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Abstract.
The CMS experiment will be upgraded to maintain physics sensitivity and exploit the

improved performance of the High Luminosity LHC. Part of this upgrade will see the first
level (Level-1) trigger use charged particle tracks reconstructed within the full outer silicon
tracker volume as an input for the first time and new algorithms are being designed to make
use of these tracks. One such algorithm is primary vertex finding which is used to identify
the hard scatter in an event and separate the primary interaction from additional simultaneous
interactions. This work presents a novel approach to regress the primary vertex position and
to reject tracks from additional soft interactions, which uses an end-to-end neural network.
This neural network possesses simultaneous knowledge of all stages in the reconstruction chain,
which allows for end-to-end optimisation. The improved performance of this network versus a
baseline approach in the primary vertex regression and track-to-vertex classification is shown.
A quantised and pruned version of the neural network is deployed on an FPGA to match the
stringent timing and computing requirements of the Level-1 Trigger.

1. Introduction
The HL-LHC will produce up to 200 simultaneous proton-proton interactions per bunch crossing
(pile-up) in the CMS detector. While most proton-proton interactions are inelastic, a hard
scatter, which reveals the interactions CMS aims to probe, is far rarer making the identification
of this primary interaction key for triggering. Due to the increased Pile-Up (PU), the CMS Level-
1 (L1) Trigger is to be upgraded [1] and novel algorithms are being developed to maintain the
physics sensitivity of the detector. Part of the L1 Trigger upgrade is to introduce track finding,
which will use outer tracker modules [2] to reconstruct tracks with a transverse momentum (pT)
> 2GeV. This information can be used to separate the Primary Vertex (PV) from PU. The
main downstream user of the PV is Pile-Up Per Particle Identification (PUPPI) [3] which will
perform calculations on the tracks associated to this vertex. This makes the PV regression and
the association of tracks to this vertex important to utilise the physics performance of the PUPPI
algorithm while reducing the impact of PU [1]. As with the current system, the L1 trigger will
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be implemented on custom hardware running FPGAs with strict resource limitations. Thanks
to larger front-end buffers, the latency will be increased to 12.5 µs which when combined with
more powerful FPGAs allows for more complex algorithms to be used.

While simple histogramming and cut-based methods can lead to effective vertexing strategies
and are well within the latency budget they do not take into account all the information from
the track finder and so are susceptible to non-genuine tracks, called fakes, and the differences in
track parameter resolution in different regions of the detector [4]. Modern Deep Neural Networks
(DNNs) are able to find optimal solutions from low-level information such as track features thus
skipping the lengthy development processes of more traditional approaches. Tools such as hls4ml
[5] and QKeras [6] allow these DNNs to be compressed to fit in FPGA hardware.

2. Baseline Approach
The PV is the location of the hard proton-proton scatter in an event. Offline, it is defined as
the reconstructed vertex with the highest sum of track p2T [7].

The baseline approach to vertex finding bins all tracks in z0 weighted by their pT in a 256-bin
histogram spanning a z0 range of -15 to 15 cm, as is shown in Fig. 1. Where z0 is defined as the
distance of a reconstructed track from the beamspot, along the beam line. A three-bin window
is then passed across this histogram to find the three consecutive bins with the highest combined
pT. The centre of the middle of these three bins is returned as the PV. While this method is
fast (a latency of 30 clock cycles at 360MHz) and has low resource usage, it has some key issues.
The first is the lack of correction for the degradation in z0 resolution for high η tracks, which
leads to a worsening of the resolution of the PV. Secondly, it does not account for high pT fakes
which, when associated with clusters of PU tracks, can appear as high pT vertices.

Figure 1. A single simulated event of a hadronic tt decay with PU of 200 showing all
tracks histogrammed in z0 weighted by pT and coloured by their track type. Also shown is
the reconstructed PV using the baseline approach and true generator PV.

The baseline approach to track-to-vertex association uses an η - dependent window in z0
around the PV. This is reasonably effective with a true positive rate (correctly assigning PV
tracks to the PV) of 91% and a false positive rate (assigning either a PU or fake track to the
vertex) of 10%. Again, this method is fast and simple but fails to take into account more complex
track features, such as the quality of the track fit, and is therefore heavily dependent on the
resolution of the tracks it is provided.
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3. End-to-End Neural Network Approach
The end-to-end Neural Network (NN) approach uses the same concepts as the baseline approach
and expands on them with interconnected neural networks that are trainable end-to-end as shown
in Fig. 2. Instead of weighting by pT in a 256 bin histogram, a three layer DNN is used to learn
an ideal weight function per track from input track features. The features used are the track
pT, η and the output of a BDT trained to distinguish non-genuine and real tracks [8] (labelled
as MVA in eq. 1). These learned track weights are then used in combination with the track’s z0
to fill a histogram. This histogram is used as the input to a 1D convolution of kernel size three,
depth one and stride one. The convolved histogram is passed through an ArgMax to obtain the
bin position with the largest entry, as in the baseline approach.

Figure 2. End-to-end network
architecture showing the three distinct
networks in colour as well as the
position of the histogram layer and
ArgMax.

Instead of a cut-based approach to track-to-vertex
association a three layer DNN is used, which uses the
same input track features as the weight network and
additionally the distance from the PV to the track in
z0. Using a SoftMax final output activation, a likelihood
that a track belongs to the PV is returned.

3.1. Back-Propagation
The end-to-end network is trained in one cycle with a
two part loss function. The first is a Huber loss [9]
for the event level regression of the PV versus the true
generator-level vertex. The second is a binary cross
entropy loss that is used at the track level comparing
the output track-to-vertex association probability to
the simulation truth track label. These two losses are
equally weighted.

Part of the end-to-end network is a histogram that is
filled with a learnt track weight, which is convolved and
the peak found. This contains two custom operations
where the differential of the loss function with respect
to the network weights are needed. The first is the
histogram where each bin hi has the input of the learnt
weight w and the track’s z0. The bins are filled as:

hi =
tracks∑
j=0

δ(j ∈ bin i) w(pT,j , ηj ,MV Aj) (1)

resulting in the following gradients

∂hi
∂z0

= 0 and
∂hi
∂w

=
tracks∑
j=0

δ(j ∈ bin i) (2)

which are implemented as custom TensorFlow [10] operations.
The second part of the PV regression is the peak finding of a convolved histogram. This in a

forward pass is simply an ArgMax operation that finds the index of the highest member of a 256
element vector. However, in order to back-propagate the regression loss function the differential
of this with respect to its inputs is needed which, for a standard ArgMax, is undefined. Instead,
a soft ArgMax is used which combines a SoftMax, a linear layer, and a final sum to find the
ArgMax of the input vector. The soft ArgMax of a vector x with N total elements is defined as:
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N∑
i=0

i
exi/T∑N
j=0 e

xj/T
(3)

where T is a tuned hyperparameter of the network which allows this layer to return an
approximate one-hot encoding.

4. Performance
The end-to-end approach outperforms the baseline approach in several key metrics. The first is
the PV regression. Figure 3 shows the NN approaches in red and blue outperform the baseline
in black especially in the tails of the residual where the improved filtering of fake tracks has
reduced the number of high pT clusters appearing to be the PV. Secondly, the NN outperforms
the baseline approach in assigning tracks to this PV. The receiver operating characteristic (ROC)
curve in Fig. 4 demonstrates that for a fixed false positive rate of 10 % the NN approach has a
true positive rate of 96 % versus the baseline rate of 91 %.

Figure 3. True PV - Recon-
structed PV for the Baseline and
NN approaches. NN refers to the
floating point approach while QNN
is the quantised approach described
in Section 5.

Figure 4. Receiver Operating
Characteristic (ROC) curve for the
Baseline and NN approaches to
track to vertex association. Shown
as true positive rate versus false
postive rate.

5. Firmware Implementation
The hls4ml [5] package is used to realise this network in FPGA firmware. As the network
has custom histogram layers, these were not converted with hls4ml but instead existing VHDL
firmware from the baseline approach was reused. This means the network is split into three
parts when it is converted: a weight network that takes input tracks and outputs a learnt
weight; a pattern network that convolves the histogram created from the tracks; and an
association network that outputs a probability the track is from the vertex, these seperate
networks are highlighted in Fig. 2. As the latency budget is small, parts of the network will
be implemented multiple times to exploit the parallelism of the L1 architecture, notably the
weight and association networks that work on a track-by-track level and so will be replicated
18 times. The replication of elements of the network means the size in FPGA resources of the
partial networks is critical for their use in firmware. A variety of tools were used to reduce
the size of the network. Firstly, regularization introduced a loss function that penalizes the
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absolute value of the weights [11]. Secondly, pruning iteratively removed weights close to zero to
remove unnecessary weights, keeping the overall network size small [12]. Finally, quantization
aware training using the QKeras [6] package uses fixed point numbers for network parameters
with restricted bitwidths, which, when passed to hls4ml, reduced the required resources for the
network.

The final resource usages for a Xilinx UltraScale+ VU9P with a clock frequency of 360MHz
are shown in Table 1. Both an unquantised and quantised version of each part of the network are
shown, demonstrating the effectiveness of quantised aware training and pruning of the networks,
especially in reducing the Digital Signal Processor (DSP) usage which is the limiting factor in
these FPGAs. Also shown in Figs. 3 and 4 is the performance of the full quantised network
in red, demonstrating no loss in performance when moving from an unquantised to quantised
network.

Table 1. Resource usage and latencies of a Xilinx VU9P running at 360MHz for the floating
point Neural Network (NN) and the quantised and pruned version (Q) with their expected
number of replications. Also included is the baseline approach, the NN approaches are additional
to these resources and latency as they use existing parts of the baseline firmware. These resource
usages are estimates from a Vivado synthesis of the networks and the latencies from a C-
Simulation.

Network Latency
(ns)

Initiation
Interval
(ns)

LUTs % DSPs % BRAMs % FFs %

NN (Q) Weights 22 (14) 2.7 (2.7) 2.52 (0.90) 19.98 (0.00) 0.00 (0.00) 0.72 (0.36)
NN (Q) Pattern 58 (42) 51 (35) 4.27 (4.43) 3.74 (0.00) 5.28 (5.28) 3.22 (3.15)
NN (Q) Assoc. 30 (25) 2.7 (2.7) 0.54 (7.92) 107.64 (0.54) 0.00 (0.00) 2.70 (2.34)
Baseline 44 2.7 2.40 0.00 1.90 1.40

6. Conclusion
The HL-LHC will see up to 200 PU conditions for the LHC experiments. To maintain the physics
performance of the detector and exploit the high integrated luminosity, the CMS experiment
is being upgraded. Upgrades to the L1 Trigger system will see charged particle tracks within
the full outer silicon tracker volume used for track matching and global event variables such as
the primary vertex, which is necessary to separate the hard interaction from pile-up. This work
introduces a novel approach to PV finding and association of tracks to the PV using an end-to-
end neural network that learns both the PV position and the likelihood of a track originating
from this PV. The network uses a custom histogram layer and soft ArgMax to ensure that the
loss functions can be back-propagated and is shown to outperform the baseline approach in key
metrics. Finally, the implementation of this network in an FPGA is discussed and the effective
use of QKeras and pruning to reduce the overall resource usage is demonstrated.
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