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INTRODUCTION

Theoretical physics is concerned with a mathematical description of the physical
world. Given the sheer size and complexity of the world we inhabit, it is only
natural that the mathematical descriptions of different physical phenomena will vary
wildly. And indeed, if one were to chart the space of physical phenomena and their
descriptions, they would find a vast landscape, with many dark corners, deep rabbit
holes of highly complex mathematics, and surprising, enigmatic portals between
seemingly unrelated regions. Yet, the ultimate dream of most theoretical physicists is
a single unified description of everything. So, among all pieces of theoretical physics,
some of the most valuable ones are those who reveal organising principles underlying
the map — one may call them meta-theoretical physics. And the main meta, the
crucial lesson that emerges upon reconciling centuries of theoretical physics is that
nature is organised by symmetry and by scale. This is still not capturing the entirety
of the map, but it makes is far less intimidating. What’s more, it makes the areas that
persist this organisation, even more intriguing.

Perhaps the most tangible example of how symmetry organises physical phenomena
is the microscopic structure of a solid versus that of a liquid or a gas. In solids, the
molecules are tightly packed, forming a crystal structure.! In contrast, liquids and
gases have a much more fluid structure. Translating (pushing) individual molecules,
or clumps of molecules, by arbitrary amounts, or rotating them by arbitrary angles,
leaves the fluid invariant, as there is no fixed structure to disrupt. This is not true for
solids. In solids molecules, or clumps thereof can only be translated and rotated by
specific discrete amounts, due to the periodic arrangement of the crystal lattice. In
other words, solids break translational and rotational symmetries that liquids and
gases do not.

Another paradigmatic example occurs in ferromagnetic materials, such as iron, nickel,

IThere are also amorphous solids, but the conclusion is identical.



1. Introduction

or cobalt. Heating the material causes it to lose its magnetic properties, and cooling
it restores them. This phenomenon is known as a ferromagnetic to paramagnetic
phase transition. In that example the spins comprising the material, have a natural
order in the ferromagnetic phase — they all align in the same direction, pointing
towards the attractive magnet. In contrast, in the paramagnetic phase, this order is
lost, and the material is invariant upon flipping the spins. This spin-flip symmetry
distinguishes the two phases. More quantitatively, there is an order parameter, the
local magnetisation, which distinguishes the two phases: it is zero in the paramagnetic
phase and non-zero in the ferromagnetic phase.

Both examples are instances of spontaneous symmetry breaking and serve as a guide
to the general principle. The general principle, first put forward by Lev Landau [5]
and now a celebrated paradigm in theoretical physics, is that physical phenomena
should be labelled by their symmetries and how they realise them — specifically,
whether they break them or not. Furthermore, exactly at the critical point between the
symmetry-broken and symmetry-preserving phases, the degrees of freedom are the
fluctuations of the order parameter. This is a powerful classification, with applications
spanning a whole range of phenomena from particle physics, to cosmology.

How nature is organised by scale is, to some degree, common knowledge. Particles
make atoms, atoms make molecules, molecules make larger structures. The chain
continues and goes from humans to galaxies, to cosmological scales, bit by bit. Physics
at each length scale emerges from the smaller one and affects the immediately larger
one. A key insight, here, is the immediate succession of scales. The intricacies and
complexities of physics at far smaller scales are washed away.

This last fact makes the overwhelming majority of theories describing natural phe-
nomena effective, rather than fundamental. A famous example is Fermi’s theory of
the weak interaction, which explains the beta decay of a neutron, by positing the
interaction of four fermions at a single point. This theory works remarkably well
for this process, but it predicts that the probability of such an interaction grows
unboundedly as the energies of the participating particles increase. It can, therefore,
not be correct at higher energy, or equivalently smaller length scales? It has to be
superseeded by a theory, valid at higher energies, that reduces to Fermi’s theory, at
low energies. Indeed, we now know that this superseeding theory is the standard
model of particle physics. This too, despite describing elementary particles, is not a
fundamental description, but rather an effective one.

2An aside on scales and measurement units. It is common in high-energy physics — and employed
throughout this thesis — to use natural units, where the speed of light, the reduced Planck constant,
and the Boltzmann constant are all set to one: ¢ = h = kg = 1. With these conventions energy, mass,
momentum, and temperature are measured in the same units, which are, moreover, the inverse of length,
and time. So short length scales are the same as large energy scales, and vice versa.



The mathematical framework underlying this discussion is the notion of renorm-
alisation group, originally developed by Kenneth Wilson [6-8], which serves as a
cornerstone of modern theoretical physics. The renormalisation group provides a
systematic way to move between different scales. Funnily, despite the name one
can only move towards longer scales; it is, in fact, a semigroup. Nonetheless, the
main qualitative virtue of the renormalisation group is that it gradates the space of
descriptions of physical phenomena according to their validity range and provides a
criterion to assess whether a description is an effective one, or a rare, fundamental
one, valid across all scales.

Most interesting are the endpoints of the renormalisation group: the infinitely small,
playfully yet commonly known as the ultraviolet (UV), and the infinitely large, the
infrared (IR). At these endpoints — or fixed points, as they are more properly termed
— there is no sense of scale, as all dimensionful parameters are either exactly zero
or exactly infinite. Life at the endpoints is typically simpler. The UV endpoint,
despite involving infinitely small, infinitely high-energy physics, simplifies because
everything else has completely disappeared. Conversely, the IR endpoint strips away
all the details and retains only the essential, scale-invariant information. In this sense,
theories valid at intermediate points can be viewed as flows between a UV fixed point
and an IR fixed point. A UV fixed point contains all information of the theories that
flow out of it, while an IR fixed point collects all universal features, of every theory,
effective of fundamental, that flows into it.

Furthermore, out of these two organising principles, emerges another valuable fea-
ture of the physics map: its linguistics. Remarkably, there seems to be a universal
grammar, a framework that describes accurately a plethora of phenomena. This is
known as quantum field theory (QFT), a framework historically developed to describe
relativistic quantum mechanics by postulating that particles are merely excitations
of underlying quantum fields. It has been extremely successful in understanding
elementary particles and their interactions, and indeed, its most notable application
is the development of the standard model of particle physics, which encompasses all
known elementary particles and three of the four fundamental forces of nature. How-
ever, its utility extends far beyond the realm of particle physics. A well-appreciated,
yet astounding fact is that the language of QFT is exactly the right language to
describe classical and quantum statistical mechanics® Combined with the fact that
most systems in nature have so many degrees of freedom that a statistical description
is far more powerful and useful than an exact one, this gives QFT immense power.
It describes high-energy particle physics through quantum fields and low-energy
statistical regimes through statistical fields.

Moreover, connecting with the renormalisation group, its interesting endpoints

3Though time needs to be a bit funny.



1. Introduction

are described, in this language by special kinds of QFTs, known as conformal and
topological field theories (CFTs and TQFTs, respectively). While the essence of these
theories will be expounded later in the chapter, their spirit can be captured, briefly,
by stating that these are theories enjoying more symmetries than generic QFTs.
Specifically, CFTs are invariant under rescaling the space they are defined on, while
TQFTs are invariant to any smooth deformation in their surroundings. This makes
them perfect candidates for renormalisation fixed points as they are both insensitive
to scales. This thesis is devoted to the study of such theories, and their universal
aspects, exploring their properties and applications.

However, while the perspective taken above is suitable for describing many physical
phenomena, it honestly fails to capture the entirety of theoretical physics in its current
state. There are outliers, either experimentally observed or theoretically proposed,
that break one or both of the organising principles or speak a different language than
QFT. The most important and elusive phenomenon is, arguably, quantum gravity.
Gravity seems to be highly adept at evading the most sophisticated and intricate
attempts to describe it quantum mechanically. Despite significant progress and the
exploration of promising avenues — most notably, string theory — there is still no
comprehensive understanding of quantum gravity in our universe. Although this
thesis does not touch upon quantum gravity, much of the underlying research has
been and continues to be motivated by this fundamental question.

1.1 Symmetry and topology

Symmetry* serves as an organising principle for the mathematical description of the
physical world. Besides the arguments mentioned above, an important point is that
classical conservation laws, such as conservation of charge, momentum, and angular
momentum, are associated with symmetries via Noether’s theorem. Recent advance-
ments across various fields such as high-energy physics, condensed-matter physics,
quantum information theory, and mathematics have induced a transformative gener-
alisation of the concept of symmetries. This broadeding of our understading has led
to notions such as higher-form symmetries, non-invertible symmetries, subsystem
symmetries and others, occuring both in quantum field theory (QFT) as well as in
microscopic, lattice, models. These generalised symmetries, have given back to the
fields they owe their existence to, finding applications in a wide array of quantum sys-
tems, such as the Ising model, topological phases of matter (cf. section 1.2), fractons,
gauge theory, and string and M-theory.

Ideas relating to generalised symmertries will be crucial and themes relating to them

“Throughout this thesis, symmetry will always refer to global symmetry. “Gauge symmetry” will
always be referred to as gauge redundancy or gauge invariance.

4



1.1. Symmetry and topology

will be recurrent throughout this thesis. The scope of this section is to review some of
the recent advancements in this field. Given the quantum-field-theoretic language of
the later chapters of this thesis, the discussion of symmetries and their generalisations
will be given within the context of relativistic QFT, with departures from that context
mentioned explicitly, whenever necessary.

1.1.1 Ordinary symmetries

We begin the discussion by recalling the usual presentation of symmetries in QFT.
We will start with a d-dimensional QFT with a U(1) symmetry. Associated with this
symmetry there is a current, J,,(x), (with x = (¢, x)), that is conserved on-shell:

T, (x) = 0. (1.1.1)

One then defines a charge operator:
00 = [ tx sotr.x). (112)
P

where the integral is taken over a spatial slice, X;, assumed closed, or equipped
with appropriate boundary conditions. As a consequence of (1.1.1), Q(¢) is actually
independent of 7:

o) _

i 0. (1.1.3)

In a quantum theory, according to Wigner’s theorem, the symmetry is implemented
by unitary operators, acting on the Hilbert space. These are simply the exponentials
of the charge:

U(e®, 1) :=exp(ia Q(1)). a€R/2nZ, (1.1.4)

where U (!, t) is again, independent of 7, due to (1.1.1). This operator implements a
rotation by an angle, a. One slight, for now merely notational, change one can make
to the above story is to write it in a coordinate-free way. That is, instead of talking
about the vector J,(x), one can construct a one-form, Jp;j € 2'(X), which in the
previous coordinate system is expressed as:

Jiy = Ju(x) dx* . (1.1.5)

Noether’s theorem is now expressed as the condition that the one-form Jj;; be
coclosed, i.e.

d* Jy) =0, (1.1.6)
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where x : Q7(X) — Q9¢7P(X) is the Hodge-star operator. We can then integrate *J 1]
on any (closed or equipped with boundary conditions) codimension-one manifold,
¥ 4_1, to obtain a charge operator:

O[Z4-1]:= /E *Jp1). (1.1.7)

As a consequence of (1.1.6), the charge operator is insensitive to smooth deformations
of X;_;. Indeed:

Q[0Yy] = / *xJ[1) = / d* Jy =0, (1.1.8)
v, Y,

implying that Q[2;1] = Q[%),_,], if, £4, and X/, _, differ by a boundary. As
before, the charges are represented as topological operators acting on the Hilbert
space, as

U Sq-1) = explio Q[S4-1]). @ € R/27Z. (1.1.9)

While for the most part of the thesis we will be in Euclidean signature, it is worth
mentioning that in Lorentzian signature, the operators U(e'*, £;_;) play a double
role, depending on the nature of X;_;. If X;_; is a fixed-time slice, such operators
are genuine operators acting on the Hllbert space. On the other hand, if ¥;_; is
extended in the time direction, it is a topological defect, that modifes the quantisation,
giving rise to a twisted Hilbert space. We will refer to U(e'®, £,_,), as the symmetry
operators.

Since we are in a quantum theory, the continuity equation, (1.1.6), is modified in the
presence of a local operator, O (x) to a Ward identity:

(d * J)) () O(x) = g 81ay(x — ¥) O(x), (1.1.10)

where [41(x — y) is a d-form delta function and ¢ € Z is the charge of O(x) under
the symmetry. Equation (1.1.10) and all the equations that follow, should be regarded
as operator equations, i.e. holding in arbitrary correlation functions, with insertions
away from y. Exponentiating the Ward identity we see that the symmetry operators,
inserted along a (d — 1)-dimensional sphere, act on local operators by linking with
the point x, as depicted in figure 1.1:

U(eia,Sd—l) LO(x) = U(eia, aBd) L O(x)

= exp(iqoz/ S1ay(x — y))(9(x) = el9%9(x). (1.1.11)
B4
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U(eia,Sd_l) U(eia,Sd_l)

— eiqoz .(9()6) — eiqa .(9()6)

N N

Figure 1.1: Action of symmetry operator on a local operator. On the left-hand-side, the symmetry
operator is inserted on an S~ that links with x. In the middle the symmetry operator is deformed
and unlinked, resulting in the charged operator picking a representation of the group element.
Finally, on the right-hand-side, the topological operator is shrunk to nonexistence.

From (1.1.11) we see that acting with U(eiﬂ, Sd_l), after acting with U(ei"‘, Sd_l)
is equivalent to acting with e'f . e = e!(B+®) _In other words, the set of operators
U (e, S?71), together with their composition — usually called their fusion rules —
implement the action of the symmetry group; in this case, U(1).

More generally, associated with any symmetry group, G, which can be abelian
or non-abelian, continuous or discrete, there exists a set of unitary topological
operators, supported on codimension-one manifolds, and labeled by group elements:
{U(g,Z4-1), g € G}. These operators fuse according to the group multiplication of
G:

U(g.Za-1)QU(g Za—1) =U(g &' Za-1). (1.1.12)

The operator U(1, £;_1), where 1 is the identity element of G, acts as the identity
operator on the Hilbert space. As a consequence, the operator U(g™!, ,_;) is the
inverse of U(g, ¥;—1). This is to be contrasted with subsection 1.1.3, where not every
symmetry operator has an inverse. Local operators transform in representations of
the symmetry group:

U(g,sd—l) L0/ (x) = p(g)’; - O (x), (1.1.13)

where i labels the multiplet that the operator transforms in, in terms of a repres-
entation p(g)’ ; of the group element g € G. The upshot of this definition is that it
does not rely on the existence of a conserved current, putting therefore discrete and
continuous symmetries on the same footing.

Before moving on with generalisations of symmetries, let us comment on how one
probes ordinary symmetries. In case the symmetry is continuous, one can couple the
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conserved current to background gauge fields, Aj;; = A, (x) dx*, for the symmetry,
by inserting in the path-integral an operator of the form®

exp(i/dex lg] g‘”(x)AM(x)J,,(x)) = exp(i/XA[l] /\*J[l]). (1.1.14)

Note that A is not a dynamical gauge field. It is often natural — though not the
most generic option — to consider flat connections, [A[;;] € H'(X; G). These, one

can Poincaré-dualise® Apy) to a (d — 1)-cycle, [;1\,1_1] € Hy_1(X;G),so0(1.1.14) is

equivalent to inserting a symmetry operator supported on A4_;:

U(l,ffd_l) - exp(i/g ) *J). (1.1.15)

Computing the partition function in the presence of the background gauge field,

z[Aw] = (U (1. Aa-r)). (1.1.16)

allows one to study correlation functions of the currents, as well as to study the
anomaly structure of the theory. The latter presentation, (1.1.15), is in fact also
suitable for addressing the same quations also for discrete symmetries.

If the symmetry is not anomalous, the procedure outlined above serves as the first
step to gauging the symmetry. To gauge the symmetry one needs to, then, insert a
sufficiently fine network of (1.1.15) [9-12]. In the case of continuous symmetries, this
is usually supplemented with adding kinetic terms for the gauge fields, although some
times it suffices to consider flat gauge fields [13, 14]. The “sufficiently fine” network,
becomes, in this case, a fully-fledged path integral over the gauge connections,
producing at the end the gauged theory. For a discrete symmetry, gauge fields,
even when made dynamical, remain, necessarily, flat. The network of topological
operators, supported on Poincaré duals of gauge fields implements, in this case the
sum over flat gauge bundles of G.

1.1.2 Higher-form symmetries

In their seminal work [15], Gaiotto, Kapustin, Seiberg and Willett formalised the first
important generalisation, dubbed higher-form symmetries, that sparked the recent
symmetry era. This generalisation built upon a collection of related ideas stemming
mostly from non-perturbative quantum field theory and string theory [16-34]. The
main idea, expressed again in terms of a conserved U(1) current, is to replace the

5In some cases, specifically for shift symmetries (in some frame), one needs to also include quadratic
terms of A[1], such as [ A1) A *A[1], in order to preserve background gauge invariance.
0r Poincaré-Lefschetz in cases when spacetime has a boundary.
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O(Cp) O(Cp) O(Cp)

U(e*, Zg—p-1) U(e*, Zg—p-1)

= eiq(x = eiq"‘

Figure 1.2: Action of a p-form symmetry operator on a p-dimensional operator. On the left-hand-
side, the symmetry operator is inserted on an S2~P~1 that links with the p-dimensional operator.
In the middle the symmetry operator is deformed and unlinked, resulting in the charged operator
picking a representation of the group element. Finally, on the right-hand-side, the topological
operator is shrunk to nonexistence.

one-form current, Jj;j, by a (p + 1)-form one, Jj, 1, with the conservarion equation
being, still, a coclosedness condition:

d* J[p+1] =0. (1117)

From here on, one can follow the same procedure as before. The first step is to
construct charge operators by integrating on a codimension-(p + 1) manifold:

O[Za—p-1]:= / *J[p+1]s (1.1.18)

Za—p—1

and exponentiate to obtain topological, symmetry operators:
U(e”, Zq—p-1) = exp(ie O[Zy—p-1]). @ eR/27Z. (1.1.19)

The main difference with the case of subsection 1.1.1, is that now the symmetry oper-
ators cannot link with local operators. They can link, however, with p-dimensional
extended operators (see figure 1.2). They act, in a similar manner as before:

U(e™, Sy—p_1) - O(Cp) = e1elinkEa—p-1.6) 9 (C,), (1.1.20)

where now the charged operator, is supported on a p-dimensional manifold C,. The
action of the topological operator picks up the charge, ¢ € Z and the linking number
between £;_,_; and C,,.

Similarly as before, the notion of a p-form symmetry group, G!?! — continuous or
discrete — in a quantum field theory, can be formalised by the existence of a set

9
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0(Cp) O(Cp)
U(eia’ z:d—p—l) U(eiﬂ, Ed—p—l)
U(elﬁ’ Ed—p—l) U(ew’, Ed—p—l)

Figure 1.3: Higher-form symmetries are abelian. On the left-hand-side, the operator
U(e'?, Zg_p—1) acts after U(el“, Zg4_p—1)- On the right-hand-side, the topological operat-
ors were deformed, at no cost, so that the order of their action was reversed.

of codimension-(p + 1) topological operators, {U(g, Z4—,-1), & € G[P]}, labelled
by group elements. The case p = 0 corresponds to the ordinary global symmet-
ries (henceforth referred to as zero-form symmetries), reviewed in subsection 1.1.1.
One key difference between the cases p > 0 and p = 0 is that, unlike zero-form
symmetries, higher-form symmetries are necessarily abelian. This is most easily
illustrated with a picture, see figure 1.3. Nonetheless, the general story is similar.
The topological operators fuse according to the group multiplication:

U(g.Za—p-1) ®U(¢ Sa—p1) = U(g g Sa—p1), (1.1.21)

and p-dimensional operators transform in representations of the symmetry group:

U(8. Sa—pa1) - O) = p(g) - O). (1.1.22)

Here, whenever p > 0, p(g) is simply a phase, since higher-form symmetries are
abelian.

Before moving on, let us give a couple of examples of higher-form symmetries. These
examples will, on the one hand, illustrate the abstract discussion above, while on the
other hand, they will serve as an entrée to the later chapters of this thesis, where
slight alterations of these examples will be prevalent.

The prototypical example is that of Maxwell theory, in d -dimensions. This is a theory
of a free photon, i.e. a free one-form, a € Q!(X), with field-strength f € Q2(X).
The equations of motion are given by

dx f =0, (1.1.23)

10



1.1. Symmetry and topology

which we immediately recognise as the conservation equation for the two-form
current, f. This is a one-form U(1)!"! symmetry. The symmetry operators associated
with it are:

U(e®, Sy-) == exp(ioe/ *f) a€R/2xZ. (1.1.24)
Za—2
The charged objects under this symmetry are Wilson lines:

W, (Cy) := exp(Zniqe/ a), (1.1.25)
Cy

where C; is either an infinitely extending line, or a closed loop. To measure the
charge, one has to link the Wilson line with the one-form symmetry operators. This
is Gauss’s law in action. The charge, g. € Z, of the Wilson line, is precisely its electric
charge. For that reason, this symmetry is called electric one-form symmetry, often

denoted as U(I)Eel)] .

Maxwell theory also has another higher-form symmetry, stemming from the Bianchi
identity,

df =o. (1.1.26)

]

This is a magnetic (d — 3)-form symmetry, U(l)([i)_z' . Its conserved current is

* f € Q972(X) and the symmetry operators are given by

U(e, 2,) = exp(ia/ f), a € R/2nZ. (1.1.27)
253

What is charged under the magnetic one-form symmetry is 't Hooft operators. One
way to see it, is within the electric presentation of the theory, where 't Hooft operators
are defined by excising a (d — 3)-dimensional manifold, C4_3, from spacetime and
imposing boundary conditions on a manifold X,, linking C,_3, such that

f=gmel. (1.1.28)
)]

This implies immediately that ’t Hooft loops carry charge under the magnetic (d —3)-
form symmetry; they carry magnetic charge. A different, yet equivalent, way to see
this is in a magnetic presentation, where one exchanges the electric gauge potential,
a, for a magnetic one, & € Q973(X), whose field-strength is f =*f € QI72(X).
In this presentation, the 't Hooft operators are simply the Wilson operators of the
“magnetic photon,”

‘tHy,, (Ca—3) = eXp(Znia qm/ Zz), (1.1.29)
C

d—3
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1. Introduction

which can be seen immediately to carry charge ¢y, € Z, under the symmetry gener-
ators (1.1.27).

In four-dimensions, both the electric and the magnetic symmetries are one-form
symmetries. One may, therefore, have “dyonic” line-operators charged under both of
them. This is in fact the starting point of chapter 4, uncovering a richer structure
underpinning conformal field theories with continuous higher-form symmetries.

A second, paradigmatic, example of higher-form symmetries in quantum field theory
takes place in Chern—Simons theory. The relevant example in this case is abelian
Chern-Simons theory. This is a three-dimensional topological gauge theory, with
action

k
Scsla] = H/Xa rda. (1.1.30)

Here, a € Q'(X) is a one-form U(1) connection, normalised as [ a € 27Z, along
any one-cycle, and k € Z is called the level of the action. Integrality of the level is
required to guarantee gauge invariance. The theory, as written above, is defined on a
torsion-free manifold; this is sufficient for our purposes. Chern-Simons theories on
manifolds with torsion are treated, for example in [35, 36], and (briefly, but in a more
general framework) in appendix A.1. The equation of motion for a is simply flatness
condition, k da = 0, and the observables are given by Wilson loops:

W, [Cq] := exp(in /;1 a). (1.1.31)

with n being an integer. These operators have a slightly peculiar property. They are
both the symmetry operators and the charged objects. Let us explain this. They are
naturally symmetry operators, as they are topological. Since they are supported on
lines, i.e. (d —2)-dimensional manifolds, in d = 3, they furnish a one-form symmetry.
Moreover, from the canonical commutation relations that follow from (1.1.30), one
can show that Wilson loops obey an algebra of the form:

2winm

W, [C1] ® Wi [61] - exp(— Link(Cl,fl))Wm [61] ® Wo[C1]. (1.132)

This algebra has three important consequences. Firstly it shows that the fundamental
Wilson loop,

WI[Cy] := exp(i /Cl a), (1.1.33)

carries charge n under the one-form symmetry described above. Secondly, it is clear
that when # is an integer multiple of k, the corresponding Wilson loop is the identity

12



1.1. Symmetry and topology

operator. Therefore, n should be regarded only up to shifts by k. In other words, the
one-form symmetry is a finite, Z,[cl], symmetry. Finally, the interesting property that
the symmetry generators are charged, despite the abelian nature of the symmetry,

indicates that the one-form symmetry is anomalous.

These features, are exhibited in higher-dimensional generalisations of this theory,
involving two gauge-fields, of different form-degrees, known as BF theories. BF
theories, and their properties will occupy a large part of this thesis. In particular,
chapters 2 and 3 are devoted in a systematic study of those theories.

Before moving on to other generalisations of symmetries, it is worth mentioning a
few salient features of higher-form symmetries.

Higher-form symmetries can break spontaneously. A spontaneously broken continu-
ous higher-form symmetry gives rise to a gapless Nambu-Goldstone mode, which is
in this case a higher-form gauge field [15, 22, 37, 38]. Indeed, the free photon described
above, can be seen, in d > 4, as the Goldstone mode of the spontaneously broken
U(l)([:)] 7 Spontaneously broken p-form symmetries imply deconfined p-dimensional
operators, while, when unbroken, they imply confinement of the charged extended
operators. This can be — and is in the case of one-form symmetries [42] — utilised,
to characterise phases of matter with higher-form symmetries in the spirit of an

extended Landau—-Ginzburg theory.

Much like zero-form symmetries, higher-form symmetries can be coupled to back-
ground gauge-fields, which are now given by (p + 1)-form gauge fields, in the same
fashion as (1.1.14) and (1.1.15). In the absense of ’t Hooft anomalies, higher-form
symmetries, both discrete and continuous, can be, subsequently, gauged following the
same procedure outlined in subsection 1.1.1. In the case of gauging discrete p-form
symmetries, the gauged theory enjoys a (d — p — 2)-form global symmetry, given by
the Pontryagin dual of the original symmetry [15, 43]. Furthermore (discrete) p-form
symmetries can also be gauged on a submanifold of higher-codimension, producing
new topological defects, which are typically non-invertible [44-48]. This is a novel
property of higher-form symmetries, that is not present for zero-form symmetries.

1.1.3 Non-invertible symmetries

In this section we will discuss a different interesting generalisation of symmetries,
which will be useful for a part of the main body of this thesis. Such symmetries are,
by now, mostly known as non-invertible symmetries, although in some parts of the

"More generally, a continuous p-form symmetry can break spontaneously in d > p + 2 dimensions,
while a discrete p-form symmetry can break spontaneously in d > p + 1 dimensions [15, 38]. This is a
higher-form version of the Coleman-Mermin-Wagner-Hohenberg theorem. [39-41]
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1. Introduction

phase space they are referred to as categorical symmetries® The main characteristic of
such symmetries is that, while they are still described by topological operators, their
fusion algebra has no inverse. Here, we will not attempt a mathematically rigorous
introduction to the various concepts, nor will we follow a historically precise timeline
of the developments of this field. Rather, we will present the main ideas, that are
relevant for this thesis, and outline their physical applications. For a more complete
introduction to non-invertible symmetries we refer the reader to [50, 51].

Perhaps the simplest physical model exhibiting non-invertible symmetries is is a
two-dimensional Ising model® at the critical temperature, also known as the two-
dimensional Ising CFT. The main idea dates back to Frohlich, Fuchs, Runkel, and
Schweigert [52] who reinterpret the classic Kramers—Wannier duality of the Ising
model in terms of topological operators. In the Ising model, correlation functions of
spins, at temperature inverse temperature 8, are equal to those of disorder operators at
inverse temperature By = —3 log tanh B, implying a high/low-temperature duality.
At the critical temperature, Bt = —% log tanh Bit, this duality gets upgraded to a
symmetry. The operator that performs this transformation is a topological operator
that has, nonetheless, a curious property. To describe this property we need to first
describe the fields that parttake in the critical Ising model. At critical temperature,
the model is described by a two-dimensional conformal field theory (CFT), of central
charge ¢ = % This is a rational CFT, whose local primary operators are the identity
operator, a spin operator, o(x), and a thermal operator (x). Correspondingly it
has three topological line operators. The identity line, 1, a spin-changing line, 7,
implementing the usual Z, symmetry of the Ising CFT, and the aforementioned
Kramers-Wannier defect, £, whose action we will now describe (and is illustrated in
figure 1.4). Transporting O past e(x), it flips its sign into —e(x). Passing it through
o(x), however, it deletes the operator, creating in its place a disorder operator, 1 (x),
connected to D by an 7 line. u(x) is a non-genuine operator, of the same scaling
weights as o (x). Therefore, upon encircling o (x) by the Kramers—Wannier defect,
it produces a “tadpole” diagram: a closed line of D attached to an 7 line. Such a
correlation function vanishes!'° In other words, the Kramers-Wannier operator, is a
non-invertible operator: its action on the state produced by o (x) is zero.

Translated to fusion rules, what we described above can be summarised concisely to
the following algebra of topological operators:

n®n=1, 1RD=D®n=20, DRID=1@1. (1.1.34)

8Note, however, that in a small corner of phase space [47, 49] the name categorical symmetry is
reserved for a slightly different concept.

“Here, and everywhere in this thesis we are using high-energy physics conventions for dimensions.
So “two-dimensional” refers to two spacetime dimensions.

10This can be seen by noting that this diagram should produce a state of conformal weights (%, h) =
(0, 0), in the Z>-twisted Hilbert space. But such a state does not exist.
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1.1. Symmetry and topology

D D D D

£(x) _ —e(x) o(x) — U px)

Figure 1.4: The action of the Kramers—Wannier defect. Left: D flips the sign of the thermal
operator. Right: D replaces o (x) by a non-genuine operator, j1(x), connected to a Zy line.

By the above algebra, and specifically by the last equation, we can see that the
operator O has no inverse. In other words, these topological operators do not
generate a group, but a fusion category, whose fusion ring is given by (1.1.34). This
category is known as (Z;, +) Tambara-Yamagami category [53], or simply as Ising
fusion category.

The story described above is actually quite generic for two-dimensional rational
CFTs [54-56]. Such CFTs admit a set of topological lines, the Verlinde lines, [57, 58],
whose fusion ring is non-invertible and given by the Verlinde formula [57]. More
generally, two-dimensional, not necessarily conformal QFTs also enjoy non-invertible
topological lines [9, 12, 52, 59-63]. Such lines are interpreted as generalisations of
conventional symmetries, for the reason that, much like ordinary symmetries, they
are preserved under the renormalisation group flow, constrain correlation functions,
and, when anomalous, give contstraints on the low-energy phases of quantum field
theories [60-63]. The mathematics of such symmetries is, generally, better understood
in cases when there are finitely many (simple) topological operators, in which case the
symmetry is described by a fusion category. There are a lot of examples of continuous
non-invertible symmetries [59, 61, 64-66], but their mathematical description is less
clearly understood.

Non-invertible symmetries are also present in higher-dimensional QFTs. In fact, in
higher-dimensions there is also an interplay between higher-form, and non-invertible
symmetries, leading to topological operators, supported on higher-codimensional
manifolds, with a non-invertible fusion ring. We discuss here a few examples, with
many more to be found in the original papers (see for example [67] for a long list of
references).

Three-dimensional TQFTs are a prime example. The idea is parallel to the discussion
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1. Introduction

of abelian Chern-Simons theory in subsection 1.1.2, with the added generalisation
that the TQFTs can now be taken to be non-abelian. The natural operators of such
theories are topological, and because of the non-abelian nature of the TQFT, they
fuse non-invertibly. See e.g. [68-74], for examples with this perspecitve.

Another perspective involves gauging non-abelian invertible symmetries. Gauging
a non-abelian, finite, p-form symmetry, G!?1, in a d-dimensional QFT results in a
non-invertible (d — p —2)-form non-invertible global symmetry, whose fusion ring is
given by there representation ring, Rep(G!?!), of GIP! [12, 75-77]. The corresponding
topological operators are the Wilson operators of G[71,

Of relevance to this thesis, and particularly chapter 4, is the case of continuous
non-invertible symmetries, which is best illustrated by a concrete example. Consider
a compact scalar, ¢ ~ ¢ + 27, in generic dimensions. This theory has a global U(1)
shift symmetry, ¢ — ¢ + ¢, c € R/2nZ and a Z, symmetry ¢ — —¢. Gauging
the Z, symmetry breaks the shift symmetry because the U(1) charge is odd under
Z». In other words, if

U(e®. Zq-1) = exp(i@Q[S4-1]).  a €R/27Z, (1.1.35)

is the U(1) generator, under a Z, gauge transformation it maps to U(e™*, ,_).
However, there is a continuous family of topological operators, that survives the
gauging, given by:

Do(Zg—1) =U(e* Zy_y) U (™, y4_1) = 2cos(e O[Z4-1]), (1.1.36)

with &« € R/ Z. These operators fuse, however, in a non-invertible fashion [63, 65,
78]:

Do(Xg-1) @ Dg(Zg—1) = Dot (Za-1) & Do—p(Xq—1). (1.1.37)

This story has a gauge-theory analogue, where the compact scalar is replaced by a
gauge field, in which case, the Z, symmetry is interpreted as charge-conjugation. The
corresponding Z,-gauged theory, with its also has a continuous family of topological
operators fusing similarly to (1.1.37) [76, 79-82].

Finally, a striking appearance of non-invertible symmetries is in (four-dimensional)
quantum electrodynamics (QED) and quantum chromodynamics (QCD) [83, 84].
Let us sketch, in brief, the idea in QED. Classically, QED has an axial U(1) sym-
metry rotating the participating Dirac fermions by a phase exp(i%ys). However,
this symmetry suffers from the Adler-Bell-Jackiw (ABJ) anomaly [85, 86], implying
that the symmetry is broken, at the quantum level, by instanton effects. However,
what was shown in [83, 84] is that the symmetry can be restored by coupling the
non-topological operator

Ug(Z3) := exp(ia/ *Jaxial), (1.1.38)
23
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1.1. Symmetry and topology

where Jaxia is the anomalously conserved axial current, for the value o = 27”, toa
three-dimensional fractional quantum Hall state with filling fraction v = ;. This
constructs a genuine topological operator in the theory. In this case, the response
field, A, of the quantum Hall state, is identified with the dynamical photon of QED,
while the dynamical field a of the quantum Hall state is introduced, and integrated
out, only on the submanifold X3 of spacetime. More precisely the topological operator
produced by this construction is:

Da 2mwi iN
X3) = — axia ~ A
i)%( 3) [5[23]v01(§)eXp(L3(N *x J, 1+4 Cl/\d(l+2 and ))
(1.1.39)

where €[X3] denotes the space of U(1) connections on ¥3 modulo gauge transform-
ations. This operator is, however, non-invertible. This can be explicitly checked by
noting that O 1® J) # 1. A similar procedure can be performed to obtain Dy (X3),

foralla € 27rQ /Z, by stacking with the effective TQFT for fractional quantum Hall
state at filling v € Q/Z (this is known as a minimal TQFT [87]). The same construc-
tion works for QCD, in the massless quark limit, where, now, the axial symmetry
rotates the quark doublet. In this limit, it is suggested that spontaneous breaking
of this non-invertible axial symmetry explains the dominant decay channel of the
neutral pion into two photons. In this spirit, the neutral pion may be viewed as a
Nambu-Goldstone boson for this spontaneous symmetry breaking [83, 88, 89].

1.1.4 Symmetry topological field theory

In this section we will briefly present an approach aimed at decoupling the symmetry
properties of a given quantum field theory from the dynamics. The idea, based on [90,
91] is to encode the symmetry operators of a given quantum field theory in a one-
higher-dimensional TQFT. In the TQFT all operators are, by definition, topological,
therefore one may think of them as symmetries of something. Another point-of-view,
is to generalise the spirit of anomaly inflow. In an ’t Hooft anomalous theory one
can capture the anomaly in a one-higher-dimensional invertible TQFT; that is, the
low-energy description of an SPT phase (cf. section 1.2). Here, one captures the
symmetry by coupling to a topological order in one-higher-dimension.

Concretely, consider a d-dimensional quantum field theory, with a symmetry, €, on a
manifold X. This symmetry can be grouplike, or non-invertible, zero-, or higher-form.
Typically, the construction works best for discrete symmetries, however proposals
for continuous symmetries appeared recently in the literature [14, 92-94]. One then
constructs a (d + 1)-dimensional topological field theory, the “symmetry topological
field theory” (symTFT(€)), with the following properties.

1. It admits topological boundary conditions, |top). These are sometimes referred
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1. Introduction

Figure 1.5: The symmetry TFT setup. Evaluating the symmetry TFT on an interval with topolo-
gical Dirichlet boundary conditions on the one side and dynamical boundary conditions on the
other side produces the QFT partition function.

to as gapped boundary conditions.

2. It admits the original d-dimensional QFT as a boundary condition, i.e. the
starting QFT is compatible with the variational principle of the symTFT(€).
We will denote this boundary condition as |QFT).

3. The partition function of the symTFT on X x [0, 1], with boundary conditions
(top| at 0 and |QFT) at 1 gives the partition function of a global variant of
the original QFT. The modifier “global variant” refers to different topological
manipulations of the QFT, i.e. stacking with SPTs or discrete gaugings. Exactly
which global variant is produced depends on the form of topological boundary
conditions one chooses. Topological Dirichlet boundary conditions produce
the original QFT. This is illustated in figure 1.5.

As an example, let us assume that the QFT has a finite, grouplike symmetry, G. In
this case, the dynamical boundary condition, |QFT) is

IQFT) = Y Zorr[A] |4) . (1.1.40)
A

where Zgrr[4] denotes the partition function of the QFT in the presence of back-
ground G-gauge fields, in the sense of (1.1.16). An option for the topological boundary
condition is Dirichlet boundary condition, which can be represented as

ID[A]) = ) " 5[A — A]|A). (1.1.41)
eA’/
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1.1. Symmetry and topology

The sandwich of figure 1.5 produces:
(D[A]|QFT) = Zgrr[A]. (1.1.42)

Other choices of boundary conditions produce the QFT with some subgroup of
G gauged. For example, if the group is non-anomalous, there exists a Neumann
boundary condition, given by

IN[B]) = §exp(i/ AU @) |A). (1.1.43)

where U is the cup product of cocycles and 8B is a background gauge field of the
Pontryagin dual group, G, of G. This produces the partition function of QFT, with G
gauged:

(N[B]|QFT) = Zexp( / AU £)zQFT[A] = Zorr/6B). (1.1.44)

To further illustrate the idea, in an example that will appear prominently in this thesis,
let us take the global symmetry to be a p-form Z[p ] symmetry. The corresponding
symTFT is a Zj higher Dijkgraaf-Witten theory [95], or written in terms of U(1)
gauge fields [34], it is a level-k, abelian, p-form BF theory. Its action is:

k
Spe[A4, B] := g/ Bia—p—11 A dA[p) . (1.1.45)
X

where A[p) is a p-form gauge field and Bjy_,_1jis a (d — p — 1)-form gauge field.
The observables, are a generalisation of the Chern-Simons Wilson loops (1.1.31),
namely Wilson operators for the A and the B fields:

Wa|Cp] = exp(in/ A[p]) and Vn,[Cp] = exp(im/ B[d_p_l]).
Cp Ca—p—1

(1.1.46)

The Dirichlet and Neumann boundary conditions are, in this case given by the
eigenstates of W, [C,| and V,,[Cy4—p—1], respectively:

W, [Cp] |D[A]):exp(in/ A) [D[A]) , (1.1.47)
Vin[Ca—p—1] IN[B]) = exp(im /C :8) IN[8]). (1.1.48)

The important feature in this discussion, is that, in order to study symmetry-related
questions, we did not need to specify the dynamical quantum field theory. For
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example, this is the symmetry TFT for SU(N) Yang-Mills theory, as well as for
various pure N = 2 super-Yang-Mills theories with ADE gauge algebra [96].

More generally, the study of symmetry TFTs has become, in recent years, a very
active topic of research, seeing applications in various fields, see [14, 89, 92, 93,
96-100] for a sample of the recent literature.

1.1.5 Honorable mentions

There are many more important developments concerning symmetries and their
generalisations, which, albeit exciting, are not directly connected to this thesis. In
this short section we briefly comment on two of them.

An obvious generalisation concerns the interplay of grouplike symmetries acting on
objects of different dimensions, or in other words, the mixing of higher-form sym-
metries of different degree, into a structure that is not simply a direct product. This
structure is known as higher-group symmetry. For an incomplete list of references,
see [31-33, 75, 95, 96, 100-116].

A different generalisation concerns what is known as subsystem symmetries. This
departs, slightly, from the point of view we advocated so far, namely that symmetry =
topological operators, in the sense that their symmetry generators are not entirely
topological, but are nevertheless, conserved in time. They appear in a large class
of condensed matter systems, such as fracton models see e.g. [117-123], for an
incomplete list. The most surprising feature of these models, which can be traced
back to subsystem symmetry is the sensitivity of the low-energy observables, to the
high-energy details. For example, such systems have exponentially large ground
state degeneracy [124, 125], excitations with restricted mobility, and exhibit UV/IR
mixing [120, 125-128], preventing a conventional effective field theory description
at low energies.

1.2 The gapless and the gapped

We have, thus far, explained the first half of the title of this thesis. The purpose of
this section is to explain the second half.

Let us begin with a quantum system, described by some microscopic Hamiltonian.
Given systems described by different Hamiltonians, we can examine whether or not
they occupy the same quantum phase of matter by looking into their ground states.
One of two things can happen: (1) there is a discretuum of such states,'! or (2) there
is a continuum of such states. The first case is associated with the notion of a gapped

UTypically there are finitely many states, but we are being generous and allow at most countably
infinite states.
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phase of matter, while the second one with a gapless phase. In what follows we will
give a more precise definition of gapped and gapless phases of matter, explain their
origin, relevance and universality, and give examples of such phases.

1.2.1 Gapped phases

Let us first describe a gapped phase. A gapped phase can be defined as an equivalence
class of gapped, local Hamiltonians. To be precise, let us consider Hamiltonians
H(A1) and H(A,), with A; being a collection of parameters. Let us further denote by

Gs1:= { {0}y and Gz = {|0i)}2, (1.21)

the collection of ground states of H(A,) and H(A»), respectively, where N; denotes
the number of degenerate ground states of the Hamiltonian H(A;). We say that
|0;(1)) is equivalent to [0;z)), denoted by [0;(1)) ~ [0;¢2)), if the two states are
related by adiabatic evolution for a finite time, ¢t € [0, T], together with inclusion
or removal of product states. This is equivalent to saying that there is a path in
parameter space, i.e. A(¢), such that A(0) = A; and A(T') = A,, connecting the two
Hamiltonians without closing the gap. We further consider the two Hamiltonians
equivalent, H(A1) ~ H(A»), if for all |0;(1)) € GS; there exists an [0;(2)) € GS», such
that [0;(1)) ~ 10j(2)). This allows us to define a gapped phase as the equivalence class
of gapped Hamiltonians, with respect to the above equivalence relation:

[HAD] == {HA) | HQA) ~ H(A1)}. (1.2.2)

This is illustrated in figure 1.6. Note, however, that this is a coarse grained classi-
fication of gapped phases, not accounting for phases that can be distinguished by
other means besides gap closing. We will come back to rectify that in the following
paragraphs.

This definition of a gapped phase, directly implies that Hamiltonians with different
ground state degeneracy cannot be in the same phase. And indeed, this principle
lies behind the Landau paradigm for the classification of phases: phases can be
distinguished by their spontaneous symmetry breaking (SSB) patterns. If a phase of
matter breaks spontaneously a discrete zero-form symmetry group, G, it will have |G|
ground states. It can therefore be distinguished from the trivial symmetry-preserving
phase, with a unique, product ground state.

It seems, however, that the above characterisation distinguishes phases further,
beyond the Landau paradigm, as it is not only the number of ground states that it
measures, but also other, finer, yet robust, characteristics. The word robust here, refers
to the fact that these are characteristics that are not affected by small perturbations of
the system, as these would be accounted for in the adiabatic evolution that connects
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H(A1)

Figure 1.6: A crude illustration of the quantum phases of matter. The coloured islands indicate
different phases of matter, while the light rivers are gap-closing paths. The Hamiltonians H(A1)
and H(A3) lie in the same phase, but H(A3) does not.

the states. These characteristics indicate, therefore, something topological, something
that can only change under drastic changes of the physical system. In accordance
with the logic of section 1.1, symmetries are intimately connected to topological
properties of quantum systems and vice versa. It is therefore conceivable, that the
Landau paradigm can be modified to capture this finer distinction of phases of matter,
by enlarging the definition of symmetry and symmetry-breaking. Such a programme
is subject to intense recent research [42, 129-132].

Let us return to the classification of gapped phases and consider, for now, phases that
do not break any ordinary symmetry. Moreover, let us momentarily choose [H(A1)]
to be the trivial phase, i.e. with a unique gapped vacuum in a product state. The
above definition guarantees, that, if the ground state of [H(A,)] is highly entangled, it
cannot be deformed to the trivial state through a finite-time adiabatic evolution. This
is in fact easier to state in the language of [133], where it is shown that the action of
finite adiabatic evolution on states is equivalent to the action of a constant-depth
quantum circuit. What the circuit does, is it attempts to disentangle pairs of states,
one step at a time. But being a constant-depth circuit, it can only disentangle finitely
many such states. This leads to the definition of short- and long-range entangled
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1.2. The gapless and the gapped

states. Short-range entangled states are those that can be transformed into a product
state by a constant-depth quantum circuit. Long-range entangled are those that
cannot. The phases induced by the above ground states, are called, consequently,
phases with short- and long-range entanglement respectively. Phases with long-
range entanglement are also known as (intrinsically) topologically ordered phases [134]
(phases with short-range entanglement are sometimes known as non-intrinsically
topologically ordered). As is evident by the above criterion, topologically ordered
phases are characterised by their patterns of long-range entanglement. This will be a
recurrent theme in this thesis, occupying chapters 2 and 3.

We can add an extra layer of fine-graining by supplementing the entanglement
classification with symmetry constraints. This gives rise to symmetry-protected
and symmetry-enriched topological phases. Namely, given a symmetry, €, of the
quantum system, represented by operators, D acting on the Hilbert space, that
commute with our starting local Hamiltonian,

[H(A1), D] =0, (1.2.3)
we define a symmetry-enriched topologically ordered phase (SET phase) as
[HADle :=={HA) | HA) ~ H(A;) and [H(1),D]=0,"Dee}. (1.2.4)

In the case where [H(A;)] is the trivial phase, [H(A1)]e is known as symmetry-
protected topological phase (SPT phase).

1.2.2 Gapless phases

So far, the discussion was focussed on gapped phases, with gaplessness arising
only at boundaries between different phases. From the point-of-view that we have
taken up until now, gapless phases are a bit more tricky to define. They are more
natural in the quantum field theory point-of-view, that we will connect to in the
forthcoming paragraphs. Nevertheless, let us attempt a heuristic definition before
changing language. Ground states of gapped phases, have exponentially decaying
correlations — this statement was already anticipated by Haldane [135], and finally
proven by Hastings and Koma [136]. On the other hand, correlations of ground states
of gapless Hamiltonians, generically decay as a power-law with distance. In other
words, the correlation length in such phases diverges. Often, this behaviour indicates
that the system is at a critical point, undergoing a (second order) phase transition.
Such points in the space of theories are described by conformal field theory. We will
return to that point in the forthcoming paragraphs and in chapter 4. Nevertheless, it
is worth mentioning that from the point-of-view of phases of matter, gapless points
are not only present at criticality, but can sometimes occupy stable phases of their

12€ can, in general have a group-like, or categorical structure, cf. section 1.1
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own, such as gapless quantum spin liquids [137-139], non-Fermi liquids and strange
metals [140, 141], as well as gapless symmetry protected phases [142, 143].

1.2.3 Field theory description

At large distances, or equivalently, low energies, many of the quantum systems
described above, exhibit universal properties, that can be understood without ref-
erence to the original system. In other words, a lot of interesting questions can be
addressed without having access to the microscopic, “ultraviolet” (UV) description of
the system. Such, low-energy effective Hamiltonians, are often well-approximated
by local quantum field theories.!*:'* We are therefore only given access to a quantum
field theory, describing our physical system up until some energy scale, A, beyond
which, anything could happen. We are not interested in that now. What we are
interested in is actually the opposite regime, what happens at the “infrared” (IR),
i.e. at extremely low energies. To that end, we run the renormalisation group flow,
to obtain the low-energy effective action. That is, assuming that we started with
an action principle, with some action S [¢], describing the physics of the degrees
of freedom ¢ whose energy/momentum, is at most A, the renormalisation group
equation tells us, that the effective action at a lower energy, A’ < A is given by"

Sa’[light] = —log [ /

D¢heavy eXP(—SA [¢light + ¢heavy]):|o (1'2-5)
C[A’,A]

In doing so, we have split the degrees of freedom into light and heavy, with energy
below A’, and between A’ and A respectively, and integrated out the heavy fields.
This leaves us with an effective theory of the light modes. We can iterate this
procedure, going lower and lower in energy scales, until we reach a fixed point of
the renormalisation group. In this framework the million dollar question is what the
description of the IR phase of a generic QFT is.!®

The first type of IR fixed points, are gapped fixed points. As alluded to above, these
are fixed points with vanishing correlation length. Let us begin the discussion by
asking the simplest possible question: What fixed point does the trivially gapped
phase flow to? The answer is, naturally, that it flows to a trivial QFT. Namely, a
QFT whose operator content is only the identity operator. The next-up question,
in terms of complexity, concerns the fixed-points of SPT phases. These are given
by invertible topological quantum field theories (iTQFT) [145]. Such theories, are

3There are, however, systems that evade such a description, such as fractonic phases, mentioned in
subsection 1.1.5.

1We will restrict to unitary QFTs, explicitly mentioning the lack of unitarity if needed.

15A word on notation. We are be in Euclidean signature and €[A’, A] denotes a functional space of
fields with energy between A’ and A.

16Quite literally. There is a million dollar bounty on answering this question for Yang-Mills theory
[144].
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mild generalisations of the trivial quantum field theory, coupled to background
gauge-fields, for the protecting symmetry, and account for the aforementioned finer,
symmetry-protected, classification of trivially gapped phases. Invertible TQFTs in
d dimensions — and by extension d-dimensional symmetry-protected topological
phases — protected by a finite group, G, are classified by cobordisms [146-149]. In
equations:

{{HM)]6} = hom(Q§,U(1)), (1.2.6)

where the left-hand-side denotes the set of isomorphism classes of d -dimensional SPT
phases, and on the right-hand-side, Qg denotes the bordism groups of d-dimensional
manifolds with G-structure.

A more challenging question is describing the fixed point that corresponds to a
long-range entangled gapped phase. The mantra that follows this question is that
topologically ordered systems flow in the IR to a topological field theory [145, 150]. A
more precise statement [44, 151], further attempting a classification, is that topological
orders flow in the IR to fully-extended TQFTs!” A more complete classification, further
accounting for symmetry-enriched phases, protected by potentially non-invertible
finite symmetries is given in [152], in terms of autoequivalences of the protecting
category.

The fixed points we have discussed so far exhaust the infrared fate of gapped phases
of matter. We are left to discuss the fate of gapless points. As we alluded to, above,
for such phases, the correlation length diverges. Therefore, the effective quantum
field theory description of the system, the system flows to a scale invariant theory.'®
Oftentimes, scale invariance, combined with Poincaré invariance, and unitarity,
enhance to conformal invariance. This is famously the case for all two-dimensional
theories, [155, 156], while there are also supporting arguments for four-dimensional
theories [157-160]. Therefore, the infrared behaviour of a large class of gapless
phases of matter can be described using the techniques of conformal field theory.

Many of the phases we discussed above present apparent exceptions to the Landau
paradigm. For instance, topologically ordered gapped phases have no local order
parameter. Even worse, there is no symmetry understanding of stable gapless phases.
However, a recent perspective advocated in [42, 161, 162] suggests that while the
traditional Landau paradigm cannot account for all phases of matter, a modified

Tn [151], the TQFT is further supplemented with the word anomalous. The word anomalous indicates,
there, that a topological order should be thought of up to stacking with a trivially gapped phase, since a
trivially gapped phase corresponds to the trivial QFT in the IR. In our discussion this is taken into account
by allowing the addition/removal of product states in the definition of the equivalence class defining the
phase.

18However, note that when the dispersion is not linear the effective field theory is not relativistic [153].
Fixed points of this sort are known as Lifshitz fixed points [154].
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Landau paradigm encompassing all generalised notions of symmetry can. Perchance.
Indeed, by including higher-form symmetries, one can understand in a unified way
deconfined states of gauge theory [15, 37, 42, 163]. Additionally, incorporating non-
invertible symmetries, provides a more complete picture of two-dimensional phases
of matter [132]. Importantly, this perspective opens a window towards understanding
gravity as a phase of matter [129].

1.3 Outline

The rest of this thesis is organised as follows. Chapters 2 and 3 are devoted to the
study of the gapped. In particular, they are concerned with topologically ordered
phases in higher-dimensions and their entanglement structure, focussing on their
low-energy topological field theory description. Then, in chapter 4, the focus shifts
to the gapless, where the interplay between conformal field theory and generalised
symmetries is examined and novel results about the structure of CFTs are presented.

In detail, chapter 2 presents a systematic study of the entanglement structure of
abelian topological order described by p-form BF theory in arbitrary dimensions. This
is done directly in the low-energy topological quantum field theory by considering the
algebra of topological surface operators. Two relevant notions of subregion operator
algebras are defined, which are related by a form of electric-magnetic duality. It
is subsequently shown that with each subregion algebra, there is an associated
entaglement entropy, termed essential topological entanglement (ETE). This refines
a well-known concept in (2 + 1)-dimensional topological orders: the topological
entanglement entropy. ETE is intrinsic to the theory, inherently finite, positive, and
sensitive to more intricate topological features of the state and the entangling region.

Then, in chapter 3 an alternative perspective is explored. Remaining within the
setup of p-form abelian BF theory, the entanglement entropy arising from edge-
modes is considered. This is done on arbitrary spatial topology and across arbitrary
entangling surfaces. The entropy contains a series of descending area laws plus
universal corrections proportional to the Betti numbers of the entangling surface.
The calculation comes in two flavours: firstly, through an induced edge-mode theory,
appearing on the regulated entangling surface in a replica path integral, and secondly
through a more rigorous definition of the entanglement entropy through an extended
Hilbert space. Along the way several key results are presented, that are of their own
merit. The edge-mode theory is given by a novel combination of (p — 1)-form and
(d — p — 2)-form Maxwell theories linked by a chirality condition, in what is termed
chiral mixed Maxwell theory. The thermal partition function of this theory is explicitly
evaluated. Additionally, it is shown that the extended Hilbert space is organised into
representations of an infinite-dimensional, centrally extended current algebra which
naturally generalises 2d Kac—Moody algebras to arbitrary dimension and topology.
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Lastly, the two approaches are connected, showing that the thermal partition function
of the chiral mixed Maxwell theory is precisely an extended representation character
of the current algebra, establishing an exact correspondence of the edge-mode theory
and the entanglement spectrum.

Coming to chapter 4, the setup switches to conformal field theory, but the theme of
current algebras persists. The main result of this chapter is a one-to-one correspond-
ence between line operators and states in four-dimensional CFTs with continuous
1-form symmetries. Such CFTs enjoy an infinite dimensional current algebra, closely
related to the algebras of chapter 3. The representation theory of this current algebra
is constructed, and the space of states on an arbitrary closed spatial slice is described
in detail. Then, the spectrum on S? x S! is rederived via a path integral on B3 x S!
with insertions of line operators. This leads to a direct and explicit correspondence
between the line operators of the theory and the states on S? x S!. An interesting
conclusion is that the vacuum state is not prepared by the empty path integral, but
by a squeezing operator. Additionally, some of the above results are generalised
in two directions. Firstly, universal current algebras are constructed in (2p + 2)-
dimensional CFTs, with continuous p-form symmetry, and secondly non-invertible
generalisations are provided.

Chapter 5 summarises the salient points and the results of the thesis, and discusses
interesting future directions and generalisations.

Technical details are collected in the various appendices. Specifically, appendix A
contains a careful treatment of BF theory in differential cohomology, mathematical
proofs, and details on the decomposition of density matrices pertaining to the body
of chapter 2. Appendix B contains a comparison of p-form Maxwell theory and chiral
mixed Maxwell theory, and spectral properties of the Hodge Laplacian. Appendix C
expands further on the spectrum of the Hodge Laplacian, in particular in situations
relevant for chapter 4, discusses the current algebras of the body of the thesis in more
general situations, and provides details on the radial evolution, which is central to
the state-operator correspondence.
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ESSENTIAL TOPOLOGICAL
ENTANGLEMENT

2.1 Introduction

Quantum entanglement is an invaluable framework for modern theoretical phys-
ics. This framework has led to profound insights into quantum information theory,
quantum field theory, and quantum gravity." Yet some of the most profound applica-
tions can be found in the theory of quantum phases of matter. In particular, in (2+1)
dimensional gapped systems the presence of topological order cannot be diagnosed
by any local order parameter. Entanglement is a non-local phenomenon. It stands to
reason that long-range entanglement can provide a clean signature of topological
order in (2+1) dimensions: the celebrated “topological entanglement entropy” (TEE)
[165, 166].

Low-energy effective field theories are potent tools for exploring TEE in manifestly
universal manner. These are topological quantum field theories (TQFTs), the pro-
totypical example being Chern-Simons theory in (2+1) dimensions. Topological
order in higher-dimensions is expected to be richer: already the discovery of (3+1)
dimensional systems displaying “fracton topological order” [167-169] has broadened
our understanding of gapped phases. Yet even the traditional classification of TQFTs
can involve a large set of non-Gaussian interactions which induce richer forms of
operator statistics [170, 171]. It remains a broad open question as to what universal
entanglement signatures diagnose and distinguish topological order in higher dimen-
sions. Here we take modest steps towards understanding this question, focusing on
abelian topological orders described by abelian BF theory. This focus buys us some
muscle: we will be able to make broad statements about abelian topological order in
arbitrary dimensions and quantised on (almost) arbitrary manifolds? We will use this
muscle to address two conceptually puzzling aspects of the traditional treatements

!See [164] and references therein for an (obviously) non-exhaustive summary.
2We do restrict to torsion-free manifolds as well.
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of TEE.

The first conceptual puzzle we want to address is the area law. Traditional com-
putations of TEE involve an area law stemming from short-distance correlations
at the UV scale and to which the TEE appears as a subleading, scale-independent,
correction. Heuristically the scale-independence of this subleading correction is a
signal of its universality (however there are subtleties applying this argument to
lattice and tensor network models [172, 173]). It is initially surprising that a TQFT,
which has a finite dimensional Hilbert space when quantised on a compact surface,
can support a divergent entanglement entropy. However, the area law arises from an
explicit addition of UV degrees of freedom when calculating TEE. These either come
in the form of an embedding into a microscopic model (e.g. a lattice gauge theory
[174-176], a “coupled wires” model [177], or a tensor network model) or in the form
of “edge-modes” living on an entangling surface [178-181]. These UV degrees of
freedom play an important role in calculating entanglement entropy: TQFTs are
quantum gauge theories which have a well-known obstruction to factorising the
Hilbert space into local subregions [174, 182-185]. In this context the UV degrees of
freedom provide an arena, the “extended Hilbert space,” in which the Hilbert space
can be factorised and the entanglement entropy defined. Here we ask if there is
another manner for defining entanglement entropy that (i) bypasses invoking UV
degrees of freedom, (ii) is strictly topological, and (iii) is commensurate with a finite
dimensional Hilbert space in the IR.

There is indeed an alternative for dealing with this obstruction. In a seminal paper,
Casini, Huerta, and Rosabal [183] illustrated how operator algebras provide a natural
definition of entanglement in gauge theories. The lack of Hilbert space factorisation
manifests itself as a non-trivial centre in the algebra of operators associated to a
region. Algebraic definitions of entanglement in gauge theories and their relation
to the extended Hilbert space have been largely explored in the context of lattice
gauge theories [186, 187]. However the algebraic approach to entanglement is, in
principle, valid even in the continuum. For TQFTs it provides an intrinsically IR
avenue for defining entanglement entropy. Le. a definition that utilises only the
ground states and operators available at low-energies, without involving UV degrees
of freedom, and is strictly finite. Despite the hotbed of research in entanglement
entropy in topological phases and quantum gauge theories, this aspect of topological
entanglement has been left relatively unexplored.

The second conceptual puzzle we want to address is “semi-locality” of the traditional
TEE which in (2+1) dimensions involves topological aspects (Betti numbers) intrinsic
to the entangling surface; this relation is argued to hold in higher dimensions [188].
The ground states of topological field theories display extreme long-range entan-
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glement? It is perhaps then surprising that TEE does not “sense” farther than the
entangling surface itself and is insensitive, say, to how the entangling surface is
topologically embedded into the Cauchy slice defining the Hilbert space.

We will address these two conceptual puzzles in this chapter. Namely, we consider the
operator algebra, 2A[X], acting on a Cauchy slice, ¥, that is directly available in abelian
BF theory. The operators generating this algebra are higher-form Wilson surface
operators. Due to the topological nature of the field theory, these surface operators
are invariant under deformations and so are naturally associated with homology
cycles of X. Clearly this algebra, and any subalgebra, is inherently topological and
defined directly in the IR. However, such operators are not wont to be localised to
spatial subregions; as a result, there are potentially large ambiguities in ascribing a
subalgebra, 2[R], to region, R. We describe two natural choices that can roughly be
stated as “the set of operators that can act entirely in R” and “the set of operators
that must act, at least partially, in R” We name these two algebras the topological
magnetic algebra and the topological electric algebra, respectively, for reasons that will
become clear in due time. They are related by a form of subregion electric-magnetic
duality which we will make precise below.

We utilise these two notions of subregion algebra to assign an entanglement entropy
to ground states in the theory. This entanglement entropy is by nature (i) topolo-
gical, and (ii) finite and commensurate with a finite dimensional Hilbert space. To
distinguish it from the traditional TEE appearing as the subleading correction to
an area law, we coin’ this entropy essential topological entanglement, €. It comes in
two forms, Em,e and Eelec, and are related by the subregion electric-magnetic duality
mentioned above.

Owing to the power of topological field theory, we will be able to evaluate & in
arbitrary dimensions, on arbitrary surfaces, and associated to arbitrary regions. This
allows to us to show that & is indeed sensitive to more intricate and long-range forms
of topology than that of dR alone: in both forms it depends on topological aspects of
dR, ¥, and how 0R is embedded into X. This is, again, innate to the operator algebra
definition. Operators in 2A[R] must, foremost, be operators in 2[X]. It is clear then
that cycles of dR that embed to trivial cycles of ¥ cannot contribute to &.

We pause to mention that similar notions to our definition of & have appeared in
the context of lattice gauge theories by examining the algebras of “ribbon operators”
which are also naturally topological operator algebras [190], as well as work utilising
similar ideas to discuss the “area operator” in tensor network models of holographic
entanglement [191]. However the focus on these quoted works is on (2+1) dimensional

3Tllustrated, for instance, in “multi-boundary” set-ups in Chern-Simons theory [189].
4Competing nomenclatures: intrinsic, core, and boneless topological entanglement.
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non-abelian models on spaces and subregions with simple topology. Our focus on BF
theory allows us to work directly in the continuum and deftly incorporate spaces
and entangling regions of arbitrary topology, albeit at the expense of working in an
abelian model. Because of this it is hard to make a direct comparison between these
works and ours at this time. We will comment on this further in section 2.4.

2.2 Quantisation of BF theory

We begin by introducing the p-form abelian BF theory, on a d-dimensional, torsion-
free manifold X, with action

K"

SBF[A, B] = — B| A dAJ . (2.2.1)

2w X
In the above A, € Q7(X) and B, € Q9-7~1(X) are vectors of p- and (d — p—1)-form
gauge fields respectively. We will take p # 0,d — 1> We have also allowed a possible
square, integer, non-degenerate — but not necessarily symmetric — K-matrix of
rank «. For notational simplicity we will drop the indices, unless it is necessary.
In appendix A.1 we provide a more careful treatment of BF theory, allowing for
manifolds with torsion. The action (2.2.1) possesses a gauge redundancy of the form

84 =da and 8B =df, (2.2.2)

where o € QP(X) and B € Q4~P72(X).

Let us suppose that X possesses a boundary and discuss the quantisation of the
theory on dX. Much of this procedure follows that of [192] and [171], however
we provide these details for completeness. We begin with the classical symplectic
structure. The variation of the action takes the form

§Spe[A, B] =/X(SBAEOM[A]+8AAEom[B])+[aX0[A,B;8A,SB], (2.2.3)

where the classical equations of motion are flatness conditions:

K J KT
EOM[A] = 7 d4 =0, eoM[B] = (—1)( _1’)(1’+1)2— dB = 0. (2.2.4)
m s

The boundary term defines the symplectic potential, #:

K
#[A, B;8A4,8B] := (—1)d—1’—1—/ B AB8A, (2.2.5)
ax 27 Jox

SWe expect much of what follows to morally hold true in these special cases, however some technical
details of our proofs would need to be altered.
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where the pullback along the embedding map, ¢, : dX < X is implicitly understood
above. We see this theory is already in canonical, or Darboux, form, # = p A 8q,
with K
— _ d—p—1
q=A4 and p=(-1)*"* EB’ (2.2.6)
which is consistent with fixing A4 as a boundary condition. We can switch the role of
(B, A) ~ (p,q) to (B, A) ~ (q, p) by the inclusion of the boundary action

K
Sat[4, Bl = (-1)4 7P — f B A A, (2.2.7)
2w Jox

but we will work in the former quantisation scheme. The symplectic form on 09X,
given by the variation of [y, #, is

K
Qay = (—1)’1—1’—15 /3)( SB ASA. (2.2.8)

This symplectic form is degenerate due to gauge variations. We will take care of this
soon below.

We will quantise the BF theory on a (d — 1)-dimensional manifold, X, by performing
the path-integral on X = R x X. Here, R is coordinatised by ¢ and the Cauchy slice
at time ¢ is represented by {¢} x X. The path-integral measure is formally given by

DA DB S (4,5]

A (4. B) = vol(&,) vol(§4-p—1)

(2.2.9)

where §, and §;_,_ are the gauge groups for the redundancies (2.2.2). On top of it,
it includes a sum over non-trivial bundles. For a full definition of the measure and the
gauge groups, we refer the reader to appendix A.1. Currently, we consider the case
where 0¥ = @ (we will revisit the case with boundaries in chapter 3). Additionally,
let iy : ¥ < X be the embedding of X into X.

We can express A and B as A = Ag + a and B = By + b respectively, where
1540 =0 = 54 =5a,
5By =0 = 5B = 5.

To make the decomposition clearer we can use coordinates {x,, }fn_:ll for ¥ which
gives us:

A = (A0 m,,_, dt A dx™t A A dx™P!

+ amyom, X" Ao A dx™? and (2.2.10)
B = (Bo)m,.-my_,_, dt A dx™t A A dxMdTP2
+ bimyemg_ dx™ A A dxMdmrt (2.2.11)
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In these coordinates, let us also write d = df A d; + dx™ A d,, =: dr + d. Integrating
(2.2.1) by parts and utilising the fact that dg A9 = 0 and dgr By = 0 (since they involve
dt Adt A--- = 0), we arrive at

K
SprAo + a, Bo + b] = E/ ((—1)d—P db A Ao+ Bo nda +b A da). (2.2.12)
X

It is easy to see that Ap and By act as Lagrange multipliers enforcing the ¥-flatness
of a and b:
da =db =0. (2.2.13)

We will refer to (2.2.13) as the “Gauss law” constraints. Using the property (A.1.6) of
the path-integral measure we can write

diu(A, B) = du(Ag, Bo) dju(a,b) e'Seeldobl ¢iSuela.Bol (2.2.14)

and performing the integrals over Ay and By we get du(a, b) §[da]é[db]. The delta-
functions force a and b to be closed under d; Hodge decomposition implies, then,
that

a=dy+6, and b=dy+ ¢, (2.2.15)

for some ¥ € QP71(X), 6 € (1HP(X), and y € Q4P2(X), ¢ € 15H?(X). This

results into the path-integral measure:

du(a, b) 5[dals[db] = du(x, ¢) du(@, ) Sxldx ol ¢iSirlo-av]

Dy DyD¢D# iK
 vol(§,) vol(§a—p—1) eXP(ZN /X¢AdR0). (2.2.16)

The integral over ¥ and y over the volumes of the gauge groups yields the Ray-Singer
torsion of the manifold [193, 194]¢ and so we simply get

Zer[X] = (/ D¢ DO exp(g/xgb AdRe)) Tre[X]CV" 7 (2.2.17)

where Trs[X] is the Ray-Singer torsion:

1_1)k+1
d K\ 2D
(det’Ay)
TuslX] = [1 (W ’
k=0 k

(2.2.18)

with Ag being the Laplacian on the space of k-forms on X, and G4 the metric in
by ()
the space of harmonic k-forms, defined as follows. Let {‘L’i(k) } “ be the topological

basis of harmonic k-forms, with by (X) the k? Betti number of X. This basis is defined

®for a modern exposition see also [195]
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by (Z)
i=1

such that given a basis of k-cycles {ni(k) € Hk(E)} , there is a unique harmonic

representative, ri(k), of each cohomology class in H* (), such that
(k) __ i
/i T = (2.2.19)
Mk)

It is in terms of this basis that the matrices Gy above are defined. Explicitly:
Gyl == / o p et ®, (2.2.20)
)

where  is the Hodge-star on X. Before moving on let us make a quick digression to
mention that the inverse of Gy is the linking matrix

(Gl = &, (2.2.21)

which can be alternatively be defined as an oriented intersection number in the

following way. Let us pick a basis of k-cycles {ni}:jiiz) of Hi(X) and a basis of

(d — k — 1)-cycles {ai}:’iiz) of Hy_x_1(X). The transversal intersection of 7 and o'

in ¥ is a zero-dimensional manifold (that is, a collection of points) and [L]J counts
the number of points signed by their orientation:

L)Y = L (n', 0?) :=[ 1. (2.2.22)

niNgj
Let us focus on the remaining path-integral in (2.2.17), which is the quantum mech-

anics for the large-gauge degrees of freedom, ¢ and . We can expand ¢ and 6 in

terms of the basis {z; }}Zgz). Namely

¢(t,x) =¢' () and O(t,x) = 0'(t) x 7j. (2.2.23)

Note that (2.2.19) with (2.2.15) implies

6' = / a, ¢ = / b, (2.2.24)
n ol

in terms of our original field variables. Since ¢'(¢) and 6/ (¢) are circle-valued functions
on R they are identified with

d'(t) ~¢'(t) + 2 and 6'(t) ~ O(t) + 2. (2.2.25)
All in all the action reduces to

K . .
S5119.61 = 5. (6, | ¢/ dol. (2.226)
5
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This is a simple quantum mechanical system whose symplectic form reads (reinstating
the I, ] indices)

(- l)d—p—l
N 2
which is the restriction of (2.2.8) to ¢ and 9Jj.

Qs K" [G,l;; 61 1 86 . (2.2.27)

Given the our interpretation of A = q coming from the symplectic potential, (2.2.5),

we will identify 9Jj as “positions” and ¢| as “momenta”’ Passing from Poisson brackets

to commutators, promoting ¢ and 6 to operators, we arrive at
[¢3§, 9}] = 27i (=)7K L)Y, (2.2.28)

where K+ := (KT)_1 is the inverse transpose. Hereafter we will drop the index p
and the square brackets from IL,, and G, for conciseness.

Since these operators are U(1)-valued, we should exponentiate them to construct
gauge-invariant Wilson surface operators:

W:jj = exp(wf OJJ) = exp([7j wJJ aJ), (2.2.29)

\7;2 = exp(vi] gﬁ,‘) = exp(/i V] b.), (2.2.30)

| Je{1,...k} le{1,...,k}
where {w} and {vll} are are b, (X) x k collections of integers.
Hje{1,..bp(2)} i€{1,...bp(2)

These surface operators are defined with respect to fixed bases of homology p- and
(d — p — 1)-cycles, {r)j}})i (12) and {o'}.” (12)’ respectively; however it is easy to verify
that they are homotopy invariants when acting on gauge-invariant states due to the
Gauss-law constraints, (2.2.13), and thus well defined on homology classes.

2.2.1 The algebra of Wilson surface operators

The Wilson surface operators constructed above satisfy a “clock algebra” which can
be easily found using the canonical commutation relations (2.2.28):

A W o yd—p—1 ) Ly T A A
V;zl W:Jj — ean( D=2~ 1wy (KLY W:’JJ VZJP (2.2'31)

The W’s commute amongst each other as do the V’s. From the above algebra we can
clearly see that w; and v; give the same algebra as wj + m - K and v; + K - m’, for
arbitrary m, m’ € Z*. The entire algebra is, then, generated by operators labelled by
charges in the lattices

wj € Ay = Z"/imKT and v; € Ap := Z"/imK. (2.2.32)

"More correctly handling the index placement, the momenta are p} = (=1)4—,~1 ]IZ%J [Gylijol.
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2.2. Quantisation of BF theory

It will be notationally useful to collect w’ and v! as the components of a b, (X) x k-
dimensional integer vectors denoted as to and v, respectively. Also for notational
convenience, we will define an inner product on these vector spaces as

I(0.10) := 27 (-7 "o - (Kt @ L) - 1o = 27(=1)? ™7~ w] v} (KH)y LY. (2.2.33)

Then (2.2.31) can be written succinctly as

VOW® = el ()i (2.2.34)
with
by (D) by (5)
. .o, . < w);
ve= [ V. we =] W (2.2.35)
i=1 i=1

In this notation, the W’s and V’s satisfy an abelian fusion algebra
WrRW™ = Wete' and YUY = Vet (2.2.36)

where it is understood that the sums are taken in the respective lattices, (AA)bI’(E)
and (Ap)P»®.

Constructing states

To construct the states on #x we pick a maximal set of commuting operators and
~ bp (2) A1 bp (D)
use the space of their eigenvectors. For that we can use either {(])J} " or {9'} .

=1
We will first use the basis given by {é'} eigenvectors which is morally consistent
with fixing a as a boundary condition. To construct the states systematically, we will
first define a fiducial state |0) annihilated by all {é i}. This is an eigenstate of W::’
with all eigenvalues one:

W™ 0) = |0). (2.2.37)

We will call this state the “p-surface operator condensate,” or “the condensate” when
the context is clear. We then use Vg‘i as raising operators. A general ground state

will then be given by
by (Z)

o) :=V°10) = [] V% 10). (2.2.38)
i=1
for any integer vector, v € (Ap)” ). These are indeed eigenstates of W™ with

eigenvalue
W [p) = el @) ) (2.2.39)

Additionally, since
(0]v) = (0|W™ o) = €T @™ (gp) | (2.2.40)
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2. Essential topological entanglement

for any 1o € (A4)P?® and since K and IL (and thus I') are non-degenerate,

by (2) .
1 v =0mod imK,
(O]p) = 8, := §AB)  with §A8) = (2.2.41)
’ E v Y 0 otherwise.

This fact, coupled with (\A/"’)Jr = V‘“, and the fusion algebra, (2.2.36), implies the
full-orthonormality of #x = span{|v)}. The dimension of the Hilbert space is

dim #5 = dimz (Ap)*”® = dimz(A4)*® = |detK|>»®, (2.2.42)

We note that the quantisation can be repeated in a wholly similar procedure by using
W™ as ladder operators (this builds a Hilbert space of eigenvectors of V°) to arrive a
Hilbert space of the same dimension. We will call the isomorphism of the Hilbert
spaces built on p- and (d — p — 1)-surface operator condensates, electric-magnetic
duality in this context® Below we will describe how this duality can be refined to a
notion of subregion electric-magnetic duality.

2.3 Subregion algebras and essential topological entanglement

We now move to the main act of this chapter: how to associate subregion entangle-
ment entropy to this theory after we have “integrated out” all of the local degrees of
freedom. We will do so in the algebraic approach. We briefy remind the reader of the
broad features of this approach.

Starting with a region, R C X, one associates a subalgebra, 2A[R] C 2[X], of the
operators which act naturally on R. The commutant of 2A[R] is then associated to the
complement of R: A[R°] = (A[R])‘. Given a state, p, one can reduce it to A[R]: i.e.
PR is the unique Hermitian and trace-normalised element of the subregion algebra,
A[R], reproducing the expectation values of all Og € 2[R]. The von Neumann
entropy of this reduced density matrix then provides an algebraic definition of the
entanglement entropy of p reduced to R:

Sarrle] = Swnlpr] := —Tr(pr log pr). (2.3.1)

This situation is complicated in theories with gauge invariance. The non-local manner
in which gauge constraints are applied to states manifests itself in a non-trivial centre
in the subregion algebra: 3[R] = 2[R] N A[RC]. Operators generating 3[R] can be

8This duality is simply a statement that the Hilbert space built on the p-surface operator condensate
is of equal dimension to the Hilbert space built on the (d — p — 1)-surface operator condensate. They are
automatically isomorphic. This is a simple consequence of Hodge duality on .

9We will generally call density matrices “states” regardless of their purity.
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2.3. Subregion algebras and essential topological entanglement

simultaneously diagonalised. The state, p, and subsequenty, the reduced state, pg,
can be decomposed with respect to the eigenspaces of the operators generating 3[R]:

pr = Prwry). (2.3.2)
o

where o labels the eigenspaces. The pgg‘) can be individually trace-normalised and
$0 ), A@) = 1. This leads to a refinement of (2.3.1) where the algebraic entangle-
ment entropy naturally splits into the weighted sum of von Neumann entropies of
reduced density matrix projected to fixed eigenspaces plus the Shannon entropy of
the probability distribution given by {Aa)}:

SQ[[R] [,O] = Z )L(Q)SVN I:pgg)il — Z /\(a) log X(a). (2.3.3)
o o

We will make these broad features explicit in what follows and show that the Shannon
contribution takes a universal, topological, form. Before doing so we will first need
to define a notion of a subregion algebra, A[R]. Given the topological nature of the
operators in 2[X], we will take care to define it in a manifestly topological manner
below.?

2.3.1 Topological subregion algebras

We begin by regarding X as the union of two, otherwise disjoint, submanifolds
Y = R Ugg R€ sharing a common boundary, dR. We will assign an operator algebra,
A[R], to R and A[R] is then defined as the commutant of 2[R]. There is some
ambiguity in this assignment; in what follows we will assign this in a “natural” way.
Since our operators in this theory are only defined up to homotopy, however, there
may be multiple “natural” ways to associate an algebra to R. Different choices of
subregion algebra may result in different centres and different definitions of the
entanglement entropy.

Let us introduce the following notations. Suppose that M is a submanifold of ¥
and let i : M < X be the embedding map. We can use i™ to push-forward
homology groups: iM : Ho(M) — He(XZ).!! In what follows, given a € H(X) and a
map as above, we will denote « € M, iff @ € im i]?”. In words, « € M says that « is
continuously deformable within X to a cycle completely contained in M. Similarly,
we denote « Z M, for an o € Hy(2), iff o € cokeri,ﬁ”. In words, « £ M is not

19As a benefit to these definitions applied to 2([X] and its subalgebras: these are all Type I von Neumann
algebras acting on finite dimensional spaces. As such there is subtlety in defining traces, reduced density
matrices, and von Neumann entropies.

For notational convenience we will avoid indexing the push-forward with an asterisk or a hash, as is
common in the mathematical literature and we will index it solely by the rank of the homology groups it
is connecting.
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2. Essential topological entanglement

continuously deformable within ¥ to a cycle completely contained in M. We will
alternate between the im / coker and &/& notation freely. To state the results of the
following sections up-front, there are two natural algebras associated to R:

1. Topological magnetic algebra

Unmag [ R] = u{W;’:,\?g. 7 eimiR, o e imif_p_l} (2.3.4)
= u{\f\/:ii,(/;jj 0ol & R}, (23.5)

where 4{-} denotes the universal enveloping algebra. This algebra consists of
all surface operators deformable to being completely contained in R.

2. Topological electric algebra

Aelec[R] := M{W:}"ii,{/gjj Tli € coker i;?c’ ol € coker ifip_l} (2.3.6)
= u{\iv:;, V|, UJZRC}. (2.3.7)

This algebra consists of all surface operators that are not deformable to being
completely contained in R°.

As we will soon explain both of these algebras have non-trivial centres, 3[R], which
we name the topological magnectic centre and topological electric centre, respectively.
We can seek centreless operator algebras by either systematically removing operators
in 3[R] from A[R] or by systematically adding operators to 2[R] that do not commute
with operators in 3[R]. Doing so here results in two centreless algebras that we will
call the austere algebra (in the case of reduction) and the greedy algebra (in the case of
extension). There is a cost to being centreless: these two algebras have more tenuous
relationships to their underlying subregion. Additionally we will show that ground
states have trivial entanglement with respect to these algebras.

These different choices of subregion algebras are illustrated in figure 2.1.

The topological magnetic algebra

Let us begin the discussion with the topological magentic algebra

leag[R] = M{Wwi v

n’ ol

7ol & R}, (23.8)

The algebra associated with R® is the commutant of 2, R]. It is clear that the oper-
ators that can commute with y,,4[R] are precisely those that cannot link homology
cycles in R. This is equivalent to the following.

(Umag[R])" = u{\fv;i,\?;

7, ol & R“} = g R (2.3.9)
The proof of this claim is given in appendix A.2.
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2.3. Subregion algebras and essential topological entanglement
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Figure 2.1: The algebra on a genus 3 surface, generated by a basis of operators along longitude
and meridian cycles, {{;, Mmi}i=y 2,3 10 the region, R, depicted in yellow, we associate an algebra
A[R] generated by cycles depicted in orange and purple. The commutant, A[R€), is generated by
cycles depicted in blue and purple. The centre, 3[R), is generated by cycles depicted in purple.
Cycles generated neither in A[R] nor A[RC] are depicted in black. (Top) The topological magnetic
algebra, A pag[R]. (Middle) The topological electric algebra, ejec[R]. (Bottom) The austere algebra,
aqus[R], and the greedy algebra, Ugreeqy[RC].

As alluded to above, this algebra has a centre, 3mag, Which is generated by surface

operators lying within the entangling surface, dR, itself:

Bmagl R = Annag [ R] N g [RY] = 41217,

n’ ol

0ol & aR}. (2.3.10)
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2. Essential topological entanglement

The heuristic argument is simple: 3mag[R] C Amag[R] since any cycle, n'€0R or 0 EIR,
can be deformed “slightly inward” along the flow of an inward-pointing normal vector
to be contained completely in R. Similarly by flowing in the other direction, “slightly
outward,” any cycle can be contained completely in R and 50 3mag[R] C Amag[R].
Perhaps one might question if operators in 3y, actually commute with themselves
(as required for 3, to be a centre). A potential puzzle arises because p-cycles and
(d — p — 1)-cycles have no notion of intersection numbers as defined intrinsically
on 0R: the intersection of a p-cycle and a (d — p — 1)-cycle on a d — 2 dimension
manifold is not a collection of points, but instead itself a 1-dimensional manifold.
The key here is the algebra 3, is not defined intrinsically on dR but instead up
to homotopy in ¥ D dR. It is then clear that all (d — p — 1)-cycles, o/ € dR, can be
deformed to have zero linking number with 7' € dR by evolving them slightly along
an outward pointing normal vector.

We call 3,4 the topological magnetic centre because of its similarity to the magnetic
centre of 2+1 dimensional lattice gauge theories [183, 190], generated by line and/or
ribbon operators wrapping dR. Here the interplay of the dimensionality, d, with the
degrees of the gauge fields, p and d — p — 1, allow for a richer flavour of magnetic
centre, generated by topological operators of different dimension. Additionally, the
topological magnetic centre defined here is sensitive to the bulk topology while the
magnetic centre appearing in [183] is only sensitive to the intrinsic topology of dR.
Namely, an operator can only appear in 3y, if its defining cycle is also non-trivial
as a cycle on X.

In the interest of counting how many basis operators generate 3mag, it will be useful
to formalise the above as follows. The dimension of the magnetic centre will be the
sum of the number of p-cycle surface operators, WY, and (d — p — 1)-cycle surface

operators, \73, spanning 3mag:
D d—p—1
|3mag| = [det K|mesthmae™ (2.3.11)

where hﬁmg is defined in the following way. A surface operator, W"’, in the magnetic
centre must be supported on a p-cycle that lies in the intersection of the figures of

the push-forward maps ilf and i fc. Using the push-out square,

jaR
0R —— R

ji)Rcl J/iR

R¢ —— X,
iR

we see that the corresponding p-cycle then has to lie in the image of push-forward
map (iR o jaR)p ~ (i%o jaRc)p. Utilising the associated long-exact sequence we
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2.3. Subregion algebras and essential topological entanglement

prove in appendix A.2

p—1 p
h2.. =Y (D77, (0R) + Y (=) 7" (by(T) — dimH, (. 0R)) . (2.3.12)

n=0 n=0

and similarly for hff‘;gp ~! via the replacement p — (d — p — 1). We remind the reader
that b, (-) is the n'? Betti number. Let us point out two broad features of (2.3.12).
Firstly we have the alternating sum of Betti numbers intrinsic to dR; as we will show
later this will give contributions to the entropy analogous to those found in [188].
Secondly, however, we find an interesting dependence on bulk topology relative to
how dR is embedded in X. Although perhaps initially surprising, we can easily argue
why we expect this dependence on the bulk topology to show up: 2, is defined with
respect to homotopy equivalence within . If hf,, only detected intrinsic topology
of R it could easily'* count more operators in 3mqg[R] than actually exist in 2mag[R],
or even in A[X]! These additional bulk terms are then crucial for ensuring that this
counting makes sense.

Summing hﬁag and hi;gp ~! the total dimension of 3mag can be simplified utilising the

long exact sequence (see appendix A.2) to

p—1
10g |3mag| = [2 > (=1DP7'"b,(3R) + (bp(E) — dimH, (. 9R))

n=0
+ (=177 (dimHy—; (2, 0R) — dimHy(Z, 8R)):| log |detK]|.
(2.3.13)

Above, all of the bulk dependence has been isolated to dimensions of p™ absolute and
relative homologies, plus the additional, p-independent term: a potential mismatch
between the bottom and top relative homologies.

The topological electric algebra

In contrast with the topological magnetic algebra, whose centre is generated by
operators “wrapping” the entangling surface, we will pick the topological electric
algebra such to be such that its centre is generated by operators “piercing” the
entangling surface. Specifically, for a region, R, we define

N4

ol

Aelec[R] == M{W# )

7, OUZRC}. (2.3.14)

In words, e[ R] is generated by operators that cannot be deformed to being con-
tained completely in R€. The algebra associated to R€, the commutant of ejec[R], is

12Easy examples are cooked up when X is topologically trivial, e.g. a (d — 1)-sphere, S~1.
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2. Essential topological entanglement

generated by all operators that do not link with any cycle that cannot be deformed to
be contained in R°. We claim that this is, in fact, generated by operators that cannot
be deformed to be contained in R:

Qaec R = W2, 2

Ui»UjZR} = Q[elec[Rc]- (2.3.15)

The proof of this claim is given in appendix A.2.

In this case, the centre is then given by cycles of X, that cannot be deformed to be
contained completely in R nor R®:

3eIeC[R] = H{W?’ VZJJ

ni,onR and zRC}

RC
» and

= SJ%VAV"’.‘,\A/WJ n e cokeri® N cokeri
nt o p

ol € coker if_p_l N coker ifip_lé. (2.3.16)

3elec| R] are topological surface operators that must cross dR non-trivially. We name
this centre the topological electric centre on account of its similarity to the electric
centre of lattice gauge theories generated by link operators emanating transversely
from the entangling surface [183]. However let us caution that this is a somewhat
shallow comparison: the electric centre typically discussed in lattice gauge theories
is microscopic, being given by operators acting on all links intersecting dR in a
UV lattice realisation of a topological phase!® Our topological electric centre is
an extreme coarse-graining of this, generated by a handful of topological surface
operators that are only defined up to homotopy.

With respect to counting the number of surface operators generating 3elec,
V4 d—p—1
3etec] = |det K|Detee Thetec” (2.3.17)
we show in appendix appendix A.2 that

h? = hd-r-1 h¢ Pl — 2 (2.3.18)

elec mag ’ elec mag*

The heuristic argument for this follows: a p-cycle surface operator in 3¢je. by defini-
tion can’t be deformable to either the interiors of R or R¢ and so must wrap a basis
(d — p — 1)-cycle intrinsic to dR. This cycle is precisely where one would put a
(d — p — 1)-cycle surface operator lying in 3m,.. Consequently

|3e1ec| = ‘Bmagi- (2.3.19)

13As emphasised in [186, 187], the electric centre of lattice gauge theories shares many features with
extending the Hilbert space with edge-mode degrees of freedom. We discuss the extended Hilbert space
of BF theory in chapter 3.
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2.3. Subregion algebras and essential topological entanglement

Subregion electric-magnetic duality

The equivalence of the counting |3ejec| = |3mag| is a particular instance of a refine-
ment of the electric-magnetic duality described in section 2.2 applied to the region
R and its operator algebras. More specifically, in appendix A.2 we prove that the
intersection pairing, IL, induces a one-to-one correspondence between

. R¢ . R . R¢ . .R
cokerzp —imi;_, , as well as cokerla,_p_1 — imi,. (2.3.20)

This then implies a one-to-one correspondence between operators generating ejec|[ R]
and Anqag[R]. We refer to this correspondence as subregion electric-magnetic duality.

2.3.2 Decomposing the Hilbert space

The existence of a centre prohibits the tensor factorisation of the global Hilbert
space, #5, into Hilbert spaces corresponding to R and R€ in the following way. We
will illustrate this first using the topological magnetic algebra. Currently we are
organising s by the eigenvectors of W™, |v), which are created by acting V* on
the condensate. Given this, we ask: “Can we partition |v) into the eigenvalues of
W» e 2Amag[R] and the eigenvalues of ww e Amag[R]?”

o) = ){nR}, {ch}>. (2.3.21)

One obvious obstruction to the above is the possible existence of Wr e 3maglR]
= Umag[R] N Amag[R], whose eigenvalues are overcounted in the above partition.
A more subtle obstruction to the above comes from V° € 3mag> Which, being de-
formable to either inside R or R€, make it ambiguous if their action should shift

the {v®} or the {v%°} sets of eigenvalues. To that end let us define the set {nﬁ} as
the eigenvalues of {VAV:,' ’ n' &R andn' Z RC} and similarly {UF} the eigenvalues of
{W':,' ’ n' € R¢ and ni)gR}. We can label the eigenvalues of W™ € 3mag[R] as {niR}.

The “perpendicular” notation here denotes that because they are measured by W™
operators “living in R” they are created by the action of V° operators which cross
the entangling surface transversally. These V* operators do not belong in either
Amag[R] or Amag[R] (in fact they are (d — p — 1)-cycle surface operators generating

3elec). Lastly we will denote by {UﬁR } the labels for states created by the action

of V¥ ¢ 3mag[R] on the condensate. These states are eigenvectors of W™ which
also cross the entangling surface transversally (which belong neither in 2,5[R] nor
Q[mag[RC])-

Thus a general state can be partitioned unambiguously as
_ R dR OR R¢
) = Hn }{ Y },{n }> (2.3.22)
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which have natural action by operators in the centre. Le for all W™ € 3,4[R]:
) ol ) = 7 (o), i) o) e
while for all V*' € 3ma[R],

R N R S

Under this partitioning the Hilbert space decomposes as

o

HR)

Js = P Jfé" , (2.3.25)
{0k}

where we’ve used a short-hand, {naR} = {uiR, nﬁR}. Each block in this decomposi-
tion admits a tensor product on R and R¢:

3R) 3R)

oR
= ") @ %

Jeé" - (2.3.26)

This partitioning is useful to illustrate the obstruction of a global tensor-product
decomposition of s, however it is not computationally useful since the action
of V° € 3mag[R] moves between different blocks of (2.3.25). It is more helpful to
instead diagonalise their action. Their eigenvectors are associated with W™ operators
crossing the entangling surface transversally and which V° e 3mag[R] link non-
trivially: these are the p-cycle surface operators generating 3. Because of this we
will label the eigenvectors with the set {miR} which amounts to a change of basis on

the {nﬁR} part of the state. Thus we partition our ground state as

o [ o] ). o)
such that for all V? € 3,4[R]
o7} 2wt o) = 7o) 8] ot ) o) 2

With respect to this partitioning, we can decompose the global Hilbert space with
respect to the eigenvalues of operators spanning 3mag[R]:

\"/n

JR
stz = P J{éh ), (2.3.29)
{al"

where we now use the short-hand, {q‘j_R} = {UiR, mﬂ’_R}. Again, each block admits a

tensor product on R and R¢:
IR OR IR
201 = Jeg‘l ) g Jf%l ), (2.3.30)
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)

IR
In this set-up it is easy to see from our state partitions, (2.3.27), that all Jfg“- ®

R
%%L ) blocks are isomorphic. To make the following discussion notationally cleaner

will often drop the (q%) superscripts from the tensor factors #% and JHzz.

For the topological electric algebra, we can decompose the Hilbert space based on
the eigenvalues of the operators generating the centre in a similar way. Again, the
partitioning of cycles into those that can and cannot be deformed being contained in
dR provides a useful partition of surface operator charges. It is precisely the operators
contained in 0R (i.e. those in 3y,g[R]) that can link non-trivally with operators in

3elec[R] and so their charges, {bﬁR, mﬁR} are the eigenvalues of the basis generating
3elec[R]. A generic state of #Hx then can be partitioned as

o [l () e

corresponding to a Hilbert space decomposition

(a*)
Hy = @ Hs ", (2.3.32)
{af*}
where { qﬁR } = {UﬁR, mﬁR } is a short-hand notation for the central eigenvalues. Each

block of (2.3.32) admits a tensor product on R and R¢:
dR oR OR
(qn ) _ (qn ) ("H )
dy ' =" @ (2.3.33)
Again, since these blocks are all isomorphic, in what follows we will omit the (qﬁR)
superscripts from the tensor factors unless clarity demands it.

2.3.3 Algebras with trivial centre

As has been mentioned at several points above, one hallmark of gauge theories is the
presence of centres in algebras assigned to subregions. While this feature is generic,
the assignment of an algebra, 2([R], to a region, R, is ultimately a choice. As such one
may ask if there is enough ambiguity to assign a centreless algebra to R. To be clear,
of course one can always assign, by fiat, a centreless algebra to R; for two (extreme)
instances:

A[R] = spanc{1}, or A[R] = A[X], (2.3.34)
where 2A[X] is the full algebra of operators'* on #x. However these assignments
tell us absolutely no physics about the region in which we are interested! Barring

14We assume that 2[X] has no centre. This is true for the algebra of surface operators in this section.
However in lattice gauge theories, it is not typically true: there are an extensive number of Gauss operators
that generate a global centre [186]. Gauge-invariant states in the BF theory (treated as an IR EFT of such a
lattice gauge theory) live in a fixed eigenvalue sector of this “microscopic centre.”
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such “mad-man assignments,” centreless subalgebras associated to a subregion R are
highly non-generic in gauge theories, yet they may still exist. We can attempt to
build such an subalgebra by starting from a generic (centreful) algebra, 2[R], and
either (i) systematically excluding operators from 3[R] [183] (a process we will call
reduction), or (ii) systematically adding to 2([R] operators from 2([X] that do not
commute with 3[R] (what we will call extension). In the course of both of these
processes, the resulting 2A[R] will have a more tenuous relationship to its associated
region R. However to maintain at least some degree of association between 2([R]
and R we will focus on reductions and extensions that are minimal to ensuring 2([R]
is centreless.

Starting then from 2,4 R], minimal reduction and minimal extension result in two
centreless algebras associated to R, respectively:

The austere algebra

For the process of reduction, we remove from 2 .g[R] the surface operators homo-
topic to dR. Since these are also the operators deformable to being contained in R,
this equivalent to

Al
Vo’j

ni°

s [R] = u{\iv'”i

n', o) € R and ni,onRc} = Unmag[R] N Aetec[R], (2.3.35)

i.e. Aaus[R] is generated only by surface operators that, homotopically, must be
completely in R.

The greedy algebra

For extension, we now add to y,s[R] the minimal basis of surface operators that
“pierce” dR. These link with operators on dR and so prohibit them from forming a
centre:

n’ ol

Ugreedy[R] 1= u{W"’i A%t

1. 01 & Ror 1,00 £ R} = Unagl[R] U Aaec K], (2:336)

i.e. ™Ugreedy[R] is generated by all surface operators that are either homotopically in

R, or topologically must have “a leg in R”°

It is clear the same algebras can be constructed from the reduction and extension,
respectively, of 2e.[R], as well. It is also clear that

(Aaus[R])S = Agreeay[R], (Ugreedy[R])" = Aaus[RCY. (2.3.37)

Because these two subalgebras have trivial centre, they should correspond to honest
tensor factorisations of #x. This is indeed the case. Returning to the partition of a

3to be precise Agreedy[R] should be the smallest algebra containing the two. That is the generated
algebra, Amag[R] V Aclec[R] := (leag[R] U elec [R])cc. But for finite-dimensional operator algebras,
as is our case, it coincides with (2.3.36), since 2(°“ = 2 is automatically guaranteed. See also [196].
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2.3. Subregion algebras and essential topological entanglement

general state, (2.3.22), for the austere algebra, we simply group the charges associated
with central surface operators with R¢

o) := Huﬁ}, {uRc+}>, {nRCJr} = {niR,nﬁR,nF}, (2.3.38)
while for the greedy algebra, we group them in with R:
o) := ‘{0R+}, {UF}>, {nR+} = {nk, uiR,nﬁR}. (2.3.39)

Correspondingly the Hilbert space decomposes as
Hy = Jfﬁ ® Jch-y-, or Hy = Hp+ ® ‘%F’ (2.3.40)

under the action of 2,s[R] or greedy[R], respectively. There is a cost for being
centreless: our centreless algebras, 2,us[R] and 2grecdy[R], have looser relationships
to their associated region. Correspondingly, Hilbert space decompositions such as
(2.3.40) may possess less information about a region than decompositions possessing
a centre. Additionally, even though we have arrived at 2ayg(greedy)[ R] through minimal
reduction (extension), owing to the topological nature of the theory and its operator
content, the dissociation from R may still be drastic indeed. For example, as illustrated
in figure 2.2, there are situations (namely when either 2[R] = 3 or 2A[R] = 3) where
minimal extension or subtraction can result in everything-or-nothing centreless
algebras

aus[R] = spang{1}, or Ugreeay[R] = A[X], (2.3.41)

even when R, e[ R], and 2Aelec[R] are non-trivial. In such situations, insofar as the
entanglement entropy is concerned, the cost of being centreless is then very heavy:
it is zero for all pure states.

oR

\' \my

|
\ \my
\

Figure 2.2: An example of “everything-or-nothing” centreless algebras: Ugreeqy|R] = A[X],
Aqus[RC] = spang {1}.
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2. Essential topological entanglement

2.3.4 Decomposing a state and the reduced density matrix

Now let us consider a generic state, p, on #x. With respect to either Hilbert space
decomposition, (2.3.29) or (2.3.32),

sy =PrY =PrLrD,  qe {qf’f, qﬁR}, (2.3.42)
{a} {a}
we can write
p =P rap?, qe€ {qaf, qﬁR}, (2.3.43)
{a}

which corresponds to diagonalising p as an operator with respect to the respective
centre, 3[R]. The coefficients, A (), are chosen such that p(q) are normalised states
on Jfg‘):

Tr w0 p@ = 1, (2.3.44)
=
which requires
g =1 (2.3.45)
{a}

Within each block J(’éq) we can construct the reduced density matrix with respect to
the tensor product, (2.3.30) or (2.3.33), by tracing out Hge:

,o%) = Tryepe @, (2.3.46)

This results in a reduced density matrix on R which follows from the sum decom-
position, (2.3.43):
or = DA (p%) ® mﬁ) . (2.3.47)
{a}
where 7 is the trace-normalised identity matrix on a Hilbert space:

A

Py— ]J€
T fm g

(2.3.48)

Alternatively, we can define this reduced density matrix as the unique unit-trace, Her-
mitian operator in 2[R] which reproduces expectation values of all other operators
in A[R]:

pr € A[R], suchthat Trgpg (prROR) = Trys (0Or) Y Or € A[R]. (2.3.49)

Given the decomposition (2.3.47), we assign an entanglement entropy to p and 2([R]
via
SQ[[R] o] := Z A(q)SvN I:p%):l — Z A(q) log )k(q), (2.3.50)
{a} {a}
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2.3. Subregion algebras and essential topological entanglement

where
Son [p%)] = —Trye, (p%) log p%’) (23.51)

is the von Neumann entropy of the reduced density matrix in a fixed block, (2.3.46).
The second term of (2.3.50) is a Shannon entropy of the probability of measuring the
set {q} of eigenvalues in the state p. We emphasise that, while ostensibly classical in
nature, this Shannon entropy is present even for pure quantum states and is a generic
feature of entanglement entropies associated to centreful algebras. It will play an
important role in the following section. For a centreless algebra (such as 2,,s[R] or
Agreedy[R]), the entanglement entropy, Sog;[p], can be defined in the usual way as
the von Neumann entropy of p reduced on the corresponding tensor-factorisation.

2.3.5 Essential topological entanglement

We now illustrate the entanglement entropy associated to various choices of subregion
algebra for a ground state, |{/) = |v.), for some fixed v,. As discussed in section 2.2,
this state is prepared by the action of V°* acting on condensate. In the context of the
BF path-integral, these states are natural: they are prepared by path-integral on the
interior of a manifold having ¥ as its boundary and with V Wilson surface operators
inserted. In (2 + 1) dimensional topological phases, such states play a key role in
the standard treatment of entanglement entropy (say via the replica trick, lattice
regularisation, or an extended Hilbert space), yielding the celebrated “topological
entanglement entropy” discussed in section 2.1. The primary upshot of this section is
to show that in our setup such states provide a new smoking gun topological signature
in the algebraic entropy, which we name the “essential topological entanglement.”
There will be two varieties: one associated to the topological magnetic algebra, and
one associated to the topological electric algebra:

gmag/elec = Smmag/elec[R]HU*)(U*”. (2.3.52)

We will further see that these two essential topological entanglements are related by
a electric-magnetic duality.

Let us begin the discussion with the topological magnetic algebra in mind. We will
illustrate the machinery in this instance; the consideration of the other subregion
algebras will be wholly clear afterward. We will consider the global pure state

p= Y VoV, lor)oal. (2.3.53)

v1,02

and reduce it down on 2p.e[R] for some region R. We can express the reduced
density matrix of the state, (2.3.53), as element of e[ R] via

pR=NT YD e U e PO WREE 23.59)

wR pR v
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2. Essential topological entanglement

where N = dim #x = |det]K|b” ) ensures that PR is trace normalised over Hs.
See appendix A.3 for details on this decomposition. It will be useful to split this
normalisation into

N = Ng Nog Nge = |det K|"® |det K" |det K|"&, (2.3.55)

where hg is the number of independent (d — p — 1)-cycles deformable to R but
not to R€ (i.e. the number of (d — p — 1)-cycles spanning the austere algebra for
R). And vice-versa for hgze. Thus Nz and Ny are simply the dimensions of Jx
and Jlxe, respectively, in the decomposition (2.3.30). Above, hyg is the number of
(d — p — 1)-cycles piercing R, he-r1 ', (counting the independent {niR} in the

elec

decomposition (2.3.27)) plus hmag , the number of (d — p — 1)-cycles deformable to

OR. As discussed above in subsectlon 2.3.2, the latter of these is equal to helec, and
counts the independent {tw®} in (2.3.27). Thus
d—p—1
h heﬁec + helecp - hrlrylag + hiagp 1~ (2.3.56)

In writing (2.3.54), some of the W’s and V’s belong to the centre, 3mqs[R]. It will be
useful to separate them off as

R R - .
A W A W N R_~ OR
[T w, [I w, =wwri

ﬂjéR,ﬁ/Rc nER,ERc

A R AR ﬁA AR

vei= [T v T] V' = VoV, (2.3.57)
UiéR,ﬁlRC 0iER,ERC

Diagonalising these central elements, we can write them in terms of their eigenvalues
as

Wl = @ttt el @ (o) (23.59)
This leads to a reduced density matrix in block diagonal form, as in (2.3.47):

(IR w?R)
r= P Aok, aR)( (G ®mRC), (2.3.59)
{o9R wiR}
with
(01 =0 it )+ (0,7

A(nﬂ_R Ry ‘NBRI Z Z Z I//01 —ofR Vo€ -

ﬁR U‘(‘JR 01

L #ow8R) =Nz 1 2221/, URI/’l’l (U‘ w )W“’ V“ (2.3.60)

wR R Y1
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2.3. Subregion algebras and essential topological entanglement

and 7z is the trace-normalised unit operator of Jze with respect to the decompos-
ition (2.3.30). We can easily verify that

Z Zk(uaR iRy = ZV/:] Yo, = 1, (2.3.61)
o1

UiR l'UJ_
because the sums over m R and U R enforce delta functions on nﬁR and mﬁR, respect-
ively.

We now will take our pure state to be a ground state, |) = |v,) for fixed v,, which
sets ¥, = §y—p, (defined in (2.2.41)). With respect to the decomposition (2.3.30) |v.)
projected onto each central eigenspace remains a product state on Hx ® Hxe and so

(3R wdR) .
— is pure on Hx:

dR . OR s R ~ = —\ —
PO s i (00m0%) Gk _ fonf , (2.3.62)
Wk
As such its von Neumann entropy vanishes, Syn [pf:u )| = 0. The entanglement

entropy of |v,) then comes entirely from the Shannon entropy of the distribution,

{l(qi;_/e) }, which take the form

BR

A(Uak wik) = NaRl Z _IF n* o ) = 802/" viR |[detK|™ g™ ; (2.3.63)
wiR
that is, their support is isolated to the bR sector determined by the original ground
state, and is maximally mixed on the miR eigenvalues. The algebraic entanglement
entropy associated to pag[R] of |v.) is then determines the essential topological
entanglement as

gmag == Z A(niR,miR) log)t(na aR) = hmag log |detK| (2.3.64)

{0l ik}

where we remind the reader

d—p—2
héo Pt = 3" (=1)47P727"b, (3R)
n=0
d—p—1
+ Y (=D (b (D) — dimH, (2, 9R)) . (2.3.65)
n=0

Let us dissect this result. We make note of several features of (2.3.64).
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2. Essential topological entanglement

Emag Probes non-local operator statistics through |det K| which can be regarded
as a “total quantum dimension” in this theory.

Emag 1s independent of the ground state, |v, ), in which it is evaluated. This is in
keeping with this being an abelian topological phase. Since operator fusion is
unique in A[], the “quantum dimension,” Dy, , of the V°* building |v,) from
the condensate is unity and so any possible contribution going as log D,,, will
vanish.

Emag Probes topological features intrinsic to dR: the alternating sum of Betti
numbers on dR. This contribution mimics a proposed (negative) correction to
the area law in higher-dimensional topological order described by membrane-
net models [188]. Here we find this term contributes positively and appears
without an area law.

Emag possesses additional terms that depend both on the topology of X itself,
as well as the relative homologies of ¥ and dR. Thus, the essential topological
entanglement is sensitive to more than the topology of dR itself, but also how
dR is embedded into ¥. As we argued in subsection 2.3.1, this has to be the
case since the operators counted by &, have to descend from non-trivial
topological operators on X.

Emag comes entirely from the Shannon contribution to Sy, [|0+)}(v+[], while the
contribution from the sum of von Neumann entropies exactly vanish. It was
argued that this latter contribution corresponds to the distillable entanglement
in gauge theories [185, 197]. That &, entirely enters through the Shannon
term is in keeping with its essential non-locality: it cannot be distilled into Bell
pairs by local operations.

We can repeat this same exercise for the entanglement entropy associated to ejec[R].
Running through this process one finds for a pure state the reduced density matrix
decomposes in a way wholly similar to (2.3.59):

= (] .wft)
pR - @ A’(Y’H ,l’O” ( ® r}fﬁ ) (2.3.66)
{"u swoff }

A H ’mHR) _NaR ZZZWUI naRWUl (Ul UﬁR’mL )+1F(UL ,mﬁR)

wiR 43R 1
vy

("H i )_N IZZZW UR‘/’vl ("" )W“’ V" (2.3.67)

wR R Y1
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Again, for a fixed ground state, |/) = |b.), the reduced density matrix projected to a
fixed block of (2.3.32) is pure and the electric entanglement entropy comes entirely
from the Shannon entropy of {/\( qﬁR)}. This distribution again is isolated onto a

UBR

specific block of v{™ eigenvalues determined by the ground state and are maximally

mixed onto the mﬁR eigenvalues:

oR

-1
)L ‘NBRI Z u* nn nu) = {,R \\RldetK| elec . (2.3.68)

-0

Eelec, being given by the algebraic entanglement entropy associated to eec[R] of a
ground state, is then

8erec = h~ “og|detK]|, (2.3.69)

elec

where we remind the reader

p— p
b2 =h2, =3 (=PI b, (0R) + Y (= 1)P " (ba(Z) — dim H, (2, R)) .
n=0 n=0

(2.3.70)
Again we see many familiar features of this essential topological entanglement: the
dependence of log |det K| with a coefficient displaying topological dependence of dR
as well as ¥ and how dR is embedded into X. Comparing with (2.3.64) we also notice

p—(d—p—1)

8mag Eelec, (2~3~71)

which ultimately stems from the electric-magnetic duality discussed in section 2.2.

Lastly for sake of completeness, we consider the centreless algebras, ays and Agreedy-
Since the ground states are already product states on the tensor factorisations defined
by either ays[R] or 2Agreedy[R], these two algebras yield zero entanglement entropy:

215 [R] [0 N0x ] = Satyyeqy [R] [[02X04[] = 0. (2.3.72)

2.4 Discussion

In this chapter we considered the algebraic approach to entanglement entropy applied
to the algebra of surface operators in abelian BF theories. On a technical level the
algebraic approach allowed us to address issues of Hilbert space factorisation while
respecting the non-local and topological nature of the gauge-invariant observables
available in the low-energy theory. On a conceptual level this investigation was
predicated on finding a suitable definition of topological entanglement that (i) can
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2. Essential topological entanglement

be defined intrinsically in the IR TQFT (i.e. without the need to embed into a micro-
scopic model, or to extend the Hilbert space with “edge modes”) and (ii) is sensitive
to longer-range and intricate forms of topology than that of the entangling surface
itself. To that end we defined two non-trivial algebras that can be assigned to a
subregion: the topological magnetic and electric algebras. To each of these algebras
we associated an algebraic entanglement entropy which we coin the “essential topo-
logical entanglement” Our essential topological entanglement is manifestly finite,
positive, and displays a more intricate and long-range features than the topology of
the entangling surface itself: namely, how the entangling surface is embedded into
the Cauchy slice.

Let us comment on some open questions and open directions implied by this research
below.

Comparing with traditional TEE

The essential topological entanglement shares familiar features with traditional TEE:
e.g. the log dependence on the total quantum dimension, |det K|, and the appearance
of the alternating sum of by (0R) which has been argued to be the coefficient of the
log |det K| in higher dimensions [188]. However the additional dependence of & on
bulk topology makes it clear that & truly a different object than the TEE. We have
emphasised above and will emphasise again that this has to be the case. A simple
example to keep in mind when comparing the two concepts is when the region
is a D-ball: R = BP. There is simply no non-trivial operator one can assign to
either Apg Or Aepec: physically the BF theory has integrated out all local degrees
of freedom and there is no probe that can distinguish R from the empty set. It is
easy to see that Ey,g/clec = 0 in this case. However the TEE proposed by [188] will
generically be non-zero: this is because dB? = SP~! can support a top and bottom
homology group. Again this difference stems from the fact that the TEE arises from
the long-range correlations amongst UV degrees of freedom localised to dR while &
arises from the long-range correlations of long-range operators delocalised on X.

With that difference stated, we can still speculate on the form of the traditional TEE
in BF theory. As discussed above, accessing this TEE is contingent on adding in
UV degrees of freedom. However we can easily do this by extending the Hilbert
space using the methods in [198, 199] or by regulating a replica path-integral with
“edge modes” We will return to this question in chapter 3, where we will show
that the inheritance of gauge transformations on an entangling surface is an infinite
dimensional algebra that completely organises the entanglement spectrum of an
edge-mode theory living on dR. This algebra is a direct analogue to the Kac-Moody
algebras arising on the boundaries of Chern-Simons theories and provides a natural
procedure for constructing the extended Hilbert space. The computation of the
entanglement entropy of a subregion is entirely controlled by this algebra and leads
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to area and sub-area laws plus a constant correction depending on Betti numbers of
oR.

Accessing essential topological entanglement on the lattice

Our definition of the essential topological entanglement is strongly motivated by the
IR effective TQFT described a topological phase. In practice, however, it is much more
useful to work directly with spin lattice models or with tensor network constructions
of ground states. How does one define & in these settings?

A natural starting place are the operator algebras defined in lattice gauge theories
defined on general graphs. One can then look for a projected set of gauge invariant
operators that are both homotopy invariant as well as independent to refining or
coarse graining the graph. Such algebras were precisely considered in [190] where an
algebra of “ribbon operators” were used to define algebraic entanglement entropies
in lattice gauge theories that are graph-independent, topological, and finite dimen-
sional. These features resonate strongly with our definition of essential topological
entanglement. In that paper all entangling regions have trivial topology and so the
contribution to the entanglement entropy comes entirely from surface operators
terminating on (non-abelian) quasi-particle punctures in the region. In this work
we have not considered punctured states; additionally it is unlikely they will con-
tribute to & because of the abelian fusion of surface operators. This makes a direct
comparison to difficult. It would be interesting to extend the methods of [190] to
more interesting topologies to investigate if our notions of algebraic entanglement
coincide.

More broadly, it is fair to ask if essential topological entanglement, either defined in
a TQFT or in a lattice gauge theory, affords any practical advantages over traditional
TEE. A well known use for TEE is to diagnose whether a tensor product ansatz for
a gapped Hamiltonian truly captures topological order [200]. With this regard we
do not expect & to provide any significant advantages. However essential topolo-
gical entanglement likely displays conceptual advantages in models where manifest
background independence and diffeomorphism invariance are desired, such as loop
quantum gravity [190] or tensor network models of quantum gravity [191].

Probing essential topological entanglement in general states

In this chapter we have defined and evaluated the essential topological entanglement
in fixed ground states. The similar calculation for a generic pure or mixed state follows
a wholly similar calculation, however the coefficients of the superposition pollute the
topological aspects of the entanglement. This also occurs in similar calculations of
the TEE using generic pure states; see e.g. [201] for example calculations. One benefit
of the algebraic approach to entanglement is that it is clear how the structure of the
subregion algebras and their central elements lead to &; it would be useful if this
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structure could be utilised to isolate & cleanly in arbitrary states. One such structure
is that 2mag and Aelec appear as complementary operator algebras [202]. Viewing
Agreedy = Aelec V Amag, there is a related structure of complementary conditional
expectations, E and E’,

ngreedy [R] L) leag [R]

Ic IC (2.4.1)

2[aus [Rc] <E—/ Q[mag[Rc]v

(and similarly for ejec). One can then try to use entropic certainty relations to place
strict bounds on the relative entropies in terms of the index of [2Ayag: Ugreedy] [202]. As
of yet we have been unable to utilise this technology to constrain the entanglement
entropy of generic pure states: it is likely possible to construct pure states whose
algebraic entropy saturates log dim #x and so washes out the more intricate features
of &. Regardless, this avenue and the related avenue of the topological uncertainty
principle [203] are worth exploring further.

Applications beyond BF theory: fractons

As mentioned above, much of this and the next chapters is motivated by the question
of topological order in higher dimensions. While our focus has been on standard
abelian topological orders, we hope some of our ideas translate to (3 + 1) gapped
fracton phases. This translation is most easily facilitated through the “foliated field
theory” framework to describe Type I, or foliated, fracton order [204]. Fracton
phases, foliated phases included, have interesting forms of UV/IR mixing that make
the distinction between different UV scales (e.g. the energy cutoff, the momentum
cutoff, and the lattice scale) subtle and important. Essential topological entanglement
eschews at least some of this subtlety: it does not rely on a UV embedding, but instead
utilises only the structure of symmetry operators (which may still rely on a lattice
scale for foliated fracton phases). It would be very interesting if essential topological
entanglement can provide a more natural way to extract universal features of foliated
fracton phases directly in the continuum.

Essential topological entanglement in generic theories

Although we have focused on essential topological entanglement in abelian BF
theory, the extension to other TQFTs is conceptually straightforward. However,
essential topological entanglement might prove to be a useful concept in generic
(non-topological) quantum field theories exhibiting generalised global symmetries.
This follows from the realisation that symmetries, and more broadly generalised
symmetries, are synonymous with topological operators (of various codimensions,
invertible or non-invertible) [12, 15].® One can then define topological operator

18There is a multitude of results stemming from this realisation, see e.g. [67] for a more complete list.
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algebras in a generic quantum field theory, by restricting to the algebras of symmetry
operators. More formally, the sandwich approach [90, 91] to global symmetries,
provides an avenue to delineate these operators from the rest of the theory: all sym-
metry operators live in the one-higher-dimensional SymTFT [205], which is a topolo-
gical field theory in its own right. Therefore the essential topological entanglement
applied to this SymTFT is a potential probe of an indistillable, symmetry-induced,
entanglement of the original theory.

Along these lines, we can lastly speculate on consequences for gravity. It is strongly
believed that quantum gravity has no global symmetries (see e.g. [206-208]), although
there are exceptions in low-dimensional models excluding black holes [209]. It is
tempting to phrase this condition in the language of entanglement and conjecture
that quantum gravity has no essential topological entanglement, which might be a
weaker, but more universal condition on quantum gravity.
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EDGE MODES

3.1 Introduction

As alluded to in chapter 1, long-range entanglement is a notion with potent conceptual
and practical utility in characterising quantum phases of matter. In gapped ground
states, short-range correlations manifest in an ‘area law’ entanglement coming from
degrees of freedom localised and straddling the boundary of the region of the interest
(within a correlation length), the so-called “entangling surface” Important, however,
are potential long-range corrections to this area law. This is exemplified in (2+1)-
dimensional gapped systems where a constant negative correction to the area law
can arise from non-local features of the ground state, which constrain the short-
ranged correlations at the entangling surface. This is the celebrated “topological
entanglement entropy” and is a smoking gun of (2+1)d topological order [165, 166].

This story is mirrored beautifully in topological quantum field theory (TQFT), which
provides IR effective field theories of topological order: when restricted to a region
of spacetime, TQFTs are host to a robust spectrum of “edge modes” localised to the
boundary of the region [178-181]. These edge modes are the inheritance of bulk
gauge transformations, which are broken by the existence of a boundary. When
“gluing” a region to its complement to form a complete state, the edge modes on
either side of the common boundary are maximally entangled up to global constraints
[199, 201], giving a divergent area-law entanglement entropy with universal constant
corrections. TQFT also provides powerful avenues to corroborate these results, such
as through the replica trick and surgery [199, 210].

By this point, the role of edge modes in topological entanglement entropy is extremely
well understood in (2+1) dimensions; while generally believed to extend, their role is
still relatively unexplored in general dimensions. In this part we make progress in
this direction, focussing on the abelian topological phases described by p-form BF

61



3. Edge modes

theories in d dimensions:

KY
SBF = — B| A dAJ (3.1.1)
2w

Above A is a vector of p-forms and B, is a vector of (d — p — 1)-forms and K is a
rank k symmetric matrix' of integer entries. These are theories whose ground states
are p-form membrane condensates. In chapter 2, we explained how such theories
display an extreme long-range form of entanglement, what we name “essential
topological entanglement” (ETE), which must be present in the strict IR limit of a
TQFT [1]. The ETE is entirely finite: absent from it are all contributions from UV
degrees of freedom and their subsequent area law. However, it is still important to
know the UV contributions to entanglement entropy which provide benchmarks
for simulating topological order with a given UV model? (such as through tensor
networks or matrix product states). In this direction, the potential contributions to
topological entanglement entropy in p-form condensates were deduced by Grover,
Turner, and Vishwanath (GTV) [188] by focussing on lattice gauge theories as a
particular UV realisation. Despite various example calculations,’ to date there has
not been a comprehensive computation performed in the corresponding continuum
TQFT for generic entangling surfaces and any dimension. In this chapter, we fill this

gap.

We will explain how the edge mode spectrum leads to area (plus subleading area) law
entanglement entropy with constant pieces that are sensitive to topological features
of the entangling surface. To be concrete, we find

[451] a2k, ¢
SeE= Y. C,(j"”(-) + —(Iﬁ,”_‘;’ + IS;’_;P‘”)sd,even log(—)
fat & 2 > 2 g

1
— E(bp + bg—p—1) log|detK]. (3.1.2)

where ¢ is a short-distance regulator, C,(cp ~ are non-universal dimensionless num-
bers, that we compute, I 55‘22 is the (‘12;2)-th heat kernel coefficient for a particular
=

spectral zeta function, £ is a characteristic length scale, and b, denotes the n-th Betti
number of the entangling surface. This is the first main result of this chapter. Our
result differs from the GTV result; in the discussion, section 3.5, we discuss to what
extent the two results can be reconciled through local terms to the entangling surface.
We arrive at this result through two independent, yet conceptually complementary,
avenues.

n principle, this action doesn’t require K to be symmetric, however only the symmetric part will
participate in the edge mode entanglement and this saves us introducing extra notation.

2A real-world material being a pertinent example!

3See e.g. [211-216]. See [217] for a very general lattice gauge theory calculation.
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(I) Firstly we utilise the replica trick and perform path integral on a replica man-
ifold, regulated by excising a small region (of circumference ¢) about the en-
tangling surface. The resulting edge mode theory on this regulated entangling
surface is a novel mix of (p — 1)-form and (d — p — 2)-form Maxwell theories,
tied together by a “chirality” condition. We coin this theory “chiral mixed Max-
well theory” The existence of such theories as well as their thermal partition
function, which we explicitly compute, is a second main result of this chapter.
This edge mode theory contributes an entropy given by (3.1.2).

(I) Secondly, and more rigorously, we address the subtle issues of gauge-invariance
in defining entanglement entropy by moving to an “extended Hilbert space”
(EHS) [174, 182, 184, 185, 218]. We show that the EHS is organised by an infinite-
dimensional current algebra, akin to the Kac-Moody algebras that arise at the
edge of (2+1) dimensional phases. This algebra has also appeared in the context
of 4d abelian Maxwell theory [37], where it fixes the spectrum of the theory and
can, for instance, be used to establish a state-operator correspondence for non-
local operators [3], as we will see in chapter 4. However, to our knowledge, the
existence of these algebras for general p-forms and in general dimensions has
not been explored. Here we will elucidate them in detail, construct their Verma
modules, and compute their representation characters. We regard this as a third
main result of this chapter. Unlike in (2+1)d, these algebras are not necessarily
conformal. Regardless, they completely fix the computation of (3.1.2) which
arises from the high-temperature limit of the representation character of this
algebra (i.e., a regulated count of the representation dimension).

Along the way, we explain the connection between these two approaches: the chiral
mixed Maxwell theory appearing in item (I) has a spectrum that is completely fixed
by the infinite-dimensional algebras of approach item (II). Correspondingly, their
partition function is given exactly by a representation character, which is the ultimate
source of the match in (3.1.2). This is a precise analogue of “edge spectrum = bulk
entanglement spectrum” promoted to higher dimensions. We regard this as a final
major result of this chapter.

An organising summary of the chapter is as follows. In section 3.2 we introduce the
BF theory and perform its path integral on manifolds with and without boundary.
While there are many results for the BF path integral on closed manifolds, we will be
very careful keeping track of factors of K, which, to our knowledge, had not been
fully nailed down in the previous literature. We will use these results in section 3.3
to evaluate the replica integral and describe how the computation ultimately results
from the partition function of the chiral mixed Maxwell theory. In section 3.4 we
shift gears and describe the more systematic definition of the entanglement entropy
through the extended Hilbert space and describe features of the resulting current
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algebra that organises it. We then use the representation characters of this algebra
to compute the entanglement entropy, finding a match with section 3.3. In the
discussion, section 3.5, we will put our results in context with the known results
of GTV, as well as the ETE of this theory, and possible future extensions of our
computation.

3.1.1 Notation

For the reader’s ease, we lay out here some basic notation that will be used in what
follows.

We will analyse theories on torsion-free manifolds of spacetime dimension d, which
we shall collectively denote as X. These manifolds may have a boundary, which
we will embed into X using the map iy : X <— X. Theories will be quantised on
manifolds of dimension D = d — 1, which we will refer to as X, often calling it
the “Cauchy slice” without reference to any causal structure of the TQFT. We will
consider a subregion R, which is the closure of a D-dimensional embedded open
submanifold of ¥. The interior of R is R := R\ R, and its complement is R,
the closure of ¥ \ R. Note that R N R° = JR. We will denote the space of forms
of degree p as QP( - ). Unless stated otherwise, these forms will be real valued.
Cohomology groups will be denoted with their degree placed upstairs, H?( - ), while
homology groups will be denoted with their degree placed downstairs, H,( - ), and
these groups are always defined with integer coefficients, unless stated otherwise.
For compact, boundary-less manifolds, we notate the dimensions of the groups by
Betti numbers, b, ( - ). For (co)homology groups on manifolds with boundary or for
relative homology groups, we will always explicitly write the dimension.

3.2 The BF path integral

In this section, we describe the path integral quantisation of multi-component, abelian,
p-form BF theory, on a d-dimensional, torsion-free manifold, X, with a potentially
nonempty boundary, 0X. We will start by reminding the reader of the procedure
in the case where X is a closed manifold, presenting general results with the added
benefit of a careful accounting of the level matrix. We then move on to modify the
situation in the presence of boundaries.

3.2.1 On a closed manifold

Let us set the stage by starting with a closed manifold. We consider BF theory defined
by the action

KY
SBF[A, B] = E /;( B| A dAJ. (3.2.1)
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3.2. The BF path integral

In the above, 4) € QP(X) and B) € Q4-P=1(X) are vectors of p- and (d — p — 1)-
form gauge fields respectively. The level matrix, K is a symmetric, integer, and
non-degenerate matrix of rank «. In what follows, we will drop the indices, wherever
not necessary, to simplify the notation. Note that, as emphasised above, this definition
makes sense whenever X is torsion-free. We will comment on the case of torsion
manifolds at the end of this subsection. For a more general and precise definition of
BF theory, we refer the reader to [1, Appendix A].

The equations of motion arising from varying the action (3.2.1) are flatness conditions:
K K
EOM[A] = — dA = 0, EOM[B] = (-1)@~P@+D 4B — 0. (3.2.2)
2 2
Moreover, the action (3.2.1) possesses a gauge redundancy of the form

84A=ao and 8B =8, (3.2.3)

where @ € Qfl(X) and 8 € Qfl_p_l(X), are closed p- and (d — p — 1)-forms re-
spectively. Note that there are two types of gauge shifts. Shifts by harmonic forms
correspond to large gauge transformations, in the sense that they are not continuously
connected to the identity, and shifts by exact forms correspond to the usual infin-
itesimal gauge transformations. To properly quantise the theory in the path integral
formalism, we must therefore divide by the volume of the gauge groups. However,
note that there is a tower of reducibility of the gauge parameters. For example, split-
ting a off as @ = g + da;, with @p € Harm”(X) and a; € Q77! (X), the parameter
o generates the same gauge transformation as o; + &1, with @; € QS_I(X ). This
tower continues until one reaches a zero-form gauge redundancy. This redundancy
is encoded in the BF path integral in the form of the volume of the gauge group:

DADB .
Zpp[X] = / ol@) elSerl4.B], (3.2.4)

where, § is the total gauge group, § = §, x §;_,_;, with
G = Q5(X) /G, (3.2.5)

and §y = Harm®(X). In what follows we will be careless with overall numerical
coefficients, such as factors of 2 in the partition function, as they can be absorbed
in an overall normalisation of the path integral measure. However, we will pay extra
attention to factors of K, as they play a crucial role in the universal terms of the
entanglement entropy.

One commonly employed method to properly quantise such higher-gauge theories is
to include ghosts and ghosts-for-ghosts, and so on, until the gauge transformations
are completely resolved [193]. An alternative approach, due to [194], which was
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shown to be equivalent, at the level of determinants, to that of Blau and Thompson
[193] (which is in turn also equivalent to Schwarz’s method of resolvents [219]), is to
Hodge-decompose the fields as

A ZA()-I-dAJ_-i-dTA”,

(3.2.6)
B = By+dB, +d'By.
with 49 € Harm?(X), A, € QP '(X), A € QPT(X), By € Harm? P71 (X),
By € Q47P72(X),and B| € Q977 (X) and perform the path integral directly. In what
follows, we will show that, with a bit of care, this method also correctly reproduces
the harmonic correction to the partition function* and we will obtain the level
dependence of the partition function. With the decomposition (3.2.6), taking into
account the Jacobians of the transformation, the path integral measure decomposes
as

, + 1/2 , + 1/2
DA = DAy DA} DA, (detm,l o0 d)) (detQ,,+1 o0 (dd )) . (327)
and similarly for DB, while the action takes the form
K
SurlA. B] = 3 <dTB”, *ddTA||>, (3.2.8)

where (e, o) is the Hodge inner product, [, e A »o. Following [220] we will normalise
the path integral measure as

DA = [[ Ed4, DB = [[ EdB. (3.2.9)
xeX xeX

where E is a frame matrix, satisfying E?> = K. This has the effect of removing the K
dependence from the functional determinants, arising upon integrating over A and
By . Note that this is not the only choice. Normalising the modes as ~ K* dA4, and
~ K'=* dB,, for some real a, still takes care of the K-dependence of the functional
determinants, but as will become evident below, it rescales the partition function as

Zpr[X] — |det K|* X0 Zo[X], (3.2.10)

where ¥ (X) is the Euler characteristic of X. This ambiguity is on the one hand, well
documented and understood [221] and on the other hand harmless if one is interested
in topological entanglement entropy. The reason is, ultimately, that it can be seen to
arise from (or equivalently can be absorbed into) a locally integrated contribution
[188]. We will return to this point in the discussion, section 3.5.

4This corresponds to the refinement of the Ray-Singer torsion as an element of the determinant line
bundle, detH®, of H®*(X).
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Ignoring this ambiguity, for the reasons mentioned above, the integral over 4 and
By with the measure (3.2.9) produces

3
2

zl[x] = (detﬂp(x)(d d)) (3.2.11)

Integrating over A and B, modulo small gauge transformations, i.e. the part of
(3.2.5) generated by dQ2*¥~1(X), gives an alternating product of determinants, which
can be combined with (3.2.11) to give the analytic torsion® [194]:

d k(_1)pt+k
>(=D?
Zk (X112}, 1x] = | | (det ey n)

—: TA[X]CD7 (3.2.12)

As it stands, Ta[X] depends on the metric, whenever not all cohomology groups
are trivial. So this cannot be the final expression of the partition function; it is the
zero-modes that will provide the fix, as is usually the case. Let us see what their
contribution is. The integral over A¢ and By, modulo large gauge transformations,
with the measure (3.2.9) gives [195, 220]:

p d—p—1

Al = (H det (K Gk)lé(_l)pk) [T ldet® &GV,
k=0 (=0

(3.2.13)

where Gy is the metric on the moduli space of harmonic k-forms, i.e. the Gram
matrix of the topological basis of harmonic k-forms. More explicitly, the topological

Kk (X)
basis, { (k)} , is defined by the relation

/ o =, (3.2.14)

(k)

; (X)
for a fixed basis, {C(k)} t , of k-cycles. Then Gy is defined as

[Gi], = (:i("’, rj(")>. (3.2.15)

Poincaré duality implies that (up to a unimodular matrix, which can be set to one by
a suitable choice of basis of the k-cycles) G4_; = G4~ '. Utilising this, we get:

Z3:[X] = |det K[ P Ty [x]V"7", (3.2.16)

SActually we get this expression for odd-dimensional manifolds. For even-dimensional manifolds we
get a different power of the (determinant expression of the) analytic torsion. However, on even-dimensional
manifolds the analytic torsion is unity, so we can write (3.2.12) for all dimensions.
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3. Edge modes

where
1 P 1 et
hy(X) = S (=D 3 (=D bie(X) + ST 7 (=1 be(X)
k=0 k=0
p
L (D7) (=D)*be(X), (3.2.17)

k=0

where the last equality is modulo removing factors of the Euler characteristic, which
can be done by adding a local counterterm, as we alluded to above. Moreover, we

have defined

d
Te[X] o= [ ] (detGr)2 V""" (3.2.18)
k=0

Tye[X] is precisely the cohomological correction to the analytic torsion, necessary
to form the metric-independent Ray-Singer torsion:

Trs[X] = Tye [X]Ta[X]. (3.2.19)

Putting everything together, the partition function for multi-component, p-form BF
theory on a compact, closed manifold X, reads:

Zpp[X] = |det K| ®) Tpg[X]CD7 7 (3.2.20)

This form of the partition function has a number of desirable features which we list
below.

e It is topological. Of course, this was anticipated since the very first appearance
of the theory, in [219]. However, to obtain it in the path integral formalism
requires some care, regardless of the method one chooses. The method of
resolutions [219] was unable to reproduce it, in cases with non-trivial cohomo-
logy groups. In the BRST formulation, one needs to append the action by a
BRST-closed, but not necessarily BRST-exact, quantum action [193, 195]. In
the Batalin—Vilkovisky (BV) [222] formulation of the theory [223] one needs to
pay special attention to the residual superfields, furnishing the fibre of the BV
integral. Finally, in the direct method that we employed one must be carfeul
about the zero-modes appearing in the tower of gauge-for-gauge-for-...-gauge
volumes; note, for example, that in [194] the zero-mode piece is not correctly
reproduced and hence the formulas there depend implicitly on a choice of
metric on X.

e On a three-dimensional manifold, with p = 1, (3.2.20) is the square of the
partition function of abelian Chern-Simons theory. More explicitly, on S* we
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3.2. The BF path integral

obtain:

Zpr[S?] = |detK| ™", (3.2.21)
which is to be compared with Z¢s[S?] = |det]K|71/2 in [198]. For a more
general case, in d = 3 with p = 1, allowing also for torsion, see also [224].

e On X = S! x X, Zgp[S! x X] simply counts the number of ground states on
3. Equivalently, it measures the dimension of the Hilbert space on X. This is
given by dim Ky = |det K|>® [1]. From (3.2.20), making use of the Kiinneth
formula: bg(X) = bp(X) + br—1(X), if & > 1, while bg(X) = bo(Z), we
correctly find

Zge[S! x 2] = [detK[*?®. (3.2.22)

Lastly, let us mention that if we allow X to have torsion, in which case we should
take into account the differential cohomology definition of BF theory [1, Appendix
Al, the expression for the partition function is modified as follows. Let H,(X;Z) =
2P X) @ T, (X), where T, (X) = Zyp,(x) D+ D Zp, (x) is the torsion part. Then, we
can obtain from [225], upon a slight modification to account for the multi-component
case and to scale away numerical coefficients, that

Ze[X] = |detK[™ X [hom(T,(X), Z* / imK)| Trs[X]V" . (3.2.23)

Note that Poincaré duality and the universal coefficient theorem give T,(X) =
Ta—p—1(X), making this expression invariant upon exchanging A and B. At this
stage, the inclusion of torsion seems like a mathematical curiosity. Indeed, we will
not discuss further manifolds with torsion here. However, this result may be of
relevance for a future utilisation of “surgery,’® see the discussion, section 3.5.

3.2.2 On a manifold with boundary

Consider now the case where X has a boundary, 0X # @. As explained in [1], the
action (3.2.1), gives rise to a boundary symplectic form, which as it stands is consistent
with fixing A as a boundary condition. In general, the action is supplemented by
a boundary term, Sy. This leads to a modified variational problem, specified by
symplectic potential on the boundary, ®,x. Explicitly, the variation of the total
action Sgy = Spr + Sy reads:

8St = (EOM[A], 8B)y + (EOM[B], §4)y + Oyx, (3.2.24)

®In this method one needs to compute the partition function of BF theory on a branched cyclic cover
of X, ramified over the entangling surface. Although the topology of the replica manifold is completely
encoded in the topology of the entangling surface and the original manifold, the replica manifold can
have non-trivial torsion, even if the original manifold does not [226].
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where @ yx can be put in Darboux form:

Oyx =/ P A x5 8q, (3.2.25)
X

with q and p being functions of the boundary values of the fields, 45 := i; 4,
By := iy B. Having the symplectic potential in the form of (3.2.25) we have two

options to proceed, in order to have a well-defined variational problem: fix p = 0or

3q £ 0. Without loss of generality, we will proceed with the Dirichlet approach, p <o.
The other boundary condition can be attained by a boundary symplectomorphism
and can be easily shown to give equivalent results. Note that the symplectic potential
is, as it stands, degenerate due to boundary gauge transformations. We will take care
of that below when we discuss the boundary path integral measure.

The object one would like to study is the partition function of the combined system:

DADB
Zpptedge[ X, 0X] := / ———— e Stald.Bl, (3.2.26)

€, vol(9)

where €, := {4 € QP (X), B € Q97P71(X) | p = 0} and SE[A. B] is the Euclidean-
ised partition function’ Note also that here the gauge group § consists of gauge
transformations that vanish on the boundary. The next step is to decompose the
fields A and B as follows:

A=Ay + A, (3.2.27)
B = By + B, (3.2.28)

where A: and B are off-shell gauge fields with Dirichlet boundary conditions, i 5 A=
0 = iy B. The boundary conditions are absorbed completely by 43 and Bj. The latter
are, in the spirit of [223], potentially discontinuous extensions of the boundary fields,
Ay and By and are chosen to be on-shell, i.e. flat. This has the effect of disentangling
the bulk, from the boundary contribution:

Stun[4, B] = SBFI:I‘L 3] + S3[A43. Bj). (3.2.29)

Similarly, the measure has a piece coming from the hatted fields and giving only bulk
contributions, and one coming from the tilded fields, giving all the edge contributions.

The hatted fields are very easy to deal with, they only contribute in the bulk, and they
give the full bulk contribution. The computation is completely analogous to that of

"note that the bulk piece is not affected by the Wick rotation, since it is a one-derivative action.
However, the boundary terms can change in the usual way.
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subsection 3.2.1. The only difference is that we make use of the Hodge decomposition
theorem for Dirichlet forms on a manifold with boundary [227]:

Qe (X) = H*(X,0X) ® dQy ' (X) @ (d’fsz;#l N Q;,(X)), (3.2.30)

where
QLX) == {w € Q*(X) | ifo =0}, (3.2.31)
QuX) :={w e Q*(X) |if o =0}, (3.2.32)

denote the spaces of Dirichlet and Neumann forms respectively. Altogether we have
that

DADB eiSBF[/i,é]

= |det K[ X0 [x, 0X1CD7T ) (3.2.33)
vol(§)

Zouk[X] = /

where h, (X, 0X) is the relative version of h,(X), appearing in (3.2.20), i.e.:

p
h, (X, 3X) := %(—1)1’ > (=DF dimHF (X, 0X)
k=0
1 d & k k
—p—1 .
+ 5D P kz:% (—)* dimH* (X, 3X)

V4
L (=17 ) (=D dimH* (X, 0X). (3.2.34)
k=0

The contribution of the tilded fields is a little more subtle. We will calculate their
contribution, with a specific choice of Sy, in detail in section 3.3, but let us already
give a rough sketch of the computation for a general boundary action. First of all, it is
clear from the above discussion that they only contribute on the boundary. Secondly,
the flatness constraint becomes a Bianchi identity for the boundary gauge fields. In
particular, Ay and Bj are curvatures of (p — 1)— and (d — p — 1)-form gauge fields, a
and b, respectively. All in all, the contribution of A3 and Bj, including the boundary
condition p = 0, in the measure is

Da Db
——= §[pl. (3.2.35)
insta%ons / V01(§3)

where the sum over instantons is a sum over all topologically non-trivial configur-
ations, i.e. over cohomology p- and (d — p — 1)-classes, respectively, of X, and
vol (‘ga) indicates the volume of the boundary gauge transformations. Since a and b
appear only through their curvatures, there is a redundancy upon shifting them by
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flat gauge fields. Relatedly, dividing by this volume takes care of the redundancy in
the symplectic potential, @ yx.

Putting everything together, we find that the partition function, (3.2.26), takes the
form

ZgFtedge[ X, 0X] = Zpui[X]Zeage[0X]. (3.2.36)

with Zp,[X] as in (3.2.33) and Z.ge[0X] is the edge mode partition function, com-
puted with the measure (3.2.35).

3.3 Entanglement from the replica path integral

In this section, we will calculate the entanglement entropy using path integral
techniques via the replica trick. We begin with a brief primer on replica path integrals
and how they are calculated. The basic ingredient is the path integral representation
of a state. We begin with a Cauchy slice, X, and a Hilbert space of states associated to
it, #/x. We can imagine generating a state in /5, by finding a d -dimensional manifold,
X_, whose boundary is ¥. According to the standard rules of topological field theory,
the path integral with specified boundary conditions produces the wavefunction of a
state in 5. That is,

Uy_[¢] := f D eS[® (3.3.1)
ClX—s¢]

is the wavefunction associated with the state
) = [ Do lollg) € s (332)
e[x]

in the Hilbert space #x assigned to X. In the above, we have schematically indicated
all fields by ® and €[X_; ¢] is an appropriate functional space (including quotienting
out gauge redundancies) over X_, with boundary conditions iy, ® = ¢. €[X] is,
similarly, an appropriate functional space over X. The dual Hilbert space, #y, is
canonically isomorphic with the Hilbert space associated to the orientation reversal,
Y, of ©. Hence, the norm of the state |¥y_), is given by conjugating Wx_ and
integrating over the boundary conditions. At the level of the path integral, this has
the action of gluing X_ onto X4, its time-reversal about X,

1Py _ | = fﬁ - Do 1% = Z[x], (3.3.3)

yielding the partition function on X := X_ Uy, X . Similarly, the pure density matrix
p = [Wx_XWx_| € Hx ® Hy, has the path integral expression

plo—, o+] = (p—|plo+) = Ux_[p-1¥}_[p+] = / Do 1%, (33.9)
\e[Xchut;‘pfaw+]
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where Xs.cu := X- U X4+ = X \ (2 x [0, 1]), which has as its boundary two copies
of ¥ with opposite orientation, ¥, on which we impose boundary conditions ¢,
respectively. This density matrix could possibly be unnormalised.

We now choose a subregion R C ¥ and imagine demarcating
0+ = Or ¢+ + Opcp+ =: QR+ + QR+,

where O is the characteristic function of R (taking values 1 inside R and 0 every-
where else) and ®gc = 1 — Op is the characteristic function for the complement
region. The reduced density matrix, pg, is described, at least at a formal level, by
identifying ¢gre + = @ge,— and integrating over their values:

PRIPR,— PR, +] = L{R | Drepl¢r,— + $R: @R + + QRC]

DO e'SI9] (3.3.5)

fe[xkcut§‘ﬂR,a‘/’R.+]
resulting in a path integral on Xpg.cut := X— Uge X4, possessing a cut along R, and
boundary conditions ¢4, imposed on either side of the cut. This density matrix is

unnormalised: its trace is simply |Wy_||* = Z[X], which arises from identifying
@Rr.+ with g _ and then integrating, effectively “gluing” the cut closed.

We now aim to calculate the von Neumann entropy of pg. We will make use of the
replica trick. First we compute the n-th Rényi entropy as

1 Tr (pk)
5= T O T

1—n
where the denominator arises to normalise pg, if it was not already normalised. The
von Neumann entropy is then given as the limit:

(3.3.6)

SEE = lim Sn (3.3.7)
n—1

The denominator of (3.3.6) is simply given by Z[X]", so we now make sense of the
numerator. It arises from copying Xg.cut # times; the trace identifies the boundary
conditions, wg? L= (pgil) (where i indexes the replicas mod n) and their subsequent
integration glues the replicated manifold into an n-fold branched cover over 9R,
which we denote X,,. This gives a path integral expression of the entanglement

entropy as

Sgg = lim ! 1 ZXa] _ a(1o Z[X”])‘ .
n— n=

1 T—n Bz = o\ Bz (3.38)

We are now tasked with evaluating the path integrals in question taking care with the
codimension-2 surface fixed by the Z,, replica symmetry — the entangling surface.
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We will address this by regulating the entangling surface and looking at the edge
theory that arises there. To be precise, we will literally excise a tubular neighborhood
around the entangling surface: in terms of the state on X, this has the interpretation
of putting a small buffer region between R and R¢. This will serve as a UV regulator.
Specifically, we replace the bulk replica manifold X,, with X, := X, \ (D2, x 0R)
and keep in mind the limit as ¢ — 0. The interpretation of ¢ as a regulator on the
unreplicated state mandates that the circumference of the disk scales as ne. We will
perform a similar excision of the original manifold: X ~ X, := X \ (D? x dR).
This yields

1 ZRF4edoe[ X
Sgg = lim lim lo BF+edge[Kn.e]

. 3.3.9
e—0n—11—n Z g +edge[ X1,6]" (339

Importantly, these are path integrals on manifolds with boundary, 3%, . = S,, x 9R.
As we have discussed in section 3.2, we need to supplement these path integrals
with boundary conditions and boundary terms on X, . enforcing those boundary
conditions through the variational principle. As we have shown in subsection 3.2.2,
the BF path integral on this regulated, replica geometry naturally splits into a product
of “bulk” and “edge” terms

ZBF+edge[xn,s, axn,s] = Zbulk[xn,a] Zedge[axn,s]- (3~3~10)

We now insert the relevant Zggyedge[Xn,¢. 0Xn,¢] into the ratio (3.3.9). In this chapter,
we will focus on the contribution of the edge modes to the entanglement entropy. It
is precisely these terms that we expect to contribute an area law. In the discussion,
section 3.5, we will comment on possible bulk contributions. Since the above appears
as a product, we can neatly isolate the contribution of the edge modes as:

. . Zed e[axn s]
Spr = lim 1 & iy
BB 0 T =18 Zigge[0X 1]

(3.3.11)

3.3.1 The edge mode theory

We now consider the boundary action. The bare BF action, (3.2.1), is consistent with
either fixing A or annihilating B as a boundary condition. However, the subsequent
integration over the remaining fluctuating boundary degrees of freedom is now
unbounded: we must supplement this theory with a boundary Hamiltonian® We will
focus on quadratic boundary actions. In general dimensions these quadratic actions
will be dimensionful and general lessons of effective field theory guide us to write
the most relevant one. Without loss of generality we can assume that this comes
from the quadratic action for the p-forms and write the following boundary action:

K A
SalAs, By] = EMA /m Ag nxdy = /:—ﬂ (43, K 45), (3.3.12)

8The need to supplement an edge Hamiltonian as a regulator is a theme that will be echoed in section 3.4.
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where p is an arbitrary energy scale and A = d — 1 —2p, as required by dimensional
analysis. With this action, the boundary symplectic form (taking also into account
the boundary terms from the variation of the bulk action) becomes:

O)x,, = / (Ba + uBA (1)@m=t Aa) A8Ay. (3.3.13)
a n.ge

As such, the variational principle, with the above boundary action, (3.3.12), is com-
patible with demanding

By + pA(—1)@-p=D+D 4o L g (3.3.14)

as boundary condition. We will call (3.3.14) a “generalised chiral boundary condition””

This boundary action, (3.3.12), and the corresponding boundary condition, (3.3.14),
have been known for a long time to appear on the boundary of BF theories, [228, 229].
Ignoring global issues, the flatness condition that the bulk path integral imposes on
Ay makes this is a simple theory of a free (p — 1)-form gauge field, also known as a
singleton mode in the string theory literature. Naturally (Hodge-dually), it is also a
theory of a free (d — p — 2)-form. However, on a non-trivial topology, the boundary
condition (3.3.14) imposes a constraint on the fluxes. On a manifold of the form
S! x £ — as is our case here — both fields have fluxes obeying Dirac quantisation
around purely spatial cycles, but fractional charges, when wrapping the thermal
circle. This is entirely reminiscent of the story of the two-dimensional chiral boson
on a torus, which can be seen to arise at the edge of a Chern-Simons theory, which
is not modular invariant: upon demanding periodicity around the spatial circle, one
cannot retain periodicity around the thermal circle. It also reflects the story of self-
dual gauge fields in higher dimensions [24, 25]° In our case, the theory becomes
a “chiral half” of a (p — 1)-form and a (d — p — 2)-form Maxwell theory, which
we call, relatively unimaginatively, chiral mixed Maxwell theory. The role of chiral
fields as edge modes of BF theories was recently reemphasised in [230, 231]. Note,
however, that there, as well as in all other instances where chiral gauge fields make
an appearance (see e.g. [24, 25, 232-240] for an incomplete list) it concerns k-form
fields in 2k + 2 dimensions, where one can construct a genuinely chiral combination
of the gauge fields. This is, to our knowledge, the first time a chiral pure gauge theory
is constructed in generic dimensions.'’

Let us be more concrete. First, we Hodge-decompose Ay as Ay + da, where Ay is a
harmonic p-form and a is the (globally-well defined) (p — 1)-form gauge field. We do

0f course our approach is much less rigorous than the original story. A rigorous analysis would
require a revisit from the lens of differential cohomology. We take this as an opportunity to stress its
importance for a solid understanding of gauge theories.

%and as a bonus, arbitrary topology
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3. Edge modes

the same for By. Now, if we denote by dt the volume element of the thermal circle,
we can split the harmonic parts of the two fields as

Ap = A +dt A A, (3.3.15)
By, =B +dr A B, (3.3.16)

where A € Harm?(dR), A € Harm? '(0R), 8 € Harm? ?7'(3R), and
B € Harm? " ?72(3R). Then the boundary condition (3.3.14) relates 4 to 8 (and
similarly 8B to +4) as follows:

B = pb(=1)EPP 4 op &, (3.3.17)

And the boundary action becomes

MA M_A A

Sal B] = {— (AKA) + — (BKB) + 4— (da . K da). (3.3.18)

We take this as the definition of the action of chiral mixed Maxwell theory.

Let us proceed with quantising this theory, by performing the path integral on 9., ..
For notational simplicity we will perform the path integral on X . and we will
rescale the radius in the final formulas to obtain the partition function on 90X, ..
First, observe that writing the action in the form (3.3.18) is equivalent to performing
the path integral over # and B over the delta function that enforces the boundary
conditions. This leaves us with

Zedgel0X1,6] = Zinst[0X1,6] Zosc[0X1,6], (3.3.19)
where
uh A
Zinst[0X1 6] := /DA DB exp(—4— (AKA) + — (JB,KJB)), (3.3.20)
7 4
D A
Zose[1%61 4] = / ¢ exp(—“— (da K da)). (3.3.21)
Vol(ﬁg_l) am

The instanton integral is over the space of harmonic p- and (d — p — 1)-forms on dR
and we will evaluate it shortly. The oscillator piece is an integral over a (p — 1)-form
gauge fields modulo their gauge transformations. This is a regular set of (p — 1)-form
Maxwell oscillators.

We first deal with the oscillators. We can expand in modes of the Hodge Laplacian
and integrate over those, separating the zero-modes. We must do so for the tower of
ghosts that follow from the reducible gauge invariances of the (p — 1)-form gauge
fields. We show in appendix B.1, that the oscillators contribute as

Zose[0 1] —-(naR 1)[q]) (ngi_p_zﬁq])fx. (3.3.22)
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3.3. Entanglement from the replica path integral

In the above, ¢ denotes the nome, g := e™*#, and we have defined an analogue of the
Dedekind eta function,

—-1/2

WPll=q 2B T S g™V | (3.3.23)

nE:N']g- Nn=0

associated to the k-form Hodge Laplacian on a closed, compact manifold Y. In the
above, N denotes the index-set of the non-zero spectrum of the k-form Laplacian
acting on coclosed forms, A,, are the corresponding eigenvalues, measured in units
of u, and Ej is the (potentially divergent) zero-point energy (also in units of w),
Eo =) ¢ NE An. Moreover, the above is, strictly speaking, defined only up to a
phase. This will not concern us; the existence or choice of a complex structure of Y
is insignificant for us, since for our purposes it suffices to only consider real nomes.
The definition (3.3.23) is also equivalent to

1/2 1/2
k . 1 1 -
(Y)[Q] = l_[ smh(zsu )&nk) = l—[ q -3 (1 _qv* k)
nkee/\/kL “I\Gka
(3.3.24)

Finally it is easy to see that if we take Y = S!, our generalised eta function reduces to
the usual Dedekind eta function: n(Sol) [¢] = nlg]. Moreover, since the non-zero spectra
of the Laplacians acting on transversal (p — 1)- and (d — p — 2)-forms coincide, the
eta functions associated with those are equal, we write them separately, however for
reasons that will become apparent shortly.

Moving on to the instantons, we can further expand 4 and 8 in terms of the topolo-
gical basis of harmonic forms on dR:

Ap = Airi(p) and B, = I)’iri(d_p_l). (3.3.25)

Enter Dirac quantisation. Magnetic fluxes along p- and (d — p — 1)-cycles on dR are
quantised as

/ A €2nZ¥, “neH,(BR) and / Be2xZ, Yy eHy_p,_1(R). (3.3.26)
n Y

This means that A; = 27 n; and B; = 27 m;, where n;, m; € Z*. As such, the action
(3.3.18) becomes:

Sa[A,B]=neu<n-(K®@zR)-n+m (K@Gd . 1) m) (3.3.27)

In the above, we have combined n; and m; into vectors n € Z**»@® and m €
Zxba—p—100R) Moreover, GgR is the dimensionless version of GZR, the Gram matrix
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3. Edge modes

of harmonic k-forms on dR. This comes from the fact that G; has dimension [Gy] =
plt@=1=d 50 G, := pu27'G, and G4—p—y := pu't2G4_p—; are dimensionless.
Therefore, the instanton contribution reads

Zinst[0X1,6] = Z exp[—neu(n . (K ® @2R) ‘n+m- (K ® @(‘?ip_l) m)]
neZkbpIR)
mEZKbd_p_l (OR)

(3.3.28)

To arrive at the final expression for the edge mode partition function, let us also
introduce a Siegel-type Theta function, denoted by O[g; Oy]:

O[q: On] := Z qTroNT, (3.3.29)

rezZN

If Oy is a real, N x N matrix, when ¢ € Ry, it truly becomes a Siegel Theta
function and inherits all the modular properties of those. Expressing the instanton
contribution, (3.3.20), in terms of the Theta functions, (3.3.29), and combining with
the oscillator contribution, (3.3.22), gives the following simple form for the edge
mode partition function:

®[q;K ® @p] @[q;K ® @d—p—l]

Zedge[axl,s] = (ng;l)[qu (ng‘;;fpfz) [q])x

(3.3.30)

We briefly re-emphasise the chiral nature of this result and comment on its importance.
To get a feel for it, note first that if )R = S!, with p = 1, this becomes exactly the
partition function of two (multi-component) chiral bosons. This resonates entirely
with the usual story. In d = 3 BF theory can be written as a sum of two Chern-
Simons theories, each of which supports a chiral scalar on its boundary. The partition
function of this chiral boson is not modular invariant!' In d = 5 dimensions, a
smoking gun signal that the edge theory is chiral is the fact that it is not S-duality
invariant, as can be seen by comparing to the regular Maxwell partition function (cf.
appendix B.1). In [229], S-duality of the edge mode theory was crucial in proving an
obstruction to symmetry-preserving regulators of edge-states of BF theory.!” Our
analysis provides evidence that this may not be the case; i.e. the fact that the UV
lattice models regularising Maxwell theory break S-duality, while correct, does not
imply that these models are symmetry breaking from the point of view of edge states
of BF theory. Moving away from d = 5, for generic dimensions, one can take a half
of our partition function as the definition of an abelian chiral gauge theory, but note

1This fact, Zchiral boson (B) 7 Zehiral boson (1/8), is actually crucial for extracting the correct entangle-
ment entropy of bulk Chern-Simons theory [201]!
12This was, in turn interpreted as a gauge theory version of the Nielsen-Ninomiya theorem [241, 242].
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3.3. Entanglement from the replica path integral

that only this combination is well-defined, at least from a path integral perspective.
A systematic understanding of this chiral theory deserves further research.

In the next section, we will move on to extract the entanglement entropy. To do that,
we will need to compare the edge mode partition function on 9.X,, . to that on 90X ..
The X, . partition function can be easily obtained by rescaling the radius of the S!
to ne. This results in

o[¢"K & E)| 0[¢" K & Ga—poi]

(néﬁ’{l)[q”])K (ng’}l{”_z)[q"])K

Zedge[0Xn,e] = (3.3.31)

3.3.2 Extracting the entanglement entropy

We can now simply insert (3.3.30) and (3.3.31) into (3.3.11) to extract the entanglement
entropy. We have two kinds of terms to deal with; the Theta functions and the eta
functions. Let us deal with them separately.

We treat first the instantons, i.e. the Theta functions, for it will be easier to extract
their high-temperature behavior. Fortunately, Siegel Theta functions are very well
behaved and obey a sort of modularity equation, which can be easily proved using
the Poisson summation formula. Explicitly, they obey the following transformation
equation [243]:

Ole™; Oy] = (ept)™ > |det @Nr%@[e—ﬁ; @;vl]. (3.3.32)
The high-temperature behavior is then straightforward to obtain:
Ble=*; On] *=° (ep)” 2 |det Oy | 2. (3.3.33)

With that, the total contribution of the Theta functions to the entanglement entropy
is

o[¢" K8 G| o[¢mKeGR, ]

— Ti i !
I T (e G ok o G, ]

o e—0n—1 l—n

SEE

%(bp(BR) + bd_p_l(BR)) [K(l —log(en)) —log |detK|]. (3.3.34)

As we shall see shortly, this term will be partially cancelled by the contribution of
the eta functions, ultimately resulting in the topological piece of the entanglement
entropy.

Let us get to it then. To evaluate the contribution of the eta functions, we will use
the following trick [244, 245]. In words, we will Taylor expand log (nag) ! and on
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3. Edge modes

each term perform an inverse Mellin tranform.”* Written as a Mellin integral, the
sum over the eigenvalues, {A,} is easily performed to yield the spectral zeta function,

()= Y AL, (3.3.35)

nEJV,l
In equations:

- Z log(l—e_sum)_

1

Tayl 1

aylor wmA/

= Z Z e Ao
m

ned‘\/ki ned‘\fL m=1
Mellin— / —F(u) SMM\/A_n U
H§Lrnzl +R 27T )
resum du (-1
[ st 0 () T e,

(3.3.36)

where {(u) is the ordinary Riemann zeta function. In the above integral ¢ > O is a
positive number lying to the right of the rightmost pole of the integrand. To extract
the leading terms as ¢ — 0, we then imagine pushing the integration contour to
—1 < ¢ <0, so that the integrand vanishes as ¢ — 0. The price we pay is that, as we
sweep to the left, we pick up the residues from all of the poles of the integrand.

lim log (ngg(q))‘ == Z Res {(u + 1) c(")( )r(u) ™. (33.37)

u*/

In short, evaluating the descendant contribution to Sgg reduces to analyzing the pole
structure of the above expression. In appendix B.2 we carefully analyse the poles
of C(k) which all lie at u > 0. Inside (3.3.37) there is a double pole at u = 0 from
I'(w)C(u + 1), with residue

Res(") &%)W@@W)

=( .r”‘) L84 even+bk(a1e)) log (st). (3.3.38)

In the above, T (dklz is the (d—gz)—th heat kernel coefficient for the spectral zeta func-
==

tion arising from the value of Cg’g (0) and by (dR), the k-th Betti number enumerates
the number of zero-modes of the k-form Laplacian, again reviewed in appendix B.2.

Bnote that the piece containing the zero-point-energy, Eo, in (3.3.23) or (3.3.24) obviously does not
contribute to the entropy so we will focus on the rest
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3.3. Entanglement from the replica path integral

We see then that this term, evaluated for the eta functions associated to the (p — 1)-
and the (d — p — 2)-form Laplacians, contributes to the entropy as:

|:(I(” 1)+I(d - 2))5d’even

SEE

2

Resg
— (bp-1(3R) + bd—p—z(aR))i| (1 —log (ep)). (3.3.39)

We see a happy cancellation between (part of) this term and (part of) the contribu-
tion of the Thetas, (3.3.34), owing to Poincaré duality b,_;(dR) = bgs_,_1(dR) and
ba—p-2(3R) = b, (2R).

The residues away from zero come from the poles of {gﬁ_l) (u/2)* These lie at d —2k,
for integer k > 1'° (with k < d/2 — 1 when d is even) and give in total

1“(d Zk)I(P 1)( )Zk d
r(4 —k)

where, again, T ,(Cp_ _11) are heat kernel coefficients for the spectral zeta function. They

Respg_y = (4m)"%0(d — 2k + 1) (3.3.40)

can be written as integrals of local geometrical (but not topological) data of the
entangling surface. These residues contribute area law (and subleading) terms to the
entropy:

Sex =177V (e, (3.3.41)
Resg i
where
I'(d -2k _
0D o a4 — 2k + 1)(—)(d 2k + 1) IPD. (3342)

F(E—k)

As expected, the area-law terms are non-universal, depend on the geometry of the
entangling surface (through the heat-kernel coefficients, I ,((11 Il)) and the regulator, ¢.

Assembling the oscillator contributions and adding the contribution of the instantons,
we arrive at the main result for the entanglement entropy:

L4 ] £\ 42k ¢
Se= Y. c,(g"”(—) (I“’ DI 2>)8d,evenlog(—)
=1 & €/ (3.3.43)

1
— 5(bp(@R) +bg—p1 (3R)) log |det K|,

14Recall that apart from the zero-modes, the eta functions for (p — 1)- and for (d — p — 2)-forms are
identical.
15Note that there is a shift k — k — 1 compared with appendix B.2.
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3. Edge modes

2k—d -1

where Cy := Ie and we traded the energy scale for a length scale £ = ™ "e as
is more common in the presentation of entanglement entropies. In the above formula,
d—1
2

we have ignored terms with k > (which are present only when d is odd),
g p y

since they give vanishing contributions in the limit ¢ — 0.

On extracting universal features:

Some comments are in order regarding our main result, (3.3.43). In odd dimensions
we have a universal subleading correction given by

1
StEE = —E(b,,(aR) + bg—p—1(3R)) log |det K|. (3.3.44)

In even dimensions, however, the log term

£ (Igp_;” + Iﬁ,d_‘;’—2>) 1og(§) , (3.3.45)
2\ = z €

spoils the universality of the log |det K| as rescalings of the cutoff result in constant
shifts of Sgg. Under general arguments, there is nothing that prohibits log contribu-
tions to the entanglement entropy in even dimensions and, indeed, here we find such
a contribution. The coefficient of this log is a potentially universal piece of data, but
in fact it depends on the geometry of the entangling surface through its heat kernel
coefficient. On top of this, throughout the chapter we had been neglectful of terms
proportional to the Euler characteristic, x(dR). The main reason is that, while topo-
logical, they ultimately arise (or can be absorbed into) ambiguities in the edge theory
path integral measure and so are non-universal. This non-universality is reflected in
the entropy: the Euler characteristic can be recast as the integral of a local quantity,
through the generalised Gauss—Bonnet theorem. Nevertheless, it was explained in
[188] that a generalisation of the Kitaev—Preskill / Levin—-Wen protocol [165, 166] is
possible in higher dimensions with an explicit construction in d = 4. By this, it is
meant that one can decompose the entangling surface, dR, into pieces, dR; of specific
geometry. Then one can consider a linear combination of entanglement entropies
across dR;, such that, when surgered together, the locally integrated contributions to
the entropy cancel out. The upshot is that we expect, through such a construction,
one can extract in all dimensions the topological entanglement entropy:

1
STEE = —E(bp(aR) + bg—p—1(3dR)) log |det K|, (3.3.46)

although we do not do so here.

As an example, consider four-dimensional BF theory and take p = 1 or p = 2. The
two cases are interchangeable, as they are mapped to each other by interchanging
the roles of the A and B fields in the original action (3.2.1). Generally, it holds that
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3.4. The extended Hilbert space and a current algebra

Igo) = éx(é)R) [246]. Taking the entangling surface to be a torus, R = T2, for
p = 1wehave I io) = 0. One can explicitly show that the same holds for p = 2, as
expected, by analyzing the spectrum of the transverse Laplacian acting on one-forms.
Therefore, the topological entanglement entropy for the four-dimensional case with

an entangling surface with the topology of a torus is given by
STEE =-2 log |det]K|. (3.3.47)

Note that in four dimensions the subleading part of the entropy is always topological

(although possibly not universal), since .I (f__zl) is given by the Euler characteristic. In
==

contrast, in higher dimensions, this is not the case. In six dimensions, for example,

1
0= / dvoljr (10R? — Ryvpe R*PT + 2R RM),
180 Jsr
which depends sensitively on the geometry of the entangling surface, and therefore
one truly needs a suitable Kitaev—-Preskill / Levin—Wen-like subtraction scheme to

extract the universal pieces of data.

3.4 The extended Hilbert space and a current algebra

Above we have presented a replica path integral calculation of the entanglement
entropy. We have focussed on the entropy that comes entirely from an “edge mode
theory,” which we have coined as “chiral mixed Maxwell,” in the high-temperature
limit; this essentially counts a regulated Hilbert space dimension of this edge theory.
In this section, we provide a more honest accounting of the entanglement entropy,
accounting for the subtleties of gauge invariance. This will provide an alternative
view of the role of these edge modes as providing an arena, the “extended Hilbert
space” (EHS), by which the entanglement entropy can be precisely defined. We will
see that a physical state is embedded as a maximally entangled state in this EHS
and thus its entanglement entropy is naturally interpreted as a dimension of the
EHS, which we will regulate. The upshot of this section is that we will reproduce
the topological entanglement entropy from a more rigorous starting point, while
also providing a, perhaps, intuitive view on the need for the edge theory and why it
contributes to the entanglement entropy.

Along the way we will show that the EHS is completely organised by an infinite-
dimensional spectrum-generating current algebra, entirely analogous to the Kac-
Moody algebras appearing at the edge of three-dimensional topological phases. In
general dimensions this algebra is non-conformal. Regardless, we will show that it
is powerful enough to fix the entire computation of the entanglement entropy. We
will also show that this algebra, remarkably, generates the entire spectrum of the
edge mode theory from section 3.3. The fact that the spectrum of the chiral Maxwell
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theory is entirely fixed by a (potentially non-conformal) current algebra echoes the
results of [3, 37] for 1-form Maxwell theories in four-dimensions. Here we present
the generic story which we regard as a major result of this chapter.

3.4.1 Gauge-(in)variance, entanglement, and the extended Hilbert space

The typical starting point of the entanglement entropy is the supposition of a Hilbert
space factorisation between a region, R, and its complement, R:

H = Hg @ Hre. (3.4.1)

This supposition typically fails in quantum field theory due to an infinite number of
correlated short-distance modes,'® however, one can imagine regulating this com-
putation by a short-distance regulator, ¢, (say by putting the system on a lattice,
or utilising a mutual information regulator [248]). However, even in a regulated
scenario, (3.4.1), fails for quantum gauge theories due to the global nature of gauge
constraints that physical states must satisfy [174, 182, 184, 185, 218, 248, 249]. It is, by
now, well understood how to properly define entanglement entropy in gauge theories.
One method is to utilise an algebraic definition of the von Neumann entropy applied
to the reduced density matrix realised directly as a gauge-invariant operator [248].
We have explored that aspect of entanglement entropy in this family of theories in
chapter 2. Here we focus on the alternative formulation, which goes by the name of
the “extended Hilbert space” [174, 182, 184, 185, 218].

In short, while the physical Hilbert space, #, cannot be realised as a tensor product,
we can embed H (let us call the embedding I) into an EHS, Hey, which admits a
tensor product.

I Foy = Hr ® Hpe. (3.4.2)

By definition, Hex is furnished with unphysical, gauge-variant states. These are
states in either #{g or # g which carry the action of gauge transformations acting
on the entangling surface, dR. That is to say, it is furnished with edge mode states
living on dR. Given a physical state |y/) € # it embeds to a state |/) € Hey which
we can then tensor-factorise and reduce upon R:

Pr = Trap [V, (3.43)
and the entanglement entropy can defined in the typical way:
See := —Trg, (Or log pRr) . (3.4.4)

In practice, this can be computed utilising the replica trick we reviewed above. The
important step in this process, however, is identifying the embedding map, I, and thus

1®More modernly, and more precisely, it fails due to the type-III nature of the von Neumann algebra
associated to a subregion; see e.g. [247] and references therein.
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the appropriate embedded state |$) € Hext. Since Hey; is furnished (by definition) by
gauge-variant states, this embedding is determined by demanding gauge-invariance
by hand: i.e. if a gauge transformation labeled by o with support on dR acts on Hr
and Jge with charge operators Q g[ee] and Q r<[«], respectively, then we will demand

(Orle] ® 1+ 1® Qge[a]) |¥) = 0. (3.4.5)

We will refer to (3.4.5) as the “quantum gluing condition” Because « can be arbitrarily
local to dR, this induces correlations to |y) that are local to dR and maximally
entangled. As a result pg will be maximally mixed amongst an infinite number of
edge modes that are local to dR. Regulating this maximal mixture will result in a
(divergent) area law (with possibly subleading area laws) to the entanglement entropy,
but there may also exist universal corrections. We will make these ideas concrete in
this theory below. To begin, we will first identify a suitable #z with which to build
the extended Hilbert space.

3.4.2 A current algebra

We will construct #g by quantising the theory on X = Rx R. Many of the details here
follow the opening sections of [1] for quantising BF theory, however, now allowing
for the existence of a boundary dR # &. We refer the reader there for a more detailed
accounting of the procedure and notation and point out only the necessary features
special to the current situation here. We will often use the embedding map of the
boundary igg : 0R < R, and igy : 0X <— X, as well as the embedding map of R into
X:ig: R— X.

We split A = Ag + a and B = By + b with Ay and By with “a leg” along R and a
and b along R. Correspondingly the action (3.2.1) splits,

K
Surldo +a. Bo+b] = / ((—1)“’—de A Ao+ BoAda+b A da) . (3.4.6)
X

once we impose boundary conditions i3y A9 = ij, Bo = 0. Above d should be
regarded as the exterior derivative along R. Ag and By impose flatness of @ and b on
R:

da =db =0, (3.4.7)

which we will refer to as the Gauss law constraints. The residual gauge transforma-
tions, preserving the boundary conditions act on @ and b as

8 =dgp, ijrdrB =0 (3.4.8)
8a = do, ispdra = 0. (3.4.9)

Recall that higher-form gauge theories come with a tower of lower (secondary,
tertiary, quaternary, etc.) gauge-invariances. These lower invariances indicate some
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redundancy in what arises as a global symmetries when R has a boundary. Later on,
we will impose restrictions on the gauge parameters that survive all the way to the
boundary, to take care of this.

The charges associated to (3.4.8) can be built from the symplectic form
d—p-1 K
Qr=(-1D)*"P""— | 8bAba. (3.4.10)
2 R
Above, we view §b and 8a as variational one-forms. We define variational vectors, vy
and vg such that their interior product gives (3.4.8):
Vo 08a =da and wvpg 18b =dp. (3.4.11)
The charges, given by
30[a] :==v, 1 Qr and S§Q[B]:=vg 1 QR (3.4.12)

can then be found as

Qlo] := (—l)d_Pégf brda = —;5 b Ara,
T JR T JoR (3.4.13)

— (_pd-r1 K _(_pd-r1 K
01y = -1y [ apna =it [ paa

up to a total variation.!” The second equality in each line emphasises that the charges
localise to R upon imposing the Gauss law constraint, (3.4.7). When these charges
do not vanish identically, then they are genuine, global, symmetries of the system,
i.e. they act on and transform states. As alluded to above, there is still a need to fix
an additional gauge redundancy: if ijra = dy for some y € QP72(9R) then Q[a] is
identically zero by pulling the Gauss constraint on b back to dR (a similar argument
follows for ). We fix this by imposing

dfifeoe = dTize = 0. (3.4.14)

This constraint fixes completely all the lower-invariances. The algebra of the charges
is also given by the symplectic form as

(0[e]. O[Blix = Qr(vp. va) = (-1)d—P—1§ fR d A da. (3.4.15)

The canonical quantisation of the charges, {e, 0} — —i[e, o], then yields a centrally
extended algebra

N I K
[Q[a],Q[m]R — i(—1)d-P IE[Rd,BAda =i~ /(;R d a. (3.4.16)

7This total variation ambiguity doesn’t affect the algebra of the charges, of course.
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3.4.3 Mode expansion of the current algebra

We want to turn the algebra (3.4.16) into a countable current algebra. For that we
want to decompose our various forms into modes of a common basis and find their
mode algebra.

In the following, we restrict ourselves within dR and drop the bold differential. It is
understood that everything below has been pulled back to dR. We will keep in mind
our restriction that the forms « and g are coclosed (though not necessarily co-exact)
in dR. The set of eigen-k-forms of the transversal Laplacian, de|Qk, provides a
basis for the coclosed k-forms. Poincaré duality and the Hodge decomposition tell us
that the non-zero spectrum of d'd acting on k-forms on a D-dimensional compact
manifold is the same as its spectrum acting on (D — k — 1)-forms, since they are both
related to the spectrum of dd on (D — k)-forms.

So, as far as the non-zero-modes are of concern, in our case, we need the bases
provided by the (p — 1)-forms and (d — p — 2)-forms. Since the non-zero spectra of
d*d on the (d —2)-dimensional manifold dR on these two spaces coincide, these forms
will be labeled by the same index set {n € N}'}. Namely, we have two orthonormal
bases

p—1 d—p—2
{n € Q71 OR)} - and { In € Q (aR)}newj, (3.4.17)
(‘pm(pm} =8um = (Xnv Xm) s
with
de(pn == An(pna
An#0ne N (3.4.18)
deXn = Aan’

Now, coming to the zero-modes, these are simply the harmonic (p—1)- and (d — p—2)-
forms on dR. The natural bases to expand those are the topological bases

_1)) br—1OR) _ \yba—p—2(3R)
{r.(p 1)},, and {‘L’i(d P 2)}' ! . (3.4.19)

! i=1

satisfying

fﬁ“”=d=[#ﬂr% (3.4.20)
r]J o)

for all (p — 1)- and (d — p — 2)-cycles i/ and o’ respectively.
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3. Edge modes

We can then expand:

=S
Il

2 aent

*
neN

bp—

bg—

1

Z airi(p_l),
i=1

p—2

IBEEEDY G

neN |

Similarly, we can expand a and b as

= (-1 P "2n[K™!]

nee/‘\fL

by p—

1

l;=—2n Zb * @n + Z bO *r(P D

neN
so that the charges become

Olo] =

n

Olp] =

n

*

bp—1

> b+ 3 b GJE, ]

eENT

D "+

*
ENT

i,j=1

bdfpfz

Z &Oi[GSIil,_z]Uﬂi,

ij=

1

> an*Xn+Za0 w @7

where we note again that by Poincaré duality it holds that GBR [GZR ke
an invertible matrix which can be set to unity by a choice of basis.

Equivalently, we can invert (3.4.23) to write the individual modes as

K
an—( l)dp] / XnAdy
2

bp

——

j=

1
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3.4. The extended Hilbert space and a current algebra

With this mode expansion, the current algebra (3.4.16) is written in modes as
A iK
[bn,am] =5 Com, n,me N[, where (3.4.30)

Com = / dym A @n. (3.4.31)
oR

Of course, the zero-modes have trivial commutators with all the other modes as
well as amongst themselves. The final step to pin down the algebra completely is
to analyse the matrix Cy,. Observe that the two bases of the non-zero sectors are
related by

dtn=">_ Con * ¢m. (3.4.32)

*
meNT

Let us momentarily assume that there is no degeneracy of eigenvalues, i.e. A, =
Am = n = m and act on (3.4.32) with ddT. We get that for all n € N we must have

> Con(rn —Am) = 0. (3.4.33)

*
meNT

This can only be achieved if Cy,, is diagonal: Cp,n = Ci6mn. Now consider the
inner-product (dy,,dym). We have

(an ’ d)(m) = <th deXm) = Ambnm
I (3.4.34)
CiCn <*‘pn, *(pm) = an(gnm-

This tells us that |C,| = +/A,. We can arbitrarily choose the sign of the square root.
Different signs will correspond to different choices of raising and lowering operators.
We choose the following convention, which will make the choice of raising and
lowering operators consistent across all  and p: C, = /A,.

Returning to the general case and allowing for degeneracy of the eigenvalues, we
note that the two bases only mix elements of the same eigenvalue, giving thus Cp,, in
a block-diagonal form. Then we can reshuffle the basis within a subspace of a fixed
eigenvalue to fully diagonalise Cp,,, and hence the result is unchanged. Altogether
we can write the final expression for the current algebra:

[én,am] = % VAnSam. (3.4.35)

We note the similarity to the Kac-Moody algebras appearing in 2d, however it is
important to emphasise that the modes here are not labeled, necessarily, by integers,
but instead by the countable set of eigenfuctions .
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3. Edge modes

3.4.4 Verma modules, characters, and extended characters

The current algebra, (3.4.35), allows us to build g as a direct sum of Verma modules
corresponding to integrable representations of this algebra. It will be useful to
supplement this algebra with a positive-definite Hamiltonian. Recall that since the
bulk theory is first order in derivatives, its Hamiltonian is identically zero and so
this is an ingredient we will add in by hand. The Hamiltonian we will supplement
will be the natural generalisation of the “Sugawara Hamiltonian” in 2d Kac—Moody
algebras.

Let us define ladder operators of the non-zero-modes as

A 1 . o A ~ 1 . o ~
K, = E(;LA/zan +ip A/zbn) and J,:= E(ﬂA/zan —ip A/zbn). (3.4.36)

where u is an energy scale and A = d — 1 — 2p. We then write

ﬁ = ]—}zero + ﬁosc (3~4~37)
with
bp -1 ba—p—1 . _1.
Hyero = l’LAnK_l Z Ao [GgR:I &Oj + H'_AT[K_I Z boi I:Gfilip—ll. boj
i,j=0 Y i,j=0 Y
Hoe = 7K' Y (;ﬁ&n&n + ;fAIS,JSn) = 27K Y JuRo+ nEo. (34.38)
nENI nG,NI

with Ey a potentially divergent zero-point energy that will play no role in the
entanglement entropy. This Hamiltonian is motivated by three very important
points: firstly, it is positive-definite, and secondly, when expressed in terms of the
ladder-operators it plays a natural algebraic role, extending (3.4.35) to

[fn, Iém] - %/}L—nsnm (3.4.39)
[HK,,] = V2K, and [l{r,fn] = A ). (3.4.40)

It is evident in this writing, that the operator J,, with n € N, lowers the energy by
+/An units and K, raises the energy by the same amount.

Thirdly, and perhaps most importantly, when expressed in terms of the original field
variables on dR, H is local. Namely writing

ifA=a+dtnd, (3.4.41)
ixB=>b+dtab, (3.4.42)
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3.4. The extended Hilbert space and a current algebra

with a € Q°(R) ® Q7(3R), @ € Q°(R) ® Q77 (3R), b € Q°(R) ® Q47771 (3R), and
b e Q°R) ® Q9 P2(3dR), H takes the form

—-A

H= Z (a,Ka)yg + ‘Z (b, Kb)gg - (3.4.43)

One can already recognise H as the Hamiltonian of the chiral mixed Maxwell theory
appearing in section 3.3.!%

The structure of the Jg factor of the extended Hilbert space is now clear. The
eigenstates of the zero-modes ag; and boJ define primary, lowest- welght states, |w),
that are annihilated by all J,. We can act on each such state with K,,, repeatedly to
construct a whole Verma module,

Ve 1= span{|w, {Nn})} := span l_[ H (kln)Nln |w) 7. (3.4.44)

nEWﬁlZl
The full Hilbert space is then a direct sum of all Verma modules

Ir =P Vo (3.4.45)

The primary states are labeled by the eigenvalues of the current algebra zero-modes.
These we can easily find by using Dirac quantisation restricting to dR:

/ a=2mn', Vo, € H,(dR), n'eZ, (3.4.46)
oi

and

/ b =2mm, Yni € Hy(0R), m e Z. (3.4.47)
n

Now, invoking the mode expansion, (3.4.23), this amounts to

by
doilw) =K Y n|GR| |w), 3.4.48
oi [o) J;[,,]UH (3.4.48)
bdfpfl
boi |w) =K Z mJ[Ggljp_l]U |w) . (3.4.49)

=1

¥Indeed, this matching is made explicit by “adding in” the time component, @, of iy A to H by
replacing b through the “chiral” boundary condition b = 2 (—1)(¢ =2 .. G.
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3. Edge modes

Therefore, the primary states, are labeled by two vectors of integers, n € Z*>»(R)
and m € Z*ba-r=10B) |)) = |n, m), and have energy

Apm = n,u(n . (K ® @2R) -n+m- (K ® @zlip_l) m) (3.4.50)

where we have, again absorbed the powers of u into the dimensionless Gram matrices
G,{:R. From here on we will also measure our energies in units of u, i.e. v/A, — u+/An
with the new A,’s dimensionless.

We can now define extended characters of our algebra. Having decomposed the
Hilbert space as

HRr = @ Vo.m (3.4.51)

neZkbp R
meZ<Pd—p—10R)

we can first compute the characters of each Verma module, chy, ,,[¢] := try, ,, qﬁ /e,
This is straightforward. Remembering that K, raises the energy by w+/A, we obtain

K

00
- KE Nn/A A
chy, . lal:== ¢ | [T Do ¢"V* | g%, (3.4.52)
neN} Nn=0
——
vacuum descendants
contribution

Finally, summing over all the Verma modules gives us an extended character:

cholgl:= )  chy,,ld]
neZbr
meZPd—p—1
K
%)
— qKEO l_[ Z an«/ﬂ Z qAn,m' (3453)
nEN* No=0 nezbp

meZPd—p—1
Here, we once again encounter the generalised Dedekind eta function from section 3.3;

—1/2

1 o0
-1 -5 E
ne Vgl =g 2 TT Y ¢ . (3.4.54)
nGNINn=0

Additionally, recalling the form of the primary state energies, (3.4.50), the sum
over the primaries of g7 organises into the Siegel Theta functions appearing
in section 3.3. Consequently, we find a curious and powerful correspondence: the
partition function, (3.3.30), of the chiral mixed Maxwell theory, from section 3.3 takes
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3.4. The extended Hilbert space and a current algebra

the form of an extended character of our current algebra!

®[q;K ® @3R] ®[q;K ®GHR |

]
G

cholq] =

3.4.5 The entanglement entropy

We have now finally set the stage to calculate the entanglement entropy. Consider
partitioning the Cauchy slice, ¥, into two parts ¥ = R Uyg RS, where Uyg denotes
gluing along their common boundary. We would like to compute the entanglement
entropy of a state in 5 upon tracing out the degrees of freedom on R¢. However,
we have seen that dim Xy = |detK|" ®) which is obviously finite, but each of
H g and Hpe is a sum of Verma modules, (3.4.45), and thus infinite-dimensional.
Thus we starkly see that #x # Hr ® Hpge. Instead, we will embed H5 inside the
tensor product and impose the quantum gluing condition, (3.4.5), to ensure that gauge
transformations acting on dR annihilate the physical states living in Hx C Hr Q@ Hge.
Let us denote

~ K ~ ~
Orle] := (—1)d<P+‘>—/ anb= )" a"b, and (3.4.56)

4 R neN*

1
~ K . .
OrlBli= | Bra= ) pan, (3.4.57)
T JOR
neN |

~ K ~ A
Ore[a] := (—1)‘“1’“)—/ @nb= Y @b, and (3.4.58)
47'[ ORc e *
neN |
Ore [E] X[ 5.z 3 Blan, (3.4.59)
47[ 9Rc¢ «
neN

with support on dR¢. Upon gluing R to R¢ along their common boundary, we will
identify o and B with their parity opposites, @ and f, respectively. We can then
define the generators of gauge transformations on the entire X as

Qo] := Ogle] ® 1ge + 1g ® Oge[@]. (3.4.60)
Q[B] = OrlBl ® g + 1r ® Ok [E], (3.4.61)

where 1z (i Rc) is the identity operator on g (#g<). The condition that the physical
states should be uncharged under the charge generators, identifies #5 as a specific
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3. Edge modes

subspace of #r ® Hge, namely
Jos, = ker Qo] Nker Q[B] C Hr @ Hie. (3.4.62)

At the level of the ladder operators, (3.4.36), the quantum gluing condition can be
expressed as

(fn RIp +1r® Kn) ¥) =0, (3.4.63)
(Ién ® g +1r® fn) ly) = 0. (3.4.64)

which roughly states that raising operators on R are lowering operators on R and
vice versa. Due to this, it is clear that |/) will be maximally entangled in terms of the
oscillator occupation numbers, {N,}. The quantum gluing condition, (3.4.5), applied
at the level of zero-modes enforces a matching of the integer charges. The result
of this is that physical states of this #5 embed into generalised Ishibashi states of
e%R ® JchZ

) = 10) == > [n.m {Na})g ® [-n.—m {Ny})ge. (3.4.65)

n.m {N,}

where the overline denotes an anti-linear conjugate of the state.!” The reduced density
matrix is given by tracing over the Jg. tensor factor:

PR = tryepe [0) (O] . (3.4.66)

However the above object is not well defined, per se. We need to first address the
subtle issue of normalizability. Given that |0)) is maximally entangled over an infinite
number of modes (labeled by occupation numbers, N,), its norm is divergent. To
obtain a normalizable vector in #r ® Hr. we need to first regularise |0)) and we
will do so with the Sugawara-type Hamiltonian we discussed earlier, (3.4.37):

le)) := exp(—ie (Ar + HR)) 10)) . (3.4.67)

where we have explicitly denoted which factor of H.x the Hamiltonians act.

From here it is easy to see that the regulated Ishibashi state, (3.4.67), takes the form
of a canonical purification of a thermal density matrix with inverse temperature &.
This thermal density matrix is exactly the (unnormalised) reduced density matrix

Fr(e) = traege ¢ § AHAR) gy o) o (ArtAine), (3.4.68)

19We have written this for |0)), corresponding to the ground state without any Wilson surfaces piercing
¥. The computation with a generic |r)) can be easily obtained, by shifting the argument of the Siegel
Theta functions by a constant fractional charge. This will not affect the end entanglement entropy.
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and whose norm is given by the extended character, (3.4.53)
tryeg PR(€) = cholge], g :=e . (3.4.69)

As ¢ — 0 this is simply the regulated dimension of #g. Thus, the von Neumann
entropy of the reduced density matrix is the regulated log dim J#g. More suggestively,
however, given the correspondence (3.4.55), this is also the high-temperature limit of
the thermodynamic entropy of the edge mode theory, i.e.

Sgg = Iin(l) (1 — £0,) Zeage[ S} x OR]. (3.4.70)
E—

At this point the technical computations follow that of subsection 3.3.2. We arrive
again at the main result for the entanglement entropy:

45

Ak ., ¢
Se= ). c,(j’“)(-) +—(Ig”_‘;)+Ig_‘2p‘2>)5d,evenlog(-)
P € 2\ 2 2 e) (3471

1
- E(bp + bd—p—l) IOg |detK|

where C,(cp D are non-universal, dimensionless, numbers, I (f_)z is the (%)-th heat
<=

kernel coefficient for the spectral zeta function, and we have exchanged £ = " 'e as

a characteristic length scale (see section 3.3 for details).

3.5 Discussion

In this chapter, we considered the edge contributions to the entanglement entropy
in higher-dimensional abelian topological phases described by p-form BF theories.
These are phases whose ground states are condensates of p-form surface operators.
We found that the entanglement entropy coming from localised edge modes at the
entangling surface takes the form of a non-universal, divergent, area law decreasing
in powers of two with a possible log divergence in even dimensions. The constant
corrections to this area law are given in terms of topological features of the entangling
surface, namely its (p — 1)-st and (d — p — 2)-st Betti numbers. Our result is upheld
through two separate, but complementary, fronts: we have performed a replica
path integral calculation where the entropy arises as a high-temperature thermal
entropy of an edge mode partition function living on a regulated entangling surface
(with the regulator playing the role of the inverse temperature). This is edge mode
theory is a chiral combination of (p — 1)- and (d — p — 2)-form Maxwell theories,
which we call “chiral mixed Maxwell theory” We followed this calculation with a
more rigorous definition of the entanglement entropy through an extended Hilbert
space and showed that this extended Hilbert space is organised by a novel infinite-
dimensional current algebra, which has not appeared in the literature (to this degree
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3. Edge modes

of generality) before. We elucidated features of this current algebra and extracted the
entanglement entropy through its representation characters. Along the way we have
shown that these characters account for the spectrum of the Maxwell edge-theory
and match its thermal partition function.

There are several features of our main result that require elaboration and that we
would like to highlight at this point.

Comparing to the GTV result

Let us comment on the discrepancy of our result with the result found by Grover,
Turner, and Vishwanath [188] in states of discrete gauge theories described by
condensates of p-form membranes:

p—1
Sarv = Siocal — Y_(—1)? 7' "b, (0R) log|G|. (3.5.1)

n=0

where Sjoc,1 is built out of integrating local quantities (and so includes possible logs
and Euler characteristics in even dimensions), and |G| is the order of a discrete gauge
group (this is the analogue of |det K| in our computation). This result was arrived at
by counting the constraints implied by the intersection of p-form membranes with
the entangling surface In order to compare (3.1.2) and (3.5.1) and better highlight
the discrepancy, it is useful to write our result in terms of the analogous alternating
sum. We can do this either in the language of differential forms or in the language
of chains. The calculations from sections 3.3 and 3.4 are natural in the language of
differential forms, so let us start there. We note

1 L
_5 (bp—l + bd—p—z) = Z(_l)p_1+nbn
n=0

1 p—2 1 d—p-3
-5 > (=DP dim Q" — 3 Y (=P dimQr
n=0 n=0
1 1
+ 5 dim EP! 4 5 dim g2, (3.5.2)

where dim Q¥ and dim E* are the dimensions of all k-forms and exact k-forms on 9R,
respectively; these are divergent quantities but can be regulated, say, on a lattice and
regarding them as cochains. This equality follows from the short exact sequences.

0— Ck = QF(x) 4 gk+1 0, 0— EF - ck - HF -0, (3.5.3)

where C¥ is the space of closed k-forms, and utilising Poincaré duality on 0R,
by = bg_s—x. The first line of (3.5.2) is the desired GTV result. It is plausible

20We are grateful the authors of [188] for correspondence and explaining their result to us.
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that the second line involving dim Q" can be absorbed into the definition of the path
integral measures for the gauge fields and the ghosts (which also take an altern-
ating form)?! However, it is harder for us to argue away the third line involving
dim EP~1/4=P=2_This term would not be there if the object of interest were instead
—1(dim CP~! +dim C?~?72), i.e. a counting of closed forms as opposed to harmonic
forms. However, this appears unnatural in our approach. For instance, recall that in
the computation from section 3.3, the |det K| arises hand-in-hand from an instanton
sum and a counting of zero-modes of the Hodge Laplacian restricted to transversal
(p —1)/(d — p —2)-forms. Both of these objects are counted by harmonic forms, not
closed forms. This is mirrored in the computation of section 3.4 where the |detK]|
arises from counting zero-modes of the current algebra. There we argued that exact
forms give rise to exactly zero charges and so again a true count of the zero-modes
naturally lands upon the b,_; 4+ bg_,_».

In terms of chains we can also express, through wholly similar manipulations,

1 L
_5 (bp—l + bd—p—2) = Z(_l)piprnbn
n=0

1 p—1 1 d—p—2
+3 > (=P dimC, + 3 Y (=p4PTrdimC,
n=0 n=0
1 . 1 ..
~5 dimZ, ; — > dimZ;_,_», (3.5.4)

where dim C, and dim Z,, is the dimension of all n-chains on dR and the dimension
of n-chains on dR without boundary, respectively. Again, the first line of (3.5.4) is
commensurate with the GTV result. The second line is formed of locally integrated
quantities on dR and it is feasible that they can be subtracted through a Kiteav-
Preskill/Levin-Wen-like scheme. It is not clear whether the third line can be locally
subtracted (we indeed believe not). The GTV result would follow if instead the
object of interest were % (Bp_l + Bd—p—2) where By = Z; — by is the number of
boundary-less k-chains that are the boundary of a k + 1-chain. This counting, which
is in fact the one undertaken in [188], is pictorially natural when viewing the ground

state as a p-membrane condensate.

Further elucidating the origin of this gap is ongoing work. In this vein, having another
independent mode of calculation, e.g. a higher-dimensional version of surgery, would
help clarify things; see the discussion below.

On possible bulk contributions and essential topological entanglement

In this chapter we have focussed on the contribution from edge modes to the entan-
glement entropy. Since this theory is topological, it is natural to believe that this is

#See [250] for an inspirational manipulation of this sort in four-dimensional Maxwell theory.
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the sole contribution to the entropy; however, let us revisit this assumption. In the
replica computation of section 3.3, we did not undertake the computation of

!

Zbuk[Xne] = |det K|PKnedXned o0, 9%, ]! (3.5.5)

but schematically, since all of the oscillator contributions to Tgrs come with Dirichlet
boundary conditions, we expect them to scale with n and not contribute to the
entropy. Instead, we need to worry about homological contributions of Zy,x, which
can arise from cycles that can either pull back to or anchor on X, .

This counting is actually a bit cleaner in the extended Hilbert space discussion
of section 3.4. There we focussed on variational charges, however there are also
charge operators that cannot be written variationally. These are homological surface

operators
Wi Vi .
nJ) = exp(/nj w; AJ), Vi = exp(/gi vl B.), (3.5.6)

where 1/ and o' are basis p- and (d — p — 1)-homology cycles in R. These commute
with the variational charges of section 3.4, however, do not commute with each
other. Thus states in the #g factor of extended Hilbert space should in fact also be
labeled with the eigenvalues of one set of the operators. Without loss of generality,
we can label the states by wj for each p-cycle in R: |{wj}). What happens to these
quantum numbers when we solve for the true ground state, |¢), in Hg ® Hg? For
wj’s corresponding to cycles that live in the interior of R or RS, i.e. those that do
not pull back to or intersect dR, we simply match those charges with the charge of
|) for the corresponding cycles in X. However, for cycles of R that pull back to dR,
they are unfixed: they must combine with a similar cycle from R to give the correct
charge corresponding to a cycle in 3. This suggests that |{/) is maximally correlated
over cycles of ¥ that pull back? to R. This strongly suggests that there is, in fact,
a bulk entropy equal to |det K| times the number of such p-cycles. This number
was precisely calculated in [1] and is the magnetic p-form essential topological
entanglement:

?
Spulk = 8mag

n=0 n=0

p—1 p
= [ Z(—l)p_l_"bn (0R) + Z (bn(X) — dimH, (X, dR)) } log |detK]. (3.5.7)

where Hy (2, dR) are relative homology classes. Interestingly the GTV alternating
sum makes an appearance (albeit with the opposite sign than in [188]), however we

2Cycles that intersect dR transversally must additionally “match up” with a cycle from R€ but they
are not cancelled, instead their charge is fixed by the charge in |y). If there is a mismatch of either type
of cycles between R and R they must be set to zero by hand, i.e. if an anchored cycle of R cannot be
“completed” to a true cycle of ¥ upon gluing on RS, or in a cycle of R that pulls back to IR becomes
trivial in RC, then we simply set that charge to zero in |).
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do not regard this as accounting for the above discrepancy. For instance, when X is
topologically trivial (say R?~! or S7!) then the terms in (3.5.7) exactly cancel and
Spulk vanishes (this is by design since there are no non-trivial cycles in X to “count”).
Thus, the above discrepancy remains in this simple example.

Surgery
Lastly, let us comment on the possibility of another, independent, manner of eval-
uating this entanglement entropy using surgery. We can proceed via replica path
integral, very much in the spirit of section 3.3; however, instead of regulating X, by
excising a tubular neighborhood, we work to directly evaluate Z[X,] on the branched
cover over dR. For generic manifolds this seems quite difficult (although there may
be some feasible benchmark examples, e.g. when X is a product of spheres and R
is a product of a disc and spheres). However, one promising avenue is to develop
a program to evaluate such manifolds systematically. Let us recall the procedure
in three dimensions, which hinges upon the fact that the Hilbert space on a two-
sphere is one-dimensional. Thus, the path integral on any three-geometry, M, with
M = S2, produces a state proportional to the one produced by the path integral on
a three-ball, B3:

|M) o |B?). (3.5.8)

Thus, for any manifold that can be written as union of two manifolds across a common
two-sphere, X = M, Ug> M>, we find formally:

(M\[B%),,_, (B Ma)y ,  z[M,)*2(M)
(BIB>) g, a Z[S]

Z[X] = (Mi|M2) g, = . (3.5.9)

where M | 5 are M, with their S? boundaries “filled-in” with a B3. This effectively
allows one to “cut open” path integrals defined on complicated manifolds along two-
spheres and “cap them off” smoothly and evaluate them through simpler “ingredient”
path integrals, e.g. Z[S3]. In higher dimensions, topology is more involved, but
we also potentially have more tools at our disposal: equation (3.2.22) indicates that
there are potentially multiple choices of ¥ with dim #x = 1 which can provide an
“ingredient” for surgery. Developing this further can provide an independent check
on both of the above points: the discrepancy with the GTV result as well as the
existence of bulk contributions.
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STATE-OPERATOR CORRESPONDENCE
FOR NONLOCAL OPERATORS

4.1 Introduction

Conformal Field Theory (CFT) is a fundamental framework in theoretical physics.
It plays a crucial role in various distinct areas of theoretical physics. In statistical
mechanics, it characterises the universality classes of different systems at criticality
[251, 252]. Additionally, it describes the long-range behaviour of many quantum field
theories (QFTs), and the short-range behaviour of ultraviolet-complete (UV-complete)
QFTs via the renormalisation group [6-8]. Finally, it serves as a gateway to quantum
gravity, most notably, through string theory and the AdS/CFT correspondence [253-
255]. These points alone highlight the fundamental importance of a deep, non-
perturbative understanding of CFT. In flat space a lot is known. In any given CFT, the
complete set of scaling dimensions of local operators and operator product expansion
(OPE) coefficients suffices to reconstruct arbitrary correlation functions, effectively
solving the theory. Significant progress has been achieved using traditional methods
like conformal perturbation theory, as well as non-perturbative approaches such as
the conformal bootstrap [256-258].

However, this emphasis on local objects is not well suited for some physical situations
of interest. For instance, condensed matter theory has seen renewed interest in
nonlocal excitations, such as anyons [259] and fractons [118]. In quantum field theory,
the question of quark confinement is connected to the physics of line operators [15,
260-263]. Finally, quantum gravity is inherently linked with nonlocal operators, based
on the simple argument that diffeomorphism invariance forbids local operators." The
physics of nonlocal operators is most effectively probed by placing the corresponding
physical system on a space with interesting topology.

Topological local operators, corresponding to (d — 1)-form symmetries, are an exception. However,
arguments about the absence of (higher-form) global symmetries suggest their nonexistence [208].
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Reconciling this with the theme of the first paragraph, necessitates an understanding
of conformal field theory on topologically non-trivial spacetimes. This understanding
is effectively complete for two-dimensional CFTs, where Moore and Seiberg [54]
showed that in the rational case, modular covariance of torus one-point functions
ensures that the CFT can be defined and solved on arbitrary Riemann surfaces. Central
to this are (i) the geometry of Riemann surfaces [264], and (ii) the state-operator
correspondence. The idea can be summarised as follows. Any Riemann surface can
be viewed as a collection of discs and pair-of-pants geometries sewn together along
circles. Alternatively, one can insert a resolution of the identity operator along a
given circle, expressed in terms of states on that circle. Using the state-operator
correspondence these states are mapped to local operators at the centre of a disc
bounding that circle. Thus, the computation of any arbitrary correlation function is
reduced to the two- and three-point functions on the sphere and one-point functions
on the torus.

In higher dimensions, significantly less is known? While the main ideas are the
same, technical difficulties arise. More explicitly, locality suggests that QFT observ-
ables should be reconstructable from basic building blocks via cutting and sewing.
However, this process is much more involved than its two-dimensional counterpart.
Therefore, while local operators still completely determine the spectrum of states
on a spatial (d — 1)-sphere, this is insufficient for reconstructing the entire CFT. A
natural question to ask is, then: how feasible is a state-operator correspondence that
relates nonlocal operators to states on other spatial manifolds? Belin, de Boer, and
Kruthoff [269] attempt to answer this question for the three-torus and argue that
such a correspondence is not straightforward for a generic CFT.

What is the situation when additional symmetries are available? Recent years have
seen an incredible surge of interest in the study of symmetries in quantum field
theory. Starting with higher-form symmetries [15], and generalising onwards to
higher-group, non-invertible symmetries and other generalisations,® these notions of
symmetry provide powerful organising principles for quantum field theories. Thus,
one may reformulate the question as follows: Is there a state-operator correspond-
ence for nonlocal operators, in higher-dimensional CFTs with generalised global
symmetries? In this chapter, we provide an affirmative answer to this question.

More precisely we consider unitary CFTs in d = 2p + 2 dimensions with continuous
p-form symmetries (invertible or non-invertible). It turns out that this is a very
powerful combination. The photonisation argument [37] relates them to circle
or orbifold branches of theories of free p-forms. This further implies an infinite
collection of codimension-one topological operators, labelled by chiral and anti-

2See, however, [265-272] for some of what is known.
3See, e.g. [67] for a more complete list of references
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chiral p-forms. This is in complete analogy with two-dimensional CFTs, where
holomorphic conserved currents can be dressed with arbitrary holomorphic functions,
remaining conserved. This analogy goes further: the spectrum of states of such
theories is organised by current algebras, generalising the Kac-Moody algebras
of two-dimensional CFTs. We focus on the four-dimensional case, enjoying one-
form symmetries, and realised by free Maxwell theory. We explicitly construct the
representation theory of these algebras on generic closed spatial slices, ¥. A major
result is the complete characterisation of the space of states on a generic spatial
topology and geometry. This Hilbert space consists of Kac-Moody descendants built
on top of primary states, charged under the one-form symmetries. As a non-trivial
check, the extended character of those representations matches exactly the partition
function of Maxwell theory on Sé x X, as obtained via path integral methods, and is
given by strikingly simple formulas that are very reminiscent of two-dimensional
rational CFTs:

Ox(g.t) — B

nz(g)? 1)

ZMaxwell [S[lj x X, t] =

In the above, ®x/(g), defined in (4.4.47), generalises the Siegel-Narain Theta function
and nx(g), defined in (4.4.45), generalises the Dedekind eta function, while t is the
complexified coupling constant of Maxwell theory! On ¥ = S? x S!, we match this
spectrum to states prepared by path integrals with insertions of line operators. This
has two important consequences. Firstly, a classification of line operators in four-
dimensional CFTs with global symmetries. There are primary operators, carrying
charge under the one-form symmetry and preparing the highest-weight states of
our current algebra. In the case of Maxwell theory these operators are given by
Wilson-"t Hooft lines. Similarly to local operators, these primary line operators
have a definite scaling weight, as defined in [273] and discussed in [274]. Then,
there are descendant line operators, obtained by dressing the Wilson-"t Hooft lines
with photon modes. Relatedly, the second consequence, and our main result is a
state-operator correspondence stating the following:

In four-dimensional CFTs with a continuous one-form symmetry,
states on S? x S! are in one-to-one correspondence with line operators on R3 x S1.

Interestingly, we find that the lack of Weyl transformation from R x S! to the
Lorentzian cylinder, R x §? x S!, coupled with the two polarisations of the photon,
implies that radial evolution is equivalent to a squeezing transformation of the photon
states. This implies, in turn, that the vacuum state is not prepared by a path integral
with no operator insertions, but rather, by a path integral with insertions of photon
modes of all frequencies.

4See also [2] for a related story in generic dimensions.
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4. State-operator correspondence for nonlocal operators

An organising summary is as follows. In section 4.2 we explain the photonisation
argument, and its implications. We show that invertible continuous p-form sym-
metries in (2p + 2)-dimensional CFTs lead to a higher-dimensional generalisation
of Kac-Moody algebras. We supplement this with a discussion on non-invertible
continuous p-form symmetry, where we construct a non-invertible generalisation of
these current algebras. In section 4.3 we focus on the case (p = 0) of two-dimensional
CFTs, where we review the well-known state-operator correspondence for the free
compact scalar, in terms of its organising Kac-Moody algebra. We then jump, in
section 4.4, to the case of p = | and free Maxwell theory, detailing the path integral
on generic closed manfiolds. We then quantise the theory using our current algebras,
matching it to the path integral expressions. This allows us to reach section 4.5,
where we set up our state-operator correspondence on S?2 x S!, by performing a
path integral on B3 x S! with line operator insertions. To that end, we first classify
the line operators of the theory in terms of our current algebra. We then perform
the radial evolution on B® x S!, and explain how it leads to squeezing the photon
states, to finally land directly onto the nonlocal state-operator correspondence. We
finish, in section 4.6 with a discussion on our results and interesting future direc-
tions. In appendices C.1-C.3 we collect details regarding the spectral analysis of the
Hodge Laplacian, the current algebra on a generic manifold, and the radial evolution,
respectively.

4.2 Photonisation and higher-dimensional current algebras

In this section we explore the photonisation argument of [37] and its various incarn-
ations. We first show that a unitary conformal field theory in 2p + 2 dimensions
with a continuous p-form symmetry (when p = 0, we restrict to abelian 0-form
symmetries) has a realisation as a theory of free p-forms. We go on to show that
this gives rise to a current algebra, akin to the two-dimensional Kac-Moody algeb-
ras. We comment on non-abelian versions of the arguments for the p = 0 case.
Finally, we derive non-invertible current algebras, for theories enjoying continuous
non-invertible symmetries and comment on their applications.

4.2.1 Photonisation

Our starting point is a unitary conformal field theory in d = 2p + 2 dimensions, with
a continuous, invertible p-form symmetry. We focus on the case of a single U(1)!”}
symmetry’ Higher-form symmetries are abelian, so for p > 1, this is all we can
have® For p = 0 we can also have non-abelian symmetries; we comment on those
in subsection 4.2.3. The continuous symmetry induces a conserved (p + 1)-form

SWe denote a p-form symmetry group as utrl.
®We can also have a product of decoupled U( DPs; the generalisation is trivial.
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4.2. Photonisation and higher-dimensional current algebras

current, Jip41] i= Jpupopuyy g (¥) AXHPU Ao A dx#rtL ) satisfying
d* Jip41) = 0. (4.2.1)

This current leads to a conserved charge, supported on a codimension-(p + 1)
manifold
O[Zd-p-1] 1=/ *J[p+1]s (4.2.2)

Za—p—1

or equivalently a codimension-(p + 1) topological operator

Us,_,_, (@) = exp (ia/ *J[p+1]). (4.2.3)
Za—p—1

Since this is a compact U(1) symmetry — as opposed to non-compact U(1), i.e. R —,
the parameter « is circle-valued: @ ~ o + 2.

Let us now see the implications of conformality, reviewing the argument of [37]. We
start by discussing the theory on Euclidean flat space, R¢, with metric g, = 6,.,.
The (p + 1)-form currents are primary operators of scaling dimension p + 1, so their
two-point function’ is completely fixed by conformal symmetry, up to a constant, k
[275]:

{(ip+11(x1) Jp1y(x2)) = G(x12), (4.2.4)

d
[lx12]l

where x15 := x; — x2 and G(x;2) is a uniquely determined tensor structure:

p+1 oe o¢
GHI Rp+ 1V1=Vp 41 ()C12) —sM .. '8Mp+] sV .. -(SVP-H 0000 2(X12) (XIZ)
[o1 pp+1]"[o1 op+il ||x12||2

£=1
(4.2.5)
where g, is the flat Euclidean metric and g its inverse. From here on, it is easy to
show that

(dJip+11(x1) Jpp+1(x2)) =0, (4.2.6)
which immediately implies
(d.][p_H](Xl) dJ[p+1](X2)) =0. (4.2.7)

Using the standard state-operator correspondence, this represents the norm of a
state on Hge—1, created by the local operator dJ[,41] = 0. Since this is a unitary
CFT, this norm can be zero only if the operator dJ[,1j is zero itself. Said differently,

"Here and in the following we write the correlation functions of products of currents in differential
form languange to suppress indices. This is not a wedge product of forms, it should rather be seen as a
form-valued form, or in other words a section of A®* T*R4 @ A® T*R<.
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4. State-operator correspondence for nonlocal operators

conformal invariance and unitarity implies that there is a dual conserved current,
*J[p+1], ie.

An equivalent, implicit argument, follows the reasoning of [276]. All the states in
a conformal field theory are organised in representations of the Cartan subalgebra
of the Euclidean conformal algebra, so(d + 1, 1). This results in each state, |0) €
Hga—1, being labelled by its scaling dimension, Ag, and a set of highest weights,
{hl,hz, .. ’hLd/ZJ}@’ of the s0(d) irreducible representation. Let us focus on the
primary states; the descendants can be obtained by acting with the ladder operators
of the conformal algebra. Unitarity, i.e. (9]|@) > 0 for all primary states O, imposes
that Ag > f ({h,-}g), for some function f, that depends on the dimension, d, and
the so(d) representation [277].

Now, consider the state |J[,41]), corresponding to a conserved current. Its scaling
dimension is Ay = d — p — 1. Moreover, the conservation equation d x Jj,+1] = 0,
implies that this state belongs in a short conformal multiplet, since its first descendant
is null. As such, the above unitarity bound, Ay > f({h;};), must be saturated
on this state. In dimensions d = 2p + 2, the conserved currents lie in reducible
representations of so(d): they can be decomposed into self-dual and anti-self-dual
currents, J[§+1] i= 1(Jip41) £i77! % Jip41)), each of which is in an irreducible
representation. To saturate the unitarity bound for |J[,+1]), the unitarity bound
for both |J[if +1)) must be saturated. Therefore both |J[§ +1) lie in short multiplets,
which in turn implies that d x J[ipﬂ] = 0, or in other words, one has dJj,41] = 0, on
top of d x Jjp4+1] = 0.

To summarise, what both of the above arguments show is that a unitary (2p + 2)-
dimensional CFT with a continuous p-form symmetry, must also have a dual p-form
symmetry. In other words, it has:

d*Jip+11=0 and dJp41=0. (4.2.9)

This is nothing but the equations of motion of a p-form abelian gauge field, af,}, upon
identifying Jj,41] with the field strength, f;,+1}, of aj,). In other words, unitary
(2p + 1)-dimensional CFTs with a U(1)/”! p-form symmetry can always be realised
by p-form Maxwell theories. In the words of [37] we say that the CFT photonises.

4.2.2 Abelian current CFTs

We will now show that the symmetry is actually enhanced even more, into a cur-
rent algebra — a higher-dimensional version of the two-dimensional Kac-Moody
algebras. This algebra will turn out to be spectrum-generating (up to decoupled
neutral dressing) and it will eventually be key to reaching the main result of this
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4.2. Photonisation and higher-dimensional current algebras

chapter in section 4.5. We will call CFTs with such a current algebra current CFTs.
We will mainly analyse abelian current CFTs, but we will comment on non-abelian
and non-invertible generalisations in subsections 4.2.3 and 4.2.4.

We go temporarily to a more general setup and relax conformality. Consider a
(d = 2p + 2)-dimensional Euclidean quantum field theory, with two, dual, U(l)[” ]
p-form symmetries, i.e. two conserved currents J[,11], *J [p+1]:

d* Jip+11 =0 and dJpp41=0. (4.2.10)

The space of (p + 1)-forms, QP+ (X), admits a Z, grading, Q71 (X) = erl X)®
QP*T1(X), graded by the Hodge-star operator, or more precisely, by the operator
i!=?x. Namely, there exist projectors®

P, = 1(1£i'77 %), (4.2.11)

1
2
that allow us to write any (p + 1)-form, w[,41], as Pyo[p11] + P_w[p41], Where
P+ w[p41] satisfy

il™7 % Piopt1] = £Prop41]- (4.2.12)

We will call equation (4.2.12), self-duality equation and will refer to P+w,11] as
(anti-)self-dual forms, in all dimensions, even though, technically, they are (anti-)self-
dual only when p is odd, or equivalently in dimensions d = 4k. Ind = 4k + 2,
corresponding to even p, they are just the eigenforms of the operator ix.

An important property of the projectors (4.2.11) is that the can pass through wedge
products of (p + 1)-forms:
(P0p111) A Mp+11 = Opt1) A (Penpr1)- (4.2.13)

To see that, it suffices to note that xw(,41] A N[p+1] is a (2p + 2)-form and hence is
proportional to the volume form. The simultaneous conservation, (4.2.10), of Jj,41]
and *J[,41] is equivalent to the conservation of

VARELD I/ (4.2.14)

ie.

dJiy 1y =0. (4.2.15)

Once we have these two conserved currents, we can construct an infinite number of
conserved charges. In particular, note that the family of currents

+ +
9E =« (J[pﬂ] A Af';]> (4.2.16)

8Recall that we are in Euclidean signature; in Lorentzian signature there would be an extra i.
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4. State-operator correspondence for nonlocal operators

is conserved for any (anti)chiral p-form, i.e. for any A?Cp] such that
PidA[, =0. (4.2.17)
These can be thought of as p-form analogues of (anti)holomorphic functions.’ Indeed,
+ +
dx gy = Jipy AL = Jpry AP2dA], = 0. (4.2.18)

Integrating on a codimension-one closed manifold, £;_; = 25,41, gives us two
families of conserved charges:

Qi[zd—l] = L J[:;J’_l] A AE';], (4219)
d—1
or equivalently topological operators,
Us, (M) = exp(i [E Jis iy A Af';]). (4.2.20)
d—1

Here we mention two important points. First, note that these are zero-form symmet-
ries, regardless of p. As such, they can a priori, have non-trivial commutators. They
stem, however from an abelian symmetry, therefore their commutation relations, if
non-trivial, indicate a central extension. We will indeed find such a central extention
in the next paragraphs. Second, note that there is a gauge redundancy in defining the
conserved charges. Namely, we must identify A?;] ~ AE’;] + A, where d)LE';] =0,

[p?’
since the shift by a closed p-form leaves the charges invariant.

Now we reinstate conformality. In subsection 4.2.1 we saw that a CFT with these two
conserved currents obeys the dynamics of p-form Maxwell theory. We can therefore,
locally, realise the currents as the curvature of a p-form gauge field Jj,41] = dag,,
whose equation of motion is a free wave equation dfda(,; = 0. We then recognise
arp) and xJi,4 ], restricted to a codimension-one slice, as conjugate phase-space
variables, giving rise to a (pre-)symplectic form:

Qs, = /Z 3p A~ dq, (4.2.21)
d—1

identifying

and p =2k (*J[ipm)'z : (4.2.22)

d—1

q = 4a[p]
Za—1

In the above, the factor 2k is conventional, and is related to the strength of the
interaction, i.e. the electric charge of the p-form Maxwell theory realising the CFT.
In fact, we should identify as the canonical position, q, a conjugacy class, or a specific

9Equation (4.2.17) is a local definition, like the defining equations of (anti)holomorphic functions.
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representative thereof, of the equivalence relation af,) ~ ajp) + Arp), for App) flat.
This is what takes care of the degeneracy of the symplectic form, corresponding to
gauge transformations. We will proceed with (4.2.22), keeping this issue in mind.

We can then compute the commutation relations between the charges, simply by
plugging the vector fields they generate on the phase space in the definition of the
symplectic form. First we compute

BOX _ 147 BOX _ i £7
W = —5 dA[p] and 8_ = +i pk[\[p] (4223)
With this, we immediately get the algebra:
a o’ i'"7k Dt — —&
[QAPQAJ = — (6 + (1) a)/. ATO A A7, (4.2.24)
Za—1 Za—1

where o and o' are signs, 0,0" € {4+, —}. Here and in the following, we drop the
subscript [p] indicating the form-degree of A to declutter the notation. This algebra
is a higher-dimensional generalistion of the familiar two-dimensional Kac-Moody
algebra, and it will be one of the protagonists of the story that follows. To better
illustrate (4.2.24) let us elaborate further on two specific values of p.

p=0.

This case corresponds to the case of a two-dimensinal CFT, with a (zero-form) U(1)
symmetry. There, AT are just scalar functions and the above commutators become,

[0%,. 0%, lg, = j:ik/ AT dAT

Zi (4.2.25)
0%, 0. ], =0

This is just the familiar (1) x (1) Kac—-Moody algebra. Tracing back the logical
tower that led us here, and running the arguments again, in language familiar from
two-dimensional CFTs, we recover the following familiar statement. A conserved
current, in a unitary two-dimensional CFT, can always be split into a holomorphic
and an antiholomorphic piece, which are separately conserved. These can, in turn,
be dressed with arbitrary holomorphic and antiholomorphic functions to give rise to
a holomorphic and an antiholomorphic current algebra. Quantising on the theory on
a spatial circle and expanding the currents in Fourier modes, gives rise to the usual
abelian affine Kac-Moody algebra. Indeed, taking ¥; to be S! and expanding in
Fourier modes, e*1"?, gives the familiar form of the (1) x T(1) Kac-Moody algebra:

[JE. JE] =knbntrmo.
[/F.J;]=0. nmeZ

n > “m

(4.2.26)
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Finally, recall that all these CFTs have a free-field realisation as a free compact scalar,
¢ ~ ¢ + 27 R. The level, k, of the algebra is related to the radius of the scalar.

p=1

This is the case of a four-dimensional CFT with two, dual, one-form symmetries.
As we have argued before, this is realised by regular Maxwell theory. Here AF
are one-forms, and the charges are defined on a three-dimensional manifold. The
commutation relations become, in this case,

[QX]’ QXZ]E3 =0= [QXV QX2]23

0%, 03,], =k [ ATaang

(4.2.27)

We recognise again the structure of a 1i(1) x w(1) current algebra, with the important
difference that here the central extension mixes the two factors, instead of acting
on each of them separately. Observing the pattern set by (4.2.24) it is clear that in
4n + 2 dimensions the chiral and antichiral components will go their own, centrally
extended, way separately, whereas in 4n dimesions, they mix. This has to do with
the existence of real self- and anti-self-dual forms, as noted earlier. Let us note that,
just like the two-dimensional case, we can expand the currents in “modes,” to obtain
an algebra of the individual modes. We will do so in subsection 4.4.3. Moreover, the
level, k, of the algebra is now related to the coupling of the Maxwell theory that
realises the CFT, i.e. the electric charge. Finally, in this case, the algebra (4.2.27) was
constructed in [37], where it was also arrived at through a twistor formalism, without
appealing to the phase space structure of Maxwell theory.

Going back to the general case, let us mention yet another presentation of the current
algebra, (4.2.27), that will be useful to obtain a non-invertible version thereof in
subsection 4.2.4. This presentation is in terms of the topological operators, that act
on the Hilbert space. A generic topological operator in a current CFT takes the form

U(AT. A7) = e><p(i/)E ANy +ifE I AA;), (4.2.28)
d—1

d—1 -

where we supperss the (topological) dependence on X;_;. The fusion of two such
operators is

UAT.AT) @ U(A5.AT) = £ (AT. AT AT AT) U(AT + A5 AT +AT).
(4.2.29)
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where
Ptk
2

LEO(AT AT AT AT) = exp( / {Speven (AT AdAS + AF AdAT)
Zg-1

— 8podd (AT AAAT + AT A dAT)} ) (4.2.30)

This is a simple abelian fusion rule, with a central extension, proportional to k,
specified by the function fp(k) (AT. AT, A5, A]). As before, we will illustrate (4.2.29)
in the cases p = 0 and p = 1.

At p = 0, there is a central term when fusing topological operators with the same
chirality:

U(A7.0) ® U(A5.0) = exp(%/)E AT A dA;) U(AT +A3.0),  (4.2.31)
1

and similarly for A and AJ. Operators with opposite chirality do not see each
other:
U(AT.0)®U(0,Af) = U(AT.AT), (4.2.32)

and similarly for A2+ and A3. This is, of course, a reflection of the fact we mentioned
above, that in two dimensional CFTs the holomorphic and antiholomorphic sectors
do not see each other in the central extension.

Coming to p = 1, we see the central extension in the fusion of operators of opposite
chirality:

U(AT.0)®U(0.A]) = exp(g/E AT A dA:)U(A;, A7), (4.2.33)
3

while those with the same chirality have a simple abelian fusion:
U(AT.0) @ U(A3.0) = U(AT + A3,0), (4.2.34)
and similar equations involving the rest of the operators.

Let us also comment on the relation of (4.2.24), with other appearances of higher-
dimensional generalisations of Kac-Moody algebras in the literature. As explained
above, (4.2.24) is the natural generalisation of the four-dimensional Kac-Moody
algebra of [37]. Moreover, it complements (and coincides with, in some cases) the
current algebras that organise the edge-modes of topological field theories [2]. How-
ever, it is not the same as Mickelsson-Faddeev algebra [278-280], and by extension
also not the same as the higher-dimensional loop algebras of [281]. Moreover it is
also different from the higher Kac-Moody algebras of [282, 283].

111



4. State-operator correspondence for nonlocal operators

4.2.3 Non-abelian current CFTs

We only comment very briefly on non-abelian current CFTs, as we have nothing to
add besides what is already well-known. This case can only occur at p = 0, since
(p = 1)-form symmetries are abelian. So, consider a two-dimensional CFT with
a conserved one-form current Jpjj, valued in the Lie algebra, g, of a semi-simple
Lie group G. The argument of subsection 4.2.1 goes through, and shows that «J 3
must also be conserved. The consequence is that this time instead of photonisation,
it corresponds to non-abelian bosonisation [284]. Namely, the conservation of the
currents corresponds to the equations of motion of a Wess—Zumino-Witten (WZW)
model. We can locally write the current Jj;j as g~ 'dg, for g a G-valued scalar and
the conservation of the current is

d«x(g7'dg) =0. (4.2.35)

From here on, it is a standard exercise in two-dimensional CFT (see e.g. [285]) to
derive the associated current algebra, which will naturally be the the affine Kac-
Moody algebra gi ® Q.

4.2.4 Non-invertible current CFTs

A different option is to consider current CFTs whose underlying symmetry is non-
invertible. The simplest way to obtain a continuous non-invertible symmetry is
to begin with the setup of subsection 4.2.1 and impose the equivalence relation
Jip+1] ~ —J [p+1]- From the point of view of the photonised theory, this corresponds
to gauging the Z, charge-conjugation symmetry A[,] —— —A[p]. This corresponds to
the orbifold branch of p-form Maxwell theory, or equivalently, an O(2) = U(1) x Z,
p-form gauge theory. Variants of this theory (mostly for p = 0 and p = 1), and its
(non-invertible) symmetries have been subject of intense study in recent years [63,
65, 76, 78-80, 82].

Let us first review the non-invertible symmetries of O(2) p-form gauge theory. It is
clear that the operator

Ue) = exp(ia/ *J[p+1])’ (4.2.36)
Za—p—1

albeit still topological, is no longer gauge-invariant, for generic values of . Note that
« is no longer circle-valued, but rather it is valued in the segment o ~ —a ~ o + 2.
In what follows, it will be implictly assumed that we take a representative of the
equivalence classes defined by the above equivalence relations in [0, z]. The operator
U(0) = 14—p_1, is the identity (d — p — 1)-dimensional operator and is, naturally,
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gauge-invariant. Moreover,
U(wr) = exp inf *Jp+1] | = (—Dg—p—1 (4.2.37)
Za—p-1

is also gauge-invariant and gnerates a Z[zp ] p-form symmetry. For the rest we can
construct topological and gauge-invariant operators by taking a direct sum of the
original topological operators. Explicitly, the operators

D(a) := U(e) ® U(er) ", (4.2.38)

for @ € (0, 7), pass all the tests of being a symmetry of the theory.!” What was
sacrificed, is obviously invertibility. This is reflected on the fusion rules:

D(a) ® D(B) = D(e + B) @ D(a — B), (4.2.39)

fora # B # n — B € (0, ). Moreover, these operators have quantum dimension
two, namely, (D(a))gpr+1 = 2, in contrast to the invertible topological operators,
which have quantum dimension one.

Furthermore, as was explained in [80], since charge-conjugation is a zero-form
symmetry, after gauging there is a Pontryagin-dual (or quantum) Z[ZZP ) p-form
symmetry (d — 0 — 2 = 2p), generated by the Z, charge-conjugation Wilson lines:
1; and (—1);. While their fusion rules are simply Z[22p I fusion rules:

D1 ® (1)1 =14, (4.2.40)

they can also dress the (d — p — 1)-dimensional operators we discussed above, and
appear in their fusion rules. The operator (—1); is known as a “determinant line.”

Therefore, the full set of codimension-(p — 1) topological operators in O(2) p-form

gauge theory is

{lampts (“Dampor 10, DS D@, D@

a € (0, 7{)},
(4.2.41)

where the superscript (—1); indicates dressing with the determinant line. The rest

of the fusion rules follow by reconciling (4.2.39) with the allowed dressings [76, 80].

19Provided that there are states on which they act non-trivially. In this case there are: e.g. gauge
invariant sums of the original U(1) Wilson operators [80].
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4. State-operator correspondence for nonlocal operators

These are:
(_l)d—p—l ® (_l)d—p—l = ld—p—lv

D(@) ® (~1)4—p1 = D(r —a).

— T

D(e) ® D(@) = 14—p—1 @ 11(17_11)11_1 ® D), o # 5

— T

D(e) ® D(w ~ ) = (~Da—p-1 ® (-1 )L, & DQu 7). o # S

D(/2) ® D(n/2) = 14—pt ® 1500 & (~Da—pey & (DL,

(4.2.42)
Now, seeing this from the lens of conformal field theory, we can easily repeat the
argument of subsection 4.2.2. If the theory before gauging was a CFT, we have that
dJ[ﬂ’f +17 = 0. After gauging, the operators

DE(a) = U (@) ® UX(a) ', with (4.2.43)

Ut(a):= exp(ia/E Ji[pH]), a € (0,7) (4.2.44)
d—p—1

are topological operators of the O(2) p-form gauge theory. Their fusion rules follow
from (4.2.39) and (4.2.42). Moreover, there are non-invertible analogues of (4.2.20)
and (4.2.28). These are

D(AT.AY) == U(AT, AY) @ U(AT, AD) 7, (4.2.45)

with Afz (anti-)chiral p-forms, taking values in the open interval (0, ). Their fusion
rules define a non-invertible current algebra:

D(AT.AF) ® D(A5.AT) = £, D(AT + A5. A + AF) w26
—1 4N
® (£9)  D(AT—A3,Af - A)),

where fp(k) = p(k) (Al_, A;‘, A3, Aj{), given by (4.2.30). Note that this fusion rule
is valid on generic chiral forms, A, At special points, i.e. when the A coincide
at a point, or differ by x, (4.2.46) should be understood with the operators dressed
appropriately, as in (4.2.42). Let us now illustrate and interpret this non-invertible
current algebra in the cases p = 0and p = 1.

p=0.

At p = 0 we find ourselves on the orbifold branch of the two-dimensional compact bo-
son CFT. The fusion ring (4.2.46) splits, again, into holomorphic and antiholomorphic
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4.2. Photonisation and higher-dimensional current algebras

and we have, for example:

D(AT.0) ® D(A5,0) = exp(%/ AT A dA;)D(Al— + A3.0)

3

ik
@ exp(—%/; AT A dA;)D(Al_ —A3.0), (4247
1

and similarly for A}, AJ. In complete analogy with the circle branch, where the
u(1) Kac-Moody algebra contains all the information to construct the full spectrum
of the theory, here too, (4.2.47) is, in principle, sufficient to reconstruct the full
orbifold branch.'! To do so, one has to study the representation theory of (4.2.47).
The representation theory of non-invertible symmetries was recently studied in
[287-291]. In order to study the representation theory of our non-invertible current
algebra it is necessary to extend these results to continuous and centrally extended
non-invertible symmetries. We will not attempt to do that here, but we will return to
it in future work.

p=1

In this case we land on the orbifold branch of four-dimensional Maxwell theory,
i.e. O(2) gauge theory. The central extension appears when one fuses chiral with
anti-chiral operators:

D(AT.0)® D(0,AF) = eXp(li{/

3

AT AdAI)D(A;,AI)
k
® exp(—z /;: AT A dAI)D(Al_, —AI), (4.2.48)
3

and similarly for A with A3. The chiral-chiral and anti-chiral-anti-chiral channels
do not see the central extension:

D(A7.0) ® D(A3.0) = D(AT + A3.0) @ D(A] — A3.0), (4.2.49)

and similarly for A;‘ and Aj{. We will see later, in section 4.5, that the current
algebra (4.2.24) is is spectrum-generating, i.e. we can solve the underlying theory by
considering its representations (up to contributions from a decoupled neutral sector).
In analogy with the comments on the p = 0 case, (4.2.48) and (4.2.49), contains in
principle all the information to solve O(2) gauge theory. Again, we will come back
to doing so in the future.

UTogether with its special points, coming from (4.2.42). The special points will be important to obtain
the twisted sectors (cf. also [286]).
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4. State-operator correspondence for nonlocal operators

4.3 Two-dimensional CFTs and the local state-operator corres-
pondence

In this section we will review the usual state-operator correspondence for local
operators. We will therefore consider a two-dimensional CFT with a zero-form U(1)
symmetry. This corresponds to the case p = 0 in the notation of section 4.2 and the
corresponding Kac-Moody algebra can be represented as a compact free scalar [292-
295]. We will therefore be rederiving the standard state-operator correspondence for
the compact free scalar, in order to build some muscle towards section 4.5. Along the
way we will remind the reader of some standard facts in two-dimensional conformal
field theories, in order to simplify and compare with the discussion of the four-
dimensional case, in section 4.5.

4.3.1 Partition function and the spectrum

The view from the path integral

Consider a compact free boson, ¢ ~ ¢ + 27, on a closed Riemann surface, X. Let us
first review the path integral of the compact scalar. Its action reads

S(g] = %/de’ AxfO, (4.3.1)

where % := fh(Zrm + d¢ is the curvature of the free scalar, with th;rm € Harm! (X).
In this notation, ¢ is a well-defined, single-valued function (a zero-form), subject to
the compactness condition, and all the winding has been passed on to the harmonic

piece of its curvature, fhﬁrm. The coupling constant, g, is related to the radius of the

compact scalar as R? = ‘;—’2’, as can be easily seen by rescaling ¢ to & = R ¢, so that

® ~ ® + 27R!? The harmonic form, th;rm can always be chosen uniquely to be
orthogonal to d¢, so the action splits into a harmonic piece and an oscillator piece:

1 5 " 1
Sl¢] = pres /X Jharm A *frarm T 22 fX dp A xdg. (4.3.2)
Let us evaluate the partition function of the compact scalar, i.e. the path integral

Z1X] = [ Dfg 0P W = Zuum[X1Zou X (433)

We begin by analysing the harmonic piece. In our notation, integrality of the winding
of the compact scalar is expressed as

/ A VA (4.3.4)
1

12We use conventions in which the action for ® is normalised as S[®] = g [ d?z 9P ®.
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4.3. Two-dimensional CFTs and the local state-operator correspondence

by (X)
on any one-cycle X; of X. We can choose a convenient basis, {ri(l)} of harmonic

i=1
by (X)
i=1

/ oV = 5. (4.3.5)
Ciay

Such a basis will be called hereafter the topological basis. In the above, by (X) :=
dim H' (X) is the first Betti number of X. In this basis we can expand

one-forms of X such that, given a basis {Ci(1)} of one-cycles, it obeys

£2 =2mnic),  Aez, (4.3.6)

where a sum over the repeated index, i, from 1 to by (X) is implied. The harmonic
piece of the action (4.3.2) can therefore be written

Sharm[@] = %(%)zni[(}(”]“nl‘, (4.3.7)

1

where

[G(l)]” ::/ A (4.3.8)
X

ij
is the Gram matrix of the above topological basis. The harmonic piece of the path
integral then reads

2
ZharmX] = > exp(—%(z—ﬂ)n-G“)-n), (4.3.9)

nezb1(X) &

where we combined »' into a b; (X)-dimensional vector, n. The oscillator contribution
is a straightforward Gaussian integral, yielding

volp det (%G(O)> !

ZoscX = =
X Jdet’Ag det’Ag

, (4.3.10)

where G(© is defined similarly as GV, but with respect to the zero-form topological
basis and Ag = dd is the Laplacian acting on zero-forms. In total, the full partition
function reads

det (2G©)

1
2
1(2m\?
_\& 7 Y uiad .qa .
det/ By E exp( 2( g) n-G n) (4.3.11)

nezb1(X)

Z[X] =

In the next paragraph we will take a canonical approach and we will view the partition
function as a thermal trace. In order to compare, let us write the answer for the torus
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4. State-operator correspondence for nonlocal operators

partition function from the path integral. To that end, we now take X to be a torus
X =T?:=C/(Z ® 1 Z), with 1 in the upper-half plane, T € H. Using the standard
homology basis of one-cycles of the torus in terms of the 4A- and B-cycles, we have

that
1 1 Ret
GW = —(Re . Mz). (4.3.12)

The harmonic zero-forms are simply the constant functions, so G(©) = Im <. Finally,
on the torus it is straightforward to calculate, using zeta-function regularisation that

det’Ag = (Im1)2|n(v)|%, (4.3.13)

where 1 (1) is the Dedekind eta function. Altogether the torus partition function

reads
21 2 [n 4+ tm|
Z[T?] = | 2Imr|n(r)|2nm§ez ( ( ) Tme ) (4.3.14)

Finally, we can use the Poisson summation formula on the n sum to obtain

O(q.8)
[T?] In(q)fz (4.3.15)
where 5 ,
0¢.g) = Y. gFErE) g3 (E-5) (4.3.16)
n,mez

is the Siegel-Narain theta function, with ¢ := e?™'* being the nome, g its complex
conjugate, and we wrote the eta function as a function of the nome, instead of the
complex structure.

The view from the algebra

Let us now match (4.3.15), starting from the Kac-Moody algebra, (4.2.26) and con-
sidering its representations. For simplicity we will discuss the quantisation on a
rectangular torus, with complex structure, T = if. We will reinstate the generic
complex structure at the end of the section. The Hamiltonian of the free scalar, on
the spatial S!, takes the Sugawara form

H=L{+Ef+Ly+E,, (4.3.17)
with
1

—, 4.3.18
24 ( )

1 1
+ £ g+ +
Ly =1 Y JRLJF and Ey = SU=D =—
n>0
where {(s) is the Riemann zeta function, regularising the zero-point energy, and

k, the Kac—Moody level, is &-. With this Hamiltonian, the non-zero-modes of the

118



4.3. Two-dimensional CFTs and the local state-operator correspondence

Kac-Moody algebra, Jni?éO are just ladder operators, as can be seen by computing
their commutation relations with the Hamiltonian. The negative modes are creation
operators, while the positive modes annihilation operators:

[H.J%]= nJ%  n>o0, (4.3.19)
[H.JF]=-nJFf n>o0. (4.3.20)

The zero-modes, Joi, commute among themselves and with the Hamiltonian, and
they label the various fixed momenutm and winding sectors. Their eigenstates,

Lt i) =%t 00). (4.3.21)
are primary states, or in other words, the ground state on each sector:
JE|jt. i) =0, n > 0. (4.3.22)

To obtain the charges, j *, we simply have to invoke momentum and winding flux
quantisation on the spatial S!, i.e.

f® c2xZ and £ e2nZ, (4.3.23)
st s
where f¢ is the widning, or magnetic dual of ¢, defined as f¢ = T ox f915 With

this, we immediately get, with a convenient overall normalisation of the current:

1
/ /81 (
The ground states are, then, labelled by two integers, n and m, and we will denote
them as

2nm £ gzn), n,méezZ. (4.3.24)

|jT 7)) =t n.m). (4.3.25)

Over each of the two families of ground states sits a Verma module, 'V,jt,m, generated
by acting with the creation operators J* . To each Verma module corresponds a
character,

Chvni,m lq] := trys q. (4.3.26)

Having the explicit form of the Hamiltonian, and the algebra in our disposal, it is
trivial task to compute the characters. They read:

ht

i . (4.3.27)

ch = h ~2
vit 4] n(q)

||:]8

13The factor of i is so that the action, written in the dual frame is positive semidefinite in Euclidean
signature.
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4. State-operator correspondence for nonlocal operators

where we recognise the form of the Dedekind eta function, upon performing the
geometric sum. In the above, hE = ( j jE)2, is the eigenvalue of L(f acting on the
ground states.

On each sector we have left- and right-moving states, i.e. a generic state on top of
In,m) lives in V,F ® V.-, . The full Hilbert space of the theory is, then, a direct sum
over all possible sectors:

Her = B Vi ® Vi (4.3.28)
n,mez

A generic state of this Hilbert space is

}n,m; {Nn+, Ny o)) = (Jj'n)Nn+ (/5 )N”T ceeln,m). (4.3.29)

n

As such, we see that taking a trace, i.e. computing an extended character of all the
Verma modules, lands us on the torus partition function, (4.3.15) (with T = if):

1

chlg]:= ) chyt gy [q] = 5 > gt (4.3.30)
n,mez ' ' |n(q)| n,mez
with ) s 5
Apm=ht+h" = gn . nm 2”. (4.3.31)
4 g

Reinstating the generic complex structure, T € H, we obtain the well-appreciated,
yet remarkable result:

Z[TZ] = chlg] with ¢ =e*™ (4.3.32)

4.3.2 The state-operator correspondence

As a preparatory exercise for the four-dimensional story of the later sections, we will
review here the well-established state-operator correspondence for local operators.
In particular we will show that the states in g1, as in (4.3.28), can be prepared by a
path integral, with insertions of local operators, on the disc, D?, whose boundary is
the spatial S!. We will do so for the compact scalar, where both sides of the state
operator correspondence can be explicitly identified and checked. Moreover, a crucial
role is played by the Kac—Moody algebra of the compact scalar, organising the local
operators into primaries and descendants. This will serve as an analogy for the later
sections, where, as we will see, the ideas will be similar.

The general strategy towards a state-operator map for local operators (illustrated in
figure 4.1), common to all CFTs is the following. We take a spherical slice (here S?),
of the Euclidean cylinder (here R x S!) at # = 0. Each state on this slice is prepared
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4.3. Two-dimensional CFTs and the local state-operator correspondence

by a choice of boundary conditions at t = —oo. Mapping the Euclidean cylinder
to the disc (rather, d-ball in higher dimensions) with a Weyl transformation, this
choice gets mapped to a boundary condition at the centre of the disc.!* This boundary
condition can be satisfied by the insertion of a local operator. Then the path integral
on the disc, with this operator insertion prepares the state that we are after. More
precisely, the path integral on the disc, with boundary conditions ®(dD?) = @,
(where ® denotes all dynamical fields) and an insertion @[®(0)] at the centre of the
disc produces a wavefunctional:

W [dy] = /8 " ]Dcpe—S[‘I’] O[®(0)], (4.3.33)
il

where €[®;] denotes an appropriate functional space over the disc, with boundary
conditions ®j. We will write the state produced by O as

|0) = / D@ e S 9[0(0)], (4.3.34)
€[]

to indicate that we need to provide a boundary condition to get out a number.

Here we note that it would be much easier to work in complex coordinates, and
exploit the power of Cauchy’s theorem, as is commonly done in two-dimensional
conformal field theories. We will not do so, however, as a preparatory exercise for
the four-dimensional case where we cannot afford that luxury. For a discussion in a
very similar vein, written in complex variables see e.g. [296].

Before discussing the states and the operators, it will be useful to obtain an integral
expression for the ladder operators, in terms of the currents, that we can insert at an
intermediate point in the path integral. To that end, let ig; : S} < D? be the map
embedding a circle of radius r into the disc. The ladder operators can be expressed
as:

i m+1 .
jE= I eEimo jx gt (4.3.35)

™ r /s; Sr

where i g 1 J* is the pullback of J* € Q2(D?) along the map ig 1. This is arrived at

by expanding J* in Fourier modes, solving the closedness condition, d/* = 0 and
then inverting the Fourier transform. As a sanity check, we can verify that J*, given
by (4.3.35), obey the Kac-Moody algebra, (4.2.26):

[JE JE] =knSusmo, (4.3.36)

while the mixed commutators are zero.

14We will parametrise the disc by a radial coordinate, r € [0, 1], and an angle 6 € [0,27), ie.
cls]]%)2 =dr? +r2d62.
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4. State-operator correspondence for nonlocal operators

RxS9—1

¢

~S R

Hea—1 > |O)

Figure 4.1: The state-operator correspondence. Any state on S®~1 can be prepared by a path
integral on BY with a local operator inserted in the centre. The state then evolves in time on the
Lorentzian cylinder R x S4-1.

Let us start by discussing the ground states, |1, m). They are prepared by inserting a
vertex operator, V, ,,, of momentum n and winding m:

Vi (1) 1= exp(in o(x) + iqu?(x)), (4.3.37)

where x is a point on the disc and ¢ is the winding dual of ¢, i.e. the field whose
curvature is /¢, as defined around (4.3.23). The states are then obtained as:

In,m) = /ﬂ ]D¢ e Sy, . (0). (4.3.38)

In this case, €[] is the space of smooth functions on the disc. To verify that these
are indeed the ground states, it suffices to show that they are indeed annihilated by
the lowering operators, J £ . To illustrate the argument, let us first focus on the
state |0, 0), which is the zero-momentum, zero-winding state, corresponding to the

identity operator. There we have

J£10,0) ~ lim D¢e—5[¢](/ 1 gtind i;Ji), (4.3.39)
r=0Je[ ] s} r

where the twiddle indicates that we are ignoring purely numerical factors. Since we
are integrating over smooth functions, and J* = P4 f%, the integrand is smooth
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4.3. Two-dimensional CFTs and the local state-operator correspondence

inside the disc, for n > 0. Therefore, we have that
J£10,0) =0, n>o0. (4.3.40)

In this case, we also have that JOjE |0,0) = 0, as |0, 0) is a state of zero momentum
and winding. To show that the states |n, m) are annihilated by all positive modes the
argument is essentially the same, save for the fact that before assessing the integrand
one needs to look at the operator product between ig} J*and V, . Since J¥ is a

current and V,, ,, is a primary operator, their OPE goes like 1. Therefore, |n,m) are
annihilated by all positive modes, but not by the zero-modes, as expected.

We have, so far, argued, that (4.3.38) produces all the highest-weight states, of our
Verma module discussion in subsection 4.3.1. To complete the picture, what remains
is a construction of the descendants. It suffices to consider the states {n m; {lni}), a
generic state is straightforward to arrive at, afterwards. The claim is, then, that these
states are prepared by:

nom; {15}) = /E[.]DM_S[‘” 03¢0 Viu,m(0), n>o0, (4.3.41)

where 0+ is the “(anti-)self-dual derivative”" and 9", ¢V, (0) denotes the operator
obtained upon performing the OPE of 37 ¢ with V}, ;,, and placing it at 0. To verify the
claim (4.3.41), observe what happens if we act with a lowering operator. As before,
we treat the descendants of the state dual to the identity operator, |0, 0), first.

JE10,0;{1F}) ~ lim | Dge S (

do rm+le:|:i(m+1)t9 ai(p(’,, 9) 8r:1|:¢(0)) i
r—0 €[]

(4.3.42)
where we have also used the fact that, for all that matters here, i ;1 JEis proportional

st
to 199 ¢ df. We recognise the insertion as the (n — 1)-th (anti-)self-dual derivative
of a current. So we can invoke the current-current OPE [285], to get
n kn! Fi(n+1)0
d+p(r,0) 05¢(0) ~ — e : (4.3.43)
rn
This, in turn, implies:

2r
T 10.0:{157}) ~ lim [ ]D¢ e Sl (/ d9rm_"eii(m_")9) ~ K 8 [0,0) .
—vJel- 0
(4.3.44)

BIntuitively d+ is just the holomorphic derivative and d— the antiholomorphic derivative. If we insist
on avoiding complex analysis language we can also define them as follows. First define bases of the
(anti-)self-dual one-forms, dxTE = el? (dr + ir d). Then dualise these to vectors fields, as (dx¥)* and

#
take an interior product with the exterior derivative, so 94 := (dxi> ad.
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4. State-operator correspondence for nonlocal operators

The factor of n in the Kac-Moody algebra (4.2.26) is absorbed into the proportionality
symbol, and is related to a rescaling of the operator insertion by ﬁ However, we
kept track of the Kac-Moody level, since it stems from the OPE of the currents.

Inserting back V,, ,, it is now a matter of Wick contractions and restating the above
arguments to show that

JE }n,m; {li}) =kmbmn|n,m). (4.3.45)

n
This concludes the proof that the operator V,, , [¢] "¢ prepares the state |, m; {1F}).
We therefore have all the ingredients to write down the generic state. It is given by:

n,m;{zvn+,zvn:,--.})=/ﬂ_}D(pe—SW {(aw)”(a%)”---vn,,,,(O) :

(4.3.46)

4.4 Four-dimensional Maxwell theory

Having dealt with the two-dimensional case in sufficient detail we now turn to the
main focus of this chapter: 4d and the nonlocal state operator correspondence. We
will illustrate this in four dimensions, although the results extend to generic even
dimensions easily. We therefore, consider a unitary four-dimensional CFT, with a
U(1)M symmetry. As we have explained in section 4.2, this theory has necessarily a
free photon description. We will, therefore focus on free Maxwell theory. We will
mimick the structure of section 4.3: we will first discuss the path integral on arbitrary
compact manifolds; then we will use the p = 1 form of the current algebra (4.2.24),
study its representations and show that they explicitly reproduce the path integral
expressions. This will then lead us to the nonlocal state-operator correspondence.

4.4.1 The Maxwell path integral

We consider Maxwell theory on a closed, compact four-dimensional manifold X !¢
Since we are interested in topologically non-trivial manifolds we must also allow for
a theta angle. The action is:

1 0
S[a]:ZE/XfA*f_MJIZ/XfAf’ (4.4.1)

where the closed two-form f is the curvature of a U(1) gauge field, a € Q!(X). We
will often abbreviate the first term as || f ||*, where the norm is with respect to the usual

16We will take X to be torsion-free, throughout. All results can be generalised to manifolds with torsion,
following, for example, the arguments in [220].
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4.4. Four-dimensional Maxwell theory

Hodge inner-product. Hodge decomposition instructs us to write f = fharm + da,
where fharm is @ harmonic representative of the second cohomology class of X,
chosen uniquely to be orthogonal to da in the Hodge inner product. Moreover, the
theta term does not see the topologically trivial piece, so the action reads, with this
decomposition

1 i6 1
Sla] = E ”fharm”2 - 167 2 [X Jharm A fharm + E”danz (4~4.2)
! I
Sinst[fharm] Sosclal

With a theta angle turned on, it is useful to introduce the complexified coupling

constant: )
pom 4 2 (4.43)
Sm T 4.
We refrain from using the more common t for the complexified coupling constant
to avoid confusion with the two dimensional case, where t represents the complex

structure of the base space. Sometimes we will use
t* := Ret +ilmt, (4.4.4)
to write some of our formulas more compactly.

Passing to the path integral, the partition function of Maxwell theory splits into an
instanton contribution and an oscillator contribution

D harm Da
Z[X;t] = / J:]:;T exXP(—Sinst[ fharm] — Sosc[@]) = Zinst[X; t] Zosc[X; 1], (4.4.5)
where ¢ is the group of gauge transformations; shifts of a by a flat connection. We
will compute each piece separately and discuss the respective integration measures
in detail.

Let us first focus on the oscillator part. By Hodge decomposition, and upon employing
the Faddeev—-Popov procedure, we can gauge-fix a to be coclosed. The Faddeev-Popov
ghosts are, in this case, zero-forms with fermionic coefficients. The oscillator part of
the action becomes then

Soscla] = % (a,0q a), (4.4.6)

where U, := A, | Ler g+ 18 the transversal Laplacian, i.e. the Hodge Laplacian, A, =
dtd + ddt, restricted to coclosed forms. Here we can expand the action in terms of
eigen-one-forms of the transversal Laplacian,

a= Z cra;. (4.4.7)

Aespecy (1)
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4. State-operator correspondence for nonlocal operators

In the above, A = 0, and aq collects all the zero-mode spectrum of the Laplacian,
Oiao = 0. We can shift all the g-dependence on the zero-mode path integral by
normalising the measure as

dc;y
V2 g.

Da := (4.4.8)

Aespecy (O1)

Both the gauge field and the ghost path integrals are Gaussian and can be evaluated
directly to give

Zo%[X ] =

1y. / 1/2
vol(H!(X; 2)) (det Do) (4.4.9)

vol(HO(X;Z)) \ det’[];

Using the specrtral properties of the Hodge Laplacian, we can rewrite this in terms
of the full Laplacian as

VOI(HI(X; Z)) det’Ag
vol(HO(X:Z)) det'A;

In the above, vol(Hl(X ;Z)), and voI(HO(X ;Z)) is the zero-mode volume of the
gauge fields and the ghosts, respectively, computed with the measure (4.4.8). To
see that, note that the zero-modes of A, are precisely flat connections, or in other
words elements of H!(X). Since we identify two connections under large gauge
transformations (these are packaged in the instanton sum), we must look at H! (X ; Z).

We have assumed that the manifold, X, is torsion-free and thus H!(X; Z) =~ Z" X)),
b1 (X)

ZO[X:t] = (4.4.10)

We can therefore use the topological basis of the harmonic one-forms, {ri(l)}
i=1

defined similarly as in (4.3.5) to write
[G“)] = / A A (4.4.11)
ij X
With that we can integrate over H! (X ; Z) with the measure (4.4.8), to get
2 1/2
vol(H' (X:2)) = det(—2G<1)) . (4.4.12)
g
For the ghosts we have similarly
o 1/2
vol(HO(X;Z)) = det(—zG(o)) , (4.4.13)
g

where G© is defined analogously by the topological basis of HO(X; Z). If by (X) = 0,
the Laplacian [J; has no zero-modes and hence we compute the full determinant
det 1-

126



4.4. Four-dimensional Maxwell theory

It is convenient to disentangle base-space and target-space quantities to keep track
of the modular properties and of electromagnetic duality separately. The only place
where g appears is in the zero-mode volumes and therefore we have that

1 _ 1/2
27\ 2P1 0@ (gt M det’ A
(4.4.14)

Zosc[ X t] = .
_ (82 det G Jdet'Aq

For the rest, we are only interested connected manifolds, therefore bo(X) = 1 and
detGO© = vol(X). Furthermore, note that the prefactor is just Imt. So, all in all, the
oscillator piece reads, finally

1/2
detG(M / det’Ag
(4.4.15)

1
Zose[X:t] = (Imt)2®1&=D .
ose[X3 ] = (Imt) vol(X) N
We now turn to the instanton contribution. Similarly as in section 4.3, fham is
integrally quantised on two-cycles,

fharm € 27TZ» (4416)
)3

(2) } bz (X

) ) )
so we can expand fharm = 2nn‘ti(2) with n' € Z, and{t is the topological

basis of hamronic two-forms. The first term of the instanton piece of the action
becomes, then:

1 2_ 272 i) i
= | fham|l” = —n [G ]n n'eZ, (4.4.17)
2g g ij

where G, is defined similarly as in (4.4.11). For the theta term we make use of the
intersection bilinear on X:

Qi = / 7P A, (4.4.18)
X

to write )
i6
167 2
Finally, the measure, D fharm, becomes a sum over (vectors of) integers, n € ZP2(X)
Putting it all together, the instanton contribution reads

Zinst[ X5 t] = Z exp(rin-B(t)-n), (4.4.20)

nezb2(X)

0 . )
L fharm N fharm = an QU n. (4419)

where we have defined, for conciseness, the matrix
0

.
B(t) :=RetQ +ilmt G® = nglGa) +,-Q (4.4.21)
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4. State-operator correspondence for nonlocal operators

Combining the oscillator and the instanton contributions we have in total the partition
function of free Maxwell theory on a general, torsion-free, connected, closed four-
manifold X:

Z exp(rin-B(t)-n).

nezZb2(X)

1/2
detG(l))/ det’Ag

1
Z[X:t] = (mt)2 1D —
L = (my wl(X) ) Jaera;

(4.4.22)

SL(2, Z) duality

Before moving on, we briefly comment on some of the duality properties of this
theory. It is well-known, that Maxwell theory enjoys an SL(2, Z) duality group,
generated by S-duality, t — —1/t and T-duality, t — t + 1. It is, however, also
known that the SL(2, Z) duality group is afflicted with an anomaly [250, 297, 298].
On a generic manifold, one then either needs to sacrifice one of the two generators,
or couple the system to a five-dimensional SPT phase, carrying the duality anomaly
(as is done, e.g. in [298]). In this section we calculate an instantiation of the duality
anomaly using the form (4.4.22), and discuss ways to guarantee that either S- or
T-duality holds on the nose. We also show that, in fact, the manifolds required to
obtain our state-operator map, are free from the duality anomaly.

Key to the duality properties, will be a version of the Poisson summation formula:

—n-A-n —72n-A"n
e = — e . 4.4.23
e 2y aaz

nezZN

The form (4.4.22) is particularly handy to perform Poisson resummation. In particular,
we can check that —QTB(—1/t)Q" is the inverse of B(t), and the partition function
can be expressed as:

— (amt)wm—n)‘/2(det<c,m>”2 det’ A

det(—iB(t)) vol(X) Jdet’Ay
Z exp(rin-B(—1/t)-n). (4.4.24)
nezbz(x)

Let us now make some simplifying assumptions for the rest of the calculation. Since
H?(X) is a middle cohomology group for a four-dimensional manifold its elements
can be decomposed into self-dual and anti-self-dual pieces. The dimensions of the
(anti)-self-dual parts of the cohomology group are bzi (X), such that b2+ (X)+b3(X) =
bo(X) and b} (X) — b5 (X) = o, with o being the Hirzebruch signature of X. For
all the manifolds that we are interested in (namely products of spheres of different
dimensions), o = 0, therefore b;’ X)=b3(X) = %bz(X). We will assume this for
the following, although it is straightforward to generalise the discussion to manifolds
with o # 0.
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4.4. Four-dimensional Maxwell theory

The determinant of B(t) can be calculated to be det(—iB(t)) = |t|b2(X ). This follows
immediately from the fact that the eigenvalues of G(VQ™! are +1, with multiplicity
%bz (X). Furthermore using Im(—1/t) = [t| > Im(t), we get the S-dual form of the
partition function:

1
Z[X;—;] = 2O Z[x 14, (4.4.25)

where ¥ (X) is the Euler characteristic of X. Moreover, we can immediately see that
if Q is even
ZIX:t+ 1] = Z[X: 1], (4.4.26)

since its effect on (4.4.22) is to shift the exponent by 27 x integer, whereas if Q is
odd, Z[X;t + 2] = Z[X;t].7 (4.4.25) and (4.4.26), correspond to the action of the
S and T generators of the SL(2, Z) duality group. In its current form, the partition
function of Maxwell theory favours T-duality, while the S-duality transformation,
seemingly suffers from the aforementioned anomaly.

However, this is deceiving. Namely, we can add to the action a counterterm of the

form
1

322
where the last equation is only true if f(t) does not depend on X. Choosing
f(t)=—4%logImt, the partition function gets modified to

Su / £ €24 Ry Rog = £() x(X). (4.4.27)
X

ZIX:1] == m ) x® Z[x 1. (4.4.28)
It is straightforward to check that indeed, both transformations are healthy, and
ZIX:;y -t = Z[X: 1], Yy € SL(2, Z). (4.4.29)

Written in terms of (4.4.22), the duality-corrected version of the partition function
reads

- by (X) detGl)l/z det’Ag (ni )
ZIX:t] = (Imt) * Zn-BM)-n).
Wt = mo (Vol(X) Vet A, GZXb;(X)eXp 2 nBO)-n

(4.4.30)

Finally, we mention for completeness, that for manifolds of non-vanishing Hirzebruch
signature, absorbing the S-duality non-invariance into a counterterm is not for free.
Instead it is now the T-transformation that acts non-trivially [297]:

ZIX:t+ 1] = e 37O Z[X 1. (4.4.31)

17This can be corrected for, by adding an extra, topological term, to the action, as in [297]
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4. State-operator correspondence for nonlocal operators

Thus in those cases the SL(2, Z) duality group indeed suffers from an anomaly. In
what follows we will drop the tilde from the partition function, to simplify the
notation. In most cases it will not even make a difference, since we will be mainly
interested in manifolds with a circle factor where the tilded and the untilded partition
functions coincide.

4.4.2 Partition functions on S! x X

Of special importance to our discussion are manifolds of the form X = S! x ¥, where
¥ is some connected, closed, torsion-free, orientable three-manifold. These are the
types of manifolds on which the partition function admits a trace interpretation and
the radius B of the circle is the inverse temperature. We will therefore specialise
the above discussion to those manifolds and obtain more explicit formulas for the
partition functions.

We will make frequent use of various topological characteristics of such manifolds,
so we outline those here. First of all, note that for these manifolds, the Kunneth
formula and Poincaré duality, imply that that all their Betti numbers are determined
by just one of them. Namely:

bo(S! x Z) =bs(S' xT) =1

bi(S' x ) =b3(S' x £) =1+ b1(Z) =1+ by(%) (4.4.32)

by (S' x £) = 2by () = 2by(%).
The topological basis of harmonic one-forms and two-forms on S! x ¥ will then
be induced by the respective basis on X. For the one-forms, a basis is given by the
unique normalised harmonic one-form on the circle, 2511_73 (in local coordinates), and

the topological basis of harmonic one-forms on X. As such, the Gram matrix of this
basis becomes:

G = diag(vgl(;:) 278 Gg>), (4.4.33)
T

where Gg ) is the Gram matrix associated with the topological basis on X. For the
two-forms, we have similarly

G® = diag(,B E, (8 E)—l), (4.4.34)

where E = 271@;2 ) and we have also used Poincaré duality to bring it in this,
symmetric, form. As indicative from the choice of notation, the matrix E will bear
the interpretation of an energy, namely that carried by Wilson and ’t Hooft loops
placed on various spatial one-cycles. Finally, the intersection matrix is given by

Q= (11 ﬂbl(z)). (4.4.35)
by (Z)
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4.4. Four-dimensional Maxwell theory

With this in mind, we now go to compute the partition function on X = S}g X 3,
starting from (4.4.31). First, the instanton contribution, (4.4.20), is

Zinst[Sl x T:t] = Z exp(ni (nT mT) (ilfr:lett/?lE iImIt{e(,; E)_l) (:;)),

n,meZb (2

(4.4.36)
which becomes
b1 (2) b1 (2)
Zina[S' x Zit] = Mmt)™ 2 BT (detE)2 Y glem, (4.4.37)
n,meZb1(®
after a Poisson resummation. In the above we have defined, ¢ := e™#, and
l(m+tm)'E(m +tm
Apm = 1 ) E( ) (4.4.38)
’ 2 Imt

-1
Adding to that the oscillator contribution, (4.4.10), and using that Gg ) = [G(Ez )] ,

by Poincaré duality, we get in total

det’A
Z[s! % >it] = by (2)—1_2% —0 An,m' 4.4.39
[ ] ﬂ /det/Al Z 4q ( )

n,meZb (D)

As far as the determinants are of concern, we have the following:
(2m)%k?
p2
where A, are the eigenvalues of the scalar laplacian on ¥ and N, is a countable

index set. It is then straightforward to calculate, upon zeta-function regularising the
determinants and employing Euler’s product formula for the hyperbolic sine:

dety, o ho = F20O T] sinhz(%ﬂ ’_Ano), (4.4.41)

nOEeN(;k

spec(A.o,S1 X E) = % + Ang, K €Z,ng € :No%, (4.4.40)

where Ny := No \ {no | An, = 0}. Similarly, the spectrum of the one-form Laplacian
is

2 2,2
spec(A1,S' x ) = %% + Any, n€Z,ng € ng

\—f_-/

2m)%k?
/\r;”.,nl U{%—Fkno, kGZ,n()EeNo s
———
I
Ak,n()

(4.4.42)
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4. State-operator correspondence for nonlocal operators

with A,, being the eigenvalues of A; on ¥ and N; a countable index set, counting
the eignevalues of the one-form Hodge Laplacian on X. The determinant of A is
then:

. 1
det A1 = B2O1(X)+bo(X) l_[ smhz(zﬂ\//\m)

HIGNI*

I sinhz(%ﬁ\/)t_no) , (4.4.43)

n()Ee/de

with V)" defined analogously as N;". Therefore (recall bo(X) = 1)

det’So0 _ gi-bi(®) I sinh(58v/An, )

et 2o —
Vdet’A, e SURGAVAn)
nle./vl*
-1
I q—%M(l_qm) , (4.4.44)
nee/\/j

where A, are the eigenvalues of the transversal Laplacian on one-forms on X, indexed
by n € N1, and N collects the non-zero modes. To reach the last equality we have
used the spectral properties of the Hodge Laplacian. We will give this quantity a

special name:
1/2

nz(q) = ]_[q‘%m(l—qm) : (4.4.45)

*
neN

as it serves as a four-dimensional generalisation of the Dedekind eta function. Putting
everything together, the partition function takes the very simple form:

®E(q7 t)

G (4.4.46)

Z[Sl X E;t] =

where
Osg.t:= Y gt (4.4.47)

n,meZb1(®

is a generalisation of the Siegel-Narain theta function (that depends on the topology
of X). Observe that this form of the partition function exhibits a remarkable similarity
with the two-dimensional formulas of section 4.3 (in particular with (4.3.30))! We
will see, in the following section, that this partition function can, too, be interpreted
as an extended character; an extended character of the higher-dimensional current
algebras of section 4.2.
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4.4. Four-dimensional Maxwell theory

4.4.3 Current algebra and the spectrum

We now shift gears from the path integral and turn to the current algebras of sec-
tion 4.2. In keeping with the previous section, we will focus on the p = 1 incarnation
of the current algebra (4.2.24) and expand it in modes, to obtain the algebra of the
individual modes. This will allow us to construct representations of the current
algebra, and will lead, eventually, to identifying the exact Hilbert space of Maxwell
theory on any compact spatial slice in terms of the representations of (4.2.24). Finally,
we will compute the characters of the aforementioned representations and show that
they reproduce exactly the path integral expressions for the partition functions of
Maxwell theory.

The starting point is the current algebra (4.2.27):8

[Qil , ijz]E - ikL AT AdAE, (4.4.48)

where we remind the reader the definition of the codimension-one charges:
0%z := / JEAAT, (4.4.49)
b

with J £ being the self- and anti-self-dual conserved two-form currents, (4.2.14), and
AT the chiral and anti-chiral one-forms, (4.2.17), while the (not necessarily integer)
level k is related to the coupling constant of Maxwell theory as

g _

k=% =—. (4.4.50)
The strategy to obtain a mode algebra is to expand the (pullbacks on ¥ of) the forms
J* and AT in terms of a suitable basis. Such a basis is given by the eigenforms of
the Hodge Laplacian, A,. However, since J ¥ is closed, it will only have overlap with
the longitudinal eigenform components of the two-form Hodge Laplacian. Relatedly,
due to the gauge invariance in defining the charges, up to a shift of AT by a closed
form, AT has overlap only with the transversal eigenforms of the one-form Hodge
Laplacian. As such, we consider the (orthonormalised) basis of transversal one-forms

on X, given as

BL(Z) = {pn € Q1 (D) [ Dign = Andn} ey, - (4.4.51)

with O; and N, defined like in subsection 4.4.1. It is easy to see, that a basis for the
longitudinal two-forms is given in terms of xx¢y:

BF (D) = {xxn¢n € QX(D) | Ui = Andhn} ey, - (4.4.52)

18Having allowed for a topological theta term, the phase space variables that led to this algebra are
slightly different. It is straightforward, however, to repeat the calculation with a theta term to show that
the algebra is unchanged.
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4. State-operator correspondence for nonlocal operators

Therefore we expand:

iSAT = )" ATén, (4.4.53)
neN |

isJt =Y JExzén (4.4.54)
neN |

In this basis, the current modes define individually conserved currents. In other
words:

0% = ijhn =J=E (4.4.55)

These current, or charge modes obey the following algebra, folowing from (4.4.48):

[0, 0F] = £k (¢n, x dm) 5 - (4.4.56)

There exists a basis which diagonalises the above mode algebra. Let us focus, mo-
mentarily, on the non-zero part of the spectrum. On a three-dimensional closed
manifold, [J; is the square of another self-adjoint operator, the Beltrami operator: *d.
The spectrum of d consists of £+/A,. The eigen-one-forms of xd, and their Hodge
stars provide bases for coclosed one-, and closed two-forms respectively, which
simultanesously diagonalise [J; and T := A, |ker & These two bases and can be used
to diagonalise (4.4.56). While, generically, the spectrum of [J; is simple, meaning
that there are no degeneracies of eigenvalues [299], for many of the physical applic-
ations we have in mind, and more importantly, in the case of this chapter, for the
state-operator correspondence of section 4.5, we are interested in products of spheres.
In such cases the spectrum of [J; is actually twofold degenerate (cf. appendix C.1).
Equivalently, both signs of &4/, appear in the spectrum of xd. We proceed in the
main text with this assumption, in order to connect smoothly with section 4.5, and
we treat the generic case in appendix C.2, where we show that the results of this
section remain unchanged. With this disclaimer, we proceed with the basis:

o=%
VL) = {doi. oo € 21(D)

*dpns = U\/A_n¢no} (4.4.57)

s
*
nENJ_

and its Hodge dual. In the above we have also included all the zero-modes of [y, ¢y;,
induced by those of A;. The number of zero-modes is dimker Ay = b (X) = ba(X).
Moreover, we have taken this basis to be orthonormalised. In this basis, i5J % and
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4.4. Four-dimensional Maxwell theory

i3 AT read
b2 (X)
i5JF = ) Jg *xzdoi+ Y Jig *x bo (4.4.58)
i=1 nEeN*
o=i
by ()
iSAT = Z Agidoi + Z Ay %5 Pno, (4.4.59)
neJV*
U=:|:

where N[ denotes the non-zero part of the spectrum. As before:

£._ ot _ gt
05 = QAf)ftﬁo; =J;., and (4.4.60)
. Nn* _ g*
Ono = Q5 , =i, (4.4.61)
The algebra of the modes O is
[0%. 0] = ko VAnSumbor. (4.4.62)

This is a direct four-dimensional analogue of the two-dimensional (1) x u(1) Kac—

Moody algebra (4.2.26). Before moving on, let us note that we can redefine the modes

aSl9

At = QF,, and A’ = Q7. (4.4.63)
This redefinition reduces the current algebra to a collection of harmonic oscillators:
[Am,, Ajn,] = k v/AnSumor. (4.4.64)

and makes the quantisation of Maxwell theory on arbitrary spatial topology an
exercise in quantum mechanics.

We now proceed with quantisation. The Hamiltonian on ¥ is simply
1
s = 55 (1B + 1B1). (4.4.65)

where the electric and magnetic fields, E and B, are defined in terms of pullbacks on
3, of x f and f, respectively, in the usual fashion. The underlying current algebra of
Maxwell theory allows us to write the Hamiltonian in a Sugawara form. In particular,
expressing E and B in terms of the modes AS we have

b2(2)

Z Q0| Qo + Z VA’ Ano + Eo, (4.4.66)
nEN*
(T=:|:

1Note that in Lorentzian signature, the projectors take the form PL = %(]1 = ix). Demanding that

the field strength, f, be real implies that JE=17J F, where the overline denotes complex conjugation.
Therefore, Q?,E, is indeed the Hermitian conjugate Q#f,
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4. State-operator correspondence for nonlocal operators

where Eq = D ono /An, is the (potentially infinite) vacuum energy. The Hamilto-
nian is, then, that of a countably infinite collection of harmonic oscillators, with
creation (resp. annihilation) operators AZ 4 (Anz), raising (lowering) the energy by
VA,. From here on, the story follows closely its two dimensional analogue of sec-
tion 4.3, with slight differences that can all be traced back to the different self-duality
properties of middle forms on 4n- versus (4n + 2)-dimensional manifolds.

The zero-modes, Q(ﬁ, commute with the Hamiltonian and their eigenstates have a
distinguished role. Let |j), be such a state, with

05 1jy=JjT1j), iefl,-- by (4.4.67)

that is of highest-weight. Namely, all lowering operators should annihilate the state:
Aot |j) =0,  YnewN*. (4.4.68)

These states are, then, the primary states of the current algebra (4.4.62). Similarly to
the two-dimensional case, flux quantisation determines the eigenvalues j*. For any
2-cycle C(z); € H>(X), the magnetic and electric fluxes are quantised:

Dpgg 1= / fe2nZz, (4.4.69)
Cyi

Delec 1= feanZ. (4.4.70)
Cji

In the above, f is the magnetic dual field strength, which, in the presence of a theta
term, is given by [57]:

fi=Ret f +ilmt = f. (4.4.71)
At the quantum level, we demand that the flux quantisation holds inside expectation
values, i.e. (j|Pmaglj) € 2nZ and (j|Pelec|j) € 27Z. It is clear that only the zero-
modes contribute to that expectation value. This fixes exactly the charges, j*. A
few lines of linear algebra, to switch from the orthonormal basis with which Ji
were obtained to the topological basis, which is the natural basis for harmonic forms,
show that
J(n+tTm)

.4+ .
= +mi
J & Imt

(4.4.72)

In the above we combined jijE into a b, (X)-dimensional vector j*. Moreover, n and
m are b, (X)-dimensional vectors of integers, t¥ := Ret + iImt, and the matrix J
satisfies J2 = G(Ez) = %]E, in terms of the “energy” matrix, defined below (4.4.34)%°

Since J is a square root of the energy matrix, the reader might worry about the sign of the square
root of each diagonal entry. This is immaterial, however, since the sign can be absorbed in a sign-flip of
the components of # and m, which simply results in a reshuffling/relabelling of the different sectors of
the Hilbert space.
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4.4. Four-dimensional Maxwell theory

Since the eignevalues of the zero-modes are determined in terms of the vectors of
integers, n and m, we will henceforth denote the primary states, |j), as |n, m). These
states have an energy, above the vacuum energy, that can simply be determined by
acting with the Hamiltonian to be

Hs |n,m) = Apm |n,m), (4.4.73)

with

1(n+ tm)T E (n+tm)
2 Imt '
Note that this is the exact same formula as (4.4.38). This is not a coincidence. We will
clarify the relation between the instanton sectors and the current algebra primaries,
in the next section. But first we should finish constructing the Hilbert space.

Apm = (4.4.74)

The remaining states are obtained by acting on |n, m) with the raising operators,
A: - This results in a Verma module, Vy s, spanned by |n, m) and its descendants:

N
. =4 L no
n,m,{Nng};’eNI} = ]_[ (AZU) |n, m), (4.4.75)
neN |
o=%
where N,, are positive integers, indicating how many times each creation operator
acts, to obtain the desired state. The energy gap between these states and the ground
states, at the bottom of the Verma module, is

Epy =Y Noov/2n. (4.4.76)

neN |

o==£
Finally, as a matter of convention, we choose the states such that states at different
level are orthogonal, and each state has unit norm, (n,m;{Nys}|n,m;{M,s}) =
8N, },{M,,}- Moreover, states at different topological sectors are orthogonal by
construction. Finally, the full Hilbert space of the theory, is simply a direct sum of

the Verma modules:

Fs= P  Vam (4.4.77)

n,meZbZ(E)

To complete the study of the representation theory of our current algebra, what
remains is to compute the characters of each of the Verma modules: chy, ,,[q] :=
try, ,, ¢*. We have already performed the difficult task of calculating the energies,
so all we have to do now is sum them. This yields, at first:

chy, . lq] =q* | T] g2V [T > ¢%v*|. (4.4.78)

neN | neN} No=0
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4. State-operator correspondence for nonlocal operators

which, after resumming the geometric series, becomes

_ qAn,m
nxs(q)?

In the last equation we used the definition (4.4.45), of the four-dimensional eta
function. The nx(g) term is resumming the contribution of the descendants, while
the ¢g®7m term is capturing the contribution of the primaries. Finally, summing
over the Verma modules yields an extended character of our current algebra. All the
descendants give the same contribution, while for the primaries we have to sum all
their contributions. This gives:

chy, ,.[q] (4.4.79)

Ox(q;t)
h = h = .
ch[q] > chy, ,,[4] 12(0)?

n,meZb2(®

(4.4.80)

Comparing with (4.4.46), we see a remarkable identification of the S! x ¥ partition
function, as computed through the path integral, with an extended character of an
infinite-dimensional algebra:

Z[Sé X Z;t] = ch[qg], g=e". (4.4.81)

Let us comment on this result. Identifying the nome with e™#, gives a physical
meaning to the character, chlg]. It is simply a thermal trace over the Hilbert space
over X. From this point of view, it ought to reproduce the path integral expression.
It is known, however, that there are subtleties in matching the two quantities. The
compatibility of the manifestly covariant path integral formalism with the manifestly
unitary canonical formalism has been a source of confusion [300-303], ultimately
resolved in [304] by arguing the form of the canonical partition function. Our formula
(4.4.81), provides a more explicit manifestation of Donnelly and Wall’s unitarity proof
[304]. Recovering unitarity is an important point, as it was a crucial ingredient for the
photonisation argument of section 4.2, which ultimately led to the higher-dimensional
current algebras.

It is interesting to keep track of which quantity is mapped to what in the identification
(4.4.46) = (4.4.80). In (4.4.46), the Theta function stems from the sum over instantons.
This counts, effectively, insertions of Wilson—"t Hooft operators in Maxwell theory
[57]. On the other hand, on the canonical side, the Theta function comes from the
primary states. Both of them are subsequently decorated with oscillators that give
rise to the eta functions. This story is pointing at a special connection between the
spectrum of operators and states in Maxwell theory, which we shall explicate in the
following section.
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4.4.4 The spectrum on S? x S!

Among all three-dimensional topologies, of particular interest to us is ¥ =~ S? x S!,
for reasons that will become evident in the next section. Here we briefly specialise

the generic results of subsection 4.4.3 and collect the relevant formulas, for the case
of S% x S,

First, the geometry. Using a Weyl rescaling of the spacetime metric, we can set the
radius of S! to be unity and the only parameter is the radius of the sphere, or, really,
the dimensionless ratio of sphere over the circle radius, which we will denote as ry.
We will refer to this spatial slice as X,,. Its metric is:

dsgro = r3(d6? + sin® 0 dp?) + dn*, (4.4.82)

where 6 € [0, 7) and ¢ € [0, 27) are coordinates on the sphere and 7 € [0, 27) is the
coordinate on the circle.

As we review in appendix C.1, on S? x S! there is a single zero-mode of the one- or
the two-form Hodge Laplacian. The rest of the modes are labelled by the angular
and magnetic quantum numbers, £ and m, on the sphere, and the momentum, k£ on
the circle, as well as the Beltrami label, 0 = +. The eigenvalue of the Laplacian of a
mode labelled by n = (¢, m, k) is

L +1
An(ro) = # + k2. (4.4.83)
o
The Hamiltonian on this slice reads:
1 _ 1
Hs, = EQ(‘)" Qo+, > Al A + Eo. (4.4.84)
n=(Z,ri,k)
o=

The primary states, are labelled by two integers: |n, m), with n, m € Z. The unique
harmonic two-form on X,, (normalised as in (4.3.5)) is

1
1@ = —5in?60do A dy, (4.4.85)
4

and yields G(EZ,)O =(2r ~'. This gives, via (4.4.72) and (4.4.74), the charge and the
energy of the of the primary states, as:

1 tT
jEt =i PEEM O d (4.4.86)
ﬁro Imt
n |n+tm]?
App = ———— 1 4.4.87
T2 Imt ( )
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4. State-operator correspondence for nonlocal operators

respectively?! The rest of the states are just obtained by acting with creation operators,
like in (4.4.75). For example, the first excited states are obtained by acting with Ay,
with n = (1,m,0) or n = (0,0, 1) depending on the value of ry and have energy

V2
E1,m,0(ro) = o and Egyg,1(ro) =1, (4.4.88)
0

above the ground-state energy, respectively.

4.5 The state-operator correspondence

We now have all the ingredients to arrive at the culmination of this chapter; the
nonlocal state-operator correspondence. While the matching of the partition function
and the current algebra extended character is valid on any connected, closed, torsion-
free, orientable three-manifold, for the state-operator correspondence we need to
choose a specific manifold. We will only treat the easiest case, deferring more complex
cases for future investigation. We restrict ourselves with the topology ¥ =~ §2? x S1.

The picture we have in mind here is the following. States on Hx are prepared
by a path integral on a manifold whose boundary is ¥ = S? x S!, with various
operator insertions, which we will clarify momentarily. Besides local operators,
four-dimensional Maxwell theory is host to a plethora of line operators (which we
classify in subsection 4.5.1). We place these operators on the S!. This leaves us
with filling-in the S? to obtain a three-ball, B3. As we will see, the path integral on
Y := B3 x S!, with line operators inserted on S! x {0}, where by {0} we denote the
origin on B3, produces all the states, (4.4.75), of #x that we described above. See
figure 4.2. In notation similar to section 4.3 we denote these states as

|£) = / Dae Sl £(s! x {0}), (4.5.1)
€[]

where £ is some line operator, and €[ -] is, again an appropriate functional space over
Y (now encapsulating information about gauge equivalent configurations), pending
additional input regarding boundary conditions on Y. Once boundary conditions,
say a(dY) = ay, are imposed, the path integral (4.5.1) produces the wavefunctional

Welag] = (agldL). (4.5.2)

Here we will show that these states reproduce the Hilbert space of subsection 4.4.3
entirely.

2This formulas may look funny, on dimensional grounds, but remember that r¢ is a dimensionless
parameter. To reinstate dimensionful parameters, the energy is proportional to the Gram matrix, which,

in this case, is ~Yoleirde) which has the correct dimensions to be an energy.
vol(sphere)
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RxS2xS!

)

|~ S2xS!

B3xS!

L(S! x {0})

Figure 4.2: The nonlocal state-operator correspondence. Any state on S?> x S! can be prepared by
a path integral on B3 x S with a line operator, £(S! x {0}), at the centre of the ball, wrapping
the S1. The state then evolves in time on the Lorentzian “cylinder”R x §? x S!.

4.5.1 Line operators

First we outline the possible line operators in our disposal. Since in pure Maxwell
theory there are no local charged operators, the only gauge-invariant line operators
must be supported either on closed loops or infinitely extending lines. In what follows
we will only consider closed loops (which we will denote as y), as we are dealing
with compact spaces. Infinitely extending lines can be obtained as a limit. The basic
kind of line operator there is, is a Wilson loop:

W, (y) := exp(in [a), nez. (4.5.3)
y

These operators are electrically charged under the one-form symmetry of Maxell
theory, which served as the starting point of photonisation (cf. section 4.2). In
particular, if

Ugee = exp (1 /C N f), (4.5.4)
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4. State-operator correspondence for nonlocal operators

is the generator of the electric one-form symmetry, where C is a closed two dimen-
sional surface, W, (y) carries charge n:

2mi
UEe - Wa(y) = exp( o

t” Link(C, y))W,,(y), (4.5.5)

where Link(C, y) denotes the linking number between the closed surface C and the
loop y.

Furthermore, there exist magnetically charged line operators. As we explained in
section 4.2, and as is well-understood in Maxwell theory [15], there is also a magnetic
one-form symmetry, with generators (in the absense of a theta term)

Us™ = exp(i/c f). (4.5.6)

The operators charged under this symmetry are 't Hooft loops. In the electric
presentation of the theory these are described by excising a loop from spacetime,
providing boundary conditions for the gauge-fields that fix the value of [ f on a thin
tube surrounding the loop. They can be written more compactly, however, in the
magnetic presentation, where we exchange the gauge-field for a magnetic gauge-field,
d, whose curvature is f = Ret f +ilmt x f. The 't Hooft loops become, in this
presentation, Wilson loops for the magnetic photon:

tH,, (y) == exp(im / Zz), m € Z. (4.5.7)
y

and carry “electric” charge in the magnetic presentation:

. 2
exp(i/c *f) CtHy (y) = exp(%Link(C, y)) tH,, (). (4.5.8)

In the original, electric, presentation, they carry magnetic charge:
Uénag - tHy (y) = exp(2m im Link(C, y)) 'tH,, (). (4.5.9)

In the presence of a theta term, they also carry electric charge, due to the Witten
effect. This is given by:

Ret
UE - tHp () = exp (271 im ﬁ Link(C. y)) “tHum (7). (4.5.10)

More generally, we can consider dyonic, or Wilson—"t Hooft, line operators labelled
both by an electric and a magnetic charge:

Wom(y) = exp(in/a + im/é), n,mée€Z7Z. (4.5.11)
y y
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4.5. The state-operator correspondence

/ anJE
SZxy

Figure 4.3: An example of descendant line operators. On the left-hand-side of the equation, a
small tube of the operator J* smeared over a function, «, surrounds the curve y which supports a
Wilson—"t Hooft line. On the right-hand-side is the result of shrinking the tube on the line, namely
a series of new, descendant, line operators.

Simultaneously, we will combine the one-form symmetries into their irreducible, self-
and anti-self-dual, incarnations, as in section 4.2:

UE = exp(i/c Ji). (4.5.12)

The Wilson-"t Hooft lines carry charge under UZ as:

t:t
UE Wy = exp(ﬁn”;r—tmunk(c, y))w,,,m. (4.5.13)
m

These are the basic, or primary, in a sense to be made precise below, line operators. But
this is not the complete story. We can obtain composite, or descendant (in the same
to-be-made-precise sense) line operators by smearing functions of gauge-invariant
local operators on y. The only gauge-invariant local operators in our disposal are
polynomials of (derivatives of) J*. An unambiguous way to smear the local operators
over the basic line operators, is to excise an infinitesimal tube around y, i.e. an S2 x y,
on which we spread the desired local operator, and shrink it onto y by taking the
limit ¢ — 0. This is completely analogous to how disorder operators, including
the aforementioned basic 't Hooft loops (in the electric presentation), are defined
in quantum field theory. Using the mode expansion of J* on a three-dimensional
surface (4.4.58), and the OPE of the currents we can convert the complicated local
operator into sums of powers of the modes, Jni, of J*. A sketch of this construction,
for a specific operator, is shown in figure 4.3. In the next few sections we will make
this picture precise.
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4. State-operator correspondence for nonlocal operators

4.5.2 Radial evolution

A crucial feature of the Hilbert space on S? x S, is its Verma module structure under
the Kac-Moody algebra. In order to reproduce this structure, via a path integral
on Y = B3 x S!, we need to find an expression of the current modes, Jni, that
can be inserted in the path integral. Key to doing so is solving the self-duality and
conservation equations, for J* on Y. We take the metric on Y to be,

ds? = dr? + r?dsg2 + dsél, (4.5.14)
—_—

2
dszr

i.e. we fix the S! radius to be one, throughout, and label the spatial slice where
the S? is of radius r € [0, 9] by Z,, where %, is the slice on which the states, in
subsection 4.4.4, are prepared. With these conventions, it is useful to decompose the
currents as,

JE=draJE+ U, (4.5.15)

where J* € Q!(Z,) and Jzi, € Q%(%,). In this decomposition, the self-duality
equations, xyJE = £JE, are expressed as a relation between J,jE and Jg}_:

JE=E#JF. (4.5.16)

Here, and in the following, we denote by *,, the Hodge star on X,, induced by the
metric on the slices. Moreover, from the conservation equations, d.J + =0, weread a
Gauss law and a dynamical equation controlling the radial evolution of the current.
The Gauss law, written equivalently in terms of J):i, or JF, using (4.5.16), reads:

dJjg =0 & dfJ* =o, (4.5.17)

The bold differential, d, denotes the differential on X, and the codifferential is defined
with respect to the Hodge-star on X,. Similarly, the radial evolution equations both
in terms of Jzir and J* read:

Oy Fdx Jg =0 & *r0p *p JEF x,dJE =0, (4.5.18)

As explained in subsection 4.4.3 and appendix C.1, J ir, as a closed two-form, can be
expanded in the (orthonormalised) basis, 'Vnz(Er), given by (C.1.25), of Hodge-duals
of eigen-one-forms of the Beltrami operator on %,:

Jg = JEE) *r do(r) + D To () *r no (1), (45.19)

neN |
o=+
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4.5. The state-operator correspondence

where we now explicitly denote the dependence of the coefficients, J*(r), and the
basis forms, ¢ns (1), on r. Plugging this expansion into (4.5.18), yields a system of
first order ordinary differential equations for the coefficients:

1
O J&E(r) + ;Joi(r) =0

O JEM) +[AEM)],  JEC) =0,

ot nt

(4.5.20)

together with boundary conditions fixing Ji5(ro) = QF, and J = (r9) = QOE . These

o
are precisely the modes that were used to build creation and annihilation operators

on X,,. Note that this differential equation factorises modes of different energy, i.e.
different n, but mixes modes on the ot-plane which we shall call the Beltrami plane.

The differential equation for the zero-mode, can be immediately integrated, yielding
r
JEr) =2 0F. (4.5.21)
r
For the non-zero-modes, the matrix A (r) is given as

[An:t(’")]gf i= (Pnos *r0r *r Pne) F (Pno, *rdenc) - (4.5.22)

We provide details about the explicit construction of the basis V(Z,), as well as all
the entries of the matrix A in appendices C.1 and C.3. The solution of the above
equation takes the form of a radially ordered integral:**

J5(r) =[UF(rr0)],, 0. with (4.5.23)
ro
Uf(r, ro) i= Rexp(/ dr’Af(r)). (4.5.24)
r
Altogether Jécr reads, then

r

IS, = 05w do(r) + 3 0o [UR(roro)] . #r buc(r): (45.25)
n,o,t

For illustration purposes, let us concentrate temporarily on a subfamily of the basis
V(X,), returning subsequently to the general case, deferring the details to the ap-
pendix. This subfamily concerns the eigenforms with no momentum along the S! of
¥,, i.e. the one-forms

1 0 + 1)\ 2
Bimo (1) = E(wm arao(M3) e dw dn))- (4.5.26)

22That is, simply, a time-ordered integral, with the radius playing the role of time.
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4. State-operator correspondence for nonlocal operators

In the above, Wy,,, are the real spherical harmonics, normalised on Sf, with £ and m

the usual angular momentum and magnetic quantum numbers, with £ # 0, and 5

is the coordinate on S'. One can check that these are orthonormalised eigenforms
1/2

of the Beltrami operator on X,, with eigenvalue o (@) . For this family the

matrix A¥(r) becomes

Af,(r) = ! (1 FvuerD ! ) (4.5.27)

2r 1 1+2/L(+1)

In this case Aeim (r) commutes with itself at different radii so the radially ordered
exponential reduces to a regular exponential, yielding, finally as solution

U= (rrg) = ! N\ 120 F 200+ D 1
tm 5007 5 ae | \ 1 1+20+£2/0C+ 1)

To

P\ 1+20£2/000+ 1) ~1
+(_) -1 14207202+ |

(4.5.28)

Let us return to the general case. With the solutions (4.5.21) and (4.5.23), we can
equivalently express the operators acting on ¥, in terms of the fields J*, as

05 :/2 :—0¢o(r) VES (4.5.29)
r:1t0 = [ [Uni(r? rO)];.:‘pnr(r) A Jzz;tr (4.5.30)
>

r

Note how, as they should, the modes Q li (where i stands either for 0 or no), are actu-
ally independent of r. In other words, connecting to the discussion of subsection 4.4.3,
Uii (r, ro)71 - ¢; (r) provide a basis of (anti-)chiral one-forms on Y:

Pid(Uii (r.ro) - ¢ (r)) =0, (4.5.31)

subject to a gauge condition. In this case, the natural gauge condition is given by the
Coulomb gauge, that they lie in the kernel of d *, i5, .

Knowing the expression of the charges in terms of the field content, we can now
obtain how such charges act on states, |£), of the form (4.5.1). We simply perform
the path integral inserting Qi on a small £,, and perform the OPE with the path
integral insertion sitting at the centre, sending subsequently » — 0:

of|2) = lim . ]Da e Skl /Z UE(r.ro) -i(r) A JE x £(S x {0}). (4.5.32)
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where, in (4.5.32), only smooth configurations of Jzir contribute, for the same reasons
as in section 4.3. This is a direct four-dimensional analogue of (4.3.39). The behaviour
of this insertion as r — 0, requires some clarification. Let us illustrate the situation
for the empty state:

1) := /8[ ]Da e~ Sl (4.5.33)

The radial evolution matrix, TUnjE (7, o), gives rise to a smooth mode, behaving as

~ (:—0)6 (4.5.34)

at the origin, r — 0, and a divergent one, behaving as

~ (:_0)_6_1, (4.5.35)

In order to single out the configurations of the currents that contribute to the path
integral, we must project out the divergent modes. This is implemented by the
projector to the kernel of 1Uni (0, ro), which we will denote as l'[ni.23 Therefore, the
part of Jzir that contributes in the path integral has an expansion:

+ + 10 Y of nt [uE
JEr =05 — *r $o(r) + (O Hnar[Un (r, rO)]T *r Pnp(r), (4.5.36)
smooth r n.0,p,T [
~rsin 0 dpAdB basis of smooth two-forms

From this it immediately follows that the empty state is uncharged:

0F 1) = lim / Da eSll / Lgo(r)nJE =0, (4.5.37)
r—0 Je[.] =, To r
as the smooth part of J):i, goes to zero at r — 0. The action of the non-zero modes is
also straighforward:

. — -1
Qnicr |1) = lim el ]Dae Sld] /}: [U::(r, rO)]0r¢nr(r) A JZ:Jtr

r—0

0x (4.5.38)

not nt’

= / Da e Sl I
el]

where here, and henceforth, repeated indices {0, 7, ...} on the Beltrami plane are
contracted. From this it follows that, if vE is any vector in the image of UZ(0, ro),
i.e. orthogonal to IT%, the combination vE Q0 annihilates the empty state:

vE ot 1) =o. (4.5.39)

ZNote that Urft (0, ro) from (4.5.28) (cf. also appendix C.3) has rank 1, reflecting precisely the fact that
there is a smooth and a divergent mode.
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4. State-operator correspondence for nonlocal operators

This behaviour is in fact general. This linear combination of charges will take the
role of annihilation operators, for path integral states, with its Hermitian conjugate
becoming the new creation operators.

4.5.3 Squeeze, squeeze, squeeze

Let us make the above intuition precise. As before, we take vrﬂf to be a vector
orthogonal to l'[ni,

+ . *
n*.vt=o. (4.5.40)
Of course, since I is a rank-1 projector on a two-dimensional plane, v¥ is unique,
up to rescaling and a global phase. We will take v to be such that
wE) o, vE = £1, (4.5.41)

where o, is the Pauli z-matrix. With this choice of v, it is straightforward to check
that the operators

Bt :

+ + _ + + T
Vno @ho = UntsAnx + Un;':e/’on:':,
; Lot N (4.5.42)
‘Bni = EnaQ;Fa = ﬁn:I:‘A’n:t + UpgAnF,

where the overline denotes complex conjugation, satisfy the correct Kac-Moody
algebra of ladder operators:

[:Bm, c@jw] = /2 (70)rmBo s (4.5.43)

with all other commutators vanishing.

Notice, however, that (4.5.42) is a Bogoliubov transformation. The new set of oscillat-
ors can be obtained by a unitary transformation of the old oscillators:

6n(Un)fAn:I:(‘:vﬂ(vn) = Bnt, and
+ + (4.5.44)
Gn(On)A! L &I (D) = BT,

The operator G, (vy,) is known as a squeezing operator, and in particular as a as non-
separable two-mode squeezing operator [305-308]. Its explicit form, in terms of the
original set of oscillators, follows by an application of the Baker—-Campbell-Hausdorff
formula, and is given as:

Gn(vn) = exp(—,on (eig"ALA:ﬁ_ — e_i‘f"An+<An_))

exp(il/fn+AI g+ iwn_Ai_An_), (4.5.45)
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where pn, &, Yn+ € R are related to v;|E as

vhi = eV cosh(pn)

. (4.5.46)
vnijF = l(Vnz+én) sinh(py,).

Apart from the phases y,+ — which are nevertheless necessary to capture the correct
vectors v¥ — this corresponds to an su(l, 1) squeezing transformation.

A salient feature of squeezing transformations is that applying the squeezing operator
to the a ground state of the original set of operators,

dnt [0) 4 =0, (4.5.47)
yields a ground state of the new set of operators. Namely, the state
0) g, := Sn(vn) [0) 4, - (4.5.48)
satisfies
Bnz [0)g =0. (4.5.49)

These states are known as squeezed vacua. Excited states can be built in the standard
way, by applying creation operators of the new set of modes on the squeezed vacuum.
They are related to the excited states of the original set of modes by a squeezing
transformation:

B 10)g = Gn(va)AL[0)4 - (4.5.50)
In other words, they remain squeezed.

Finally, recall that our setup involves infinitely many modes. Demanding that the
new ground states are annihillated by 8,4+ for all n € N}, identifies it with an
all-mode squeezed state that is only pairwise non-separable. In other words there
exists a squeezing operator acting on all modes defined as:

shorthand

S: 6({vn}newj) =[] Salvn). (4.5.51)

*
neN |

for

Note here, that there is no ordering amgiguity in defining &, as modes at different
levels commute. It is for the same reason that it also acts on each energy level
separately, i.e.

CALGT = By, Yne N, (4.5.52)

without mixing ladder operators at different levels. As a consequence, there are
all-mode squuezed vacua

10)g :=&[0),4, (4.5.53)
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annihillated by all 8 modes,

Bt l0)3 =0,  “nenN] (4.5.54)
where |0} 4 is the ground state annihilated by all 4 modes,

Ant [0) 4, =0, ne N} (4.5.55)
As an explicit illustration of this construction, let us focus again on the family without
momentum on the S, corresponding to n = (£, m, 0), and governed by the evolution
matrix (4.5.28). The magnetic quantum number, m, does not enter any of the formulas,

so we will suppress it, denoting the modes just by the angular momentum number, £.
The Bogoliubov coefficients are given by

L 1 VE+ O+ 4556)
" T e T\ V- viE) >

—i V- VTF1
V= ——— , (4.5.57)
2006+ ))A\VE+ V¥
corresponding to the squeezing parameters
1 L+1 37
pe=—log| — ), &=n Y =n and Y, =—. (4.5.58)
4 L 2
This yields a two-mode squeezing operator as:
1 £+1
Se(ve) = eXP(Z IOg(T) (”“’L"“’Z— - AE_M—))
exp i AL A + S (4.5.59)
s+ A A ] ) 5.

4.5.4 The correspondence

After this interlude on squeezed states, we return to line operators, and the states
they prepare, via the path integral. First we consider the states of the Wilson—"t
Hooft operators, (4.5.11),

Wom) = /8 [ ]Da e Sl w, (S x {0}). (4.5.60)

Let us see the action of the charges on these states.

Starting with the zero-mode, we have:

r—0

0F Wp.m) = lim Da e~Sll / rl¢o(r)u§r X Wy m(S! x {0}).  (4.5.61)
€[] X To
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We will need the OPE between Jzi, and the Wilson-"t Hooft loop. In fact, here we
will only need the Wick contraction, as all the regular terms are bound to vanish, by
regularity of the rest of the zero-mode integrand. The desired OPE is:

T X Wy m(S'x{0}) ~ (m<1§_/ a>+im<J§r/ d>)w,,,m(s1x{0}), (4.5.62)
sl sl

where the twiddle indicates that it is considered up to regular terms. To continue on
we will need the two-point function of the gauge-fields on R3 x S!2* Parametrising
R3 by coordinates x and the circle by an angle, 5, the two-point function reads:

4 guv sinh ||x||

,)ay(0,0)) = — -d dent t . (4.5.63
(aun(x, may(0,0)) Tmt x| (cosh x| — cos n)+gauge ependent terms. ( )

Integrating one of the gauge fields on the circle, to get the holonomy, and differenti-
ating the other one to get the current yields immediately:

( zwoese)(L) - o

From here, electric-magnetic duality implies

r AJE \\ bid i
<(/E r0¢0(r) Jg,)(/s1 a)>— i—ﬁro e (4.5.65)

and therefore, finally:

1 n+ttm
V2r, Imt

Compare this to (4.4.86). The state [W,, ,,) has exactly the same zero-mode charges, as
the Kac-Moody primaries |n, m). It is tempting, therefore, to identify the Wilson-'t
Hooft state with |n, m).

QF Wy m) = £7i [Wom) . (4.5.66)

This is almost the right answer. To iron out that almost we need the action of
the non-zero modes. First, note that the OPE (4.5.62) cannot give any singular
contribution upon integrated against any of the higher-modes. The reason is, simply,
that <J§r Jst a> and <J§r Jst a> are proportional to the volume form on the sphere.
But the one-forms ¢, (r), that it will be integrated against, are periodic on the circle.
Hence the net answer is zero. Therefore, as far as non-zero modes are concerned,
the OPE produces only regular contributions. We are therefore in the same territory
as for the empty state that we discussed previously. Hence again we have that

Bt [Wpm) =0, Yne N} (4.5.67)

24Remember, we are taking this OPE in the limit # — 0, so the three-ball, B;’O is identical to the whole
R3.
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4. State-operator correspondence for nonlocal operators

This is the precise sense, in which Wilson—"t Hooft lines are primary operators. They
have definite one-form charge, and the states they generate are primary states of the
Kac-Moody algebra (4.5.43), sitting at the bottom of the Verma module labelled by n
and m.

Reconciling the above fact with our digression on squeezed states, the Wilson—"t
Hooft lines correspond to squeezed primary states:

(Wym) =6 |n,m). (4.5.68)

Inverting this relation, we have, equivalently that the vacua |n,m) correspond to:
n,m) = &' [Wom) = / Da e514 &TW, (ST x {0}). (4.5.69)
€[]

where GTW,, ,,, denotes the line operator obtained by shrinking &' — expressed in
terms of the currents — onto the Wilson-"t Hooft loop, a la figure 4.3, or equivalently
via the OPE:

S Wom(S! x {0}) := lim STJE ] x Wam(S!' x {0}). (4.5.70)

Let us pause here to comment on the ground state, i.e. the state |0, 0), of zero energy.
By the above discussion, it corresponds to the operator

0,0) e~ &T(S! x{0}). (4.5.71)

This is clearly not the identity operator. In one sense, it is almost the identity operator,
as this is the only primary line operator it sees. It is completely transparent to the one-
form charges. However, it is also as far as one can get from the identity operator as it
contains photon excitations of arbitrary frequency — indeed, of all frequencies. This
was, to some extent, anticipated in [269], where it was shown that, in a generic CFT,
the identity operator, cannot prepare the vacuum state on the torus (or generally, on
any spatial slice other than the sphere). Our result is consistent with that statement,
while still tractable in this example.

Continuing on, and moving up in the Verma module, all the other states can be
reached by acting with [8: 4 on the squeezed primaries, i.e.

Wi Nao o )= T (81) W)

neﬂj
o=+
Nno
_ / DaeSl [T (8],) " Wam(S' x10}). (4572)
el neNt
o=+
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The modes B,+ and i)’z 4 can be written, in terms of the local operators J * as
. -1
B (S x {0}) = lim viE [UE (. ro)],, bne(r) A T3, (4.5.73)
— =,

B!, (S' x {0}) = rhg(l)A v [UF(r, ro)];rl¢>n,(r) VAR (4.5.74)

respectively. Acting them on Wilson-"t Hooft operators gives precisely the descendant
operators that we discussed in subsection 4.5.1. They are related to the descendant
states (4.4.75), by a squeezing transformation. For example, a single excited mode is

Al n.m) = T8, Wy m) = /ﬂ ]Da e S &8, W, (ST x {0}),

(4.5.75)

and similarly for the higher-excited states.

To recap, we have just constructed a one-to-one map between line operators on
R3 x S! and states on S? x S!. The line operators that we have in our disposal are
the Wilson-"t Hooft lines and modulated versions thereof, i.e. smeared with modes
of the basic gauge-invariant operator, f, or equivalently J*. Each different allowed
smearing, that is, each different smooth configuration of J* gives a different state.
The Wilson-"t Hooft lines are the primary operators of the Kac-Moody algebra.
Modulated operators are their descendants. They prepare states on S? x S!, that
are orthonormal and span the entire Hilbert space. These states are related to the
standard energy eigenstates on the Hilbert space by a squeezing transformation. This
map is displayed in figure 4.4.

Energies and overlaps

In this last paragraph, we will, briefly, compare the squeezed states we have arrived at
to the energy eigenstates. We begin by calculating the average energy of the squeezed
primary states W, ;). A quick computation shows that their average energy is

(Wﬂ,m|H2rO|Wn,m> = Aum + Eo,e(ro), (4.5.76)
where
Eo.s(ro) = Y _ sinh®(pn) v/An(ro). (4.5.77)
n,o

is essentially measuring a zero-point energy, which has to do with the fact that
the Hamiltonian Hy, is not normal-ordered with respect to the new set of ladder
operators. More importantly,

7 |n+tm)?
Apm = -5 —————

= 4.5.78
2r2  Imt ( )
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0,0) e OGT(Slx{O})
n,m) e ©6*wn,m(8‘x{0})
ALy lnm) e ©6*$Iiwn,m(slx{0})

Figure 4.4: The states and their corresponding operators. (Top) The squeezing operator,
GT(Sl x {0}), containing photons of all frequencies, represented by a multi-coloured line prepares

the vacuum state. (Middle) The squeezing operator, surrounding a Wilson—t Hooft line of charges
n,m prepares the primary state |n,m). (Bottom) The squeezing operator, on top of the mode BIt

on top of a Wilson—"t Hooft line prepares the descendant ’A’Ii |n, m).

is the same as the energy of the (unsqueezed) primaries (4.4.87), as well as the
instanton weights in the path integral (4.4.38). This property reflects and refines the
observation of Verlinde [274] and the argument of Kapustin [273], that the Wilson-"t
Hooft lines have a quantum number A, ,, akin to a scaling weight?

For the first excited states, an elementary computation reveals their average energy

(Wil Bro s,y Blo [ Wom) = A+ (cosh®(pn) + sinh® (py) ) yAn(ro) + Eo. (o).

(4.5.79)
In the no-squeezing limit, p, — 0, this becomes precisely the energy of the first
excited energy eigenstates.

Finally we can also compute overlaps between the squeezed and the unsqueezed
primaries. This is very much facilitated by the disentangling formula of su(1, 1)

%Do notice, however, that these are not the eigenvalues of the dilation operator of the theory under
consideration.
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squeezing operators [309, 310]:
exp(on X, — @ X)) = exp(emg(a") tanh |oen|X:)

exp(—2log cosh |ay | X0) exp(—e_iarg(“”) tanh |ozn|Xn_),

(4.5.80)
where
1 A AL
Xti= -t 4.5.81
n \/E k /_An ( )
_ 1 Any Ao
X = = 4.5.82
"B ki (4.5.82)
1 AL Aot + A A
X0 = — 1 4 B0t (4.5.83)
2 k/An
are the generators of su(1, 1):
[%F, %] = —2%2, [X2, XF] = £XT. (4.5.84)

In this case, the phases, ¥+, of the squeezing operator, (4.5.45), do not matter as the
phase-shift operator they furnish is normal ordered, and thus, acts as the identity on
|n, m). In total we find:

(n.mWym) =[] (cosh(pn))™>. (4.5.85)

*
neNT

4.6 Discussion

In this chapter, we studied CFTs with continuous generalised global symmetries.
We showed that an invertible continuous (p + 1)-form symmetry in a 2p + 2)-
dimensional unitary CFT automatically enhances to an infinite collection of codimen-
sion one, i.e. zero-form, conserved charges, labelled by (anti-)chiral p-forms. The
algebra of these charges is spectrum-generating (up to decoupled neutral factors) and
characterises completely the CFT. The dynamics of the CFT are those of free p-forms.
Along a similar vein, we showed that a non-invertible continuous (p + 1)-form
symmetry, leads to a non-invertible current algebra, which we describe in terms of
the fusion rules of the symmetry generators. As before, it characterises completely
the dynamics, leading, in this case, to an O(2) p-form gauge theory. In the invertible
case, and focussing on p = 1, hence in four-dimensional CFTs, we constructed the
representation theory of this algebra (for the invertible case), which we showed repro-
duces the path integral calculation, as a non-trivial check. This allowed us to describe
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explicitly the Hilbert space of Maxwell theory on arbitrary closed spatial manifolds.
On non-trivial topologies, the full Hilbert space consists of the usual photon Hilbert
space, as well as of Verma modules, built on top of states with one-form symmetry
charge. Additionally, we showed that the full spectrum of states on S x S! can be
obtained by a path integral on B3 x S!, with various operator insertions. The radial
evolution on the ball acts as a squeezing transformation between the path integral
states and the energy eigenstates, requiring that line operators are subsequently
dressed with a squeezing operator, containing all photon frequencies, to reach the
energy eigenstates. Notably, the vacuum state of Maxwell theory on S§? x S! is not
produced by the path integral with no insertions, but by the path integral with a
squeezing operator inserted. Nevertheless, this construction leads to a one-to-one
correspondence between line operators on R® x S! and states on S? x S! and a
classification of line operators in terms of the current algebra. In short, Wilson-"t

Hooft lines,
Wom(S) =exp(in/ a +im/ Zz), (4.6.1)
s! sl

are charged under the one-form symmetries, O, (4.5.29):

i n+ttm

+ 1 7wl rT+im
05 an,m(S) iﬁro Imt

Wim (Sl), (4.6.2)
and annihilated by the lowering operators 8y, (4.5.73), of the Kac-Moody algebra:
Bat X Wy m(Sh) ~o0. (4.6.3)

This defines them as primary operators. They have definite scaling weight, as defined
previously, given by

1 _
EQ(_)FQO X W”,m(Sl) ~ An,m\Nn,m(Sl), (4.6.4)
7 |n+tm]?
Apm=——"". 4.6.5
T2 Imt (4.6.5)

The path integral on B3 x S! with an insertion of Wy, », (S'), dressed by a squeezing
operator, (4.5.70), prepares the primary energy eigenstates, |n,m) (4.4.67). Descend-
ant line operators are given by acting with raising operators, 58: 4> (4.5.74), on the
primaries. Again, the path-inegral on B* x S!, with a descendant, dressed with a
squeezing operator, produces the descendant states (4.4.75).

We comment on several questions we have left unanswered and possible generalisa-
tions.
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Non-invertible symmetries and orbifold branches

In subsection 4.4.3 we described a non-invertible current algebra. This was described
in terms of the fusion rules of non-invertible topological operators. The free theory
that realises the algebra is, in that case, that of an O(2) p-form gauge theory. One very
interesting question is to construct the representation theory of these non-invertible
current algebras. At p = 0, or equivalently in d = 2, an important role is played
by tube algebras [311, 312] and lasso actions [60] associated to the fusion of the
topological operators. A careful study of this, should land exactly on the orbifold
branch of a compact scalar, which has a much simpler algebraic description [286].
Similarly, exploiting and generalising representation theory of higher-dimensional
non-invertible symmeties [287-290] should give an algebraic point of view to orbifold
branches of gauge-theories, operning a window to new BKT-like phase transitions at
points of enhanced symmetry.

Non-abelian current algebras

Despite the absence of non-abelian higher-form symmeries, one could still consider
the physics of a four-dimensional CFT with a non-abelian version of our higher-
dimensional current algebra, schematically of the form:

[08.08] = f°T1, OF + kA8 S, (4.6.6)

where the u(1) x u(1) indices, £, got replaced by some Lie algebra, g, indices,
{a,b,c,---}. There are a few indicators that such an algebra might be hiding be-
hind four-dimensional superconformal field theories. For instance, the form of the
Vafa-Witten partition functions [313], for N = 4 super-Yang-Mills (SYM) theory
and their relation to two-dimensional RCFTs is reminiscent of our exact formulas for
the Maxwell partition fuction and their two-dimensional analogues. A more concrete
indicator is Kapustin’s definition of scaling weight for %BPS operators in N' = 4 SYM
[273], which is arrived at in a similar way as the one for Wilson-"t Hooft operators,
which as we saw, is intimately linked to the current algebra.

Modularity and factorisation

The form, (4.4.46) of the partition function begs for an investigation of the modularity
properties of the partition function, as well as a possible “holomorphic factorisation”
of the partition function. Both of these directions deserve separate attention. On
the modularity side, if higher-dimensional CFTs behave like two-dimensional, then
swapping the thermal circle for a spatial one-cycles should leave the partition function
unaffected. Harnessing that statement leads to a generalised Cardy formula [265]
and a universal form of the Casimir energy [270]. Our exact form of the partition
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4. State-operator correspondence for nonlocal operators

function of Maxwell theory, can serve as a testing ground for modularity in higher-
dimensional CFTs. Relatedly, but with a different goal in mind, one could imagine
making ¢ complex and study whether the Maxwell partition function factorises in a
holomorphic and anti-holomorphic piece:

Zniaxwel (@ §) = Z(q) Z()- (4.6.7)

This would open a new window towards the physics of chiral one-forms (or more
generally chiral p-forms), whose importance in six-dimensional superconformal field
theories and in M-theory makes them subject of constant study [2, 232-235, 240,
314-316].

Other topologies

The choice of S x S! for our state-operator correspondence is a natural one for that
the unique one-cycle allows line operators wrapping it and the unique two-cycle
allows a single flux. It is not clear that this is the only choice, though. For example,
states on a T3 topology are prepared via a four-dimensional path integral with
some two-cycle filled in. It is likely that to get the complete set of states we have to
consider a mixture of states prepared by filling in every two-cycle. Therefore, the
state-operator map, would, in that case, include a sum over topologies, with a given
boundary, in the path integral. This is not the case here, because of the requirement
that the S! remains non-trivial.

Surgery and overlaps

Given our state-operator correspondence, we now have a resolution of the identity
on S2 x S!, in terms of line operators:

I= Y > Wi {Nao N Wom: {Nao}| - (4.6.8)

n.meZ {Nns}

We can use this to simplify correlation functions on manifolds that can be cut along
an S? x S!. Relatedly, states can be glued to produce partition functions or cor-
relation functions on manifolds surgered along S? x S!. This fact opens up a new
perspective on partition functions. Take, for example, partition functions in d Euc-
lidean dimensions with the topology of the sphere. These are known to be related
to counting problems through F-theorem arguments [317], at least in d = 3. On
the other hand, by the logic above, this partition function should be related to the
overlap between states prepared by computing path integrals on some half spaces
which do not necessarily produce the vacuum of the theory. An example would
amount to considering the Hopf fibration of the sphere and consider states defined
on the T? gluing surface. Now we know those states, while having a simple path
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integral construction, are described by complicated superpositions of high-energy
eigenstates. Therefore, these partition functions could have a more natural counting
interpretation shedding light on the exact nature of the F-theorem. At this point this
is just a plausibility argument, as we have only focused on theories with higher-form
symmetries in even dimensions. It would be interesting to study this in more depth.
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CONCLUSIONS

In this thesis we have considered aspects of generalised symmetries and their ap-
plications in topological and conformal quantum field theories. In this last chapter
we briefly summarise the salient features and main results of this thesis and discuss
interesting future directions and open questions.

Symmetries have served as an extermely useful guiding principle in the development
and study of quantum field theory. In recent years, a transformative generalisation of
the notion of symmetries has taken place. This includes, among others, higher-form,
higher-group, non-invertible and subsystem symmetries. All of these serve as new
organising principles for quantum field theories, the phases of matter, and (at a
more philosophical level) nature as a whole. Throughout this thesis, generalised
symmetries — in particular higher-form symmetries for the most part — have been
crucial in obtaining universal results about the entanglement properties of topological
quantum field theories, and about the underlying structure of conformal field theories.

From a condensed-matter-theoretic point of view, topological field theories arise
as low-energy effective descriptions of topologically ordered systems. A physical
mechanism for topological order in three (spacetime) dimensions, is given by the
condensation of networks of line operators, known as string-net condensation. In
higher-dimensions, analogous models — condensing networks of p-dimensional
surface operators — give rise to topologically ordered ground states. This is intim-
ately connected to generalised symmetries, as taking the generators of a discrete
p-form symmetry as the condensing network, provides a description of deconfined,
discrete (higher-)gauge theories. The long distance behaviour of these models is
described by a specific topological quantum field theory, known as p-form BF theory.
Moreover, topological orders correspond to and are classified by different patterns of
entanglement. This is most cleanly showcased by the celebrated topological entan-
glement entropy [165, 166]. Understanding patterns of entanglement in p-form BF
theory, gives direct low-energy access to a systematic understanding of topological
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order in higher-dimensions. This was the main motivating question for [1, 2] and
correspondingly chapters 2 and 3.

In contrast to discrete theories, deconfined phases of (higher-)gauge theories with
continuous gauge groups are gapless. Behind this fact lie, again, generalised sym-
metries. In particular, such phases can be understood as spontaneous symmetry
breaking phases of higher-form global symmetries. A prominent example of that
is given by electromagnetism (free Maxwell theory), and provides an explanation
of the gaplessness of the photon in our world. In specific dimensions, these gapless
phases become conformal. The combination of conformal invariance with generalised
symmetries turns out to be extremely strong and leads to universal statements about
the structure of conformal field theory. These ideas underlie much of the motivation
and provide the groundwork for [3] and correspondingly chapter 4.

5.1 Summary

Having described the main conceptual underpinnings of this thesis, we will go into
more detail, outlining the main results.

Algebraic and essential entanglement

Entanglement in gauge theories is tricky business. The main reason is non factoris-
ability of the Hilbert space. Let us elaborate. Suppose one is interested in how the
degrees of freedom in a region, R, of space are entangled with the rest: R® = space\ R.
A quantitative measure of that is the von Neumann entropy of a state — commonly
taken to be the ground state, or some other pure state — reduced in the region, R, of
interest, i.e. having traced out all the degrees of freedom outside. This step already
consists in bipartitioning the space of states. In gauge theories such a factorisation
is not available, the reason being that elementary excitations are associated with
closed loops, rather than points. A natural way to define entanglement, bypassing
the problem is via operator algebras [183]. There, the lack of factorisation presents
itself as a non-trivial centre of the algebra.

Topologically ordered systems, and their low-energy descriptions, also exhibit lack
of factorisation of their space of states, due to the presence of nonlocal operators. In
chapter 2 we argued that a modification of the above reasoning and the techniques
that come along is very suitable in the study of entanglement in topological field
theories, and we showed that it leads to a concrete measure of entanglement in
p-form BF theory. More precisely, we considered the algebra of topological operators
that act on a spatial slice of the theory. We showed that associated with these algebras
there are two natural and consistent (non-trivial) choices of subalgebras restricted to
a subregion, R. These can be roughly described as follows:
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1. The set of operators that can be deformed to act entirely in R, and
2. the set of operators that cannot be deformed to act entirely outside of R.

We call these topological algebras magnetic and electric, respectively, owing to their
connections to analogous algebras in lattice gauge theories. They are related to one
another by a form of subregion electric-magnetic duality.

We then put these algebras to use and assigned an entanglement entropy to the
ground states of the theory under consideration. The topological nature of the theory
allowed us to evaluate this entropy in arbitrary dimensions, arbitrary spatial slices,
and subregions of arbitrary topology. We termed this entropy essential topological
entanglement (ETE). The main features of ETE for p-form BF theory are the following:

1. It is positive. This is in contrast to the traditional topological entanglement
entropy [165, 166], which is negative and can only be thought of as an entropy
difference.

2. It is finite. ETE is bounded from above by the dimension of the Hilbert space.
This is not straightforward in theories lacking Hilbert space factorisation, but
crucial for TQFTs, where the Hilbert space is finite-dimensional.

3. It is topological. ETE depends solely on the topology of the spatial slice and the
topology entangling surface, i.e. the interface between the region of interest
and the rest of the spatial slice.

Moreover it possesses additional qualities which make it a useful tool to study
topological order: it probes the total quantum dimension of the system, it cannot be
distilled into Bell pairs, and it is defined intrinsically in the infrared description.

Edge-modes, current algebras, and entanglement spectrum

A more traditional approach to understanding the entanglement structure of to-
pologically ordered phases relies on studying their spectrum of edge-modes. The
logic goes as follows. TQFTs, when placed on manifolds with boundary are host to
gapless edge-modes. The prototypical example is Chern-Simons theory supporting
a compact chiral scalar on its boundary in the abelian case, or Wess-Zumino-Witten
scalars in the non-abelian case. The density matrix of the edge-mode theory, reduced
in a region of interest is maximally mixed among an infinite number of modes, giving
rise to an entropy controlled by a divergent, geometry-dependent, area law. Import-
antly, however, the subleading constant correction is universal and captures presicely
the topological entanglement entropy of Kitaev and Preskill [165], and Levin and Wen
[166]. Thus, the edge-mode spectrum captures, entirely, the entanglement pattern
defining the topological order. This goes by the name of edge-entanglement spectrum
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correspondence. What truly lies behind, is that the large gauge transformations of
the Chern-Simons theory on a manifold with boundary give rise to a chiral current
algebra that generates the spectrum of the edge theory.

In chapter 3 we presented a story along very similar lines, that is valid in arbitrary
dimensions, and arbitrary topology — restricting, however, to abelian topological
orders. The setup is similar to chapter 2, namely p-surface net condensation topolo-
gical orders and their low-energy p-form BF theory description, but the result has a
different flavour. Namely, we described how BF theory supports chiral gapless edge-
modes given by higher-form abelian gauge theories, in what we called chiral mixed
Maxwell theory. Moreover, we showed that the spectrum of this theory is generated
by a higher-dimensional generalisation of the chiral Kac-Moody algebras. We further
used this theory to extract an entanglement entropy. Firstly by studying the partition
function of chiral mixed Maxwell theory on replicated manifolds, and secondly by an
extended Hilbert space approach [176, 182], using the higher-dimenional chiral cur-
rent algebra. This resulted in divergent area and sub-area contributions, controlled
by geometric coefficients, and subleading corrections. We argued that a higher-
dimensional Kitaev—Perskill / Levin-Wen subtraction scheme reveals a universal,
topological subleading correction generalising the topological entanglement entropy
(in a different way than ETE presented above) to higher-dimensions. Finally, the
relation of the edge-mode theory to the entaglement entropy, via the current algebra,
presents a higher-dimensional edge-entanglement spectrum correspondence.

The structure of conformal field theories

In chapter 4 we stayed within the theme of higher-dimensional current algebras,
this time in conformal field theories. The key observation, originally due to [37], is
that unitary conformal field theories in even spacetime dimensions with continuous
higher-form symmetries have a realisation in terms of free higher-form gauge fields.
We exploited this observation, including also continuous non-invertible symmetries,
to show that the spectrum of these theories is organised in terms of a current algebra,
very similar to the current algebras of chapter 3. The difference with chapter 3, is that
there the algebra comes from bulk gauge transformations pushed to the boundary,
while here the theory and its current algebra are intrinsically defined. This is akin
to the difference between two chiral bosons and one, non-chiral, compact boson.
Nonetheless, the techniques are similar. We constructed the representation theory
of this current algebra allowing us to compute the spectrum of higher-form abelian
gauge theory on arbitrary topology.!

1 Actually in chapter 4 we did so for one-form gauge fields, namely just free photons. However, the
spectrum for generic higher-form gauge field follows for free, by adapting the techniques of this chapter,
with chapter 3 and appendix B.1.
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Focussing in four-dimensional conformal field theories, we showed that the current
algebras organise not only the spectrum of states, but also that of nonlocal operators.
This led to a classification of line operators in free Maxwell theory, into primary
and descendant operators, with respect to the organising current algebra. More
importantly, however, it led to our main result: a direct and explicit one-to-one corres-
pondence between states on S x S! and line operators. While such a correspondence
was achieved in the presence of symmetries that organise the CFT, it adds an essential
piece to our understanding of conformal field theory beyond flat spacetimes.

5.2 Outlook

The research presented in this thesis provided just a miniscule piece of the puzzle of
understanding nature. Most important open questions remained unsolved, and most
of the combined understanding of humankind remained unaffected. Even so, several
interesting future research directions arose. Several of them are briefly explored
in the discussion sections of the relevant chapters. In this final section, we further
expand on some of these ideas introduce a few new ones that were not previously
addressed.

Entanglement imprint of symmetries

Given the overall power of symmetries in quantum field theory, a natural question
to ask is whether they leave an imprint on the entanglement spectrum of a theory.
In other words, do symmetries constrain the nonlocal correlations of the states of
a theory? The telltale sign of such a constraint would be to identify a measure of
entanglement — an entanglement entropy — that is robust, meaning that it does
not depend on fine geometric of the setup, and universal, meaning that quantum
field theories sharing the same symmetries would have to necessarily share this
entanglement. The interplay of symmetries and entanglement is studied in the
literature under the moniker of symmetry resolved entanglement (SRE) [318, 319]?
However, despite it being a potentially useful measure of entanglement, SRE does
not exhibit the desired features of robustness and universality. For example, in
two dimensional conformal field theories, SRE depends logarithmically on the ratio
between the length of the subregion and a non-universal cutoff scale. Moreover,
it actually only depends very weakly on the symmetry spectrum itself, a property
known as equipartition [322]3

A different strategy is needed. What we would like to advocate for, here, is that the

2See also [320] for a review, and [321] for an approach incorportating non-invertible symmetries.

3To be more precise, the premise in SRE is that one calculates an entanglement entropy associated
to a sector of fixed charge of the theory. It turns out that this entropy depends on the charge only at
sub-sub-sub-subleading order.
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topological operator algebras of chapter 2 seem to be a promising direction. We can
argue for that in the following way. Consider a non-topological theory that enjoys
some symmetry. In the modern description (cf. section 1.1) this is encoded in a
set of topological operators that implement the symmetry. More precisely, it is an
algebra of topological operators. This algebra is shared by all theories enjoying the
same symmetry. Since we are interested in entanglement, we have to restrict this
algebra to a subregion, which leads directly to the subregion topological operator
algebras of chapter 2. The same techniques can be applied to defined a measure of
entanglement, analogous to essential topological entanglement, but associated with
the symmetries of the theory. Of course, difficulties may arise in the process. For
example, it is not entirely clear how to separate the topological subregion algebras,
from the non-topological ones, in a mathematically concrete way. This has to do with
the fact that topological subregion algebras form naturally a type I von Neumann
algebra, while the algebra of all operators, restricted to a subregion, is typically type
III. The difficulty then is that of identifying and separating a type I subalgebra inside
the full algebra. Nonetheless, assuming that these hurdles can be overcome, the result
will necessarily be a robust and universal measure of entanglement reflecting the
symmetry structure of the theory.

One way to bypass the issues mentioned above, while still in keeping with the
same conceptual theme is to “grow an extra dimension.” The algebras of topological
operators are neatly packed in the symmetry topological field theory (symTFT) (cf.
subsection 1.1.4) of the theory. As a reminder for the reader, the symTFT is a one-
higher-dimensional topological field theory, associated with any quantum field theory
enjoying some symmetry. Its primary advantage is that it decouples the action of the
symmetries from the dynamical content of the theory under consideration. As such
one can exploit its power to obtain universal results. It would be very interesting
to apply the symTFT philosophy in the study of entanglement. The proposal is
that the essential topological entanglement, for a TQFT associated with a fusion
(higher-)category € (in the sense of [151]) contains robust information about the
entanglement spectrum of a quantum field theory with symmetry €. This proposal
is exactly commensurate with the ideas of the above paragraph.

The general statement is speculative. In order to turn it into a concrete physical
proposal, one needs to understand subregion topological operator algebras for objects,
morphisms, and higher-morphisms of a higher-category. However, besides the
arguments presented above there are indications about its correctness and usefulness,
at least in the case of invertible symmetries. Consider, for instance, four-dimensional
N = 4 SU(N) super-Yang—Mills theory. It enjoys a one-form Zg\l,] symmetry. The
symTFT associated with it is a five-dimensional 2-form BF theory with level N.
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Consequently the essential topological entanglement for this theory is
& =#logN, (5.2.1)

where # is a number depending on the topology of the subregion of interest and the
rest of the Cauchy slice. Looking at this result from a holographic point of view, it
has the flavour of logarithmic corrections to black hole entropy, which are known to
be very robust. This approach offers a potential symmetry origin of this fact.

Chiral physics

Chiral higher-gauge fields are higher-form gauge fields with self-dual field strength*
They appear prominently in various areas in theoretical physics. A single chiral
field carries anomalies. The simplest example is a single chiral scalar field in two
dimensions. It has an ’t Hooft anomalous U(1) symmetry, while also exhibits gravita-
tional anomalies. The modern approach to treating anomalies consists in placing the
system at the boundary of an anomaly inflow theory, or equivalently at the boundary
of an SPT phase. In this particular case, it has been known and well-appreciated for
decades, and is well-appreciated that placing an integer quantum Hall state® on a
region with a boundary induces gapless chiral edge modes on its boundary. In the
higher-form case the most notable appearances of chiral gauge fields is in string
and M-theory. In type IIB string theory they appear through the Ramond-Ramond
four-form, which is constrained to have self-dual flux. In M-theory, a two-form gauge
field with self-dual field-strength propagates on the worldvolume of an M5-brane.
Relatedly, such a field appears in six-dimensional & = (2, 0) superconformal field
theories. A full quantum mechanical understanding of these theories is imperative to
attest the viability of string or M-theory as a fully-fledged theory of quantum gravity.
While there are various results that tie together pieces of this puzzle, a complete
understanding has not yet been achieved.

The first problem one encounters when attempting to deal with chiral p-forms is
the lack of a Lagrangian description. There are two main approaches attempting at
bypassing this problem and treating chiral p-forms in a unified way. Let us briefly
review them, outlining their strengths and pitfalls, before proposing a new approach.
The first approach consists in a form of holomorphic factorisation [324-326]. Namely,
one considers the partition function of a non-chiral p-form and tries to write it as

?
Znon-chiml = |®|2» (5.2.2)

4Chiral p-form gauge fields are allowed in d = 2p + 2 dimensions.

>The integer quantum Hall effect is an example of an invertible topological order. According to the
original definition of topological order [133] it is not an SPT phase. According to Kitaev’s later definition
[323], however, it is.

167



5. Conclusions

for some function, ®, of the coupling constant. Then ® bears immediately the
interpretation of a chiral-form partition function. The main problem with that is
that actually the non-chiral partition function takes the form of a sum of squares
(cf. chapter 4) rather than a single square. This is a manifestation of the anomaly
carried by the chiral form, namely its partition function should more properly be
thought of as a partition vector, indicating a relative theory. The second approach
is aimed at treating exactly this issue. Motivated by the quantum Hall case and
the more general understanding of relative theories living at the edge of a gapped
bulk, one writes a Chern-Simons-type topological theory in one dimension higher
and evaluates its partition function on a space with boundary, supporting the chiral
edge modes [237, 239, 327, 328]. While this is, to date, the most promising attempt,
it does not always work, and even when it does it depends on intricate choices in
the higher-dimensional theory, which seem unnatural from the lower-dimensional
point of view. For example, in d = 2 mod 4 dimensions, there is a bulk description
given by Chern-Simons theory, with a specific choice of quadratic refinement of the
differential cohomology pairing. However, such a description is not straightforward
in d = 0 mod 4 dimensions, and indeed it is expected that the analogous description
of the Ramond-Ramond field in type IIB string theory should be through differential
K-theory [329].

For the chiral scalar there is a third approach, that is not shared with its higher-form
counterparts. That is, the chiral sclar enjoys a spectrum-generating chiral algebra.
This allows for a Hamiltonian quantisation, with which one obtains the full spectrum
of the theory on the circle and the partition function on the torus. In chapters 3
and 4 we showed that higher-form gauge fields also enjoy such current algebras. In
those cases the algebra concerned either a non-chiral field or a doubled mixture of
chiral fields. Nevertheless, this approach leads to a straightforward proposal. That is,
simply, to consider and quantise half of the chiral algebras presented there. This is,
in some sense, the link between the holomorphic factorisation approach and the bulk
approach to chiral physics. Furthermore, it gives a natural conjecture for the form
of the thermal partition function of a chiral p-form! namely one half of (3.3.30), or,

schematically:

» Ox(q:k
Zchiralp-form[Sl X E] ; %’
Ny (q)

with the participating functions as defined in the body of the thesis. Moreover, this
approach may be appropriate in understanding non-abelian self-dual fields, such as
the ones appearing in N = (2, 0) superconformal field theories, by generalising the
current algebras to non-abelian versions thereof (see also the outlook in chapter 4).

0f course, this depends explicitly on a choice of quantisation of the fluxes of the fields. Such a choice
is natural with respect to a higher-dimensional theory, but ad hoc on the chiral theory, commensurate
with its relative nature.
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5.2. Outlook

The space of CFTs

Another possibility relating to the aforementioned current algebras, and inspired by
well-known two-dimensional physics concerns the space of CFTs. More precisely,
the space of CFTs in the universality class of Maxwell theory. This is an analogue to
the space of two-dimensional CFTs with central charge ¢ = 1. In two dimensions,
this space consists of (apart from three isolated points) two continuous branches,
corresponding to CFTs realised as a free compact scalar at some radius, and CFTs
realised by a Z, orbifold of a free compact scalar. Moreover, the two branches meet
at a point of enhanced symmetry, which is intimately linked to the Berezinskii-
Kosterlitz-Thouless (BKT) [330-332] phase transition. From a modern point of
view these two branches correspond precisely to two-dimensional CFTs enjoying
a continuous U(1) (zero-form) symmetry and a continuous abelian non-invertible
symmetry, while the BKT point corresponds to the unique CFT enjoying both/

In chapter 4 we developed tools which are equipped to attack similar questions
in higher dimensions. Wearing the current algebra glasses, Maxwell theory is the
four-dimensional version of the circle branch of a compact scalar CFT, while the O(2)
gauge theory takes the roles of the orbifold branch. So one first question one may
ask, is whether the two branches meet, similarly to what happens in two dimensions.
Here however, there is an additional sensitivity related to the existence of multiple
spatial slices one can quantise the theory on. For example, there may be a point
where they meet when quantised say on a three-sphere, but not on a three-torus.
Or vice versa. Such a scenario would open a window for truly topological phase
transition, viewing Maxwell theory at this intersection point as the infrared fixed
point of a higher-dimensional BKT-like phase transition. Relatedly, one may ask,
whether these two branches exhaust the space of CFTs of this universality class,
like the ¢ = 1 theories do in two dimensions. On the one hand, the expectation
is yes, given the general rarity of non-supersymmetric CFTs in higher dimensions.
On the other hand, an approach like the one that revealed the three isolated points
in two-dimensional ¢ = 1 [293] may lead to CFTs outside the two branches. The
reason is simple: there are more allowed topological manipulations. For instance,
besides gauging a discrete symmetry, one can also higher-gauge [333], revealing new
non-invertible defects in the resulting theory that do not match those of either the
circle or the orbifold branch.

A related issue that this general approach reveals is related to the very notion of a
marginal operator. Let us recall the stroy from two dimensions. At a generic point
along the circle branch of the compact scalar the operator d¢ d¢ is exactly marginal
and moves us along the circle branch. At the T-duality self-dual point, where the

"The story is subtle but beautiful. See [63] for details.
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5. Conclusions

symmetry is enhanced to SU(2) two more marginal operators appear: etiv2e A
linear combination of them, cos(ﬁqﬁ) is even under the charge-conjugation Z,
symmetry and upon survives upon its gauging. This is the operator that moves us
along the orbifold branch. Coming back to Maxwell theory, a very similar story
unfolds, only now the role of cos(ﬁtb) is played by a charge-conjugation invariant

V(y) = exp(i/ya) @exp(—i/ya), (5.2.3)

where a is the photon of Maxwell theory. This operator should have the task of
moving along the orbifold branch, or O(2) gauge theory. What is the precise way
in which such operators are marginal, and most importantly, how does one couple
them consistently to a conformal field theory? There are two natural guesses: one is
to consider a non-genuine local operator, constrained to live on the curve y [63] and
couple that to the theory. In that case marginality is inherited from the usual marginal
property of local operators. Another one, is that we have to take a more radical
approach and write a theory of line operators, along the lines of [42]. Although
these last few paragraphs are mostly posing questions and do not propose or attempt
solutions, such questions indicate at a significant gap in our understanding of CFTs
in higher-dimensions.

line operator:

8We are treating only the holomorphic part here. The antiholomorphic part behaves similarly.
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APPENDICES FOR CHAPTER 2

A.1 Precision BF

In this appendix we take a closer look at BF theory in cases where the usual definitions
are insufficient, such as when the theory is defined on a manifold with torsion. The
appropriate language to define BF theory precisely is that of differential cohomology.
We use this language to write down the BF action on a generic manifold and give a
precise definition of the path-integral measure and its properties. For the following
we will take X to be a d-dimensional manifold, possibly with boundary and we will
denote by ¢, : dX — X the embedding of the boundary.

When studying p-form gauge theories on a non-trivial manifold the p-form gauge
field is insufficient to capture all the topological properties of the theory. Instead,
the relevant degrees of freedom can be captured by a (p + 1)-cocycle in differential
cohomology, Hp+1 (X)1,ie. atriplet A= (A, N4, F4), where A is aregular p-cochain
(the gauge field), N4 is a (p + 1)-cocycle (giving rise to the flux, upon integration)
and Fy4 is a closed (p + 1)-form (the field strength). The constituents of the triplet
are related by a constraint: F4 = dA + N4. To define actions, we also need a
product in differential cohomology, v : H? (X ) X HY X)) — HP+4 (X), that will
replace the usual wedge product of differential forms. For a gentle introduction on
the usage of differential cohomology in higher-gauge theories see [328], while for
a mathematically rigorous approach see [334]. The bottomline, is that using the
product Vv, one can write the BF action, on a generic d-dimensional manifold X, as a
pairing in differential cohomology:

Seel d. B] = /X By A (A1.1)

'More precisely, differential cohomology is categorical in spirit, so this is a workable model of it,
known as Deligne or Deligne-Beilinson cohomology.
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The above action action can we written in more user-friendly way as

SBF[/I, é] =/ BﬂatAdAJr/ B, (A.1.2)
X PD[N4]

where By, is, as the name suggests the flat part of B, with Fp,, = 0 and
PD[N4] € Hy—p—1(X) is the Poincaré dual of N4. Here let us note that while differ-
ential cohomology is the correct framework to define BF theory, in practice only the
torsion part of X can have a non-trivial effect. This is most readily seen in (A.1.2).
Since Hy—,—1(X) = Torg—p,—1(X) @ Zba—p—1X) Dirac quantisation implies that the
non-torsion part of the second term contributes as 2 x integer, which is trivial upon
exponentiation. Therefore the action is effectively S = [, B AdA + torsion, reducing
to the usual BF action, (2.2.1), whenever X has no torsion.

The final step to close this intellectual detour is to define the BF path-integral. The
formal path-integral measure is

du (A, B) .= DADE eS| 48] (A13)

where we are summing over differential cohomology elements. The functional
measure DA instructs us to integrate over all closed (p + 1)-forms F4 € Qgﬂ (X),
integrate over all p-cochains A € C?(X), and finally sum over all (p + 1)-cohomology
classes, N4 € HP1(X), respecting the constraint F4 = d4 + N,4. Moreover, to avoid
overcounting we need to identify configurations that differ by a flat (p — 1)-form
field that vanishes on the boundary. The latter we will do simply by dividing out by
the volume of these gauge transformations. The integral over Fj is trivial, due to the
constraint, so we are left with

. DA
DAO[A] = / —————=0O[(A, Na,8A4 + Ny)],
/ﬁp+1 X N, EH,; iz V0 vol(5p (X))

(A.1.4)
where O[A] is an arbitrary test-functional.

We will only be dealing with a continuous structure group, therefore, we can safely
regard A as a p-form. In this case, §, is defined recursively as (taking §y = @)

Gp(X) = {o e QPN (X) | fa = o}/gp_l(X). (A.15)

Note that the gauge transformations act in principle also on N4. Their action has
been, however, absorbed into constraining N4 to be in the cohomology rather than in
Z7+1(X; Z). Obviously, the story is the same for DB, with the appropriate changes
in form-degrees.

One important property of the measure (A.1.3), which we use in the main text, is that
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if we shift A and B by some fixed & and Ji respectively, the measure transforms as

du(A+a B+ f) = du (4, By &Swlo:B] gisur[ 4] gisw[a] (A.16)

A.2 Proofs for section 2.3.

Proof of subregion electric-magnetic duality

Subregion electric-magnetic duality as described in subsection 2.3.1 is the statement
that the surface operators generating 2mag[R] are in 1-1 correspondence with surface
operators generating ee.[R]. Let us prove it. To do so, it suffices to show the
following:

Claim: The pairing
L:Hy(2) xHj—p—1(X) — R

(n,0) — 1
nNo

is non-degenerate restricted to imi f

text i ,f : Hx (R) — Hg(X) is the pushforward in homology of the map that embeds
R into ¥ and similarly for R°.

. C . . .
x coker i f_p_l , where, as explained in the main

Proof. Let us assume the opposite of the claim. That is, either,
(i) There exists an 7 € imi X, such that (7, o) = 0, for all ¢ € cokeri f—p—l or
(ii) There exists a 6 € coker if, such that L.(n,6) = 0, for all n € im iffpfl'

Note that since 7 € imi If, it can always be homotopically deformed to lie entirely in
R. We can therefore restrict our attention to cycles restricted in R. Then 5|z € Hp(R),
while 0|z € Hy—,—1(R, dR).

Let us assume case (i). By Poincaré-Lefschetz duality, Hy_,—1 (R, 0R) = H? (R \ dR)
~ H? (F) we have

filr

0= /ﬁlRﬂalRl =/ PD[o|gl, VPD[a|R] GHP(E), (A.2.1)

where PDJ-] denotes the Poincaré(-Lefschetz) dual of a cycle. In words, there exists a
p-cycle of R that is orthogonal to all p-cohomology classes of R, which is impossible.
The proof of (ii) is wholly similar, with the difference being that the conclusion is
that there exists a p-cohomology class in R orthogonal to all p-cycles of R, which is
again impossible. [ |
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Proof of claim (2.3.9)

Claim:

(gl RI) = {39

0ol & RC} = g R (A.2.2)

Proof. Consider first the commutant of the operators V¥ Amag[R]. We want to
show that an commutes with all \73 € Unag[R] iff n € im i fc. Firstly note that by
the definition of the algebra, (2.2.34), VAVg commutes with \73 iff L(n,0) = 0. The
statement we need to prove reduces, then, to the following:

L(n.0) =0, "o eimig , , iff neimiy}. (A.2.3)

(=) Ifn e imilfc, it is clear that L(n,0) = 0, Yo € imi(f_p_l, since we can
homotopically move ¢ and 7 to lie within the interior of R and R respectively.

(&) We will prove the only if direction ad absurdum. For that, suppose that n ¢
im ifc. Then, since H,(X) = im ifc @ coker ifc, n € coker ifc. Restricted to R
then, n|g € Hy(R,dR) and o|i € Hy—,—1(R). By Poincaré-Lefschetz duality,
H,(R,0R) = HY~P~!(R\ dR) = HY~P~1(R) and we have then,

! o

0=L(1.0) =L(nlg.0lg) = / PD[n|g]. o € imig. (A-2.4)
alr

where, PD[5|z] € H¢~P~! (ﬁ) is the Poincaré-Lefschetz dual of 7|g. That is

to say, PD[n|g] must be orthogonal to all (d — p — 1)-cycles of R, which is

impossible. Therefore the assumption that n ¢ imi Ifec was absurd.

The proof for the commutant of operators VAVZ’ € Apmag[R] is wholly similar, concluding
thus the proof of the claim. [ |

Proof of claim (2.3.15)

Claim: _
(et RD* = LW, 72

ﬂi, UjZR} = 22[elec[RC]. (A.Z.S)

Proof. Consider first the commutant of the operators \73 € Aeec[R]. We want to
show that W}’ commutes with all VI € e [R] iff n € cokeri f. As before, by the
definition of the algebra, (2.2.34), the statement we need to prove reduces to:

L(n.0)=0, Yo e cokeri[ffip_1 iff ne cokerilfe. (A.2.6)

(<) We will first prove the only if direction. This we will prove again by contradic-
tion. For that, suppose that ¢ cokeri 15' Then, n € im if. Restricting to R we
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have 5|z € Hy(R) and 0| € Hy—,—1(R, dR). By Poincaré-Lefschetz duality,
Hy—p—1(R,0R) = HP(R \ dR) = H”(R) hence,

0= L(n,0) =L(nlg,0lg) = / PD[o|g]. Yo € cokerilg. (A.2.7)
nlr

where, PD[o|z] € HP(R) is the Poincaré-Lefschetz dual of o|g. That is to

say, every p-cocycle in the interior of R must be orthogonal to 7|z, which is
impossible. Therefore the assumption that n ¢ coker ilfc was absurd.

(=) The if direction follows immediately from subregion electric-magnetic duality,

proven above, and the fact that the rank of IL is b, (X) (since it is inverse to G,

as a matrix). The restrictions of L to the subspaces im i f x coker i fip_l and

‘R

cokeri* x imi fip_l saturate the rank of I, hence the rank of IL restricted to

NI

. .RC . .R _
coker i x coker iy, iszero.In other words for any n € cokeri,’, L(n,0) =

0, Yo € cokeri fi =10 concluding the proof.

The proof for the commutant of operators an € Uelec[R] is wholly similar, concluding
thus the proof of the claim. [ |

Counting the magnetic and electric centers

Let us first focus on the magnetic center. Consider, as in the main text, the pushout
square that embeds dR into ¥ through R and R®:

Each of these maps induces a push-forward on the homology,
JRO H (BR(C)) ~H, (R(C)), (A.2.8)
iR Hk(R(“)> SH(D). (A.2.9)

The operators in the magnetic algebra of R, n,.[R], are generated by surface op-
erators whose cycles lie in the image of if and i f_p_l and similarly for 2pag[R],
replacing R by R€. The cycles generating the center then lie in im f Nimi 5c and
imi f_ 1N imi fi =1 Since R and R share only 0R, it is evident that the cycles
generating the center lie inim (iR o j®), = im (1% o j*°), =:im €k, as illustrated
by the above pushout square. Therefore, the dimension of the magnetic center is
V23 d—p—1
| 3maglR]| = (et K | (Poe-+hineg ) ok = dim im £2R. (A.2.10)

mag
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Since 0R C X, we can calculate dimim Z,‘ZR by the long exact sequence of relative
homology [335]:

HL(0R) % HL(D) 5 Hy(3, 0R) S Hy_ (9R) — - - . (A.2.11)
Using exactness of the sequence, we find that

k—1
dimim € = (-=1)*7' Y " (-1)" dimH, (0R)
n=0
k
+ (=% Y (=" (dimH,(Z) — dimH, (. 0R)). (A.2.12)

n=0

which leads to (2.3.12).

It is useful to pause at this point and illustrate how the bulk dependent terms of
(A.2.12) ensure the correct counting of operators when X is topologically trivial.
For example, consider the case when ¥ = S2, R is collection of ¢ disks such that
dR = | |?S!, and let k = 1. In this case, since there are no non-trivial 1-cycles on
S?, there are no 1-cycle operators in 2A[X] to count. We should find dimim ¢; = 0.
Applying (2.3.12) we find

dimim¢; = dimHp(dR) — dim Ho(S?)
+ dimHo(S?, 9R) + dim H; (S?) — dim H, (S, dR)
=g — 1+ dimH(S?, 0R) — dimH, (S, R) (A.2.13)

To calculate the dimensions of the relative homologies, we note that H, (X, 0R) =
H, (2/3R) where H,, (-) denotes reduced homology and /4R is the quotient space. By
definition of the reduced homology dim Ho(S?/dR) = 0 and we can easily calculate
dimH, (S?/dR) = ¢ — 1, as illustrated in figure A.1. Thus indeed

dimimZ¢; =0 (A.2.14)

in this case.
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Figure A.1: (Left) The setup of the above example: ¥ = S? and R = | | B2. (Right) =/0R.

Coming back to the general case, we can now sum the hf,,, and hff,;gp ! to find

hpag := dimim Kf,R + dimim Zglip_l

p—1

=2 Z(—nl’—l—" dimH, (dR) + (=1)?" ¥ (dR) + dimH,(X) + (—1)?x(¥)
n=0

P d—p—1

+ > (=DPT T dimH,(S.0R) + Y (=D 7P dimH, (3, 9R)
p_1n=0 n=0

=2 Z(—l)p_l_” dimH, (dR) + (=17~ ¥ (dR) + dimH,(Z) + (=1)?x(¥)
n=0

+ (=D)?7'x(Z, 0R) — dimH, (=, dR)
+ (=477 (dimHy_; (2, R) — dimHy (X, dR))

p—1
=23 (~1)?" b, (3R) + (b, () — dimH, (X, 8R))
n=0
+ (=1)47P71 (dimHy_; (2, R) — dimHy(Z, dR)) . (A.2.15)

which leads to (2.3.13). In the second line above we have used H, () = Hp_,(*)
for absolute homologies on D-dimensional compact spaces. In the third line we’ve
used the similar relation for the relative homology H, (X, dR) which holds for all de-
grees except the top and bottom degrees, Hy_ (X, dR) and Hy (X, dR), respectively?.

To see that, we note again that H, (X, dR) = H, (X/0R). For the reduced homology, it holds that
Hy () = H; (), whenever n # 0. On X/0R, one can define a non-degenerate pairing I : H, (X/9R) x
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Additionally,
d—1

X(Z.0R) := Y (—=1)" dimH,(Z, 0R)
n=0
is the relative Euler characteristic of the pair (X, dR), and ¥ (dR) — x(2) + x (X, dR) =
0, as it is simply the rank-nullity relation of (A.2.11). Lastly, we’ve used dimH, (-) =
dim H"(-) = b, (-) for absolute homologies on compact spaces.

For counting the dimension of 3cic[R], let us show

h? =h¢-r1 (A.2.16)

elec mag

That is, the number of p-cycles, 5, such that » ZR,ZRC is equal to the number of
(d — p — 1)-cycles, 0 with o € R, €R®. To show this we need is suffices to show the
following.

Claim: The pairing
L(n,0) ::/ 1 (A.2.17)
nnNo

. . . R . RC . . R . .RC
is non-degenerate restricted to (cokeri,’ N cokeri;®) x (1mld_p_1 N 1mzd_p_1).

Proof. Suppose not. That is either

(i) there exists a 7 € coker if N coker ilfc such that (7, 0) = 0,
forallo € imif_p_1 N imifip_l or

(ii) there existsa 6 € imilff_p_1 Nim ifip_l such that L(n,6) = 0,
for all ) € coker iR N cokeri X

If we suppose (i), then there is no homotopic obstruction to deforming 7 to either
entirely R or R¢ which contradicts it lying in the cokernels of i ® and i %K. So let us
suppose (ii) and pick a 6 satisfying (ii). Because L is a non-degenerate pairing on
Hp(2) x Hg—p—1(X) there exists a /) € H, (%) such that IL(77, 5) # 0. By assumption,
7 must lie in either im ipR or im ilfc and so is completely deformable within ¥ to
either R or R¢. But then L(7,6) must actually vanish because &, which lies in
im if_p_l N im ifip_l , can be deformed to the respective complementary region so

that it has no intersection with 7. This contradiction completes the proof that L is

non-degenerate on (cokeri, N cokeri,*) x (imig , , Nimif ). n
Similar arguments show that hfle_cp — hf.e. As a consequence
|3elec| = ‘3magi~ (A.2.18)

Hp—n(X/0R) — R, as L(x, B) := fomﬁ 1. This renders H, (X/0R) = Hp—_,(X/0R) whenever
n ¢ {0, D} and shows the desired statement for relative homology.
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A.3 Decomposition of the reduced density matrix

Given a state

p= pov |0fo

v,v/

. p:,n’ = Po’s0; an,u =1, (A3.1)
o

we wish to write down the reduced density matrix, pg, corresponding to the subregion
algebra, 2 a[R]. The general ansatz for this reduced density matrix is given by

pR= Y Y. C{wR} ]_[ H Vm , (A.3.2)

{wR}{ néR oiER

for some coefficients C. We notate the charges w® and v® to indicate that they are
for surface operators deformable into R. Given that VAV'”-i:O and ij-zo both act as
the identity, it will be notationally useful to extend {w®} and { } to full charge

vectors R € (A4)" and vR € (Ap)P, respectively, with zero entries for all cycles not
deformable into R:

wiR = ij =0 Vr’i,o‘jzR, (A.3.3)
We then write
~ R ~ R
PR= DD Crorpre WO V% (A3.4)
R pR

Hermiticity and unit-trace (with respect to #yx) imply
wrgr = Cor_pr (705, (A3.5)

and
Co.0 = (dimJts) ™" = |detK|™*® = N5, (A.3.6)

respectively. We can solve for the coefficients C,r ,z in terms of the coefficients of
the state, p, ., by enforcing

Tr (pr Or) = Tr(pOr) = Y _ po.o (0’| Or|v). (A.3.7)

b,v’

for all Og € 2Anmae[R]. By considering a generic element Og = WhkreX (for fixed
& and 6R) we can easily work out

Coror = Ng' > pg 5 pre T (E05), (A3.8)
o

Thus we can write a generic reduced density matrix as

_ il (5.10R) 3R GoR
R=Ng' Y DN o5 pre T ERO) o et (A.3.9)

wR bR ©
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In particular for a pure state (as in subsection 2.3.4),

p =Yty |ofv], (A.3.10)

the reduced density matrix is written as

pr =N D SN ygyr e TERT) it et (A.3.11)

wR vR b
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B.1 Partition functions of higher-form gauge theories

In this appendix, we provide details on the computations of the edge-mode partition
function of Section 3.3.

B.1.1 The partition function of (p — 1)-form Maxwell theory

First we will quantise, by performing the Euclidean path integral, (p — 1)-form
Maxwell theory on My_; = S}S x Y4_,, where B is the radius of S!. Its action is
simply

1
Stal = gkul I/ = gk [ fnef (B.1.1)

where k is a dimensionless constant, u is an energy scale and A = d — 1 —2p.
f € QA(M) is a closed p-form on M and is identified with the curvature of a
(p — 1)-form gauge field a € QP~1(M). As such, it can be Hodge-decomposed as
f = fu+ da, where f;, € Harm? (M) is a harmonic form, which we can (uniquely)
choose to be orthogonal to da. f; labels the instantons of the theory. Moreover, Dirac
quantisation condition, implies that f}, takes values in cohomology with coefficients
in2nZ: fy € H?(M;2nZ). The partition function of (p — 1)-form Maxwell theory
on M takes the form

28D [M] = Zing[M1Zose[ M, (B.1.2)
where
1
Zinst[M] := Z eXp(—zkuAHthz) (B.1.3)
fneH? (M ;2nZ)
osc = VOl(gp_l) P ) 12 . .

181



B. Appendices for chapter 3

In the above, §,— is the group of reducible gauge transformations, characteristic
of higher-gauge theories, generated by shifts by closed (p — 1) forms, modulo their
own gauge transformations.

In order to evaluate the above partition function, it will be helpful to introduce the

. . . (k)| P& M) .
topological basis of harmonic forms, {‘L’i }A_ defined as in (3.2.14). On M =
Sp x Y this s
bx (M) bi (Y) by (Y)
R N NN LN e B.1.5)
i=0 i=0 i=0

where 0 := (278)7! volg is the unique normalised harmonic 1-form on the Sé. The
Gram matrix for this basis:

[GM]. = /M £ pxt®, (B.1.6)

R

becomes, with the above decomposition

2nBGY
GM — k _ , (B.1.7)
k ( Q2nB) 1@,{_1)

Y b . . (k)| P M)
with G being the analogous Gram matrix for Y, defined over the basis {ri } .
The instanton, f}, can be therefore written as

f = 27rni?i(p) + 2mio A ?j(p), (B.1.8)

with n',m) € Z. Combining n' and m/ into vectors n and m of length b,(Y) and
b,—1(Y) respectively, the instanton contribution, (B.1.3), reads:

1
Zinst[M] = Z exp(—nMAk(Znﬂn . G},/ -n+ ﬂm . G;_l m)) (B.1.9)
nezbr )
mez r—1)

We can Poisson resum the sum over m to obtain

Zins[M] = (218) 2br—1) det(k/LAG};_l)_%®[q; kG |e[a:k Gl ].
(B.1.10)
where g := e PH, the Siegel-type Theta functions are defined as in (3.3.29), the tilded
versions of the Gram matrices are their dimensionless incarnations, having absorbed
the relevant powers of 1, and we have also used the duality GY = [Gg_z_k]_l.

Coming to the oscillator contribution, this is given by [220, 236, 336]

p—l 1 1yp—k—1 K _
Zose[M] = [ det(u®k GP)> TV det' (8500 B
k=0
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where Ay := ddT + d¥d is the Hodge Laplacian on k-forms on M. and det’ excludes
zero-modes. These are packaged in the first factor, the alternating product over GM.
In our case, M = Sé x Y, we can vastly simplify this expression. Applying (B.1.7) in
the zero-mode product we get

p—1 i
[T det(uk G,ﬂ”)%(_”p L @aB) B DT S ) ()
k=0

1

det(kpn G,y_)?. (B.1.12)

Moving to the contribution of the Laplacian, note that its spectrum on M = S}, x Y
is

2 2
spec(Ag) = {(%) + A, NEZ, ng € Nk}

2mn

2
; %(7) + A, NEZ, Ng_y € Nk_lg, (B.1.13)

where N is the index-set of the eigenvalues of the k-form Laplacian on Y. From this
it follows that the determinant of the Laplacian takes the form

s L (G5 o) 1111 () o)

n€Z ny €Ny n€Z njg_1 €Nk —1
(237)* +ang %0 (252) 4 2ng_y #0
1
= pROCMF ) | T sinhz(iﬂ Ank) (B.1.14)
nkEeN]:(
o1
H sinh 5,3 Ay ) (B.1.15)
nk_leNIQZI

where we zeta-regularised the infinite products’, using the spectral zeta-function,
Cgf) (s), for the k-form Laplacian on Y, and N;* excludes the zero-modes. Lastly, note
that N} = :NkJ- o N = NkJ- & NkJ-_ |» meaning that the non-zero spectrum of the
full Laplacian splits into a direct sum of the non-zero spectrum of the transversal
Laplacian plus that of the longitudinal Laplacian. The latter is equal to the spectrum

ISince we are interested in computing a path integral, we throw purely numerical coefficients, in
particular various floating powers of 2, in this and the following expressions.
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of the transversal Laplacian acting on (k — 1)-forms. With that, if we denote

I1 sinhz(%ﬁ Ank)

nkENI:
1 1
: 2 . 2
= 1_[ sinh (Eﬁ\/knk) l_[ sinh (5,3 )‘nkl)
ngENE nk€NE
Lolgl
=+ Si Sizrs
we have that
= -k (-1P=*k n” Kby (¥ ~ —k)(—1)P—k
H(det/Ak)z ﬂ( )2 YR (=) b (Y) H(Sksk )2(p )(-1)
k=0 k=0

p—1 _

= BED? TR0 () I Skﬂ—l)” g
k=0

—1 _K

= pen” YR (=D br(Y) (Spl_l) 2

_ -2
= BED” EEZH D b () (n%”*l)[q]) , (B.1.16)

where we used (3.3.24), to express the result in terms of the (p — 1)-form 7 function
associated with Y. Putting everything together, the oscillator contribution to the
partition function is

1 -2
ZowlM] = )21 det(kiG)_,)? (™ lg]) (B.1.17)

Combining with the instanton contribution, all the factors of 8 and k exactly cancel
and we get:

0[q:kGY| ©[q:k 1 GL,]
A 1) B et )

where we also used the fact that the eta function associated with (p — 1)-forms is
equal to that for (d — p —2)-forms, in order to write the result in a symmetric fashion.

z&-1 [Sé XY] =

Maxwell

: (B.1.18)

B.1.2 The partition function of chiral mixed Maxwell theory

Now that we have all the details of the vanilla, higher-form gauge theory under our
belt, we will quantise the chiral mixed Maxwell theory on M = S}s x Y. Thisis a
theory with action

k
st = B2 “ £ 82, (B.1.19)
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where 4 and B are closed p- and (d — p — 1)-forms, respectively, satisfying the
generalised chiral condition 8 + pu®(—1)@=P=D@P+D 4 4 < 0. In the main text
we argued that this leads to fractionally quantised fluxes along cycles involving the
thermal circle. Let us elaborate on that. Dirac quantisation imposes that magnetic
and electric fluxes are quantised as:

1
mag[n] = g ’A € Z elec[J/] 7{ / *tA’ € Z, (B120)
14
@2 )= 5 [ Sez.  oRli=5 [8ez (3121
Y n

for all cycles n €e Hy(Y) and y € Hy—,—1(Y). Note that the electric fluxes are defined
including a factor of the coupling constant, here k [274]. The generalised chiral
condition then requires that magnetic fluxes of # along cycles of the form S}} x 7, for
7 € Hp—1(Y) are quantised in units of % Consequently, decomposing 4, as in the
Maxwell story, as A = Ay +da, where 4y, is harmonic and then further decomposing
A in terms of the basis (B.1.5), we get

2
An = 27n'T (p) + ija A ‘L'J(p) (B.1.22)

From here on, the story is completely analogous to the vanilla Maxwell case. The
instanton contribution is

Zing[M] = (278)3br—1 ) det(k/LAG};_l)_% @[q; kGY ] @[q; k @5_1,_1]. (B.1.23)

The oscillators are completely unaffected by this story. It is cleaner to write their
contribution in terms of the magnetic photon, @, such that da = k,u_A * da. It is, of
course, not necessary to do that; this way we will just avoid the necessity of adding
a counterterm. Doing so results in an oscillator contribution as

1 -2
Zosc[M] = 2rp)~ 2001 ™) det(k;LAG},’,l)é (ngp“)[q]) : (B.1.24)

In total, the partition function reads:

®[q;k@},’] [q kGd e 1]
e P I ol V)

Zgti=r5) v] =

chiral

(B.1.25)

B.2 Laplacians, zeta functions, and heat kernels

In this appendix, we discuss some spectral properties of the Hodge Laplacian.
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Let (Y, g) be a closed, compact, (d — 2)-dimensional Riemannian manifold and let
Ay := dfd + ddf be the Hodge Laplacian acting on Q¢(Y). Denoting by spec’ the
non-zero-mode spectrum, it holds that
b Y =
¢ kerd )

spec’ (Ag, X) = spec’ (Ag ot Y) & spec’ (A

— / /
= spec (Ag rerdt’ Y) @ spec (Ag_l rerdt’ Y). (B.2.1)
Therefore, we will focus on the spectral properties of the operator Ay rerdt which
er
we will call (0;. Consider the eigenvalue equation for [y:
Ue@n = Ann, n e N, (B.2.2)

with M, being a countable set. We can define the spectral zeta function of [;:
C(e)(s) = Z LS s € C, with Res > -2 (B.2.3)
" EN/ . ’ 2 h
neNg

where N := {ne€ N |1, #0}. For £ = 0 this reduces to the well-known
Minakshisundaram-Pleijel zeta function [337].

It will be useful to introduce the heat kernel:

JC)(,Z)(I) = tr (e_tE’”) = Z e thn, (B.2.4)

neNp

The heat kernel admits a small-¢ expansion, as

KP () = Z IOk, (B.2.5)
(47rt)

where T ,(f) are given by integrals of geometric data of W. We can now invoke a
Mellin transform in order to write

1 o0
S /0 dt e thnps1, (B.2.6)

and hence

(Os) = F()/ dr 15~ 1(J<(4)(l)—d1mkeng / de 57t KP ).

(B.2.7)

F(s)

where dim ker (J; counts the number of of zero-modes.
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We will now use the following trick. We will split the above integral as follows.

@ _ L [T s—1 () B s—1 ()
(5 (s) = O] /0 dr ©@) 571 Ky (1) + —— o) / dit (1-0@) " Ky (1),
(B.2.8)

where ©(¢) is the Heaviside Theta function.? The merit of this is that the second
integral in (B.2.8) is now manifestly analytic in s, while the first integral is explicitly
computable. Plugging in the asymptotic expansion, (B.2.5), of K (Z), into the first
integral, one gets

i I“) 1 dimker™y,  H(s)

© _ B.2.
= k=0 (47r) F(S) s—42 4k * sT(s) I'(s)’ (522

where H (s) is analytic in s.

From this We get the pole structure of the spectral zeta function. It has simple poles

ats = 5= — k, with k € Z >, with residue
d ¥
Re:s,g“)(T - k) P — . (B.2.10)
(4m) 2 F(T —k)

When d is even, the spectral zeta-function has poles only at s > 0, ie. k €

{0 1,-.- &= — 1} because of the Gamma function in the denominator.

Moreover, notice that at s = 0, we have

(e) —dimker;, when d is even,
t90) = fuz (B.2.11)
—dimkerd,, when d is odd.

This follows immediately from I'(s) ~ % as s — 0, since the analytic piece H(s)/T'(s)
vanishes as s — 0; the topological piece, — dim ker (Jy, is universal, and the first term
only contributes when ¢ is even. Finally we have that dimker (0, = dimker Ay =
be(Y), so

g(‘)(o) I(j% —be(Y), whend iseven, (B.2.12)
Y B —be(Y), whend is odd. o

2For continuity purposes, one could use a smoothened version of the Heaviside Theta function.
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APPENDICES FOR CHAPTER 4

C.1 The transversal Laplacian

In this appendix we will give some outline some spectral properties of the transversal
Laplacian on three dimensional manifolds, which we denote generically by X, and,
subsequently, explicitly construct its spectrum on ¥, = S2 x S!.

C.1.1 Spectral properties

First, by transversal Laplacian, on p-forms, on a d-dimensional, closed manifold M,
we mean:

M _
OM = A , (C.1.1)
QP (M)Nkerdf

where A denotes the Hodge Laplacian, A = (d + dT)z. On non-zero-modes, the
transversal Laplacian is equivalent to d'd on p-forms. However these operators have,
potentially, different number of zero-modes. We care about DII,W which has

dim ker D;)” = dimker A, = b, (M), (C1.2)

where b, (M) is the p-th Betti number of M. The zero-modes are given, simply, by the

harmonic p-forms on M. Finally, the transversal Laplacian is a self-adjoint operator,

and hence, its eigenforms provide a basis for coclosed (also known as transversal)

p-forms. By Poincaré duality, the spectrum of the Hodge Laplacian for 0 < p < d is
d—1

determined by the spectrum of the transversal Laplacian for 0 < p < LTJ

Let us now focus on three dimensional manifolds, ¥, one-forms (i.e. p = 1), and
non-zero-modes.! There is another seld-adjoint operator acting on one-forms, the

The story can be adapted, more generally, to p-forms on (2p + 1)-dimensional manifolds, mutatis
mutandis [338].
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Beltrami operator:

xd: QL(Z) — QD). (C.1.3)
The transversal Laplacian is simply the square of the Beltrami operator, (7 = (xd)>.
As such, they commute, so they can be diagonalised simultaneously, and, moreover,
the non-zero spectrum of the transversal Lalpacian consists of the squares of the
eigenvalues of the Beltrami operator. Since d is self-adjoint its eigen-one-forms
provide an (orthonormalisable) basis of coclosed one-forms.

On a generic closed, oriented three-dimensional manifold, ¥, the Beltrami operator
has simple spectrum [299]. The same holds for the Hodge Laplacian [299] with an
appropriate clarification on the word generic.? For most of our applications, and
importantly, for the state-operator correspondence, we are interested in very non-
generic manifolds, with high-degree of symmetry, and therefore degeneracy, such as
products of spheres. There, the spectrum of the Hodge Laplacian is actually (at least)
twofold degenerate. On S? it is a classic result, see e.g. [340-342] for an account of it.
On S? x S!, we construct explicitly the spectrum below, in appendix C.1.2. Finally,
on T3, it is straightforward to construct the spectrum and see that it is spanned by

exp(ik - 0) w(k).
In the above, 8 = (61, 0, 65) are the three angles of the torus, k = (k1, k2, k3), with
ki = Z_I, where n; € Z and L; are the radii of each circle, and w(k) = w(k); dx’ is
an eigenform — or equivalently w(k); is an eigenvector — of the matrix ie; ﬂkz. It is

then easy to verify that there are two such eigenvectors, both corresponding to the
eigenvalues | k|| for the transversal Laplacian, verifying its twofold degeneracy.

C.1.2 Eigenforms and eigenvalues on S2 x S!

WNow we move on to constructing the spectrum on ¥, = S2 x S!. We use the
following metric and coordinates:

dsy, = r?(d6? + sin 6 dp?) + dn?, (C.1.4)

where ¢ € [0,27) and 6 € [0, 7r) are the angles on the sphere and 5 € [0, 27) is the
angle on the circle. We will denote the eigen-one-forms of DIE" as @, subscripted by
their various quanutm numbers.

Zero-mode

The easiest to construct is the zero-mode. This is given by the unique harmonic form
on X, dn. Therefore, the normalised zero-mode is given by

dn dn

B Vvol(Z,) B 2271

2More precisely, it is simple on the complement of a codimension-1 set of metrics, but not on the
complement of a codimension-2 set of metrics [339].

(C.1.5)
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Non-zero modes

Let us introduce some convenient notation. First, we write

\/LE cos(kn), k>0,

Te() = { = k=0, (C.1.6)

\/L;sin(|k|77), k <0,

with 7 € [0, 27r). These are the real, orthonormal eigenfunctions of the Laplacian on
S, with eigenvalue k2:

1
0§ Te() = V2T () = k> T (). (C.17)
Similarly, we denote by Yy, (6, ¢) the real spherical harmonics on S?:

cos(mg), m >0,
Nem im
Yim (0, 9) := %P‘[ ‘(cos 0)41, m =0, (C.1.8)

sin(|m|¢), m <0,

where,

4w (L4 |m|)!’
and P7(x) are the associated Legendre polynomials. In the above, £ € Z > and m are
integers, with —¢ < m < £. These are the real, orthonormalised eigenfunctions of
the Laplacian on S2:

Nem = (—1)'"\/5\/26 +1¢=|mD! (C.1.9)

0 Xin (@) = -V Xn0.0) = “ 2 Ti(.0). (C110)
I
Pem(r)
The degeneracy of the eigenvalue py,, (r) is
Dy =20 + 1. (C.1.11)

Using these two building blocks, we can build all the non-zero eigen-one-forms.

Momentumless

A first family is given by eigenforms with no momentum along the S!, i.e. k = 0.
These take the form

d
o) = nm(e,go)\/%, (C.1.12)
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with £ > 0 and —¢ < m < £, and have eigenvalue pg, (r):

2o _ HEHD 6
Oy @), = r—2q>e’m. (C.1.13)
One can explicitly check that
@) 1 (1)
&) = ——— %, dD
Vo)
: . (C.1.14)

1 .
(sin 7 0o Yem (0, ¢)dl —sin 6 99 Yy (6, ¢) d(p),

NGNS

is also an eigen-one-form of DIZ", with the same eigenvalue, pg,, (). All of these
modes are orthonormalised:

<c1>(‘) q>§’,m,> = S Siir, 0,0’ € (1,2, (C.1.15)

Momentumful

The rest of the modes, are modes with momentum along the S!, i.e. k # 0. They are
given by

W= 1 P ) (6. 0)ATe(n) — | —— Lo 6.
qbﬁmk ' \/W( k2 (m( ’ (P) Ty (T)) m( ) Zm( (P) Tk (77)
(ﬁ(ﬁ ) ) 3 [,/6(1{ F1o Tk(n)

72

—k Ty (n) m(amm(& @) dp + 99 Yem (0, ) d9):| ,
(C.1.16)

and

@ ._ ! v do®

rdo
Imk * pﬁm(r) +k2 I{mk

L [dTen(6.0) A AT ()]

V Plm (r) k2
r InTie(n) (1 .
= IY\ _ fY\ .
Jiein  k \sing ¢ Tem(6.9) 6 —sin6 36 Yo (8. ¢) dg
(C.1.17)
Their eigenvalue is Agpi (1) = pem(r) + k2
Ll +1
Fo, = (A 1 )o, = a0, 11
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and are again orthonormalised:

<<I>221k, qurzﬂk> = 8ev8mm' Sicier i - (C.1.19)

We write collect_ively, both for the case with momentum and without momentum,
the modes as CIJ% &> by defining CIJE’J,O = @1(5’31. Therefore, a complete orthonormal

basis of the space of coclosed one-forms on %, is given by

1 M =1
%,) = ). {cb } . 1.2
BLEr) N ez, o, me[—t.01, keZ§ (C.1.20)
The degeneracy of the eigenvalue Ay, (r) on one-forms is
DY =202t +1). (C.1.21)

Finally, the Hodge duals of the above forms provide the spectrum of the longitudinal
Laplacian on two-forms, A |522 (5,)kerd- Relatedly, an orthonormal basis for those is:

ﬂﬁ(zr) =

oyi=1,2
@ { o® } . C.1.22
*r RN Fmk { pez_ o mel-t.0]. kez ( )

C.1.3 A convenient basis

As we discussed above, the transversal Laplacian commutes with the operator «,d.
Therefore they can be diagonalised simultaneously. The one-forms that diagonalise
the operator x,d are related to the above basis as follows:

1
Pemko = E(Cbgik +o beir)lk), o == (C.1.23)

They are again orthonormal and statisfy

*rddimko = 0V Aumi (1) Gemko- (C.1.24)

Therefore, we can also write the following two bases for coclosed one-forms and
closed two-forms respectively:

VLE) = {¢>o(r), o))~ }

n=(,m,k)
(C.1.25)

o=%
n=

v”z(zr) = { *r ¢o(r), { *r ¢no(")} (6,m,k)}7

where we also renamed the zero-mode to ¢ (r) = ®¢(r). When we need to expand
both one- and two- forms in these bases, we will refer to them collectively as V(X,).
This basis has the advantage that it makes the Kac-Moody structure clear.
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C.2 Current algebra in the generic case

In this appendix we explain how the Kac-Moody algebra of subsection 4.4.3 gets mod-
ified in the generic — in the sense of [299, 339] — case of a closed three-dimensional
manifold, where the spectrum of the transversal Laplacian is simple, i.e. the eigen-
values are non-degenerate (cf. appendix C.1). We denote the three-dimensional
Riemannian manifold we are treating, by a slight abuse of notation, as X, where it
should be understood that we are actually considering the pair (¥, g) where g is
a Riemannian metric on ¥ used to define the Hodge-star. We are not interested in
varying the metric to obtain genericity results, like in [299, 339], so we suppress it.

The Beltrami operator, xd, will still be used to diagonalise the current algebra
(4.2.27)/(4.4.48). However, in the generic case, if «/A, appears in the spectrum of d,
—+/An doesn’t, and vice versa. So we will label the orthonormalised eigen-one-forms

of xd as
(roho s, c21)
(where Ny is the index-set containing the labels n.) satisfying
* d¢ni == Anj: Dnys (C.2.2)

where A, > 0 is the corresponding (non-zero) eigenvalue of the transversal Lapla-
cian on ¢, . The labelling above, is such that eigenforms with label n_ contain the
negative spectrum of the Beltrami operator, and those with n, the positive spectrum.
The genericity result mentioned above, implies that typically, A,, # A,_ for all
ny, n_. This is unlike the case we have treated in the main text — valid in highly
symmetric, and fine-tuned, manifolds, such as products of spheres. Moreover, on
a three-dimensional manifold, the spectrum of *d accumulates at +oco and at —
[343-345], which guarantees that both signs appear in (C.2.2). As before, we exclude
the kernel of xd, as this is treated, unambiguously, via the harmonic forms, {¢0,}b‘ )
of . The one-forms ¢, are such that

<¢n:|:’ ¢m:i:)2 = Sn:tmj: and <¢n+» ¢n_)2 =0. (C23)

>

As explained in appendix C.1, {¢i, $n_ } provide a complete basis of coclosed one-
forms on . We use this basis to expand A ¥ in (4.2.27)/(4.4.48), and the dual, two-form
basis, given by the Hodge stars of the above, to expand J*:

by ()
isAT = Z Adidoi + Z Z AT x5 n,. (C.2.4)
s=% ngEN
b2 (X)
ZEJ:I: Z QO| L)) ¢0I + Z Z Qns > ¢n5 (CZS)
s=£ ng€N;
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The difference with (4.4.58) is subtle, but important. This expansion leads to the
mode algebra:

[0:. 07 ] = £ksy/An,8ngm,- (C.2.6)
Defining ladder operators
+ — - =
A, :={ w ST and AL :={ v ST (C.2.7)
nos=-—. n S=-,
leads to the algebra
[,Ans, AL{] = K/ An B (C.2.8)

Note that we still have two decoupled algebras, one for each sign of s, i.e. one for
each side of the spectrum of *d. In terms of these modes, the Hamiltonian takes the

form
bz(E)

k Z QO] Q0| + - Z Z AT :Ans + E(), (C.2.9)

s + ngEN;

- %Z; VAn,.- (C.2.10)

As can be seen from (C.2.8), the operators AIS raise the energy by /A,,, and #A,,
lower it by the same amount.

with

From here on, it is an easy exercise to repeat the steps explained in the main text and
arrive at the conclusion that the Hilbert space is spanned by

n,m; {an}nseM) ITT1I (N) In,m) (C.2.11)

s== neN;

with |n, m) the primary states, given by (4.4.67) and (4.4.68), with the appropriate
tweak that they are annihilated by all 4, . The rest of the discussion, including
(4.4.80) and its implications follow immediately.

C.3 Details on the radial evolution

Here we collect some details about the radial evolution on B3 x S!. For the reader’s
convenience we repeat the radial evolution equation, (4.5.20) here:

Ordio (1) + [AT ()], T3z () = 0. (C3.1)
The matrix A (r) is given, in the basis V(Z,) (C.1.25), by

An:t (r) = <¢h0'v *p0r *, ¢nt) + (¢n07 *rd¢n‘r)
L+1)

1 - 1 1 L+1) 1
= k2 C3.2
2rWr_42'1)+k2(1 1):F 2T ( —1)’ (€3.2)
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where n = (£, m, k). Writing
JE(r) = [UF(r.r0)], . /i (ro). (C.3.3)

the initial value problem consisting of (C.3.1) and its boundary conditions at r = rg
gets mapped to the matrix ordinary differential equation:

UX(r. ro) + AX(nUX(r, r0) = 0, (C.3.4)

where the dot indicates derivative with respect to r, together with boundary condi-
tions
UE(ro, r0) = 1, (C.3.5)

This has the unique solution

UZ(r,ro) = Rexp (/ro dr’ AE (r’)), (C.3.6)

where Rexp denotes the radially ordered exponential:

ro o0 1 ro ro
Rexp (/ dr'@(r’)) = Z m/ dr1/ dry---
r N=0 . r r

/ 0drN R(O(rl)@)(rz) '--@(TN)),

(C.3.7)

with
@1(1’1)@2(7’2) ifrl < ra,

R(O1(r1)0z(r2)) := {@2(&)@1(71) 1, <o, (C.3.8)

When k = 0, it holds that [Ani (r1), Ani(rz)] = ( for all radii, and hence the ordered
exponential reduces to a regular one. The solution is given in this case by (4.5.28):

—{—1
UE (7o) = 1 |:(r) <1+2€:|:21w/£(£+1)

2+ 40| \ro

1
14+20+2/0 + 1))

+(L)[<1+2€i2,/£(£+1) ~1 )}
o -1 1+20F2 0+ 1)) |
(C3.9
Here and onwards we suppress the magnetic quantum number m in the labelling of
the radial evolution data, as they don’t depend on it. The eigenvalues of 1UZjE (r,ro)

are
N £\ ! N 1\
Sy = (E) and 83, = (—) , (C.3.10)

To
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with eigenvectors
1+20F 2L+ 1) —1-2{F2/L(£L+1)
u(il)f = and ué)z = ,
1 1

(C.3.11)
respectively. It is evident that at r — 0 one of the eigenvalues vanishes and, thus,
the evolution matrix becomes rank one. Its kernel is spanned by v(iz) ¢ The projector

HE‘E, appearing from (4.5.36) onwards, is, in this case:

= UGy ® UGy, _ 1 (1+2€:t2‘/€(€+ 1) -1 )
H”é)« HZ 2(1+20 ~1 14+20F 2L +1)
(C.3.12)

For k # 0, A% (r) does not commute with itself at different radii and thus we have to
use the radially ordered exponential. While this we cannot solve exactly for arbitrary
radius, the crucial feature for our state-operator correspondence is its behaviour
as r — 0. In that limit, the differential equation (C.3.4) reduces to the differential
equation for k = 0, and reveals that Ueim (7 70), behaves identically to its k = 0
eigenpart. Namely it has a singular and a regular part, scaling as

r —{—1 r 4
~ (—) and ~ (—) , (C3.13)
ro To

respectively. Correspondingly, Ui , (0, 7o) becomes rank-1.

197



C. Appendices for chapter 4

198



SHORT SUMMARY IN ENGLISH

Symmetry is a fundamental organising principle of nature and, by extension, of
theoretical physics. Physical phenomena are characterised by their symmetries
and how they represent them. In the study of quantum field theory (QFT) the
symmetries of a physical system are associated with conserved quantities, such as
energy, momentum, or the number of particles in a given space. Recently, it has been
understood that the notion of symmetry can be generalised in several ways. Central
to this understanding is the fact that symmetry is intimately linked to topology.

One generalisation of particular significance is higher-form symmetry. This gen-
eralisation concerns conserved quantities of extended objects, such as the number
of lines piercing a surface. Higher-form symmetries are present in many theories
of interest, such as electromagnetism and the standard model of particle physics.
Another important generalisation is that of non-invertible symmetries. This type
of symmetry is somewhat esoteric in that the symmetry action cannot be undone.
Nevertheless, such symmetries find applications in a variety of models, most notably
in the critical Ising model which describes the long distance behaviour of many
physical systems.

Such generalised symmetries offer new organising and guiding principles for theoret-
ical physics. This thesis focusses on utilising the power of generalised symmetries to
obtain universal results in quantum field theory and the phases of matter. The main
findings of this thesis fall in two categories. Firstly, obtaining universal measures of
entanglement in topologically ordered systems and topological quantum field theory
(TQFT), in generic dimensions and topology. Secondly, elucidating the underlying
structure of conformal field theories (CFTs), with a particular emphasis on nonlocal
operators.

Topological order

From a condensed-matter-theoretic point of view, TQFTs arise as low-energy ef-
fective descriptions of topologically ordered systems. A physical mechanism for
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topological order in (2+1) dimensions is given by the condensation of networks of
line operators, known as string-net condensation. In higher dimensions, analogous
models — condensing networks of p-dimensional surface operators — give rise to
topologically ordered ground states. This is intimately connected to generalised sym-
metries, since taking the generators of a discrete p-form symmetry as the condensing
network, provides a description of deconfined, discrete gauge theories. The long
distance behaviour of these models is described by a specific topological quantum
field theory, known as p-form BF theory. Moreover, topological orders correspond to
and are classified by different patterns of entanglement. This is most cleanly show-
cased by the celebrated topological entanglement entropy. Understanding patterns
of entanglement in p-form BF theory, gives direct, low-energy access to a systematic
understanding of topological order in higher-dimensions. This is the main motivating
question for chapters 2 and 3.

More precisely, chapter 2 presents an algebraic study of the entanglement structure
of p-form BF theory in arbitrary dimensions. This is done directly in the low-energy
topological quantum field theory by considering the algebras of topological surface
operators restricted to subregions. Two relevant notions of subregion operator al-
gebras are defined, which are related by a form of electric-magnetic duality. It is
subsequently shown that with each subregion algebra, there is an associated entagle-
ment entropy, termed essential topological entanglement (ETE). This is a refinement
of the topological entanglement entropy. ETE is intrinsic to the theory, inherently
finite, positive, and sensitive to more intricate topological features of the state and
the entangling region.

Then, in chapter 3 an alternative perspective is explored. Remaining within the setup
of p-form abelian BF theory, the entanglement entropy arising from edge modes,
i.e. excitations localised on the boundary of the region of interest, is considered.
This is done on arbitrary spatial topology and across arbitrary entangling surfaces.
The entropy contains a series of terms that scale as powers of the area of the en-
tangling surface (area and subarea laws), plus universal corrections proportional
to the topology of the entangling surface. The calculation comes in two flavours:
firstly, through an induced edge-mode theory, appearing on the regulated entangling
surface in a replica path integral, and secondly through a more rigorous definition of
the entanglement entropy via an extended Hilbert space. Along the way several key
results are presented, that are of their own merit. The edge-mode theory is given by
a novel combination of (p — 1)-form and (d — p — 2)-form electrodynamics linked by
a chirality condition, in what is termed chiral mixed Maxwell theory. The thermal par-
tition function of this theory is explicitly evaluated. Additionally, it is shown that the
extended Hilbert space is organised into representations of an infinite-dimensional,
centrally extended current algebra which naturally generalises Kac-Moody algebras
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to arbitrary dimension and topology. Lastly, the two approaches are connected,
showing that the thermal partition function of the chiral mixed Maxwell theory is
precisely an extended representation character of the current algebra, establishing
an exact correspondence of the edge-mode theory and the entanglement spectrum.

Conformal field theory

In contrast to discrete theories, deconfined phases of (higher-)gauge theories with
continuous gauge groups are gapless. Behind this fact lie, again, generalised sym-
metries. In particular, such phases can be understood as spontaneous symmetry
breaking phases of higher-form global symmetries. The most prominent example of
that is given by electromagnetism, and provides an explanation of the masslessness
of the photon in our world. In specific dimensions, these gapless phases become
conformal. The combination of conformal invariance with generalised symmetries
turns out to be extremely strong and leads to universal statements about the structure
of conformal field theory. These ideas underlie much of the motivation for chapter 4.

The main result of chapter 4 is a one-to-one correspondence between line operators
and states in four-dimensional CFTs with continuous 1-form symmetries. Such CFTs
enjoy an infinite dimensional current algebra, closely related to the algebras of
chapter 3. The representation theory of this current algebra is constructed, and the
space of states on an arbitrary closed spatial slice is described in detail. Then, the
spectrum on S? x S! is rederived via a path integral on B* x S! with insertions of
line operators. This leads to a direct and explicit correspondence between the line
operators of the theory and the states on S? x S!. An interesting conclusion is that
the ground state does not correspond to the identity operator, but to a particular
operator, known in quantum optics as a squeezing operator. Additionally, some of
the above results are generalised in two directions. Firstly, universal current algebras
and their representation theory are constructed in (2p + 2)-dimensional CFTs, with
continuous p-form symmetry, and secondly extensions pertaining to non-invertible
symmetries are provided.

201



Short summary in english

202



SAMENVATTING

Symmetrie is een fundamenteel organiserend principe van de natuur en daarmee van
de theoretische fysica. Fysische verschijnselen worden gekarakteriseerd door hun
symmetrieén en hoe zij deze representeren. In de studie van de kwantumveldentheo-
rie (QFT) worden de symmetrieén van een fysisch systeem in verband gebracht met
behouden grootheden, zoals energie, impuls of het aantal deeltjes in een bepaald ge-
bied. Recentelijk is ontdekt dat het begrip symmetrie op verschillende manieren kan
worden gegeneraliseerd. Centraal in deze ontwikkeling staat het feit dat symmetrie
nauw verbonden is met topologie.

Een generalisatie van bijzonder belang is de hogere-vormsymmetrie. Deze gene-
ralisatie betreft behouden grootheden van hoger-dimensionale objecten, zoals het
aantal lijnen dat een oppervlak doorboort. Hogere-vormsymmetrieén zijn aanwezig
in vele belangrijke theorieén, zoals elektromagnetisme en het standaardmodel van
de deeltjesfysica. Een andere belangrijke generalisatie is die van niet-inverteerbare
symmetrieén. Dit type symmetrie is enigszins esoterisch omdat de symmetrieactie
niet ongedaan kan worden gemaakt. Desalniettemin vinden dergelijke symmetrieén
toepassingen in verschillende modellen, in het bijzonder in het kritische Ising-model,
dat het gedrag op lange afstand van veel fysische systemen beschrijft.

Dergelijke gegeneraliseerde symmetrieén bieden nieuwe organiserende en leidende
principes voor de theoretische fysica. Dit proefschrift richt zich op het benutten van
de kracht van gegeneraliseerde symmetrieén om universele resultaten te verkrijgen in
de kwantumveldentheorie en de fasen van materie. De belangrijkste bevindingen van
dit proefschrift vallen in twee categorieén. Ten eerste, het verkrijgen van universele
maatstaven van verstrengeling in topologisch geordende systemen en topologische
kwantumveldentheorie (TQFT), in generieke dimensies en topologie. Ten tweede,
het verduidelijken van de onderliggende structuur van conforme veldentheorieén
(CFT’s), met een bijzondere nadruk op niet-lokale operatoren.
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Topologische ordening

Vanuit het perspectief van de theorie van gecondenseerde materie, ontstaan TQFT’s
als effectieve beschrijvingen van topologisch geordende systemen voor lage ener-
gieén. Een fysisch mechanisme voor topologische ordening in (2 + 1) dimensies is
gegeven door de condensatie van netwerken van lijnoperatoren, bekend als snaar-
net-condensatie. In hogere dimensies geven analoge modellen — condenseerbare
netwerken van p-dimensionale oppervlak-operatoren — aanleiding tot topologisch
geordende grondtoestanden. Dit is nauw verbonden met gegeneraliseerde symme-
trieén, aangezien het nemen van de generatoren van een discrete p-vorm-symmetrie
als het condenseerbare netwerk een beschrijving geeft van ‘deconfined, discrete
ijktheorieén. Het langeafstandsgedrag van deze modellen wordt beschreven door
een specifieke topologische kwantumveldentheorie, bekend als p-vorm BF-theorie.
Bovendien komen topologische ordeningen overeen met en worden zij geclassifi-
ceerd door verschillende patronen van verstrengeling. Dit wordt het duidelijkst
geillustreerd door de beroemde topologische verstrengelingsentropie. Het begrijpen
van verstrengelingspatronen in p-vorm BF-theorie geeft directe toegang bij lage
energieén tot een systematisch begrip van topologische ordening in hogere dimensies.
Dit is de belangrijkste motivatie voor hoofdstukken 2 and 3.

Hoofdstuk 2 presenteert een algebraische studie van de verstrengelingsstructuur van
p-vorm BF-theorie in generieke dimensies. Dit wordt direct gedaan in de lage-energie
beschrijving in termen van topologische kwantumveldentheorie door de algebra’s van
topologische oppervlakoperatoren te beschouwen, beperkt tot subgebieden. Twee
relevante begrippen van subgebiedoperator-algebra’s worden gedefinieerd, die gere-
lateerd zijn door een vorm van elektrisch-magnetische dualiteit. Vervolgens wordt
aangetoond dat bij elke subgebiedalgebra een bijbehorende verstrengelingsentropie
hoort, genaamd essentiéle topologische verstrengeling (ETE). Dit is een verfijning van
de topologische verstrengelingsentropie. ETE is intrinsiek aan de theorie, inherent
eindig, positief en gevoelig voor meer complexe topologische kenmerken van de
toestand en het verstrengelde gebied.

Vervolgens wordt in hoofdstuk 3 een alternatief perspectief verkend. In de context
van p-vorm abelse BF-theorie wordt de verstrengelingsentropie beschouwd van rand-
modi, dat wil zeggen, excitaties die gelokaliseerd zijn op de rand van het betreffende
gebied. Dit wordt gedaan voor generieke ruimtelijke topologie en verstrengelende
gebieden. De entropie bevat een reeks termen die schalen als machten van het opper-
vlak van het verstrengelende gebied (oppervlakte- en suboppervlaktewetten), plus
universele correcties evenredig met de topologie van het verstrengelende gebied. De
berekening komt in twee smaken: ten eerste via een geinduceerde randmodusthe-
orie, die verschijnt op het gereguleerde verstrengelende oppervlak in een replica
padintegraal, en ten tweede via een meer rigoureuze definitie van de verstrenge-
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lingsentropie via een uitgebreide Hilbertruimte. Gaandeweg worden verschillende
sleutelresultaten gepresenteerd, die op zichzelf waardevol zijn. De randmodustheorie
wordt gekarakteriseerd door een nieuwe combinatie van (p — 1)-vormen (d — p —2)-
vorm elektrodynamica, verbonden door een chirale voorwaarde, in wat we chirale
gemengde Maxwell-theorie noemen. De thermische partitiefunctie van deze theo-
rie wordt expliciet geévalueerd. Bovendien wordt bewezen dat de uitgebreide Hil-
bertruimte georganiseerd wordt door representaties van een oneindig-dimensionale,
centraal uitgebreide stroomalgebra die Kac-Moody-algebra’s op natuurlijke wijze
generaliseert naar willekeurige dimensie en topologie. Tenslotte worden de twee
benaderingen verbonden, waarbij wordt aangetoond dat de thermische partitiefunctie
van de chirale gemengde Maxwell-theorie precies een uitgebreid representatiekarak-
ter is van de stroomalgebra, waarmee een exacte overeenkomst wordt vastgesteld
tussen de randmodustheorie en het verstrengelingsspectrum.

Conforme veldentheorie

In tegenstelling tot discrete theorieén zijn ‘deconfined’ fasen van (hogere-)ijktheorieén
met continue ijkgroepen kloofloos. Dit feit is wederom onderbouwd door gegenera-
liseerde symmetrieén. In het bijzonder kunnen dergelijke fasen worden begrepen
als spontaan symmetriebrekende fasen van hogere-vorm globale s ymmetrieén. Het
meest prominente voorbeeld hiervan is het elektromagnetisme, dat een verklaring
geeft voor de massaloosheid van het foton in onze wereld. In specifieke dimensies
worden deze kloofloze fasen conform. De combinatie van conforme invariantie met
gegeneraliseerde symmetrieén blijkt extreem krachtig te zijn en leidt tot universele
uitspraken over de structuur van conforme veldentheorie. Deze ideeén vormen
grotendeels de motivatie voor hoofdstuk 4.

Het belangrijkste resultaat van hoofdstuk 4 is een een-op-een correspondentie tussen
lijnoperatoren en toestanden in vierdimensionale CFT’s met continue 1-vormsymme-
trieén. Dergelijke CFT’s genieten een oneindig dimensionale stroomalgebra, nauw
verwant aan de algebra’s beschreven in hoofdstuk 3. De representatietheorie van
deze stroomalgebra wordt geconstrueerd, en de ruimte van toestanden op een wille-
keurige gesloten ruimtelijke snede wordt in detail beschreven. Vervolgens wordt het
spectrum op S? x S! herafgeleid via een padintegraal over B3 x S! in de aanwezigheid
van lijnoperatoren. Dit leidt tot een directe en expliciete correspondentie tussen de
lijnoperatoren van de theorie en de toestanden op S? x S!. Een interessante conclusie
is dat de grondtoestand niet overeenkomt met de identiteitoperator, maar met een
specifieke operator, bekend in de kwantumoptica als een knijpoperator. Daarnaast
worden enkele van de bovenstaande resultaten in twee richtingen gegeneraliseerd.
Ten eerste worden universele stroomalgebra’s en hun representatietheorie geconstru-
eerd in (2p + 2)-dimensionale CFT’s met continue p-vormsymmetrie, en ten tweede
worden uitbreidingen met betrekking tot niet-inverteerbare symmetrieén gegeven.
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