
4.32.5

Probing Dark Photons Through
Gravitational Decoupling of Mass-
State Oscillations in Interstellar
Media

Bo Zhang and Cui-Bai Luo

Special Issue
Universe: Feature Papers 2024—"Galaxies and Clusters"

Edited by

Prof. Dr. Mauro D’Onofrio

Article

https://doi.org/10.3390/universe11040115

https://www.mdpi.com/journal/universe
https://www.scopus.com/sourceid/21100903488
https://www.mdpi.com/journal/universe/stats
https://www.mdpi.com/journal/universe/special_issues/Y5IP7115AC
https://www.mdpi.com
https://doi.org/10.3390/universe11040115


Academic Editors: Mauro D’Onofrio

and Andrea Lapi

Received: 4 February 2025

Revised: 12 March 2025

Accepted: 25 March 2025

Published: 1 April 2025

Citation: Zhang, B.; Luo, C.-B.

Probing Dark Photons Through

Gravitational Decoupling of

Mass-State Oscillations in Interstellar

Media. Universe 2025, 11, 115.

https://doi.org/10.3390/

universe11040115

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Probing Dark Photons Through Gravitational Decoupling of
Mass-State Oscillations in Interstellar Media

Bo Zhang and Cui-Bai Luo *

Department of Physics, Anhui Normal University, Wuhu 241002, China; bo_zhang_work@163.com
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Abstract: We propose a novel mechanism for photon–dark photon mass-state oscillations

mediated by gravitational separation during propagation through the interstellar medium.

This phenomenon establishes a new avenue for the detection of dark matter. By analyzing

gravitational lensing data from quasars, we investigate the sensitivity of this approach to

dark photons. Our analysis demonstrates constraints of ε < 10−2 in the dark photon mass

range of 1.7 × 10−14 eV to 5.4 × 10−14 eV. Furthermore, we propose potential applications

of this mechanism to astrophysical systems with strong gravitational fields, such as neutron

stars and black hole accretion disks.

Keywords: dark photon detection; dark matter; gravitational lensing

1. Introduction

The Standard Model (SM) has achieved remarkable success over the past decades,

yet persistent observational anomalies—including cosmic-ray excesses like the AMS-02

positron anomaly [1]—strongly motivate extensions beyond its framework. To address

these discrepancies, numerous beyond-the-Standard-Model (BSM) theories have been

proposed. The minimal extension involves the introduction of an additional U(1)h gauge

symmetry [2], which may emerge as a low-energy effective theory of ultraviolet-complete

models [3–5]. This symmetry naturally predicts a new gauge boson, termed the dark

photon Xµ, that kinetically mixes with the Standard Model photon Xµ. The corresponding

extended Lagrangian is as follows [6]:

LK = −1

4
FµνFµν −

1

4
XµνXµν +

sin χ0

2
XµνFµν +

m2
χ

2
cos2χ0XµXµ − eAµ J

µ
em, (1)

where Fµν = ∂µ Aν − ∂ν Aµ and Xµν = ∂µXν − ∂νXµ denote the field strength tensors of the

photon and dark photon fields, respectively. Here, mχ represents the dark photon mass,

J
µ
em is the electromagnetic current, and χ0 is the mixing angle.

During propagation through a medium, the photon–dark photon interaction states

undergo oscillations. For transversely polarized photons, the oscillation probability is given

by [7,8]

P = ε2
m4

χ

|m2
γ − m2

χ|2
, (2)

where mγ denotes the effective photon mass within the medium and ε represents the kinetic-

mixing parameter, which associates with χ0. In the sub-MeV mass regime (mχ < 1 MeV),

this oscillation mechanism underpins key dark photon detection strategies, including

cosmic microwave background (CMB) analyses [9–12], “light-shining-through-wall” ex-

periments (LSW) [13], helioscopes experiments [4], and direct detection efforts [14,15].
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Equation (2) reveals that when mχ ≪ mγ, the oscillation probability becomes suppressed

as P ∝ (mχ/mγ)4. Consequently, the sensitivity of these experiments is fundamentally

limited by the medium’s effective photon mass mγ.

Gravitational lensing serves as a powerful tool for testing general relativity [16–18],

searching for compact objects [19–21], and other astrophysical applications. In neutrino

systems analogous to the dark photon scenario, gravitational lensing has been utilized

to determine neutrino mass ordering [22]. J.F. Glicenstein [23] investigated coherent and

incoherent gravitational lensing phenomena in photon–dark photon systems, akin to

observations of active galactic nucleus (AGN) radio wavebands deflected by the Sun [24],

discussing time-delay signatures.

In this work, we propose a novel mechanism leveraging gravitationally induced

decoupling of photon–dark photon mass eigenstates during propagation. We derive

the oscillation probability between these mass states in gravitational fields, which could

addresses the medium-induced suppression of oscillations at ultralow dark photon masses,

thereby offering a new paradigm for dark photon detection. By modeling gravitational

dispersion effects in gravitationally lensed quasar systems, we demonstrate that photon-to-

dark-photon oscillations reduce the apparent luminosity of these astrophysical sources. Our

calculations indicate that this approach achieves sensitivity to the kinetic-mixing parameter

ε < 10−2 for dark photon masses near 10−14 eV.

In Section 2, we derive the oscillation probability for photon–dark photon mass eigen-

states propagating through a medium in gravitational fields. Section 3 investigates the

suppression of apparent flux in gravitationally lensed quasars induced by the oscillations

mechanism. Section 4 quantifies the sensitivity of this method, using characteristic scales.

Finally, we conclude by summarizing our results and proposing extensions of this frame-

work to probe the oscillation in strong gravitational environments, such as neutron stars

and black holes.

2. The Oscillation Model

The dark photon Lagrangian given in Equation (1) contains the kinetic mixing term

XµνFµν. Through the field redefinition A, X → AR, S, the mixing term can be diagonalized:

LI = −1

4
A2

Rµν −
J

µ
em

cos χ0
ARµ − 1

4
S2

µν

+
1

2
(ARµSµ)

[

m2
χ sin2 χ0 m2

χ cos χ0 sin χ0

m2
χ cos χ0 sin χ0 m2

χ cos2 χ0

](

ARµ

Sµ

)

,

(3)

where
AR = cos χ0 A

S = X − sin χ0 A.
(4)

In the Lagrangian LI (3), the photon and the additional boson are kinetically decoupled,

with ARµ interacting directly with the electromagnetic current. Consequently, ARµ repre-

sents the physically observable photon field in the dark photon model, while S corresponds

to the sterile component, i.e., the dark photon field.

In vacuum (J
µ
em = 0), the mass matrix in LI is diagonalized via the unitary transforma-

tion UI→m:

UI→m =

[

cos χ0 − sin χ0

sin χ0 cos χ0

]

, (5)
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yielding the diagonalized Lagrangian:

Lm = −1

4
A2

1µν −
1

4
A2

2µν +
1

2
(A

µ
1 A

µ
2 )

[

0 0

0 m2
χ

](

A1µ

A2µ

)

. (6)

The kinetic terms for A1 and A2 are fully diagonal, with masses 0 and mχ, respectively.

Therefore, A1 and A2 are the mass eigenstates for vacuum propagation, related to the

interaction states (ARµ, S) via the transformation matrix UI→m:

(

A1µ

A2µ

)

= UI→m ·
(

ARµ

Sµ

)

. (7)

In a medium, photon propagation is governed by the medium’s properties. Classical

electrodynamics attributes this to a complex effective photon mass m̄γ. The electromagnetic

current in the Lagrangian is then

J
µ
em =

m̄2
γ

2
A

µ
R. (8)

The real part of the complex effective mass represents forward coherent scattering by

medium particles, while the imaginary part accounts for photon absorption by the medium.

Specifically,

m̄2
γ = m2

γ + iEγΓ (9)

where mγ is the real effective photon mass, Eγ denotes the photon energy, and 1/Γ corre-

sponds to the optical depth of photons in the medium.

Substitution into LI (Equation (3)) enables diagonalization of the mass matrix through

the field rotation UI→M:

UI→M =







cos χ0 − sin χ0m2
χ

m2
χ−m̄2

γ

sin χ0m2
χ

m2
χ−m̄2

γ
cos χ0






. (10)

The diagonalized Lagrangian becomes

LM = −1

4
M2

1µν −
1

4
M2

2µν +
1

2
(M

µ
1 M

µ
2 )







m̄2
γ +

m2
χm̄2

γ sin2 χ0

m2
χ

0

0 m̄2
γ − m2

χm̄2
γ sin2 χ0

m2
χ







(

M1µ

M2µ

)

, (11)

where M1 and M2 are medium-dependent eigenstates with diagonal kinetic and mass

terms. These eigenstates relate to the interaction basis (ARµ, S) via

(

M1µ

M2µ

)

= UI→M ·
(

ARµ

Sµ

)

. (12)

We analyze photon propagation through the interstellar medium in gravitational fields and

calculate the oscillation probabilities between mass eigenstates. The medium-dependent

eigenstates (M1, M2) and vacuum mass eigenstates (A1, A2) are connected via the unitary

rotation matrix:

UM→m = UI→mU−1
I→M, (13)
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where UI→m and UI→M are defined in Equations (5) and (10). For a system initially in the

mass eigenstates (A1(0), A2(0)), its time evolution follows

(

A1(t)

A2(t)

)

= UM→me−iHtU−1
M→m

(

A1(0)

A2(0)

)

, (14)

with H being the diagonalized Hamiltonian. Photons emitted in the (1, 0) state (pure A1)

oscillate to A2 with probability

PA1→A2
= sin2 2χ0

|m̄2
γ|2

|m2
χ − m̄2

γ|2
sin2

(

(m2
χ − m2

γ)t

4Eγ

)

. (15)

For astrophysical (incoherent) sources, the oscillatory term sin2(·) averages to 1/2.

Defining the mixing parameter ε =
√

2 sin χ0, the effective probability becomes

PA1→A2
= ε2

m4
γ + (EγΓ)2

(m2
χ − m2

γ)
2 + (EγΓ)2

. (16)

Equation (16) provides the oscillation probability between photon and dark photon mass

states in a medium under weak external gravitational fields. Crucially, this result diverges

from the interaction states oscillation probability (Equation (2)) derived for media. In the

regime mχ ≪ mγ, where the dark photon mass is significantly smaller than the medium’s

effective photon mass, the mass-state oscillation probability remains unsuppressed. This

advantage is expected to be applied in detection experiments.

3. Example of Gravitational Lensing Quasar Scheme

Under gravitational field effects, mass eigenstates (A1, A2) propagating along space-

time geodesics experience differential trajectory shifts (geodesic deviations), inducing

decoherence between the eigenstates. Remarkably, gravitational fields can mimic the

decoherence effects traditionally attributed to absorptive media—such as reactor core

plasma [7,25] or solar plasma in helioscope experiments [4,26]—but with a critical dis-

tinction; absorptive media suppress oscillations by decohering interaction eigenstates

(AR, S), while gravitational fields decohere mass eigenstates (A1, A2) through spacetime

curvature gradients.

Figure 1 schematically illustrates the astrophysical system under study. Photons

emitted from a distant quasar are gravitationally deflected by a foreground galaxy and

detected by observers. In the dark photon framework, medium-induced oscillations

between the mass eigenstates (A1, A2) occur during propagation through the interstellar

medium. Simultaneously, the foreground galaxy’s gravitational field induces geodesic

separation between the eigenstates (black dashed line). This dual effect modifies the

quasar’s apparent flux and introduces spectral distortions.

By analyzing flux discrepancies in gravitationally lensed quasars—compared to un-

lensed counterparts—we derive constraints on the dark photon parameter space. In this

section, we formulate the flux suppression caused by photon–dark photon oscillations in

lensed systems, providing a quantitative tool for such analyses.

Consider a flux of N0 photons propagating through the galactic medium. Decoherence

between mass eigenstates arises over a characteristic distance l due to gravitational geodesic

deviation. The photon attenuation follows

dN = −N
P(z)

l
dL(z), (17)



Universe 2025, 11, 115 5 of 12

where P is the oscillation probability between mass eigenstates, etc., as shown in

Equation (16). It is particularly important to note that the oscillation probability P is

a function of redshift. Since mγ itself depends on redshift, it can be expressed as [9]

m2
γ(z) ≈ 1.4 ∗ 10−21

(

np(z)

cm3

)

eV2

np(z) = (1 − Yp

2 )η 2ζ(3)
π2 T3

0 (1 + z)3
(18)

where np(z) is the density of the proton, Yp = 0.25, η = 6.7 × 10−10, ζ(3) is the Riemann

zeta function, T0 = 2.725 K is the current temperature of the CMB, and z denotes the

redshift of the interstellar medium. In the subsequent discussion, we will consider photons

of optical energy scale (eV) propagating through the interstellar medium. In this regime,

the optical depth is dominated by photon–electron Thomson scattering, expressed as

Γ(z) = ne(z) · σT (19)

where σT = 6.65 × 10−25 cm2 is the Thomson scattering cross-section and ne(z) denotes

the electron density. For redshifts z < 1, the hydrogen ionization fraction is Xe(z) =

ne(z)/np(z) ≈ 1, thus implying ne(z) ≈ np(z). The conversion between luminosity

distance L and redshift is given by

L(z) =
(1 + z)

H0

∫ z

0

dz′
√

Ωm(1 + z′)3 + ΩΛ

(20)

with Ωm = 0.3, ΩΛ = 0.7, and H0 representing the current Hubble constant. Integrating

Equation (17) gives

N = N0 exp (−
∫

P(L)
dL

l
) = N0 exp (−

∫

Pdτ), (21)

where dτ ≡ dL/l represents the average number of times, dτ, that the photon mass

states undergo decoherence after propagating a distance dL. The attenuation factor N/N0

corresponds to the observed quasar luminosity suppression.

To estimate τ, we compute the differential angular deflection ∆α between photons and

dark photons using weak-field general relativity:

∆α =
2GM

Rgalc2

(

m2
χ

E2
γ − m2

χ

)

. (22)

Here, Rgal is the characteristic scale of the gravitational lens, and the full derivation is given

in Appendix A.

The maximum path-length difference between photons and dark photons Lh, induced

by their differential deflection, is approximated as

Lh ≈ Ls × ∆α, (23)

where Ls is the quasar–Earth distance. For a photon energy E, the coherence length of the

thermal photon wavepacket is [27]

∆h =
197MeV · fm

Eγ
, (24)
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which corresponds to the de Broglie wavelength scale. While the actual propagation paths

include non-geodesic corrections, the sub-eV dark photon mass ensures minimal trajectory

separation, justifying a linearized approximation for the optical depth:

dτ =
dLh

∆h
= dLs

∆α

∆h
. (25)

From Equation (20), the differential relation of dLs and dz satisfies

dLs =

[

1

H0

∫ z

0

dz′
√

Ωm(1 + z′)3 + ΩΛ

+
1 + z

H0

√

Ωm(1 + z)3 + ΩΛ

]

dz (26)

Substituting Equations (22)–(25) into Equation (21), the quasar’s flux suppression becomes

N

N0
≈ 1 − E

197MeV · fm

2GM

Rgalc2

(

m2
χ

E2
γ − m2

χ

)

∫

dLs(z)
ε2(m4

γ(z) + (EγΓ(z))2)

(m2
χ − m2

γ(z))
2 + (EγΓ(z))2

. (27)

The 1/(E2
γ − m2

χ) dependence in Equation (27) indicates stronger attenuation at lower

photon energies (Eγ ≫ mχ), leading to spectral hardening.

Figure 1. Illustration of this detection mechanism in a gravitationally lensed quasar system. Photons

(red solid line) emitted from the quasar follow bent geodesics due to the foreground galaxy’s gravita-

tional potential. The oscillated dark photon component (black dashed line) propagates along a distinct

path, with the spatial separation between mass eigenstates suppressing quantum interference.

4. Results and Discussions

The quasar luminosity function quantifies the number density of quasars as a func-

tion of intrinsic brightness and redshift [28–30]. By analyzing redshift-binned luminosity

distributions, the cosmological evolution of quasar populations can be reconstructed [31].

We extend this framework to gravitationally lensed quasars, comparing their luminosity

function with unlensed populations. Gravitational lensing-induced chromatic disper-

sion—arising from photon–dark photon oscillations—suppresses the observed flux of

lensed quasars.

A statistically significant signature emerges when the flux attenuation exceeds an

assumed threshold of 10% (N/N0 < 0.1), which we conservatively adopt based on instru-

mental sensitivity limits and astrophysical background uncertainties in current surveys.

We adopt typical parameters for quasar gravitational lensing systems: a source redshift

z = 1 (comoving distance Ls), a foreground galaxy radius Rgal = 1 kpc, and a galaxy mass

M = 1012M⊙. The analysis assumes optical wavelength observations (Eγ ∼ eV).

As shown in the Figure 2, our proposed scheme achieves a sensitivity on the order

of 10−2 for dark photon masses in the range 1.7 × 10−14 eV to 5.4 × 10−14 eV. Notably,

within this region, there exist multiple peaks of significantly enhanced sensitivity, reaching

10−5. This arises from a resonance phenomenon caused by the matching of the dark photon
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mass with the effective photon mass in the medium, as demonstrated in Equation (27).

Similar features have been observed in the constraints derived from broadband radio

spectra of compact radio sources [32].

����� �����

mχ (eV)

����
����
���

���	
����
����
����
����
����

ε

��������
�������
��������
�

Figure 2. The sensitivity of this quasar lensing-based dark photon detection scheme. The blue solid

line represents our method’s sensitivity, which complements existing constraints; the orange solid

line shows limits from the Jupiter magnetic field experiment [33,34] and the green solid line indicates

COBE/FIRAS [9–12,35] bounds on CMB spectral distortions.

Relative to the Jupiter magnetic experiment [33,34] and COBE/FIRAS [9–12,35], our

method do not achieve improved sensitivity. Future advancements in data analysis al-

gorithms or observational precision could enhance sensitivity. If radio waveband obser-

vations are employed, Equation (27) indicates that the detection sensitivity improves as

Eγ decreases.

The gravitational lensing approach can also constrain the dark photon parameter space

by leveraging the gravitational bending of AGN radio wavebands by the Sun, as discussed

in the framework by Lobanov et al. [32]. For Type Ia supernovae exhibiting gravitational

lensing effects, their theoretically identical intrinsic luminosities allow the precise determi-

nation of luminosity attenuation, granting this method a distinct advantage. Additionally,

in mutually orbiting compact object star binary systems with well-characterized observa-

tional data, our proposed scheme could be applied to derive constraints on dark photons.

While the gravitational lensing scheme cannot fully exploit the mass-independent na-

ture of photon–dark photon oscillations in gravitational fields, we propose that neutron star

evolution and black hole accretion disk systems may exhibit more pronounced signatures of

gravitationally induced dark photon decoherence. These systems, characterized by extreme

gravitational fields and high-energy environments, offer unique opportunities to probe dark

photon interactions. However, their complex dynamics and emission mechanisms require

detailed modeling to disentangle dark photon effects from astrophysical backgrounds.

5. Conclusions and Prospects

We propose a novel oscillation mechanism between photon and dark photon mass

eigenstates during propagation in media under gravitational fields, deriving the oscillation

probability formula. Unlike conventional dark photon detection schemes, this mechanism

is immune to medium-induced suppression of oscillations. Furthermore, we suggest that

gravity can induce photon–dark-photon mass-state separation during their propagation

through interstellar media. By observing the potential attenuation in gravitationally lensed
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quasar luminosities, we seek to constrain the dark photon parameter space. Under typical

system-scale assumptions, our preliminary estimate indicates that for dark photon masses

in the range 1.7 × 10−14 eV to 5.4 × 10−14 eV, the sensitivity to the mixing parameter ε can

reach approximately 10−2. This result can be further improved with additional data and a

more detailed analysis. Finally, we anticipate that this oscillation mode may be fruitfully

exploited in neutron star and black hole accretion disk systems.
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Abbreviations

The following abbreviations are used in this manuscript:

SM Standard Model

BSM beyond-the-Standard-Model

CMB cosmic microwave background

LSW light-shining-through-wall experiment

AGN active galactic nucleus

Appendix A. Deflection Angle Between Photon and Dark Photon

Appendix A.1. Calculation Basis

This appendix presents calculation process of the gravitational lensing deflection

angle of a massive particle and massless particle. Firstly, the gravity of the foreground is

described by the Schwarzschild metric with isotropic static, assuming

ds2 = gµνdxµdxν = −(1 − 2M

r
)dt2 + (1 − 2M

r
)−1dr2 + r2dθ2 + r2 sin2 θdφ2. (A1)

The Lagrangian can be written as

LG = −1

2
gµν ẋµ ẋν =

1

2
(1 − 2M

r
)(

dt

dλ
)2 + (1 − 2M

r
)−1(

dr

dλ
)2

+r2(
dθ

dλ
)2 + r2 sin2 θ(

dφ

dλ
)2, (A2)

where λ is affine parameter, which could be defined as proper time for the massive particle.

The Lagrangian is based on the four-velocity of the particle, thus

LG = κ =

{

0 (massless particle)
1
2 (massive particle)

. (A3)

The isotropic and static condition suggest two first integrals

∂LG

∂t
= 0,

∂LG

∂φ
= 0. (A4)
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This means two conserved quantities: energy and angular momentum. red

E =
∂LG

∂ṫ
= (1 − 2M

r
)

dt

dλ
,

L =
∂LG

∂φ̇
= r2 sin2 dφ

dλ
.

(A5)

Combining Equations (A2) and (A3), we obtain normalization condition of four-velocity.

(

dr

dλ

)2

= E2 − (1 − 2M

r
)(2κ − L2

r2
). (A6)

The calculation is based on Equations (A5) and (A6) and would be divided into a massive

section and massless section.

Appendix A.2. Deflection of Massless Particle (Photon)

This section discusses the massless particle deflection in gravity. Set κ = 0, reduce λ

and obtain the orbital equation by combining Equations (A5) and (A6).

[

d

dφ
(

1

r
)

]2

=

[

E

L

]2

− 1

r2
(1 − 2M

r
). (A7)

Equation (A7)’s derivation of φ can be simplified as

d2u

dφ2
+ u = 3Mu2, (A8)

where u = 1/r. Equation (A8) and the original conditions contain the orbit information

of the massless particle. The last task is solving the differential equation. The nonlinear

feature makes it hard. The nonlinear term is contributed to by gravity. As gravity is small

in a gravitational lensing system, the term 3Mu2 is regarded as a perturbation. The solution

of Equation (A8) is

Figure A1. Illustration of parameters of massless and massive particle geodesic.

u = u0 + ξu1 + o(ξ2), where ξ = 3M. (A9)

Substituting Equation (A9) into Equation (A8), we have

d2u0

dχ2
+ u0 = 0, (A10a)

d2u1

dχ2
+ u1 = u2

0. (A10b)
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Equation (A10a) describes a scene without gravity, so the solution is

u0 =
cos φ

Rgalaxy
. (A11)

Hence, the first order approximate solution of Equation (A8) is

u =
cos φ

Rgalaxy
+

M

R2
galaxy

(1 + sin2 φ). (A12)

Limiting r to infinity, u → 0, Equation (A11) suggests φ′ = ±π/2. The deflection angle in

the first order approximation Equation (A12) can be defined as

φ = φ′ ± α′ = ±(
π

2
+ α′). (A13)

α′ is a half of total deflection angle. Equations (A12) and (A13) derive the deflection angle

of photon in a gravitational field.

αmassless = 2α′ =
4M

Rgalaxy
=

4GM

Rgalaxyc2
. (A14)

Appendix A.3. Deflection of Massive Particle

In this section, we focus on massive particle orbital character in gravity. Set κ = 1/2,

follow Equations (A7) and (A8), and we have

d2u

dφ2
+ u =

M

L2
+ 3Mu2. (A15)

We concern the low mass range of DP in order to obtain a lower undetectable mass limit for

our work. M/L2 is bigger than 3Mu2 in classical physics. But for a small mass condition,

the state is reversed. M/L2 needs to be regarded as a first order approximation at least.

Using the same perturbation strategy, the solution to Equation (A11) is also the zeroth-order

approximation solution of Equation (A15). Taking Equation (A11) into Equation (A15)

gives

d2u1

dφ2
+ u1 =

M

L2
+ 3M

(

cos φ

Rgalaxy

)2

. (A16)

Its solution is under the first order approximation, showing as

u1 =
M

L2
+

M

R2
galaxy

(1 + sin2 φ). (A17)

So, the solution of Equation (A15) in the first order approximation is

u =
cos φ

Rgalaxy
+

M

L2
+

M

R2
galaxy

(1 + sin2 φ). (A18)

Deflection angle α′′ can be defined in

φ = ±(
π

2
+ α′′). (A19)
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We could obtain the total deflection angle by combining this with Equation (A19) and

u = 0.

αmassive = 2α′′ =
2MRgalaxy

L2
+

4M

Rgalaxy
. (A20)

L corresponds to angle momentum of per rest mass,

L =
r⃗ × p⃗

m0
=

Rgalaxymβ

m0
=

β
√

1 − β2
Rgalaxy, (A21)

where β = v/c. Therefore,

αmassive =
2M

Rgalaxyβ2
+

2M

Rgalaxy
=

2GM

Rgalaxyv2
+

2GM

Rgalaxyc2
. (A22)

Appendix A.4. The Differential Angular Deflection

The differential angular deflection can be derived by taking the difference between

Equations (A22) and (A14):

∆α =
2GM

Rgalaxyc2

(

m2
χ

E2 − m2
χ

)

. (A23)
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