A study on nuclear binding energy based on neural network
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Introduction

Precise determination of nuclear mass and hence
its binding energy has been a longstanding
problem. Precision is highly important not only
for understanding of the basic nuclear physics
but also for the astrophysical interest and
investigation of nuclei, especially those far from
the stability line. Starting from the earlier works
of Bohr, Bethe and Weizsacker [1] to the recent
works viz. those involving finite range droplet
model (FRDM) of Moller and Nix [2], Hartree-
Fock-Bogulibov (HFB) model of Pearson [3], a
diverse amount of works have been
accomplished to emulate the global trend of
nuclear masses. Off late, departing from the
conventional way, an artificial neural network
(ANN) based model has been developed to
predict binding energies of nuclei [4]. The ANN
based model depends generally on the existing
data whereas the FRDM and the HFB based
models rely mostly on theoretical inputs.
However, the ANN based model prediction has
been found more accurate than the others, as is
evident from their observed deviation (root mean
square error) of the predicted values from the
experimental ones. In an aim to achieve
improvement over the earlier predictions, we
have initiated another artificial neural network
based model, different in structure from the
existing one. Though the structure is quite
simpler so far as the number of hidden layers is
concerned, stress has been given in the
incorporation of new input variables. The initial
trend of our result is found encouraging, yielding
significant accuracy in the N-Z plane used in the
present work.

Methods

Nuclear Physics is one of the richest areas of
science, with a vast collection of more than 3000

experimentally  available nuclear binding
energies and masses. Therefore ANN is highly
applicable in this domain, providing the so called
"data mining" platform.

Our development in the neural network
based model deals with multilayer feedforward
architecture to estimate binding energy per
nucleon. The network consists of one input layer
(having five input neurons), two hidden
intermediate layers (one with fifteen neurons and
another with one neuron) and one output layer
giving one set of output (fig. 1). The input layer
consists of five inputs: neutron number (N),
proton number (Z), beta decay energy, angular

momentum and parity (J"). Each neuron in n"
hidden layer gets stimulus S, from the preceding

m" layer, such that S=) (COmnIm ) +b,.

where @y, is the weight factor and by, is the bias
factor. Iy, is the activity of the preceding layer
(i.e input from the m™ neuron of either input or
hidden layer) . | and S are connected as 1,,=f(S),
where f is the nonlinear activation function (in
our case this is tansig function). The aim is to
update the states of all the neurons in a given
layer and finally the layers are updated
sequentially, starting from the input to output.
The neuron number in a layer and the activation
function, both have been optimized in terms of
minimum root mean square error (RMSE).

We exploited 1470 nuclides, the data
concerned being extracted from NUBASE
compilation [5]. The training set of data was
constructed with 1149 nuclides, chosen
randomly starting from N=1 upto N=150. The
validation set was consisted of 275 nuclei, while
there were three test data sets: test set 1, test set 2
and test set (u) consisting of a total of 46
nuclides. The test set (u) bears nuclides far from
stability region, especially in neutron drip line



and superheavy regions. The regions are shown 140

in the N-Z plane (fig. 2). o N-Zplane

The training algorithm was taken as 1209 | e Training set
backpropagation according to which the oo | ° :/::t'dsittlon st
calculation was performed in the neural net. The 20 | test set (u)
binding energy per nucleon in MeV was N
intentionally taken as output to reduce the RMSE 60 1
as small as possible. The result was achieved 40 1
after 284 epochs.
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energy per nucleon and the predicted values from

training, validation and test sets are shown in  Fjg  2: The N-Z plane showing different
fig3. RMSE  was  calculated as, nuclides taken in the calculation.
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and observed outputs, respectively. The RMSE
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for training set is found as 0.81, while for %;
validation set it is 1.1 and it is ranging from 1.1 £ 00 M
to 1.5 for the test sets. The RMSE of binding <
energy for test set (u) i.e for the nuclei far from  -0.5 1
stability has been the highest (1.5). Ref[4]
achieved RMSE of 0.62 to 0.92 for training set, -1.0 o Validation et
between 1.54 to 1.92 for validation set and 1.88 B 1.0 o Testset2
to 3.1 for test set. = T Testset®)
In summary, we have developed a neural g 0.5 1
network based model to estimate binding energy o
per nucleon. The present ANN model, though < 001 ‘p
simpler in structure, incorporates beta decay A
energy and angular momentum as new inputs, 051
achieving RMSE lower than that predicted by
the existing model. However, more nuclides 1.0 ‘ . ‘ ‘ .
have to be exploited for final inference. Detail 0 20 40 60 80 100 120 140 160
work is still in progress. N
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