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Introduction 
 

Precise determination of nuclear mass and hence 
its binding energy has been a longstanding 
problem. Precision is highly important not only 
for understanding of the basic nuclear physics 
but also for the astrophysical interest and  
investigation of nuclei, especially those far from 
the stability line. Starting from the earlier works 
of Bohr, Bethe and Weizsacker [1] to the recent 
works viz. those involving finite range droplet 
model (FRDM) of Moller and Nix [2], Hartree-
Fock-Bogulibov (HFB) model of Pearson [3], a 
diverse amount of works have been 
accomplished to emulate the global trend of 
nuclear masses. Off late, departing from the 
conventional way, an artificial neural network 
(ANN) based model has been developed to 
predict binding energies of nuclei [4]. The ANN 
based model depends  generally on the existing 
data whereas the FRDM and the HFB based 
models rely mostly on theoretical inputs. 
However, the ANN based model prediction has 
been found more accurate than the others, as is 
evident from their observed deviation (root mean 
square error) of the predicted values from the 
experimental ones.  In an aim to achieve 
improvement over the earlier predictions, we 
have initiated another artificial neural network 
based model, different in structure from the 
existing one. Though the structure is quite 
simpler so far as the number of hidden layers is 
concerned, stress has been given in the 
incorporation of new input variables. The initial 
trend of our result is found encouraging, yielding 
significant accuracy in the N-Z plane used in the 
present work. 
  
Methods 
Nuclear Physics is one of the richest areas of 
science, with a vast collection of more than 3000 

experimentally available nuclear binding 
energies and masses. Therefore ANN is highly 
applicable in this domain, providing the so called 
"data mining" platform.   
 Our development in the neural network 
based model deals with multilayer feedforward 
architecture to estimate binding energy per 
nucleon. The network consists of one input layer 
(having five input neurons), two hidden 
intermediate layers (one with fifteen neurons and 
another with one neuron) and one output layer 
giving one set of output (fig. 1). The input layer 
consists of five inputs: neutron number (N), 
proton number (Z), beta decay energy, angular 

momentum and parity ( J ).  Each neuron in nth  
hidden layer gets stimulus Sn from the preceding 

mth layer, such that Sn=   nm mmn bI  , 

where mn is the weight factor and bn is the bias 
factor. Im is the activity of the preceding layer 
(i.e input from the mth neuron of either input or 
hidden layer) . I and S are connected as Im=f(Sm), 
where f is the nonlinear activation function (in 
our case this is tansig function). The aim is to 
update the states of all the neurons in a given 
layer and finally the layers are updated 
sequentially, starting from the input to output. 
The neuron number in a layer and the activation 
function, both have been optimized in terms of 
minimum root mean square error (RMSE). 
 We exploited 1470 nuclides, the data 
concerned being extracted from NUBASE 
compilation [5]. The training set of data was 
constructed with 1149 nuclides, chosen 
randomly starting from N=1 upto  N=150.  The 
validation set was consisted of 275 nuclei, while 
there were three test data sets: test set 1, test set 2 
and test set (u) consisting of a total of 46 
nuclides. The test set (u) bears nuclides far from 
stability region, especially in neutron drip line 
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and superheavy regions. The regions are shown 
in the N-Z plane (fig. 2).  
 The training algorithm was taken as 
backpropagation according to which the 
calculation was performed in the neural net. The 
binding energy per nucleon in MeV was 
intentionally taken as output to reduce the RMSE 
as small as possible. The result was achieved 
after 284 epochs. 
 
Results 
The difference between experimental binding 
energy per nucleon and the predicted values from 
training, validation and test sets are shown in 
fig3.  RMSE was calculated as, 

  
i

2
ii OE , where Ei and Oi are estimated 

and observed outputs, respectively. The RMSE 
for training set is found as 0.81, while for 
validation set it is 1.1 and it is ranging from 1.1 
to 1.5 for the test sets. The RMSE of binding 
energy for test set (u) i.e for the nuclei far from 
stability has been the highest (1.5). Ref[4] 
achieved RMSE of 0.62 to 0.92 for training set, 
between 1.54 to 1.92 for validation set and 1.88 
to 3.1 for test set.  
In summary, we have developed a neural 
network based model to estimate binding energy 
per nucleon. The present ANN model, though 
simpler in structure, incorporates beta decay 
energy and angular momentum as new inputs, 
achieving RMSE lower than that predicted by 
the existing model. However, more nuclides 
have to be exploited for final inference. Detail 
work is still in progress.  

 Fig. 1:Neural network structure used in the 
present work. 
 

 

   
      
 
 
  
  
  
 
 
 
Fig. 2: The N-Z plane showing different 
 nuclides taken in the calculation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   Fig. 3: The difference in binding energy/A  
from  the present calculation. 
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