement entropy. However, the area law arises from an

explicit addition of UV degrees of freedom when calculating TEE. These either come

in the form of an embedding into a microscopic model (e.g. a lattice gauge theory

[174–176], a “coupled wires” model [177], or a tensor network model) or in the form

of “edge-modes” living on an entangling surface [178–181]. These UV degrees of

freedom play an important role in calculating entanglement entropy: TQFTs are

quantum gauge theories which have a well-known obstruction to factorising the

Hilbert space into local subregions [174, 182–185]. In this context the UV degrees of

freedom provide an arena, the “extended Hilbert space,” in which the Hilbert space

can be factorised and the entanglement entropy de�ned. Here we ask if there is

another manner for de�ning entanglement entropy that (i) bypasses invoking UV

degrees of freedom, (ii) is strictly topological, and (iii) is commensurate with a �nite

dimensional Hilbert space in the IR.

There is indeed an alternative for dealing with this obstruction. In a seminal paper,

Casini, Huerta, and Rosabal [183] illustrated how operator algebras provide a natural

de�nition of entanglement in gauge theories. The lack of Hilbert space factorisation

manifests itself as a non-trivial centre in the algebra of operators associated to a

region. Algebraic de�nitions of entanglement in gauge theories and their relation

to the extended Hilbert space have been largely explored in the context of lattice

gauge theories [186, 187]. However the algebraic approach to entanglement is, in

principle, valid even in the continuum. For TQFTs it provides an intrinsically IR

avenue for de�ning entanglement entropy. I.e. a de�nition that utilises only the

ground states and operators available at low-energies, without involving UV degrees

of freedom, and is strictly �nite. Despite the hotbed of research in entanglement

entropy in topological phases and quantum gauge theories, this aspect of topological

entanglement has been left relatively unexplored.

The second conceptual puzzle we want to address is “semi-locality” of the traditional

TEE which in (2+1) dimensions involves topological aspects (Betti numbers) intrinsic

to the entangling surface; this relation is argued to hold in higher dimensions [188].

The ground states of topological �eld theories display extreme long-range entan-
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glement.3 It is perhaps then surprising that TEE does not “sense” farther than the

entangling surface itself and is insensitive, say, to how the entangling surface is

topologically embedded into the Cauchy slice de�ning the Hilbert space.

We will address these two conceptual puzzles in this chapter. Namely, we consider the

operator algebra,AŒ†�, acting on a Cauchy slice,†, that is directly available in abelian

BF theory. The operators generating this algebra are higher-form Wilson surface

operators. Due to the topological nature of the �eld theory, these surface operators

are invariant under deformations and so are naturally associated with homology

cycles of †. Clearly this algebra, and any subalgebra, is inherently topological and

de�ned directly in the IR. However, such operators are not wont to be localised to

spatial subregions; as a result, there are potentially large ambiguities in ascribing a

subalgebra, AŒR�, to region, R. We describe two natural choices that can roughly be

stated as “the set of operators that can act entirely in R” and “the set of operators

that must act, at least partially, in R.” We name these two algebras the topological
magnetic algebra and the topological electric algebra, respectively, for reasons that will
become clear in due time. They are related by a form of subregion electric-magnetic
duality which we will make precise below.

We utilise these two notions of subregion algebra to assign an entanglement entropy

to ground states in the theory. This entanglement entropy is by nature (i) topolo-

gical, and (ii) �nite and commensurate with a �nite dimensional Hilbert space. To

distinguish it from the traditional TEE appearing as the subleading correction to

an area law, we coin4 this entropy essential topological entanglement, E . It comes in

two forms, Emag and Eelec, and are related by the subregion electric-magnetic duality

mentioned above.

Owing to the power of topological �eld theory, we will be able to evaluate E in

arbitrary dimensions, on arbitrary surfaces, and associated to arbitrary regions. This

allows to us to show that E is indeed sensitive to more intricate and long-range forms

of topology than that of @R alone: in both forms it depends on topological aspects of

@R, †, and how @R is embedded into †. This is, again, innate to the operator algebra

de�nition. Operators in AŒR� must, foremost, be operators in AŒ†�. It is clear then

that cycles of @R that embed to trivial cycles of † cannot contribute to E .

We pause to mention that similar notions to our de�nition of E have appeared in

the context of lattice gauge theories by examining the algebras of “ribbon operators”

which are also naturally topological operator algebras [190], as well as work utilising

similar ideas to discuss the “area operator” in tensor network models of holographic

entanglement [191]. However the focus on these quotedworks is on (2+1) dimensional

3Illustrated, for instance, in “multi-boundary” set-ups in Chern-Simons theory [189].
4Competing nomenclatures: intrinsic, core, and boneless topological entanglement.
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non-abelian models on spaces and subregions with simple topology. Our focus on BF

theory allows us to work directly in the continuum and deftly incorporate spaces

and entangling regions of arbitrary topology, albeit at the expense of working in an

abelian model. Because of this it is hard to make a direct comparison between these

works and ours at this time. We will comment on this further in section 2.4.

2.2 Quantisation of BF theory

We begin by introducing the p-form abelian BF theory, on a d -dimensional, torsion-

free manifold X , with action

SBFŒA; B� ��D
KIJ

2�

Z

X

BI ^ dAJ : (2.2.1)

In the above AI 2 �p.X/ and BI 2 �d�p�1.X/ are vectors of p- and .d �p�1/-form
gauge �elds respectively. We will take p ¤ 0; d � 1.5 We have also allowed a possible

square, integer, non-degenerate — but not necessarily symmetric — K-matrix of

rank �. For notational simplicity we will drop the indices, unless it is necessary.

In appendix A.1 we provide a more careful treatment of BF theory, allowing for

manifolds with torsion. The action (2.2.1) possesses a gauge redundancy of the form

•A D d˛ and •B D dˇ ; (2.2.2)

where ˛ 2 �p.X/ and ˇ 2 �d�p�2.X/.

Let us suppose that X possesses a boundary and discuss the quantisation of the

theory on @X . Much of this procedure follows that of [192] and [171], however

we provide these details for completeness. We begin with the classical symplectic

structure. The variation of the action takes the form

•SBFŒA; B� D
Z

X

.•B ^ eomŒA�C •A ^ eomŒB�/C
Z

@X

# ŒA; BI •A; •B�; (2.2.3)

where the classical equations of motion are �atness conditions:

eomŒA� D K

2�
dA D 0; eomŒB� D .�1/.d�p/.pC1/K

>

2�
dB D 0: (2.2.4)

The boundary term de�nes the symplectic potential, # :

Z

@X

# ŒA; BI •A; •B� ��D .�1/d�p�1 K

2�

Z

@X

B ^ •A; (2.2.5)

5We expect much of what follows to morally hold true in these special cases, however some technical

details of our proofs would need to be altered.
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2.2. Quantisation of BF theory

where the pullback along the embedding map, �@ W @X ,! X is implicitly understood

above. We see this theory is already in canonical, or Darboux, form, # D p ^ •q,
with

q D A and p D .�1/d�p�1 K

2�
B; (2.2.6)

which is consistent with �xing A as a boundary condition. We can switch the role of

.B;A/ � .p;q/ to .B;A/ � .q;p/ by the inclusion of the boundary action

Salt.
@ ŒA; B� D .�1/d�p K

2�

Z

@X

B ^ A; (2.2.7)

but we will work in the former quantisation scheme. The symplectic form on @X ,

given by the variation of
R
@X # , is

�@X D .�1/d�p�1 K

2�

Z

@X

•B ^ •A: (2.2.8)

This symplectic form is degenerate due to gauge variations. We will take care of this

soon below.

We will quantise the BF theory on a .d � 1/-dimensional manifold, †, by performing

the path-integral on X D R �†. Here, R is coordinatised by t and the Cauchy slice

at time t is represented by ftg �†. The path-integral measure is formally given by

d� .A;B/ D DA DB

vol
�
Gp
�
vol
�
Gd�p�1

� eiSBFŒA;B�; (2.2.9)

where Gp and Gd�p�1 are the gauge groups for the redundancies (2.2.2). On top of it,

it includes a sum over non-trivial bundles. For a full de�nition of the measure and the

gauge groups, we refer the reader to appendix A.1. Currently, we consider the case

where @† D ∅ (we will revisit the case with boundaries in chapter 3). Additionally,

let �† W † ,! X be the embedding of † into X .

We can express A and B as A D A0 C a and B D B0 C b respectively, where

��†A0 D 0 ” ��†A D ��†a;

��†B0 D 0 ” ��†B D ��†b:

To make the decomposition clearer we can use coordinates fxmgd�1
mD1 for † which

gives us:

A D .A0/m1���mp�1
dt ^ dxm1 ^ � � � ^ dxmp�1

C am1���mp
dxm1 ^ � � � ^ dxmp ; and (2.2.10)

B D .B0/m1���md�p�2
dt ^ dxm1 ^ � � � ^ dxmd�p�2

C bm1���md�p�1
dxm1 ^ � � � ^ dxmd�p�1 : (2.2.11)
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2. Essential topological entanglement

In these coordinates, let us also write d D dt ^ @t C dxm ^ @m D�� dR C d. Integrating

(2.2.1) by parts and utilising the fact that dRA0 D 0 and dRB0 D 0 (since they involve

dt ^ dt ^ � � � D 0), we arrive at

SBFŒA0 C a;B0 C b� D K

2�

Z

X

�
.�1/d�p db ^ A0 C B0 ^ daC b ^ da

�
: (2.2.12)

It is easy to see that A0 and B0 act as Lagrange multipliers enforcing the †-�atness

of a and b:

da D db D 0: (2.2.13)

We will refer to (2.2.13) as the “Gauss law” constraints. Using the property (A.1.6) of

the path-integral measure we can write

d�.A;B/ D d�.A0; B0/ d�.a; b/ e
iSBFŒA0;b� eiSBFŒa;B0�; (2.2.14)

and performing the integrals over A0 and B0 we get d�.a; b/ ıŒda�ıŒdb�. The delta-

functions force a and b to be closed under d; Hodge decomposition implies, then,

that

a D d C �; and b D d�C �; (2.2.15)

for some  2 �p�1.X/, � 2 ��†H
p.†/, and � 2 �d�p�2.X/, � 2 ��†H

p.†/. This

results into the path-integral measure:

d�.a; b/ ıŒda�ıŒdb� D d�.�; �/ d�.�; / eiSBFŒd�;�� eiSBFŒ�;d �

D D D�D� D�

vol
�
Gp
�
vol
�
Gd�p�1

� exp

�
iK

2�

Z

X

� ^ dR�

�
: (2.2.16)

The integral over and � over the volumes of the gauge groups yields the Ray–Singer

torsion of the manifold [193, 194],6 and so we simply get

ZBFŒX� D
�Z

D� D� exp

�
iK

2�

Z

X

� ^ dR�

��
TRSŒX�

.�1/p�1

; (2.2.17)

where TRSŒX� is the Ray–Singer torsion:

TRSŒX� ��D
dY

kD0

 
.det 04k/

k

detGk

! 1
2 .�1/kC1

; (2.2.18)

with 4k being the Laplacian on the space of k-forms on X , and Gk the metric in

the space of harmonic k-forms, de�ned as follows. Let
n
�
.k/
i

obk.†/

iD1
be the topological

basis of harmonic k-forms, with bk.†/ the k
th Betti number of†. This basis is de�ned

6for a modern exposition see also [195]
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2.2. Quantisation of BF theory

such that given a basis of k-cycles
n
�i
.k/

2 Hk.†/
obk.†/

iD1
, there is a unique harmonic

representative, � .k/i , of each cohomology class in Hk.†/, such that

Z

�i
.k/

�
.k/
j D ıij: (2.2.19)

It is in terms of this basis that the matrices Gk above are de�ned. Explicitly:

ŒGk �ij ��D
Z

†

�
.k/
i ^ ?� .k/j ; (2.2.20)

where ? is the Hodge-star on †. Before moving on let us make a quick digression to

mention that the inverse of Gk is the linking matrix

ŒGk �ijŒLk �
jk D ıki ; (2.2.21)

which can be alternatively be de�ned as an oriented intersection number in the

following way. Let us pick a basis of k-cycles
˚
�i
	bk.†/

iD1 of Hk.†/ and a basis of

.d � k � 1/-cycles
˚
� i
	bk.†/

iD1 of Hd�k�1.†/. The transversal intersection of �j and � i

in † is a zero-dimensional manifold (that is, a collection of points) and ŒLk �
ij counts

the number of points signed by their orientation:

ŒLk �
ij � Lk

�
�i; � j

� ��D
Z

�i\� j
1: (2.2.22)

Let us focus on the remaining path-integral in (2.2.17), which is the quantum mech-

anics for the large-gauge degrees of freedom, � and � . We can expand � and � in

terms of the basis f�igbp.†/

iD1 . Namely

�.t; x/ D � i.t/ �i and �.t; x/ D � j.t/ ? �j: (2.2.23)

Note that (2.2.19) with (2.2.15) implies

� i D
Z

�i
a; � i D

Z

� i
b; (2.2.24)

in terms of our original �eld variables. Since � i.t/ and � j.t/ are circle-valued functions

on R they are identi�ed with

� i.t/ � � i.t/C 2� and � j.t/ � � j.t/C 2�: (2.2.25)

All in all the action reduces to

S e�
BF Œ�; �� D K

2�

�
Gp
�
ij

Z

R

� i ^ dR�
j: (2.2.26)
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2. Essential topological entanglement

This is a simple quantummechanical systemwhose symplectic form reads (reinstating

the I; J indices)

�† D .�1/d�p�1

2�
KIJŒGp�ij •�

i
I ^ •� jJ : (2.2.27)

which is the restriction of (2.2.8) to � i
I and �

j
J .

Given the our interpretation of A D q coming from the symplectic potential, (2.2.5),

we will identify �
j
J as “positions” and �

i
I as “momenta”.7 Passing from Poisson brackets

to commutators, promoting � and � to operators, we arrive at
h

O� i
I ;

O� jJ
i

D 2�i .�1/d�p�1�K?�
IJ
ŒLp�

ij; (2.2.28)

where K? ��D
�
K>��1 is the inverse transpose. Hereafter we will drop the index p

and the square brackets from Lp , and Gp for conciseness.

Since these operators are U.1/-valued, we should exponentiate them to construct

gauge-invariant Wilson surface operators:

OWwj

�j
��D exp

�
w

J
j

O� jJ
�

D exp

�Z

�j
w

J
j aJ

�
; (2.2.29)

OVvi

� i
��D exp

�
vIi

O� i
I

�
D exp

�Z

� i
vIi bI

�
; (2.2.30)

where
n
w

J
j

oJ2f1;:::;�g

j2f1;:::;bp.†/g
and

n
vIi

oI2f1;:::;�g

i2f1;:::;bp.†/g
are are bp.†/�� collections of integers.

These surface operators are de�ned with respect to �xed bases of homology p- and

.d � p � 1/-cycles,
˚
�j
	bp.†/

jD1 and
˚
� i
	bp.†/

iD1 , respectively; however it is easy to verify

that they are homotopy invariants when acting on gauge-invariant states due to the

Gauss-law constraints, (2.2.13), and thus well de�ned on homology classes.

2.2.1 The algebra of Wilson surface operators

The Wilson surface operators constructed above satisfy a “clock algebra” which can

be easily found using the canonical commutation relations (2.2.28):

OVvi

� i
OWwj

�j
D e2�i .�1/

d�p�1 w
J
j v

I
i .K

?/IJL
ij OWwj

�j
OVvj

� i
: (2.2.31)

The OW’s commute amongst each other as do the OV’s. From the above algebra we can

clearly see that wj and vi give the same algebra as wj C m � K and vi C K � m0, for
arbitrary m;m0 2 Z� . The entire algebra is, then, generated by operators labelled by

charges in the lattices

wj 2 ƒA ��D Z�
ı
imK> and vi 2 ƒB ��D Z�

ı
imK: (2.2.32)

7More correctly handling the index placement, the momenta are p
J
j D .�1/d�p�1 KIJ

2�
ŒGp�ij�

i
I .
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2.2. Quantisation of BF theory

It will be notationally useful to collect wJ
j and v

I
i as the components of a bp.†/ � �-

dimensional integer vectors denoted as w and v, respectively. Also for notational

convenience, we will de�ne an inner product on these vector spaces as

�.v;w/ ��D 2�.�1/d�p�1v �
�
K? ˝ L

�
� w D 2�.�1/d�p�1wJ

j v
I
i .K

?/IJLij: (2.2.33)

Then (2.2.31) can be written succinctly as

OVv OWw D ei�.v;w/ OWw OVv; (2.2.34)

with

OVv D
bp.†/Y

iD1

OVvi

� i ;
OWw D

bp.†/Y

iD1

OWwj

�j : (2.2.35)

In this notation, the OW’s and OV’s satisfy an abelian fusion algebra

OWw OWw0 D OWwCw0
and OVv OVv0 D OVvCv0

; (2.2.36)

where it is understood that the sums are taken in the respective lattices, .ƒA/
bp.†/

and .ƒB/
bp.†/.

Constructing states

To construct the states on H† we pick a maximal set of commuting operators and

use the space of their eigenvectors. For that we can use either
n

O� j
obp.†/

jD1
or
n

O� i
obp.†/

iD1
.

We will �rst use the basis given by
n

O� i
o
eigenvectors which is morally consistent

with �xing a as a boundary condition. To construct the states systematically, we will

�rst de�ne a �ducial state j0i annihilated by all
n

O� i
o
. This is an eigenstate of OWwj

�j

with all eigenvalues one:
OWw j0i D j0i : (2.2.37)

We will call this state the “p-surface operator condensate,” or “the condensate” when

the context is clear. We then use OVvi

� i
as raising operators. A general ground state

will then be given by

jvi ��D OVv j0i D
bp.†/Y

iD1

OVvi

� i
j0i ; (2.2.38)

for any integer vector, v 2 .ƒB/
bp.†/. These are indeed eigenstates of OWw with

eigenvalue
OWw jvi D ei�.v;w/ jvi : (2.2.39)

Additionally, since

h0jvi D h0j OWwjvi D ei�.v;w/ h0jvi ; (2.2.40)
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2. Essential topological entanglement

for any w 2 .ƒA/bp.†/ and since K and L (and thus �) are non-degenerate,

h0jvi D ıv ��D
bp.†/Y

iD1
ı.ƒB /

vi
; with ı.ƒB /

v
D
(
1 v D 0 mod imK;

0 otherwise.
(2.2.41)

This fact, coupled with . OVv/� D OV�v, and the fusion algebra, (2.2.36), implies the

full-orthonormality of H† D spanfjvig. The dimension of the Hilbert space is

dimH† D dimZ .ƒB/
bp.†/ D dimZ.ƒA/

bp.†/ D jdetKjbp.†/: (2.2.42)

We note that the quantisation can be repeated in a wholly similar procedure by using
OWw as ladder operators (this builds a Hilbert space of eigenvectors of OVv) to arrive a

Hilbert space of the same dimension. We will call the isomorphism of the Hilbert

spaces built on p- and .d � p � 1/-surface operator condensates, electric-magnetic
duality in this context.8 Below we will describe how this duality can be re�ned to a

notion of subregion electric-magnetic duality.

2.3 Subregion algebras and essential topological entanglement

We now move to the main act of this chapter: how to associate subregion entangle-

ment entropy to this theory after we have “integrated out” all of the local degrees of

freedom. We will do so in the algebraic approach. We briefy remind the reader of the

broad features of this approach.

Starting with a region, R � †, one associates a subalgebra, AŒR� � AŒ†�, of the

operators which act naturally on R. The commutant of AŒR� is then associated to the

complement of R: AŒRc� D .AŒR�/c. Given a state,9 �, one can reduce it to AŒR�: i.e.

�R is the unique Hermitian and trace-normalised element of the subregion algebra,

AŒR�, reproducing the expectation values of all OR 2 AŒR�. The von Neumann

entropy of this reduced density matrix then provides an algebraic de�nition of the

entanglement entropy of � reduced to R:

�AŒR�Œ�� D �vNŒ�R� ��D �Tr.�R log �R/: (2.3.1)

This situation is complicated in theories with gauge invariance. The non-local manner

in which gauge constraints are applied to states manifests itself in a non-trivial centre

in the subregion algebra: ZŒR� D AŒR� \ AŒRc�. Operators generating ZŒR� can be

8This duality is simply a statement that the Hilbert space built on the p-surface operator condensate

is of equal dimension to the Hilbert space built on the .d �p� 1/-surface operator condensate. They are

automatically isomorphic. This is a simple consequence of Hodge duality on †.
9We will generally call density matrices “states” regardless of their purity.
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2.3. Subregion algebras and essential topological entanglement

simultaneously diagonalised. The state, �, and subsequenty, the reduced state, �R,

can be decomposed with respect to the eigenspaces of the operators generating ZŒR�:

�R D
M

˛

�.˛/�
.˛/
R ; (2.3.2)

where ˛ labels the eigenspaces. The �.˛/R can be individually trace-normalised and

so
P
˛ �.˛/ D 1. This leads to a re�nement of (2.3.1) where the algebraic entangle-

ment entropy naturally splits into the weighted sum of von Neumann entropies of

reduced density matrix projected to �xed eigenspaces plus the Shannon entropy of

the probability distribution given by
˚
�.˛/

	
:

�AŒR�Œ�� D
X

˛

�.˛/�vN

h
�
.˛/
R

i
�
X

˛

�.˛/ log�.˛/: (2.3.3)

We will make these broad features explicit in what follows and show that the Shannon

contribution takes a universal, topological, form. Before doing so we will �rst need

to de�ne a notion of a subregion algebra, AŒR�. Given the topological nature of the

operators in AŒ†�, we will take care to de�ne it in a manifestly topological manner

below.10

2.3.1 Topological subregion algebras

We begin by regarding † as the union of two, otherwise disjoint, submanifolds

† D R t@R Rc sharing a common boundary, @R. We will assign an operator algebra,

AŒR�, to R and AŒRc� is then de�ned as the commutant of AŒR�. There is some

ambiguity in this assignment; in what follows we will assign this in a “natural” way.

Since our operators in this theory are only de�ned up to homotopy, however, there

may be multiple “natural” ways to associate an algebra to R. Di�erent choices of

subregion algebra may result in di�erent centres and di�erent de�nitions of the

entanglement entropy.

Let us introduce the following notations. Suppose that M is a submanifold of †

and let iM W M ,! † be the embedding map. We can use iM to push-forward

homology groups: iM� W H�.M/! H�.†/.11 In what follows, given ˛ 2 Hk.†/ and a

map as above, we will denote ˛ Q2M , i� ˛ 2 im iM
k
. In words, ˛ Q2M says that ˛ is

continuously deformable within † to a cycle completely contained inM . Similarly,

we denote ˛ ✓Q2 M , for an ˛ 2 Hk.†/, i� ˛ 2 coker iM
k
. In words, ˛ ✓Q2 M is not

10As a bene�t to these de�nitions applied toAŒ†� and its subalgebras: these are all Type I von Neumann

algebras acting on �nite dimensional spaces. As such there is subtlety in de�ning traces, reduced density

matrices, and von Neumann entropies.
11For notational convenience we will avoid indexing the push-forward with an asterisk or a hash, as is

common in the mathematical literature and we will index it solely by the rank of the homology groups it

is connecting.
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2. Essential topological entanglement

continuously deformable within † to a cycle completely contained inM . We will

alternate between the im = coker and Q2=✓Q2 notation freely. To state the results of the

following sections up-front, there are two natural algebras associated to R:

1. Topological magnetic algebra

AmagŒR� ��D U
n

OWwi

�i
; OVvj

� j

ˇ̌
ˇ �i 2 im iRp ; �

j 2 im iRd�p�1

o
(2.3.4)

� U
n

OWwi

�i
; OVvj

� j

ˇ̌
ˇ �i; � j Q2R

o
; (2.3.5)

where Uf�g denotes the universal enveloping algebra. This algebra consists of
all surface operators deformable to being completely contained in R.

2. Topological electric algebra

AelecŒR� ��D U
n

OWwi

�i
; OVvj

� j

ˇ̌
ˇ �i 2 coker iR

c

p ; � j 2 coker iR
c

d�p�1

o
(2.3.6)

� U
n

OWwi

�i
; OVvj

� j

ˇ̌
ˇ �i; � j✓Q2Rc

o
: (2.3.7)

This algebra consists of all surface operators that are not deformable to being

completely contained in Rc.

As we will soon explain both of these algebras have non-trivial centres, ZŒR�, which

we name the topological magnectic centre and topological electric centre, respectively.
We can seek centreless operator algebras by either systematically removing operators

in ZŒR� fromAŒR� or by systematically adding operators toAŒR� that do not commute

with operators in ZŒR�. Doing so here results in two centreless algebras that we will

call the austere algebra (in the case of reduction) and the greedy algebra (in the case of

extension). There is a cost to being centreless: these two algebras have more tenuous

relationships to their underlying subregion. Additionally we will show that ground

states have trivial entanglement with respect to these algebras.

These di�erent choices of subregion algebras are illustrated in �gure 2.1.

The topological magnetic algebra

Let us begin the discussion with the topological magentic algebra

AmagŒR� ��D U
n

OWwi

�i
; OVvj

� j

ˇ̌
ˇ �i; � j Q2R

o
; (2.3.8)

The algebra associated with Rc is the commutant of AmagŒR�. It is clear that the oper-

ators that can commute with AmagŒR� are precisely those that cannot link homology

cycles in R. This is equivalent to the following.

�
AmagŒR�

�c D U
n

OWwi

�i
; OVvj

� j

ˇ̌
ˇ �i; � j Q2Rc

o
� AmagŒR

c�: (2.3.9)

The proof of this claim is given in appendix A.2.
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R

Rc

@Rm1

`1 m3

`3

m2

`2

@R

R
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@Rm1

`1 m3

`3

m2

`2

@R

R
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@Rm1

`1 m3

m2

`2

@R `3

Figure 2.1: The algebra on a genus 3 surface, generated by a basis of operators along longitude
and meridian cycles, f`i ; mi giD1;2;3. To the region, R, depicted in yellow, we associate an algebra
AŒR� generated by cycles depicted in orange and purple. The commutant, AŒRc�, is generated by
cycles depicted in blue and purple. The centre, ZŒR�, is generated by cycles depicted in purple.
Cycles generated neither in AŒR� nor AŒRc� are depicted in black. (Top) The topological magnetic
algebra,AmagŒR�. (Middle) The topological electric algebra,AelecŒR�. (Bottom) The austere algebra,
AausŒR�, and the greedy algebra, AgreedyŒR

c�.

As alluded to above, this algebra has a centre, Zmag, which is generated by surface

operators lying within the entangling surface, @R, itself:

ZmagŒR� ��D AmagŒR� \ AmagŒR
c� D U

n
OWwi

�i
; OVvj

� j

ˇ̌
ˇ �i; � j Q2 @R

o
: (2.3.10)
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2. Essential topological entanglement

The heuristic argument is simple: ZmagŒR� � AmagŒR� since any cycle, �
i Q2@R or � j Q2@R,

can be deformed “slightly inward” along the �ow of an inward-pointing normal vector

to be contained completely in R. Similarly by �owing in the other direction, “slightly

outward,” any cycle can be contained completely in Rc and so ZmagŒR� � AmagŒR
c�.

Perhaps one might question if operators in Zmag actually commute with themselves

(as required for Zmag to be a centre). A potential puzzle arises because p-cycles and

.d � p � 1/-cycles have no notion of intersection numbers as de�ned intrinsically

on @R: the intersection of a p-cycle and a .d � p � 1/-cycle on a d � 2 dimension

manifold is not a collection of points, but instead itself a 1-dimensional manifold.

The key here is the algebra Zmag is not de�ned intrinsically on @R but instead up

to homotopy in † � @R. It is then clear that all .d � p � 1/-cycles, � j Q2 @R, can be

deformed to have zero linking number with �i Q2 @R by evolving them slightly along

an outward pointing normal vector.

We call Zmag the topological magnetic centre because of its similarity to the magnetic

centre of 2+1 dimensional lattice gauge theories [183, 190], generated by line and/or

ribbon operators wrapping @R. Here the interplay of the dimensionality, d , with the

degrees of the gauge �elds, p and d � p � 1, allow for a richer �avour of magnetic

centre, generated by topological operators of di�erent dimension. Additionally, the

topological magnetic centre de�ned here is sensitive to the bulk topology while the

magnetic centre appearing in [183] is only sensitive to the intrinsic topology of @R.

Namely, an operator can only appear in Zmag if its de�ning cycle is also non-trivial

as a cycle on †.

In the interest of counting how many basis operators generate Zmag, it will be useful

to formalise the above as follows. The dimension of the magnetic centre will be the

sum of the number of p-cycle surface operators, OWw
� , and .d � p � 1/-cycle surface

operators, OVv
� , spanning Zmag:

ˇ̌
Zmag

ˇ̌
D jdetKjh

p
magChd�p�1

mag ; (2.3.11)

where hkmag is de�ned in the following way. A surface operator, OWw
� , in the magnetic

centre must be supported on a p-cycle that lies in the intersection of the �gures of

the push-forward maps iRp and iR
c

p . Using the push-out square,

@R R

Rc †;

j@R

iR

iR
c

j@Rc

we see that the corresponding p-cycle then has to lie in the image of push-forward

map
�
iR ı j @R

�
p

Š
�
iR

c ı j @Rc�
p
. Utilising the associated long-exact sequence we
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prove in appendix A.2

hpmag D
p�1X

nD0
.�1/p�1�nbn.@R/C

pX

nD0
.�1/p�n .bn.†/ � dimHn.†; @R// ; (2.3.12)

and similarly for hd�p�1
mag via the replacement p ! .d �p� 1/. We remind the reader

that bn.�/ is the nth Betti number. Let us point out two broad features of (2.3.12).

Firstly we have the alternating sum of Betti numbers intrinsic to @R; as we will show

later this will give contributions to the entropy analogous to those found in [188].

Secondly, however, we �nd an interesting dependence on bulk topology relative to

how @R is embedded in †. Although perhaps initially surprising, we can easily argue

why we expect this dependence on the bulk topology to show up: Amag is de�ned with

respect to homotopy equivalence within †. If hpmag only detected intrinsic topology

of @R it could easily12 count more operators in ZmagŒR� than actually exist in AmagŒR�,

or even in AŒ†�! These additional bulk terms are then crucial for ensuring that this

counting makes sense.

Summing hpmag and h
d�p�1
mag the total dimension of Zmag can be simpli�ed utilising the

long exact sequence (see appendix A.2) to

log
ˇ̌
Zmag

ˇ̌
D
"
2

p�1X

nD0
.�1/p�1�nbn.@R/C

�
bp.†/ � dimHp.†; @R/

�

C .�1/d�p�1� dimHd�1.†; @R/ � dimH0.†; @R/
�
#
log jdetKj:

(2.3.13)

Above, all of the bulk dependence has been isolated to dimensions of pth absolute and

relative homologies, plus the additional, p-independent term: a potential mismatch

between the bottom and top relative homologies.

The topological electric algebra

In contrast with the topological magnetic algebra, whose centre is generated by

operators “wrapping” the entangling surface, we will pick the topological electric

algebra such to be such that its centre is generated by operators “piercing” the

entangling surface. Speci�cally, for a region, R, we de�ne

AelecŒR� ��D U
n

OWwi

�i
; OVvj

� j

ˇ̌
ˇ �i; � j✓Q2Rc

o
: (2.3.14)

In words, AelecŒR� is generated by operators that cannot be deformed to being con-

tained completely in Rc. The algebra associated to Rc, the commutant of AelecŒR�, is

12Easy examples are cooked up when † is topologically trivial, e.g. a .d � 1/-sphere, Sd�1.
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generated by all operators that do not link with any cycle that cannot be deformed to

be contained in Rc. We claim that this is, in fact, generated by operators that cannot

be deformed to be contained in R:

.AelecŒR�/
c D U

n
OWwi

�i
; OVvj

� j

ˇ̌
ˇ �i; � j✓Q2R

o
D AelecŒR

c�: (2.3.15)

The proof of this claim is given in appendix A.2.

In this case, the centre is then given by cycles of †, that cannot be deformed to be

contained completely in R nor Rc:

ZelecŒR� D U
n

OWwi

�i
; OVvj

� j

ˇ̌
ˇ �i; � j✓Q2R and ✓Q2Rc

o

D U

�
OWwi

�i ;
OVvj

� j

ˇ̌
ˇ̌�i 2 coker iRp \ coker iR

c

p and

� j 2 coker iRd�p�1 \ coker iR
c

d�p�1

�
: (2.3.16)

ZelecŒR� are topological surface operators that must cross @R non-trivially. We name

this centre the topological electric centre on account of its similarity to the electric

centre of lattice gauge theories generated by link operators emanating transversely

from the entangling surface [183]. However let us caution that this is a somewhat

shallow comparison: the electric centre typically discussed in lattice gauge theories

is microscopic, being given by operators acting on all links intersecting @R in a

UV lattice realisation of a topological phase.13 Our topological electric centre is

an extreme coarse-graining of this, generated by a handful of topological surface

operators that are only de�ned up to homotopy.

With respect to counting the number of surface operators generating Zelec,

jZelecj D jdetKjh
p
elecChd�p�1

elec ; (2.3.17)

we show in appendix appendix A.2 that

hpelec D hd�p�1
mag ; hd�p�1

elec D hpmag: (2.3.18)

The heuristic argument for this follows: a p-cycle surface operator in Zelec by de�ni-

tion can’t be deformable to either the interiors of R or Rc and so must wrap a basis

.d � p � 1/-cycle intrinsic to @R. This cycle is precisely where one would put a

.d � p � 1/-cycle surface operator lying in Zmag. Consequently

jZelecj D
ˇ̌
Zmag

ˇ̌
: (2.3.19)

13As emphasised in [186, 187], the electric centre of lattice gauge theories shares many features with

extending the Hilbert space with edge-mode degrees of freedom. We discuss the extended Hilbert space

of BF theory in chapter 3.
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Subregion electric-magnetic duality

The equivalence of the counting jZelecj D
ˇ̌
Zmag

ˇ̌
is a particular instance of a re�ne-

ment of the electric-magnetic duality described in section 2.2 applied to the region

R and its operator algebras. More speci�cally, in appendix A.2 we prove that the

intersection pairing, L, induces a one-to-one correspondence between

coker iR
c

p ↔ im iRd�p�1 as well as coker iR
c

d�p�1 ↔ im iRp : (2.3.20)

This then implies a one-to-one correspondence between operators generatingAelecŒR�

and AmagŒR�. We refer to this correspondence as subregion electric-magnetic duality.

2.3.2 Decomposing the Hilbert space

The existence of a centre prohibits the tensor factorisation of the global Hilbert

space, H†, into Hilbert spaces corresponding to R and Rc in the following way. We

will illustrate this �rst using the topological magnetic algebra. Currently we are

organising H† by the eigenvectors of OWw, jvi, which are created by acting OVv on

the condensate. Given this, we ask: “Can we partition jvi into the eigenvalues of
OWw 2 AmagŒR� and the eigenvalues of OWw 2 AmagŒR

c�?”

jvi ‹D
ˇ̌
ˇ
˚
vR
	
;
n
vR

c
oE
: (2.3.21)

One obvious obstruction to the above is the possible existence of OWw 2 ZmagŒR�

D AmagŒR� \ AmagŒR
c�, whose eigenvalues are overcounted in the above partition.

A more subtle obstruction to the above comes from OV v 2 Zmag, which, being de-

formable to either inside R or Rc, make it ambiguous if their action should shift

the
˚
vR
	
or the

˚
vR

c	
sets of eigenvalues. To that end let us de�ne the set

n
vR
o
as

the eigenvalues of
n

OWwi

�i

ˇ̌
ˇ �i Q2R and �i✓Q2Rc

o
and similarly

n
vR

c
o
the eigenvalues of

n
OWwi

�i

ˇ̌
ˇ �i Q2Rc and �i✓Q2R

o
. We can label the eigenvalues of OWw 2 ZmagŒR� as

˚
v@R?

	
.

The “perpendicular” notation here denotes that because they are measured by OWw

operators “living in @R” they are created by the action of OVv operators which cross

the entangling surface transversally. These OVv operators do not belong in either

AmagŒR� or AmagŒR
c� (in fact they are .d � p � 1/-cycle surface operators generating

Zelec). Lastly we will denote by
n
v@Rk

o
the labels for states created by the action

of OVv 2 ZmagŒR� on the condensate. These states are eigenvectors of OWw which

also cross the entangling surface transversally (which belong neither in AmagŒR� nor

AmagŒR
c�).

Thus a general state can be partitioned unambiguously as

jvi D
ˇ̌
ˇ
n
vR
o
;
n
v@R? ; v@Rk

o
;
n
vR

c
oE
; (2.3.22)
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which have natural action by operators in the centre. I.e for all OWw 2 ZmagŒR�:

OWw
ˇ̌
ˇ
n
vR
o
;
n
v@R? ; v@Rk

o
;
n
vR

c
oE

D ei�.v
@R
? ;w/

ˇ̌
ˇ
n
vR
o
;
n
v@R? ; v@Rk

o
;
n
vR

c
oE
; (2.3.23)

while for all OV v0 2 ZmagŒR�,

OVv0
ˇ̌
ˇ
n
vR
o
;
n
v@R? ; v@Rk

o
;
n
vR

c
oE

D
ˇ̌
ˇ
n
vR
o
;
n
v@R? ; v@Rk C v0

o
;
n
vR

c
oE
: (2.3.24)

Under this partitioning the Hilbert space decomposes as

H† D
M

fv@Rg
H
.v@R/
† ; (2.3.25)

where we’ve used a short-hand,
˚
v@R

	 ��D
n
v@R? ; v@Rk

o
. Each block in this decomposi-

tion admits a tensor product on R and Rc:

H
.v@R/
† D H

.v@R/
R

˝ H
.v@R/
Rc

: (2.3.26)

This partitioning is useful to illustrate the obstruction of a global tensor-product

decomposition of H†, however it is not computationally useful since the action

of OVv 2 ZmagŒR� moves between di�erent blocks of (2.3.25). It is more helpful to

instead diagonalise their action. Their eigenvectors are associated with OWw operators

crossing the entangling surface transversally and which OVv 2 ZmagŒR� link non-

trivially: these are the p-cycle surface operators generating Zelec. Because of this we

will label the eigenvectors with the set
˚
w@R?

	
which amounts to a change of basis on

the
n
v@Rk

o
part of the state. Thus we partition our ground state as

jvi !
ˇ̌
ˇ
n
vR
o
;
n
v@R? ;w@R?

o
;
n
vR

c
oE
; (2.3.27)

such that for all OVv 2 ZmagŒR�

OOVv
ˇ̌
ˇ
n
vR
o
;
n
v@R? ;w@R?

o
;
n
vR

c
oE

D ei�.v;w
@R
? /

ˇ̌
ˇ
n
vR
o
;
n
v@R? ;w@R?

o
;
n
vR

c
oE
: (2.3.28)

With respect to this partitioning, we can decompose the global Hilbert space with

respect to the eigenvalues of operators spanning ZmagŒR�:

H† D
M

fq@R
? g

H
.q@R

? /
† ; (2.3.29)

where we now use the short-hand,
˚
q@R?

	 ��D
˚
v@R? ;w@R?

	
. Again, each block admits a

tensor product on R and Rc:

H
.q@R

? /
† D H

.q@R
? /

R
˝ H

.q@R
? /

Rc
: (2.3.30)
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In this set-up it is easy to see from our state partitions, (2.3.27), that all H
.q@R

? /
R

˝

H
.q@R

? /
Rc

blocks are isomorphic. To make the following discussion notationally cleaner

will often drop the .q@R? / superscripts from the tensor factors HR and HRc .

For the topological electric algebra, we can decompose the Hilbert space based on

the eigenvalues of the operators generating the centre in a similar way. Again, the

partitioning of cycles into those that can and cannot be deformed being contained in

@R provides a useful partition of surface operator charges. It is precisely the operators

contained in @R (i.e. those in ZmagŒR�) that can link non-trivally with operators in

ZelecŒR� and so their charges,
n
v@Rk ;w@Rk

o
are the eigenvalues of the basis generating

ZelecŒR�. A generic state of H† then can be partitioned as

jvi !
ˇ̌
ˇ
n
vR
o
;
n
v@Rk ;w@Rk

o
;
n
vR

c
oE
; (2.3.31)

corresponding to a Hilbert space decomposition

H† D
M
n
q@R

k

o
H

�
q@R

k

�

† ; (2.3.32)

where
n
q@Rk

o
��D
n
v@Rk ;w@Rk

o
is a short-hand notation for the central eigenvalues. Each

block of (2.3.32) admits a tensor product on R and Rc:

H

�
q@R

k

�

† D H

�
q@R

k

�

R
˝ H

�
q@R

k

�

Rc
: (2.3.33)

Again, since these blocks are all isomorphic, in what follows we will omit the .q@Rk /

superscripts from the tensor factors unless clarity demands it.

2.3.3 Algebras with trivial centre

As has been mentioned at several points above, one hallmark of gauge theories is the

presence of centres in algebras assigned to subregions. While this feature is generic,

the assignment of an algebra, AŒR�, to a region, R, is ultimately a choice. As such one

may ask if there is enough ambiguity to assign a centreless algebra to R. To be clear,

of course one can always assign, by �at, a centreless algebra to R; for two (extreme)

instances:

AŒR� D span
C

f1g; or AŒR� D AŒ†�; (2.3.34)

where AŒ†� is the full algebra of operators14 on H†. However these assignments

tell us absolutely no physics about the region in which we are interested! Barring

14We assume that AŒ†� has no centre. This is true for the algebra of surface operators in this section.

However in lattice gauge theories, it is not typically true: there are an extensive number of Gauss operators

that generate a global centre [186]. Gauge-invariant states in the BF theory (treated as an IR EFT of such a

lattice gauge theory) live in a �xed eigenvalue sector of this “microscopic centre.”
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such “mad-man assignments,” centreless subalgebras associated to a subregion R are

highly non-generic in gauge theories, yet they may still exist. We can attempt to

build such an subalgebra by starting from a generic (centreful) algebra, AŒR�, and

either (i) systematically excluding operators from ZŒR� [183] (a process we will call

reduction), or (ii) systematically adding to AŒR� operators from AŒ†� that do not

commute with ZŒR� (what we will call extension). In the course of both of these

processes, the resulting AŒR� will have a more tenuous relationship to its associated

region R. However to maintain at least some degree of association between AŒR�

and R we will focus on reductions and extensions that are minimal to ensuring AŒR�

is centreless.

Starting then from AmagŒR�, minimal reduction and minimal extension result in two

centreless algebras associated to R, respectively:

The austere algebra

For the process of reduction, we remove from AmagŒR� the surface operators homo-

topic to @R. Since these are also the operators deformable to being contained in Rc,

this equivalent to

AausŒR� ��D U
n

OWwi

�i
; OVvj

� j

ˇ̌
ˇ �i; � j Q2R and �i; � j✓Q2Rc

o
D AmagŒR� \ AelecŒR�; (2.3.35)

i.e. AausŒR� is generated only by surface operators that, homotopically, must be
completely in R.

The greedy algebra

For extension, we now add to AmagŒR� the minimal basis of surface operators that

“pierce” @R. These link with operators on @R and so prohibit them from forming a

centre:

AgreedyŒR� ��D U
n

OWwi

�i
; OVvj

� j

ˇ̌
ˇ �i; � j Q2R or �i; � j✓Q2Rc

o
D AmagŒR� [ AelecŒR�; (2.3.36)

i.e. AgreedyŒR� is generated by all surface operators that are either homotopically in

R, or topologically must have “a leg in R”.15

It is clear the same algebras can be constructed from the reduction and extension,

respectively, of AelecŒR�, as well. It is also clear that

.AausŒR�/
c D AgreedyŒR

c�;
�
AgreedyŒR�

�c D AausŒR
c�: (2.3.37)

Because these two subalgebras have trivial centre, they should correspond to honest

tensor factorisations of H†. This is indeed the case. Returning to the partition of a

15to be precise AgreedyŒR� should be the smallest algebra containing the two. That is the generated

algebra, AmagŒR� _ AelecŒR� ��D
�
AmagŒR�[ AelecŒR�

�cc
. But for �nite-dimensional operator algebras,

as is our case, it coincides with (2.3.36), since Acc D A is automatically guaranteed. See also [196].
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general state, (2.3.22), for the austere algebra, we simply group the charges associated

with central surface operators with Rc

jvi ��D
ˇ̌
ˇ
n
vR
o
;
n
vR

cC
oE
;

n
vR

cC
o

��D
n
v@R? ; v@Rk ; vR

c
o
; (2.3.38)

while for the greedy algebra, we group them in with R:

jvi ��D
ˇ̌
ˇ
n
vR

C
o
;
n
vR

c
oE
;

n
vR

C
o

��D
n
vR; v@R? ; v@Rk

o
: (2.3.39)

Correspondingly the Hilbert space decomposes as

H† D HR ˝ HRcC ; or H† D HRC ˝ HRc ; (2.3.40)

under the action of AausŒR� or AgreedyŒR�, respectively. There is a cost for being

centreless: our centreless algebras, AausŒR� and AgreedyŒR�, have looser relationships

to their associated region. Correspondingly, Hilbert space decompositions such as

(2.3.40) may possess less information about a region than decompositions possessing

a centre. Additionally, even though we have arrived atAaus(greedy)ŒR� through minimal

reduction (extension), owing to the topological nature of the theory and its operator

content, the dissociation fromRmay still be drastic indeed. For example, as illustrated

in �gure 2.2, there are situations (namely when either AŒR� D Z or AŒRc� D Z) where

minimal extension or subtraction can result in everything-or-nothing centreless

algebras

AausŒR� D span
C

f1g; or AgreedyŒR� D AŒ†�; (2.3.41)

even when R, AmagŒR�, and AelecŒR� are non-trivial. In such situations, insofar as the

entanglement entropy is concerned, the cost of being centreless is then very heavy:

it is zero for all pure states.

m1

`1

m2

`2

m3

`3

R

Rc

@R

@R

Figure 2.2: An example of “everything-or-nothing” centreless algebras: AgreedyŒR� D AŒ†�,
AausŒR

c� D spanC f1g.
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2.3.4 Decomposing a state and the reduced density matrix

Now let us consider a generic state, �, on H†. With respect to either Hilbert space

decomposition, (2.3.29) or (2.3.32),

H† D
M

fqg
H
.q/
† D

M

fqg
H
.q/

R
˝ H

.q/

Rc
; q 2

n
q@R? ; q@Rk

o
; (2.3.42)

we can write

� D
M

fqg
�.q/�

.q/; q 2
n
q@R? ; q@Rk

o
; (2.3.43)

which corresponds to diagonalising � as an operator with respect to the respective

centre, ZŒR�. The coe�cients, �.q/, are chosen such that �.q/ are normalised states

on H
.q/
† :

Tr
H

.q/

†

�.q/ D 1; (2.3.44)

which requires X

fqg
�.q/ D 1: (2.3.45)

Within each block H
.q/
† we can construct the reduced density matrix with respect to

the tensor product, (2.3.30) or (2.3.33), by tracing out HRc :

�
.q/

R
D TrH

Rc
�.q/: (2.3.46)

This results in a reduced density matrix on R which follows from the sum decom-

position, (2.3.43):

�R D
M

fqg
�.q/

�
�
.q/

R
˝ �H

Rc

�
: (2.3.47)

where �H is the trace-normalised identity matrix on a Hilbert space:

�H
��D

O1H

dimH
: (2.3.48)

Alternatively, we can de�ne this reduced density matrix as the unique unit-trace, Her-

mitian operator in AŒR� which reproduces expectation values of all other operators

in AŒR�:

�R 2 AŒR�; such that TrH†
.�ROR/ D TrH†

.�OR/
8 OR 2 AŒR�: (2.3.49)

Given the decomposition (2.3.47), we assign an entanglement entropy to � and AŒR�

via

�AŒR�Œ�� ��D
X

fqg
�.q/�vN

h
�
.q/

R

i
�
X

fqg
�.q/ log�.q/; (2.3.50)
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where

�vN

h
�
.q/

R

i
��D �TrH

R

�
�
.q/

R
log �.q/

R

�
(2.3.51)

is the von Neumann entropy of the reduced density matrix in a �xed block, (2.3.46).

The second term of (2.3.50) is a Shannon entropy of the probability of measuring the

set fqg of eigenvalues in the state �. We emphasise that, while ostensibly classical in

nature, this Shannon entropy is present even for pure quantum states and is a generic

feature of entanglement entropies associated to centreful algebras. It will play an

important role in the following section. For a centreless algebra (such as AausŒR� or

AgreedyŒR�), the entanglement entropy, �AŒR�Œ��, can be de�ned in the usual way as

the von Neumann entropy of � reduced on the corresponding tensor-factorisation.

2.3.5 Essential topological entanglement

Wenow illustrate the entanglement entropy associated to various choices of subregion

algebra for a ground state, j i D jv?i, for some �xed v?. As discussed in section 2.2,

this state is prepared by the action of OVv? acting on condensate. In the context of the

BF path-integral, these states are natural: they are prepared by path-integral on the

interior of a manifold having † as its boundary and with OV Wilson surface operators

inserted. In .2C 1/ dimensional topological phases, such states play a key role in

the standard treatment of entanglement entropy (say via the replica trick, lattice

regularisation, or an extended Hilbert space), yielding the celebrated “topological

entanglement entropy” discussed in section 2.1. The primary upshot of this section is

to show that in our setup such states provide a new smoking gun topological signature

in the algebraic entropy, which we name the “essential topological entanglement.”

There will be two varieties: one associated to the topological magnetic algebra, and

one associated to the topological electric algebra:

Emag/elec ��D �Amag/elecŒR�Œjv?ihv?j�: (2.3.52)

We will further see that these two essential topological entanglements are related by

a electric-magnetic duality.

Let us begin the discussion with the topological magnetic algebra in mind. We will

illustrate the machinery in this instance; the consideration of the other subregion

algebras will be wholly clear afterward. We will consider the global pure state

� D
X

v1;v2

 v1
 �

v2
jv1ihv2j : (2.3.53)

and reduce it down on AmagŒR� for some region R. We can express the reduced

density matrix of the state, (2.3.53), as element of AmagŒR� via

�R D N �1X

wR

X

vR

X

v1

 v1
 �

v1�vRe
�i�.v1;w

R/ OWwR OVvR

: (2.3.54)
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where N D dimH† D jdetKjbp.†/ ensures that �R is trace normalised over H†.

See appendix A.3 for details on this decomposition. It will be useful to split this

normalisation into

N D NR N@R NRc D jdetKjhR jdetKjh@R jdetKjhRc ; (2.3.55)

where hR is the number of independent .d � p � 1/-cycles deformable to R but

not to Rc (i.e. the number of .d � p � 1/-cycles spanning the austere algebra for

R). And vice-versa for hRc . Thus NR and NRc are simply the dimensions of HR

and HRc , respectively, in the decomposition (2.3.30). Above, h@R is the number of

.d � p � 1/-cycles piercing @R, hd�p�1
elec , (counting the independent

˚
v@R?

	
in the

decomposition (2.3.27)) plus hd�p�1
mag , the number of .d � p � 1/-cycles deformable to

@R. As discussed above in subsection 2.3.2, the latter of these is equal to hpelec, and

counts the independent
˚
w@R?

	
in (2.3.27). Thus

h@R D hpelec C hd�p�1
elec D hpmag C hd�p�1

mag : (2.3.56)

In writing (2.3.54), some of the OW’s and OV’s belong to the centre, ZmagŒR�. It will be

useful to separate them o� as

OWwR D
Y

�j Q2R;✁Q2Rc

OWw
R
j

�j

Y

�j Q2R; Q2Rc

OWw
R
j

�j
� OWwR OWw@R

k

OVvR D
Y

� i Q2R;✁Q2Rc

OVv
R
i

� i

Y

� i Q2R; Q2Rc

OVv
R
i

� i
� OVvR OVv@R

k : (2.3.57)

Diagonalising these central elements, we can write them in terms of their eigenvalues

as
OWw@R

k D
M

v@R
?

e
i�
�
v@R

? ;w@R
k

�

; OVv@R
k D

M

w@R
?

e
i�
�
v@R

k ;w@R
?

�

: (2.3.58)

This leads to a reduced density matrix in block diagonal form, as in (2.3.47):

�R D
M

fv@R
? ;w@R

? g
�.v@R

? ;w@R
? /

�
�
.v@R

? ;w@R
? /

R
˝ �H

Rc

�
; (2.3.59)

with

�.v@R
? ;w@R

? / DN �1
@R

X

w@R
k

X

v@R
k

X

v1

 �
v1�v@R

k

 v1
e

�i�
�
v1�v@R

? ;w@R
k

�
Ci�

�
v@R

k ;w@R
?

�

�
.v@R

? ;w@R
? /

R DN �1
R

X

wR

X

vR

X

v1

 �
v1�vR

 v1
e

�i�
�
v1;w

R
�

OWwR OVvR

; (2.3.60)

52



2.3. Subregion algebras and essential topological entanglement

and �H
Rc

is the trace-normalised unit operator of HRc with respect to the decompos-

ition (2.3.30). We can easily verify that

X

v@R
?

X

w@R
?

�.v@R
? ;w@R

? / D
X

v1

 �
v1
 v1

D 1; (2.3.61)

because the sums over w@R? and v@R? enforce delta functions on v@Rk and w@Rk , respect-

ively.

We now will take our pure state to be a ground state, j i D jv?i for �xed v?, which

sets  v D ıv�v?
(de�ned in (2.2.41)). With respect to the decomposition (2.3.30) jv?i

projected onto each central eigenspace remains a product state on HR ˝ HRc and so

�
.v@R

? ;w@R
? /

R
is pure on HR:

�
.v@R

? ;w@R
? /

R
D N �1

R

X

wR

e
�i�

�
v?;w

R
�

OWwR D
ˇ̌
ˇvR?

ED
vR?

ˇ̌
ˇ : (2.3.62)

As such its von Neumann entropy vanishes, �vN

�
�
.q@R

? /
R

�
D 0. The entanglement

entropy of jv?i then comes entirely from the Shannon entropy of the distribution,n
�.q@R

? /

o
, which take the form

�.v@R
? ;w@R

? / D N �1
@R

X

w@R
k

e
�i�

�
v?�v@R

? ;w@R
k

�

D ı
v@R

??�v@R
?

jdetKj�hd�p�1
mag I (2.3.63)

that is, their support is isolated to the v@R? sector determined by the original ground

state, and is maximally mixed on the w@R? eigenvalues. The algebraic entanglement

entropy associated to AmagŒR� of jv?i is then determines the essential topological

entanglement as

Emag D �
X

fv@R
? ;w@R

? g
�.v@R

? ;w@R
? /

log�.v@R
? ;w@R

? /
D hd�p�1

mag log jdetKj; (2.3.64)

where we remind the reader

hd�p�1
mag D

d�p�2X

nD0
.�1/d�p�2�nbn.@R/

C
d�p�1X

nD0
.�1/d�p�1�n .bn.†/ � dimHn.†; @R// : (2.3.65)

Let us dissect this result. We make note of several features of (2.3.64).
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� Emag probes non-local operator statistics through jdetKj which can be regarded
as a “total quantum dimension” in this theory.

� Emag is independent of the ground state, jv?i, in which it is evaluated. This is in

keeping with this being an abelian topological phase. Since operator fusion is

unique in AŒ†�, the “quantum dimension,” Dv?
, of the OVv? building jv?i from

the condensate is unity and so any possible contribution going as logDv?
will

vanish.

� Emag probes topological features intrinsic to @R: the alternating sum of Betti

numbers on @R. This contribution mimics a proposed (negative) correction to

the area law in higher-dimensional topological order described by membrane-

net models [188]. Here we �nd this term contributes positively and appears

without an area law.

� Emag possesses additional terms that depend both on the topology of † itself,

as well as the relative homologies of † and @R. Thus, the essential topological

entanglement is sensitive to more than the topology of @R itself, but also how

@R is embedded into †. As we argued in subsection 2.3.1, this has to be the

case since the operators counted by Emag have to descend from non-trivial

topological operators on †.

� Emag comes entirely from the Shannon contribution to �Amag Œjv?ihv?j�, while the
contribution from the sum of von Neumann entropies exactly vanish. It was

argued that this latter contribution corresponds to the distillable entanglement

in gauge theories [185, 197]. That Emag entirely enters through the Shannon

term is in keeping with its essential non-locality: it cannot be distilled into Bell

pairs by local operations.

We can repeat this same exercise for the entanglement entropy associated to AelecŒR�.

Running through this process one �nds for a pure state the reduced density matrix

decomposes in a way wholly similar to (2.3.59):

�R D
M

n
v@R

k ;w@R
k

o
�.v@R

k ;w@R
k /

�
�
.v@R

k ;w@R
k /

R
˝ �H

Rc

�
; (2.3.66)

with
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 v1
e
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�
v1;w

R
�

OWwR OVvR

: (2.3.67)
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Again, for a �xed ground state, j i D jv?i, the reduced density matrix projected to a

�xed block of (2.3.32) is pure and the electric entanglement entropy comes entirely

from the Shannon entropy of
n
�.q@R

k /

o
. This distribution again is isolated onto a

speci�c block of v@Rk eigenvalues determined by the ground state and are maximally

mixed onto the w@Rk eigenvalues:

�.v@R
k ;w@R

k / D N �1
@R

X

w@R
?

e
�i�

�
v?�v@R

k ;w@R
?

�

D ı
v@R

?k �v@R
k

jdetKj�hd�p�1
elec : (2.3.68)

Eelec, being given by the algebraic entanglement entropy associated to AelecŒR� of a

ground state, is then

Eelec D hd�p�1
elec log jdetKj; (2.3.69)

where we remind the reader

hd�p�1
elec D hpmag D

p�1X

nD0
.�1/p�1�nbn.@R/C

pX

nD0
.�1/p�n .bn.†/ � dimHn.†; @R// :

(2.3.70)

Again we see many familiar features of this essential topological entanglement: the

dependence of log jdetKj with a coe�cient displaying topological dependence of @R

as well as † and how @R is embedded into †. Comparing with (2.3.64) we also notice

Emag
p!.d�p�1/
7���������! Eelec; (2.3.71)

which ultimately stems from the electric-magnetic duality discussed in section 2.2.

Lastly for sake of completeness, we consider the centreless algebras, Aaus and Agreedy.

Since the ground states are already product states on the tensor factorisations de�ned

by either AausŒR� or AgreedyŒR�, these two algebras yield zero entanglement entropy:

�AausŒR� Œjv?ihv?j� D �AgreedyŒR� Œjv?ihv?j� D 0: (2.3.72)

2.4 Discussion

In this chapter we considered the algebraic approach to entanglement entropy applied

to the algebra of surface operators in abelian BF theories. On a technical level the

algebraic approach allowed us to address issues of Hilbert space factorisation while

respecting the non-local and topological nature of the gauge-invariant observables

available in the low-energy theory. On a conceptual level this investigation was

predicated on �nding a suitable de�nition of topological entanglement that (i) can
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be de�ned intrinsically in the IR TQFT (i.e. without the need to embed into a micro-

scopic model, or to extend the Hilbert space with “edge modes”) and (ii) is sensitive

to longer-range and intricate forms of topology than that of the entangling surface

itself. To that end we de�ned two non-trivial algebras that can be assigned to a

subregion: the topological magnetic and electric algebras. To each of these algebras

we associated an algebraic entanglement entropy which we coin the “essential topo-

logical entanglement.” Our essential topological entanglement is manifestly �nite,

positive, and displays a more intricate and long-range features than the topology of

the entangling surface itself: namely, how the entangling surface is embedded into

the Cauchy slice.

Let us comment on some open questions and open directions implied by this research

below.

Comparing with traditional TEE

The essential topological entanglement shares familiar features with traditional TEE:

e.g. the log dependence on the total quantum dimension, jdetKj, and the appearance
of the alternating sum of bk.@R/ which has been argued to be the coe�cient of the

log jdetKj in higher dimensions [188]. However the additional dependence of E on

bulk topology makes it clear that E truly a di�erent object than the TEE. We have

emphasised above and will emphasise again that this has to be the case. A simple

example to keep in mind when comparing the two concepts is when the region

is a D-ball: R D BD . There is simply no non-trivial operator one can assign to

either Amag or Aelec: physically the BF theory has integrated out all local degrees

of freedom and there is no probe that can distinguish R from the empty set. It is

easy to see that Emag/elec D 0 in this case. However the TEE proposed by [188] will

generically be non-zero: this is because @BD D SD�1 can support a top and bottom

homology group. Again this di�erence stems from the fact that the TEE arises from

the long-range correlations amongst UV degrees of freedom localised to @R while E

arises from the long-range correlations of long-range operators delocalised on †.

With that di�erence stated, we can still speculate on the form of the traditional TEE

in BF theory. As discussed above, accessing this TEE is contingent on adding in

UV degrees of freedom. However we can easily do this by extending the Hilbert

space using the methods in [198, 199] or by regulating a replica path-integral with

“edge modes.” We will return to this question in chapter 3, where we will show

that the inheritance of gauge transformations on an entangling surface is an in�nite

dimensional algebra that completely organises the entanglement spectrum of an

edge-mode theory living on @R. This algebra is a direct analogue to the Kac-Moody

algebras arising on the boundaries of Chern-Simons theories and provides a natural

procedure for constructing the extended Hilbert space. The computation of the

entanglement entropy of a subregion is entirely controlled by this algebra and leads
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to area and sub-area laws plus a constant correction depending on Betti numbers of

@R.

Accessing essential topological entanglement on the lattice

Our de�nition of the essential topological entanglement is strongly motivated by the

IR e�ective TQFT described a topological phase. In practice, however, it is much more

useful to work directly with spin lattice models or with tensor network constructions

of ground states. How does one de�ne E in these settings?

A natural starting place are the operator algebras de�ned in lattice gauge theories

de�ned on general graphs. One can then look for a projected set of gauge invariant

operators that are both homotopy invariant as well as independent to re�ning or

coarse graining the graph. Such algebras were precisely considered in [190] where an

algebra of “ribbon operators” were used to de�ne algebraic entanglement entropies

in lattice gauge theories that are graph-independent, topological, and �nite dimen-

sional. These features resonate strongly with our de�nition of essential topological

entanglement. In that paper all entangling regions have trivial topology and so the

contribution to the entanglement entropy comes entirely from surface operators

terminating on (non-abelian) quasi-particle punctures in the region. In this work

we have not considered punctured states; additionally it is unlikely they will con-

tribute to E because of the abelian fusion of surface operators. This makes a direct

comparison to di�cult. It would be interesting to extend the methods of [190] to

more interesting topologies to investigate if our notions of algebraic entanglement

coincide.

More broadly, it is fair to ask if essential topological entanglement, either de�ned in

a TQFT or in a lattice gauge theory, a�ords any practical advantages over traditional

TEE. A well known use for TEE is to diagnose whether a tensor product ansatz for

a gapped Hamiltonian truly captures topological order [200]. With this regard we

do not expect E to provide any signi�cant advantages. However essential topolo-

gical entanglement likely displays conceptual advantages in models where manifest

background independence and di�eomorphism invariance are desired, such as loop

quantum gravity [190] or tensor network models of quantum gravity [191].

Probing essential topological entanglement in general states

In this chapter we have de�ned and evaluated the essential topological entanglement

in �xed ground states. The similar calculation for a generic pure ormixed state follows

a wholly similar calculation, however the coe�cients of the superposition pollute the

topological aspects of the entanglement. This also occurs in similar calculations of

the TEE using generic pure states; see e.g. [201] for example calculations. One bene�t

of the algebraic approach to entanglement is that it is clear how the structure of the

subregion algebras and their central elements lead to E ; it would be useful if this
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structure could be utilised to isolate E cleanly in arbitrary states. One such structure

is that Amag and Aelec appear as complementary operator algebras [202]. Viewing
Agreedy D Aelec _ Amag, there is a related structure of complementary conditional

expectations, E and E 0,

AgreedyŒR� AmagŒR�

AausŒR
c� AmagŒR

c�;

E

c c

E 0

(2.4.1)

(and similarly for Aelec). One can then try to use entropic certainty relations to place

strict bounds on the relative entropies in terms of the index of ŒAmagWAgreedy� [202]. As

of yet we have been unable to utilise this technology to constrain the entanglement

entropy of generic pure states: it is likely possible to construct pure states whose

algebraic entropy saturates log dimH† and so washes out the more intricate features

of E . Regardless, this avenue and the related avenue of the topological uncertainty

principle [203] are worth exploring further.

Applications beyond BF theory: fractons

As mentioned above, much of this and the next chapters is motivated by the question

of topological order in higher dimensions. While our focus has been on standard

abelian topological orders, we hope some of our ideas translate to .3C 1/ gapped

fracton phases. This translation is most easily facilitated through the “foliated �eld

theory” framework to describe Type I, or foliated, fracton order [204]. Fracton

phases, foliated phases included, have interesting forms of UV/IR mixing that make

the distinction between di�erent UV scales (e.g. the energy cuto�, the momentum

cuto�, and the lattice scale) subtle and important. Essential topological entanglement

eschews at least some of this subtlety: it does not rely on a UV embedding, but instead

utilises only the structure of symmetry operators (which may still rely on a lattice

scale for foliated fracton phases). It would be very interesting if essential topological

entanglement can provide a more natural way to extract universal features of foliated

fracton phases directly in the continuum.

Essential topological entanglement in generic theories

Although we have focused on essential topological entanglement in abelian BF

theory, the extension to other TQFTs is conceptually straightforward. However,

essential topological entanglement might prove to be a useful concept in generic

(non-topological) quantum �eld theories exhibiting generalised global symmetries.

This follows from the realisation that symmetries, and more broadly generalised

symmetries, are synonymous with topological operators (of various codimensions,

invertible or non-invertible) [12, 15].16 One can then de�ne topological operator

16There is a multitude of results stemming from this realisation, see e.g. [67] for a more complete list.
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algebras in a generic quantum �eld theory, by restricting to the algebras of symmetry

operators. More formally, the sandwich approach [90, 91] to global symmetries,

provides an avenue to delineate these operators from the rest of the theory: all sym-

metry operators live in the one-higher-dimensional SymTFT [205], which is a topolo-

gical �eld theory in its own right. Therefore the essential topological entanglement

applied to this SymTFT is a potential probe of an indistillable, symmetry-induced,

entanglement of the original theory.

Along these lines, we can lastly speculate on consequences for gravity. It is strongly

believed that quantum gravity has no global symmetries (see e.g. [206–208]), although

there are exceptions in low-dimensional models excluding black holes [209]. It is

tempting to phrase this condition in the language of entanglement and conjecture

that quantum gravity has no essential topological entanglement, which might be a

weaker, but more universal condition on quantum gravity.
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3 Edge modes

3.1 Introduction

As alluded to in chapter 1, long-range entanglement is a notionwith potent conceptual

and practical utility in characterising quantum phases of matter. In gapped ground

states, short-range correlations manifest in an ‘area law’ entanglement coming from

degrees of freedom localised and straddling the boundary of the region of the interest

(within a correlation length), the so-called “entangling surface.” Important, however,

are potential long-range corrections to this area law. This is exempli�ed in (2+1)-

dimensional gapped systems where a constant negative correction to the area law

can arise from non-local features of the ground state, which constrain the short-

ranged correlations at the entangling surface. This is the celebrated “topological

entanglement entropy” and is a smoking gun of (2+1)d topological order [165, 166].

This story is mirrored beautifully in topological quantum �eld theory (TQFT), which

provides IR e�ective �eld theories of topological order: when restricted to a region

of spacetime, TQFTs are host to a robust spectrum of “edge modes” localised to the

boundary of the region [178–181]. These edge modes are the inheritance of bulk

gauge transformations, which are broken by the existence of a boundary. When

“gluing” a region to its complement to form a complete state, the edge modes on

either side of the common boundary are maximally entangled up to global constraints

[199, 201], giving a divergent area-law entanglement entropy with universal constant

corrections. TQFT also provides powerful avenues to corroborate these results, such

as through the replica trick and surgery [199, 210].

By this point, the role of edgemodes in topological entanglement entropy is extremely

well understood in (2+1) dimensions; while generally believed to extend, their role is

still relatively unexplored in general dimensions. In this part we make progress in

this direction, focussing on the abelian topological phases described by p-form BF
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theories in d dimensions:

SBF ��D
KIJ

2�

Z
BI ^ dAJ: (3.1.1)

Above AJ is a vector of p-forms and BI is a vector of .d � p � 1/-forms and K is a

rank � symmetric matrix1 of integer entries. These are theories whose ground states

are p-form membrane condensates. In chapter 2, we explained how such theories

display an extreme long-range form of entanglement, what we name “essential

topological entanglement” (ETE), which must be present in the strict IR limit of a

TQFT [1]. The ETE is entirely �nite: absent from it are all contributions from UV

degrees of freedom and their subsequent area law. However, it is still important to

know the UV contributions to entanglement entropy which provide benchmarks

for simulating topological order with a given UV model2 (such as through tensor

networks or matrix product states). In this direction, the potential contributions to

topological entanglement entropy in p-form condensates were deduced by Grover,

Turner, and Vishwanath (GTV) [188] by focussing on lattice gauge theories as a

particular UV realisation. Despite various example calculations,3 to date there has

not been a comprehensive computation performed in the corresponding continuum

TQFT for generic entangling surfaces and any dimension. In this chapter, we �ll this

gap.

We will explain how the edge mode spectrum leads to area (plus subleading area) law

entanglement entropy with constant pieces that are sensitive to topological features

of the entangling surface. To be concrete, we �nd
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where " is a short-distance regulator, C.p�1/
k

are non-universal dimensionless num-

bers, that we compute, 	
.k/
d�2

2

is the
�
d�2
2

�
-th heat kernel coe�cient for a particular

spectral zeta function, ` is a characteristic length scale, and bn denotes the n-th Betti

number of the entangling surface. This is the �rst main result of this chapter. Our

result di�ers from the GTV result; in the discussion, section 3.5, we discuss to what

extent the two results can be reconciled through local terms to the entangling surface.

We arrive at this result through two independent, yet conceptually complementary,

avenues.
1In principle, this action doesn’t require K to be symmetric, however only the symmetric part will

participate in the edge mode entanglement and this saves us introducing extra notation.
2A real-world material being a pertinent example!
3See e.g. [211–216]. See [217] for a very general lattice gauge theory calculation.
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(I) Firstly we utilise the replica trick and perform path integral on a replica man-

ifold, regulated by excising a small region (of circumference ") about the en-

tangling surface. The resulting edge mode theory on this regulated entangling

surface is a novel mix of .p � 1/-form and .d � p � 2/-form Maxwell theories,

tied together by a “chirality” condition. We coin this theory “chiral mixed Max-

well theory.” The existence of such theories as well as their thermal partition

function, which we explicitly compute, is a second main result of this chapter.

This edge mode theory contributes an entropy given by (3.1.2).

(II) Secondly, and more rigorously, we address the subtle issues of gauge-invariance

in de�ning entanglement entropy by moving to an “extended Hilbert space”

(EHS) [174, 182, 184, 185, 218]. We show that the EHS is organised by an in�nite-

dimensional current algebra, akin to the Kac–Moody algebras that arise at the

edge of (2+1) dimensional phases. This algebra has also appeared in the context

of 4d abelian Maxwell theory [37], where it �xes the spectrum of the theory and

can, for instance, be used to establish a state-operator correspondence for non-

local operators [3], as we will see in chapter 4. However, to our knowledge, the

existence of these algebras for general p-forms and in general dimensions has

not been explored. Here we will elucidate them in detail, construct their Verma

modules, and compute their representation characters. We regard this as a third

main result of this chapter. Unlike in (2+1)d, these algebras are not necessarily

conformal. Regardless, they completely �x the computation of (3.1.2) which

arises from the high-temperature limit of the representation character of this

algebra (i.e., a regulated count of the representation dimension).

Along the way, we explain the connection between these two approaches: the chiral

mixed Maxwell theory appearing in item (I) has a spectrum that is completely �xed

by the in�nite-dimensional algebras of approach item (II). Correspondingly, their

partition function is given exactly by a representation character, which is the ultimate

source of the match in (3.1.2). This is a precise analogue of “edge spectrum = bulk

entanglement spectrum” promoted to higher dimensions. We regard this as a �nal

major result of this chapter.

An organising summary of the chapter is as follows. In section 3.2 we introduce the

BF theory and perform its path integral on manifolds with and without boundary.

While there are many results for the BF path integral on closed manifolds, we will be

very careful keeping track of factors of K, which, to our knowledge, had not been

fully nailed down in the previous literature. We will use these results in section 3.3

to evaluate the replica integral and describe how the computation ultimately results

from the partition function of the chiral mixed Maxwell theory. In section 3.4 we

shift gears and describe the more systematic de�nition of the entanglement entropy

through the extended Hilbert space and describe features of the resulting current
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algebra that organises it. We then use the representation characters of this algebra

to compute the entanglement entropy, �nding a match with section 3.3. In the

discussion, section 3.5, we will put our results in context with the known results

of GTV, as well as the ETE of this theory, and possible future extensions of our

computation.

3.1.1 Notation

For the reader’s ease, we lay out here some basic notation that will be used in what

follows.

We will analyse theories on torsion-free manifolds of spacetime dimension d , which

we shall collectively denote as X . These manifolds may have a boundary, which

we will embed into X using the map i@ W @X ,! X . Theories will be quantised on

manifolds of dimension D � d � 1, which we will refer to as †, often calling it

the “Cauchy slice” without reference to any causal structure of the TQFT. We will

consider a subregion R, which is the closure of a D-dimensional embedded open

submanifold of †. The interior of R is R ��D R n @R, and its complement is Rc,

the closure of † n R. Note that R \ Rc D @R. We will denote the space of forms

of degree p as �p. � /. Unless stated otherwise, these forms will be real valued.

Cohomology groups will be denoted with their degree placed upstairs, Hp. � /, while
homology groups will be denoted with their degree placed downstairs, Hp. � /, and
these groups are always de�ned with integer coe�cients, unless stated otherwise.

For compact, boundary-less manifolds, we notate the dimensions of the groups by

Betti numbers, bp. � /. For (co)homology groups on manifolds with boundary or for

relative homology groups, we will always explicitly write the dimension.

3.2 The BF path integral

In this section, we describe the path integral quantisation ofmulti-component, abelian,

p-form BF theory, on a d -dimensional, torsion-free manifold, X , with a potentially

nonempty boundary, @X . We will start by reminding the reader of the procedure

in the case where X is a closed manifold, presenting general results with the added

bene�t of a careful accounting of the level matrix. We then move on to modify the

situation in the presence of boundaries.

3.2.1 On a closed manifold

Let us set the stage by starting with a closed manifold. We consider BF theory de�ned

by the action

SBFŒA; B� ��D
KIJ

2�

Z

X

BI ^ dAJ: (3.2.1)
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3.2. The BF path integral

In the above, AI 2 �p.X/ and BJ 2 �d�p�1.X/ are vectors of p- and .d � p � 1/-

form gauge �elds respectively. The level matrix, K is a symmetric, integer, and

non-degenerate matrix of rank �. In what follows, we will drop the indices, wherever

not necessary, to simplify the notation. Note that, as emphasised above, this de�nition

makes sense whenever X is torsion-free. We will comment on the case of torsion

manifolds at the end of this subsection. For a more general and precise de�nition of

BF theory, we refer the reader to [1, Appendix A].

The equations of motion arising from varying the action (3.2.1) are �atness conditions:

eomŒA� D K

2�
dA D 0; eomŒB� D .�1/.d�p/.pC1/ K

2�
dB D 0: (3.2.2)

Moreover, the action (3.2.1) possesses a gauge redundancy of the form

•A D ˛ and •B D ˇ; (3.2.3)

where ˛ 2 �
p
cl.X/ and ˇ 2 �

d�p�1
cl .X/, are closed p- and .d � p � 1/-forms re-

spectively. Note that there are two types of gauge shifts. Shifts by harmonic forms

correspond to large gauge transformations, in the sense that they are not continuously

connected to the identity, and shifts by exact forms correspond to the usual in�n-

itesimal gauge transformations. To properly quantise the theory in the path integral

formalism, we must therefore divide by the volume of the gauge groups. However,

note that there is a tower of reducibility of the gauge parameters. For example, split-

ting ˛ o� as ˛ D ˛0 C d˛1, with ˛0 2 Harmp.X/ and ˛1 2 �p�1.X/, the parameter

˛1 generates the same gauge transformation as ˛1 C Q̨1, with Q̨1 2 �p�1
cl .X/. This

tower continues until one reaches a zero-form gauge redundancy. This redundancy

is encoded in the BF path integral in the form of the volume of the gauge group:

ZBFŒX� D
Z

DA DB

vol.G /
eiSBFŒA;B�; (3.2.4)

where, G is the total gauge group, G D Gp � Gd�p�1, with

Gk ��D �kcl.X/
ı

Gk�1; (3.2.5)

and G0 D Harm0.X/. In what follows we will be careless with overall numerical

coe�cients, such as factors of 2� in the partition function, as they can be absorbed

in an overall normalisation of the path integral measure. However, we will pay extra

attention to factors of K, as they play a crucial role in the universal terms of the

entanglement entropy.

One commonly employed method to properly quantise such higher-gauge theories is

to include ghosts and ghosts-for-ghosts, and so on, until the gauge transformations

are completely resolved [193]. An alternative approach, due to [194], which was
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shown to be equivalent, at the level of determinants, to that of Blau and Thompson

[193] (which is in turn also equivalent to Schwarz’s method of resolvents [219]), is to

Hodge-decompose the �elds as

A D A0 C dA? C d�Ak;

B D B0 C dB? C d�Bk:
(3.2.6)

with A0 2 Harmp.X/, A? 2 �p�1.X/, Ak 2 �pC1.X/, B0 2 Harmd�p�1.X/,
B? 2 �d�p�2.X/, andBk 2 �d�p.X/ and perform the path integral directly. In what

follows, we will show that, with a bit of care, this method also correctly reproduces

the harmonic correction to the partition function4 and we will obtain the level

dependence of the partition function. With the decomposition (3.2.6), taking into

account the Jacobians of the transformation, the path integral measure decomposes

as

DA D DA0 DA? DAk
�
det 0

�p�1.X/
.d�d/

�1=2�
det 0

�pC1.X/
.dd�/

�1=2
; (3.2.7)

and similarly for DB , while the action takes the form

SBFŒA; B� D K

2�

D
d�Bk; ?dd

�Ak
E
; (3.2.8)

where h�; ıi is the Hodge inner product,
R
X � ^?ı. Following [220] we will normalise

the path integral measure as

DA D
Y

x2X
E dAx DB D

Y

x2X
E dBx ; (3.2.9)

where E is a frame matrix, satisfying E2 D K. This has the e�ect of removing the K

dependence from the functional determinants, arising upon integrating over Ak and
Bk. Note that this is not the only choice. Normalising the modes as � K˛ dAx and

� K1�˛ dBx , for some real ˛, still takes care of the K-dependence of the functional

determinants, but as will become evident below, it rescales the partition function as

ZBFŒX� 7−! jdetKj˛ ¦.X/ZBFŒX�; (3.2.10)

where ¦.X/ is the Euler characteristic of X . This ambiguity is on the one hand, well

documented and understood [221] and on the other hand harmless if one is interested

in topological entanglement entropy. The reason is, ultimately, that it can be seen to

arise from (or equivalently can be absorbed into) a locally integrated contribution

[188]. We will return to this point in the discussion, section 3.5.

4This corresponds to the re�nement of the Ray–Singer torsion as an element of the determinant line

bundle, detH�, of H�.X/.
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3.2. The BF path integral

Ignoring this ambiguity, for the reasons mentioned above, the integral over Ak and
Bk with the measure (3.2.9) produces

Z
k
BFŒX� D

�
det 0

�p.X/.d
�d/
�� 3

2

: (3.2.11)

Integrating over A? and B?, modulo small gauge transformations, i.e. the part of

(3.2.5) generated by d�k�1.X/, gives an alternating product of determinants, which

can be combined with (3.2.11) to give the analytic torsion5 [194]:

Z?
BFŒX�Z

k
BFŒX� D

dY

kD0

�
det 0

�k.X/
4n

� k
2 .�1/pCk

D�� TAŒX�
.�1/p�1

: (3.2.12)

As it stands, TAŒX� depends on the metric, whenever not all cohomology groups

are trivial. So this cannot be the �nal expression of the partition function; it is the

zero-modes that will provide the �x, as is usually the case. Let us see what their

contribution is. The integral over A0 and B0, modulo large gauge transformations,

with the measure (3.2.9) gives [195, 220]:

Z0BFŒX� D
 

pY

kD0
jdet .K ˝ Gk/j

1
2 .�1/p�k

!0
@
d�p�1Y

`D0
jdet .K ˝ G`/j

1
2 .�1/d�p�1�`

1
A;

(3.2.13)

where Gk is the metric on the moduli space of harmonic k-forms, i.e. the Gram

matrix of the topological basis of harmonic k-forms. More explicitly, the topological

basis,
n
�
.k/
i

obk.X/

iD1
, is de�ned by the relation

Z

C i
.k/

�
.k/
j D ıij; (3.2.14)

for a �xed basis,
n
C

j

.k/

obk.X/

iD1
, of k-cycles. Then Gk is de�ned as

�
Gk

�
ij

��D
D
�
.k/
i ; �

.k/
j

E
: (3.2.15)

Poincaré duality implies that (up to a unimodular matrix, which can be set to one by

a suitable choice of basis of the k-cycles) Gd�k D Gk
�1. Utilising this, we get:

Z0BFŒX� D jdetKjhp.X/TH� ŒX�.�1/
p�1

; (3.2.16)

5Actually we get this expression for odd-dimensional manifolds. For even-dimensional manifolds we

get a di�erent power of the (determinant expression of the) analytic torsion. However, on even-dimensional

manifolds the analytic torsion is unity, so we can write (3.2.12) for all dimensions.
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where

hp.X/ ��D
1

2
.�1/p

pX

kD0
.�1/kbk.X/C 1

2
.�1/d�p�1

d�p�1X

kD0
.�1/kbk.X/

¦D .�1/p
pX

kD0
.�1/kbk.X/; (3.2.17)

where the last equality is modulo removing factors of the Euler characteristic, which

can be done by adding a local counterterm, as we alluded to above. Moreover, we

have de�ned

TH� ŒX� ��D
dY

kD0
.detGk/

1
2 .�1/kC1

: (3.2.18)

TH� ŒX� is precisely the cohomological correction to the analytic torsion, necessary

to form the metric-independent Ray–Singer torsion:

TRSŒX� D TH� ŒX�TAŒX�: (3.2.19)

Putting everything together, the partition function for multi-component, p-form BF

theory on a compact, closed manifold X , reads:

ZBFŒX� D jdetKjhp.X/ TRSŒX�
.�1/p�1

: (3.2.20)

This form of the partition function has a number of desirable features which we list

below.

� It is topological. Of course, this was anticipated since the very �rst appearance

of the theory, in [219]. However, to obtain it in the path integral formalism

requires some care, regardless of the method one chooses. The method of

resolutions [219] was unable to reproduce it, in cases with non-trivial cohomo-

logy groups. In the BRST formulation, one needs to append the action by a

BRST-closed, but not necessarily BRST-exact, quantum action [193, 195]. In

the Batalin–Vilkovisky (BV) [222] formulation of the theory [223] one needs to

pay special attention to the residual super�elds, furnishing the �bre of the BV

integral. Finally, in the direct method that we employed one must be carfeul

about the zero-modes appearing in the tower of gauge-for-gauge-for-. . . -gauge

volumes; note, for example, that in [194] the zero-mode piece is not correctly

reproduced and hence the formulas there depend implicitly on a choice of

metric on X .

� On a three-dimensional manifold, with p D 1, (3.2.20) is the square of the

partition function of abelian Chern–Simons theory. More explicitly, on S3 we
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3.2. The BF path integral

obtain:

ZBF

�
S3
�

D jdetKj�1; (3.2.21)

which is to be compared with ZCSŒS
3� D jdetKj�1=2 in [198]. For a more

general case, in d D 3 with p D 1, allowing also for torsion, see also [224].

� On X D S1 �†, ZBFŒS
1 �†� simply counts the number of ground states on

†. Equivalently, it measures the dimension of the Hilbert space on †. This is

given by dimH† D jdetKjbp.†/ [1]. From (3.2.20), making use of the Künneth

formula: bk.X/ D bk.†/ C bk�1.†/, if k ⩾ 1, while b0.X/ D b0.†/, we

correctly �nd

ZBF

�
S1 �†

�
D jdetKjbp.†/: (3.2.22)

Lastly, let us mention that if we allow X to have torsion, in which case we should

take into account the di�erential cohomology de�nition of BF theory [1, Appendix

A], the expression for the partition function is modi�ed as follows. Let Hp.X I Z/ D
Zbp.X/ ˚Tp.X/, where Tp.X/ D Zp1.X/ ˚ � � � ˚ ZpN .X/ is the torsion part. Then, we

can obtain from [225], upon a slight modi�cation to account for the multi-component

case and to scale away numerical coe�cients, that

ZBFŒX� D jdetKjhp.X/
ˇ̌
hom

�
Tp.X/;Z

�
ı
imK

�ˇ̌
TRSŒX�

.�1/p�1

: (3.2.23)

Note that Poincaré duality and the universal coe�cient theorem give Tp.X/ Š
Td�p�1.X/, making this expression invariant upon exchanging A and B . At this

stage, the inclusion of torsion seems like a mathematical curiosity. Indeed, we will

not discuss further manifolds with torsion here. However, this result may be of

relevance for a future utilisation of “surgery,”6 see the discussion, section 3.5.

3.2.2 On a manifold with boundary

Consider now the case where X has a boundary, @X ¤ ∅. As explained in [1], the

action (3.2.1), gives rise to a boundary symplectic form, which as it stands is consistent

with �xing A as a boundary condition. In general, the action is supplemented by

a boundary term, S@. This leads to a modi�ed variational problem, speci�ed by

symplectic potential on the boundary, ‚@X . Explicitly, the variation of the total

action Sfull D SBF C S@ reads:

•Sfull D heomŒA�; •BiX C heomŒB�; •AiX C ‚@X ; (3.2.24)

6In this method one needs to compute the partition function of BF theory on a branched cyclic cover

of X , rami�ed over the entangling surface. Although the topology of the replica manifold is completely

encoded in the topology of the entangling surface and the original manifold, the replica manifold can

have non-trivial torsion, even if the original manifold does not [226].
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where ‚@X can be put in Darboux form:

‚@X D
Z

@X

p ^ ?@ •q ; (3.2.25)

with q and p being functions of the boundary values of the �elds, A@ ��D i�
@
A,

B@ ��D i�
@
B . Having the symplectic potential in the form of (3.2.25) we have two

options to proceed, in order to have a well-de�ned variational problem: �x p
ŠD 0 or

•q
ŠD 0. Without loss of generality, wewill proceedwith theDirichlet approach, p

ŠD 0.

The other boundary condition can be attained by a boundary symplectomorphism

and can be easily shown to give equivalent results. Note that the symplectic potential

is, as it stands, degenerate due to boundary gauge transformations. We will take care

of that below when we discuss the boundary path integral measure.

The object one would like to study is the partition function of the combined system:

ZBFCedgeŒX; @X� ��D
Z

Cp

DADB

vol.G /
e�SE

fullŒA;B�; (3.2.26)

where Cp ��D
˚
A 2 �p.X/; B 2 �d�p�1.X/

ˇ̌
p D 0

	
and SE

fullŒA; B� is the Euclidean-

ised partition function.7 Note also that here the gauge group G consists of gauge

transformations that vanish on the boundary. The next step is to decompose the

�elds A and B as follows:

A D zA@ C OA; (3.2.27)

B D zB@ C OB; (3.2.28)

where OA and OB are o�-shell gauge �elds with Dirichlet boundary conditions, i�
@

OA D
0 D i�

@
OB . The boundary conditions are absorbed completely by zA@ and zB@. The latter

are, in the spirit of [223], potentially discontinuous extensions of the boundary �elds,

A@ and B@ and are chosen to be on-shell, i.e. �at. This has the e�ect of disentangling

the bulk, from the boundary contribution:

SfullŒA; B� D SBF

h
OA; OB

i
C S@ŒA@; B@�: (3.2.29)

Similarly, the measure has a piece coming from the hatted �elds and giving only bulk

contributions, and one coming from the tilded �elds, giving all the edge contributions.

The hatted �elds are very easy to deal with, they only contribute in the bulk, and they

give the full bulk contribution. The computation is completely analogous to that of

7note that the bulk piece is not a�ected by the Wick rotation, since it is a one-derivative action.

However, the boundary terms can change in the usual way.
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subsection 3.2.1. The only di�erence is that we make use of the Hodge decomposition

theorem for Dirichlet forms on a manifold with boundary [227]:

��
D.X/ D H�.X; @X/˚ d���1

D .X/˚
�
d���C1

N \��
D.X/

�
; (3.2.30)

where

��
D.X/ ��D

˚
! 2 ��.X/

ˇ̌
i�@ ! D 0

	
; (3.2.31)

��
N.X/ ��D

˚
! 2 ��.X/

ˇ̌
i�@ ? ! D 0

	
; (3.2.32)

denote the spaces of Dirichlet and Neumann forms respectively. Altogether we have

that

ZbulkŒX� D
Z

D OAD OB
vol.G /

e
iSBF

h
OA; OB

i

D jdetKjhp.X;@X/TRSŒX; @X�
.�1/p�1

; (3.2.33)

where hp.X; @X/ is the relative version of hp.X/, appearing in (3.2.20), i.e.:

hp.X; @X/ ��D
1

2
.�1/p

pX

kD0
.�1/k dimHk.X; @X/

C 1

2
.�1/d�p�1

d�p�1X

kD0
.�1/k dimHk.X; @X/

¦D .�1/p
pX

kD0
.�1/k dimHk.X; @X/: (3.2.34)

The contribution of the tilded �elds is a little more subtle. We will calculate their

contribution, with a speci�c choice of S@, in detail in section 3.3, but let us already

give a rough sketch of the computation for a general boundary action. First of all, it is

clear from the above discussion that they only contribute on the boundary. Secondly,

the �atness constraint becomes a Bianchi identity for the boundary gauge �elds. In

particular, A@ and B@ are curvatures of .p� 1/� and .d �p� 1/-form gauge �elds, a

and b, respectively. All in all, the contribution of zA@ and zB@, including the boundary

condition p D 0, in the measure is

X

instantons

Z
DaDb

vol
�
G @
� ıŒp�; (3.2.35)

where the sum over instantons is a sum over all topologically non-trivial con�gur-

ations, i.e. over cohomology p- and .d � p � 1/-classes, respectively, of @X , and

vol
�
G @
�
indicates the volume of the boundary gauge transformations. Since a and b

appear only through their curvatures, there is a redundancy upon shifting them by
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�at gauge �elds. Relatedly, dividing by this volume takes care of the redundancy in

the symplectic potential, ‚@X .

Putting everything together, we �nd that the partition function, (3.2.26), takes the

form

ZBFCedgeŒX; @X� D ZbulkŒX�ZedgeŒ@X�; (3.2.36)

with ZbulkŒX� as in (3.2.33) and ZedgeŒ@X� is the edge mode partition function, com-

puted with the measure (3.2.35).

3.3 Entanglement from the replica path integral

In this section, we will calculate the entanglement entropy using path integral

techniques via the replica trick. We begin with a brief primer on replica path integrals

and how they are calculated. The basic ingredient is the path integral representation

of a state. We begin with a Cauchy slice, †, and a Hilbert space of states associated to

it, H†. We can imagine generating a state in H† by �nding a d -dimensional manifold,

X�, whose boundary is†. According to the standard rules of topological �eld theory,
the path integral with speci�ed boundary conditions produces the wavefunction of a

state in H†. That is,

‰X� Œ'� ��D
Z

CŒX�I'�
Dˆ eiSŒˆ�; (3.3.1)

is the wavefunction associated with the state

j‰X�i D
Z

CŒ†�

D' ‰X� Œ'� j'i 2 H†; (3.3.2)

in the Hilbert space H† assigned to †. In the above, we have schematically indicated

all �elds by ˆ and C ŒX�I'� is an appropriate functional space (including quotienting

out gauge redundancies) over X�, with boundary conditions i�
@X�

ˆ D '. C Œ†� is,

similarly, an appropriate functional space over †. The dual Hilbert space, H ‹

† is

canonically isomorphic with the Hilbert space associated to the orientation reversal,

†, of †. Hence, the norm of the state j‰X�i, is given by conjugating ‰X� and

integrating over the boundary conditions. At the level of the path integral, this has

the action of gluing X� onto XC, its time-reversal about †,

k‰X�k2 D
Z

CŒX�

Dˆ eiSŒˆ� D ZŒX�; (3.3.3)

yielding the partition function on X ��D X� [†XC. Similarly, the pure density matrix

� ��D j‰X�ih‰X� j 2 H† ˝ H ‹

† has the path integral expression

�Œ'�; 'C� ��D h'�j�j'Ci D ‰X� Œ'��‰�
X�
Œ'C� D

Z

CŒX†-cutI'�;'C�

Dˆ eiSŒˆ�; (3.3.4)
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where X†-cut ��D X� tXC Š X n .† � Œ0; 1�/, which has as its boundary two copies

of † with opposite orientation, †˙, on which we impose boundary conditions '˙,
respectively. This density matrix could possibly be unnormalised.

We now choose a subregion R � † and imagine demarcating

'˙ D ‚R '˙ C‚Rc '˙ D�� 'R;˙ C 'Rc;˙;

where ‚R is the characteristic function of R (taking values 1 inside R and 0 every-

where else) and ‚Rc D 1 � ‚R is the characteristic function for the complement

region. The reduced density matrix, �R, is described, at least at a formal level, by

identifying 'Rc;C D 'Rc;� and integrating over their values:

�RŒ'R;�; 'R;C� D
Z

CŒRc�

D'Rc�Œ'R;� C 'Rc I'R;C C 'Rc �

D
Z

CŒXR-cutI'R;�;'R;C�

Dˆ eiSŒ��; (3.3.5)

resulting in a path integral on XR-cut ��D X� [Rc XC, possessing a cut along R, and
boundary conditions '˙, imposed on either side of the cut. This density matrix is

unnormalised: its trace is simply k‰X�k2 D ZŒX�, which arises from identifying

'R;C with 'R;� and then integrating, e�ectively “gluing” the cut closed.

We now aim to calculate the von Neumann entropy of �R. We will make use of the

replica trick. First we compute the n-th Rényi entropy as

�n ��D
1

1 � n log
Tr
�
�nR
�

.Tr �R/
n ; (3.3.6)

where the denominator arises to normalise �R, if it was not already normalised. The

von Neumann entropy is then given as the limit:

�EE D lim
n!1

�n: (3.3.7)

The denominator of (3.3.6) is simply given by ZŒX�n, so we now make sense of the

numerator. It arises from copying XR-cut n times; the trace identi�es the boundary

conditions, '.i/R;C D '
.iC1/
R;� (where i indexes the replicas mod n) and their subsequent

integration glues the replicated manifold into an n-fold branched cover over @R,

which we denote Xn. This gives a path integral expression of the entanglement

entropy as

�EE D lim
n!1

1

1 � n log
ZŒXn�

ZŒX�n
D � @

@n

�
log

ZŒXn�

ZŒX�n

�ˇ̌
ˇ̌
nD1

: (3.3.8)

We are now tasked with evaluating the path integrals in question taking care with the

codimension-2 surface �xed by the Zn replica symmetry — the entangling surface.

73



3. Edge modes

We will address this by regulating the entangling surface and looking at the edge

theory that arises there. To be precise, we will literally excise a tubular neighborhood

around the entangling surface: in terms of the state on †, this has the interpretation

of putting a small bu�er region between R and Rc. This will serve as a UV regulator.

Speci�cally, we replace the bulk replica manifold Xn with Xn;" ��D Xn n
�
D2
n" � @R

�

and keep in mind the limit as " ! 0. The interpretation of " as a regulator on the

unreplicated state mandates that the circumference of the disk scales as n". We will

perform a similar excision of the original manifold: X ⇝ X1;" ��D X n
�
D2
" � @R

�
.

This yields

�EE D lim
"!0

lim
n!1

1

1 � n log
ZBFCedgeŒXn;"�

ZBFCedgeŒX1;"�
n : (3.3.9)

Importantly, these are path integrals on manifolds with boundary, @Xn;" D S1n" � @R.
As we have discussed in section 3.2, we need to supplement these path integrals

with boundary conditions and boundary terms on Xn;" enforcing those boundary

conditions through the variational principle. As we have shown in subsection 3.2.2,

the BF path integral on this regulated, replica geometry naturally splits into a product

of “bulk” and “edge” terms

ZBFCedgeŒXn;"; @Xn;"� D ZbulkŒXn;"� ZedgeŒ@Xn;"�: (3.3.10)

We now insert the relevant ZBFCedgeŒXn;"; @Xn;"� into the ratio (3.3.9). In this chapter,

we will focus on the contribution of the edge modes to the entanglement entropy. It

is precisely these terms that we expect to contribute an area law. In the discussion,

section 3.5, we will comment on possible bulk contributions. Since the above appears

as a product, we can neatly isolate the contribution of the edge modes as:

�EE D lim
"!0

lim
n!1

1

1 � n log
ZedgeŒ@Xn;"�

ZedgeŒ@X1;"�
n : (3.3.11)

3.3.1 The edge mode theory

We now consider the boundary action. The bare BF action, (3.2.1), is consistent with

either �xing A or annihilating B as a boundary condition. However, the subsequent

integration over the remaining �uctuating boundary degrees of freedom is now

unbounded: we must supplement this theory with a boundary Hamiltonian.8 We will

focus on quadratic boundary actions. In general dimensions these quadratic actions

will be dimensionful and general lessons of e�ective �eld theory guide us to write

the most relevant one. Without loss of generality we can assume that this comes

from the quadratic action for the p-forms and write the following boundary action:

S@ŒA@; B@� D K

4�
��

Z

@Xn;"

A@ ^ ?A@ D ��

4�
hA@;KA@i ; (3.3.12)

8The need to supplement an edgeHamiltonian as a regulator is a theme that will be echoed in section 3.4.
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3.3. Entanglement from the replica path integral

where � is an arbitrary energy scale and� D d � 1� 2p, as required by dimensional

analysis. With this action, the boundary symplectic form (taking also into account

the boundary terms from the variation of the bulk action) becomes:

‚@Xn;"
D
Z

@Xn;"

�
B@ C ��.�1/.d�p�1/.pC1/ ? A@

�
^ •A@ : (3.3.13)

As such, the variational principle, with the above boundary action, (3.3.12), is com-

patible with demanding

B@ C ��.�1/.d�p�1/.pC1/ ? A@
ŠD 0; (3.3.14)

as boundary condition. We will call (3.3.14) a “generalised chiral boundary condition.”

This boundary action, (3.3.12), and the corresponding boundary condition, (3.3.14),

have been known for a long time to appear on the boundary of BF theories, [228, 229].

Ignoring global issues, the �atness condition that the bulk path integral imposes on

A@ makes this is a simple theory of a free .p � 1/-form gauge �eld, also known as a

singleton mode in the string theory literature. Naturally (Hodge-dually), it is also a

theory of a free .d � p � 2/-form. However, on a non-trivial topology, the boundary

condition (3.3.14) imposes a constraint on the �uxes. On a manifold of the form

S1" �† — as is our case here — both �elds have �uxes obeying Dirac quantisation

around purely spatial cycles, but fractional charges, when wrapping the thermal

circle. This is entirely reminiscent of the story of the two-dimensional chiral boson

on a torus, which can be seen to arise at the edge of a Chern–Simons theory, which

is not modular invariant: upon demanding periodicity around the spatial circle, one

cannot retain periodicity around the thermal circle. It also re�ects the story of self-

dual gauge �elds in higher dimensions [24, 25].9 In our case, the theory becomes

a “chiral half” of a .p � 1/-form and a .d � p � 2/-form Maxwell theory, which

we call, relatively unimaginatively, chiral mixed Maxwell theory. The role of chiral
�elds as edge modes of BF theories was recently reemphasised in [230, 231]. Note,

however, that there, as well as in all other instances where chiral gauge �elds make

an appearance (see e.g. [24, 25, 232–240] for an incomplete list) it concerns k-form

�elds in 2k C 2 dimensions, where one can construct a genuinely chiral combination

of the gauge �elds. This is, to our knowledge, the �rst time a chiral pure gauge theory

is constructed in generic dimensions.10

Let us be more concrete. First, we Hodge-decompose A@ as Ah C da, where Ah is a

harmonic p-form and a is the (globally-well de�ned) .p� 1/-form gauge �eld. We do

9Of course our approach is much less rigorous than the original story. A rigorous analysis would

require a revisit from the lens of di�erential cohomology. We take this as an opportunity to stress its

importance for a solid understanding of gauge theories.
10and as a bonus, arbitrary topology
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3. Edge modes

the same for B@. Now, if we denote by d� the volume element of the thermal circle,

we can split the harmonic parts of the two �elds as

Ah D A C d� ^ zA; (3.3.15)

Bh D B C d� ^ zB; (3.3.16)

where A 2 Harmp.@R/, zA 2 Harmp�1.@R/, B 2 Harmd�p�1.@R/, and
zB 2 Harmd�p�2.@R/. Then the boundary condition (3.3.14) relates zA to B (and

similarly zB to A) as follows:

B D ��.�1/.d�p/p ?@R zA: (3.3.17)

And the boundary action becomes

S@ŒA;B� D ��

4�
hA;K Ai C ���

4�
hB;K Bi C ��

4�
hda ;K dai : (3.3.18)

We take this as the de�nition of the action of chiral mixed Maxwell theory.

Let us proceed with quantising this theory, by performing the path integral on @Xn;".

For notational simplicity we will perform the path integral on @X1;" and we will

rescale the radius in the �nal formulas to obtain the partition function on @Xn;".

First, observe that writing the action in the form (3.3.18) is equivalent to performing

the path integral over zA and zB over the delta function that enforces the boundary

conditions. This leaves us with

ZedgeŒ@X1;"� D ZinstŒ@X1;"�ZoscŒ@X1;"�; (3.3.19)

where

ZinstŒ@X1;"� ��D
Z

DADB exp

�
��

�

4�
hA;K Ai C ���

4�
hB;K Bi

�
; (3.3.20)

ZoscŒ@X1;"� ��D
Z

Da

vol
�
G @p�1

� exp

�
��

�

4�
hda ;K dai

�
: (3.3.21)

The instanton integral is over the space of harmonic p- and .d � p � 1/-forms on @R

and we will evaluate it shortly. The oscillator piece is an integral over a .p � 1/-form
gauge �elds modulo their gauge transformations. This is a regular set of .p�1/-form
Maxwell oscillators.

We �rst deal with the oscillators. We can expand in modes of the Hodge Laplacian

and integrate over those, separating the zero-modes. We must do so for the tower of

ghosts that follow from the reducible gauge invariances of the .p � 1/-form gauge

�elds. We show in appendix B.1, that the oscillators contribute as

ZoscŒ@X1;"� D
�
˜
.p�1/
@R

Œq�
��� �

˜
.d�p�2/
@R

Œq�
���

: (3.3.22)
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3.3. Entanglement from the replica path integral

In the above, q denotes the nome, q ��D e�"�, and we have de�ned an analogue of the

Dedekind eta function,

˜
.k/
Y Œq� ��D q

�1
2
E0

0
B@
Y

n2N
?
k

1X

NnD0
qNn

p
�n

1
CA

�1=2

; (3.3.23)

associated to the k-form Hodge Laplacian on a closed, compact manifold Y . In the

above, N ?
k

denotes the index-set of the non-zero spectrum of the k-form Laplacian

acting on coclosed forms, �n are the corresponding eigenvalues, measured in units

of �, and E0 is the (potentially divergent) zero-point energy (also in units of �),

E0 ��D
P

n2N
?
k
�n. Moreover, the above is, strictly speaking, de�ned only up to a

phase. This will not concern us; the existence or choice of a complex structure of Y

is insigni�cant for us, since for our purposes it su�ces to only consider real nomes.

The de�nition (3.3.23) is also equivalent to

˜
.k/
Y Œq� D

0
B@

Y

nk2N
?
k

sinh

�
1

2
"�

q
�nk

�
1
CA

1=2

D

0
B@

Y

nk2N
?
k

q� 1
2

p
�nk

�
1 � q

p
�nk

�
1
CA

1=2

;

(3.3.24)

Finally it is easy to see that if we take Y D S1, our generalised eta function reduces to

the usual Dedekind eta function: ˜.0/
S1 Œq� D ˜Œq�. Moreover, since the non-zero spectra

of the Laplacians acting on transversal .p � 1/- and .d � p � 2/-forms coincide, the

eta functions associated with those are equal, we write them separately, however for

reasons that will become apparent shortly.

Moving on to the instantons, we can further expand A and B in terms of the topolo-

gical basis of harmonic forms on @R:

Ah D Ai�
.p/
i and Bh D Bi�

.d�p�1/
i : (3.3.25)

Enter Dirac quantisation. Magnetic �uxes along p- and .d � p � 1/-cycles on @R are

quantised as
Z

�

A 2 2�Z� ; 8� 2 Hp.@R/ and

Z




B 2 2�Z� ; 8
 2 Hd�p�1.@R/: (3.3.26)

This means that Ai D 2�ni and Bi D 2�mi, where ni; mi 2 Z� . As such, the action

(3.3.18) becomes:

S@ŒA;B� D �"�
�
n �
�
K ˝ zG@R

p

�
� n C m �

�
K ˝ zG@R

d�p�1

�
� m
�
: (3.3.27)

In the above, we have combined ni and mi into vectors n 2 Z� bp.@R/ and m 2
Z� bd�p�1.@R/. Moreover, zG@R

k
is the dimensionless version of G@R

k
, the Gram matrix
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3. Edge modes

of harmonic k-forms on @R. This comes from the fact that Gk has dimension ŒGk � D
�1C.2k�1�d/, so zGp ��D ���1Gp and zGd�p�1 ��D �1C�Gd�p�1 are dimensionless.

Therefore, the instanton contribution reads

ZinstŒ@X1;"� D
X

n2Z�bp.@R/

m2Z
�bd�p�1.@R/

exp
h
��"�

�
n �
�
K ˝ zG@R

p

�
� n C m �

�
K ˝ zG@R

d�p�1

�
� m
�i
:

(3.3.28)

To arrive at the �nal expression for the edge mode partition function, let us also

introduce a Siegel-type Theta function, denoted by ‚ŒqI ON �:

‚ŒqI ON � ��D
X

r2ZN

q�r �ON �r : (3.3.29)

If ON is a real, N � N matrix, when q 2 R⩾0, it truly becomes a Siegel Theta

function and inherits all the modular properties of those. Expressing the instanton

contribution, (3.3.20), in terms of the Theta functions, (3.3.29), and combining with

the oscillator contribution, (3.3.22), gives the following simple form for the edge

mode partition function:

ZedgeŒ@X1;"� D
‚
h
qI K ˝ zGp

i

�
˜
.p�1/
@R

Œq�
��

‚
h
qI K ˝ zGd�p�1

i

�
˜
.d�p�2/
@R

Œq�
�� : (3.3.30)

We brie�y re-emphasise the chiral nature of this result and comment on its importance.

To get a feel for it, note �rst that if @R D S1, with p D 1, this becomes exactly the

partition function of two (multi-component) chiral bosons. This resonates entirely

with the usual story. In d D 3 BF theory can be written as a sum of two Chern–

Simons theories, each of which supports a chiral scalar on its boundary. The partition

function of this chiral boson is not modular invariant.11 In d D 5 dimensions, a

smoking gun signal that the edge theory is chiral is the fact that it is not S-duality

invariant, as can be seen by comparing to the regular Maxwell partition function (cf.

appendix B.1). In [229], S-duality of the edge mode theory was crucial in proving an

obstruction to symmetry-preserving regulators of edge-states of BF theory.12 Our

analysis provides evidence that this may not be the case; i.e. the fact that the UV

lattice models regularising Maxwell theory break S-duality, while correct, does not

imply that these models are symmetry breaking from the point of view of edge states

of BF theory. Moving away from d D 5, for generic dimensions, one can take a half

of our partition function as the de�nition of an abelian chiral gauge theory, but note

11This fact, Zchiral boson.ˇ/ ¤ Zchiral boson.1=ˇ/, is actually crucial for extracting the correct entangle-

ment entropy of bulk Chern-Simons theory [201]!
12This was, in turn interpreted as a gauge theory version of the Nielsen–Ninomiya theorem [241, 242].
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3.3. Entanglement from the replica path integral

that only this combination is well-de�ned, at least from a path integral perspective.

A systematic understanding of this chiral theory deserves further research.

In the next section, we will move on to extract the entanglement entropy. To do that,

we will need to compare the edge mode partition function on @Xn;" to that on @X1;".

The @Xn;" partition function can be easily obtained by rescaling the radius of the S1

to n". This results in

ZedgeŒ@Xn;"� D
‚
h
qnI K ˝ zGp

i

�
˜
.p�1/
@R

Œqn�
��

‚
h
qnI K ˝ zGd�p�1

i

�
˜
.d�p�2/
@R

Œqn�
�� : (3.3.31)

3.3.2 Extracting the entanglement entropy

We can now simply insert (3.3.30) and (3.3.31) into (3.3.11) to extract the entanglement

entropy. We have two kinds of terms to deal with; the Theta functions and the eta

functions. Let us deal with them separately.

We treat �rst the instantons, i.e. the Theta functions, for it will be easier to extract

their high-temperature behavior. Fortunately, Siegel Theta functions are very well

behaved and obey a sort of modularity equation, which can be easily proved using

the Poisson summation formula. Explicitly, they obey the following transformation

equation [243]:

‚Œe�"�I ON � D ."�/�
N
2 jdetON j�

1
2‚
h
e� 1

"� I O�1
N

i
: (3.3.32)

The high-temperature behavior is then straightforward to obtain:

‚Œe�"�I ON �
"!0� ."�/�

N
2 jdetON j�

1
2 : (3.3.33)

With that, the total contribution of the Theta functions to the entanglement entropy

is

�EE

ˇ̌
ˇ̌
‚

D lim
"!0

lim
n!1

1

1 � n log
‚
h
qnI K ˝ zG@R

p

i
‚
h
qnI K ˝ zG@R

d�p�1

i

�
‚
h
qI K ˝ zG@R

p

i
‚
h
qI K ˝ zG@R

d�p�1

i�n

D 1

2

�
bp.@R/C bd�p�1.@R/

��
�.1 � log."�// � log jdetKj

�
: (3.3.34)

As we shall see shortly, this term will be partially cancelled by the contribution of

the eta functions, ultimately resulting in the topological piece of the entanglement

entropy.

Let us get to it then. To evaluate the contribution of the eta functions, we will use

the following trick [244, 245]. In words, we will Taylor expand log .˜@R/
�1 and on
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3. Edge modes

each term perform an inverse Mellin tranform.13 Written as a Mellin integral, the

sum over the eigenvalues, f�ng is easily performed to yield the spectral zeta function,

—
.k/

@R
.s/ ��D

X

n2N
?
k

��s
n : (3.3.35)

In equations:

�
X

n2N
?
k

log
�
1 � e�"�

p
�n
��1 TaylorDDD

X

n2N
?
k

1X

mD1

1

m
e�"� m

p
�n

Mellin�1

DDD
X

n2N
?
k

1X

mD1

1

m

Z

cCiR

du

2�i
�.u/

�
"� m

p
�n

��u

resumDDD
Z

cCiR

du

2�i
—.uC 1/ —

.p�1/
@R

�u
2

�
�.u/ ."�/�u;

(3.3.36)

where —.u/ is the ordinary Riemann zeta function. In the above integral c > 0 is a

positive number lying to the right of the rightmost pole of the integrand. To extract

the leading terms as " ! 0, we then imagine pushing the integration contour to

�1 < c < 0, so that the integrand vanishes as "! 0. The price we pay is that, as we

sweep to the left, we pick up the residues from all of the poles of the integrand.

lim
"!0

log
�
˜
.k/

@R
.q/
��1

D 1

2

X

u�⩾0

Res
uDu�

—.uC 1/ —
.k/

@R

�u
2

�
�.u/ ."�/�u: (3.3.37)

In short, evaluating the descendant contribution to �EE reduces to analyzing the pole

structure of the above expression. In appendix B.2 we carefully analyse the poles

of —.k/
@R

which all lie at u > 0. Inside (3.3.37) there is a double pole at u D 0 from

�.u/—.uC 1/, with residue

Res.k/0 D 1

2
—
.k/

@R

0
.0/ � —.k/

@R
.0/ log ."�/

D
�

�	
.k/
d�2

2

ıd;even C bk.@R/

�
log ."�/: (3.3.38)

In the above, 	
.k/
d�2

2

is the
�
d�2
2

�
-th heat kernel coe�cient for the spectral zeta func-

tion arising from the value of —.k/
@R
.0/ and bk.@R/, the k-th Betti number enumerates

the number of zero-modes of the k-form Laplacian, again reviewed in appendix B.2.

13note that the piece containing the zero-point-energy, E0, in (3.3.23) or (3.3.24) obviously does not

contribute to the entropy so we will focus on the rest
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3.3. Entanglement from the replica path integral

We see then that this term, evaluated for the eta functions associated to the .p � 1/-
and the .d � p � 2/-form Laplacians, contributes to the entropy as:

�EE

ˇ̌
ˇ̌
Res0

D �

2

"�
	
.p�1/
d�2

2

C 	
.d�p�2/
d�2

2

�
ıd;even

�
�
bp�1.@R/C bd�p�2.@R/

�
#
.1 � log ."�//: (3.3.39)

We see a happy cancellation between (part of) this term and (part of) the contribu-

tion of the Thetas, (3.3.34), owing to Poincaré duality bp�1.@R/ D bd�p�1.@R/ and
bd�p�2.@R/ D bp.@R/.

The residues away from zero come from the poles of —.p�1/
@R

.u=2/.14 These lie at d�2k,
for integer k ⩾ 115 (with k ⩽ d=2 � 1 when d is even) and give in total

Res2d�k D .4�/1� d
2 —.d � 2k C 1/

�.d � 2k/
�
�
d
2

� k
�	

.p�1/
k�1 ."�/2k�d ; (3.3.40)

where, again, 	
.p�1/
k�1 are heat kernel coe�cients for the spectral zeta function. They

can be written as integrals of local geometrical (but not topological) data of the

entangling surface. These residues contribute area law (and subleading) terms to the

entropy:

�EE

ˇ̌
ˇ̌
Resd�2k

D I.p�1/
k

."�/2k�d ; (3.3.41)

where

I.p�1/
k

��D �.4�/1� d
2 —.d � 2k C 1/

�.d � 2k/
�
�
d
2

� k
� .d � 2k C 1/ 	

.p�1/
k�1 : (3.3.42)

As expected, the area-law terms are non-universal, depend on the geometry of the

entangling surface (through the heat-kernel coe�cients, 	
.p�1/
k�1 ) and the regulator, ".

Assembling the oscillator contributions and adding the contribution of the instantons,

we arrive at the main result for the entanglement entropy:

�EE D
b d�1

2 cX

kD1
C.p�1/
k

�
`

"

�d�2k
C �

2

�
	
.p�1/
d�2

2

C 	
.d�p�2/
d�2

2

�
ıd;even log

�
`

"

�

� 1

2

�
bp.@R/C bd�p�1.@R/

�
log jdetKj;

(3.3.43)

14Recall that apart from the zero-modes, the eta functions for .p � 1/- and for .d � p � 2/-forms are

identical.
15Note that there is a shift k ! k � 1 compared with appendix B.2.
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where Ck ��D Ike
2k�d and we traded the energy scale for a length scale ` � ��1e as

is more common in the presentation of entanglement entropies. In the above formula,

we have ignored terms with k >
j
d�1
2

k
(which are present only when d is odd),

since they give vanishing contributions in the limit "! 0.

On extracting universal features:

Some comments are in order regarding our main result, (3.3.43). In odd dimensions

we have a universal subleading correction given by

�TEE D �1
2

�
bp.@R/C bd�p�1.@R/

�
log jdetKj: (3.3.44)

In even dimensions, however, the log term

�

2

�
	
.p�1/
d�2

2

C 	
.d�p�2/
d�2

2

�
log

�
`

"

�
; (3.3.45)

spoils the universality of the log jdetKj as rescalings of the cuto� result in constant

shifts of �EE. Under general arguments, there is nothing that prohibits log contribu-

tions to the entanglement entropy in even dimensions and, indeed, here we �nd such

a contribution. The coe�cient of this log is a potentially universal piece of data, but

in fact it depends on the geometry of the entangling surface through its heat kernel

coe�cient. On top of this, throughout the chapter we had been neglectful of terms

proportional to the Euler characteristic, ¦.@R/. The main reason is that, while topo-

logical, they ultimately arise (or can be absorbed into) ambiguities in the edge theory

path integral measure and so are non-universal. This non-universality is re�ected in

the entropy: the Euler characteristic can be recast as the integral of a local quantity,

through the generalised Gauss–Bonnet theorem. Nevertheless, it was explained in

[188] that a generalisation of the Kitaev–Preskill / Levin–Wen protocol [165, 166] is

possible in higher dimensions with an explicit construction in d D 4. By this, it is

meant that one can decompose the entangling surface, @R, into pieces, @Ri of speci�c

geometry. Then one can consider a linear combination of entanglement entropies

across @Ri , such that, when surgered together, the locally integrated contributions to

the entropy cancel out. The upshot is that we expect, through such a construction,

one can extract in all dimensions the topological entanglement entropy:

�TEE D �1
2

�
bp.@R/C bd�p�1.@R/

�
log jdetKj; (3.3.46)

although we do not do so here.

As an example, consider four-dimensional BF theory and take p D 1 or p D 2. The

two cases are interchangeable, as they are mapped to each other by interchanging

the roles of the A and B �elds in the original action (3.2.1). Generally, it holds that
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.0/
1 D 1

6
¦.@R/ [246]. Taking the entangling surface to be a torus, @R D T2, for

p D 1 we have 	
.0/
1 D 0. One can explicitly show that the same holds for p D 2, as

expected, by analyzing the spectrum of the transverse Laplacian acting on one-forms.

Therefore, the topological entanglement entropy for the four-dimensional case with

an entangling surface with the topology of a torus is given by

�TEE D �2 log jdetKj: (3.3.47)

Note that in four dimensions the subleading part of the entropy is always topological

(although possibly not universal), since 	
.p�1/
d�2

2

is given by the Euler characteristic. In

contrast, in higher dimensions, this is not the case. In six dimensions, for example,

	
.0/
2 D 1

180

Z

@R

d vol@R
�
10R2 � R����R���� C 2R��R

��
�
;

which depends sensitively on the geometry of the entangling surface, and therefore

one truly needs a suitable Kitaev–Preskill / Levin–Wen-like subtraction scheme to

extract the universal pieces of data.

3.4 The extended Hilbert space and a current algebra

Above we have presented a replica path integral calculation of the entanglement

entropy. We have focussed on the entropy that comes entirely from an “edge mode

theory,” which we have coined as “chiral mixed Maxwell,” in the high-temperature

limit; this essentially counts a regulated Hilbert space dimension of this edge theory.

In this section, we provide a more honest accounting of the entanglement entropy,

accounting for the subtleties of gauge invariance. This will provide an alternative

view of the role of these edge modes as providing an arena, the “extended Hilbert

space” (EHS), by which the entanglement entropy can be precisely de�ned. We will

see that a physical state is embedded as a maximally entangled state in this EHS

and thus its entanglement entropy is naturally interpreted as a dimension of the

EHS, which we will regulate. The upshot of this section is that we will reproduce

the topological entanglement entropy from a more rigorous starting point, while

also providing a, perhaps, intuitive view on the need for the edge theory and why it

contributes to the entanglement entropy.

Along the way we will show that the EHS is completely organised by an in�nite-

dimensional spectrum-generating current algebra, entirely analogous to the Kac-

Moody algebras appearing at the edge of three-dimensional topological phases. In

general dimensions this algebra is non-conformal. Regardless, we will show that it

is powerful enough to �x the entire computation of the entanglement entropy. We

will also show that this algebra, remarkably, generates the entire spectrum of the

edge mode theory from section 3.3. The fact that the spectrum of the chiral Maxwell
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3. Edge modes

theory is entirely �xed by a (potentially non-conformal) current algebra echoes the

results of [3, 37] for 1-form Maxwell theories in four-dimensions. Here we present

the generic story which we regard as a major result of this chapter.

3.4.1 Gauge-(in)variance, entanglement, and the extended Hilbert space

The typical starting point of the entanglement entropy is the supposition of a Hilbert

space factorisation between a region, R, and its complement, Rc:

H D HR ˝ HRc : (3.4.1)

This supposition typically fails in quantum �eld theory due to an in�nite number of

correlated short-distance modes,16 however, one can imagine regulating this com-

putation by a short-distance regulator, ", (say by putting the system on a lattice,

or utilising a mutual information regulator [248]). However, even in a regulated

scenario, (3.4.1), fails for quantum gauge theories due to the global nature of gauge

constraints that physical states must satisfy [174, 182, 184, 185, 218, 248, 249]. It is, by

now, well understood how to properly de�ne entanglement entropy in gauge theories.

One method is to utilise an algebraic de�nition of the von Neumann entropy applied

to the reduced density matrix realised directly as a gauge-invariant operator [248].

We have explored that aspect of entanglement entropy in this family of theories in

chapter 2. Here we focus on the alternative formulation, which goes by the name of

the “extended Hilbert space” [174, 182, 184, 185, 218].

In short, while the physical Hilbert space, H , cannot be realised as a tensor product,

we can embed H (let us call the embedding 	 ) into an EHS, Hext, which admits a

tensor product.

H
	

,−! Hext ��D HR ˝ HRc : (3.4.2)

By de�nition, Hext is furnished with unphysical, gauge-variant states. These are

states in either HR or HRc which carry the action of gauge transformations acting

on the entangling surface, @R. That is to say, it is furnished with edge mode states

living on @R. Given a physical state j i 2 H it embeds to a state j z i 2 Hext which

we can then tensor-factorise and reduce upon R:

z�R ��D TrHRc j z ih z j ; (3.4.3)

and the entanglement entropy can de�ned in the typical way:

�EE ��D �TrHR
.z�R log z�R/ : (3.4.4)

In practice, this can be computed utilising the replica trick we reviewed above. The

important step in this process, however, is identifying the embeddingmap, 	 , and thus

16More modernly, and more precisely, it fails due to the type-III nature of the von Neumann algebra

associated to a subregion; see e.g. [247] and references therein.
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3.4. The extended Hilbert space and a current algebra

the appropriate embedded state j z i 2 Hext. Since Hext is furnished (by de�nition) by

gauge-variant states, this embedding is determined by demanding gauge-invariance

by hand: i.e. if a gauge transformation labeled by ˛ with support on @R acts on HR

and HRc with charge operatorsQRŒ˛� andQRc Œ˛�, respectively, then we will demand

.QRŒ˛�˝ 1C 1˝QRc Œ˛�/ j z i ŠD 0: (3.4.5)

We will refer to (3.4.5) as the “quantum gluing condition.” Because ˛ can be arbitrarily

local to @R, this induces correlations to j z i that are local to @R and maximally

entangled. As a result z�R will be maximally mixed amongst an in�nite number of

edge modes that are local to @R. Regulating this maximal mixture will result in a

(divergent) area law (with possibly subleading area laws) to the entanglement entropy,

but there may also exist universal corrections. We will make these ideas concrete in

this theory below. To begin, we will �rst identify a suitable HR with which to build

the extended Hilbert space.

3.4.2 A current algebra

Wewill constructHR by quantising the theory onX D R�R. Many of the details here

follow the opening sections of [1] for quantising BF theory, however, now allowing

for the existence of a boundary @R ¤ ∅. We refer the reader there for a more detailed

accounting of the procedure and notation and point out only the necessary features

special to the current situation here. We will often use the embedding map of the

boundary i@R W @R ,! R, and i@X W @X ,! X , as well as the embedding map of R into

X : iR W R ,! X .

We split A D A0 C a and B D B0 C b with A0 and B0 with “a leg” along R and a

and b along R. Correspondingly the action (3.2.1) splits,

SBFŒA0 C a;B0 C b� D K

2�

Z

X

�
.�1/d�pdb ^ A0 C B0 ^ daC b ^ da

�
; (3.4.6)

once we impose boundary conditions i�
@X
A0 D i�

@X
B0 D 0. Above d should be

regarded as the exterior derivative along R. A0 and B0 impose �atness of a and b on

R:

da D db D 0; (3.4.7)

which we will refer to as the Gauss law constraints. The residual gauge transforma-

tions, preserving the boundary conditions act on a and b as

•b D dˇ ; i�@RdRˇ D 0 (3.4.8)

•a D d˛ ; i�@RdR˛ D 0: (3.4.9)

Recall that higher-form gauge theories come with a tower of lower (secondary,

tertiary, quaternary, etc.) gauge-invariances. These lower invariances indicate some
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3. Edge modes

redundancy in what arises as a global symmetries when R has a boundary. Later on,

we will impose restrictions on the gauge parameters that survive all the way to the

boundary, to take care of this.

The charges associated to (3.4.8) can be built from the symplectic form

�R D .�1/d�p�1 K

2�

Z

R

•b ^ •a: (3.4.10)

Above, we view •b and •a as variational one-forms. We de�ne variational vectors, v˛

and vˇ such that their interior product gives (3.4.8):

v˛ ⌟ •a D d˛ and vˇ ⌟ •b D dˇ: (3.4.11)

The charges, given by

•QŒ˛� ��D v˛ ⌟�R and •QŒˇ� ��D vˇ ⌟�R; (3.4.12)

can then be found as

QŒ˛� ��D .�1/d�p K

2�

Z

R

b ^ d˛ D � K

2�

Z

@R

b ^ ˛;

QŒˇ� ��D .�1/d�p�1 K

2�

Z

R

dˇ ^ a D .�1/d�p�1 K

2�

Z

@R

ˇ ^ a
(3.4.13)

up to a total variation.17 The second equality in each line emphasises that the charges

localise to @R upon imposing the Gauss law constraint, (3.4.7). When these charges

do not vanish identically, then they are genuine, global, symmetries of the system,

i.e. they act on and transform states. As alluded to above, there is still a need to �x

an additional gauge redundancy: if i�
@R
˛ D d
 for some 
 2 �p�2.@R/ then QŒ˛� is

identically zero by pulling the Gauss constraint on b back to @R (a similar argument

follows for ˇ). We �x this by imposing

d�i�@R˛ D d�i�@Rˇ D 0: (3.4.14)

This constraint �xes completely all the lower-invariances. The algebra of the charges

is also given by the symplectic form as

fQŒ˛�;QŒˇ�gR D �R.vˇ ; v˛/ D .�1/d�p�1 K

2�

Z

R

dˇ ^ d˛: (3.4.15)

The canonical quantisation of the charges, f�; ıg ! �iŒ�; ı�, then yields a centrally

extended algebra

h
OQŒ˛�; OQŒˇ�

i
R

D i.�1/d�p�1 K

2�

Z

R

dˇ ^ d˛ D i
K

2�

Z

@R

dˇ ^ ˛: (3.4.16)

17This total variation ambiguity doesn’t a�ect the algebra of the charges, of course.
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3.4. The extended Hilbert space and a current algebra

3.4.3 Mode expansion of the current algebra

We want to turn the algebra (3.4.16) into a countable current algebra. For that we

want to decompose our various forms into modes of a common basis and �nd their

mode algebra.

In the following, we restrict ourselves within @R and drop the bold di�erential. It is

understood that everything below has been pulled back to @R. We will keep in mind

our restriction that the forms ˛ and ˇ are coclosed (though not necessarily co-exact)

in @R. The set of eigen-k-forms of the transversal Laplacian, d�d
ˇ̌
�k , provides a

basis for the coclosed k-forms. Poincaré duality and the Hodge decomposition tell us

that the non-zero spectrum of d�d acting on k-forms on a D-dimensional compact

manifold is the same as its spectrum acting on .D� k� 1/-forms, since they are both

related to the spectrum of dd� on .D � k/-forms.

So, as far as the non-zero-modes are of concern, in our case, we need the bases

provided by the .p � 1/-forms and .d � p � 2/-forms. Since the non-zero spectra of

d�d on the .d�2/-dimensional manifold @R on these two spaces coincide, these forms

will be labeled by the same index set
˚
n 2 N �

?
	
. Namely, we have two orthonormal

bases

˚
'n 2 �p�1.@R/

	
n2N

�
?

and
n
�n 2 �d�p�2.@R/

o
n2N

�
?

; (3.4.17)

h'n; 'mi D ınm D h�n; �mi ;

with

d�d'n D �n'n;

d�d�n D �n�n;

�n ¤ 0 8n 2 N �
? : (3.4.18)

Now, coming to the zero-modes, these are simply the harmonic .p�1/- and .d�p�2/-
forms on @R. The natural bases to expand those are the topological bases

n
�
.p�1/
i

obp�1.@R/

iD1
and

n
�
.d�p�2/
i

obd�p�2.@R/

iD1
; (3.4.19)

satisfying

Z

�j
�
.p�1/
i D ı

j
i D

Z

� j
�
.d�p�2/
i ; (3.4.20)

for all .p � 1/- and .d � p � 2/-cycles �j and � j respectively.
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3. Edge modes

We can then expand:

˛ D
X

n2N
�
?

˛n'n C
bp�1X

iD1
˛i�

.p�1/
i ; (3.4.21)

ˇ D
X

n2N
�
?

ˇn�n C
bd�p�2X

iD1
ˇi�

.d�p�2/
j : (3.4.22)

Similarly, we can expand Oa and Ob as

Oa D .�1/d�p�12�
�
K�1�

0
@ X

n2N
�
?

Oan ? �n C
bpX

iD1
Oa0i ? � .d�p�2/

i

1
A;

Ob D �2�
�
K�1�

0
@ X

n2N
�
?

Obn ? 'n C
bd�p�1X

iD1

Ob0i ? � .p�1/
i

1
A:

(3.4.23)

so that the charges become

OQŒ˛� D
X

n2N
�
?

Obn˛n C
bp�1X

i;jD1

Ob0i
h
G@R
p�1

i
ij
˛i; (3.4.24)

OQŒˇ� D
X

n2N
�
?

Oanˇn C
bd�p�2X

i;jD1
Oa0i
h
G@R
d�p�2

i
ij
ˇi; (3.4.25)

where we note again that by Poincaré duality it holds that G@R
k

D
�
G@R
d�2�k

��1
, up to

an invertible matrix which can be set to unity by a choice of basis.

Equivalently, we can invert (3.4.23) to write the individual modes as

Oan D .�1/d�p�1 K

2�

Z

@R

�n ^ Oa; (3.4.26)

Oa0i D .�1/d�p�1 K

2�

bpX

jD1

h
G@R
p

i
ij

Z

@R

�
.d�p�2/
j ^ Oa; (3.4.27)

Obn D � K

2�

Z

@R

'n Ob; (3.4.28)

Ob0i D � K

2�

b@R
d�p�1X

jD1

h
G@R
d�p�1

i
ij

Z

@R

�
.p�1/
j ^ Ob: (3.4.29)
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3.4. The extended Hilbert space and a current algebra

With this mode expansion, the current algebra (3.4.16) is written in modes as

h
Obn; Oam

i
D iK

2�
Cnm; n;m 2 N �

? ; where (3.4.30)

Cnm ��D
Z

@R

d�m ^ 'n: (3.4.31)

Of course, the zero-modes have trivial commutators with all the other modes as

well as amongst themselves. The �nal step to pin down the algebra completely is

to analyse the matrix Cnm. Observe that the two bases of the non-zero sectors are

related by

d�n D
X

m2N
�
?

Cmn ? 'm: (3.4.32)

Let us momentarily assume that there is no degeneracy of eigenvalues, i.e. �n D
�m ) n D m and act on (3.4.32) with dd�. We get that for all n 2 N �

? we must have

X

m2N
�
?

Cmn.�n � �m/ D 0: (3.4.33)

This can only be achieved if Cmn is diagonal: Cmn D Cmımn. Now consider the

inner-product hd�n ; d�mi. We have

hd�n ; d�mi D
D
�n; d

�d�m
E

D �mınm

D (3.4.34)

CnCm h?'n; ?'mi D C 2n ınm:

This tells us that jCnj D
p
�n. We can arbitrarily choose the sign of the square root.

Di�erent signs will correspond to di�erent choices of raising and lowering operators.

We choose the following convention, which will make the choice of raising and

lowering operators consistent across all d and p: Cn D
p
�n.

Returning to the general case and allowing for degeneracy of the eigenvalues, we

note that the two bases only mix elements of the same eigenvalue, giving thus Cmn in

a block-diagonal form. Then we can reshu�e the basis within a subspace of a �xed

eigenvalue to fully diagonalise Cmn and hence the result is unchanged. Altogether

we can write the �nal expression for the current algebra:

h
Obn; Oam

i
D iK

2�

p
�nınm: (3.4.35)

We note the similarity to the Kac–Moody algebras appearing in 2d, however it is

important to emphasise that the modes here are not labeled, necessarily, by integers,

but instead by the countable set of eigenfuctions N ?
? .

89
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3.4.4 Verma modules, characters, and extended characters

The current algebra, (3.4.35), allows us to build HR as a direct sum of Verma modules

corresponding to integrable representations of this algebra. It will be useful to

supplement this algebra with a positive-de�nite Hamiltonian. Recall that since the

bulk theory is �rst order in derivatives, its Hamiltonian is identically zero and so

this is an ingredient we will add in by hand. The Hamiltonian we will supplement

will be the natural generalisation of the “Sugawara Hamiltonian” in 2d Kac–Moody

algebras.

Let us de�ne ladder operators of the non-zero-modes as

OKn ��D
1p
2

�
��=2 Oan C i���=2 Obn

�
and OJn ��D

1p
2

�
��=2 Oan � i���=2 Obn

�
: (3.4.36)

where � is an energy scale and � D d � 1 � 2p. We then write

OH D OHzero C OHosc (3.4.37)

with

OHzero D ���K�1
bpX

i;jD0
Oa0i
h
G@R
p

i�1

ij
Oa0j C ����K�1

bd�p�1X

i;jD0

Ob0i
h
G@R
d�p�1

i�1

ij

Ob0j

OHosc D �K�1 X

n2N
�
?

�
�� Oan Oan C ��� Obn Obn

�
D 2�K�1 X

n2N
�
?

OJn OKn C �E0; (3.4.38)

with E0 a potentially divergent zero-point energy that will play no role in the

entanglement entropy. This Hamiltonian is motivated by three very important

points: �rstly, it is positive-de�nite, and secondly, when expressed in terms of the

ladder-operators it plays a natural algebraic role, extending (3.4.35) to

h
OJn; OKm

i
D K

2�

p
�nınm (3.4.39)

h
OH; OKn

i
D
p
�n OKn and

h
OH; OJn

i
D �

p
�n OJn: (3.4.40)

It is evident in this writing, that the operator OJn, with n 2 N �
? , lowers the energy byp

�n units and OKn raises the energy by the same amount.

Thirdly, and perhaps most importantly, when expressed in terms of the original �eld

variables on @R, OH is local. Namely writing

i�@XA D aC dt ^ za; (3.4.41)

i�@XB D b C dt ^ zb; (3.4.42)
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with a 2 �0.R/˝�p.@R/, za 2 �0.R/˝�p�1.@R/, b 2 �0.R/˝�d�p�1.@R/, and
zb 2 �0.R/˝�d�p�2.@R/, OH takes the form

OH D ��

4�
ha;K ai@R C ���

4�
hb;K bi@R : (3.4.43)

One can already recognise OH as the Hamiltonian of the chiral mixed Maxwell theory

appearing in section 3.3.18

The structure of the HR factor of the extended Hilbert space is now clear. The

eigenstates of the zero-modes Oa0i and Ob0j de�ne primary, lowest-weight states, j!i,
that are annihilated by all OJn. We can act on each such state with OKn, repeatedly to

construct a whole Verma module,

V! ��D span fj!; fNngig ��D span

8
<
:
Y

n2N
�
?

�Y

ID1

�
OKIn

�NIn

j!i

9
=
;: (3.4.44)

The full Hilbert space is then a direct sum of all Verma modules

HR D
M

!

V! : (3.4.45)

The primary states are labeled by the eigenvalues of the current algebra zero-modes.

These we can easily �nd by using Dirac quantisation restricting to @R:

Z

�i

a D 2�ni; 8�i 2 Hp.@R/; ni 2 Z; (3.4.46)

and
Z

�i

b D 2�mi; 8�i 2 Hp.@R/; mi 2 Z: (3.4.47)

Now, invoking the mode expansion, (3.4.23), this amounts to

Oa0i j!i D K

bpX

jD1
nj
h
G@R
p

i
ij

j!i ; (3.4.48)

Ob0i j!i D K

bd�p�1X

jD1
mj
h
G@R
d�p�1

i
ij

j!i : (3.4.49)

18Indeed, this matching is made explicit by “adding in” the time component, za, of i�
@X
A to OH by

replacing b through the “chiral” boundary condition b D ��.�1/.d�p/p ?@R za.
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Therefore, the primary states, are labeled by two vectors of integers, n 2 Z� bp.@R/

and m 2 Z� bd�p�1.@R/, j!i � jn;mi, and have energy

�nm D ��
�
n �
�
K ˝ zG@R

p

�
� n C m �

�
K ˝ zG@R

d�p�1

�
� m
�
; (3.4.50)

where we have, again absorbed the powers of� into the dimensionless Grammatrices
zG@R
k
. From here on we will also measure our energies in units of �, i.e.

p
�n ! �

p
�n

with the new �n’s dimensionless.

We can now de�ne extended characters of our algebra. Having decomposed the

Hilbert space as

HR D
M

n2Z� bp.@R/

m2Z
� bd�p�1.@R/

Vn;m; (3.4.51)

we can �rst compute the characters of each Verma module, chVn;m
Œq� ��D trVn;m

q
OH=�.

This is straightforward. Remembering that OKn raises the energy by �
p
�n we obtain

chVn;m
Œq� ��D q�E0

„ ƒ‚ …
vacuum

contribution

0
@ Y

n2N
�
?

1X

NnD0
qNn

p
�n

1
A
�

„ ƒ‚ …
descendants

q�n;m

„ ƒ‚ …
primaries

; (3.4.52)

Finally, summing over all the Verma modules gives us an extended character :

ch0Œq� ��D
X

n2Zbp

m2Z
bd�p�1

chVn;m
Œq�

D q�E0

0
@ Y

n2N
�
?

1X

NnD0
qNn

p
�n

1
A
�

X

n2Zbp

m2Z
bd�p�1

q�n;m : (3.4.53)

Here, we once again encounter the generalised Dedekind eta function from section 3.3;

˜
.p�1/
@R

Œq� ��D q
�1
2
E0

0
@ Y

n2N
�
?

1X

NnD0
qNn

p
�n

1
A

�1=2

: (3.4.54)

Additionally, recalling the form of the primary state energies, (3.4.50), the sum

over the primaries of q�n;m organises into the Siegel Theta functions appearing

in section 3.3. Consequently, we �nd a curious and powerful correspondence: the

partition function, (3.3.30), of the chiral mixed Maxwell theory, from section 3.3 takes
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3.4. The extended Hilbert space and a current algebra

the form of an extended character of our current algebra!

ch0Œq� D
‚
h
qI K ˝ zG@R

p

i

�
˜
.p�1/
@R

Œq�
��

‚
h
qI K ˝ zG@R

d�p�1

i

�
˜
.d�p�2/
@R

Œq�
�� D Zedge

�
S1" � @R

�
: (3.4.55)

3.4.5 The entanglement entropy

We have now �nally set the stage to calculate the entanglement entropy. Consider

partitioning the Cauchy slice, †, into two parts † D R [@R Rc, where [@R denotes

gluing along their common boundary. We would like to compute the entanglement

entropy of a state in H† upon tracing out the degrees of freedom on Rc. However,

we have seen that dimH† D jdetKjbp.†/, which is obviously �nite, but each of

HR and HRc is a sum of Verma modules, (3.4.45), and thus in�nite-dimensional.

Thus we starkly see that H† ¤ HR ˝ HRc . Instead, we will embed H† inside the

tensor product and impose the quantum gluing condition, (3.4.5), to ensure that gauge

transformations acting on @R annihilate the physical states living in H† � HR˝HRc .

Let us denote

OQRŒ˛� ��D .�1/d.pC1/ K

4�

Z

@R

˛ ^ Ob D
X

n2N
�
?

˛n Obn; and (3.4.56)

OQRŒˇ� ��D
K

4�

Z

@R

ˇ ^ Oa D
X

n2N
�
?

ˇn Oan; (3.4.57)

the operators with support on @R. Similarly for Rc there are charge generators

OQRc Œ˛� ��D .�1/d.pC1/ K

4�

Z

@Rc

˛ ^ Ob D
X

n2N
�
?

˛n Obn; and (3.4.58)

OQRc

h
ˇ
i

��D
K

4�

Z

@Rc

ˇ ^ Oa D
X

n2N
�
?

ˇ
n Oan; (3.4.59)

with support on @Rc. Upon gluing R to Rc along their common boundary, we will

identify ˛ and ˇ with their parity opposites, ˛ and ˇ, respectively. We can then

de�ne the generators of gauge transformations on the entire † as

OQŒ˛� ��D OQRŒ˛�˝ O1Rc C O1R ˝ OQRc Œ˛�; (3.4.60)

OQŒˇ� ��D OQRŒˇ�˝ O1Rc C O1R ˝ OQRc

h
ˇ
i
; (3.4.61)

where O1R
�

O1Rc

�
is the identity operator on HR .HRc/. The condition that the physical

states should be uncharged under the charge generators, identi�es H† as a speci�c
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3. Edge modes

subspace of HR ˝ HRc , namely

H† D ker OQŒ˛� \ ker OQŒˇ� � HR ˝ HRc : (3.4.62)

At the level of the ladder operators, (3.4.36), the quantum gluing condition can be

expressed as

�
OJn ˝ O1Rc C O1R ˝ OKn

�
j i ŠD 0; (3.4.63)

�
OKn ˝ O1Rc C O1R ˝ OJn

�
j i ŠD 0: (3.4.64)

which roughly states that raising operators on R are lowering operators on Rc and

vice versa. Due to this, it is clear that j z i will bemaximally entangled in terms of the

oscillator occupation numbers, fNng. The quantum gluing condition, (3.4.5), applied

at the level of zero-modes enforces a matching of the integer charges. The result

of this is that physical states of this H† embed into generalised Ishibashi states of
HR ˝ HRc :

j z i D j0ii ��D
X

n;m

X

fNng
jn;m; fNngiR ˝ j�n;�m; fNngiRc ; (3.4.65)

where the overline denotes an anti-linear conjugate of the state.19 The reduced density

matrix is given by tracing over the HRc tensor factor:

z�R ��D trHRc j0iihh0j : (3.4.66)

However the above object is not well de�ned, per se. We need to �rst address the

subtle issue of normalizability. Given that j0ii is maximally entangled over an in�nite

number of modes (labeled by occupation numbers, Nn), its norm is divergent. To

obtain a normalizable vector in HR ˝ HRc we need to �rst regularise j0ii and we

will do so with the Sugawara-type Hamiltonian we discussed earlier, (3.4.37):

j"ii ��D exp

�
�1
4
"
�

OHR C OHRc

��
j0ii ; (3.4.67)

where we have explicitly denoted which factor of Hext the Hamiltonians act.

From here it is easy to see that the regulated Ishibashi state, (3.4.67), takes the form

of a canonical puri�cation of a thermal density matrix with inverse temperature ".

This thermal density matrix is exactly the (unnormalised) reduced density matrix

z�R."/ ��D trHRc e
� "

4

�
OHRC OHRc

�

j"iihh"j e� "
4

�
OHRC OHRc

�

; (3.4.68)

19We have written this for j0ii, corresponding to the ground state without any Wilson surfaces piercing

†. The computation with a generic jrii can be easily obtained, by shifting the argument of the Siegel

Theta functions by a constant fractional charge. This will not a�ect the end entanglement entropy.
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and whose norm is given by the extended character, (3.4.53)

trHR
z�R."/ D ch0Œq"�; q" ��D e�"�: (3.4.69)

As " ! 0 this is simply the regulated dimension of HR. Thus, the von Neumann

entropy of the reduced density matrix is the regulated log dimHR. More suggestively,

however, given the correspondence (3.4.55), this is also the high-temperature limit of

the thermodynamic entropy of the edge mode theory, i.e.

�EE D lim
"!0

.1 � "@"/Zedge

�
S1" � @R

�
: (3.4.70)

At this point the technical computations follow that of subsection 3.3.2. We arrive

again at the main result for the entanglement entropy:

�EE D
b d�1

2 cX

kD1
C.p�1/
k

�
`

"

�d�2k
C �

2

�
	
.p�1/
d�2

2

C 	
.d�p�2/
d�2

2

�
ıd;even log

�
`

"

�

� 1

2

�
bp C bd�p�1

�
log jdetKj:

(3.4.71)

where C.p�1/
k

are non-universal, dimensionless, numbers, 	
.k/
d�2

2

is the
�
d�2
2

�
-th heat

kernel coe�cient for the spectral zeta function, and we have exchanged ` D ��1e as
a characteristic length scale (see section 3.3 for details).

3.5 Discussion

In this chapter, we considered the edge contributions to the entanglement entropy

in higher-dimensional abelian topological phases described by p-form BF theories.

These are phases whose ground states are condensates of p-form surface operators.

We found that the entanglement entropy coming from localised edge modes at the

entangling surface takes the form of a non-universal, divergent, area law decreasing

in powers of two with a possible log divergence in even dimensions. The constant

corrections to this area law are given in terms of topological features of the entangling

surface, namely its .p � 1/-st and .d � p � 2/-st Betti numbers. Our result is upheld

through two separate, but complementary, fronts: we have performed a replica

path integral calculation where the entropy arises as a high-temperature thermal

entropy of an edge mode partition function living on a regulated entangling surface

(with the regulator playing the role of the inverse temperature). This is edge mode

theory is a chiral combination of .p � 1/- and .d � p � 2/-form Maxwell theories,

which we call “chiral mixed Maxwell theory.” We followed this calculation with a

more rigorous de�nition of the entanglement entropy through an extended Hilbert

space and showed that this extended Hilbert space is organised by a novel in�nite-

dimensional current algebra, which has not appeared in the literature (to this degree
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3. Edge modes

of generality) before. We elucidated features of this current algebra and extracted the

entanglement entropy through its representation characters. Along the way we have

shown that these characters account for the spectrum of the Maxwell edge-theory

and match its thermal partition function.

There are several features of our main result that require elaboration and that we

would like to highlight at this point.

Comparing to the GTV result

Let us comment on the discrepancy of our result with the result found by Grover,

Turner, and Vishwanath [188] in states of discrete gauge theories described by

condensates of p-form membranes:

�GTV D �local �
p�1X

nD0
.�1/p�1Cnbn.@R/ log jGj; (3.5.1)

where �local is built out of integrating local quantities (and so includes possible logs

and Euler characteristics in even dimensions), and jGj is the order of a discrete gauge
group (this is the analogue of jdetKj in our computation). This result was arrived at

by counting the constraints implied by the intersection of p-form membranes with

the entangling surface.20 In order to compare (3.1.2) and (3.5.1) and better highlight

the discrepancy, it is useful to write our result in terms of the analogous alternating

sum. We can do this either in the language of di�erential forms or in the language

of chains. The calculations from sections 3.3 and 3.4 are natural in the language of

di�erential forms, so let us start there. We note

�1
2

�
bp�1 C bd�p�2

�
D �

p�1X

nD0
.�1/p�1Cnbn

� 1

2

p�2X

nD0
.�1/p�2Cn dim�n � 1

2

d�p�3X

nD0
.�1/d�p�3Cn dim�n

C 1

2
dimEp�1 C 1

2
dimEd�p�2; (3.5.2)

where dim�k and dim Ek are the dimensions of all k-forms and exact k-forms on @R,

respectively; these are divergent quantities but can be regulated, say, on a lattice and

regarding them as cochains. This equality follows from the short exact sequences.

0! Ck ! �k.†/
d
! EkC1

! 0; 0! Ek ! Ck ! Hk ! 0; (3.5.3)

where Ck is the space of closed k-forms, and utilising Poincaré duality on @R,

bk D bd�2�k . The �rst line of (3.5.2) is the desired GTV result. It is plausible

20We are grateful the authors of [188] for correspondence and explaining their result to us.
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3.5. Discussion

that the second line involving dim�n can be absorbed into the de�nition of the path

integral measures for the gauge �elds and the ghosts (which also take an altern-

ating form).21 However, it is harder for us to argue away the third line involving

dimEp�1=d�p�2. This term would not be there if the object of interest were instead

�1
2
.dimCp�1CdimCd�p�2/, i.e. a counting of closed forms as opposed to harmonic

forms. However, this appears unnatural in our approach. For instance, recall that in

the computation from section 3.3, the jdetKj arises hand-in-hand from an instanton

sum and a counting of zero-modes of the Hodge Laplacian restricted to transversal

.p � 1/=.d �p � 2/-forms. Both of these objects are counted by harmonic forms, not

closed forms. This is mirrored in the computation of section 3.4 where the jdetKj
arises from counting zero-modes of the current algebra. There we argued that exact

forms give rise to exactly zero charges and so again a true count of the zero-modes

naturally lands upon the bp�1 C bd�p�2.

In terms of chains we can also express, through wholly similar manipulations,

�1
2

�
bp�1 C bd�p�2

�
D �

p�1X

nD0
.�1/p�1Cnbn

C 1

2

p�1X

nD0
.�1/p�1Cn dimCn C 1

2

d�p�2X

nD0
.�1/d�p�2Cn dimCn

� 1

2
dimZp�1 � 1

2
dimZd�p�2; (3.5.4)

where dimCn and dimZn is the dimension of all n-chains on @R and the dimension

of n-chains on @R without boundary, respectively. Again, the �rst line of (3.5.4) is

commensurate with the GTV result. The second line is formed of locally integrated

quantities on @R and it is feasible that they can be subtracted through a Kiteav–

Preskill/Levin–Wen-like scheme. It is not clear whether the third line can be locally

subtracted (we indeed believe not). The GTV result would follow if instead the

object of interest were 1
2

�
Bp�1 C Bd�p�2

�
where Bk D Zk � bk is the number of

boundary-less k-chains that are the boundary of a kC 1-chain. This counting, which

is in fact the one undertaken in [188], is pictorially natural when viewing the ground

state as a p-membrane condensate.

Further elucidating the origin of this gap is ongoing work. In this vein, having another

independent mode of calculation, e.g. a higher-dimensional version of surgery, would

help clarify things; see the discussion below.

On possible bulk contributions and essential topological entanglement

In this chapter we have focussed on the contribution from edge modes to the entan-

glement entropy. Since this theory is topological, it is natural to believe that this is

21See [250] for an inspirational manipulation of this sort in four-dimensional Maxwell theory.
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3. Edge modes

the sole contribution to the entropy; however, let us revisit this assumption. In the

replica computation of section 3.3, we did not undertake the computation of

ZbulkŒXn;"� D jdetKjhp.Xn;";@Xn;"/TRSŒXn;"; @Xn;"�
.�1/p�1

; (3.5.5)

but schematically, since all of the oscillator contributions to TRS come with Dirichlet

boundary conditions, we expect them to scale with n and not contribute to the

entropy. Instead, we need to worry about homological contributions of Zbulk, which

can arise from cycles that can either pull back to or anchor on @Xn;".

This counting is actually a bit cleaner in the extended Hilbert space discussion

of section 3.4. There we focussed on variational charges, however there are also

charge operators that cannot be written variationally. These are homological surface

operators

OWwj

�j
��D exp

�Z

�j
w

J
j AJ

�
; OVvi

� i
��D exp

�Z

� i
vIi BI

�
; (3.5.6)

where �j and � i are basis p- and .d � p � 1/-homology cycles in R. These commute

with the variational charges of section 3.4, however, do not commute with each

other. Thus states in the HR factor of extended Hilbert space should in fact also be

labeled with the eigenvalues of one set of the operators. Without loss of generality,

we can label the states by wj for each p-cycle in R:
ˇ̌
fwjg

˛
. What happens to these

quantum numbers when we solve for the true ground state, j z i, in HR ˝ HRc? For

wj’s corresponding to cycles that live in the interior of R or Rc, i.e. those that do

not pull back to or intersect @R, we simply match those charges with the charge of

j i for the corresponding cycles in †. However, for cycles of R that pull back to @R,

they are un�xed: they must combine with a similar cycle from Rc to give the correct

charge corresponding to a cycle in †. This suggests that j z i is maximally correlated

over cycles of † that pull back22 to R. This strongly suggests that there is, in fact,

a bulk entropy equal to jdetKj times the number of such p-cycles. This number

was precisely calculated in [1] and is the magnetic p-form essential topological

entanglement:

Sbulk
‹DEmag

D
"
p�1X

nD0
.�1/p�1�nbn.@R/C

pX

nD0
.bn.†/ � dimHn.†; @R//

#
log jdetKj: (3.5.7)

where Hk.†; @R/ are relative homology classes. Interestingly the GTV alternating

sum makes an appearance (albeit with the opposite sign than in [188]), however we

22Cycles that intersect @R transversally must additionally “match up” with a cycle from Rc but they

are not cancelled, instead their charge is �xed by the charge in j i. If there is a mismatch of either type

of cycles between R and Rc they must be set to zero by hand, i.e. if an anchored cycle of R cannot be

“completed” to a true cycle of † upon gluing on Rc, or in a cycle of R that pulls back to @R becomes

trivial in Rc, then we simply set that charge to zero in j z i.
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do not regard this as accounting for the above discrepancy. For instance, when † is

topologically trivial (say Rd�1 or Sd�1) then the terms in (3.5.7) exactly cancel and

Sbulk vanishes (this is by design since there are no non-trivial cycles in † to “count”).

Thus, the above discrepancy remains in this simple example.

Surgery

Lastly, let us comment on the possibility of another, independent, manner of eval-

uating this entanglement entropy using surgery. We can proceed via replica path

integral, very much in the spirit of section 3.3; however, instead of regulating Xn by

excising a tubular neighborhood, we work to directly evaluate ZŒXn� on the branched

cover over @R. For generic manifolds this seems quite di�cult (although there may

be some feasible benchmark examples, e.g. when † is a product of spheres and R

is a product of a disc and spheres). However, one promising avenue is to develop

a program to evaluate such manifolds systematically. Let us recall the procedure

in three dimensions, which hinges upon the fact that the Hilbert space on a two-

sphere is one-dimensional. Thus, the path integral on any three-geometry,M , with

@M D S2, produces a state proportional to the one produced by the path integral on

a three-ball, B3:

jM i /
ˇ̌
B3
˛
: (3.5.8)

Thus, for anymanifold that can be written as union of twomanifolds across a common

two-sphere, X D M1 [S2 M2, we �nd formally:

ZŒX� D hM1jM2iH
S2

D

˝
M1

ˇ̌
B3
˛
H

S2

˝
B3
ˇ̌
M2

˛
H

S2

hB3jB3iH
S2

D ZŒM 1�
�ZŒM 2�

ZŒS3�
; (3.5.9)

whereM 1;2 areM1;2 with their S2 boundaries “�lled-in” with a B3. This e�ectively

allows one to “cut open” path integrals de�ned on complicated manifolds along two-

spheres and “cap them o�” smoothly and evaluate them through simpler “ingredient”

path integrals, e.g. ZŒS3�. In higher dimensions, topology is more involved, but

we also potentially have more tools at our disposal: equation (3.2.22) indicates that

there are potentially multiple choices of † with dimH† D 1 which can provide an

“ingredient” for surgery. Developing this further can provide an independent check

on both of the above points: the discrepancy with the GTV result as well as the

existence of bulk contributions.
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4State-operator correspondence
for nonlocal operators

4.1 Introduction

Conformal Field Theory (CFT) is a fundamental framework in theoretical physics.

It plays a crucial role in various distinct areas of theoretical physics. In statistical

mechanics, it characterises the universality classes of di�erent systems at criticality

[251, 252]. Additionally, it describes the long-range behaviour of many quantum �eld

theories (QFTs), and the short-range behaviour of ultraviolet-complete (UV-complete)

QFTs via the renormalisation group [6–8]. Finally, it serves as a gateway to quantum

gravity, most notably, through string theory and the AdS/CFT correspondence [253–

255]. These points alone highlight the fundamental importance of a deep, non-

perturbative understanding of CFT. In �at space a lot is known. In any given CFT, the

complete set of scaling dimensions of local operators and operator product expansion

(OPE) coe�cients su�ces to reconstruct arbitrary correlation functions, e�ectively

solving the theory. Signi�cant progress has been achieved using traditional methods

like conformal perturbation theory, as well as non-perturbative approaches such as

the conformal bootstrap [256–258].

However, this emphasis on local objects is not well suited for some physical situations

of interest. For instance, condensed matter theory has seen renewed interest in

nonlocal excitations, such as anyons [259] and fractons [118]. In quantum �eld theory,

the question of quark con�nement is connected to the physics of line operators [15,

260–263]. Finally, quantum gravity is inherently linkedwith nonlocal operators, based

on the simple argument that di�eomorphism invariance forbids local operators.1 The

physics of nonlocal operators is most e�ectively probed by placing the corresponding

physical system on a space with interesting topology.

1Topological local operators, corresponding to .d � 1/-form symmetries, are an exception. However,

arguments about the absence of (higher-form) global symmetries suggest their nonexistence [208].
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4. State-operator correspondence for nonlocal operators

Reconciling this with the theme of the �rst paragraph, necessitates an understanding

of conformal �eld theory on topologically non-trivial spacetimes. This understanding

is e�ectively complete for two-dimensional CFTs, where Moore and Seiberg [54]

showed that in the rational case, modular covariance of torus one-point functions

ensures that the CFT can be de�ned and solved on arbitrary Riemann surfaces. Central

to this are (i) the geometry of Riemann surfaces [264], and (ii) the state-operator

correspondence. The idea can be summarised as follows. Any Riemann surface can

be viewed as a collection of discs and pair-of-pants geometries sewn together along

circles. Alternatively, one can insert a resolution of the identity operator along a

given circle, expressed in terms of states on that circle. Using the state-operator

correspondence these states are mapped to local operators at the centre of a disc

bounding that circle. Thus, the computation of any arbitrary correlation function is

reduced to the two- and three-point functions on the sphere and one-point functions

on the torus.

In higher dimensions, signi�cantly less is known.2 While the main ideas are the

same, technical di�culties arise. More explicitly, locality suggests that QFT observ-

ables should be reconstructable from basic building blocks via cutting and sewing.

However, this process is much more involved than its two-dimensional counterpart.

Therefore, while local operators still completely determine the spectrum of states

on a spatial .d � 1/-sphere, this is insu�cient for reconstructing the entire CFT. A

natural question to ask is, then: how feasible is a state-operator correspondence that

relates nonlocal operators to states on other spatial manifolds? Belin, de Boer, and

Krutho� [269] attempt to answer this question for the three-torus and argue that

such a correspondence is not straightforward for a generic CFT.

What is the situation when additional symmetries are available? Recent years have

seen an incredible surge of interest in the study of symmetries in quantum �eld

theory. Starting with higher-form symmetries [15], and generalising onwards to

higher-group, non-invertible symmetries and other generalisations,3 these notions of

symmetry provide powerful organising principles for quantum �eld theories. Thus,

one may reformulate the question as follows: Is there a state-operator correspond-

ence for nonlocal operators, in higher-dimensional CFTs with generalised global

symmetries? In this chapter, we provide an a�rmative answer to this question.

More precisely we consider unitary CFTs in d D 2pC 2 dimensions with continuous

p-form symmetries (invertible or non-invertible). It turns out that this is a very

powerful combination. The photonisation argument [37] relates them to circle

or orbifold branches of theories of free p-forms. This further implies an in�nite

collection of codimension-one topological operators, labelled by chiral and anti-

2See, however, [265–272] for some of what is known.
3See, e.g. [67] for a more complete list of references
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chiral p-forms. This is in complete analogy with two-dimensional CFTs, where

holomorphic conserved currents can be dressed with arbitrary holomorphic functions,

remaining conserved. This analogy goes further: the spectrum of states of such

theories is organised by current algebras, generalising the Kac–Moody algebras

of two-dimensional CFTs. We focus on the four-dimensional case, enjoying one-

form symmetries, and realised by free Maxwell theory. We explicitly construct the

representation theory of these algebras on generic closed spatial slices, †. A major

result is the complete characterisation of the space of states on a generic spatial

topology and geometry. This Hilbert space consists of Kac–Moody descendants built

on top of primary states, charged under the one-form symmetries. As a non-trivial

check, the extended character of those representations matches exactly the partition

function of Maxwell theory on S1
ˇ

�†, as obtained via path integral methods, and is

given by strikingly simple formulas that are very reminiscent of two-dimensional

rational CFTs:

ZMaxwell

h
S1ˇ �†; t

i
D ‚†.q; t/

˜†.q/2
; q D e�ˇ : (4.1.1)

In the above, ‚†.q/, de�ned in (4.4.47), generalises the Siegel–Narain Theta function

and ˜†.q/, de�ned in (4.4.45), generalises the Dedekind eta function, while t is the

complexi�ed coupling constant of Maxwell theory.4 On † D S2 � S1, we match this

spectrum to states prepared by path integrals with insertions of line operators. This

has two important consequences. Firstly, a classi�cation of line operators in four-

dimensional CFTs with global symmetries. There are primary operators, carrying

charge under the one-form symmetry and preparing the highest-weight states of

our current algebra. In the case of Maxwell theory these operators are given by

Wilson–’t Hooft lines. Similarly to local operators, these primary line operators

have a de�nite scaling weight, as de�ned in [273] and discussed in [274]. Then,

there are descendant line operators, obtained by dressing the Wilson–’t Hooft lines

with photon modes. Relatedly, the second consequence, and our main result is a

state-operator correspondence stating the following:

In four-dimensional CFTs with a continuous one-form symmetry,

states on S2 � S1 are in one-to-one correspondence with line operators on R3 � S1.

Interestingly, we �nd that the lack of Weyl transformation from R3 � S1 to the

Lorentzian cylinder, R � S2 � S1, coupled with the two polarisations of the photon,

implies that radial evolution is equivalent to a squeezing transformation of the photon
states. This implies, in turn, that the vacuum state is not prepared by a path integral

with no operator insertions, but rather, by a path integral with insertions of photon

modes of all frequencies.

4See also [2] for a related story in generic dimensions.
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An organising summary is as follows. In section 4.2 we explain the photonisation

argument, and its implications. We show that invertible continuous p-form sym-

metries in .2p C 2/-dimensional CFTs lead to a higher-dimensional generalisation

of Kac–Moody algebras. We supplement this with a discussion on non-invertible

continuous p-form symmetry, where we construct a non-invertible generalisation of

these current algebras. In section 4.3 we focus on the case (p D 0) of two-dimensional

CFTs, where we review the well-known state-operator correspondence for the free

compact scalar, in terms of its organising Kac–Moody algebra. We then jump, in

section 4.4, to the case of p D 1 and free Maxwell theory, detailing the path integral

on generic closed man�olds. We then quantise the theory using our current algebras,

matching it to the path integral expressions. This allows us to reach section 4.5,

where we set up our state-operator correspondence on S2 � S1, by performing a

path integral on B3 � S1 with line operator insertions. To that end, we �rst classify

the line operators of the theory in terms of our current algebra. We then perform

the radial evolution on B3 � S1, and explain how it leads to squeezing the photon

states, to �nally land directly onto the nonlocal state-operator correspondence. We

�nish, in section 4.6 with a discussion on our results and interesting future direc-

tions. In appendices C.1–C.3 we collect details regarding the spectral analysis of the

Hodge Laplacian, the current algebra on a generic manifold, and the radial evolution,

respectively.

4.2 Photonisation and higher-dimensional current algebras

In this section we explore the photonisation argument of [37] and its various incarn-

ations. We �rst show that a unitary conformal �eld theory in 2p C 2 dimensions

with a continuous p-form symmetry (when p D 0, we restrict to abelian 0-form

symmetries) has a realisation as a theory of free p-forms. We go on to show that

this gives rise to a current algebra, akin to the two-dimensional Kac–Moody algeb-

ras. We comment on non-abelian versions of the arguments for the p D 0 case.

Finally, we derive non-invertible current algebras, for theories enjoying continuous

non-invertible symmetries and comment on their applications.

4.2.1 Photonisation

Our starting point is a unitary conformal �eld theory in d D 2pC2 dimensions, with

a continuous, invertible p-form symmetry. We focus on the case of a single U.1/Œp�

symmetry.5 Higher-form symmetries are abelian, so for p ⩾ 1, this is all we can

have.6 For p D 0 we can also have non-abelian symmetries; we comment on those

in subsection 4.2.3. The continuous symmetry induces a conserved .p C 1/-form

5We denote a p-form symmetry group as U.1/Œp�.
6We can also have a product of decoupled U.1/Œp�s; the generalisation is trivial.
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current, JŒpC1� ��D J�1����pC1
.x/ dx�1 ^ � � � ^ dx�pC1 , satisfying

d ? JŒpC1� D 0: (4.2.1)

This current leads to a conserved charge, supported on a codimension-.p C 1/

manifold

QŒ†d�p�1� ��D
Z

†d�p�1

?JŒpC1�; (4.2.2)

or equivalently a codimension-.p C 1/ topological operator

U†d�p�1
.˛/ ��D exp

 
i˛

Z

†d�p�1

?JŒpC1�

!
: (4.2.3)

Since this is a compact U.1/ symmetry — as opposed to non-compact U.1/, i.e. R —,

the parameter ˛ is circle-valued: ˛ � ˛ C 2� .

Let us now see the implications of conformality, reviewing the argument of [37]. We

start by discussing the theory on Euclidean �at space, Rd , with metric g�� D ı�� .

The .pC 1/-form currents are primary operators of scaling dimension pC 1, so their

two-point function7 is completely �xed by conformal symmetry, up to a constant, k

[275]:
˝
JŒpC1�.x1/ JŒpC1�.x2/

˛
D k

kx12kd
G.x12/; (4.2.4)

where x12 ��D x1 � x2 and G.x12/ is a uniquely determined tensor structure:

G�1����pC1�1����pC1.x12/ D ı
�1

Œ�1
� � � ı�pC1

�pC1�
ı
�1

Œ�1
� � � ı�pC1

�pC1�

pC1Y

`D1

�
g�`�` � 2.x12/

�`.x12/
�`

kx12k2
�
;

(4.2.5)

where g�� is the �at Euclidean metric and g�� its inverse. From here on, it is easy to

show that ˝
dJŒpC1�.x1/ JŒpC1�.x2/

˛
D 0; (4.2.6)

which immediately implies

˝
dJŒpC1�.x1/ dJŒpC1�.x2/

˛
D 0: (4.2.7)

Using the standard state-operator correspondence, this represents the norm of a

state on HSd�1 , created by the local operator dJŒpC1� D 0. Since this is a unitary

CFT, this norm can be zero only if the operator dJŒpC1� is zero itself. Said di�erently,

7Here and in the following we write the correlation functions of products of currents in di�erential

form languange to suppress indices. This is not a wedge product of forms, it should rather be seen as a

form-valued form, or in other words a section of
V� T�Rd ˝V� T�Rd .
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4. State-operator correspondence for nonlocal operators

conformal invariance and unitarity implies that there is a dual conserved current,

?JŒpC1�, i.e.:
dJŒpC1� D 0: (4.2.8)

An equivalent, implicit argument, follows the reasoning of [276]. All the states in

a conformal �eld theory are organised in representations of the Cartan subalgebra

of the Euclidean conformal algebra, so.d C 1; 1/. This results in each state, jOi 2
HSd�1 , being labelled by its scaling dimension, �O , and a set of highest weights,˚
h1; h2; : : : ; hbd=2c

	
O
, of the so.d/ irreducible representation. Let us focus on the

primary states; the descendants can be obtained by acting with the ladder operators

of the conformal algebra. Unitarity, i.e. hOjOi ⩾ 0 for all primary states O, imposes

that �O ⩾ f
�
fhigO

�
, for some function f , that depends on the dimension, d , and

the so.d/ representation [277].

Now, consider the state jJŒpC1�i, corresponding to a conserved current. Its scaling

dimension is �J D d � p � 1. Moreover, the conservation equation d ? JŒpC1� D 0,

implies that this state belongs in a short conformal multiplet, since its �rst descendant

is null. As such, the above unitarity bound, �J ⩾ f .fhigJ /, must be saturated

on this state. In dimensions d D 2p C 2, the conserved currents lie in reducible

representations of so.d/: they can be decomposed into self-dual and anti-self-dual

currents, J˙
ŒpC1� ��D 1

2

�
JŒpC1� ˙ ip�1 ? JŒpC1�

�
, each of which is in an irreducible

representation. To saturate the unitarity bound for jJŒpC1�i, the unitarity bound

for both jJ˙
ŒpC1�i must be saturated. Therefore both jJ˙

ŒpC1�i lie in short multiplets,

which in turn implies that d ? J˙
ŒpC1� D 0, or in other words, one has dJŒpC1� D 0, on

top of d ? JŒpC1� D 0.

To summarise, what both of the above arguments show is that a unitary .2p C 2/-

dimensional CFT with a continuous p-form symmetry, must also have a dual p-form

symmetry. In other words, it has:

d ? JŒpC1� D 0 and dJŒpC1� D 0: (4.2.9)

This is nothing but the equations of motion of a p-form abelian gauge �eld, aŒp�, upon

identifying JŒpC1� with the �eld strength, fŒpC1�, of aŒp�. In other words, unitary

.2p C 1/-dimensional CFTs with a U.1/Œp� p-form symmetry can always be realised

by p-form Maxwell theories. In the words of [37] we say that the CFT photonises.

4.2.2 Abelian current CFTs

We will now show that the symmetry is actually enhanced even more, into a cur-

rent algebra — a higher-dimensional version of the two-dimensional Kac–Moody

algebras. This algebra will turn out to be spectrum-generating (up to decoupled

neutral dressing) and it will eventually be key to reaching the main result of this
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4.2. Photonisation and higher-dimensional current algebras

chapter in section 4.5. We will call CFTs with such a current algebra current CFTs.
We will mainly analyse abelian current CFTs, but we will comment on non-abelian

and non-invertible generalisations in subsections 4.2.3 and 4.2.4.

We go temporarily to a more general setup and relax conformality. Consider a

.d D 2p C 2/-dimensional Euclidean quantum �eld theory, with two, dual, U.1/Œp�

p-form symmetries, i.e. two conserved currents JŒpC1�, ?J ŒpC1�:

d ? JŒpC1� D 0 and dJŒpC1� D 0: (4.2.10)

The space of .pC 1/-forms,�pC1.X/, admits a Z2 grading,�
pC1.X/ D �

pC1
C .X/˚

�pC1
� .X/, graded by the Hodge-star operator, or more precisely, by the operator

i1�p?. Namely, there exist projectors8

P˙ ��D 1
2

�
1 ˙ i1�p ?

�
; (4.2.11)

that allow us to write any .p C 1/-form, !ŒpC1�, as PC!ŒpC1� C P�!ŒpC1�, where
P˙!ŒpC1� satisfy

i1�p ? P˙!ŒpC1� D ˙P˙!ŒpC1�: (4.2.12)

We will call equation (4.2.12), self-duality equation and will refer to P˙!ŒpC1� as
(anti-)self-dual forms, in all dimensions, even though, technically, they are (anti-)self-

dual only when p is odd, or equivalently in dimensions d D 4k. In d D 4k C 2,

corresponding to even p, they are just the eigenforms of the operator i?.

An important property of the projectors (4.2.11) is that the can pass through wedge

products of .p C 1/-forms:

�
P˙!ŒpC1�

�
^ �ŒpC1� D !ŒpC1� ^

�
P˙�ŒpC1�

�
: (4.2.13)

To see that, it su�ces to note that ?!ŒpC1� ^ �ŒpC1� is a .2p C 2/-form and hence is

proportional to the volume form. The simultaneous conservation, (4.2.10), of JŒpC1�
and ?J ŒpC1� is equivalent to the conservation of

J˙
ŒpC1� ��D P˙JŒpC1�; (4.2.14)

i.e.

dJ˙
ŒpC1� D 0: (4.2.15)

Once we have these two conserved currents, we can construct an in�nite number of

conserved charges. In particular, note that the family of currents

J˙
ƒ

��D � ?
�
J˙
ŒpC1� ^ƒ�

Œp�

�
(4.2.16)

8Recall that we are in Euclidean signature; in Lorentzian signature there would be an extra i.
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4. State-operator correspondence for nonlocal operators

is conserved for any (anti)chiral p-form, i.e. for any ƒ�
Œp�

such that

P˙dƒ
�
Œp�

D 0: (4.2.17)

These can be thought of as p-form analogues of (anti)holomorphic functions.9 Indeed,

d ? J˙
ƒ D J˙

ŒpC1� ^ dƒ�
Œp�

D JŒpC1� ^ P˙dƒ
�
Œp�

D 0: (4.2.18)

Integrating on a codimension-one closed manifold, †d�1 D †2pC1, gives us two
families of conserved charges:

Q˙
ƒŒ†d�1� ��D

Z

†d�1

J˙
ŒpC1� ^ƒ�

Œp�
; (4.2.19)

or equivalently topological operators,

U˙
†d�1

.ƒ/ ��D exp

�
i

Z

†d�1

J˙
ŒpC1� ^ƒ�

Œp�

�
: (4.2.20)

Here we mention two important points. First, note that these are zero-form symmet-

ries, regardless of p. As such, they can a priori, have non-trivial commutators. They

stem, however from an abelian symmetry, therefore their commutation relations, if

non-trivial, indicate a central extension. We will indeed �nd such a central extention

in the next paragraphs. Second, note that there is a gauge redundancy in de�ning the

conserved charges. Namely, we must identify ƒ�
Œp�

� ƒ�
Œp�

C ��
Œp�
, where d��

Œp�
D 0,

since the shift by a closed p-form leaves the charges invariant.

Now we reinstate conformality. In subsection 4.2.1 we saw that a CFT with these two

conserved currents obeys the dynamics of p-form Maxwell theory. We can therefore,

locally, realise the currents as the curvature of a p-form gauge �eld JŒpC1� D daŒp�,

whose equation of motion is a free wave equation d�daŒp� D 0. We then recognise

aŒp� and ?JŒpC1�, restricted to a codimension-one slice, as conjugate phase-space

variables, giving rise to a (pre-)symplectic form:

�†d�1
D
Z

†d�1

•p ^ •q ; (4.2.21)

identifying

q D aŒp�

ˇ̌
ˇ̌
†d�1

and p D 2k
�
?J˙

ŒpC1�

�ˇ̌
ˇ̌
†d�1

: (4.2.22)

In the above, the factor 2k is conventional, and is related to the strength of the

interaction, i.e. the electric charge of the p-form Maxwell theory realising the CFT.

In fact, we should identify as the canonical position, q, a conjugacy class, or a speci�c

9Equation (4.2.17) is a local de�nition, like the de�ning equations of (anti)holomorphic functions.
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4.2. Photonisation and higher-dimensional current algebras

representative thereof, of the equivalence relation aŒp� � aŒp� C �Œp�, for �Œp� �at.

This is what takes care of the degeneracy of the symplectic form, corresponding to

gauge transformations. We will proceed with (4.2.22), keeping this issue in mind.

We can then compute the commutation relations between the charges, simply by

plugging the vector �elds they generate on the phase space in the de�nition of the

symplectic form. First we compute

•Q˙
ƒ

•q
D �1

2
dƒ�

Œp�
and

•Q˙
ƒ

•p
D ˙i1�pkƒ�

Œp�
: (4.2.23)

With this, we immediately get the algebra:

h
Q�
ƒ1
;Q� 0

ƒ2

i
†d�1

D i1�pk

2

�
� C .�1/p� 0�

Z

†d�1

ƒ��
1 ^ dƒ�� 0

2 ; (4.2.24)

where � and � 0 are signs, �; � 0 2 fC;�g. Here and in the following, we drop the

subscript Œp� indicating the form-degree of ƒ to declutter the notation. This algebra

is a higher-dimensional generalistion of the familiar two-dimensional Kac–Moody

algebra, and it will be one of the protagonists of the story that follows. To better

illustrate (4.2.24) let us elaborate further on two speci�c values of p.

p D 0.

This case corresponds to the case of a two-dimensinal CFT, with a (zero-form) U.1/

symmetry. There, ƒ˙
i are just scalar functions and the above commutators become,

�
Q˙
ƒ1
;Q˙

ƒ2

�
†1

D ˙ik

Z

†1

ƒ�
1 dƒ�

2

h
QC
ƒ1
;Q�

ƒ2

i
†1

D 0:

(4.2.25)

This is just the familiarbu.1/ �bu.1/ Kac–Moody algebra. Tracing back the logical

tower that led us here, and running the arguments again, in language familiar from

two-dimensional CFTs, we recover the following familiar statement. A conserved

current, in a unitary two-dimensional CFT, can always be split into a holomorphic

and an antiholomorphic piece, which are separately conserved. These can, in turn,

be dressed with arbitrary holomorphic and antiholomorphic functions to give rise to

a holomorphic and an antiholomorphic current algebra. Quantising on the theory on

a spatial circle and expanding the currents in Fourier modes, gives rise to the usual

abelian a�ne Kac–Moody algebra. Indeed, taking †1 to be S1 and expanding in

Fourier modes, e˙in� , gives the familiar form of thebu.1/ �bu.1/ Kac–Moody algebra:
�
J˙
n ; J

˙
m

�
D kn ınCm;0;�

JC
n ; J

�
m

�
D 0; n;m 2 Z:

(4.2.26)
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4. State-operator correspondence for nonlocal operators

Finally, recall that all these CFTs have a free-�eld realisation as a free compact scalar,

� � � C 2�R. The level, k, of the algebra is related to the radius of the scalar.

p D 1.

This is the case of a four-dimensional CFT with two, dual, one-form symmetries.

As we have argued before, this is realised by regular Maxwell theory. Here ƒ˙
i

are one-forms, and the charges are de�ned on a three-dimensional manifold. The

commutation relations become, in this case,

h
QC
ƒ1
;QC

ƒ2

i
†3

D 0 D
�
Q�
ƒ1
;Q�

ƒ2

�
†3

h
QC
ƒ1
;Q�

ƒ2

i
†3

D k

Z

†3

ƒ�
1 ^ dƒC

2 :
(4.2.27)

We recognise again the structure of abu.1/�bu.1/ current algebra, with the important

di�erence that here the central extension mixes the two factors, instead of acting

on each of them separately. Observing the pattern set by (4.2.24) it is clear that in

4nC 2 dimensions the chiral and antichiral components will go their own, centrally

extended, way separately, whereas in 4n dimesions, they mix. This has to do with

the existence of real self- and anti-self-dual forms, as noted earlier. Let us note that,

just like the two-dimensional case, we can expand the currents in “modes,” to obtain

an algebra of the individual modes. We will do so in subsection 4.4.3. Moreover, the

level, k, of the algebra is now related to the coupling of the Maxwell theory that

realises the CFT, i.e. the electric charge. Finally, in this case, the algebra (4.2.27) was

constructed in [37], where it was also arrived at through a twistor formalism, without

appealing to the phase space structure of Maxwell theory.

Going back to the general case, let us mention yet another presentation of the current

algebra, (4.2.27), that will be useful to obtain a non-invertible version thereof in

subsection 4.2.4. This presentation is in terms of the topological operators, that act

on the Hilbert space. A generic topological operator in a current CFT takes the form

U
�
ƒ�
1 ; ƒ

C
2

� ��D exp

�
i

Z

†d�1

JC
ŒpC1� ^ƒ�

1 C i

Z

†d�1

J�
ŒpC1� ^ƒC

2

�
; (4.2.28)

where we supperss the (topological) dependence on †d�1. The fusion of two such

operators is

U
�
ƒ�
1 ; ƒ

C
2

�
˝ U

�
ƒ�
3 ; ƒ

C
4

�
D f .k/p

�
ƒ�
1 ; ƒ

C
2 ; ƒ

�
3 ; ƒ

C
4

�
U
�
ƒ�
1 Cƒ�

3 ; ƒ
C
2 CƒC

4

�
;

(4.2.29)
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where

f .k/p

�
ƒ�
1 ; ƒ

C
2 ; ƒ

�
3 ; ƒ

C
4

� ��D exp

 
ipC1 k

2

Z

†d�1

˚
ıp;even

�
ƒ�
1 ^ dƒ�

3 CƒC
2 ^ dƒC

4

�

� ıp;odd
�
ƒ�
1 ^ dƒC

4 CƒC
2 ^ dƒ�

3

�	
!
: (4.2.30)

This is a simple abelian fusion rule, with a central extension, proportional to k,

speci�ed by the function f .k/p

�
ƒ�
1 ; ƒ

C
2 ; ƒ

�
3 ; ƒ

C
4

�
. As before, we will illustrate (4.2.29)

in the cases p D 0 and p D 1.

At p D 0, there is a central term when fusing topological operators with the same

chirality:

U
�
ƒ�
1 ; 0

�
˝ U

�
ƒ�
3 ; 0

�
D exp

�
i k

2

Z

†1

ƒ�
1 ^ dƒ�

3

�
U
�
ƒ�
1 Cƒ�

3 ; 0
�
; (4.2.31)

and similarly for ƒC
2 and ƒC

4 . Operators with opposite chirality do not see each

other:

U
�
ƒ�
1 ; 0

�
˝ U

�
0;ƒC

4

�
D U

�
ƒ�
1 ; ƒ

C
4

�
; (4.2.32)

and similarly for ƒC
2 and ƒ�

3 . This is, of course, a re�ection of the fact we mentioned

above, that in two dimensional CFTs the holomorphic and antiholomorphic sectors

do not see each other in the central extension.

Coming to p D 1, we see the central extension in the fusion of operators of opposite

chirality:

U
�
ƒ�
1 ; 0

�
˝ U

�
0;ƒC

4

�
D exp

�
k

2

Z

†3

ƒ�
1 ^ dƒC

4

�
U
�
ƒ�
1 ; ƒ

C
4

�
; (4.2.33)

while those with the same chirality have a simple abelian fusion:

U
�
ƒ�
1 ; 0

�
˝ U

�
ƒ�
3 ; 0

�
D U

�
ƒ�
1 Cƒ�

3 ; 0
�
; (4.2.34)

and similar equations involving the rest of the operators.

Let us also comment on the relation of (4.2.24), with other appearances of higher-

dimensional generalisations of Kac–Moody algebras in the literature. As explained

above, (4.2.24) is the natural generalisation of the four-dimensional Kac–Moody

algebra of [37]. Moreover, it complements (and coincides with, in some cases) the

current algebras that organise the edge-modes of topological �eld theories [2]. How-

ever, it is not the same as Mickelsson–Faddeev algebra [278–280], and by extension

also not the same as the higher-dimensional loop algebras of [281]. Moreover it is

also di�erent from the higher Kac–Moody algebras of [282, 283].
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4. State-operator correspondence for nonlocal operators

4.2.3 Non-abelian current CFTs

We only comment very brie�y on non-abelian current CFTs, as we have nothing to

add besides what is already well-known. This case can only occur at p D 0, since

.p ⩾ 1/-form symmetries are abelian. So, consider a two-dimensional CFT with

a conserved one-form current JŒ1�, valued in the Lie algebra, g, of a semi-simple

Lie group G. The argument of subsection 4.2.1 goes through, and shows that ?J Œ1�
must also be conserved. The consequence is that this time instead of photonisation,

it corresponds to non-abelian bosonisation [284]. Namely, the conservation of the

currents corresponds to the equations of motion of a Wess–Zumino–Witten (WZW)

model. We can locally write the current JŒ1� as g
�1dg, for g a G-valued scalar and

the conservation of the current is

d ?
�
g�1dg

�
D 0: (4.2.35)

From here on, it is a standard exercise in two-dimensional CFT (see e.g. [285]) to

derive the associated current algebra, which will naturally be the the a�ne Kac–

Moody algebrabgk ˝bgk.

4.2.4 Non-invertible current CFTs

A di�erent option is to consider current CFTs whose underlying symmetry is non-

invertible. The simplest way to obtain a continuous non-invertible symmetry is

to begin with the setup of subsection 4.2.1 and impose the equivalence relation

JŒpC1� � �J ŒpC1�. From the point of view of the photonised theory, this corresponds

to gauging the Z2 charge-conjugation symmetryAŒp� 7−! �AŒp�. This corresponds to
the orbifold branch of p-form Maxwell theory, or equivalently, an O.2/ D U.1/⋊ Z2

p-form gauge theory. Variants of this theory (mostly for p D 0 and p D 1), and its

(non-invertible) symmetries have been subject of intense study in recent years [63,

65, 76, 78–80, 82].

Let us �rst review the non-invertible symmetries of O.2/ p-form gauge theory. It is

clear that the operator

U.˛/ D exp

 
i˛

Z

†d�p�1

?JŒpC1�

!
; (4.2.36)

albeit still topological, is no longer gauge-invariant, for generic values of ˛. Note that

˛ is no longer circle-valued, but rather it is valued in the segment ˛ � �˛ � ˛ C 2� .

In what follows, it will be implictly assumed that we take a representative of the

equivalence classes de�ned by the above equivalence relations in Œ0; ��. The operator

U.0/ D 1d�p�1, is the identity .d � p � 1/-dimensional operator and is, naturally,
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gauge-invariant. Moreover,

U.�/ D exp

 
i�

Z

†d�p�1

?JŒpC1�

!
D�� .�1/d�p�1 (4.2.37)

is also gauge-invariant and gnerates a Z
Œp�
2 p-form symmetry. For the rest we can

construct topological and gauge-invariant operators by taking a direct sum of the

original topological operators. Explicitly, the operators

D.˛/ ��D U.˛/˚ U.˛/�1; (4.2.38)

for ˛ 2 .0; �/, pass all the tests of being a symmetry of the theory.10 What was

sacri�ced, is obviously invertibility. This is re�ected on the fusion rules:

D.˛/˝D.ˇ/ D D.˛ C ˇ/˚D.˛ � ˇ/; (4.2.39)

for ˛ ¤ ˇ ¤ � � ˇ 2 .0; �/. Moreover, these operators have quantum dimension

two, namely, hD.˛/iSpC1 D 2, in contrast to the invertible topological operators,

which have quantum dimension one.

Furthermore, as was explained in [80], since charge-conjugation is a zero-form

symmetry, after gauging there is a Pontryagin-dual (or quantum) Z
Œ2p�
2 2p-form

symmetry (d � 0 � 2 D 2p), generated by the Z2 charge-conjugation Wilson lines:

11 and .�1/1. While their fusion rules are simply Z
Œ2p�
2 fusion rules:

.�1/1 ˝ .�1/1 D 11; (4.2.40)

they can also dress the .d � p � 1/-dimensional operators we discussed above, and

appear in their fusion rules. The operator .�1/1 is known as a “determinant line.”

Therefore, the full set of codimension-.p � 1/ topological operators in O.2/ p-form

gauge theory is

n
1d�p�1; .�1/d�p�1; 1

.�1/1
d�p�1; .�1/

.�1/1
d�p�1; D.˛/; D.˛/

.�1/1
ˇ̌
ˇ ˛ 2 .0; �/

o
;

(4.2.41)

where the superscript .�1/1 indicates dressing with the determinant line. The rest

of the fusion rules follow by reconciling (4.2.39) with the allowed dressings [76, 80].

10Provided that there are states on which they act non-trivially. In this case there are: e.g. gauge

invariant sums of the original U.1/Wilson operators [80].
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These are:

.�1/d�p�1 ˝ .�1/d�p�1 D 1d�p�1;

D.˛/˝ .�1/d�p�1 D D.� � ˛/;

D.˛/˝D.˛/ D 1d�p�1 ˚ 1.�1/1
d�p�1 ˚D.2˛/; ˛ ¤ �

2

D.˛/˝D.� � ˛/ D .�1/d�p�1 ˚ .�1/.�1/1
d�p�1 ˚D.2˛ � �/; ˛ ¤ �

2

D.�=2/˝D.�=2/ D 1d�p�1 ˚ 1.�1/1
d�p�1 ˚ .�1/d�p�1 ˚ .�1/.�1/1

d�p�1:
(4.2.42)

Now, seeing this from the lens of conformal �eld theory, we can easily repeat the

argument of subsection 4.2.2. If the theory before gauging was a CFT, we have that

dJ˙
ŒpC1� D 0. After gauging, the operators

D˙.˛/ ��D U˙.˛/˚ U˙.˛/
�1
; with (4.2.43)

U˙.˛/ ��D exp

 
i˛

Z

†d�p�1

J˙
ŒpC1�

!
; ˛ 2 .0; �/ (4.2.44)

are topological operators of the O.2/ p-form gauge theory. Their fusion rules follow

from (4.2.39) and (4.2.42). Moreover, there are non-invertible analogues of (4.2.20)

and (4.2.28). These are

D
�
ƒ�
1 ; ƒ

C
2

� ��D U
�
ƒ�
1 ; ƒ

C
2

�
˚ U

�
ƒ�
1 ; ƒ

C
2

��1
; (4.2.45)

withƒ˙
1;2 (anti-)chiral p-forms, taking values in the open interval .0; �/. Their fusion

rules de�ne a non-invertible current algebra:

D
�
ƒ�
1 ; ƒ

C
2

�
˝D

�
ƒ�
3 ; ƒ

C
4

�
D f .k/p D

�
ƒ�
1 Cƒ�

3 ; ƒ
C
2 CƒC

4

�

˚
�
f .k/p

��1
D
�
ƒ�
1 �ƒ�

3 ; ƒ
C
2 �ƒC

4

�
;

(4.2.46)

where f .k/p D f
.k/
p

�
ƒ�
1 ; ƒ

C
2 ; ƒ

�
3 ; ƒ

C
4

�
, given by (4.2.30). Note that this fusion rule

is valid on generic chiral forms, ƒ˙
i . At special points, i.e. when the ƒ˙

i coincide

at a point, or di�er by � , (4.2.46) should be understood with the operators dressed

appropriately, as in (4.2.42). Let us now illustrate and interpret this non-invertible

current algebra in the cases p D 0 and p D 1.

p D 0:

At p D 0we �nd ourselves on the orbifold branch of the two-dimensional compact bo-

son CFT. The fusion ring (4.2.46) splits, again, into holomorphic and antiholomorphic
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4.2. Photonisation and higher-dimensional current algebras

and we have, for example:

D
�
ƒ�
1 ; 0

�
˝D

�
ƒ�
3 ; 0

�
D exp

�
i k

2

Z

†1

ƒ�
1 ^ dƒ�

3

�
D
�
ƒ�
1 Cƒ�

3 ; 0
�

˚ exp

�
� i k

2

Z

†1

ƒ�
1 ^ dƒ�

3

�
D
�
ƒ�
1 �ƒ�

3 ; 0
�
; (4.2.47)

and similarly for ƒC
2 , ƒ

C
4 . In complete analogy with the circle branch, where the

bu.1/ Kac–Moody algebra contains all the information to construct the full spectrum

of the theory, here too, (4.2.47) is, in principle, su�cient to reconstruct the full

orbifold branch.11 To do so, one has to study the representation theory of (4.2.47).

The representation theory of non-invertible symmetries was recently studied in

[287–291]. In order to study the representation theory of our non-invertible current

algebra it is necessary to extend these results to continuous and centrally extended

non-invertible symmetries. We will not attempt to do that here, but we will return to

it in future work.

p D 1:

In this case we land on the orbifold branch of four-dimensional Maxwell theory,

i.e. O.2/ gauge theory. The central extension appears when one fuses chiral with

anti-chiral operators:

D
�
ƒ�
1 ; 0

�
˝D

�
0;ƒC

4

�
D exp

�
k

2

Z

†3

ƒ�
1 ^ dƒC

4

�
D
�
ƒ�
1 ; ƒ

C
4

�

˚ exp

�
�k

2

Z

†3

ƒ�
1 ^ dƒC

4

�
D
�
ƒ�
1 ;�ƒC

4

�
; (4.2.48)

and similarly for ƒC
2 with ƒ�

3 . The chiral-chiral and anti-chiral-anti-chiral channels

do not see the central extension:

D
�
ƒ�
1 ; 0

�
˝D

�
ƒ�
3 ; 0

�
D D

�
ƒ�
1 Cƒ�

3 ; 0
�

˚D
�
ƒ�
1 �ƒ�

3 ; 0
�
; (4.2.49)

and similarly for ƒC
2 and ƒC

4 . We will see later, in section 4.5, that the current

algebra (4.2.24) is is spectrum-generating, i.e. we can solve the underlying theory by

considering its representations (up to contributions from a decoupled neutral sector).

In analogy with the comments on the p D 0 case, (4.2.48) and (4.2.49), contains in

principle all the information to solve O.2/ gauge theory. Again, we will come back

to doing so in the future.

11Together with its special points, coming from (4.2.42). The special points will be important to obtain

the twisted sectors (cf. also [286]).
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4. State-operator correspondence for nonlocal operators

4.3 Two-dimensional CFTs and the local state-operator corres-

pondence

In this section we will review the usual state-operator correspondence for local

operators. We will therefore consider a two-dimensional CFT with a zero-form U.1/

symmetry. This corresponds to the case p D 0 in the notation of section 4.2 and the

corresponding Kac–Moody algebra can be represented as a compact free scalar [292–

295]. We will therefore be rederiving the standard state-operator correspondence for

the compact free scalar, in order to build some muscle towards section 4.5. Along the

way we will remind the reader of some standard facts in two-dimensional conformal

�eld theories, in order to simplify and compare with the discussion of the four-

dimensional case, in section 4.5.

4.3.1 Partition function and the spectrum

The view from the path integral

Consider a compact free boson, � � � C 2� , on a closed Riemann surface, X . Let us

�rst review the path integral of the compact scalar. Its action reads

SŒ�� ��D
1

2g2

Z

X

f � ^ ?f � ; (4.3.1)

where f � ��D f
�
harm C d� is the curvature of the free scalar, with f �harm 2 Harm1.X/.

In this notation, � is a well-de�ned, single-valued function (a zero-form), subject to

the compactness condition, and all the winding has been passed on to the harmonic

piece of its curvature, f �harm. The coupling constant, g, is related to the radius of the

compact scalar as R2 D 4�
g2 , as can be easily seen by rescaling � to ˆ D R�, so that

ˆ � ˆ C 2�R.12 The harmonic form, f �harm can always be chosen uniquely to be

orthogonal to d�, so the action splits into a harmonic piece and an oscillator piece:

SŒ�� D 1

2g2

Z

X

f
�
harm ^ ?f �harm C 1

2g2

Z

X

d� ^ ? d� : (4.3.2)

Let us evaluate the partition function of the compact scalar, i.e. the path integral

ZŒX� D
Z

Df �harmD� e�SŒ�� D ZharmŒX�ZoscŒX�: (4.3.3)

We begin by analysing the harmonic piece. In our notation, integrality of the winding

of the compact scalar is expressed as
Z

†1

f
�
harm 2 2�Z; (4.3.4)

12We use conventions in which the action for ˆ is normalised as SŒˆ� D 1
8�

R
d2z @ˆ@ˆ.
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4.3. Two-dimensional CFTs and the local state-operator correspondence

on any one-cycle†1 ofX . We can choose a convenient basis,
n
�
.1/
i

ob1.X/

iD1
of harmonic

one-forms of X such that, given a basis
˚
Ci.1/

	b1.X/

iD1 of one-cycles, it obeys

Z

Ci.1/

�
.1/
j D ıij: (4.3.5)

Such a basis will be called hereafter the topological basis. In the above, b1.X/ ��D
dimH1.X/ is the �rst Betti number of X . In this basis we can expand

f
�
harm D 2�ni�

.1/
i ; ni 2 Z; (4.3.6)

where a sum over the repeated index, i, from 1 to b1.X/ is implied. The harmonic

piece of the action (4.3.2) can therefore be written

SharmŒ�� D 1

2

�
2�

g

�2
ni
h
G.1/

i
ij
nj; (4.3.7)

where h
G.1/

i
ij

��D
Z

X

�
.1/
i ^ ?� .1/j (4.3.8)

is the Gram matrix of the above topological basis. The harmonic piece of the path

integral then reads

ZharmŒX� D
X

n2Zb1.X/

exp

 
�1
2

�
2�

g

�2
n � G.1/ � n

!
; (4.3.9)

where we combined ni into a b1.X/-dimensional vector, n. The oscillator contribution

is a straightforward Gaussian integral, yielding

ZoscŒX� D vol0p
det 040

D

0
@
det

�
2�
g2 G.0/

�

det 040

1
A

1
2

; (4.3.10)

where G.0/ is de�ned similarly as G.1/, but with respect to the zero-form topological

basis and 40 D d�d is the Laplacian acting on zero-forms. In total, the full partition

function reads

ZŒX� D

0
@
det

�
2�
g2 G.0/

�

det 040

1
A

1
2 X

n2Zb1.X/

exp

 
�1
2

�
2�

g

�2
n � G.1/ � n

!
: (4.3.11)

In the next paragraphwewill take a canonical approach andwewill view the partition

function as a thermal trace. In order to compare, let us write the answer for the torus

117



4. State-operator correspondence for nonlocal operators

partition function from the path integral. To that end, we now take X to be a torus

X D T2
£

��D C
ı
.Z ˚ £Z/, with £ in the upper-half plane, £ 2 H. Using the standard

homology basis of one-cycles of the torus in terms of the A- and B-cycles, we have

that

G.1/ D 1

Im £

�
1 Re £

Re £ j£j2
�
: (4.3.12)

The harmonic zero-forms are simply the constant functions, so G.0/ D Im £. Finally,

on the torus it is straightforward to calculate, using zeta-function regularisation that

det 040 D .Im £/2j˜.£/j2; (4.3.13)

where ˜.£/ is the Dedekind eta function. Altogether the torus partition function

reads

Z
�
T2
£

�
D
s

2�

g2 Im £

1

j˜.£/j2
X

n;m2Z

exp

 
�1
2

�
2�

g

�2 jnC £mj2
Im £

!
: (4.3.14)

Finally, we can use the Poisson summation formula on the n sum to obtain

Z
�
T2
£

�
D ‚.q; g/

j˜.q/j2
; (4.3.15)

where

‚.q; g/ ��D
X

n;m2Z

q
�
2

�
m
g C ng

2�

�2

q
�
2

�
m
g � ng

2�

�2

; (4.3.16)

is the Siegel–Narain theta function, with q ��D e2�i£ being the nome, q its complex

conjugate, and we wrote the eta function as a function of the nome, instead of the

complex structure.

The view from the algebra

Let us now match (4.3.15), starting from the Kac–Moody algebra, (4.2.26) and con-

sidering its representations. For simplicity we will discuss the quantisation on a

rectangular torus, with complex structure, £ D iˇ. We will reinstate the generic

complex structure at the end of the section. The Hamiltonian of the free scalar, on

the spatial S1, takes the Sugawara form

H D LC
0 CEC

0 C L�
0 CE�

0 ; (4.3.17)

with

L˙
0 D 1

k

X

n⩾0

J˙
�n J

˙
n and E˙

0 D 1

2
—.�1/ D � 1

24
; (4.3.18)

where —.s/ is the Riemann zeta function, regularising the zero-point energy, and

k, the Kac–Moody level, is g2

2
. With this Hamiltonian, the non-zero-modes of the
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4.3. Two-dimensional CFTs and the local state-operator correspondence

Kac–Moody algebra, J˙
n¤0 are just ladder operators, as can be seen by computing

their commutation relations with the Hamiltonian. The negative modes are creation

operators, while the positive modes annihilation operators:

�
H;J˙

�n

�
D nJ˙

�n n > 0; (4.3.19)
�
H;J˙

n

�
D �nJ˙

n n > 0: (4.3.20)

The zero-modes, J˙
0 , commute among themselves and with the Hamiltonian, and

they label the various �xed momenutm and winding sectors. Their eigenstates,

J˙
0

ˇ̌
jC; j�˛ D j˙ ˇ̌jC; j�˛ ; (4.3.21)

are primary states, or in other words, the ground state on each sector:

J˙
n

ˇ̌
jC; j�˛ D 0; n > 0: (4.3.22)

To obtain the charges, j˙, we simply have to invoke momentum and winding �ux

quantisation on the spatial S1, i.e.
Z

S1

f � 2 2�Z and

Z

S1

Lf � 2 2�Z; (4.3.23)

where Lf � is the widning, or magnetic dual of f � , de�ned as Lf � D �i
k ? f

� .13 With

this, we immediately get, with a convenient overall normalisation of the current:

j˙ D 1p
8�

�
2�m˙ g2n

�
; n;m 2 Z: (4.3.24)

The ground states are, then, labelled by two integers, n and m, and we will denote

them as ˇ̌
jC; j�˛ D�� jn;mi : (4.3.25)

Over each of the two families of ground states sits a Verma module, V˙
n;m, generated

by acting with the creation operators J˙
�n. To each Verma module corresponds a

character,

ch
V

˙
n;m
Œq� ��D tr

V
˙
n;m

qH : (4.3.26)

Having the explicit form of the Hamiltonian, and the algebra in our disposal, it is

trivial task to compute the characters. They read:

ch
V

˙
n;m
Œq� D qh

˙� 1
24

0
@

1Y

nD1

1X

NnD0
qnNn

1
A D qh

˙

˜.q/
; (4.3.27)

13The factor of i is so that the action, written in the dual frame is positive semide�nite in Euclidean

signature.
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4. State-operator correspondence for nonlocal operators

where we recognise the form of the Dedekind eta function, upon performing the

geometric sum. In the above, h˙ D
�
j˙�2, is the eigenvalue of L˙

0 acting on the

ground states.

On each sector we have left- and right-moving states, i.e. a generic state on top of

jn;mi lives in VC
n;m ˝ V�

n;m. The full Hilbert space of the theory is, then, a direct sum

over all possible sectors:

HS1 D
M

n;m2Z

VC
n;m ˝ V�

n;m: (4.3.28)

A generic state of this Hilbert space is

ˇ̌
n;mI

˚
NC

n ; N
�
m ; � � �

	˛ ��D
�
JC

�n

�NC
n
�
J�

�n

�N�
m � � � jn;mi : (4.3.29)

As such, we see that taking a trace, i.e. computing an extended character of all the

Verma modules, lands us on the torus partition function, (4.3.15) (with £ D iˇ):

chŒq� ��D
X

n;m2Z

ch
V

C
n;m˝V

�
n;m
Œq� D 1

j˜.q/j2
X

n;m2Z

q�n;m ; (4.3.30)

with

�n;m D hC C h� D g2n2

4�
C m2�

g2
: (4.3.31)

Reinstating the generic complex structure, £ 2 H, we obtain the well-appreciated,

yet remarkable result:

Z
�
T2
£

�
D chŒq� with q D e2�i£: (4.3.32)

4.3.2 The state-operator correspondence

As a preparatory exercise for the four-dimensional story of the later sections, we will

review here the well-established state-operator correspondence for local operators.

In particular we will show that the states in HS1 , as in (4.3.28), can be prepared by a

path integral, with insertions of local operators, on the disc, D2, whose boundary is

the spatial S1. We will do so for the compact scalar, where both sides of the state

operator correspondence can be explicitly identi�ed and checked. Moreover, a crucial

role is played by the Kac–Moody algebra of the compact scalar, organising the local

operators into primaries and descendants. This will serve as an analogy for the later

sections, where, as we will see, the ideas will be similar.

The general strategy towards a state-operator map for local operators (illustrated in

�gure 4.1), common to all CFTs is the following. We take a spherical slice (here S1),

of the Euclidean cylinder (here R � S1) at t D 0. Each state on this slice is prepared
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4.3. Two-dimensional CFTs and the local state-operator correspondence

by a choice of boundary conditions at t D �1. Mapping the Euclidean cylinder

to the disc (rather, d -ball in higher dimensions) with a Weyl transformation, this

choice gets mapped to a boundary condition at the centre of the disc.14 This boundary

condition can be satis�ed by the insertion of a local operator. Then the path integral

on the disc, with this operator insertion prepares the state that we are after. More

precisely, the path integral on the disc, with boundary conditions ˆ
�
@D2

�
D ˆ@

(where ˆ denotes all dynamical �elds) and an insertion OŒˆ.0/� at the centre of the

disc produces a wavefunctional:

‰O Œˆ@� D
Z

CŒˆ@�

Dˆ e�SŒˆ� OŒˆ.0/�; (4.3.33)

where C Œˆ@� denotes an appropriate functional space over the disc, with boundary

conditions ˆ@. We will write the state produced by O as

jOi D
Z

CŒ � �
Dˆ e�SŒˆ� OŒˆ.0/�; (4.3.34)

to indicate that we need to provide a boundary condition to get out a number.

Here we note that it would be much easier to work in complex coordinates, and

exploit the power of Cauchy’s theorem, as is commonly done in two-dimensional

conformal �eld theories. We will not do so, however, as a preparatory exercise for

the four-dimensional case where we cannot a�ord that luxury. For a discussion in a

very similar vein, written in complex variables see e.g. [296].

Before discussing the states and the operators, it will be useful to obtain an integral

expression for the ladder operators, in terms of the currents, that we can insert at an

intermediate point in the path integral. To that end, let i
S

1
r

W S1r ,! D2 be the map

embedding a circle of radius r into the disc. The ladder operators can be expressed

as:

J˙
m D �irmC1

p
2�

Z

S
1
r

e˙im� i�
S

1
r
J˙; (4.3.35)

where i�
S

1
r

J˙ is the pullback of J˙ 2 �2
�
D2
�
along the map i

S
1
r
. This is arrived at

by expanding J˙ in Fourier modes, solving the closedness condition, dJ˙ D 0 and

then inverting the Fourier transform. As a sanity check, we can verify that J˙
m , given

by (4.3.35), obey the Kac–Moody algebra, (4.2.26):

�
J˙
n ; J

˙
m

�
D kn ınCm;0; (4.3.36)

while the mixed commutators are zero.

14We will parametrise the disc by a radial coordinate, r 2 Œ0; 1�, and an angle � 2 Œ0; 2�/, i.e.

ds2

D2 D dr2 C r2 d�2.
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O.0/

HSd�1 3 jOi

R�Sd�1

R
d

Figure 4.1: The state-operator correspondence. Any state on Sd�1 can be prepared by a path
integral on Bd with a local operator inserted in the centre. The state then evolves in time on the
Lorentzian cylinder R � Sd�1.

Let us start by discussing the ground states, jn;mi. They are prepared by inserting a

vertex operator, Vn;m, of momentum n and winding m:

Vn;m.x/ ��D exp
�
in�.x/C im L�.x/

�
; (4.3.37)

where x is a point on the disc and L� is the winding dual of �, i.e. the �eld whose

curvature is Lf � , as de�ned around (4.3.23). The states are then obtained as:

jn;mi D
Z

CŒ � �
D� e�SŒ�� Vn;m.0/: (4.3.38)

In this case, C Œ � � is the space of smooth functions on the disc. To verify that these

are indeed the ground states, it su�ces to show that they are indeed annihilated by

the lowering operators, J˙
n>0. To illustrate the argument, let us �rst focus on the

state j0; 0i, which is the zero-momentum, zero-winding state, corresponding to the

identity operator. There we have

J˙
n j0; 0i � lim

r!0

Z

CŒ � �
D� e�SŒ��

�Z

S
1
r

rnC1e˙in� i�
S

1
r
J˙

�
; (4.3.39)

where the twiddle indicates that we are ignoring purely numerical factors. Since we

are integrating over smooth functions, and J˙ D P˙f � , the integrand is smooth
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4.3. Two-dimensional CFTs and the local state-operator correspondence

inside the disc, for n ⩾ 0. Therefore, we have that

J˙
n j0; 0i D 0; 8n > 0: (4.3.40)

In this case, we also have that J˙
0 j0; 0i D 0, as j0; 0i is a state of zero momentum

and winding. To show that the states jn;mi are annihilated by all positive modes the

argument is essentially the same, save for the fact that before assessing the integrand

one needs to look at the operator product between i�
S

1
r

J˙ and Vn;m. Since J
˙ is a

current and Vn;m is a primary operator, their OPE goes like 1
r
. Therefore, jn;mi are

annihilated by all positive modes, but not by the zero-modes, as expected.

We have, so far, argued, that (4.3.38) produces all the highest-weight states, of our

Verma module discussion in subsection 4.3.1. To complete the picture, what remains

is a construction of the descendants. It su�ces to consider the states
ˇ̌
n;mI

˚
1˙
n

	˛
; a

generic state is straightforward to arrive at, afterwards. The claim is, then, that these

states are prepared by:

ˇ̌
n;mI

˚
1˙
n

	˛
D
Z

CŒ � �
D� e�SŒ�� @n˙� Vn;m.0/; n > 0; (4.3.41)

where @˙ is the “(anti-)self-dual derivative”15 and @n˙�Vn;m.0/ denotes the operator
obtained upon performing the OPE of @n˙� with Vn;m and placing it at 0. To verify the

claim (4.3.41), observe what happens if we act with a lowering operator. As before,

we treat the descendants of the state dual to the identity operator, j0; 0i, �rst.

J˙
m

ˇ̌
0; 0I

˚
1˙
n

	˛
� lim
r!0

Z

CŒ � �
D� e�SŒ��

�Z

S
1
r

d� rmC1e˙i.mC1/� @˙�.r; �/ @n˙�.0/
�
;

(4.3.42)

where we have also used the fact that, for all that matters here, i�
S

1
r

J˙ is proportional

to e˙i�@˙� d� . We recognise the insertion as the .n� 1/-th (anti-)self-dual derivative

of a current. So we can invoke the current-current OPE [285], to get

@˙�.r; �/ @n˙�.0/ � knŠ

rnC1 e�i.nC1/� : (4.3.43)

This, in turn, implies:

J˙
m

ˇ̌
0; 0I

˚
1˙
n

	˛
� lim
r!0

Z

CŒ � �
D� e�SŒ��

�Z 2�

0

d� rm�ne˙i.m�n/�

�
� k ım;n j0; 0i :

(4.3.44)

15Intuitively @C is just the holomorphic derivative and @� the antiholomorphic derivative. If we insist

on avoiding complex analysis language we can also de�ne them as follows. First de�ne bases of the

(anti-)self-dual one-forms, dx˙ ��D ei� .dr ˙ ir d�/. Then dualise these to vectors �elds, as .dx˙/] and

take an interior product with the exterior derivative, so @˙
��D

�
dx˙

�]

⌟ d.
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4. State-operator correspondence for nonlocal operators

The factor of n in the Kac–Moody algebra (4.2.26) is absorbed into the proportionality

symbol, and is related to a rescaling of the operator insertion by 1
.n�1/Š . However, we

kept track of the Kac–Moody level, since it stems from the OPE of the currents.

Inserting back Vn;m, it is now a matter of Wick contractions and restating the above

arguments to show that

J˙
m

ˇ̌
n;mI

˚
1˙
n

	˛
D km ım;n jn;mi : (4.3.45)

This concludes the proof that the operator Vn;mŒ�� @
n
˙� prepares the state

ˇ̌
n;mI

˚
1˙
n

	˛
.

We therefore have all the ingredients to write down the generic state. It is given by:

ˇ̌
n;mI

˚
NC

n ; N
�
m ; � � �

	˛
D
Z

CŒ � �
D� e�SŒ��

��
@nC�

�NC
n
�
@m��

�N�
m � � �Vn;m.0/

�
:

(4.3.46)

4.4 Four-dimensional Maxwell theory

Having dealt with the two-dimensional case in su�cient detail we now turn to the

main focus of this chapter: 4d and the nonlocal state operator correspondence. We

will illustrate this in four dimensions, although the results extend to generic even

dimensions easily. We therefore, consider a unitary four-dimensional CFT, with a

U.1/Œ1� symmetry. As we have explained in section 4.2, this theory has necessarily a

free photon description. We will, therefore focus on free Maxwell theory. We will

mimick the structure of section 4.3: we will �rst discuss the path integral on arbitrary

compact manifolds; then we will use the p D 1 form of the current algebra (4.2.24),

study its representations and show that they explicitly reproduce the path integral

expressions. This will then lead us to the nonlocal state-operator correspondence.

4.4.1 The Maxwell path integral

We consider Maxwell theory on a closed, compact four-dimensional manifold X .16

Since we are interested in topologically non-trivial manifolds we must also allow for

a theta angle. The action is:

SŒa� ��D
1

2g2

Z

X

f ^ ?f � i�

16� 2

Z

X

f ^ f; (4.4.1)

where the closed two-form f is the curvature of a U.1/ gauge �eld, a 2 �1.X/. We

will often abbreviate the �rst term as kf k2, where the norm iswith respect to the usual

16We will takeX to be torsion-free, throughout. All results can be generalised to manifolds with torsion,

following, for example, the arguments in [220].
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4.4. Four-dimensional Maxwell theory

Hodge inner-product. Hodge decomposition instructs us to write f D fharm C da,

where fharm is a harmonic representative of the second cohomology class of X ,

chosen uniquely to be orthogonal to da in the Hodge inner product. Moreover, the

theta term does not see the topologically trivial piece, so the action reads, with this

decomposition

SŒa� D 1

2g2
kfharmk2 � i�

16� 2

Z

X

fharm ^ fharm
„ ƒ‚ …

� �D

SinstŒfharm�

C 1

2g2
kdak2

„ ƒ‚ …

� �D

SoscŒa�

: (4.4.2)

With a theta angle turned on, it is useful to introduce the complexi�ed coupling

constant:

t ��D
�

4�
C 2�i

g2
: (4.4.3)

We refrain from using the more common £ for the complexi�ed coupling constant

to avoid confusion with the two dimensional case, where £ represents the complex

structure of the base space. Sometimes we will use

t˙ ��D Re t ˙ i Im t; (4.4.4)

to write some of our formulas more compactly.

Passing to the path integral, the partition function of Maxwell theory splits into an

instanton contribution and an oscillator contribution

ZŒX I t� D
Z

DfharmDa

volG
exp.�SinstŒfharm� � SoscŒa�/ D ZinstŒX I t�ZoscŒX I t�; (4.4.5)

where G is the group of gauge transformations; shifts of a by a �at connection. We

will compute each piece separately and discuss the respective integration measures

in detail.

Let us �rst focus on the oscillator part. By Hodge decomposition, and upon employing

the Faddeev–Popov procedure, we can gauge-�x a to be coclosed. The Faddeev-Popov

ghosts are, in this case, zero-forms with fermionic coe�cients. The oscillator part of

the action becomes then

SoscŒa� D 1

2g2
ha;□1 ai ; (4.4.6)

where □p ��D 4p

ˇ̌
ker d� , is the transversal Laplacian, i.e. the Hodge Laplacian, 4p D

d�d C dd�, restricted to coclosed forms. Here we can expand the action in terms of

eigen-one-forms of the transversal Laplacian,

a D
X

�2specX .□1/

c�a�: (4.4.7)
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4. State-operator correspondence for nonlocal operators

In the above, � D 0, and a0 collects all the zero-mode spectrum of the Laplacian,

□1a0 D 0. We can shift all the g-dependence on the zero-mode path integral by

normalising the measure as

Da ��D
Y

�2specX .□1/

dc�p
2� g

: (4.4.8)

Both the gauge �eld and the ghost path integrals are Gaussian and can be evaluated

directly to give

ZoscŒX I t� D
vol
�
H1.X I Z/

�

vol.H0.X I Z//

�
det 0□0
det 0□1

�1=2
: (4.4.9)

Using the specrtral properties of the Hodge Laplacian, we can rewrite this in terms

of the full Laplacian as

ZoscŒX I t� D
vol
�
H1.X I Z/

�

vol.H0.X I Z//

det 040p
det 041

: (4.4.10)

In the above, vol
�
H1.X I Z/

�
, and vol

�
H0.X I Z/

�
is the zero-mode volume of the

gauge �elds and the ghosts, respectively, computed with the measure (4.4.8). To

see that, note that the zero-modes of 41 are precisely �at connections, or in other

words elements of H1.X/. Since we identify two connections under large gauge

transformations (these are packaged in the instanton sum), we must look at H1.X I Z/.

We have assumed that the manifold, X , is torsion-free and thus H1.X I Z/ Š Zb1.X/.

We can therefore use the topological basis of the harmonic one-forms,
n
�
.1/
i

ob1.X/

iD1
,

de�ned similarly as in (4.3.5) to write

h
G.1/

i
ij

��D
Z

X

�
.1/
i ^ ?� .1/j : (4.4.11)

With that we can integrate over H1.X I Z/ with the measure (4.4.8), to get

vol
�
H1.X I Z/

�
D det

�
2�

g2
G.1/

�1=2
: (4.4.12)

For the ghosts we have similarly

vol
�
H0.X I Z/

�
D det

�
2�

g2
G.0/

�1=2
; (4.4.13)

where G.0/ is de�ned analogously by the topological basis of H0.X I Z/. If b1.X/ D 0,

the Laplacian □1 has no zero-modes and hence we compute the full determinant

det□1.
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4.4. Four-dimensional Maxwell theory

It is convenient to disentangle base-space and target-space quantities to keep track

of the modular properties and of electromagnetic duality separately. The only place

where g appears is in the zero-mode volumes and therefore we have that

ZoscŒX I t� D
�
2�

g2

�1
2
.b1.X/�b0.X//

 
detG.1/

detG.0/

!1=2
det 040p
det 041

: (4.4.14)

For the rest, we are only interested connected manifolds, therefore b0.X/ D 1 and

detG.0/ D vol.X/. Furthermore, note that the prefactor is just Im t. So, all in all, the

oscillator piece reads, �nally

ZoscŒX I t� D .Im t/
1
2
.b1.X/�1/

 
detG.1/

vol.X/

!1=2
det 040p
det 041

: (4.4.15)

We now turn to the instanton contribution. Similarly as in section 4.3, fharm is

integrally quantised on two-cycles,
Z

†2

fharm 2 2�Z; (4.4.16)

so we can expand fharm D 2�ni�
.2/
i with ni 2 Z, and

n
�
.2/
i

ob2.X/

iD1
is the topological

basis of hamronic two-forms. The �rst term of the instanton piece of the action

becomes, then:

1

2g2
kfharmk2 D 2�2

g2
ni
h
G.2/

i
ij
nj; ni 2 Z; (4.4.17)

where G.2/, is de�ned similarly as in (4.4.11). For the theta term we make use of the

intersection bilinear on X :

Qij ��D
Z

X

�
.2/
i ^ � .2/j ; (4.4.18)

to write
i�

16� 2

Z

X

fharm ^ fharm D i�

4
ni Qij n

j: (4.4.19)

Finally, the measure, Dfharm, becomes a sum over (vectors of) integers, n 2 Zb2.X/.

Putting it all together, the instanton contribution reads

ZinstŒX I t� D
X

n2Zb2.X/

exp.� i n � B.t/ � n/; (4.4.20)

where we have de�ned, for conciseness, the matrix

B.t/ ��D Re t Q C i Im t G.2/ D 2� i

g2
G.2/ C �

4�
Q: (4.4.21)
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4. State-operator correspondence for nonlocal operators

Combining the oscillator and the instanton contributionswe have in total the partition

function of free Maxwell theory on a general, torsion-free, connected, closed four-

manifold X :

ZŒX I t� D .Im t/
1
2
.b1.X/�1/

 
detG.1/

vol.X/

!1=2
det 040p
det 041

X

n2Zb2.X/

exp.� i n � B.t/ � n/:

(4.4.22)

SL.2 ; Z/ duality

Before moving on, we brie�y comment on some of the duality properties of this

theory. It is well-known, that Maxwell theory enjoys an SL.2;Z/ duality group,

generated by S-duality, t 7−! �1=t and T-duality, t 7−! t C 1. It is, however, also

known that the SL.2;Z/ duality group is a�icted with an anomaly [250, 297, 298].

On a generic manifold, one then either needs to sacri�ce one of the two generators,

or couple the system to a �ve-dimensional SPT phase, carrying the duality anomaly

(as is done, e.g. in [298]). In this section we calculate an instantiation of the duality

anomaly using the form (4.4.22), and discuss ways to guarantee that either S- or

T-duality holds on the nose. We also show that, in fact, the manifolds required to

obtain our state-operator map, are free from the duality anomaly.

Key to the duality properties, will be a version of the Poisson summation formula:

X

n2ZN

e�n�A�n D �N=2p
detA

X

n2ZN

e��2n�A�1�n: (4.4.23)

The form (4.4.22) is particularly handy to perform Poisson resummation. In particular,

we can check that �Q>B.�1=t/Q> is the inverse of B.t/, and the partition function

can be expressed as:

ZŒX I t� D
 
.Im t/.b1.X/�1/

det.�iB.t//

!1=2 
detG.1/

vol.X/

!1=2
det 040p
det 041

�

�
X

n2Zb2.X/

exp.� i n � B.�1=t/ � n/: (4.4.24)

Let us now make some simplifying assumptions for the rest of the calculation. Since

H2.X/ is a middle cohomology group for a four-dimensional manifold its elements

can be decomposed into self-dual and anti-self-dual pieces. The dimensions of the

(anti)-self-dual parts of the cohomology group are b˙
2 .X/, such that b

C
2 .X/Cb�

2 .X/ D
b2.X/ and bC

2 .X/ � b�
2 .X/ D � , with � being the Hirzebruch signature of X . For

all the manifolds that we are interested in (namely products of spheres of di�erent

dimensions), � D 0, therefore bC
2 .X/ D b�

2 .X/ D 1
2
b2.X/. We will assume this for

the following, although it is straightforward to generalise the discussion to manifolds

with � ¤ 0.
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4.4. Four-dimensional Maxwell theory

The determinant of B.t/ can be calculated to be det.�iB.t// D jtjb2.X/. This follows

immediately from the fact that the eigenvalues of G.1/Q�1 are ˙1, with multiplicity
1
2
b2.X/. Furthermore using Im.�1=t/ D jtj�2 Im.t/, we get the S-dual form of the

partition function:

Z

�
X I �1

t

�
D jtj 1

2¦.X/ZŒX I t�; (4.4.25)

where ¦.X/ is the Euler characteristic of X . Moreover, we can immediately see that

if Q is even

ZŒX I t C 1� D ZŒX I t�; (4.4.26)

since its e�ect on (4.4.22) is to shift the exponent by 2� � integer, whereas if Q is

odd, ZŒX I t C 2� D ZŒX I t�.17 (4.4.25) and (4.4.26), correspond to the action of the

S and T generators of the SL.2;Z/ duality group. In its current form, the partition

function of Maxwell theory favours T-duality, while the S-duality transformation,

seemingly su�ers from the aforementioned anomaly.

However, this is deceiving. Namely, we can add to the action a counterterm of the

form

Sct D 1

32�2

Z

X

f .t/ �abcdRab ^Rcd D f .t/ ¦.X/; (4.4.27)

where the last equation is only true if f .t/ does not depend on X . Choosing

f .t/D�1
4
log Im t, the partition function gets modi�ed to

zZŒX I t� ��D .Im t/
1
4¦.X/ZŒX I t�: (4.4.28)

It is straightforward to check that indeed, both transformations are healthy, and

zZŒX I 
 � t� D zZŒX I t�; 8
 2 SL.2;Z/: (4.4.29)

Written in terms of (4.4.22), the duality-corrected version of the partition function

reads

zZŒX I t� D .Im t/
b2.X/

4

�
detG1

vol.X/

�1=2 det 040p
det 041

X

n2Zb2.X/

exp

�
�i

2
n � B.t/ � n

�
:

(4.4.30)

Finally, wemention for completeness, that for manifolds of non-vanishing Hirzebruch

signature, absorbing the S-duality non-invariance into a counterterm is not for free.

Instead it is now the T-transformation that acts non-trivially [297]:

zZŒX I t C 1� D e� 1
3�i� zZŒX I t�: (4.4.31)

17This can be corrected for, by adding an extra, topological term, to the action, as in [297]
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4. State-operator correspondence for nonlocal operators

Thus in those cases the SL.2;Z/ duality group indeed su�ers from an anomaly. In

what follows we will drop the tilde from the partition function, to simplify the

notation. In most cases it will not even make a di�erence, since we will be mainly

interested in manifolds with a circle factor where the tilded and the untilded partition

functions coincide.

4.4.2 Partition functions on S1
� †

Of special importance to our discussion are manifolds of the formX D S1�†, where
† is some connected, closed, torsion-free, orientable three-manifold. These are the

types of manifolds on which the partition function admits a trace interpretation and

the radius ˇ of the circle is the inverse temperature. We will therefore specialise

the above discussion to those manifolds and obtain more explicit formulas for the

partition functions.

We will make frequent use of various topological characteristics of such manifolds,

so we outline those here. First of all, note that for these manifolds, the Künneth

formula and Poincaré duality, imply that that all their Betti numbers are determined

by just one of them. Namely:

b0
�
S1 �†

�
D b4

�
S1 �†

�
D 1

b1
�
S1 �†

�
D b3

�
S1 �†

�
D 1C b1.†/ D 1C b2.†/

b2
�
S1 �†

�
D 2b1.†/ D 2b2.†/:

(4.4.32)

The topological basis of harmonic one-forms and two-forms on S1 � † will then

be induced by the respective basis on †. For the one-forms, a basis is given by the

unique normalised harmonic one-form on the circle, d�
2�ˇ

(in local coordinates), and

the topological basis of harmonic one-forms on †. As such, the Gram matrix of this

basis becomes:

G.1/ D diag

�
vol.†/

2�ˇ
; 2�ˇG

.1/
†

�
; (4.4.33)

where G
.1/
† is the Gram matrix associated with the topological basis on †. For the

two-forms, we have similarly

G.2/ D diag
�
ˇE; .ˇE/�1

�
; (4.4.34)

where E D 2�G
.2/
† and we have also used Poincaré duality to bring it in this,

symmetric, form. As indicative from the choice of notation, the matrix E will bear

the interpretation of an energy, namely that carried by Wilson and ’t Hooft loops

placed on various spatial one-cycles. Finally, the intersection matrix is given by

Q D
 

1b1.†/

1b1.†/

!
: (4.4.35)
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4.4. Four-dimensional Maxwell theory

With this in mind, we now go to compute the partition function on X D S1
ˇ

� †,
starting from (4.4.31). First, the instanton contribution, (4.4.20), is

Zinst

�
S1 �†I t

�
D

X

n;m2Zb1.†/

exp

�
�i
�
n> m>�

�
i Im t ˇE Re t 1

Re t 1 i Im t .ˇE/�1

��
n

m

��
;

(4.4.36)

which becomes

Zinst

�
S1 �†I t

�
D .Im t/�

b1.†/

2 ˇ
b1.†/

2 .detE/
1
2

X

n;m2Zb1.†/

q�n;m ; (4.4.37)

after a Poisson resummation. In the above we have de�ned, q ��D e�ˇ , and

�n;m ��D
1

2

.n C tm/�E.n C tm/

Im t
: (4.4.38)

Adding to that the oscillator contribution, (4.4.10), and using that G
.1/
† D

h
G
.2/
†

i�1
,

by Poincaré duality, we get in total

Z
�
S1 �†I t

�
D ˇb1.†/�1 det 040p

det 041

X

n;m2Zb1.†/

q�n;m : (4.4.39)

As far as the determinants are of concern, we have the following:

spec
�
40;S

1 �†
�

D
�
.2�/2k2

ˇ2
C �n0

; k 2 Z;n0 2 N0

�
; (4.4.40)

where �n0
are the eigenvalues of the scalar laplacian on † and N0 is a countable

index set. It is then straightforward to calculate, upon zeta-function regularising the

determinants and employing Euler’s product formula for the hyperbolic sine:

det 0
S1�†40 D ˇ2b0.†/

Y

n02N
�
0

sinh2
�
1

2
ˇ
p
�n0

�
; (4.4.41)

where N �
0

��D N0 n
˚
n0
ˇ̌
�n0

D 0
	
. Similarly, the spectrum of the one-form Laplacian

is

spec
�
41;S

1 �†
�

D
�
.2�/2n2

ˇ2
C �n1

„ ƒ‚ …

� �D

�n;n1

; n 2 Z;n1 2 N1

�

[
�
.2�/2k2

ˇ2
C �n0

„ ƒ‚ …

� �D

�k;n0

; k 2 Z;n0 2 N0

�
;

(4.4.42)
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4. State-operator correspondence for nonlocal operators

with �n1
being the eigenvalues of 41 on † and N1 a countable index set, counting

the eignevalues of the one-form Hodge Laplacian on †. The determinant of 41 is

then:

det 0
S1�†41 D ˇ2.b1.†/Cb0.†//

2
4 Y

n12N
�
1

sinh2
�
1

2
ˇ
p
�n1

�3
5�

�

2
4 Y

n02N
�
0

sinh2
�
1

2
ˇ
p
�n0

�3
5; (4.4.43)

with N �
1 de�ned analogously as N �

0 . Therefore (recall b0.†/ D 1)

det 040p
det 041

D ˇ1�b1.†/
Y

n02N
�
0

n12N
�
1

sinh
�
1
2
ˇ
p
�n0

�

sinh
�
1
2
ˇ
p
�n1

�

D ˇ1�b1.†/

2
4 Y

n2N
�
?

q� 1
2

p
�n
�
1 � q

p
�n
�
3
5

�1

; (4.4.44)

where �n are the eigenvalues of the transversal Laplacian on one-forms on†, indexed

by n 2 N?, and N �
? collects the non-zero modes. To reach the last equality we have

used the spectral properties of the Hodge Laplacian. We will give this quantity a

special name:

˜†.q/ ��D

2
4 Y

n2N
�
?

q� 1
2

p
�n
�
1 � q

p
�n
�
3
5
1=2

; (4.4.45)

as it serves as a four-dimensional generalisation of the Dedekind eta function. Putting

everything together, the partition function takes the very simple form:

Z
�
S1 �†I t

�
D ‚†.q; t/

˜†.q/2
; (4.4.46)

where

‚†.q; t/ ��D
X

n;m2Zb1.†/

q�n;m ; (4.4.47)

is a generalisation of the Siegel–Narain theta function (that depends on the topology

of†). Observe that this form of the partition function exhibits a remarkable similarity

with the two-dimensional formulas of section 4.3 (in particular with (4.3.30))! We

will see, in the following section, that this partition function can, too, be interpreted

as an extended character; an extended character of the higher-dimensional current

algebras of section 4.2.
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4.4. Four-dimensional Maxwell theory

4.4.3 Current algebra and the spectrum

We now shift gears from the path integral and turn to the current algebras of sec-

tion 4.2. In keeping with the previous section, we will focus on the p D 1 incarnation

of the current algebra (4.2.24) and expand it in modes, to obtain the algebra of the

individual modes. This will allow us to construct representations of the current

algebra, and will lead, eventually, to identifying the exact Hilbert space of Maxwell

theory on any compact spatial slice in terms of the representations of (4.2.24). Finally,

we will compute the characters of the aforementioned representations and show that

they reproduce exactly the path integral expressions for the partition functions of

Maxwell theory.

The starting point is the current algebra (4.2.27):18

h
Q˙
ƒ1
;Q�

ƒ2

i
†

D ˙k

Z

†

ƒ�
1 ^ dƒ˙

2 ; (4.4.48)

where we remind the reader the de�nition of the codimension-one charges:

Q˙
ƒŒ†� ��D

Z

†

J˙ ^ƒ�; (4.4.49)

with J˙ being the self- and anti-self-dual conserved two-form currents, (4.2.14), and

ƒ� the chiral and anti-chiral one-forms, (4.2.17), while the (not necessarily integer)

level k is related to the coupling constant of Maxwell theory as

k D g2

2
D �

Im t
: (4.4.50)

The strategy to obtain a mode algebra is to expand the (pullbacks on † of) the forms

J˙ and ƒ� in terms of a suitable basis. Such a basis is given by the eigenforms of

the Hodge Laplacian, 4p . However, since J
˙ is closed, it will only have overlap with

the longitudinal eigenform components of the two-form Hodge Laplacian. Relatedly,

due to the gauge invariance in de�ning the charges, up to a shift of ƒ� by a closed

form, ƒ� has overlap only with the transversal eigenforms of the one-form Hodge

Laplacian. As such, we consider the (orthonormalised) basis of transversal one-forms

on †, given as

B1
?.†/ ��D

˚
�n 2 �1.†/

ˇ̌
□1�n D �n�n

	
n2N?

; (4.4.51)

with □1 and N? de�ned like in subsection 4.4.1. It is easy to see, that a basis for the

longitudinal two-forms is given in terms of ?†�n:

B2
k .†/ ��D

˚
?†�n 2 �2.†/

ˇ̌
□1�n D �n�n

	
n2N?

: (4.4.52)

18Having allowed for a topological theta term, the phase space variables that led to this algebra are

slightly di�erent. It is straightforward, however, to repeat the calculation with a theta term to show that

the algebra is unchanged.
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4. State-operator correspondence for nonlocal operators

Therefore we expand:

i�†ƒ
� D

X

n2N?

ƒ�
n �n; (4.4.53)

i�†J
˙ D

X

n2N?

J˙
n ?† �n: (4.4.54)

In this basis, the current modes de�ne individually conserved currents. In other

words:

Q˙
n

��D Q˙
ƒ

�
n �n

D J˙
n : (4.4.55)

These current, or charge modes obey the following algebra, folowing from (4.4.48):

�
Q˙

n ;Q
�
m

�
D ˙k h�n; ? d�mi† : (4.4.56)

There exists a basis which diagonalises the above mode algebra. Let us focus, mo-

mentarily, on the non-zero part of the spectrum. On a three-dimensional closed

manifold, □1 is the square of another self-adjoint operator, the Beltrami operator: ?d.

The spectrum of ?d consists of ˙
p
�n. The eigen-one-forms of ?d, and their Hodge

stars provide bases for coclosed one-, and closed two-forms respectively, which

simultanesously diagonalise□1 and□2 ��D 42

ˇ̌
ker d

. These two bases and can be used

to diagonalise (4.4.56). While, generically, the spectrum of □1 is simple, meaning

that there are no degeneracies of eigenvalues [299], for many of the physical applic-

ations we have in mind, and more importantly, in the case of this chapter, for the

state-operator correspondence of section 4.5, we are interested in products of spheres.

In such cases the spectrum of □1 is actually twofold degenerate (cf. appendix C.1).

Equivalently, both signs of ˙
p
�n appear in the spectrum of ?d. We proceed in the

main text with this assumption, in order to connect smoothly with section 4.5, and

we treat the generic case in appendix C.2, where we show that the results of this

section remain unchanged. With this disclaimer, we proceed with the basis:

V1
?.†/ D

n
�0i; �n� 2 �1.†/

ˇ̌
ˇ ?d�n� D �

p
�n�n�

o�D˙

n2N
�
?

; (4.4.57)

and its Hodge dual. In the above we have also included all the zero-modes of □1, �0i,

induced by those of 41. The number of zero-modes is dimker41 D b1.†/ D b2.†/.

Moreover, we have taken this basis to be orthonormalised. In this basis, i�†J
˙ and
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i�†ƒ
� read

i�†J
˙ D

b2.†/X

iD1
J˙
0i ?† �0i C

X

n2N
�
?

�D˙

J˙
n� ?† �n� ; (4.4.58)

i�†ƒ
� D

b1.†/X

iD1
ƒ�
0i�0i C

X

n2N
�
?

�D˙

ƒ�
n� ?† �n� ; (4.4.59)

where N �
? denotes the non-zero part of the spectrum. As before:

Q˙
0i

��D Q˙
ƒ

�
0i�0i

D J˙
0i ; and (4.4.60)

Qn� ��D Q˙
ƒ

�
n��n�

D J˙
n� : (4.4.61)

The algebra of the modes Q˙
n� is

�
Q˙

n� ;Q
�
m�

�
D ˙k �

p
�nınmı�� : (4.4.62)

This is a direct four-dimensional analogue of the two-dimensionalbu.1/ �bu.1/ Kac–
Moody algebra (4.2.26). Before moving on, let us note that we can rede�ne the modes

as19

An˙ ��D Q˙
n˙; and A

�
n˙ ��D Q�

n˙: (4.4.63)

This rede�nition reduces the current algebra to a collection of harmonic oscillators:
h
An� ;A

�
m�

i
D k

p
�nınmı�� ; (4.4.64)

and makes the quantisation of Maxwell theory on arbitrary spatial topology an

exercise in quantum mechanics.

We now proceed with quantisation. The Hamiltonian on † is simply

H† D 1

2g2

�
kEk2† C kBk2†

�
; (4.4.65)

where the electric and magnetic �elds, E and B , are de�ned in terms of pullbacks on

†, of ?f and f , respectively, in the usual fashion. The underlying current algebra of

Maxwell theory allows us to write the Hamiltonian in a Sugawara form. In particular,

expressing E and B in terms of the modes A
.�/
n� , we have

H† D 1

k

b2.†/X

iD1
QC
0iQ

�
0i C 1

k

X

n2N
�
?

�D˙

A�
n�An� CE0; (4.4.66)

19Note that in Lorentzian signature, the projectors take the form P
L
˙

D 1
2
.1 ˙ i?/. Demanding that

the �eld strength, f , be real implies that J˙ D J�, where the overline denotes complex conjugation.

Therefore,Q�
n� is indeed the Hermitian conjugateQ˙

n� .
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4. State-operator correspondence for nonlocal operators

where E0 D 1
2

P
n;�

p
�n, is the (potentially in�nite) vacuum energy. The Hamilto-

nian is, then, that of a countably in�nite collection of harmonic oscillators, with

creation (resp. annihilation) operators A
�
n˙ (An˙), raising (lowering) the energy byp

�n. From here on, the story follows closely its two dimensional analogue of sec-

tion 4.3, with slight di�erences that can all be traced back to the di�erent self-duality

properties of middle forms on 4n- versus .4nC 2/-dimensional manifolds.

The zero-modes, Q˙
0i , commute with the Hamiltonian and their eigenstates have a

distinguished role. Let jj i, be such a state, with

Q˙
0i jj i D j˙

i jj i ; i 2 f1; � � � ; b2.†/g; (4.4.67)

that is of highest-weight. Namely, all lowering operators should annihilate the state:

An˙ jj i ŠD 0; 8n 2 N �: (4.4.68)

These states are, then, the primary states of the current algebra (4.4.62). Similarly to

the two-dimensional case, �ux quantisation determines the eigenvalues j˙
i . For any

2-cycle C.2/i 2 H2.†/, the magnetic and electric �uxes are quantised:

ˆmag ��D
Z

C.2/i

f 2 2� Z; (4.4.69)

ˆelec ��D
Z

C.2/i

Lf 2 2� Z: (4.4.70)

In the above, Lf is the magnetic dual �eld strength, which, in the presence of a theta

term, is given by [57]:
Lf ��D Re t f C i Im t ? f: (4.4.71)

At the quantum level, we demand that the �ux quantisation holds inside expectation

values, i.e. hj jˆmagjj i 2 2�Z and hj jˆelecjj i 2 2�Z. It is clear that only the zero-

modes contribute to that expectation value. This �xes exactly the charges, j˙
i . A

few lines of linear algebra, to switch from the orthonormal basis with which J˙
0i

were obtained to the topological basis, which is the natural basis for harmonic forms,

show that

j ˙ D ˙�i
J
�
n C t�m

�

Im t
: (4.4.72)

In the above we combined j˙
i into a b2.†/-dimensional vector j ˙. Moreover, n and

m are b2.†/-dimensional vectors of integers, t˙ ��D Re t ˙ i Im t, and the matrix J

satis�es J2 D G
.2/
† D 1

2�
E, in terms of the “energy” matrix, de�ned below (4.4.34).20

20Since J is a square root of the energy matrix, the reader might worry about the sign of the square

root of each diagonal entry. This is immaterial, however, since the sign can be absorbed in a sign-�ip of

the components of n and m, which simply results in a reshu�ing/relabelling of the di�erent sectors of

the Hilbert space.
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4.4. Four-dimensional Maxwell theory

Since the eignevalues of the zero-modes are determined in terms of the vectors of

integers, n and m, we will henceforth denote the primary states, jj i, as jn;mi. These
states have an energy, above the vacuum energy, that can simply be determined by

acting with the Hamiltonian to be

H† jn;mi D �n;m jn;mi ; (4.4.73)

with

�n;m D 1

2

.n C tm/� E .n C tm/

Im t
: (4.4.74)

Note that this is the exact same formula as (4.4.38). This is not a coincidence. We will

clarify the relation between the instanton sectors and the current algebra primaries,

in the next section. But �rst we should �nish constructing the Hilbert space.

The remaining states are obtained by acting on jn;mi with the raising operators,

A
�
n˙. This results in a Verma module, Vn;m, spanned by jn;mi and its descendants:

ˇ̌
ˇn;mI fNn�g�D˙

n2N
�
?

E
��D

Y

n2N
�
?

�D˙

�
A�

n�

�Nn�

jn;mi ; (4.4.75)

where Nn� are positive integers, indicating how many times each creation operator

acts, to obtain the desired state. The energy gap between these states and the ground

states, at the bottom of the Verma module, is

EfNn� g D
X

n2N
�
?

�D˙

Nn�

p
�n: (4.4.76)

Finally, as a matter of convention, we choose the states such that states at di�erent

level are orthogonal, and each state has unit norm, hn;mI fNn�gjn;mI fMn�gi D
ıfNn� g;fMn� g. Moreover, states at di�erent topological sectors are orthogonal by

construction. Finally, the full Hilbert space of the theory, is simply a direct sum of

the Verma modules:

H† D
M

n;m2Zb2.†/

Vn;m: (4.4.77)

To complete the study of the representation theory of our current algebra, what

remains is to compute the characters of each of the Verma modules: chVn;m
Œq� ��D

trVn;m
qH . We have already performed the di�cult task of calculating the energies,

so all we have to do now is sum them. This yields, at �rst:

chVn;m
Œq� D q�n;m

0
@ Y

n2N
�
?

q
1
2

p
�n

1
A
0
@ Y

n2N
�
?

1X

NnD0
qNn

p
�n

1
A; (4.4.78)
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which, after resumming the geometric series, becomes

chVn;m
Œq� D q�n;m

˜†.q/2
: (4.4.79)

In the last equation we used the de�nition (4.4.45), of the four-dimensional eta

function. The ˜†.q/ term is resumming the contribution of the descendants, while

the q�n;m term is capturing the contribution of the primaries. Finally, summing

over the Verma modules yields an extended character of our current algebra. All the

descendants give the same contribution, while for the primaries we have to sum all

their contributions. This gives:

chŒq� ��D
X

n;m2Zb2.†/

chVn;m
Œq� D ‚†.qI t/

˜†.q/2
: (4.4.80)

Comparing with (4.4.46), we see a remarkable identi�cation of the S1 �† partition

function, as computed through the path integral, with an extended character of an

in�nite-dimensional algebra:

Z
h
S1ˇ �†I t

i
D chŒq�; q D e�ˇ : (4.4.81)

Let us comment on this result. Identifying the nome with e�ˇ , gives a physical

meaning to the character, chŒq�. It is simply a thermal trace over the Hilbert space

over †. From this point of view, it ought to reproduce the path integral expression.

It is known, however, that there are subtleties in matching the two quantities. The

compatibility of the manifestly covariant path integral formalism with the manifestly

unitary canonical formalism has been a source of confusion [300–303], ultimately

resolved in [304] by arguing the form of the canonical partition function. Our formula

(4.4.81), provides a more explicit manifestation of Donnelly andWall’s unitarity proof

[304]. Recovering unitarity is an important point, as it was a crucial ingredient for the

photonisation argument of section 4.2, which ultimately led to the higher-dimensional

current algebras.

It is interesting to keep track of which quantity is mapped to what in the identi�cation

(4.4.46) D (4.4.80). In (4.4.46), the Theta function stems from the sum over instantons.

This counts, e�ectively, insertions of Wilson–’t Hooft operators in Maxwell theory

[57]. On the other hand, on the canonical side, the Theta function comes from the

primary states. Both of them are subsequently decorated with oscillators that give

rise to the eta functions. This story is pointing at a special connection between the

spectrum of operators and states in Maxwell theory, which we shall explicate in the

following section.
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4.4. Four-dimensional Maxwell theory

4.4.4 The spectrum on S2
� S1

Among all three-dimensional topologies, of particular interest to us is † Š S2 � S1,

for reasons that will become evident in the next section. Here we brie�y specialise

the generic results of subsection 4.4.3 and collect the relevant formulas, for the case

of S2 � S1.

First, the geometry. Using a Weyl rescaling of the spacetime metric, we can set the

radius of S1 to be unity and the only parameter is the radius of the sphere, or, really,

the dimensionless ratio of sphere over the circle radius, which we will denote as r0.

We will refer to this spatial slice as †r0 . Its metric is:

ds2†r0
D r20

�
d�2 C sin2 � d'2

�
C d�2 ; (4.4.82)

where � 2 Œ0; �/ and ' 2 Œ0; 2�/ are coordinates on the sphere and � 2 Œ0; 2�/ is the
coordinate on the circle.

As we review in appendix C.1, on S2 � S1 there is a single zero-mode of the one- or

the two-form Hodge Laplacian. The rest of the modes are labelled by the angular

and magnetic quantum numbers, ` and m, on the sphere, and the momentum, k on

the circle, as well as the Beltrami label, � D ˙. The eigenvalue of the Laplacian of a

mode labelled by n D .`;m; k/ is

�n.r0/ D `.`C 1/

r20
C k2: (4.4.83)

The Hamiltonian on this slice reads:

H†r0
D 1

k
QC
0 Q

�
0 C 1

k

X

nD.`;m;k/
�D˙

A�
n�An� CE0: (4.4.84)

The primary states, are labelled by two integers: jn;mi, with n;m 2 Z. The unique

harmonic two-form on †r0 (normalised as in (4.3.5)) is

� .2/ D 1

4�
sin2 � d� ^ d' ; (4.4.85)

and yields G
.2/
†r0

D .2r20 /
�1
. This gives, via (4.4.72) and (4.4.74), the charge and the

energy of the of the primary states, as:

j˙ D ˙�i 1p
2r0

nC t�m

Im t
; and (4.4.86)

�n;m D �

2r20

jnC tmj2
Im t

; (4.4.87)
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4. State-operator correspondence for nonlocal operators

respectively.21 The rest of the states are just obtained by actingwith creation operators,

like in (4.4.75). For example, the �rst excited states are obtained by acting with A
�
n� ,

with n D .1;m; 0/ or n D .0; 0; 1/ depending on the value of r0 and have energy

E1;m;0.r0/ D
p
2

r0
and E0;0;1.r0/ D 1; (4.4.88)

above the ground-state energy, respectively.

4.5 The state-operator correspondence

We now have all the ingredients to arrive at the culmination of this chapter; the

nonlocal state-operator correspondence. While the matching of the partition function

and the current algebra extended character is valid on any connected, closed, torsion-

free, orientable three-manifold, for the state-operator correspondence we need to

choose a speci�c manifold. Wewill only treat the easiest case, deferringmore complex

cases for future investigation. We restrict ourselves with the topology † Š S2 � S1.

The picture we have in mind here is the following. States on H† are prepared

by a path integral on a manifold whose boundary is † D S2 � S1, with various

operator insertions, which we will clarify momentarily. Besides local operators,

four-dimensional Maxwell theory is host to a plethora of line operators (which we

classify in subsection 4.5.1). We place these operators on the S1. This leaves us

with �lling-in the S2 to obtain a three-ball, B3. As we will see, the path integral on

Y ��D B3 � S1, with line operators inserted on S1 � f0g, where by f0g we denote the
origin on B3, produces all the states, (4.4.75), of H† that we described above. See

�gure 4.2. In notation similar to section 4.3 we denote these states as

jLi ��D
Z

CŒ � �
Da e�SŒa� L

�
S1 � f0g

�
; (4.5.1)

where L is some line operator, and C Œ � � is, again an appropriate functional space over
Y (now encapsulating information about gauge equivalent con�gurations), pending

additional input regarding boundary conditions on @Y . Once boundary conditions,

say a.@Y / D a@, are imposed, the path integral (4.5.1) produces the wavefunctional

‰LŒa@� D ha@jLi : (4.5.2)

Here we will show that these states reproduce the Hilbert space of subsection 4.4.3

entirely.

21This formulas may look funny, on dimensional grounds, but remember that r0 is a dimensionless

parameter. To reinstate dimensionful parameters, the energy is proportional to the Gram matrix, which,

in this case, is vol.circle/
vol.sphere/

, which has the correct dimensions to be an energy.
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R�S2�S1

B3�S1

S2�S1

L
�
S1 � f0g

�

Figure 4.2: The nonlocal state-operator correspondence. Any state on S2 � S1 can be prepared by
a path integral on B3 � S1 with a line operator, L

�
S1 � f0g

�
, at the centre of the ball, wrapping

the S1. The state then evolves in time on the Lorentzian “cylinder” R � S2 � S1.

4.5.1 Line operators

First we outline the possible line operators in our disposal. Since in pure Maxwell

theory there are no local charged operators, the only gauge-invariant line operators

must be supported either on closed loops or in�nitely extending lines. In what follows

we will only consider closed loops (which we will denote as 
 ), as we are dealing

with compact spaces. In�nitely extending lines can be obtained as a limit. The basic

kind of line operator there is, is a Wilson loop:

Wn.
/ ��D exp

�
in

Z




a

�
; n 2 Z: (4.5.3)

These operators are electrically charged under the one-form symmetry of Maxell

theory, which served as the starting point of photonisation (cf. section 4.2). In

particular, if

U elec
C

��D exp

�
i

Z

C

?f

�
; (4.5.4)
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is the generator of the electric one-form symmetry, where C is a closed two dimen-

sional surface, Wn.
/ carries charge n:

U elec
C � Wn.
/ D exp

�
2� in

Im t
Link.C; 
/

�
Wn.
/; (4.5.5)

where Link.C; 
/ denotes the linking number between the closed surface C and the

loop 
 .

Furthermore, there exist magnetically charged line operators. As we explained in

section 4.2, and as is well-understood in Maxwell theory [15], there is also a magnetic

one-form symmetry, with generators (in the absense of a theta term)

U
mag
C

��D exp

�
i

Z

C

f

�
: (4.5.6)

The operators charged under this symmetry are ’t Hooft loops. In the electric

presentation of the theory these are described by excising a loop from spacetime,

providing boundary conditions for the gauge-�elds that �x the value of
R
f on a thin

tube surrounding the loop. They can be written more compactly, however, in the

magnetic presentation, where we exchange the gauge-�eld for a magnetic gauge-�eld,

La, whose curvature is Lf D Re tf C i Im t ? f . The ’t Hooft loops become, in this

presentation, Wilson loops for the magnetic photon:

’tHm.
/ ��D exp

�
im

Z




La
�
; m 2 Z: (4.5.7)

and carry “electric” charge in the magnetic presentation:

exp

�
i

Z

C

? Lf
�

� ’tHm.
/ D exp

 
2� im jtj2

Im t
Link.C; 
/

!
’tHm.
/: (4.5.8)

In the original, electric, presentation, they carry magnetic charge:

U
mag
C � ’tHm.
/ D exp.2� im Link.C; 
// ’tHm.
/: (4.5.9)

In the presence of a theta term, they also carry electric charge, due to the Witten

e�ect. This is given by:

U elec
C � ’tHm.
/ D exp

�
2� im

Re t

Im t
Link.C; 
/

�
’tHm.
/: (4.5.10)

More generally, we can consider dyonic, or Wilson–’t Hooft, line operators labelled

both by an electric and a magnetic charge:

Wn;m.
/ ��D exp

�
in

Z




aC im

Z




La
�
; n;m 2 Z: (4.5.11)

142



4.5. The state-operator correspondence

D
X

n

˛n

Wn;m.
/ J˙
n Wn;m.
/

Z

S
2
" �


˛ ^ J˙

Figure 4.3: An example of descendant line operators. On the left-hand-side of the equation, a
small tube of the operator J˙ smeared over a function, ˛, surrounds the curve 
 which supports a
Wilson–’t Hooft line. On the right-hand-side is the result of shrinking the tube on the line, namely
a series of new, descendant, line operators.

Simultaneously, we will combine the one-form symmetries into their irreducible, self-

and anti-self-dual, incarnations, as in section 4.2:

U˙
C

��D exp

�
i

Z

C

J˙
�
: (4.5.12)

The Wilson–’t Hooft lines carry charge under U˙
C as:

U˙
C � Wn;m D exp

�
˙2� nC t˙m

Im t
Link.C; 
/

�
Wn;m: (4.5.13)

These are the basic, or primary, in a sense to bemade precise below, line operators. But

this is not the complete story. We can obtain composite, or descendant (in the same

to-be-made-precise sense) line operators by smearing functions of gauge-invariant

local operators on 
 . The only gauge-invariant local operators in our disposal are

polynomials of (derivatives of) J˙. An unambiguous way to smear the local operators

over the basic line operators, is to excise an in�nitesimal tube around 
 , i.e. an S2" �
 ,
on which we spread the desired local operator, and shrink it onto 
 by taking the

limit " ! 0. This is completely analogous to how disorder operators, including

the aforementioned basic ’t Hooft loops (in the electric presentation), are de�ned

in quantum �eld theory. Using the mode expansion of J˙ on a three-dimensional

surface (4.4.58), and the OPE of the currents we can convert the complicated local

operator into sums of powers of the modes, J˙
n , of J˙. A sketch of this construction,

for a speci�c operator, is shown in �gure 4.3. In the next few sections we will make

this picture precise.
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4. State-operator correspondence for nonlocal operators

4.5.2 Radial evolution

A crucial feature of the Hilbert space on S2 � S1, is its Verma module structure under

the Kac–Moody algebra. In order to reproduce this structure, via a path integral

on Y D B3 � S1, we need to �nd an expression of the current modes, J˙
n , that

can be inserted in the path integral. Key to doing so is solving the self-duality and

conservation equations, for J˙ on Y . We take the metric on Y to be,

ds2Y D dr2 C r2 dsS2 C ds2
S1„ ƒ‚ …

� �D

ds2
†r

; (4.5.14)

i.e. we �x the S1 radius to be one, throughout, and label the spatial slice where

the S2 is of radius r 2 Œ0; r0� by †r , where †r0 is the slice on which the states, in

subsection 4.4.4, are prepared. With these conventions, it is useful to decompose the

currents as,

J˙ D dr ^ J˙
r C J˙

†r
; (4.5.15)

where J˙
r 2 �1.†r / and J

˙
†r

2 �2.†r /. In this decomposition, the self-duality

equations, ?Y J
˙ D ˙J˙, are expressed as a relation between J˙

r and J˙
†r

:

J˙
r D ˙ ?r J

˙
†r
: (4.5.16)

Here, and in the following, we denote by ?r , the Hodge star on †r , induced by the

metric on the slices. Moreover, from the conservation equations, dJ˙ D 0, we read a

Gauss law and a dynamical equation controlling the radial evolution of the current.

The Gauss law, written equivalently in terms of J˙
†r

or J˙
r , using (4.5.16), reads:

dJ˙
†r

D 0 , d�J˙
r D 0; (4.5.17)

The bold di�erential, d, denotes the di�erential on†r and the codi�erential is de�ned

with respect to the Hodge-star on †r . Similarly, the radial evolution equations both

in terms of J˙
†r

and J˙
r read:

@rJ
˙
†r

� d ?r J
˙
†r

D 0 , ?r@r ?r J
˙
r � ?rdJ

˙
r D 0: (4.5.18)

As explained in subsection 4.4.3 and appendix C.1, J˙
†r

, as a closed two-form, can be

expanded in the (orthonormalised) basis, V2
k .†r /, given by (C.1.25), of Hodge-duals

of eigen-one-forms of the Beltrami operator on †r :

J˙
†r

D J˙
0 .r/ ?r �0.r/C

X

n2N
�
?

�D˙

J˙
n� .r/ ?r �n� .r/; (4.5.19)
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where we now explicitly denote the dependence of the coe�cients, J˙
n .r/, and the

basis forms, �n� .r/, on r . Plugging this expansion into (4.5.18), yields a system of

�rst order ordinary di�erential equations for the coe�cients:

@rJ
˙
0 .r/C 1

r
J˙
0 .r/ D 0

@rJ
˙
n� .r/C

�
A˙

n .r/
�
��
J˙
n� .r/ D 0;

(4.5.20)

together with boundary conditions �xing J˙
0 .r0/ D Q˙

0 , and J
˙
n� .r0/ D Q˙

n� . These

are precisely the modes that were used to build creation and annihilation operators

on †r0 . Note that this di�erential equation factorises modes of di�erent energy, i.e.

di�erent n, but mixes modes on the ��-plane which we shall call the Beltrami plane.

The di�erential equation for the zero-mode, can be immediately integrated, yielding

J˙
0 .r/ D r0

r
Q˙
0 : (4.5.21)

For the non-zero-modes, the matrix A˙
n .r/ is given as

�
A˙

n .r/
�
��

��D h�n� ; ?r@r ?r �n� i � h�n� ; ?rd�n� i : (4.5.22)

We provide details about the explicit construction of the basis V.†r /, as well as all

the entries of the matrix A˙
n in appendices C.1 and C.3. The solution of the above

equation takes the form of a radially ordered integral:22

J˙
n� .r/ D

�
U˙

n .r; r0/
�
��
Q˙

n� ; with (4.5.23)

U˙
n .r; r0/ ��D Rexp

�Z r0

r

dr 0 A˙
n .r/

�
: (4.5.24)

Altogether J˙
†r

reads, then

J˙
†r

D Q˙
0

r0

r
?r �0.r/C

X

n;�;�

Q˙
n�

�
U˙

n .r; r0/
�
��
?r �n� .r/: (4.5.25)

For illustration purposes, let us concentrate temporarily on a subfamily of the basis

V.†r /, returning subsequently to the general case, deferring the details to the ap-

pendix. This subfamily concerns the eigenforms with no momentum along the S1 of

†r , i.e. the one-forms

�`m� .r/ ��D
1p
2

 
‰`m d�C �

�
`.`C 1/

r2

��1=2
?r d.‰`m d�/

!
: (4.5.26)

22That is, simply, a time-ordered integral, with the radius playing the role of time.
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4. State-operator correspondence for nonlocal operators

In the above, ‰`m, are the real spherical harmonics, normalised on S2r , with ` and m

the usual angular momentum and magnetic quantum numbers, with ` ¤ 0, and �

is the coordinate on S1. One can check that these are orthonormalised eigenforms

of the Beltrami operator on †r , with eigenvalue �
�
`.`C1/
r2

�1=2
. For this family the

matrix A˙
n .r/ becomes

A˙
`m.r/ D 1

2r

 
1� 2

p
`.`C 1/ 1

1 1˙ 2
p
`.`C 1/

!
: (4.5.27)

In this case A˙
`m
.r/ commutes with itself at di�erent radii so the radially ordered

exponential reduces to a regular exponential, yielding, �nally as solution

U˙
`m.r; r0/ D 1

2C 4`

"�
r

r0

��`�1 
1C 2`� 2

p
`.`C 1/ 1

1 1C 2`˙ 2
p
`.`C 1/

!

C
�
r

r0

�` 
1C 2`˙ 2

p
`.`C 1/ �1

�1 1C 2`� 2
p
`.`C 1/

!#
:

(4.5.28)

Let us return to the general case. With the solutions (4.5.21) and (4.5.23), we can

equivalently express the operators acting on †r0 in terms of the �elds J˙, as

Q˙
0 D

Z

†r

r

r0
�0.r/ ^ J˙

†r
(4.5.29)

Q˙
n� D

Z

†r

�
U˙

n .r; r0/
��1
��
�n� .r/ ^ J˙

†r
: (4.5.30)

Note how, as they should, the modesQ˙
i (where i stands either for 0 or n� ), are actu-

ally independent of r . In other words, connecting to the discussion of subsection 4.4.3,

U˙
i .r; r0/

�1 � �i .r/ provide a basis of (anti-)chiral one-forms on Y :

P˙d
�
U˙
i .r; r0/

�1 � �i .r/
�

D 0; (4.5.31)

subject to a gauge condition. In this case, the natural gauge condition is given by the

Coulomb gauge, that they lie in the kernel of d ?r i
�
†r

.

Knowing the expression of the charges in terms of the �eld content, we can now

obtain how such charges act on states, jLi, of the form (4.5.1). We simply perform

the path integral inserting Q˙
i on a small †r , and perform the OPE with the path

integral insertion sitting at the centre, sending subsequently r ! 0:

Q˙
i jLi D lim

r!0

Z

CŒ � �
Da e�SŒa�

Z

†r

U˙
i .r; r0/

�1 � �i .r/ ^ J˙
†r

� L
�
S1 � f0g

�
; (4.5.32)
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where, in (4.5.32), only smooth con�gurations of J˙
†r

contribute, for the same reasons

as in section 4.3. This is a direct four-dimensional analogue of (4.3.39). The behaviour

of this insertion as r ! 0, requires some clari�cation. Let us illustrate the situation

for the empty state:

j1i ��D
Z

CŒ � �
Da e�SŒa�: (4.5.33)

The radial evolution matrix, U˙
n .r; r0/, gives rise to a smooth mode, behaving as

�
�
r

r0

�`
; (4.5.34)

at the origin, r ! 0, and a divergent one, behaving as

�
�
r

r0

��`�1
: (4.5.35)

In order to single out the con�gurations of the currents that contribute to the path

integral, we must project out the divergent modes. This is implemented by the

projector to the kernel of U˙
n .0; r0/, which we will denote as …˙

n .
23 Therefore, the

part of J˙
†r

that contributes in the path integral has an expansion:

J˙
†r

ˇ̌
ˇ̌
smooth

D Q˙
0

r0

r
?r �0.r/

„ ƒ‚ …
�r sin � d'^d�

C
X

n;�;�;�

Q˙
n� …˙

n��

�
U˙

n .r; r0/
�
��
?r �n�.r/

„ ƒ‚ …
basis of smooth two-forms

; (4.5.36)

From this it immediately follows that the empty state is uncharged:

Q˙
0 j1i D lim

r!0

Z

CŒ � �
Da e�SŒa�

Z

†r

r

r0
�0.r/ ^ J˙

†r
D 0; (4.5.37)

as the smooth part of J˙
†r

goes to zero at r ! 0. The action of the non-zero modes is

also straighforward:

Q˙
n� j1i D lim

r!0

Z

CŒ � �
Da e�SŒa�

Z

†r

�
U˙

n .r; r0/
��1
��
�n� .r/ ^ J˙

†r

D
Z

CŒ � �
Da e�SŒa� …˙

n��Q
˙
n� ; (4.5.38)

where here, and henceforth, repeated indices f�; �; : : :g on the Beltrami plane are

contracted. From this it follows that, if v˙
n is any vector in the image of U˙

n .0; r0/,

i.e. orthogonal to …˙
n , the combination v˙

n�Q
˙
n� annihilates the empty state:

v˙
n�Q

˙
n� j1i D 0: (4.5.39)

23Note that U˙
n .0; r0/ from (4.5.28) (cf. also appendix C.3) has rank 1, re�ecting precisely the fact that

there is a smooth and a divergent mode.
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4. State-operator correspondence for nonlocal operators

This behaviour is in fact general. This linear combination of charges will take the

role of annihilation operators, for path integral states, with its Hermitian conjugate

becoming the new creation operators.

4.5.3 Squeeze, squeeze, squeeze

Let us make the above intuition precise. As before, we take v˙
n to be a vector

orthogonal to …˙
n ,

…˙
n � v˙

n D 0: (4.5.40)

Of course, since …˙
n is a rank-1 projector on a two-dimensional plane, v˙

n is unique,

up to rescaling and a global phase. We will take v˙
n to be such that

�
v˙
n

�� � � z � v˙
n D ˙1; (4.5.41)

where � z is the Pauli z-matrix. With this choice of v˙
m , it is straightforward to check

that the operators

Bn˙ ��D v˙
n�Q

˙
n� D v˙

n˙An˙ C v˙
n�A

�
n�;

B
�
n˙ ��D v˙

n�Q
�
n� D v˙

n˙A
�
n˙ C v˙

n�An�;
(4.5.42)

where the overline denotes complex conjugation, satisfy the correct Kac–Moody

algebra of ladder operators:

h
Bn� ;B

�
m�

i
D k

p
�n.r0/ınmı�� ; (4.5.43)

with all other commutators vanishing.

Notice, however, that (4.5.42) is a Bogoliubov transformation. The new set of oscillat-

ors can be obtained by a unitary transformation of the old oscillators:

Sn.vn/An˙S�
n.vn/ D Bn˙; and

Sn.vn/A
�
n˙S�

n.vn/ D B
�
n˙:

(4.5.44)

The operator Sn.vn/ is known as a squeezing operator, and in particular as a as non-
separable two-mode squeezing operator [305–308]. Its explicit form, in terms of the

original set of oscillators, follows by an application of the Baker–Campbell–Hausdor�

formula, and is given as:

Sn.vn/ D exp
�
��n

�
ei�nA�

nCA�
n� � e�i�nAnCAn�

��
�

� exp
�
i nCA

�
nCAnC C i n�A�

n�An�
�
; (4.5.45)
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where �n; �n;  n˙ 2 R are related to v˙
n as

v˙
n˙ D ei n˙ cosh.�n/

v˙
n� D ei. n˙C�n/ sinh.�n/:

(4.5.46)

Apart from the phases  n˙ —which are nevertheless necessary to capture the correct

vectors v˙
n — this corresponds to an su.1; 1/ squeezing transformation.

A salient feature of squeezing transformations is that applying the squeezing operator

to the a ground state of the original set of operators,

An˙ j0iAn
D 0; (4.5.47)

yields a ground state of the new set of operators. Namely, the state

j0iBn
��D Sn.vn/ j0iAn

; (4.5.48)

satis�es

Bn˙ j0iBn
D 0: (4.5.49)

These states are known as squeezed vacua. Excited states can be built in the standard

way, by applying creation operators of the new set of modes on the squeezed vacuum.

They are related to the excited states of the original set of modes by a squeezing

transformation:

B
�
n˙ j0iBn

D Sn.vn/A
�
n˙ j0iAn

: (4.5.50)

In other words, they remain squeezed.

Finally, recall that our setup involves in�nitely many modes. Demanding that the

new ground states are annihillated by Bn˙ for all n 2 N �
? , identi�es it with an

all-mode squeezed state that is only pairwise non-separable. In other words there

exists a squeezing operator acting on all modes de�ned as:

S
shorthand��DDDD

for

S
�
fvngn2N

�
?

�
��D

Y

n2N
�
?

Sn.vn/; (4.5.51)

Note here, that there is no ordering amgiguity in de�ning S, as modes at di�erent

levels commute. It is for the same reason that it also acts on each energy level

separately, i.e.

SAn˙S� D Bn˙; 8n 2 N �
? ; (4.5.52)

without mixing ladder operators at di�erent levels. As a consequence, there are

all-mode squuezed vacua

j0iB
��D S j0iA ; (4.5.53)
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4. State-operator correspondence for nonlocal operators

annihillated by all B modes,

Bn˙ j0iB D 0; 8n 2 N �
? ; (4.5.54)

where j0iA is the ground state annihilated by all A modes,

An˙ j0iA D 0; 8n 2 N �
? : (4.5.55)

As an explicit illustration of this construction, let us focus again on the family without

momentum on the S1, corresponding to n D .`;m; 0/, and governed by the evolution

matrix (4.5.28). The magnetic quantum number,m, does not enter any of the formulas,

so we will suppress it, denoting the modes just by the angular momentum number, `.

The Bogoliubov coe�cients are given by

vC
`

D �1
2.`.`C 1//1=4

 p
`C

p
`C 1

p
` �

p
`C 1

!
; (4.5.56)

v�
` D �i

2.`.`C 1//1=4

 p
` �

p
`C 1

p
`C

p
`C 1

!
; (4.5.57)

corresponding to the squeezing parameters

�` D 1

4
log

�
`C 1

`

�
; �` D �;  `C D �; and  `� D 3�

2
: (4.5.58)

This yields a two-mode squeezing operator as:

S`.v`/ D exp

�
1

4
log

�
`C 1

`

��
A
�

`CA
�

`� � A
�

`�A`�
��

�

� exp

�
i�

�
A
�

`CA`C C 3

2
A
�

`�A`�

��
: (4.5.59)

4.5.4 The correspondence

After this interlude on squeezed states, we return to line operators, and the states

they prepare, via the path integral. First we consider the states of the Wilson–’t

Hooft operators, (4.5.11),

jWn;mi ��D
Z

CŒ � �
Da e�SŒa� Wn;m

�
S1 � f0g

�
: (4.5.60)

Let us see the action of the charges on these states.

Starting with the zero-mode, we have:

Q˙
0 jWn;mi D lim

r!0

Z

CŒ � �
Da e�SŒa�

Z

†r

r

r0
�0.r/ ^ J˙

†r
� Wn;m

�
S1 � f0g

�
: (4.5.61)
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4.5. The state-operator correspondence

We will need the OPE between J˙
†r

and the Wilson–’t Hooft loop. In fact, here we

will only need the Wick contraction, as all the regular terms are bound to vanish, by

regularity of the rest of the zero-mode integrand. The desired OPE is:

J˙
†r

�Wn;m.S
1�f0g/ �

�
in

�
J˙
†r

Z

S1

a

�
C im

�
J˙
†r

Z

S1

La
��

Wn;m.S
1�f0g/; (4.5.62)

where the twiddle indicates that it is considered up to regular terms. To continue on

we will need the two-point function of the gauge-�elds on R3 � S1.24 Parametrising

R3 by coordinates x and the circle by an angle, �, the two-point function reads:

˝
a�.x; �/a�.0; 0/

˛
D 4

Im t

g�� sinh kxk
kxk.cosh kxk � cos �/

Cgauge-dependent terms: (4.5.63)

Integrating one of the gauge �elds on the circle, to get the holonomy, and di�erenti-

ating the other one to get the current yields immediately:
��Z

†r

r

r0
�0.r/ ^ J˙

†r

��Z

S1

a

��
D ˙ �p

2 r0

1

Im t
: (4.5.64)

From here, electric–magnetic duality implies

��Z

†r

r

r0
�0.r/ ^ J˙

†r

��Z

S1

La
��

D ˙ �p
2 r0

t�

Im t
; (4.5.65)

and therefore, �nally:

Q˙
0 jWn;mi D ˙�i 1p

2r0

nC t�m

Im t
jWn;mi : (4.5.66)

Compare this to (4.4.86). The state jWn;mi has exactly the same zero-mode charges, as

the Kac–Moody primaries jn;mi. It is tempting, therefore, to identify the Wilson–’t

Hooft state with jn;mi.

This is almost the right answer. To iron out that almost we need the action of

the non-zero modes. First, note that the OPE (4.5.62) cannot give any singular

contribution upon integrated against any of the higher-modes. The reason is, simply,

that
D
J˙
†r

R
S1 a

E
and

D
J˙
†r

R
S1 a

E
are proportional to the volume form on the sphere.

But the one-forms �n.r/, that it will be integrated against, are periodic on the circle.

Hence the net answer is zero. Therefore, as far as non-zero modes are concerned,

the OPE produces only regular contributions. We are therefore in the same territory

as for the empty state that we discussed previously. Hence again we have that

Bn˙ jWn;mi D 0; 8n 2 N �
? : (4.5.67)

24Remember, we are taking this OPE in the limit r ! 0, so the three-ball, B3
r0

is identical to the whole

R3.
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4. State-operator correspondence for nonlocal operators

This is the precise sense, in which Wilson–’t Hooft lines are primary operators. They
have de�nite one-form charge, and the states they generate are primary states of the

Kac–Moody algebra (4.5.43), sitting at the bottom of the Verma module labelled by n

and m.

Reconciling the above fact with our digression on squeezed states, the Wilson–’t

Hooft lines correspond to squeezed primary states:

jWn;mi D S jn;mi : (4.5.68)

Inverting this relation, we have, equivalently that the vacua jn;mi correspond to:

jn;mi D S� jWn;mi D
Z

CŒ � �
Da e�SŒa� S�Wn;m

�
S1 � f0g

�
; (4.5.69)

where S�Wn;m denotes the line operator obtained by shrinking S� — expressed in

terms of the currents — onto the Wilson–’t Hooft loop, à la �gure 4.3, or equivalently

via the OPE:

S�Wn;m

�
S1 � f0g

� ��D lim
r!0

S�ŒJ˙
†r
� � Wn;m

�
S1 � f0g

�
: (4.5.70)

Let us pause here to comment on the ground state, i.e. the state j0; 0i, of zero energy.

By the above discussion, it corresponds to the operator

j0; 0i ↭ S�
�
S1 � f0g

�
: (4.5.71)

This is clearly not the identity operator. In one sense, it is almost the identity operator,

as this is the only primary line operator it sees. It is completely transparent to the one-

form charges. However, it is also as far as one can get from the identity operator as it

contains photon excitations of arbitrary frequency — indeed, of all frequencies. This

was, to some extent, anticipated in [269], where it was shown that, in a generic CFT,

the identity operator, cannot prepare the vacuum state on the torus (or generally, on

any spatial slice other than the sphere). Our result is consistent with that statement,

while still tractable in this example.

Continuing on, and moving up in the Verma module, all the other states can be

reached by acting with B
�
n˙ on the squeezed primaries, i.e.

ˇ̌
ˇWn;mI fNn�g�D˙

n2N
�
?

E
��D

Y

n2N
�
?

�D˙

�
B�

n�

�Nn�

jWn;mi

D
Z

CŒ � �
Da e�SŒa� Y

n2N
�
?

�D˙

�
B�

n�

�Nn�

Wn;m

�
S1 � f0g

�
: (4.5.72)
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4.5. The state-operator correspondence

The modes Bn˙ and B
�
n˙ can be written, in terms of the local operators J˙ as

Bn˙
�
S1 � f0g

�
D lim
r!0

Z

†r

v˙
n�

�
U˙

n .r; r0/
��1
��
�n� .r/ ^ J˙

†r
; (4.5.73)

B
�
n˙
�
S1 � f0g

�
D lim
r!0

Z

†r

v˙
n�

�
U�

n .r; r0/
��1
��
�n� .r/ ^ J˙

†r
; (4.5.74)

respectively. Acting them onWilson–’t Hooft operators gives precisely the descendant
operators that we discussed in subsection 4.5.1. They are related to the descendant

states (4.4.75), by a squeezing transformation. For example, a single excited mode is

A
�
n˙ jn;mi D S�B

�
n˙ jWn;mi D

Z

CŒ � �
Da e�SŒa� S�B

�
n˙Wn;m

�
S1 � f0g

�
;

(4.5.75)

and similarly for the higher-excited states.

To recap, we have just constructed a one-to-one map between line operators on

R3 � S1 and states on S2 � S1. The line operators that we have in our disposal are

the Wilson–’t Hooft lines and modulated versions thereof, i.e. smeared with modes

of the basic gauge-invariant operator, f , or equivalently J˙. Each di�erent allowed

smearing, that is, each di�erent smooth con�guration of J˙ gives a di�erent state.

The Wilson–’t Hooft lines are the primary operators of the Kac–Moody algebra.

Modulated operators are their descendants. They prepare states on S2 � S1, that

are orthonormal and span the entire Hilbert space. These states are related to the

standard energy eigenstates on the Hilbert space by a squeezing transformation. This

map is displayed in �gure 4.4.

Energies and overlaps

In this last paragraph, we will, brie�y, compare the squeezed states we have arrived at

to the energy eigenstates. We begin by calculating the average energy of the squeezed

primary states jWn;mi. A quick computation shows that their average energy is

hWn;mjH†r0
jWn;mi D �n;m CE0;S.r0/; (4.5.76)

where

E0;S.r0/ D
X

n;�

sinh2.�n/
p
�n.r0/; (4.5.77)

is essentially measuring a zero-point energy, which has to do with the fact that

the Hamiltonian H†r0
is not normal-ordered with respect to the new set of ladder

operators. More importantly,

�n;m D �

2r20

jnC tmj2
Im t

(4.5.78)
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4. State-operator correspondence for nonlocal operators

j0; 0i ↭ S�
�
S1 � f0g

�

jn;mi ↭ S�Wn;m

�
S1 � f0g

�

A
�
n˙ jn;mi ↭ S�B

�
n˙Wn;m

�
S1 � f0g

�

:::

Figure 4.4: The states and their corresponding operators. (Top) The squeezing operator,
S�
�
S1 � f0g

�
, containing photons of all frequencies, represented by a multi-coloured line prepares

the vacuum state. (Middle) The squeezing operator, surrounding a Wilson–’t Hooft line of charges
n;m prepares the primary state jn;mi. (Bottom) The squeezing operator, on top of the mode B

�
n˙

on top of a Wilson–’t Hooft line prepares the descendant A
�
n˙ jn;mi.

is the same as the energy of the (unsqueezed) primaries (4.4.87), as well as the

instanton weights in the path integral (4.4.38). This property re�ects and re�nes the

observation of Verlinde [274] and the argument of Kapustin [273], that the Wilson–’t

Hooft lines have a quantum number �n;m akin to a scaling weight.25

For the �rst excited states, an elementary computation reveals their average energy

hWn;mjBn�H†r0
B�

n� jWn;mi D �n;mC
�
cosh2.�n/C sinh2.�n/

�p
�n.r0/CE0;S.r0/:

(4.5.79)

In the no-squeezing limit, �n ! 0, this becomes precisely the energy of the �rst

excited energy eigenstates.

Finally we can also compute overlaps between the squeezed and the unsqueezed

primaries. This is very much facilitated by the disentangling formula of su.1; 1/

25Do notice, however, that these are not the eigenvalues of the dilation operator of the theory under

consideration.
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squeezing operators [309, 310]:

exp
�
˛nXC

n � ˛nX�
n

�
D exp

�
ei arg.˛n/ tanh j˛njXC

n

�

� exp
�
�2 log cosh j˛njX0

n

�
exp

�
�e�i arg.˛n/ tanh j˛njX�

n

�
;

(4.5.80)

where

XC
n

��D
1p
2

A
�
nCA

�
n�

k
p
�n

; (4.5.81)

X�
n

��D
1p
2

AnCAn�
k
p
�n

; (4.5.82)

X0
n

��D
1

2

 
1C

A
�
nCAnC C A

�
n�An�

k
p
�n

!
(4.5.83)

are the generators of su.1; 1/:

�
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n ;X
�
n

�
D �2X0

n ;
�
X0

n ;X
˙
n

�
D ˙X˙

n : (4.5.84)

In this case, the phases,  n˙, of the squeezing operator, (4.5.45), do not matter as the

phase-shift operator they furnish is normal ordered, and thus, acts as the identity on

jn;mi. In total we �nd:

hn;mjWn;mi D
Y

n2N
�
?

.cosh.�n//
�2
: (4.5.85)

4.6 Discussion

In this chapter, we studied CFTs with continuous generalised global symmetries.

We showed that an invertible continuous .p C 1/-form symmetry in a .2p C 2/-

dimensional unitary CFT automatically enhances to an in�nite collection of codimen-

sion one, i.e. zero-form, conserved charges, labelled by (anti-)chiral p-forms. The

algebra of these charges is spectrum-generating (up to decoupled neutral factors) and

characterises completely the CFT. The dynamics of the CFT are those of free p-forms.

Along a similar vein, we showed that a non-invertible continuous .p C 1/-form

symmetry, leads to a non-invertible current algebra, which we describe in terms of

the fusion rules of the symmetry generators. As before, it characterises completely

the dynamics, leading, in this case, to an O.2/ p-form gauge theory. In the invertible

case, and focussing on p D 1, hence in four-dimensional CFTs, we constructed the

representation theory of this algebra (for the invertible case), which we showed repro-

duces the path integral calculation, as a non-trivial check. This allowed us to describe
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4. State-operator correspondence for nonlocal operators

explicitly the Hilbert space of Maxwell theory on arbitrary closed spatial manifolds.

On non-trivial topologies, the full Hilbert space consists of the usual photon Hilbert

space, as well as of Verma modules, built on top of states with one-form symmetry

charge. Additionally, we showed that the full spectrum of states on S2 � S1 can be

obtained by a path integral on B3 � S1, with various operator insertions. The radial

evolution on the ball acts as a squeezing transformation between the path integral

states and the energy eigenstates, requiring that line operators are subsequently

dressed with a squeezing operator, containing all photon frequencies, to reach the

energy eigenstates. Notably, the vacuum state of Maxwell theory on S2 � S1 is not

produced by the path integral with no insertions, but by the path integral with a

squeezing operator inserted. Nevertheless, this construction leads to a one-to-one

correspondence between line operators on R3 � S1 and states on S2 � S1 and a

classi�cation of line operators in terms of the current algebra. In short, Wilson–’t

Hooft lines,

Wn;m

�
S1
�

D exp

�
in

Z

S1

aC im

Z

S1

La
�
; (4.6.1)

are charged under the one-form symmetries, Q˙
0 , (4.5.29):

Q˙
0 � Wn;m

�
S1
�

� ˙ �ip
2r0

nC t�m

Im t
Wn;m

�
S1
�
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and annihilated by the lowering operators Bn˙, (4.5.73), of the Kac–Moody algebra:

Bn˙ � Wn;m

�
S1
�

� 0: (4.6.3)

This de�nes them as primary operators. They have de�nite scaling weight, as de�ned

previously, given by

1

k
QC
0 Q

�
0 � Wn;m

�
S1
�

� �n;mWn;m

�
S1
�
; (4.6.4)

�n;m D �

2r20

jnC tmj2
Im t

: (4.6.5)

The path integral on B3 � S1 with an insertion of Wn;m

�
S1
�
, dressed by a squeezing

operator, (4.5.70), prepares the primary energy eigenstates, jn;mi (4.4.67). Descend-
ant line operators are given by acting with raising operators, B

�
n˙, (4.5.74), on the

primaries. Again, the path-inegral on B3 � S1, with a descendant, dressed with a

squeezing operator, produces the descendant states (4.4.75).

We comment on several questions we have left unanswered and possible generalisa-

tions.
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Non-invertible symmetries and orbifold branches

In subsection 4.4.3 we described a non-invertible current algebra. This was described

in terms of the fusion rules of non-invertible topological operators. The free theory

that realises the algebra is, in that case, that of an O.2/ p-form gauge theory. One very

interesting question is to construct the representation theory of these non-invertible

current algebras. At p D 0, or equivalently in d D 2, an important role is played

by tube algebras [311, 312] and lasso actions [60] associated to the fusion of the

topological operators. A careful study of this, should land exactly on the orbifold

branch of a compact scalar, which has a much simpler algebraic description [286].

Similarly, exploiting and generalising representation theory of higher-dimensional

non-invertible symmeties [287–290] should give an algebraic point of view to orbifold

branches of gauge-theories, operning a window to new BKT-like phase transitions at

points of enhanced symmetry.

Non-abelian current algebras

Despite the absence of non-abelian higher-form symmeries, one could still consider

the physics of a four-dimensional CFT with a non-abelian version of our higher-

dimensional current algebra, schematically of the form:

�
Qa

n ;Q
b
m

�
D fabcT

l
nmQ

c
l C k

p
�nı

abınm; (4.6.6)

where the u.1/ � u.1/ indices, ˙, got replaced by some Lie algebra, g, indices,

fa; b; c; � � � g. There are a few indicators that such an algebra might be hiding be-

hind four-dimensional superconformal �eld theories. For instance, the form of the

Vafa–Witten partition functions [313], for N D 4 super-Yang–Mills (SYM) theory

and their relation to two-dimensional RCFTs is reminiscent of our exact formulas for

the Maxwell partition fuction and their two-dimensional analogues. A more concrete

indicator is Kapustin’s de�nition of scaling weight for 1
2
BPS operators in N D 4 SYM

[273], which is arrived at in a similar way as the one for Wilson–’t Hooft operators,

which as we saw, is intimately linked to the current algebra.

Modularity and factorisation

The form, (4.4.46) of the partition function begs for an investigation of the modularity

properties of the partition function, as well as a possible “holomorphic factorisation”

of the partition function. Both of these directions deserve separate attention. On

the modularity side, if higher-dimensional CFTs behave like two-dimensional, then

swapping the thermal circle for a spatial one-cycles should leave the partition function

una�ected. Harnessing that statement leads to a generalised Cardy formula [265]

and a universal form of the Casimir energy [270]. Our exact form of the partition

157



4. State-operator correspondence for nonlocal operators

function of Maxwell theory, can serve as a testing ground for modularity in higher-

dimensional CFTs. Relatedly, but with a di�erent goal in mind, one could imagine

making q complex and study whether the Maxwell partition function factorises in a

holomorphic and anti-holomorphic piece:

ZMaxwell.q; Nq/ ‹D Z.q/Z. Nq/: (4.6.7)

This would open a new window towards the physics of chiral one-forms (or more

generally chiral p-forms), whose importance in six-dimensional superconformal �eld

theories and in M-theory makes them subject of constant study [2, 232–235, 240,

314–316].

Other topologies

The choice of S2 � S1 for our state-operator correspondence is a natural one for that

the unique one-cycle allows line operators wrapping it and the unique two-cycle

allows a single �ux. It is not clear that this is the only choice, though. For example,

states on a T3 topology are prepared via a four-dimensional path integral with

some two-cycle �lled in. It is likely that to get the complete set of states we have to

consider a mixture of states prepared by �lling in every two-cycle. Therefore, the

state-operator map, would, in that case, include a sum over topologies, with a given

boundary, in the path integral. This is not the case here, because of the requirement

that the S1 remains non-trivial.

Surgery and overlaps

Given our state-operator correspondence, we now have a resolution of the identity

on S2 � S1, in terms of line operators:

1 D
X

n;m2Z

X

fNn� g
jWn;mI fNn�gihWn;mI fNn�gj : (4.6.8)

We can use this to simplify correlation functions on manifolds that can be cut along

an S2 � S1. Relatedly, states can be glued to produce partition functions or cor-

relation functions on manifolds surgered along S2 � S1. This fact opens up a new

perspective on partition functions. Take, for example, partition functions in d Euc-

lidean dimensions with the topology of the sphere. These are known to be related

to counting problems through F-theorem arguments [317], at least in d D 3. On

the other hand, by the logic above, this partition function should be related to the

overlap between states prepared by computing path integrals on some half spaces

which do not necessarily produce the vacuum of the theory. An example would

amount to considering the Hopf �bration of the sphere and consider states de�ned

on the T2 gluing surface. Now we know those states, while having a simple path
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integral construction, are described by complicated superpositions of high-energy

eigenstates. Therefore, these partition functions could have a more natural counting

interpretation shedding light on the exact nature of the F-theorem. At this point this

is just a plausibility argument, as we have only focused on theories with higher-form

symmetries in even dimensions. It would be interesting to study this in more depth.
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5 Conclusions

In this thesis we have considered aspects of generalised symmetries and their ap-

plications in topological and conformal quantum �eld theories. In this last chapter

we brie�y summarise the salient features and main results of this thesis and discuss

interesting future directions and open questions.

Symmetries have served as an extermely useful guiding principle in the development

and study of quantum �eld theory. In recent years, a transformative generalisation of

the notion of symmetries has taken place. This includes, among others, higher-form,

higher-group, non-invertible and subsystem symmetries. All of these serve as new

organising principles for quantum �eld theories, the phases of matter, and (at a

more philosophical level) nature as a whole. Throughout this thesis, generalised

symmetries — in particular higher-form symmetries for the most part — have been

crucial in obtaining universal results about the entanglement properties of topological

quantum �eld theories, and about the underlying structure of conformal �eld theories.

From a condensed-matter-theoretic point of view, topological �eld theories arise

as low-energy e�ective descriptions of topologically ordered systems. A physical

mechanism for topological order in three (spacetime) dimensions, is given by the

condensation of networks of line operators, known as string-net condensation. In

higher-dimensions, analogous models — condensing networks of p-dimensional

surface operators — give rise to topologically ordered ground states. This is intim-

ately connected to generalised symmetries, as taking the generators of a discrete

p-form symmetry as the condensing network, provides a description of decon�ned,

discrete (higher-)gauge theories. The long distance behaviour of these models is

described by a speci�c topological quantum �eld theory, known as p-form BF theory.

Moreover, topological orders correspond to and are classi�ed by di�erent patterns of

entanglement. This is most cleanly showcased by the celebrated topological entan-

glement entropy [165, 166]. Understanding patterns of entanglement in p-form BF

theory, gives direct low-energy access to a systematic understanding of topological
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order in higher-dimensions. This was the main motivating question for [1, 2] and

correspondingly chapters 2 and 3.

In contrast to discrete theories, decon�ned phases of (higher-)gauge theories with

continuous gauge groups are gapless. Behind this fact lie, again, generalised sym-

metries. In particular, such phases can be understood as spontaneous symmetry

breaking phases of higher-form global symmetries. A prominent example of that

is given by electromagnetism (free Maxwell theory), and provides an explanation

of the gaplessness of the photon in our world. In speci�c dimensions, these gapless

phases become conformal. The combination of conformal invariance with generalised

symmetries turns out to be extremely strong and leads to universal statements about

the structure of conformal �eld theory. These ideas underlie much of the motivation

and provide the groundwork for [3] and correspondingly chapter 4.

5.1 Summary

Having described the main conceptual underpinnings of this thesis, we will go into

more detail, outlining the main results.

Algebraic and essential entanglement

Entanglement in gauge theories is tricky business. The main reason is non factoris-

ability of the Hilbert space. Let us elaborate. Suppose one is interested in how the

degrees of freedom in a region,R, of space are entangled with the rest: Rc D spacenR.
A quantitative measure of that is the von Neumann entropy of a state — commonly

taken to be the ground state, or some other pure state — reduced in the region, R, of

interest, i.e. having traced out all the degrees of freedom outside. This step already

consists in bipartitioning the space of states. In gauge theories such a factorisation

is not available, the reason being that elementary excitations are associated with

closed loops, rather than points. A natural way to de�ne entanglement, bypassing

the problem is via operator algebras [183]. There, the lack of factorisation presents

itself as a non-trivial centre of the algebra.

Topologically ordered systems, and their low-energy descriptions, also exhibit lack

of factorisation of their space of states, due to the presence of nonlocal operators. In

chapter 2 we argued that a modi�cation of the above reasoning and the techniques

that come along is very suitable in the study of entanglement in topological �eld

theories, and we showed that it leads to a concrete measure of entanglement in

p-form BF theory. More precisely, we considered the algebra of topological operators
that act on a spatial slice of the theory. We showed that associated with these algebras

there are two natural and consistent (non-trivial) choices of subalgebras restricted to

a subregion, R. These can be roughly described as follows:
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1. The set of operators that can be deformed to act entirely in R, and

2. the set of operators that cannot be deformed to act entirely outside of R.

We call these topological algebras magnetic and electric, respectively, owing to their

connections to analogous algebras in lattice gauge theories. They are related to one

another by a form of subregion electric-magnetic duality.

We then put these algebras to use and assigned an entanglement entropy to the

ground states of the theory under consideration. The topological nature of the theory

allowed us to evaluate this entropy in arbitrary dimensions, arbitrary spatial slices,

and subregions of arbitrary topology. We termed this entropy essential topological
entanglement (ETE). The main features of ETE for p-form BF theory are the following:

1. It is positive. This is in contrast to the traditional topological entanglement

entropy [165, 166], which is negative and can only be thought of as an entropy

di�erence.

2. It is �nite. ETE is bounded from above by the dimension of the Hilbert space.

This is not straightforward in theories lacking Hilbert space factorisation, but

crucial for TQFTs, where the Hilbert space is �nite-dimensional.

3. It is topological. ETE depends solely on the topology of the spatial slice and the

topology entangling surface, i.e. the interface between the region of interest

and the rest of the spatial slice.

Moreover it possesses additional qualities which make it a useful tool to study

topological order: it probes the total quantum dimension of the system, it cannot be

distilled into Bell pairs, and it is de�ned intrinsically in the infrared description.

Edge-modes, current algebras, and entanglement spectrum

A more traditional approach to understanding the entanglement structure of to-

pologically ordered phases relies on studying their spectrum of edge-modes. The

logic goes as follows. TQFTs, when placed on manifolds with boundary are host to

gapless edge-modes. The prototypical example is Chern–Simons theory supporting

a compact chiral scalar on its boundary in the abelian case, or Wess–Zumino–Witten

scalars in the non-abelian case. The density matrix of the edge-mode theory, reduced

in a region of interest is maximally mixed among an in�nite number of modes, giving

rise to an entropy controlled by a divergent, geometry-dependent, area law. Import-

antly, however, the subleading constant correction is universal and captures presicely

the topological entanglement entropy of Kitaev and Preskill [165], and Levin andWen

[166]. Thus, the edge-mode spectrum captures, entirely, the entanglement pattern

de�ning the topological order. This goes by the name of edge-entanglement spectrum
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correspondence. What truly lies behind, is that the large gauge transformations of

the Chern–Simons theory on a manifold with boundary give rise to a chiral current

algebra that generates the spectrum of the edge theory.

In chapter 3 we presented a story along very similar lines, that is valid in arbitrary

dimensions, and arbitrary topology — restricting, however, to abelian topological

orders. The setup is similar to chapter 2, namely p-surface net condensation topolo-

gical orders and their low-energy p-form BF theory description, but the result has a

di�erent �avour. Namely, we described how BF theory supports chiral gapless edge-

modes given by higher-form abelian gauge theories, in what we called chiral mixed
Maxwell theory. Moreover, we showed that the spectrum of this theory is generated

by a higher-dimensional generalisation of the chiral Kac–Moody algebras. We further

used this theory to extract an entanglement entropy. Firstly by studying the partition

function of chiral mixed Maxwell theory on replicated manifolds, and secondly by an

extended Hilbert space approach [176, 182], using the higher-dimenional chiral cur-

rent algebra. This resulted in divergent area and sub-area contributions, controlled

by geometric coe�cients, and subleading corrections. We argued that a higher-

dimensional Kitaev–Perskill / Levin–Wen subtraction scheme reveals a universal,

topological subleading correction generalising the topological entanglement entropy

(in a di�erent way than ETE presented above) to higher-dimensions. Finally, the

relation of the edge-mode theory to the entaglement entropy, via the current algebra,

presents a higher-dimensional edge-entanglement spectrum correspondence.

The structure of conformal �eld theories

In chapter 4 we stayed within the theme of higher-dimensional current algebras,

this time in conformal �eld theories. The key observation, originally due to [37], is

that unitary conformal �eld theories in even spacetime dimensions with continuous

higher-form symmetries have a realisation in terms of free higher-form gauge �elds.

We exploited this observation, including also continuous non-invertible symmetries,

to show that the spectrum of these theories is organised in terms of a current algebra,

very similar to the current algebras of chapter 3. The di�erence with chapter 3, is that

there the algebra comes from bulk gauge transformations pushed to the boundary,

while here the theory and its current algebra are intrinsically de�ned. This is akin

to the di�erence between two chiral bosons and one, non-chiral, compact boson.

Nonetheless, the techniques are similar. We constructed the representation theory

of this current algebra allowing us to compute the spectrum of higher-form abelian

gauge theory on arbitrary topology.1

1Actually in chapter 4 we did so for one-form gauge �elds, namely just free photons. However, the

spectrum for generic higher-form gauge �eld follows for free, by adapting the techniques of this chapter,

with chapter 3 and appendix B.1.
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Focussing in four-dimensional conformal �eld theories, we showed that the current

algebras organise not only the spectrum of states, but also that of nonlocal operators.

This led to a classi�cation of line operators in free Maxwell theory, into primary
and descendant operators, with respect to the organising current algebra. More

importantly, however, it led to our main result: a direct and explicit one-to-one corres-
pondence between states on S2 � S1 and line operators. While such a correspondence

was achieved in the presence of symmetries that organise the CFT, it adds an essential

piece to our understanding of conformal �eld theory beyond �at spacetimes.

5.2 Outlook

The research presented in this thesis provided just a miniscule piece of the puzzle of

understanding nature. Most important open questions remained unsolved, and most

of the combined understanding of humankind remained una�ected. Even so, several

interesting future research directions arose. Several of them are brie�y explored

in the discussion sections of the relevant chapters. In this �nal section, we further

expand on some of these ideas introduce a few new ones that were not previously

addressed.

Entanglement imprint of symmetries

Given the overall power of symmetries in quantum �eld theory, a natural question

to ask is whether they leave an imprint on the entanglement spectrum of a theory.

In other words, do symmetries constrain the nonlocal correlations of the states of

a theory? The telltale sign of such a constraint would be to identify a measure of

entanglement — an entanglement entropy — that is robust, meaning that it does

not depend on �ne geometric of the setup, and universal, meaning that quantum

�eld theories sharing the same symmetries would have to necessarily share this

entanglement. The interplay of symmetries and entanglement is studied in the

literature under the moniker of symmetry resolved entanglement (SRE) [318, 319].2

However, despite it being a potentially useful measure of entanglement, SRE does

not exhibit the desired features of robustness and universality. For example, in

two dimensional conformal �eld theories, SRE depends logarithmically on the ratio

between the length of the subregion and a non-universal cuto� scale. Moreover,

it actually only depends very weakly on the symmetry spectrum itself, a property

known as equipartition [322].3

A di�erent strategy is needed. What we would like to advocate for, here, is that the

2See also [320] for a review, and [321] for an approach incorportating non-invertible symmetries.
3To be more precise, the premise in SRE is that one calculates an entanglement entropy associated

to a sector of �xed charge of the theory. It turns out that this entropy depends on the charge only at

sub-sub-sub-subleading order.
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topological operator algebras of chapter 2 seem to be a promising direction. We can

argue for that in the following way. Consider a non-topological theory that enjoys

some symmetry. In the modern description (cf. section 1.1) this is encoded in a

set of topological operators that implement the symmetry. More precisely, it is an

algebra of topological operators. This algebra is shared by all theories enjoying the

same symmetry. Since we are interested in entanglement, we have to restrict this

algebra to a subregion, which leads directly to the subregion topological operator

algebras of chapter 2. The same techniques can be applied to de�ned a measure of

entanglement, analogous to essential topological entanglement, but associated with

the symmetries of the theory. Of course, di�culties may arise in the process. For

example, it is not entirely clear how to separate the topological subregion algebras,

from the non-topological ones, in a mathematically concrete way. This has to do with

the fact that topological subregion algebras form naturally a type I von Neumann

algebra, while the algebra of all operators, restricted to a subregion, is typically type

III. The di�culty then is that of identifying and separating a type I subalgebra inside

the full algebra. Nonetheless, assuming that these hurdles can be overcome, the result

will necessarily be a robust and universal measure of entanglement re�ecting the

symmetry structure of the theory.

One way to bypass the issues mentioned above, while still in keeping with the

same conceptual theme is to “grow an extra dimension.” The algebras of topological

operators are neatly packed in the symmetry topological �eld theory (symTFT) (cf.

subsection 1.1.4) of the theory. As a reminder for the reader, the symTFT is a one-

higher-dimensional topological �eld theory, associated with any quantum �eld theory

enjoying some symmetry. Its primary advantage is that it decouples the action of the

symmetries from the dynamical content of the theory under consideration. As such

one can exploit its power to obtain universal results. It would be very interesting

to apply the symTFT philosophy in the study of entanglement. The proposal is

that the essential topological entanglement, for a TQFT associated with a fusion

(higher-)category C (in the sense of [151]) contains robust information about the

entanglement spectrum of a quantum �eld theory with symmetry C . This proposal

is exactly commensurate with the ideas of the above paragraph.

The general statement is speculative. In order to turn it into a concrete physical

proposal, one needs to understand subregion topological operator algebras for objects,

morphisms, and higher-morphisms of a higher-category. However, besides the

arguments presented above there are indications about its correctness and usefulness,

at least in the case of invertible symmetries. Consider, for instance, four-dimensional

N D 4 SU.N / super-Yang–Mills theory. It enjoys a one-form Z
Œ1�
N symmetry. The

symTFT associated with it is a �ve-dimensional 2-form BF theory with level N .
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Consequently the essential topological entanglement for this theory is

E D # logN; (5.2.1)

where # is a number depending on the topology of the subregion of interest and the

rest of the Cauchy slice. Looking at this result from a holographic point of view, it

has the �avour of logarithmic corrections to black hole entropy, which are known to

be very robust. This approach o�ers a potential symmetry origin of this fact.

Chiral physics

Chiral higher-gauge �elds are higher-form gauge �elds with self-dual �eld strength.4

They appear prominently in various areas in theoretical physics. A single chiral

�eld carries anomalies. The simplest example is a single chiral scalar �eld in two

dimensions. It has an ’t Hooft anomalous U.1/ symmetry, while also exhibits gravita-

tional anomalies. The modern approach to treating anomalies consists in placing the

system at the boundary of an anomaly in�ow theory, or equivalently at the boundary

of an SPT phase. In this particular case, it has been known and well-appreciated for

decades, and is well-appreciated that placing an integer quantum Hall state5 on a

region with a boundary induces gapless chiral edge modes on its boundary. In the

higher-form case the most notable appearances of chiral gauge �elds is in string

and M-theory. In type IIB string theory they appear through the Ramond–Ramond

four-form, which is constrained to have self-dual �ux. In M-theory, a two-form gauge

�eld with self-dual �eld-strength propagates on the worldvolume of an M5-brane.

Relatedly, such a �eld appears in six-dimensional N D .2; 0/ superconformal �eld

theories. A full quantum mechanical understanding of these theories is imperative to

attest the viability of string or M-theory as a fully-�edged theory of quantum gravity.

While there are various results that tie together pieces of this puzzle, a complete

understanding has not yet been achieved.

The �rst problem one encounters when attempting to deal with chiral p-forms is

the lack of a Lagrangian description. There are two main approaches attempting at

bypassing this problem and treating chiral p-forms in a uni�ed way. Let us brie�y

review them, outlining their strengths and pitfalls, before proposing a new approach.

The �rst approach consists in a form of holomorphic factorisation [324–326]. Namely,

one considers the partition function of a non-chiral p-form and tries to write it as

Znon-chiral
‹D j‚j2; (5.2.2)

4Chiral p-form gauge �elds are allowed in d D 2pC 2 dimensions.
5The integer quantum Hall e�ect is an example of an invertible topological order. According to the

original de�nition of topological order [133] it is not an SPT phase. According to Kitaev’s later de�nition

[323], however, it is.
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for some function, ‚, of the coupling constant. Then ‚ bears immediately the

interpretation of a chiral-form partition function. The main problem with that is

that actually the non-chiral partition function takes the form of a sum of squares

(cf. chapter 4) rather than a single square. This is a manifestation of the anomaly

carried by the chiral form, namely its partition function should more properly be

thought of as a partition vector, indicating a relative theory. The second approach

is aimed at treating exactly this issue. Motivated by the quantum Hall case and

the more general understanding of relative theories living at the edge of a gapped

bulk, one writes a Chern–Simons-type topological theory in one dimension higher

and evaluates its partition function on a space with boundary, supporting the chiral

edge modes [237, 239, 327, 328]. While this is, to date, the most promising attempt,

it does not always work, and even when it does it depends on intricate choices in

the higher-dimensional theory, which seem unnatural from the lower-dimensional

point of view. For example, in d D 2 mod 4 dimensions, there is a bulk description

given by Chern–Simons theory, with a speci�c choice of quadratic re�nement of the

di�erential cohomology pairing. However, such a description is not straightforward

in d D 0 mod 4 dimensions, and indeed it is expected that the analogous description

of the Ramond–Ramond �eld in type IIB string theory should be through di�erential

K-theory [329].

For the chiral scalar there is a third approach, that is not shared with its higher-form

counterparts. That is, the chiral sclar enjoys a spectrum-generating chiral algebra.

This allows for a Hamiltonian quantisation, with which one obtains the full spectrum

of the theory on the circle and the partition function on the torus. In chapters 3

and 4 we showed that higher-form gauge �elds also enjoy such current algebras. In

those cases the algebra concerned either a non-chiral �eld or a doubled mixture of

chiral �elds. Nevertheless, this approach leads to a straightforward proposal. That is,

simply, to consider and quantise half of the chiral algebras presented there. This is,

in some sense, the link between the holomorphic factorisation approach and the bulk

approach to chiral physics. Furthermore, it gives a natural conjecture for the form

of the thermal partition function of a chiral p-form,6 namely one half of (3.3.30), or,

schematically:

Zchiral p-formŒS
1 �†� ‹D ‚†.qI k/

˜
.p/
† .q/

;

with the participating functions as de�ned in the body of the thesis. Moreover, this

approach may be appropriate in understanding non-abelian self-dual �elds, such as

the ones appearing in N D .2; 0/ superconformal �eld theories, by generalising the

current algebras to non-abelian versions thereof (see also the outlook in chapter 4).

6Of course, this depends explicitly on a choice of quantisation of the �uxes of the �elds. Such a choice

is natural with respect to a higher-dimensional theory, but ad hoc on the chiral theory, commensurate

with its relative nature.
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The space of CFTs

Another possibility relating to the aforementioned current algebras, and inspired by

well-known two-dimensional physics concerns the space of CFTs. More precisely,

the space of CFTs in the universality class of Maxwell theory. This is an analogue to

the space of two-dimensional CFTs with central charge c D 1. In two dimensions,

this space consists of (apart from three isolated points) two continuous branches,

corresponding to CFTs realised as a free compact scalar at some radius, and CFTs

realised by a Z2 orbifold of a free compact scalar. Moreover, the two branches meet

at a point of enhanced symmetry, which is intimately linked to the Berezinskii–

Kosterlitz–Thouless (BKT) [330–332] phase transition. From a modern point of

view these two branches correspond precisely to two-dimensional CFTs enjoying

a continuous U.1/ (zero-form) symmetry and a continuous abelian non-invertible

symmetry, while the BKT point corresponds to the unique CFT enjoying both.7

In chapter 4 we developed tools which are equipped to attack similar questions

in higher dimensions. Wearing the current algebra glasses, Maxwell theory is the

four-dimensional version of the circle branch of a compact scalar CFT, while the O.2/

gauge theory takes the roles of the orbifold branch. So one �rst question one may

ask, is whether the two branches meet, similarly to what happens in two dimensions.

Here however, there is an additional sensitivity related to the existence of multiple

spatial slices one can quantise the theory on. For example, there may be a point

where they meet when quantised say on a three-sphere, but not on a three-torus.

Or vice versa. Such a scenario would open a window for truly topological phase

transition, viewing Maxwell theory at this intersection point as the infrared �xed

point of a higher-dimensional BKT-like phase transition. Relatedly, one may ask,

whether these two branches exhaust the space of CFTs of this universality class,

like the c D 1 theories do in two dimensions. On the one hand, the expectation

is yes, given the general rarity of non-supersymmetric CFTs in higher dimensions.

On the other hand, an approach like the one that revealed the three isolated points

in two-dimensional c D 1 [293] may lead to CFTs outside the two branches. The

reason is simple: there are more allowed topological manipulations. For instance,

besides gauging a discrete symmetry, one can also higher-gauge [333], revealing new

non-invertible defects in the resulting theory that do not match those of either the

circle or the orbifold branch.

A related issue that this general approach reveals is related to the very notion of a

marginal operator. Let us recall the stroy from two dimensions. At a generic point

along the circle branch of the compact scalar the operator N@� @� is exactly marginal

and moves us along the circle branch. At the T-duality self-dual point, where the

7The story is subtle but beautiful. See [63] for details.
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symmetry is enhanced to SU.2/,8 two more marginal operators appear: e˙i
p
2� . A

linear combination of them, cos
�p

2�
�
is even under the charge-conjugation Z2

symmetry and upon survives upon its gauging. This is the operator that moves us

along the orbifold branch. Coming back to Maxwell theory, a very similar story

unfolds, only now the role of cos
�p

2�
�
is played by a charge-conjugation invariant

line operator:

V.
/ D exp

�
i

Z




a

�
˚ exp

�
�i
Z




a

�
; (5.2.3)

where a is the photon of Maxwell theory. This operator should have the task of

moving along the orbifold branch, or O.2/ gauge theory. What is the precise way

in which such operators are marginal, and most importantly, how does one couple

them consistently to a conformal �eld theory? There are two natural guesses: one is

to consider a non-genuine local operator, constrained to live on the curve 
 [63] and

couple that to the theory. In that case marginality is inherited from the usual marginal

property of local operators. Another one, is that we have to take a more radical

approach and write a theory of line operators, along the lines of [42]. Although

these last few paragraphs are mostly posing questions and do not propose or attempt

solutions, such questions indicate at a signi�cant gap in our understanding of CFTs

in higher-dimensions.

8We are treating only the holomorphic part here. The antiholomorphic part behaves similarly.
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A Appendices for chapter 2

A.1 Precision BF

In this appendix we take a closer look at BF theory in cases where the usual de�nitions

are insu�cient, such as when the theory is de�ned on a manifold with torsion. The

appropriate language to de�ne BF theory precisely is that of di�erential cohomology.

We use this language to write down the BF action on a generic manifold and give a

precise de�nition of the path-integral measure and its properties. For the following

we will take X to be a d -dimensional manifold, possibly with boundary and we will

denote by �@ W @X ,! X the embedding of the boundary.

When studying p-form gauge theories on a non-trivial manifold the p-form gauge

�eld is insu�cient to capture all the topological properties of the theory. Instead,

the relevant degrees of freedom can be captured by a .p C 1/-cocycle in di�erential

cohomology, LHpC1.X/1, i.e. a triplet LA D .A;NA; FA/, whereA is a regular p-cochain

(the gauge �eld), NA is a .p C 1/-cocycle (giving rise to the �ux, upon integration)

and FA is a closed .p C 1/-form (the �eld strength). The constituents of the triplet

are related by a constraint: FA D dA C NA. To de�ne actions, we also need a

product in di�erential cohomology, _ W LHp.X/ � LHq.X/ !
LHpCq.X/, that will

replace the usual wedge product of di�erential forms. For a gentle introduction on

the usage of di�erential cohomology in higher-gauge theories see [328], while for

a mathematically rigorous approach see [334]. The bottomline, is that using the

product _, one can write the BF action, on a generic d -dimensional manifold X , as a

pairing in di�erential cohomology:

SBF

h
LA; LB

i
��D
Z

X

LB _ LA; (A.1.1)

1More precisely, di�erential cohomology is categorical in spirit, so this is a workable model of it,

known as Deligne or Deligne–Beilinson cohomology.
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The above action action can we written in more user-friendly way as

SBF

h
LA; LB

i
D
Z

X

B�at ^ dAC
Z

PDŒNA�

B; (A.1.2)

where B�at is, as the name suggests the �at part of B , with FB�at D 0 and

PDŒNA� 2 Hd�p�1.X/ is the Poincaré dual of NA. Here let us note that while di�er-
ential cohomology is the correct framework to de�ne BF theory, in practice only the

torsion part of X can have a non-trivial e�ect. This is most readily seen in (A.1.2).

Since Hd�p�1.X/ Š Tord�p�1.X/˚ Zbd�p�1.X/, Dirac quantisation implies that the

non-torsion part of the second term contributes as 2� � integer, which is trivial upon

exponentiation. Therefore the action is e�ectively S D
R
X B ^dAC torsion, reducing

to the usual BF action, (2.2.1), whenever X has no torsion.

The �nal step to close this intellectual detour is to de�ne the BF path-integral. The

formal path-integral measure is

d� . LA; LB/ ��D D LAD LB e
iSBF

h
LA; LB

i

; (A.1.3)

where we are summing over di�erential cohomology elements. The functional

measure D LA instructs us to integrate over all closed .p C 1/-forms FA 2 �pC1
cl .X/,

integrate over all p-cochainsA 2 Cp.X/, and �nally sum over all .pC1/-cohomology

classes, NA 2 HpC1.X/, respecting the constraint FA D dACNA. Moreover, to avoid

overcounting we need to identify con�gurations that di�er by a �at .p � 1/-form

�eld that vanishes on the boundary. The latter we will do simply by dividing out by

the volume of these gauge transformations. The integral over FA is trivial, due to the

constraint, so we are left with
Z

LHpC1.X/

D LAOŒ LA� D
X

NA2HpC1.X IZ/

Z

Cp.X/

DA

vol
�
Gp.X/

�OŒ.A;NA; •ACNA/�;

(A.1.4)

where OŒ LA� is an arbitrary test-functional.

We will only be dealing with a continuous structure group, therefore, we can safely

regard A as a p-form. In this case, Gp is de�ned recursively as (taking G0 D ∅)

Gp.X/ ��D
˚
˛ 2 �p�1.X/

ˇ̌
��
@
˛ D 0

	.
Gp�1.X/: (A.1.5)

Note that the gauge transformations act in principle also on NA. Their action has

been, however, absorbed into constrainingNA to be in the cohomology rather than in

ZpC1.X I Z/. Obviously, the story is the same for D LB , with the appropriate changes

in form-degrees.

One important property of the measure (A.1.3), which we use in the main text, is that
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if we shift LA and LB by some �xed L̨ and Ľ respectively, the measure transforms as

d� . LAC L̨ ; LB C Ľ/ D d� . LA; LB/ eiSBF
h

L̨ ; LB
i

e
iSBF

h
LA; Ľ

i

e
iSBF

h
L̨ ; Ľ

i

: (A.1.6)

A.2 Proofs for section 2.3.

Proof of subregion electric-magnetic duality

Subregion electric-magnetic duality as described in subsection 2.3.1 is the statement

that the surface operators generating AmagŒR� are in 1-1 correspondence with surface

operators generating AelecŒR�. Let us prove it. To do so, it su�ces to show the

following:

Claim: The pairing

L W Hp.†/ � Hd�p�1.†/ −! R

.�; �/ 7−!

Z

�\�
1

is non-degenerate restricted to im iRp � coker iR
c

d�p�1, where, as explained in the main

text iR
k

W Hk.R/! Hk.†/ is the pushforward in homology of the map that embeds

R into † and similarly for Rc.

Proof. Let us assume the opposite of the claim. That is, either,

(i) There exists an O� 2 im iRp , such that L. O�; �/ D 0, for all � 2 coker iR
d�p�1 or

(ii) There exists a O� 2 coker iRp , such that L.�; O�/ D 0, for all � 2 im iR
d�p�1.

Note that since � 2 im iRp , it can always be homotopically deformed to lie entirely in

R. We can therefore restrict our attention to cycles restricted inR. Then �jR 2 Hp.R/,

while � jR 2 Hd�p�1.R; @R/.

Let us assume case (i). By Poincaré–Lefschetz duality, Hd�p�1.R; @R/ Š Hp.R n @R/
Š Hp

�
R
�
, we have

0 D
Z

O�jR\� jR
1 D

Z

O�jR
PDŒ� jR�; 8PDŒ� jR� 2 Hp

�
R
�
; (A.2.1)

where PDŒ�� denotes the Poincaré(–Lefschetz) dual of a cycle. In words, there exists a

p-cycle of R that is orthogonal to all p-cohomology classes of R, which is impossible.

The proof of (ii) is wholly similar, with the di�erence being that the conclusion is

that there exists a p-cohomology class in R orthogonal to all p-cycles of R, which is

again impossible. ■
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Proof of claim (2.3.9)

Claim: �
AmagŒR�

�c D U
n

OWwi

�i
; OVvj

� j

ˇ̌
ˇ �i; � j Q2Rc

o
� AmagŒR

c�: (A.2.2)

Proof. Consider �rst the commutant of the operators OVv
� 2 AmagŒR�. We want to

show that OWw
� commutes with all OVv

� 2 AmagŒR� i� � 2 im iR
c

p . Firstly note that by

the de�nition of the algebra, (2.2.34), OWw
� commutes with OVv

� i� L.�; �/ D 0. The

statement we need to prove reduces, then, to the following:

L.�; �/ D 0; 8� 2 im iRd�p�1 i� � 2 im iR
c

p : (A.2.3)

.)/ If � 2 im iR
c

p , it is clear that L.�; �/ D 0; 8� 2 im iR
d�p�1, since we can

homotopically move � and � to lie within the interior of R and Rc respectively.

.(/ We will prove the only if direction ad absurdum. For that, suppose that � …
im iR

c

p . Then, since Hp.†/ D im iR
c

p ˚ coker iR
c

p , � 2 coker iR
c

p . Restricted to R

then, �jR 2 Hp.R; @R/ and � jR 2 Hd�p�1.R/. By Poincaré–Lefschetz duality,

Hp.R; @R/ Š Hd�p�1.R n @R/ D Hd�p�1�R
�
and we have then,

0
ŠD L.�; �/ D L.�jR ; � jR/ D

Z

� jR
PDŒ�jR�; 8� 2 im ipR : (A.2.4)

where, PDŒ�jR� 2 Hd�p�1�R
�
is the Poincaré–Lefschetz dual of �jR. That is

to say, PDŒ�jR� must be orthogonal to all .d � p � 1/-cycles of R, which is

impossible. Therefore the assumption that � … im iR
c

p was absurd.

The proof for the commutant of operators OWw
� 2 AmagŒR� is wholly similar, concluding

thus the proof of the claim. ■

Proof of claim (2.3.15)

Claim:

.AelecŒR�/
c D U

n
OWwi

�i
; OVvj

� j

ˇ̌
ˇ �i; � j✓Q2R

o
D AelecŒR

c�: (A.2.5)

Proof. Consider �rst the commutant of the operators OVv
� 2 AelecŒR�. We want to

show that OWw
� commutes with all OVv

� 2 AelecŒR� i� � 2 coker iRp . As before, by the

de�nition of the algebra, (2.2.34), the statement we need to prove reduces to:

L.�; �/ D 0; 8� 2 coker iR
c

d�p�1 i� � 2 coker iRp : (A.2.6)

.(/ We will �rst prove the only if direction. This we will prove again by contradic-

tion. For that, suppose that � … coker iRp . Then, � 2 im iRp . Restricting to R we
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have �jR 2 Hp.R/ and � jR 2 Hd�p�1.R; @R/. By Poincaré–Lefschetz duality,

Hd�p�1.R; @R/ Š Hp.R n @R/ D Hp
�
R
�
hence,

0
ŠD L.�; �/ D L.�jR ; � jR/ D

Z

�jR
PDŒ� jR�; 8� 2 coker ipR : (A.2.7)

where, PDŒ� jR� 2 Hp
�
R
�
is the Poincaré–Lefschetz dual of � jR. That is to

say, every p-cocycle in the interior of R must be orthogonal to �jR, which is

impossible. Therefore the assumption that � … coker iR
c

p was absurd.

.)/ The if direction follows immediately from subregion electric-magnetic duality,

proven above, and the fact that the rank of L is bp.†/ (since it is inverse to Gp

as a matrix). The restrictions of L to the subspaces im iRp � coker iR
c

d�p�1 and

coker iRp � im iR
c

d�p�1 saturate the rank of L, hence the rank of L restricted to

coker iRp � coker iR
c

d�p�1 is zero. In other words for any � 2 coker iRp , L.�; �/ D
0, 8� 2 coker iR

c

d�p�1, concluding the proof.

The proof for the commutant of operators OWw
� 2 AelecŒR� is wholly similar, concluding

thus the proof of the claim. ■

Counting the magnetic and electric centers

Let us �rst focus on the magnetic center. Consider, as in the main text, the pushout

square that embeds @R into † through R and Rc:

@R R

Rc †:

jR

iR

iR
c

jRc `@R

Each of these maps induces a push-forward on the homology,

jR
.c/

k W Hk
�
@R.c/

�
! Hk

�
R.c/

�
; (A.2.8)

iR
.c/

k W Hk
�
R.c/

�
! Hk.†/: (A.2.9)

The operators in the magnetic algebra of R, AmagŒR�, are generated by surface op-

erators whose cycles lie in the image of iRp and iR
d�p�1 and similarly for AmagŒR

c�,

replacing R by Rc. The cycles generating the center then lie in im iRp \ im iR
c

p and

im iR
d�p�1 \ im iR

c

d�p�1. Since R and Rc share only @R, it is evident that the cycles

generating the center lie in im
�
iR ı jR

�
k

Š im
�
iR

c ı jRc�
k

D�� im `@Rk , as illustrated

by the above pushout square. Therefore, the dimension of the magnetic center is

ˇ̌
ZmagŒR�

ˇ̌
D jdetKj

�
hp
magChd�p�1

mag

�

; hkmag D dim im `@Rk : (A.2.10)
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Since @R � †, we can calculate dim im `@R
k

by the long exact sequence of relative

homology [335]:

� � � ! Hk.@R/
`k
! Hk.†/

rk
! Hk.†; @R/

ık�1
! Hk�1.@R/! � � � : (A.2.11)

Using exactness of the sequence, we �nd that

dim im `k D .�1/k�1
k�1X

nD0
.�1/n dimHn.@R/

C .�1/k
kX

nD0
.�1/n

�
dimHn.†/ � dimHn.†; @R/

�
; (A.2.12)

which leads to (2.3.12).

It is useful to pause at this point and illustrate how the bulk dependent terms of

(A.2.12) ensure the correct counting of operators when † is topologically trivial.

For example, consider the case when † D S2, R is collection of q disks such that

@R D
Fq

S1, and let k D 1. In this case, since there are no non-trivial 1-cycles on

S2, there are no 1-cycle operators in AŒ†� to count. We should �nd dim im `1 D 0.

Applying (2.3.12) we �nd

dim im `1 D dimH0.@R/ � dimH0
�
S2
�

C dimH0
�
S2; @R

�
C dimH1

�
S2
�

� dimH1
�
S2; @R

�

D q � 1C dimH0
�
S2; @R

�
� dimH1

�
S2; R

�
(A.2.13)

To calculate the dimensions of the relative homologies, we note that Hn.†; @R/ Š
eHn.†=@R/whereeHn.�/ denotes reduced homology and†=@R is the quotient space. By

de�nition of the reduced homology dimeH0
�
S2=@R

�
D 0 and we can easily calculate

dimeH1
�
S2=@R

�
D q � 1, as illustrated in �gure A.1. Thus indeed

dim im `1 D 0 (A.2.14)

in this case.
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Figure A.1: (Left) The setup of the above example: † D S2 and R D
Fq

B2. (Right) †=@R.

Coming back to the general case, we can now sum the hpmag and hd�p�1
mag , to �nd

hmag ��D dim im `@Rp C dim im `@Rd�p�1

D 2

p�1X

nD0
.�1/p�1�n dimHn.@R/C .�1/p�1¦.@R/C dimHp.†/C .�1/p¦.†/

C
pX

nD0
.�1/p�1�n dimHn.†; @R/C

d�p�1X

nD0
.�1/d�p�n dimHn.†; @R/

D 2

p�1X

nD0
.�1/p�1�n dimHn.@R/C .�1/p�1¦.@R/C dimHp.†/C .�1/p¦.†/

C .�1/p�1¦.†; @R/ � dimHp.†; @R/

C .�1/d�p�1 .dimHd�1.†; @R/ � dimH0.†; @R//

D 2

p�1X

nD0
.�1/p�1�nbn.@R/C

�
bp.†/ � dimHp.†; @R/

�

C .�1/d�p�1 .dimHd�1.†; @R/ � dimH0.†; @R// : (A.2.15)

which leads to (2.3.13). In the second line above we have used Hn.�/ Š HD�n.�/
for absolute homologies on D-dimensional compact spaces. In the third line we’ve

used the similar relation for the relative homology Hn.†; @R/ which holds for all de-

grees except the top and bottom degrees, Hd�1.†; @R/ and H0.†; @R/, respectively
2.

2To see that, we note again that Hn.†; @R/ Š eHn.†=@R/. For the reduced homology, it holds that
eHn.�/ Š Hn.�/, whenever n ¤ 0. On †=@R, one can de�ne a non-degenerate pairing L W Hn.†=@R/�
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Additionally,

¦.†; @R/ ��D
d�1X

nD0
.�1/n dimHn.†; @R/

is the relative Euler characteristic of the pair .†; @R/, and ¦.@R/�¦.†/C¦.†; @R/ D
0, as it is simply the rank-nullity relation of (A.2.11). Lastly, we’ve used dimHn.�/ D
dimHn.�/ � bn.�/ for absolute homologies on compact spaces.

For counting the dimension of ZelecŒR�, let us show

hpelec D hd�p�1
mag : (A.2.16)

That is, the number of p-cycles, �, such that �✓Q2 R;✓Q2Rc is equal to the number of

.d � p � 1/-cycles, � with � Q2R; Q2Rc. To show this we need is su�ces to show the

following.

Claim: The pairing

L.�; �/ ��D
Z

�\�
1 (A.2.17)

is non-degenerate restricted to .coker iRp \ coker iR
c

p / � .im iR
d�p�1 \ im iR

c

d�p�1/.

Proof. Suppose not. That is either

(i) there exists a O� 2 coker iRp \ coker iR
c

p such that L. O�; �/ D 0,

for all � 2 im iR
d�p�1 \ im iR

c

d�p�1 or

(ii) there exists a O� 2 im iR
d�p�1 \ im iR

c

d�p�1 such that L.�; O�/ D 0,

for all � 2 coker iRp \ coker iR
c

p .

If we suppose (i), then there is no homotopic obstruction to deforming O� to either

entirely R or Rc which contradicts it lying in the cokernels of iR and iR
c
. So let us

suppose (ii) and pick a O� satisfying (ii). Because L is a non-degenerate pairing on

Hp.†/ � Hd�p�1.†/ there exists a L� 2 Hp.†/ such that L. L�; O�/ ¤ 0. By assumption,

L� must lie in either im iRp or im iR
c

p and so is completely deformable within † to

either R or Rc. But then L. L�; O�/ must actually vanish because O� , which lies in

im iR
d�p�1 \ im iR

c

d�p�1, can be deformed to the respective complementary region so

that it has no intersection with L�. This contradiction completes the proof that L is

non-degenerate on .coker iRp \ coker iR
c

p / � .im iR
d�p�1 \ im iR

c

d�p�1/. ■

Similar arguments show that hd�p�1
elec D hpmag. As a consequence

jZelecj D
ˇ̌
Zmag

ˇ̌
: (A.2.18)

HD�n.†=@R/ ! R, as L.˛; ˇ/ ��D
R

˛\ˇ 1. This renders Hn.†=@R/ Š HD�n.†=@R/ whenever

n … f0;Dg and shows the desired statement for relative homology.
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A.3 Decomposition of the reduced density matrix

Given a state

� D
X

v;v0

�v;v0

ˇ̌
v
˛̋
v0 ˇ̌ ; ��

v;v0 D �v0;v;
X

v

�v;v D 1; (A.3.1)

wewish towrite down the reduced densitymatrix, �R, corresponding to the subregion

algebra, AmagŒR�. The general ansatz for this reduced density matrix is given by

�R D
X

fw
R
i g

X
n
v

R
j

o
Cfw

R
i g;

n
v

R
j

o
Y

�i Q2R

OWw
R
i

�i

Y

� j Q2R

OVv
R
j

� j
; (A.3.2)

for some coe�cients C . We notate the charges wR and vR to indicate that they are

for surface operators deformable into R. Given that OWwiD0

�i
and OVvjD0

� j
both act as

the identity, it will be notationally useful to extend
˚
wR

i

	
and

n
vRj

o
to full charge

vectors wR 2 .ƒA/h and vR 2 .ƒB/h, respectively, with zero entries for all cycles not

deformable into R:

wR
i D vRj D 0 8�i; � j✓Q2R: (A.3.3)

We then write

�R D
X

wR

X

vR

CwR;vR
OWwR OVvR

: (A.3.4)

Hermiticity and unit-trace (with respect to H†) imply

C �
wR;vR D C�wR;�vR ei�.v

R;wR/; (A.3.5)

and

C0;0 D .dimH†/
�1 D jdetKj�bp.†/ � N �1

† ; (A.3.6)

respectively. We can solve for the coe�cients CwR;vR in terms of the coe�cients of

the state, �v;v0 , by enforcing

Tr .�R OR/ D Tr .�OR/ D
X

v;v0

�v;v0

˝
v0 ˇ̌OR

ˇ̌
v
˛
; (A.3.7)

for all OR 2 AmagŒR�. By considering a generic element OR D OW OwR OV OvR
(for �xed

OwR and OvR) we can easily work out

CwR;vR D N �1
†

X

Nv
� Nv; Nv�vRe�i�. Nv;wR/: (A.3.8)

Thus we can write a generic reduced density matrix as

�R D N �1
†

X

wR

X

vR

X

Nv
� Nv; Nv�vRe�i�. Nv;wR/ OWwR OVvR

: (A.3.9)
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In particular for a pure state (as in subsection 2.3.4),

� D  v 
�
v0

ˇ̌
v
˛̋
v0 ˇ̌ ; (A.3.10)

the reduced density matrix is written as

�R D N �1
†

X

wR

X

vR

X

Nv
 Nv 

�
Nv�vRe

�i�. Nv;wR/ OWwR OVvR

: (A.3.11)
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B.1 Partition functions of higher-form gauge theories

In this appendix, we provide details on the computations of the edge-mode partition

function of Section 3.3.

B.1.1 The partition function of .p � 1/-form Maxwell theory

First we will quantise, by performing the Euclidean path integral, .p � 1/-form

Maxwell theory on Md�1 D S1
ˇ

� Yd�2, where ˇ is the radius of S1. Its action is

simply

SŒa� D 1

2
k��kf k2 ��D

1

2
k��

Z

M

f ^ ?f; (B.1.1)

where k is a dimensionless constant, � is an energy scale and � D d � 1 � 2p.

f 2 �
p
cl.M/ is a closed p-form on M and is identi�ed with the curvature of a

.p � 1/-form gauge �eld a 2 �p�1.M/. As such, it can be Hodge-decomposed as

f D fh C da, where fh 2 Harmp.M/ is a harmonic form, which we can (uniquely)

choose to be orthogonal to da. fh labels the instantons of the theory. Moreover, Dirac

quantisation condition, implies that fh takes values in cohomology with coe�cients

in 2�Z: fh 2 Hp.M I 2�Z/. The partition function of .p � 1/-form Maxwell theory

onM takes the form

Z
.p�1/
MaxwellŒM � D ZinstŒM �ZoscŒM �; (B.1.2)

where

ZinstŒM � ��D
X

fh2Hp.M I2�Z/

exp

�
�1
2
k��kfhk2

�
(B.1.3)

ZoscŒM � ��D
Z

Da

vol
�
Gp�1

� exp
�

�1
2
k��kdak2

�
: (B.1.4)
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In the above, Gp�1 is the group of reducible gauge transformations, characteristic

of higher-gauge theories, generated by shifts by closed .p � 1/ forms, modulo their

own gauge transformations.

In order to evaluate the above partition function, it will be helpful to introduce the

topological basis of harmonic forms,
n
�
.k/
i

obk.M/

iD0
de�ned as in (3.2.14). On M D

S1
ˇ

� Y this is

n
�
.k/
i

obk.M/

iD0
D
�n
�
.k/
i

obk.Y /

iD0
;
n
� ^ � .k�1/

i

obk.Y /

iD0

�
; (B.1.5)

where � ��D .2�ˇ/�1 volˇ is the unique normalised harmonic 1-form on the S1
ˇ
. The

Gram matrix for this basis:

�
GM
k

�
ij

��D
Z

M

�
.k/
i ^ ?� .k/j ; (B.1.6)

becomes, with the above decomposition

GM
k D

 
2�ˇGY

k

.2�ˇ/�1GY
k�1

!
; (B.1.7)

with GY
k
being the analogous Gram matrix for Y , de�ned over the basis

n
�
.k/
i

obk.M/

iD0
.

The instanton, fh, can be therefore written as

f D 2�ni�
.p/
i C 2�mj� ^ � .p/j ; (B.1.8)

with ni; mj 2 Z. Combining ni and mj into vectors n and m of length bp.Y / and

bp�1.Y / respectively, the instanton contribution, (B.1.3), reads:

ZinstŒM � D
X

n2Zbp.Y /

m2Z
bp�1.Y /

exp

�
����k

�
2�ˇn � GY

p � n C 1

2�ˇ
m � GY

p�1 � m

��
: (B.1.9)

We can Poisson resum the sum over m to obtain

ZinstŒM � D .2�ˇ/
1
2 bp�1.Y / det

�
k��GY

p�1
�� 1

2‚
h
qI k zGY

p

i
‚
h
qI k�1 zGY

d�p�1

i
;

(B.1.10)

where q ��D e�ˇ�, the Siegel-type Theta functions are de�ned as in (3.3.29), the tilded

versions of the Gram matrices are their dimensionless incarnations, having absorbed

the relevant powers of �, and we have also used the duality GY
k

D
�
GY
d�2�k

��1
.

Coming to the oscillator contribution, this is given by [220, 236, 336]

ZoscŒM � D
p�1Y

kD0
det
�
��kGM

k

� 1
2 .�1/p�k�1

det 0.4k/
�
2 .p�k/.�1/p�k

; (B.1.11)
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where 4k ��D dd� C d�d is the Hodge Laplacian on k-forms onM . and det 0 excludes
zero-modes. These are packaged in the �rst factor, the alternating product over GM

k
.

In our case,M D S1
ˇ

� Y , we can vastly simplify this expression. Applying (B.1.7) in

the zero-mode product we get

p�1Y

kD0
det
�
��kGM

k

� 1
2 .�1/p�k�1

D .2�ˇ/�
1
2 bp�1.Y /C.�1/p�1

Pp�2
nD0

.�1/nbn.Y /�

� det
�
k��GY

p�1
� 1

2 : (B.1.12)

Moving to the contribution of the Laplacian, note that its spectrum onM D S1
ˇ

� Y
is

spec.4k/ D
(�
2�n

ˇ

�2
C �nk

; n 2 Z; nk 2 Nk

)

[
(�
2�n

ˇ

�2
C �nk�1

; n 2 Z; nk�1 2 Nk�1

)
; (B.1.13)

where Nk is the index-set of the eigenvalues of the k-form Laplacian on Y . From this

it follows that the determinant of the Laplacian takes the form

det 04k D
Y

n2Z

Y

nk2Nk
�

2�n
ˇ

�2
C�nk

¤0

 �
2�n

ˇ

�2
C �nk

!
�
Y

n2Z

Y

nk�12Nk�1
�

2�n
ˇ

�2
C�nk�1

¤0

 �
2�n

ˇ

�2
C �nk�1

!
D

D ˇ2.bk.Y /Cbk�1.Y //

2
4 Y

nk2N
�
k

sinh2
�
1

2
ˇ

q
�nk

�3
5� (B.1.14)

�
Y

nk�12N
�
k�1

sinh2
�
1

2
ˇ

q
�nk�1

�
; (B.1.15)

where we zeta-regularised the in�nite products1, using the spectral zeta-function,

—
.k/
Y .s/, for the k-form Laplacian on Y , and N �

k
excludes the zero-modes. Lastly, note

that N �
k

D N ?
k

˚ N
k
k

D N ?
k

˚ N ?
k�1; meaning that the non-zero spectrum of the

full Laplacian splits into a direct sum of the non-zero spectrum of the transversal

Laplacian plus that of the longitudinal Laplacian. The latter is equal to the spectrum

1Since we are interested in computing a path integral, we throw purely numerical coe�cients, in

particular various �oating powers of 2, in this and the following expressions.
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of the transversal Laplacian acting on .k � 1/-forms. With that, if we denote

Sk ��D
Y

nk2N
�
k

sinh2
�
1

2
ˇ

q
�nk

�

D
Y

nk2N
?
k

sinh2
�
1

2
ˇ

q
�nk

�
�

Y

nk2N
?
k�1

sinh2
�
1

2
ˇ

q
�nk�1

�

D�� S?
k S

?
k�1;

we have that

p�1Y

kD0

�
det 04k

� 1
2 .p�k/.�1/p�k

D ˇ.�1/
p
Pp�1

kD0
.�1/kbk.Y /

p�1Y

kD0
.SkSk�1/

�
2 .p�k/.�1/p�k

D ˇ.�1/
p
Pp�1

kD0
.�1/kbk.Y /

p�1Y

kD0
S

�
2 .�1/p�k

k

D ˇ.�1/
p
Pp�1

kD0
.�1/kbk.Y /

�
S?
p�1

�� �
2

D ˇ.�1/
p
Pp�1

kD0
.�1/kbk.Y /

�
˜
.p�1/
Y Œq�

��2
; (B.1.16)

where we used (3.3.24), to express the result in terms of the .p � 1/-form � function

associated with Y . Putting everything together, the oscillator contribution to the

partition function is

ZoscŒM � D .2�ˇ/
1
2 bp�1.Y / det

�
k��GY

p�1
� 1

2

�
˜
.p�1/
Y Œq�

��2
; (B.1.17)

Combining with the instanton contribution, all the factors of ˇ and k exactly cancel

and we get:

Z
.p�1/
Maxwell

h
S1ˇ � Y

i
D
‚
h
qI k zGY

p

i

˜
.p�1/
Y Œq�

‚
h
qI k�1 zGY

p�1
i

˜
.d�p�2/
Y Œq�

; (B.1.18)

where we also used the fact that the eta function associated with .p � 1/-forms is

equal to that for .d �p�2/-forms, in order to write the result in a symmetric fashion.

B.1.2 The partition function of chiral mixed Maxwell theory

Now that we have all the details of the vanilla, higher-form gauge theory under our

belt, we will quantise the chiral mixed Maxwell theory onM D S1
ˇ

� Y . This is a
theory with action

SŒA� D k��

2
kAk2 D k���

2
kBk2; (B.1.19)
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where A and B are closed p- and .d � p � 1/-forms, respectively, satisfying the

generalised chiral condition B C ��.�1/.d�p�1/.pC1/ ? A
ŠD 0. In the main text

we argued that this leads to fractionally quantised �uxes along cycles involving the

thermal circle. Let us elaborate on that. Dirac quantisation imposes that magnetic

and electric �uxes are quantised as:

ˆA

magŒ�� ��D
1

2�

Z

�

A 2 Z; ˆA

elecŒ
���D
k

2�

Z




?A 2 Z; (B.1.20)

ˆB

magŒ
� ��D
1

2�

Z




B 2 Z; ˆB

elecŒ����D
k

2�

Z

�

?B 2 Z; (B.1.21)

for all cycles � 2 Hp.Y / and 
 2 Hd�p�1.Y /. Note that the electric �uxes are de�ned
including a factor of the coupling constant, here k [274]. The generalised chiral

condition then requires that magnetic �uxes of A along cycles of the form S1
ˇ

� z�, for
z� 2 Hp�1.Y / are quantised in units of 1

k
. Consequently, decomposing A, as in the

Maxwell story, as A D AhCda, where Ah is harmonic and then further decomposing

Ah in terms of the basis (B.1.5), we get

Ah D 2�ni�
.p/
i C 2�

k
mj� ^ � .p/j : (B.1.22)

From here on, the story is completely analogous to the vanilla Maxwell case. The

instanton contribution is

ZinstŒM � D .2�ˇ/
1
2 bp�1.Y / det

�
k��GY

p�1
�� 1

2‚
h
qI k zGY

p

i
‚
h
qI k zGY

d�p�1

i
: (B.1.23)

The oscillators are completely una�ected by this story. It is cleaner to write their

contribution in terms of the magnetic photon, za, such that dza D k��� ? da. It is, of
course, not necessary to do that; this way we will just avoid the necessity of adding

a counterterm. Doing so results in an oscillator contribution as

ZoscŒM � D .2�ˇ/�
1
2 bp�1.Y / det

�
k��GY

p�1
� 1

2

�
˜
.p�1/
Y Œq�

��2
: (B.1.24)

In total, the partition function reads:

Z
.p�1;d�p�2/
chiral

h
S1ˇ � Y

i
D
‚
h
qI k zGY

p

i

˜
.p�1/
Y Œq�

‚
h
qI k zGY

d�p�1

i

˜
.d�p�2/
Y Œq�

: (B.1.25)

B.2 Laplacians, zeta functions, and heat kernels

In this appendix, we discuss some spectral properties of the Hodge Laplacian.
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Let .Y; g/ be a closed, compact, .d � 2/-dimensional Riemannian manifold and let

4` ��D d�d C dd� be the Hodge Laplacian acting on �`.Y /. Denoting by spec0 the
non-zero-mode spectrum, it holds that

spec0 .4`; X/ D spec0
�
4`

ˇ̌
ˇ
ker d�

; Y
�

˚ spec0
�
4`

ˇ̌
ˇ
ker d

; Y
�

D

D spec0
�
4`

ˇ̌
ˇ
ker d�

; Y
�

˚ spec0
�
4`�1

ˇ̌
ˇ
ker d�

; Y
�
: (B.2.1)

Therefore, we will focus on the spectral properties of the operator 4`

ˇ̌
ˇ
ker d�

which

we will call □`. Consider the eigenvalue equation for □`:

□`'n D �n'n; n 2 N`; (B.2.2)

with N` being a countable set. We can de�ne the spectral zeta function of □`:

—
.`/
W .s/ ��D

X

n2N
�
`

��s
n ; s 2 C; with Re s >

d � 2
2

; (B.2.3)

where N �
`

��D fn 2 N` j �n ¤ 0g. For ` D 0 this reduces to the well-known

Minakshisundaram–Pleijel zeta function [337].

It will be useful to introduce the heat kernel:

K
.`/
Y .t/ ��D tr

�
e�t□p

�
D
X

n2N`

e�t�n : (B.2.4)

The heat kernel admits a small-t expansion, as

K
.`/
Y .t/ D 1

.4�t/
d�2

2

1X

kD0
	
.`/

k
tk ; (B.2.5)

where 	
.`/

k
are given by integrals of geometric data of W . We can now invoke a

Mellin transform in order to write

��s
n D 1

�.s/

Z 1

0

dt e�t�n t s�1; (B.2.6)

and hence

—
.`/
W .s/ D 1

�.s/

Z 1

0

dt t s�1
�
K
.`/
Y .t/ � dimker□`

�
D��

1

�.s/

Z 1

0

dt t s�1 zK
.`/
Y .t/:

(B.2.7)

where dimker□` counts the number of of zero-modes.
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We will now use the following trick. We will split the above integral as follows.

—
.`/
W .s/ D 1

�.s/

Z 1

0

dt ‚.t/ t s�1 zK
.`/
Y .t/C 1

�.s/

Z 1

0

dt .1 �‚.t// t s�1 zK
.`/
Y .t/;

(B.2.8)

where ‚.t/ is the Heaviside Theta function.2 The merit of this is that the second

integral in (B.2.8) is now manifestly analytic in s, while the �rst integral is explicitly

computable. Plugging in the asymptotic expansion, (B.2.5), of K
.`/
Y , into the �rst

integral, one gets

—
.`/
Y .s/ D

1X

kD0

	
.`/

k

.4�/
d�2

2 �.s/

1

s � d�2
2

C k
C dimker□`

s�.s/
� H.s/

�.s/
; (B.2.9)

where H.s/ is analytic in s.

From this we get the pole structure of the spectral zeta function. It has simple poles

at s D d�2
2

� k, with k 2 Z⩾0, with residue

Res —.`/Y

�
d � 2
2

� k
�

D
	
.`/

k

.4�/
d�2

2 �
�
d�2
2

� k
� : (B.2.10)

When d is even, the spectral zeta-function has poles only at s > 0, i.e. k 2n
0; 1; � � � d�2

2
� 1

o
, because of the Gamma function in the denominator.

Moreover, notice that at s D 0, we have

—
.`/
Y .0/ D

8
<
:

	
.`/
d�2

2

� dimker□`; when d is even;

� dimker□`; when d is odd:
(B.2.11)

This follows immediately from �.s/ � 1
s
as s ! 0, since the analytic pieceH.s/=�.s/

vanishes as s ! 0; the topological piece, � dimker□`, is universal, and the �rst term

only contributes when ` is even. Finally we have that dimker□` D dimker4` D
b`.Y /, so

—
.`/
Y .0/ D

8
<
:

	
.`/
d�2

2

� b`.Y /; when d is even;

� b`.Y /; when d is odd:
(B.2.12)

2For continuity purposes, one could use a smoothened version of the Heaviside Theta function.
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C Appendices for chapter 4

C.1 The transversal Laplacian

In this appendix we will give some outline some spectral properties of the transversal

Laplacian on three dimensional manifolds, which we denote generically by †, and,

subsequently, explicitly construct its spectrum on †r D S2r � S1.

C.1.1 Spectral properties

First, by transversal Laplacian, on p-forms, on a d -dimensional, closed manifoldM ,

we mean:

□
M
p

��D 4
ˇ̌
ˇ̌
�p.M/\ker d�

; (C.1.1)

where 4 denotes the Hodge Laplacian, 4 D
�
d C d�

�2
. On non-zero-modes, the

transversal Laplacian is equivalent to d�d on p-forms. However these operators have,

potentially, di�erent number of zero-modes. We care about □Mp which has

dimker□Mp D dimker4p D bp.M/; (C.1.2)

where bp.M/ is the p-th Betti number ofM . The zero-modes are given, simply, by the

harmonic p-forms onM . Finally, the transversal Laplacian is a self-adjoint operator,

and hence, its eigenforms provide a basis for coclosed (also known as transversal)

p-forms. By Poincaré duality, the spectrum of the Hodge Laplacian for 0 ⩽ p ⩽ d is

determined by the spectrum of the transversal Laplacian for 0 ⩽ p ⩽
j
d�1
2

k
.

Let us now focus on three dimensional manifolds, †, one-forms (i.e. p D 1), and

non-zero-modes.1 There is another seld-adjoint operator acting on one-forms, the

1The story can be adapted, more generally, to p-forms on .2pC 1/-dimensional manifolds, mutatis

mutandis [338].
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Beltrami operator:

?d W �1.†/! �1.†/: (C.1.3)

The transversal Laplacian is simply the square of the Beltrami operator, □†1 D .?d/2.

As such, they commute, so they can be diagonalised simultaneously, and, moreover,

the non-zero spectrum of the transversal Lalpacian consists of the squares of the

eigenvalues of the Beltrami operator. Since ?d is self-adjoint its eigen-one-forms

provide an (orthonormalisable) basis of coclosed one-forms.

On a generic closed, oriented three-dimensional manifold, †, the Beltrami operator

has simple spectrum [299]. The same holds for the Hodge Laplacian [299] with an

appropriate clari�cation on the word generic.2 For most of our applications, and

importantly, for the state-operator correspondence, we are interested in very non-

generic manifolds, with high-degree of symmetry, and therefore degeneracy, such as

products of spheres. There, the spectrum of the Hodge Laplacian is actually (at least)

twofold degenerate. On S3 it is a classic result, see e.g. [340–342] for an account of it.

On S2 � S1, we construct explicitly the spectrum below, in appendix C.1.2. Finally,

on T3, it is straightforward to construct the spectrum and see that it is spanned by

exp.ik � �/ !.k/:

In the above, � D .�1; �2; �3/ are the three angles of the torus, k D .k1; k2; k3/, with

ki D ni

Li
, where ni 2 Z and Li are the radii of each circle, and !.k/ D !.k/i dx

i is

an eigenform — or equivalently !.k/i is an eigenvector — of the matrix i "ij`k
`. It is

then easy to verify that there are two such eigenvectors, both corresponding to the

eigenvalues kkk2 for the transversal Laplacian, verifying its twofold degeneracy.

C.1.2 Eigenforms and eigenvalues on S2
� S1

WNow we move on to constructing the spectrum on †r D S2r � S1. We use the

following metric and coordinates:

ds2†r
D r2

�
d�2 C sin � d'2

�
C d�2 ; (C.1.4)

where ' 2 Œ0; 2�/ and � 2 Œ0; �/ are the angles on the sphere and � 2 Œ0; 2�/ is the
angle on the circle. We will denote the eigen-one-forms of □†r

1 as ˆ, subscripted by

their various quanutm numbers.

Zero-mode

The easiest to construct is the zero-mode. This is given by the unique harmonic form

on †r , d�. Therefore, the normalised zero-mode is given by

ˆ0 ��D
d�p

vol.†r /
D d�

2
p
2� r

: (C.1.5)

2More precisely, it is simple on the complement of a codimension-1 set of metrics, but not on the

complement of a codimension-2 set of metrics [339].
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Non-zero modes

Let us introduce some convenient notation. First, we write

Tk.�/ ��D

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

1p
�
cos.k�/; k > 0;

1p
2�
; k D 0;

1p
�
sin.jkj�/; k < 0;

(C.1.6)

with � 2 Œ0; 2�/. These are the real, orthonormal eigenfunctions of the Laplacian on

S1, with eigenvalue k2:

□
S1

0 Tk.�/ D �r2Tk.�/ D k2 Tk.�/: (C.1.7)

Similarly, we denote by ‡`m.�; '/ the real spherical harmonics on S2r :

‡`m.�; '/ ��D
N`m

r
Pjmj
`
.cos �/

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

cos.m'/; m > 0;

1; m D 0;

sin.jmj'/; m < 0;

(C.1.8)

where,

N`m D .�1/m
p
2

s
2`C 1

4�

.` � jmj/Š

.`C jmj/Š ; (C.1.9)

and Pm
`
.x/ are the associated Legendre polynomials. In the above, `2Z⩾0 and m are

integers, with �` ⩽ m ⩽ `. These are the real, orthonormalised eigenfunctions of

the Laplacian on S2r :

□
S2

r

0 ‡`m.�; '/ D �r2‡`m.�; '/ D `.`C 1/

r2

� �D

�`m.r/

‡`m.�; '/: (C.1.10)

The degeneracy of the eigenvalue �`m.r/ is

D`m D 2`C 1: (C.1.11)

Using these two building blocks, we can build all the non-zero eigen-one-forms.

Momentumless

A �rst family is given by eigenforms with no momentum along the S1, i.e. k D 0.

These take the form

ˆ
.1/

`m
��D ‡`m.�; '/

d�p
2�
; (C.1.12)
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with ` > 0 and �` ⩽ m ⩽ `, and have eigenvalue �`m.r/:

□
†r

1 ˆ
.i/

`m
D `.`C 1/

r2
ˆ
.i/

`m
: (C.1.13)

One can explicitly check that

ˆ
.2/

`m
��D

1p
�`m.r/

?r dˆ
.1/

`m

D 1p
2�

rp
`.`C 1/

�
1

sin �
@'‡`m.�; '/ d� � sin � @�‡`m.�; '/ d'

�
;

(C.1.14)

is also an eigen-one-form of □†r

1 , with the same eigenvalue, �`m.r/. All of these

modes are orthonormalised:
D
ˆ
.i/

`m
; ˆ

.i 0/

`0m0

E
D ı``0ımm0ıi i 0 ; i; i 0 2 f1; 2g: (C.1.15)

Momentumful

The rest of the modes, are modes with momentum along the S1, i.e. k ¤ 0. They are

given by

ˆ
.1/

`mk
��D

1p
�`m.r/C k2

0
@
r
�`m.r/

k2
‡`m.�; '/dTk.�/ �

s
k2

�`m.r/
d‡`m.�; '/ Tk.�/

1
A

D
�
`.`C 1/

r2
C k2

�� 1
2

"p
`.`C 1/

r

@�Tk.�/

k
‡`m.�; '/ d�

�kTk.�/
rp

`.`C 1/

�
@'‡`m.�; '/ d' C @�‡`m.�; '/ d�

�
#
;

(C.1.16)

and

ˆ
.2/

`mk
��D

1p
�`m.r/C k2

?r dˆ
.2/

`mk

D 1p
�`m.r/ k2

?r Œd‡`m.�; '/ ^ dTk.�/�

D rp
`.`C 1/

@�Tk.�/

k

�
1

sin �
@'‡`m.�; '/ d� � sin � @�‡`m.�; '/ d'

�
:

(C.1.17)

Their eigenvalue is �`mk.r/ ��D �`m.r/C k2:

□
†r

1 ˆ
.i/

`mk
D
�
`.`C 1/

r2
C k2

�
ˆ
.i/

`mk
D�� :�`mk.r/ˆ.i/`mk (C.1.18)
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and are again orthonormalised:
D
ˆ
.i/

`mk
; ˆ

.i 0/

`0m0k

E
D ı``0ımm0ıkk0ıi i 0 : (C.1.19)

We write collectively, both for the case with momentum and without momentum,

the modes as ˆ.i/
`mk

, by de�ning ˆ.i/
`m0

��D ˆ
.i/

`m
. Therefore, a complete orthonormal

basis of the space of coclosed one-forms on †r is given by

B1
?.†r / ��D

(
ˆ0;

n
ˆ
.i/

`mk

oiD1;2
`2Z>0; m2Œ�`;`�; k2Z

)
: (C.1.20)

The degeneracy of the eigenvalue �`mk.r/ on one-forms is

D
.1/

`mk
D 2.2`C 1/: (C.1.21)

Finally, the Hodge duals of the above forms provide the spectrum of the longitudinal

Laplacian on two-forms, 4
ˇ̌
�2.†r /\kerd

. Relatedly, an orthonormal basis for those is:

B2
k .†r / ��D

(
?r ˆ0;

n
?r ˆ

.i/

`mk

oiD1;2
`2Z>0; m2Œ�`;`�; k2Z

)
: (C.1.22)

C.1.3 A convenient basis

As we discussed above, the transversal Laplacian commutes with the operator ?rd.

Therefore they can be diagonalised simultaneously. The one-forms that diagonalise

the operator ?rd are related to the above basis as follows:

�`mk� ��D
1p
2

�
ˆ
.1/

`mk
C � ˆ

.2/

`mk

�
; � D ˙: (C.1.23)

They are again orthonormal and statisfy

?rd�`mk� D �
p
�`mk.r/ �`mk� : (C.1.24)

Therefore, we can also write the following two bases for coclosed one-forms and

closed two-forms respectively:

V1
?.†r / ��D

(
�0.r/;

n
�n� .r/

o�D˙

nD.`;m;k/

)
;

V2
k .†r / ��D

(
?r �0.r/;

n
?r �n� .r/

o�D˙

nD.`;m;k/

)
;

(C.1.25)

where we also renamed the zero-mode to �0.r/ � ˆ0.r/. When we need to expand

both one- and two- forms in these bases, we will refer to them collectively as V.†r /.

This basis has the advantage that it makes the Kac–Moody structure clear.
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C.2 Current algebra in the generic case

In this appendix we explain how the Kac–Moody algebra of subsection 4.4.3 gets mod-

i�ed in the generic — in the sense of [299, 339] — case of a closed three-dimensional

manifold, where the spectrum of the transversal Laplacian is simple, i.e. the eigen-

values are non-degenerate (cf. appendix C.1). We denote the three-dimensional

Riemannian manifold we are treating, by a slight abuse of notation, as †, where it

should be understood that we are actually considering the pair .†; g/ where g is

a Riemannian metric on † used to de�ne the Hodge-star. We are not interested in

varying the metric to obtain genericity results, like in [299, 339], so we suppress it.

The Beltrami operator, ?d, will still be used to diagonalise the current algebra

(4.2.27)/(4.4.48). However, in the generic case, if
p
�n appears in the spectrum of ?d,

�
p
�n doesn’t, and vice versa. So we will label the orthonormalised eigen-one-forms

of ?d as ˚
�n˙

	
n˙2N˙

; (C.2.1)

(where N˙ is the index-set containing the labels n˙) satisfying

? d�n˙
D ˙

q
�n˙

�n˙
; (C.2.2)

where �n˙
> 0 is the corresponding (non-zero) eigenvalue of the transversal Lapla-

cian on �n˙
. The labelling above, is such that eigenforms with label n� contain the

negative spectrum of the Beltrami operator, and those with nC, the positive spectrum.

The genericity result mentioned above, implies that typically, �nC
¤ �n� for all

nC;n�. This is unlike the case we have treated in the main text — valid in highly

symmetric, and �ne-tuned, manifolds, such as products of spheres. Moreover, on

a three-dimensional manifold, the spectrum of ?d accumulates at C1 and at �1
[343–345], which guarantees that both signs appear in (C.2.2). As before, we exclude

the kernel of ?d, as this is treated, unambiguously, via the harmonic forms, f�0igb1.†/
iD1 ,

of †. The one-forms �n˙
are such that

˝
�n˙

; �m˙

˛
†

D ın˙m˙
and

˝
�nC

; �n�

˛
†

D 0: (C.2.3)

As explained in appendix C.1,
˚
�0i; �n˙

	
provide a complete basis of coclosed one-

forms on†. We use this basis to expandƒ˙ in (4.2.27)/(4.4.48), and the dual, two-form

basis, given by the Hodge stars of the above, to expand J˙:

i�†ƒ
� D

b1.†/X

iD1
ƒ�
0i�0i C

X

sD˙

X

ns2Ns

ƒ�
ns
?† �ns ; (C.2.4)

i�†J
˙ D

b2.†/X

iD1
Q˙
0i ?† �0i C

X

sD˙

X

ns2Ns

Q˙
ns
?† �ns : (C.2.5)
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The di�erence with (4.4.58) is subtle, but important. This expansion leads to the

mode algebra: �
Q˙

ns
;Q�

mt

�
D ˙ks

p
�nsınsmt : (C.2.6)

De�ning ladder operators

Ans
��D
(
QC

ns
s D C;

Q�
ns

s D �;
and A�

ns
��D
(
Q�

ns
s D C;

QC
ns

s D �;
; (C.2.7)

leads to the algebra h
Ans ;A

�
mt

i
D k

p
�nsınsmt : (C.2.8)

Note that we still have two decoupled algebras, one for each sign of s, i.e. one for

each side of the spectrum of ?d. In terms of these modes, the Hamiltonian takes the

form

H† D 1

k

b2.†/X

iD1
QC
0iQ

�
0i C 1

k

X

sD˙

X

ns2Ns

A�
ns

Ans CE0; (C.2.9)

with

E0 D 1

2

X

s

X

ns

p
�ns : (C.2.10)

As can be seen from (C.2.8), the operators A
�
ns raise the energy by

p
�ns , and Ans

lower it by the same amount.

From here on, it is an easy exercise to repeat the steps explained in the main text and

arrive at the conclusion that the Hilbert space is spanned by
ˇ̌
ˇn;mI fNnsgsD˙

ns2Ns

E
��D

Y

sD˙

Y

n2Ns

�
A�

ns

�Nns jn;mi ; (C.2.11)

with jn;mi the primary states, given by (4.4.67) and (4.4.68), with the appropriate

tweak that they are annihilated by all Ans . The rest of the discussion, including

(4.4.80) and its implications follow immediately.

C.3 Details on the radial evolution

Here we collect some details about the radial evolution on B3 � S1. For the reader’s

convenience we repeat the radial evolution equation, (4.5.20) here:

@rJ
˙
n� .r/C

�
A˙

n .r/
�
��
J˙
n� .r/ D 0: (C.3.1)

The matrix A˙
n .r/ is given, in the basis V.†r / (C.1.25), by

A˙
n .r/ D h�n� ; ?r@r ?r �n� i � h�n� ; ?rd�n� i

D 1

2r

`.`C1/
r2

`.`C1/
r2 C k2

�
1 1

1 1

�
�
r
`.`C 1/

r2
C k2

 
1

�1

!
; (C.3.2)
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where n D .`;m; k/. Writing

J˙
n� .r/ D

�
U˙

n .r; r0/
�
��
J˙
n� .r0/; (C.3.3)

the initial value problem consisting of (C.3.1) and its boundary conditions at r D r0

gets mapped to the matrix ordinary di�erential equation:

PU˙
n .r; r0/C A˙

n .r/U
˙
n .r; r0/ D 0; (C.3.4)

where the dot indicates derivative with respect to r , together with boundary condi-

tions

U˙
n .r0; r0/ D 1; (C.3.5)

This has the unique solution

U˙
n .r; r0/ D Rexp

�Z r0

r

dr 0 A˙
n

�
r 0�
�
; (C.3.6)

where Rexp denotes the radially ordered exponential:

Rexp

�Z r0

r

dr 0 O
�
r 0�
�

��D
1X

ND0

1

N Š

Z r0

r

dr1

Z r0

r

dr2 � � �

� � �
Z r0

r

drN R
�
O.r1/O.r2/ � � � O.rN /

�
;

(C.3.7)

with

R.O1.r1/O2.r2// ��D
(

O1.r1/O2.r2/ if r1 < r2;

O2.r2/O1.r1/ if r2 < r1:
(C.3.8)

When k D 0, it holds that
�
A˙

n .r1/;A
˙
n .r2/

�
D 0 for all radii, and hence the ordered

exponential reduces to a regular one. The solution is given in this case by (4.5.28):

U˙
`m.r; r0/ D 1

2C 4`

"�
r

r0

��`�1 
1C 2`� 2

p
`.`C 1/ 1

1 1C 2`˙ 2
p
`.`C 1/

!

C
�
r

r0

�` 
1C 2`˙ 2

p
`.`C 1/ �1

�1 1C 2`� 2
p
`.`C 1/

!#
:

(C.3.9)

Here and onwards we suppress the magnetic quantum number m in the labelling of

the radial evolution data, as they don’t depend on it. The eigenvalues of U˙
`
.r; r0/

are

ı˙
.1/` D

�
r

r0

��`�1
and ı˙

.2/` D
�
r

r0

�`
; (C.3.10)
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with eigenvectors

u˙
.1/` D

 
1C 2`� 2

p
`.`C 1/

1

!
and u˙

.2/` D
 

�1 � 2`� 2
p
`.`C 1/

1

!
;

(C.3.11)

respectively. It is evident that at r ! 0 one of the eigenvalues vanishes and, thus,

the evolution matrix becomes rank one. Its kernel is spanned by v˙
.2/`

. The projector

…˙
` , appearing from (4.5.36) onwards, is, in this case:

…˙
` D

u˙
.2/`

˝ u˙
.2/`


u˙

.2/`





2

D 1

2.1C 2`/

 
1C 2`˙ 2

p
`.`C 1/ �1

�1 1C 2`� 2
p
`.`C 1/

!
:

(C.3.12)

For k ¤ 0, A˙
n .r/ does not commute with itself at di�erent radii and thus we have to

use the radially ordered exponential. While this we cannot solve exactly for arbitrary

radius, the crucial feature for our state-operator correspondence is its behaviour

as r ! 0. In that limit, the di�erential equation (C.3.4) reduces to the di�erential

equation for k D 0, and reveals that U˙
`mk

.r; r0/, behaves identically to its k D 0

eigenpart. Namely it has a singular and a regular part, scaling as

�
�
r

r0

��`�1
and �

�
r

r0

�`
; (C.3.13)

respectively. Correspondingly, U˙
`mk

.0; r0/ becomes rank-1.
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Short summary in english

Symmetry is a fundamental organising principle of nature and, by extension, of

theoretical physics. Physical phenomena are characterised by their symmetries

and how they represent them. In the study of quantum �eld theory (QFT) the

symmetries of a physical system are associated with conserved quantities, such as

energy, momentum, or the number of particles in a given space. Recently, it has been

understood that the notion of symmetry can be generalised in several ways. Central

to this understanding is the fact that symmetry is intimately linked to topology.

One generalisation of particular signi�cance is higher-form symmetry. This gen-

eralisation concerns conserved quantities of extended objects, such as the number

of lines piercing a surface. Higher-form symmetries are present in many theories

of interest, such as electromagnetism and the standard model of particle physics.

Another important generalisation is that of non-invertible symmetries. This type

of symmetry is somewhat esoteric in that the symmetry action cannot be undone.

Nevertheless, such symmetries �nd applications in a variety of models, most notably

in the critical Ising model which describes the long distance behaviour of many

physical systems.

Such generalised symmetries o�er new organising and guiding principles for theoret-

ical physics. This thesis focusses on utilising the power of generalised symmetries to

obtain universal results in quantum �eld theory and the phases of matter. The main

�ndings of this thesis fall in two categories. Firstly, obtaining universal measures of

entanglement in topologically ordered systems and topological quantum �eld theory

(TQFT), in generic dimensions and topology. Secondly, elucidating the underlying

structure of conformal �eld theories (CFTs), with a particular emphasis on nonlocal

operators.

Topological order

From a condensed-matter-theoretic point of view, TQFTs arise as low-energy ef-

fective descriptions of topologically ordered systems. A physical mechanism for
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topological order in (2+1) dimensions is given by the condensation of networks of

line operators, known as string-net condensation. In higher dimensions, analogous

models — condensing networks of p-dimensional surface operators — give rise to

topologically ordered ground states. This is intimately connected to generalised sym-

metries, since taking the generators of a discrete p-form symmetry as the condensing

network, provides a description of decon�ned, discrete gauge theories. The long

distance behaviour of these models is described by a speci�c topological quantum

�eld theory, known as p-form BF theory. Moreover, topological orders correspond to

and are classi�ed by di�erent patterns of entanglement. This is most cleanly show-

cased by the celebrated topological entanglement entropy. Understanding patterns

of entanglement in p-form BF theory, gives direct, low-energy access to a systematic

understanding of topological order in higher-dimensions. This is the main motivating

question for chapters 2 and 3.

More precisely, chapter 2 presents an algebraic study of the entanglement structure

of p-form BF theory in arbitrary dimensions. This is done directly in the low-energy

topological quantum �eld theory by considering the algebras of topological surface

operators restricted to subregions. Two relevant notions of subregion operator al-

gebras are de�ned, which are related by a form of electric-magnetic duality. It is

subsequently shown that with each subregion algebra, there is an associated entagle-

ment entropy, termed essential topological entanglement (ETE). This is a re�nement

of the topological entanglement entropy. ETE is intrinsic to the theory, inherently

�nite, positive, and sensitive to more intricate topological features of the state and

the entangling region.

Then, in chapter 3 an alternative perspective is explored. Remaining within the setup

of p-form abelian BF theory, the entanglement entropy arising from edge modes,

i.e. excitations localised on the boundary of the region of interest, is considered.

This is done on arbitrary spatial topology and across arbitrary entangling surfaces.

The entropy contains a series of terms that scale as powers of the area of the en-

tangling surface (area and subarea laws), plus universal corrections proportional

to the topology of the entangling surface. The calculation comes in two �avours:

�rstly, through an induced edge-mode theory, appearing on the regulated entangling

surface in a replica path integral, and secondly through a more rigorous de�nition of

the entanglement entropy via an extended Hilbert space. Along the way several key

results are presented, that are of their own merit. The edge-mode theory is given by

a novel combination of .p� 1/-form and .d �p� 2/-form electrodynamics linked by

a chirality condition, in what is termed chiral mixed Maxwell theory. The thermal par-

tition function of this theory is explicitly evaluated. Additionally, it is shown that the

extended Hilbert space is organised into representations of an in�nite-dimensional,

centrally extended current algebra which naturally generalises Kac–Moody algebras

200



Short summary in english

to arbitrary dimension and topology. Lastly, the two approaches are connected,

showing that the thermal partition function of the chiral mixed Maxwell theory is

precisely an extended representation character of the current algebra, establishing

an exact correspondence of the edge-mode theory and the entanglement spectrum.

Conformal �eld theory

In contrast to discrete theories, decon�ned phases of (higher-)gauge theories with

continuous gauge groups are gapless. Behind this fact lie, again, generalised sym-

metries. In particular, such phases can be understood as spontaneous symmetry

breaking phases of higher-form global symmetries. The most prominent example of

that is given by electromagnetism, and provides an explanation of the masslessness

of the photon in our world. In speci�c dimensions, these gapless phases become

conformal. The combination of conformal invariance with generalised symmetries

turns out to be extremely strong and leads to universal statements about the structure

of conformal �eld theory. These ideas underlie much of the motivation for chapter 4.

The main result of chapter 4 is a one-to-one correspondence between line operators
and states in four-dimensional CFTs with continuous 1-form symmetries. Such CFTs

enjoy an in�nite dimensional current algebra, closely related to the algebras of

chapter 3. The representation theory of this current algebra is constructed, and the

space of states on an arbitrary closed spatial slice is described in detail. Then, the

spectrum on S2 � S1 is rederived via a path integral on B3 � S1 with insertions of

line operators. This leads to a direct and explicit correspondence between the line

operators of the theory and the states on S2 � S1. An interesting conclusion is that

the ground state does not correspond to the identity operator, but to a particular

operator, known in quantum optics as a squeezing operator. Additionally, some of

the above results are generalised in two directions. Firstly, universal current algebras

and their representation theory are constructed in .2p C 2/-dimensional CFTs, with

continuous p-form symmetry, and secondly extensions pertaining to non-invertible

symmetries are provided.
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Samenvatting

Symmetrie is een fundamenteel organiserend principe van de natuur en daarmee van

de theoretische fysica. Fysische verschijnselen worden gekarakteriseerd door hun

symmetrieën en hoe zij deze representeren. In de studie van de kwantumveldentheo-

rie (QFT) worden de symmetrieën van een fysisch systeem in verband gebracht met

behouden grootheden, zoals energie, impuls of het aantal deeltjes in een bepaald ge-

bied. Recentelijk is ontdekt dat het begrip symmetrie op verschillende manieren kan

worden gegeneraliseerd. Centraal in deze ontwikkeling staat het feit dat symmetrie

nauw verbonden is met topologie.

Een generalisatie van bijzonder belang is de hogere-vormsymmetrie. Deze gene-

ralisatie betreft behouden grootheden van hoger-dimensionale objecten, zoals het

aantal lijnen dat een oppervlak doorboort. Hogere-vormsymmetrieën zijn aanwezig

in vele belangrijke theorieën, zoals elektromagnetisme en het standaardmodel van

de deeltjesfysica. Een andere belangrijke generalisatie is die van niet-inverteerbare

symmetrieën. Dit type symmetrie is enigszins esoterisch omdat de symmetrieactie

niet ongedaan kan worden gemaakt. Desalniettemin vinden dergelijke symmetrieën

toepassingen in verschillende modellen, in het bijzonder in het kritische Ising-model,

dat het gedrag op lange afstand van veel fysische systemen beschrijft.

Dergelijke gegeneraliseerde symmetrieën bieden nieuwe organiserende en leidende

principes voor de theoretische fysica. Dit proefschrift richt zich op het benutten van

de kracht van gegeneraliseerde symmetrieën om universele resultaten te verkrijgen in

de kwantumveldentheorie en de fasen van materie. De belangrijkste bevindingen van

dit proefschrift vallen in twee categorieën. Ten eerste, het verkrijgen van universele

maatstaven van verstrengeling in topologisch geordende systemen en topologische

kwantumveldentheorie (TQFT), in generieke dimensies en topologie. Ten tweede,

het verduidelijken van de onderliggende structuur van conforme veldentheorieën

(CFT’s), met een bijzondere nadruk op niet-lokale operatoren.
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Topologische ordening

Vanuit het perspectief van de theorie van gecondenseerde materie, ontstaan TQFT’s

als e�ectieve beschrijvingen van topologisch geordende systemen voor lage ener-

gieën. Een fysisch mechanisme voor topologische ordening in .2C 1/ dimensies is

gegeven door de condensatie van netwerken van lijnoperatoren, bekend als snaar-

net-condensatie. In hogere dimensies geven analoge modellen — condenseerbare

netwerken van p-dimensionale oppervlak-operatoren — aanleiding tot topologisch

geordende grondtoestanden. Dit is nauw verbonden met gegeneraliseerde symme-

trieën, aangezien het nemen van de generatoren van een discrete p-vorm-symmetrie

als het condenseerbare netwerk een beschrijving geeft van ‘decon�ned,’ discrete

ijktheorieën. Het langeafstandsgedrag van deze modellen wordt beschreven door

een speci�eke topologische kwantumveldentheorie, bekend als p-vorm BF-theorie.

Bovendien komen topologische ordeningen overeen met en worden zij geclassi�-

ceerd door verschillende patronen van verstrengeling. Dit wordt het duidelijkst

geïllustreerd door de beroemde topologische verstrengelingsentropie. Het begrijpen

van verstrengelingspatronen in p-vorm BF-theorie geeft directe toegang bij lage

energieën tot een systematisch begrip van topologische ordening in hogere dimensies.

Dit is de belangrijkste motivatie voor hoofdstukken 2 and 3.

Hoofdstuk 2 presenteert een algebraïsche studie van de verstrengelingsstructuur van

p-vorm BF-theorie in generieke dimensies. Dit wordt direct gedaan in de lage-energie

beschrijving in termen van topologische kwantumveldentheorie door de algebra’s van

topologische oppervlakoperatoren te beschouwen, beperkt tot subgebieden. Twee

relevante begrippen van subgebiedoperator-algebra’s worden gede�nieerd, die gere-

lateerd zijn door een vorm van elektrisch-magnetische dualiteit. Vervolgens wordt

aangetoond dat bij elke subgebiedalgebra een bijbehorende verstrengelingsentropie

hoort, genaamd essentiële topologische verstrengeling (ETE). Dit is een ver�jning van

de topologische verstrengelingsentropie. ETE is intrinsiek aan de theorie, inherent

eindig, positief en gevoelig voor meer complexe topologische kenmerken van de

toestand en het verstrengelde gebied.

Vervolgens wordt in hoofdstuk 3 een alternatief perspectief verkend. In de context

van p-vorm abelse BF-theorie wordt de verstrengelingsentropie beschouwd van rand-

modi, dat wil zeggen, excitaties die gelokaliseerd zijn op de rand van het betre�ende

gebied. Dit wordt gedaan voor generieke ruimtelijke topologie en verstrengelende

gebieden. De entropie bevat een reeks termen die schalen als machten van het opper-

vlak van het verstrengelende gebied (oppervlakte- en suboppervlaktewetten), plus

universele correcties evenredig met de topologie van het verstrengelende gebied. De

berekening komt in twee smaken: ten eerste via een geïnduceerde randmodusthe-

orie, die verschijnt op het gereguleerde verstrengelende oppervlak in een replica

padintegraal, en ten tweede via een meer rigoureuze de�nitie van de verstrenge-
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lingsentropie via een uitgebreide Hilbertruimte. Gaandeweg worden verschillende

sleutelresultaten gepresenteerd, die op zichzelf waardevol zijn. De randmodustheorie

wordt gekarakteriseerd door een nieuwe combinatie van .p�1/-vorm en .d �p�2/-
vorm elektrodynamica, verbonden door een chirale voorwaarde, in wat we chirale
gemengde Maxwell-theorie noemen. De thermische partitiefunctie van deze theo-

rie wordt expliciet geëvalueerd. Bovendien wordt bewezen dat de uitgebreide Hil-

bertruimte georganiseerd wordt door representaties van een oneindig-dimensionale,

centraal uitgebreide stroomalgebra die Kac–Moody-algebra’s op natuurlijke wijze

generaliseert naar willekeurige dimensie en topologie. Tenslotte worden de twee

benaderingen verbonden, waarbij wordt aangetoond dat de thermische partitiefunctie

van de chirale gemengde Maxwell-theorie precies een uitgebreid representatiekarak-

ter is van de stroomalgebra, waarmee een exacte overeenkomst wordt vastgesteld

tussen de randmodustheorie en het verstrengelingsspectrum.

Conforme veldentheorie

In tegenstelling tot discrete theorieën zijn ‘decon�ned’ fasen van (hogere-)ijktheorieën

met continue ijkgroepen kloo�oos. Dit feit is wederom onderbouwd door gegenera-

liseerde symmetrieën. In het bijzonder kunnen dergelijke fasen worden begrepen

als spontaan symmetriebrekende fasen van hogere-vorm globale s ymmetrieën. Het

meest prominente voorbeeld hiervan is het elektromagnetisme, dat een verklaring

geeft voor de massaloosheid van het foton in onze wereld. In speci�eke dimensies

worden deze kloo�oze fasen conform. De combinatie van conforme invariantie met

gegeneraliseerde symmetrieën blijkt extreem krachtig te zijn en leidt tot universele

uitspraken over de structuur van conforme veldentheorie. Deze ideeën vormen

grotendeels de motivatie voor hoofdstuk 4.

Het belangrijkste resultaat van hoofdstuk 4 is een een-op-een correspondentie tussen
lijnoperatoren en toestanden in vierdimensionale CFT’s met continue 1-vormsymme-

trieën. Dergelijke CFT’s genieten een oneindig dimensionale stroomalgebra, nauw

verwant aan de algebra’s beschreven in hoofdstuk 3. De representatietheorie van

deze stroomalgebra wordt geconstrueerd, en de ruimte van toestanden op een wille-

keurige gesloten ruimtelijke snede wordt in detail beschreven. Vervolgens wordt het

spectrum op S2�S1 herafgeleid via een padintegraal over B3�S1 in de aanwezigheid

van lijnoperatoren. Dit leidt tot een directe en expliciete correspondentie tussen de

lijnoperatoren van de theorie en de toestanden op S2�S1. Een interessante conclusie

is dat de grondtoestand niet overeenkomt met de identiteitoperator, maar met een

speci�eke operator, bekend in de kwantumoptica als een knijpoperator. Daarnaast

worden enkele van de bovenstaande resultaten in twee richtingen gegeneraliseerd.

Ten eerste worden universele stroomalgebra’s en hun representatietheorie geconstru-

eerd in .2pC 2/-dimensionale CFT’s met continue p-vormsymmetrie, en ten tweede

worden uitbreidingen met betrekking tot niet-inverteerbare symmetrieën gegeven.
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