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We study topological string amplitudes for the local %K?a surface. We develop a method of
computing higher genus amplitudes along the lines of the direct integration formalism, making
full use of the Seiberg—Witten curve expressed in terms of modular forms and Es-invariant Jacobi
forms. The Seiberg—Witten curve was constructed previously for the low-energy effective theory
of the non-critical E-string theory in R* x T2. We clarify how the amplitudes are written as
polynomials in a finite number of generators expressed in terms of the Seiberg—Witten curve.
We determine the coefficients of the polynomials by solving the holomorphic anomaly equation
and the gap condition, and construct the amplitudes explicitly up to genus three. The results
encompass topological string amplitudes for all local del Pezzo surfaces.

Subject Index B27, B33

1. Introduction

Topological string theory on the local %K3 surface provides us with a unified description of the low-
energy effective theory of four-dimensional N' = 2 SU(2) gauge theories [1,2] and their extensions
to five and six dimensions. The local %K3 surface is a non-compact Calabi—Yau threefold in which the
%K3 surface appears as a divisor. By blowing down exceptional curves, one can reduce %K3 to any
del Pezzo surface B, (n < 8), including P> and P! x P'. Topological string theory on the local %K3
describes the low-energy effective theory of the six-dimensional (1, 0) supersymmetric non-critical
E-string theory in R* x 72 [3-8]. Similarly, topological string theory on the local 3, corresponds to the
non-critical E,, string theory in R* x 72 with one of the cycles of the 7% shrinking to zero size [9,10].
This theory shares the same moduli space with the five-dimensional AV = 1 SU(2) gauge theory on
R* x §! with n — 1 fundamental matters [11-13]. For the toric case (n < 5), the topological string
amplitudes have been well studied. In particular, the all-genus topological string partition function
in this case is given by the Nekrasov partition function for the above five-dimensional gauge theory
[14-17].

For toric Calabi—Yau threefolds, the construction of topological string amplitudes has been well
understood. One can use the topological vertex formalism [18] to construct the all-genus partition
function as a sum over partitions on the A-model side. The “remodeling the B-model” conjecture
[19], which is based on the topological recursion for matrix models [20], enables us to gener-
ate the amplitudes on the B-model side recursively with respect to the genus [21,22]. Indeed,
for toric local del Pezzo surfaces, topological string amplitudes have been studied both in the
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former approach [23] and in the latter approach [24-26]. For non-toric Calabi—Yau threefolds,
however, such a universal prescription is lacking at present. The purpose of this paper is to for-
mulate a method of constructing the topological string amplitudes for the most general local %K3
surface.

A generalization of the topological vertex formalism was proposed [27] and applied to the con-
struction of the topological string partition functions for non-toric local del Pezzo surfaces [28].
(See also [29] for another construction for the local B¢.) Remarkably, this formalism enables us to
construct the all-genus partition function as a sum over partitions. The partition function in this form
is, however, not suitable for obtaining the topological string amplitude at each genus in a closed form.
Also these constructions do not seem to apply directly to the case of the general local %KB surface.
On the other hand, one can construct the topological string amplitude at each genus by solving the
holomorphic anomaly equation [30]. Higher-genus amplitudes have been constructed explicitly for
some special cases with one or two moduli parameters [31-33]. Moreover, a simple, specific form of
the holomorphic anomaly equation was proposed for the topological string amplitudes for the local
%K3 surface [8,32]. By solving this equation one can construct higher-genus amplitudes for the most
general case with manifest affine £g symmetry [8,34]. In this construction, however, the amplitudes
are obtained not in a closed form, but rather in the form of an instanton expansion with respect to
one of the Kihler moduli parameters.

Recently, it has been discovered and proved that topological string amplitudes for any Calabi—Yau
threefold are polynomials in a finite number of generators [35,36]. By making use of this remarkable
fact and taking account of the symmetry, in particular modular properties of the amplitudes [37],
one can directly solve the holomorphic anomaly equation and efficiently determine the amplitude at
each genus in a closed form [38]. This method, which we will call the direct integration method, is
applicable, in principle, to topological strings on any Calabi—Yau threefold. It has also been applied
to the gravitational corrections to Seiberg—Witten theories [38—41].

There are many examples of non-compact Calabi—Yau threefolds for which the mirror geometries
are essentially described by Seiberg—Witten curves. In this case, the symmetry of the topological
string amplitudes can naturally be understood in terms of the Seiberg—Witten curve. The Seiberg—
Witten curve turns out to be useful to construct the topological string amplitude not only at genus
zero, but also at higher genus. All these arguments apply to the local %K?a surface: The mirror
geometry in this case is described by the Seiberg—Witten curve for the E-string theory [7,42]. In
particular, the most general form expressed in terms of modular forms and Eg-invariant Jacobi forms
was constructed [42]. Making full use of this Seiberg—Witten curve, we are able to formulate a
method of constructing the topological string amplitudes at higher genus in a closed form for the
most general local %K3.

Let us briefly summarize our construction in the following. We first clarify the polynomial structure
of the higher-genus amplitudes and identify the generators of the polynomials. The generators are
expressed in terms of one of the periods and the complex structure modulus of the torus associated
with the Seiberg—Witten curve. We elucidate the modular anomaly of the generators, which can be
interpreted as the holomorphic anomaly. This enables us to evaluate the holomorphic anomaly of
the ansétze for the higher-genus amplitudes. Each time we solve the holomorphic anomaly equation,
there appears a holomorphic ambiguity that cannot be fixed by the equation. We fix them by imposing
a gap condition. The gap condition for the topological strings on the local %K3 surface is known
[8]. This comes from the geometric property of the local %K3. Using this method, we construct the
amplitudes explicitly up to genus three.
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While the basic idea of our construction is the same as that of the direct integration method, ours is
rather different from the standard one in appearance. We start from the holomorphic anomaly equation
of Hosono—Saito—Takahashi [32] specific to the present model, rather than that of Bershadsky—
Cecotti—-Ooguri—Vafa (BCOV) [30]. We use our original generators when constructing ansitze for
the amplitudes. In terms of these generators the amplitudes can be concisely expressed. Despite
these differences, both methods should be essentially equivalent. We show that the amplitudes and
the holomorphic anomaly equation can be written in a form akin to what have been obtained for
other models by the standard direct integration method [37—40].

As we mentioned in the beginning, the topological string theory on the local %K3 surface encom-
passes that on all local del Pezzo surfaces. Remarkably, when the topological string amplitudes for
the local %KB are expressed in terms of the Seiberg—Witten curve, their forms are universal to all local
del Pezzo surfaces. To obtain the amplitudes for any local del Pezzo surface, we have only to reduce
the Seiberg—Witten curve correspondingly [10,43]. By way of illustration, we present explicit forms
of amplitudes for three basic examples, the massless local Bg, the local P? and the local P! x P!

This paper is organized as follows. In Sect. 2, we review some basic properties of the topological
string amplitudes for the local %KS surface. In Sect. 3, we describe the method of constructing
topological string amplitudes for the local %K3 in a closed form. First we review how the topological
string amplitude at genus zero is constructed from the Seiberg—Witten curve. We then study the
modular anomaly of fundamental quantities and interpret them as the holomorphic anomaly. With
these data, we solve the holomorphic anomaly equation at low genus. We make a conjecture on the
general structure of the amplitudes, which greatly simplifies the problem of solving the holomorphic
anomaly equation. We present two other expressions for the amplitudes and the holomorphic anomaly
equation. In particular, the last expression is similar to what is found in the standard direct integration
method. In Sect. 4, we study how to reduce our general results to the topological string amplitudes
for all local del Pezzo surfaces. We present explicit forms of amplitudes for three basic examples:
the massless local Bg, the local P2, and the local P! x P!. Section 5 is devoted to the conclusion and
discussion. In Appendix A, we present explicitly the generators of Eg-invariant Jacobi forms and
the Seiberg—Witten curve for the present model. Appendix B is a collection of derivative formulas.
In Appendix C, we present the explicit form of the amplitude at genus three. In Appendix D, we
summarize our conventions of special functions.

2. Properties of topological string amplitudes for local §K3

In this section we review some basic properties of the topological string amplitudes for the local
%KB surface. The reader is referred to Refs. [8,32,33] for further details.

The %KS surface, also known as the rational elliptic surface or the almost del Pezzo surface Bo, is
obtained by blowing up nine base points of a pencil of cubic curves in P2. The %K3 surface admits
an elliptic fibration over P'. A generic %K3 surface has 12 singular fibers, while a generic elliptic
K3 surface has 24 singular fibers.

The second homology group Hz(%KS», 7)) is generated by the class of a line in P? and the nine
classes of the exceptional curves. With an inner product given by the intersection number, Hz(%K3, Z)
acquires the structure of the ten-dimensional odd unimodular Lorentzian lattice I'"! (also denoted
by Io,1). The automorphism group of I'>"! contains the Weyl group of the affine Eg root system. This
property is crucial to our construction of the topological string amplitudes for the local %K& Itisalso
useful to note that the lattice decomposes as %! = r! @ rg, where ' is the two-dimensional
odd unimodular Lorentzian lattice and I'g is the Eg root lattice. 'l is generated by [B], [E] with
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[B]-[E]=1, [B]-[B] = -1, [E]-[E] = 0, where [B] and [E] can be viewed as the classes of the
base and the fiber of the elliptic fibration. The automorphism group of I'g is given by the Weyl group
of the Eg root system, which will be denoted by W (Eg).

By alocal %KS surface we mean the total space of the canonical bundle of a generic %K3 surface.
It is a non-compact Calabi—Yau threefold. We consider the A-model topological string theory on
it. In this paper we let Fy denote the instanton part of the topological string amplitude at genus g.
What we mean by the instanton part will be explained soon. We consider the amplitudes in real
polarization, namely, ', are holomorphic functions. As we will see below, the holomorphic anomaly
of the amplitudes can be read from the modular anomaly.

Let F denote the all-genus topological string partition function defined as

o
F=Y) Fgx™2, (2.1)
g=0

F can be viewed as the generating function of the Gopakumar—Vafa invariants [44]. By taking account
of the W (Eg) symmetry, F' can be expressed as

(o NN SN ¢} [e @]
Flormin =Y. 330 3 YoNiga Yoo (20in )7 e riren. )
m=1

r=0 n=1 k=0 LeP; weO;

Here, P denotes the set of all dominant weights of Eg, and the sum with respect to weights w is taken
over the Weyl orbit of A; ¢ and t denote the Kihler moduli corresponding to the base and the fiber of
the elliptic fibration, respectively, while g = (i1, ..., ug) denote the orthogonal coordinates for the
complexified root space of £g. The Gopakumar—Vafa invariants N, , , are integers. They count the
BPS multiplicities of the five-dimensional N' = 1 supersymmetric tﬁe})ry obtained by compactifying
the M-theory on the local %K3 surface. This five-dimensional theory is identified with the effective
theory of the six-dimensional E-string theory on R x S'.
We defined Fy as the instanton part, which means that F, is expanded as

o
Fo(p. T, ) =Y Zgn(z, p) ™™ (2.3)

n=1

and does not contain any polynomial (including constant) term in ¢. From the point of view of the
E-string theory, Z,, := ¢~ 7" i"TZo,n is the BPS partition function of the E-strings wound # times [5,8].
Z, is also interpreted as the partition function of N' = 4 U(n) topological Yang—Mills theory on %K3
[8]. Throughout this paper, we refer to this F, as the topological string amplitude at genus g.

At present, the most general way of computing higher-genus amplitudes applicable to any Calabi—
Yau threefold is to solve the BCOV holomorphic anomaly equation [30]. In this paper we define the
topological string amplitudes as holomorphic functions, but one could adopt the standard definition
in terms of twisted N' = 2 superconformal field theories, in which the amplitudes also possess
anti-holomorphic dependence on moduli parameters. It is well known that this anti-holomorphic
dependence, or the holomorphic anomaly, is governed by the BCOV holomorphic anomaly

equation
_ 1_ - g1
0:Fy = ECi]-,-CezK GG | DiDFg—1 + ) DiFpDiFo_y |. (2.4)
h=1
4/29
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Here, Fy denotes the amplitudes at genus g, K is the Kéhler potential, G;; = 9; ] ;K is the Kéhler
metric, D; denotes a certain covariant derivative, and (_71- = ?jk with Cjjx = D;D;DyFy. One can
recursively solve this differential equation to construct higher-genus amplitudes F; up to holomorphic
ambiguities. It is worth noting that F, are polynomials in a finite number of generators [35,36], which
greatly helps the construction.

In practice, however, it is rather hard to solve a topological string model with ten Kdhler moduli
parameters, in particular when the target space is not a local toric Calabi—Yau threefold. Nevertheless,
in the case of the local %K3 one can make full use of the symmetry to construct the amplitudes much
more efficiently than in generic cases. As is explained below, F; at low g are fully characterized by
the symmetry, the holomorphic anomaly equation, and the gap condition.

Let us start with the symmetry. Due to the automorphism of the homology lattice of %K3, the
partition function exhibits the affine Fg symmetry. Moreover, it possesses good modular properties
in 7. It is known that Z ,, has the following structure [33]:

Tgu(T, )
Zan(t, ) = — (2.5)
[TTrZ: (1 = ¢b)]
where
g =&, (2.6)

Tgn is a W(Eg)-invariant quasi-Jacobi form of weight 2g — 2 + 6n and index n. The reader is
referred to Appendix A for the basic properties of the W (Eg)-invariant Jacobi form. By W (Ejg)-
invariant quasi-Jacobi forms we mean those which are generated by the generators of the ordinary
W (Eg)-invariant Jacobi forms and the Eisenstein series £, (7).

E>(7) is not strictly a modular form, as it transforms as

E, (—1) =12 (Ez(t) + i) (2.7)
T TIiT

However, the non-holomorphic function

By(r,7) = Ea() + —0 28)
wi(t —T)

transforms as a modular form of weight 2,

T

- 1 1 5a _
E> 73 =T1°Ey(7,T). 2.9)

By replacing all E>(7) by Es(1,7), the amplitude F; transforms as a modular function of weight
2g — 2 at the cost of losing holomorphicity. This non-holomorphicity is regarded as the holomorphic
anomaly of the amplitude. In other words, the modular/holomorphic anomaly of the amplitude always
appears through E>. For later convenience, we introduce a normalized notation & := ﬁEz and let

3 = 249, (2.10)

measure the holomorphic anomaly. We also introduce a normalized variable ¢ = 2wip + ¢, so that

1
0p = ——0p. 2.11
¢ 2mi Y ( )
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The precise relation between ¢ and ¢ will be given in Sect. 3. Throughout this paper we hold t and
[ constant when we take partial derivatives with respect to & and ¢. In terms of these normalized
variables, the holomorphic anomaly equation for the partition function F is written as [32]

deel” = x?95(3p + el (2.12)

By expanding the equation in x, it becomes a set of recursive equations:

g
0Fy = 95Fy 1 + 0pFg_1+ Y 0pFndsFgp. (2.13)
h=0
The equation for g = 0 should be understood with F_; = 0. In terms of Z, ,, the holomorphic
anomaly equations read
g n—1

O Zgn =n(n+DZg 1n+ Y Y k(=) Zp4Zg—hnt- (2.14)
h=0 k=1

Again, the equation for g = 0 should be understood with Z_; ,, = 0.

The above form of holomorphic anomaly equation was first proposed for g = 0 [8] and later
extended for general g [32]. The validity of the equation has been further confirmed in Refs. [33,34].
It is expected that the above equation is equivalent to the BCOV holomorphic anomaly equation for
the local 3K3 [34,45].

As the holomorphic anomaly equation is a differential equation, one needs to fix the integration
constant, i.e. the holomorphic ambiguity, at each genus. For the present model, it is known that the
following gap condition can be used for this purpose:

o0 . 1
_ 2mwing n
F=Ye (—n(Z T +0(q )). (2.15)

n=1

This condition is equivalent to the following constraint on the Gopakumar—Vafa invariants:
Nf,k,x =0 for k<n except Nlo,o,o =1 (2.16)

This follows from the geometric structure of the local %K3 [8]. In terms of Z, , the gap condition
reads

Zgn = Bgn* > + O(¢", 2.17)

where B, are rational numbers defined by the following expansion:

o x2
Z ﬂgng =
g=0

s 2 x
4 sin 5

1 1 1
=14 —x* 4+ ——x* + —xf 5. 2.18
+12x +240x +6048x + Ox") (2.18)
It has been checked [8,33,34] for low g and n that Z, , can be determined uniquely by the symmetry
(2.5), the holomorphic anomaly equations (2.14), and the gap conditions (2.17).' Based on this fact,

we will develop a method of constructing /g in a closed form in the next section.

' For general g, however, these conditions are not likely to be sufficient for determining the amplitude
completely. See the discussion at the end of Sect. 3.3.
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3. Closed expressions for amplitudes
3.1. Genus zero amplitude and instanton expansion

It is known that the genus zero amplitude F for the local %K3 surface is obtained as the prepotential
associated with the Seiberg—Witten curve of the form

V=4 —fi—g, 3.1)

with

\
I
I-

6
aut,  g=Y bus. (3.2)
j=0

Actually, a Seiberg—Witten curve of this form itself describes an elliptic fibration of the %K3 surface.
It can be viewed as a sort of local mirror symmetry between one %K3 and another %K3 [8,33]. We
present the explicit form of the Seiberg—Witten curve in Appendix A. It was determined in Ref. [42]
so that the instanton expansion of the prepotential correctly reproduces Z, at low » calculated by
the method of [8], which we summarized in the last section.

Let us recall how the prepotential is obtained from the Seiberg—Witten curve of the above general
form. Given the Seiberg—Witten curve (3.1), the expectation value of the scalar component of the
N = 2 vector multiplet is expressed as

1 d.
b= duf @ (3.3)
21 oV

where « is one of the fundamental cycles of the curve. The complexified gauge coupling constant T
is given by the complex structure modulus of the Seiberg—Witten curve. On the other hand, 7 is given
by the second derivative of the prepotential. In terms of the instanton part Fy of the prepotential, T
is expressed as

F=t14 iaéFo, (3.4)
where 7t is the bare gauge coupling constant. By solving these relations, one obtains the prepotential
from the Seiberg—Witten curve.

The practical calculation can be organized as follows [10,42,46]. Since the present Seiberg—Witten
curve is elliptic, one can make full use of the explicit map between an elliptic curve and a torus. Let
2rw,2mwt) denote the fundamental periods of the torus. The map from the torus to the elliptic
curve in the Weierstrass form (3.1) is given in terms of the Weierstrass g-function by

X =g 2nw,2rwT), V=00 (;2nw,2nwT). (3.9)

The coefficients of the elliptic curve and the periods of the torus are related as

1 E4 1 Eg
= == 3.6
S=0w &7 2l6a (36)
where we use the notation
EZn = Eou(7). (3.7)
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One can express T and w in terms of the Seiberg—Witten curve by inverting the modular functions.

First, we eliminate o from the two equations (3.6) by taking the ratio /> /g?. Equivalently, we can

look at the j-invariant. We expand it in u~! as

1_ E; - E? _f-27¢
joo1728E3  1728f3

:l__Eé_bllJr@(i), (3.8)

Here we have used ag = %E4, by = ﬁE& a1 = 0.2 On the other hand, the j-invariant has the

following expansion:
1 .
j= 7 744 + 1968847 + O (%), g =¥ (3.9)

Inverting this expansion and using (3.8), we obtain the expansion of 7 in #~!. By introducing the
notation

t:=2mi(T — 1), (3.10)
the expansion is expressed as
Esb; 1 E¢ar  Esby  E4(E4E» + 5E¢)bi?\ 1 1
t=———-— - — —+0(—= ) 3.11
4A u (48A 4A 192A2 u? + 3 31D

Substituting this into (3.6), one obtains the expansion of w in u#~!. We choose the sign of w in such
a way that w is expanded as

1 (E4Er, — Eg)by 1 1
— - Lol =) 3.12
= 48A u? + u’ (3-12)
Integrating this by u, one obtains ¢. We define ¢ with the normalization
¢ = —fa)du (3.13)
so that e? has the expansion
1 (E4Er — Eg)by 1 1
¢~ _ i — ). 3.14
¢ u 48A u? +0 u’ ( )
Inverting this relation, we have
1 (E4Er — Eg)by
Sty T TOTLW 1 0 (39). 3.15
Lt T ga o) (3.15)
Substituting this into (3.11), we obtain
E4by ¢ Egar  Esby  Esq(E4E + 2E6)b% 2 3
=—-— — — 0 (). 3.16
an ¢ T\ 48a T an 96A2 et o) (3.16)

2 This is the convention of the Seiberg—Witten curve adopted in Ref. [42]. By suitable rescaling and shift
of variables one can always recast a generic Seiberg—Witten curve of the form (3.1), (3.2) as this form without
loss of generality.
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Similarly, from (3.12) and (3.15) we obtain

(E¢E> — ED)as  (E4Ey — Eg)by
1152A 96 A

Ina)=¢+<

—2E2E2 — 8E4E4E, + 5E3 + 5E2)b?
y BTSRRI TN ) 2 1 o (09), 617

which will be used later. As explained in the beginning, the instanton part of the prepotential is
given by

Fo=—0,"t. (3.18)

Here 8;1 denotes integration with respect to ¢ of a power series in e?.

This prepotential is identified with the genus zero amplitude Fy for the local %K3 surface. The bare
gauge coupling t is interpreted as the Kihler modulus 7 of the original %K3. The scalar expectation
value ¢ is identified with the Kéhler modulus ¢ as [46]

00 12 .
¢ =g [szl(l — qk)] 2o (3.19)
Taking this into account, Fy is expanded as
Fo= Eaby eFrie

- 12
4152 (1 = ¢b)]
—2EgA 24E4Aby + (E2E; + 2E6E4)b? . .
cAay + 4OO 2 + (£ 22:- 6E4) Ltrie 4 0 (5779), (3.20)
384 [Hk:l(l - qk)]

By substituting the coefficients a,, b, of the Seiberg—Witten curve presented in Appendix A, one
obtains the genus zero amplitude for the local %K3 as a series expansion in ¢2™/¢ up to any desired

order.

3.2.  Modular anomaly

The Seiberg—Witten curve transforms as a W (Eg)-invariant Jacobi form (see Appendix A). On the
other hand, the genus zero amplitude £y contains £5 and therefore exhibits the modular anomaly.
The E;’s appear when one expands the j-invariant j(7) around T = t. Thus, the modulus 7 and the
period w of the Seiberg—Witten curve do exhibit the modular anomaly when expanded in ~!. In
Ref. [46], the modular anomaly of T and w was studied in the course of proving the holomorphic
anomaly equation for the genus zero amplitude. Extending the analysis, here we study the modular
anomaly of various quantities derived from the Seiberg—Witten curve. We will use this to solve the
holomorphic anomaly equation for higher-genus amplitudes.

As mentioned above, the Seiberg—Witten curve transforms as a Jacobi form. This means that the
modulus 7 (u, T, u) of the curve transforms in precisely the same way as t does under the action of
SL(2,7Z). It then follows that t = 27i(T — t) is invariant under t — 7+ 1, T — 7 + 1, while it
transforms as

1 e 1 1 . 1
;—>r -+ for T—> ——, T—> ——. (3.21)

T ~
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This anomalous behavior is expected since £’s appear in the coefficients of the expansion (3.11).
Moreover, one finds that the transformation of 7! is very similar to that of £ as in Eq. (2.7). This
suggests that #~! depends on E, as

1
= EEz + (modular function of weight 2). (3.22)

One can explicitly check this using the series expansion (3.11). Let us express it as
(:t71), =2, (3.23)

or
(3s1), = —21%. (3.24)

Here, (ag t)u denotes the partial derivative of # with respect to &, holding u constant.
Next let us consider modular properties of the combination

E 1/4
4

We have used (3.6). One can see that this transforms as a modular form of weight 4 in t, since the
constituents transform as

Ey— t*Ey, o>t o7 (3.26)

under the S-transformation t — —1/t, T — —1/7. This means that the combination wt is free of
the modular anomaly, namely

(Bg (wt))u =0. (3.27)
Using (3.24), one obtains
(dsw), =20t (3.28)

Furthermore, combining (3.28) with (3.13) one obtains

(9e9), =20, 1, (3.29)
(32¢) =0. (3.30)

u

Based on these formulas and (3.6), one can evaluate the modular anomaly of various quantities. We
present a list of formulas in Appendix B.

So far in this subsection, we have regarded « and £ as independent variables and taken the derivative
d¢ holding u constant. Let us say we are in the (u,&) frame. On the other hand, the holomorphic
anomaly equations (2.13) are given in the (¢, &) frame. It is useful to see how expressions in these
frames are transformed into each other. The derivative of a function 4 with respect to & is transformed
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between these frames by the simple chain rule

(064)y = — @bl (3p4) + (3:4),,., (3.31)
= —2(0,"'0) (3p4) + (3%4),,. (3.32)
We have used (3.29) in the second equality. We sometimes omit the subscript £, as we always hold

& constant when we take derivatives 9, and d,4. Applying this formula to dyFy = —8(; It and using
(3.29), (3.30), we see that

(9 (9F0)), =2 (9F0) (03F0 ). (3.33)
By integrating both sides by ¢, we obtain the holomorphic anomaly equation (2.13) at g = 0,
2
deFo = (0¢F0) . (3.34)

3.3.  Higher-genus amplitudes

The expression (2.13) of the holomorphic anomaly equation is not convenient for practical purposes,

since derivatives of F, appear on both sides of the equation. Using dyFo = —a(;lr and the chain

rule (3.32), one can rewrite the equation into the recursive form
g—1

(0eFg), = 93Fg—1 + 0pFg1 + »_ 0pFndsFgy (3.35)

h=1

for g > 1. In the following, we solve this equation and construct F, for low g.

Let us first consider the case of g = 1. In this case, the equation simply reads

2
(9F1), = 05F0 + 9pFo
=—t—0,'t. (3.36)

With the help of the derivative formulas (B.5)—(B.9), one immediately finds a solution of the form

F1 =cllna)— —
12 24

c 1 ~ 1

Ly —) A = ¢ +/i(0). (3.37)
The constant ¢; and the function f(t) can be determined by the condition that F takes the form
(2.3), namely it does not contain any polynomial term in ¢. From (3.16) and (3.17) we see that

InA =InA + O@E>¥), Inw = ¢ + O@E*%). (3.38)

Using these we can determine the unknowns as ¢; = 1/2,f; = (In A)/12 and obtain

1 11 1
Fl=-Inow— —InA+—InA— -o. 3.39
1=5hme—pnA+inA=7¢ (3.39)

While this is not a rigorous derivation, we have checked that the above form is the correct answer.
Combined with (3.15)—(3.17) and (3.19), the above expression correctly reproduces Z; ,,, which we
explicitly calculated up to n = 5 using the method explained in the last section. It also reproduces
the result for p = 0 presented in Ref. [34]. Note that a similar expression has been presented for
four-dimensional Seiberg—Witten theories [17,40].
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To compute amplitudes for g > 2 by solving (3.35), we point out an interesting fact that the term
—¢/2 in F'y precisely cancels the linear term 94 F¢ 1 on the right-hand side of (3.35). Therefore, if
we introduce the notation

1 1
Fi=Fitz6.  F=Ftgch,  Fp=F fo gz3, (3.40)

the holomorphic anomaly equation (3.35) turns into the very simple form

g—1
(0:F5), = 05 Fg—1 + > _ 39 FndpFen (3.41)
h=1
for g > 2. Note that this form has already been presented in Ref. [40] in the case of four-dimensional
SU(2) Seiberg—Witten theories. It is natural that the holomorphic anomaly equation takes the same
form in the present case, since the definition (3.13) of ¢ through the Seiberg—Witten curve is common
in both cases.
Based on this simple form, let us construct the amplitude at g = 2. Equation (3.41) in this case
reads

0 F)u = 95 F1 + (3pF1)*
= 132 Inw+ l(a Inw)? — iE At 0y Inw — iE a2t + e (0p1)%. (3.42)
2% 4% 1272%0% 1277977 1aa %
Note that the last expression is a polynomial in (quasi-)modular forms E,; and derivatives
8;;’ In w, Bgt. The polynomial is constrained so that each term contains two dy’s and is of weight 0.
Note that after every E» is replaced by £>, a modular function in 7 transforms as that in T with the
same weight. Thus, the weights of the generators of the polynomial read

[Exi] = 2k, [8(’;1 Inw] =0, [agt] = -2 (3.43)

We see from (3.42) that F; is of weight 2, since £ is of weight 2. Let us make an ansatz that 7, has
the same polynomial structure as (3.42), namely a polynomial in Eo, dy Inw, 951 with two dy’s.
Explicitly, the ansatz reads

Fr=c1br 95 Inw+ c2Ex(3p In ) + (c3E3 + caba)dyt dp Inw
+ (esE3 + c6E4) a5t + (c1E3 + csE4Ey + cokig) (9g1)°. (3.44)

Substituting this ansatz into (3.42), one can partly determine the coefficients ¢;. The derivatives of
the generators with respect to £ are summarized in Appendix B. One has to be careful when taking
derivatives of 8; In w and agt with respect to §. We differentiate them in the (u, &) frame, where 0¢
and 9y do not commute. The explicit forms of these derivatives for general n are given in Eq. (B.10),
(B.11), which can be shown by using the chain rule (3.32).

The holomorphic anomaly equation (3.42) reduces the number of undetermined parameters to
three. These remaining parameters can be fixed by the condition that F, takes the form (2.3) and by
the gap conditions (2.17) at n = 1, 2. In the end, one obtains

1~ 5 1~ T N
5= &Ez 5 Inw + %Ez(% Inw)” — %(Ez — E4)dyt 9p In

(SE3 + 3E4) ot — (35E3 + 51E4E; — 86E4) (351, (3.45)

1920 207360

12/29

Downl oaded from https://academ c. oup. conl ptep/articl e-abstract/2017/3/033B09/ 3096141/ Topol ogi cal -string-anplitudes-for-the-local-frac-1
by CERN - European Organization for Nuclear Research user

on 03 Cctober 2017



PTEP 2017, 033B09 K. Sakai

In the same way, we are able to determine the amplitude at genus three. The most general ansatz for
JF3 is written with 68 unknown parameters. The holomorphic anomaly equation gives 45 relations
and leaves 23 undetermined parameters. These are fixed completely by the condition that £3 takes
the form (2.3) and by the gap conditions (2.17) up to n = 4. The explicit form of F3 is presented
in Appendix C. We checked for low 7 that Z, ,, calculated from the above-obtained 7>, 73 are in
agreement with the results obtained by the method described in Sect. 2. In the next section we will
also reproduce the higher-genus amplitudes for local del Pezzo surfaces from these results, which
serves as another consistency check.

Based on the above explicit construction of F; at low genera, we propose the following conjecture:

Fq (g = 2) is a polynomial in Eor, a;" In w, ag,t (k=1,2,3, m,n € Z~), in which

3.46
each term contains 2g — 2 d,’s and is of weight 2g — 2. (3.46)

Note that the form of the polynomial is no longer unique for g > 4, since not all of 9" In w, 9;¢ are
independent. Actually, they are finitely generated. This can be seen as follows. Recall that f, g are

polynomials of degree 4, 6 in u, respectively. Since d, = —w0dy, this means that

x E4

) — =0, for k>4, 3.47

(0ds)” — > (347)
k E6

0y) — =0, for k> 6. 348

(@3s)” 5 > (3.48)

These relations give rise to non-trivial relations among the derivatives 8(;” Inw, 8gt. Using these

relations, one can express all 8;’] In w and B;t with m,n € Z- in terms of those withm = 1,...,6

andn = 1,...,4 and EZ,E4,E6. Therefore, by assuming the above conjecture, F, can also be

expressed in terms of these generators. In this expression Fg (g > 4) is still a polynomial in 9 In o
and agt, but becomes a rational function in Ezk. In Sect. 3.5 we will introduce another expression in
which F, is indeed written as a polynomial of a finite number of generators.

The polynomial structure of Fy is expected, since topological string amplitudes for any Calabi—Yau
threefold are polynomials in a finite number of generators [36]. The significance of the conjecture
(3.46) is that the generators are explicitly given in terms of the Seiberg—Witten curve. This allows us
to study topological string amplitudes for not only the local %K3 but all local del Pezzo surfaces in a
unified way, as we will see in the next section. The conjecture (3.46) provides us with a systematic
construction of the ansatz for general F,. In particular, the holomorphic anomaly equations and
the gap conditions will be sufficient for completely fixing the form of F, at low genus, as we have
explicitly seen for g = 2, 3.

On the other hand, it is not likely that these conditions suffice to determine F, at general g. In
fact, if we apply the method to the special case with u = 0, where Ty , (7, 0) are now ordinary quasi-
modular forms, an undetermined coefficient appears already at g = 4. To determine the amplitude
completely at general g, one needs additional conditions, such as gap conditions imposed at the
conifold loci of the moduli space. This is indeed the case for some simple local del Pezzo surfaces
[47,48].

3.4. Expression in (u, &) frame

Equation (3.41) looks somewhat irregular, as the left-hand side is written in the (1, £) frame while
the right-hand side is in the (¢, &) frame. For practical purposes, this is actually a convenient form
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since the derivatives of F, are assembled in a single term in the (1, §) frame while the gap condition
can be explicitly expressed in the (¢, &) frame. On the other hand, it is also useful to express the

equation entirely in the (1, &) frame. By using 0y = —%8u, (3.41) can be rewritten as
1 g1
(0eFe), = — | 0aFet — Bl @8 Fgmt + Y 0uFhduFy (3.49)
h=1

for g > 2. In this frame, it is easier to take derivatives with respect to &, while the gap condition
cannot be expressed in a simple manner. F, is expressed as

1 1 1
Fr = <48E2 82 lnw — 9—E2(8 lna)) + %(SEZ + 1954)3 td,Inw

——(5E3 + 3E4)d%t —

(35E3 + S1E4Ey — 86E6)(3ut)2>, (3.50)

1
1920 207360

which is almost as simple as the previous expression (3.45).

3.5. Expression in direct integration style

There is another interesting expression of the topological string amplitudes and the holomorphic

anomaly equation. One can express the amplitudes directly in terms of the coefficients of the Seiberg—

Witten curve. To see this, let us start with studying the transformation rules for the generators.
From (3.6) and

3 2 A

we see that

oyInf =0, lnE4 — 49, Inw

L, Es Bt — 43,1 (3.52)
- = - n .
3 2 E4 w1 @,

dInD=09,InA— 129, Inw

= E» 0yt — 120, In w. (3.53)
Solving these relations, one obtains
1 —6fg’ +9 g
Wyt = —————— 3.54
T w? 2D ’ (3.54)
—2fg' +3f'9)X + (—2f*f" + 36gg’
8ulnw:( fg' +3f'g)X + (=2f“f" + gg)’ (3.55)
8D
where
Ey
X ==, (3.56)
1)

The derivative of X in u is computed as

I _ 247 2 201 / 245 /
B.X — (2fg" = 3f'g) X" + (4f°f 8;2gg )X + (24f<g" — 36ff 8 (3.57)
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With the help of these relations and 9y = —%E)u, it is straightforward to express higher derivatives
of ¢t and In w in terms of X and f m) (), g(”) (u). Note that E4,E6 can also be rewritten in terms of
f, g, o by using (3.6). After all this, F; is expressed as

Fy = (10012g"* — 30011 gg’ + 225> g*) X3

sara0p (
+ (2407%g" — 780f3f"g’ — 36073f"'g + 990f%f*g

— 6480f2%¢” + 11880fzg’” — 145801 g%g’ + 9720f" %) X>

+ (—48073F" + 420£*"% + 8640f3gg” + 100801 3g"* — 5400072 gg’

+ 12960121 g2 + 2916071 *g? — 2332802%¢” + 213840g2¢’ )X

+ (5184f5g" — 12816 f'g’ — T776%F" g + 15336F3 "2 g — 1399681 2g%g”
12583361 2gg’* — 428976f g%’ + 2099521 1" g> + 167184f g3)). (3.58)

Note that @ does not appear explicitly in this expression. The same type of expression for F73 is
immediately obtained by rewriting the result in Appendix C. We do not present its lengthy expression
here, but the calculation is straightforward.

The holomorphic anomaly equations can be written in a form more suited to the above expres-
sion. Observe that when the F, are expressed as in Eq. (3.58), holomorphic anomalies appear only
through X. Hence, one can simply replace g by

24
0 = (0eX)udy = EE)X (3.59)
in the holomorphic anomaly equation (3.49). For g = 2, the equation is now written as
249y Fy = 02 F) — 8, Inw 8, F + (0,F1)*. (3.60)
By using
1
o, F1 = —Eau Inw— Ea InD
(2fg' —3f'g)X + (=21 + 36gg")
= T (3.61)

and (3.55), (3.57), one can evaluate the right-hand side of (3.60) as a quadratic polynomial in X.
Then, integrating directly both sides of (3.60) in X, one obtains (3.58) up to the “constant” part in
X. For g > 3, let us introduce the notation

v 1 v
Fi=Fi-she,  Fg=F for g=2. (3.62)
The holomorphic anomaly equations can then be written again in a very simple form:
g—1
2oxFy =07 Fg 1+ Y duFnduFygn  g=3. (3.63)
h=1

Regarding the explicit form of F, at g = 2,3 and the above equation, we present our conjecture
on the structure of the amplitudes in another form: 7, (g > 2) can be expressed as

3g-3
1 5282 k
Fe = Tz D Paxltd® ".f glx". (3.64)
k=0
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Here, Pg,k[afg _2, /gl denotes a polynomial in 9,'f, 9,/g (m,n € Z>() in which each term contains
2g — 2 9,’s. The form of the polynomial is constrained so that F transforms as a W (Eg)-invariant
quasi-Jacobi form of index 0. Note that the constituents of the amplitudes are of the following indices
(see Appendix A):

X1=2, [f1=4, [gl=6, [DI=12, [3]=—1 (3.65)

Recall that f', g are polynomials of degree 4, 6 in u, respectively. Therefore, in this expression it is
manifest that 7, is a polynomial in a finite number of generators, namely,

1
D’ X, 9)'f, 9,g, m=0,...,4, n=0,...,6. (3.66)
We find that the above structure of the amplitudes and the holomorphic anomaly equation is akin
to what has been obtained for other models by the direct integration method [37—40]. While we
have taken a different path from the standard approach, both constructions should be essentially
equivalent.

4. Topological string amplitudes for local del Pezzo surfaces

The topological string amplitudes for the local %K3 surface encompass those for all local del Pezzo
surfaces. In this section we see how the former reduce to the latter. In fact, when the topological
string amplitudes for the local %K3 are expressed in terms of the Seiberg—Witten curve, their forms
are universal to all local del Pezzo surfaces. We obtain the amplitudes for any local del Pezzo surface
by merely replacing the Seiberg—Witten curve with the corresponding one. The mirror pair of the
local del Pezzo surface B, is given by the Seiberg—Witten curve for the five-dimensional £, strings
[10]. It is also easy to reduce the most general Seiberg—Witten curve to that for any del Pezzo surface
[10,43,49]. We first discuss the general cases and then present explicit forms of amplitudes for three
basic examples: the massless local Bg, the local P2, and the local P! x P!.

4.1. General cases

The Seiberg—Witten curve for the local By is obtained from that for the local %K3 by simply taking
the limit ¢ — 0. Curves for the other local B, (n < 7) are immediately obtained by a suitable
rescaling [10,43]. The construction of the topological string amplitudes from the Seiberg—Witten
curve is essentially the same as in the case of the local %K?a. In particular, the mirror map between
u and ¢ for B, (n < 8) is simply given by the ¢ — 0 limit of (3.15).

Below we present the minor modifications needed for the local B, (n < 8). The instanton parts of
the topological string amplitudes at g = 0, 1 are slightly modified as follows:

9—n
Fo= -0t + ——¢°, 4.1
0 ¢ + 6 ¢ ( )
Fl=itho-thmi-les " 42
1=5me=nA =3¢+ =59, (4.2)

with

t:=2mwit 4.3)
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instead of (3.10). Expressions for higher-genus amplitudes F, (g > 2) hold as they stand, where the
Fq are now related to Fy as

1 1
Fi =F1—|—§¢, f2=Fz+%, Fo=F; for g=>3. 4.4)
We also need to modify the relation (3.19) between ¢ and ¢, since it is no longer valid in the limit
g = 0. Instead of (3.19), we identify them by

e? = —e?TY, (4.5)

4.2. Massless local By
As an illustration we first consider the case of local Bg with w = 0. In this case the corresponding
Seiberg—Witten curve is extremely simple. The coefficients are given by

1 4 1

f:—u, g:RZ/I

6 5
— 4. 4.6
o u (4.6)

The amplitudes at g = 0, 1 are given by (4.1), (4.2) with n = 8. By substituting the above f, g into
(3.58) one obtains

1

Fr =
27 207360ut (u — 432)2

(25)(3 4 15u(—25u + 6048) X >
+ 7512 29u? — 22464u + 5225472)X + u’ (335u — 273888)). 4.7

Similarly, from the expression of /3 in Appendix C, one obtains

1
5016453120u8(u — 432)4

+ 315u> (1754 + 5184u + 5225472)X*

7 <525X6 — 840012X°

+ 560u° (—325u° 4 18360u* — 89859456u + 11851370496)X>

+ 63u*(4625u* — 50088961° + 84911431681

— 2300402073600 + 260052929740800).X 2

+ 672u" (—325u° + 284796u® — 6238373761 + 7054387200)X

+ u8(61775u* — 96755904u° + 2193257502721

+ 15910182715392u + 9788763779629056)). (4.8)

From these expressions one can compute Gopakumar—Vafa invariants. The instanton expansions in
this case read

1
— =% — 60e* — 1530¢* — 274160¢*” — 50519055¢° + O (%), (4.9)
u

w = €? +5130e*? + 13475206 + 3720463656 + O (*?), (4.10)
t = ¢ +252e? +36882¢% +7637736¢> + 1828258569 + O (7). (4.11)
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Table 1. Gopakumar—Vafa invariants for the massless local Bg.

N a1 2 3 4 5

p

0 252 —9252 848628 —114265008 18958064400
1 —2 760 —246790 76413833 —23436186176
2 0 -4 30464  —26631112 16150498760
3 0 0 -1548 5889840  —7785768630

The Gopakumar—Vafa invariants are computed by recasting £ as

0 P © X e 1 mx\ 2r—2 i

g—2 __ r - O Ltd 7T imng
S Ft T =3 N Ny <2s1n : ) erimng, 4.12)
g=0 r=0 n=1 m=1

We present the Gopakumar—Vafa invariants N, at low degrees in Table 1. This reproduces the
known result, for example found in Refs. [5,33].> Moreover, it is easy to compute N, up to an
arbitrarily large degree of , as we now have the exact form of the amplitudes F.

We have performed the expansion around the large volume point # = oo to compute the
Gopakumar—Vafa invariants, but we could expand the amplitudes at arbitrary u. It would be inter-
esting to study the behavior of the amplitudes around the other points such as the orbifold point, as

in Ref. [25].
4.3. Local P*
The coefficients of the Seiberg—Witten curve are given by
=—u -2 =—u — - 1. 4.13
SEpl A g =g gt “-13)

The amplitudes at g = 0, 1 are given by (4.1), (4.2) with n = 0. By substituting the above f, g into
(3.58), one obtains

£, T3 — 1651202 4+ 125X + 9(5u® — 464w’ + 6192)
2T 7680(u° — 27)? ‘

(4.14)

Similarly, from the expression of /3 in Appendix C, one obtains

1
20643840(u? — 27)%

—560(355u8 + 6750u° + 8748)X°

F = (14175)(6 — 75600u%X°> + 315u(533u° + 3024)x*

+ 21u%(6305u® + 2574720 + 1181952) X
— 672u(70u° + 5007u’ + 49086u> + 34992)X
+ 6965u'? + 7749921 + 1320192018 + 279936001° + 20155392). (4.15)

? The Gopakumar-Vafa invariants N at » = 1 and the instanton numbers N¢ for g = 1 curves found in
[5,33] are related by N, = 3", N, [33].
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Table 2. Gopakumar—Vafa invariants for the local P2,

N n 1 2 3 4 5
r

0 3 -6 27 =192 1695
1 0 0 -10 231  —4452
2 0 0 0 —-102 5430
3 0 0 0 15 -=3672

The instanton expansions in this case are given by

1

—=e? — 2% — 7P —20e'% — 17713 + O (el6¢), (4.16)

u

w=e? +4e* + 417 4 520¢'% + 7275¢13¢ 4 O (?), (4.17)
405 110997

t=9¢ + 27 + 7eé‘f’ +2196¢° + Telzd’ + 0 (e'). (4.18)

The all-genus topological string partition function can be expressed as

ZF X282 ZZN’Z (2s1n7>2r72 om. (4.19)

r=0 n=1 m=1

where
Q — e67”¢ = —e3¢, (420)

Table 2 shows the Gopakumar—Vafa invariants N, at low r and n. These are in agreement with the
known result (see [31,50], for example) of the Gopakumar—Vafa invariants for local P2.

4.4. Local P' x P!

The coefficients of the Seiberg—Witten curve are given by

= T 3a -
1, 1 2, 1\, 8 4
— 5 — - 2 421
&7 216" 18" +(9 3)” +( 27% +3X) “21)
where
X =& 4 TP, (4.22)

The amplitudes at g = 0, 1 are given by (4.1), (4.2) with n = 1. Substituting the above f, g into
(3.58), one obtains

1
12960(u? — 4y + 8)2(u?2 — 4y — 8)2

+ 120 (=2u* + Syu? + 123 — 48) X?

Fr= (100023
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+ 15 (13u® — 80xu* + (16x% + 768)u” + 384> — 1536)) X
+ 8 (10u® — 201y + (1452 % — 2808)u*

+(—4528)> + 20304 ))u® + 5184 x* — 362882 + 62208)). (4.23)

We do not present the explicit form of F3 since it is slightly lengthy, but the calculation is
straightforward. The instanton expansions in this case read

1
-= e — 3 + (x* =3 + (—x° + )" + 0 (?), (4.24)
w=e?+x? + (x* +9e? + (x> +43x)e’ + O (*?), (4.25)
8
t =8¢ + 8xe*® + (4> + 56)*® + (§x3 + 208)() e + 0 (*). (4.26)

The all-genus topological string partition function can be expressed as

o0 ey e > 1 mx\ 2r—2
— . mn mn
Y EETE=Y N N 3o (25 )T O @)
g=0 r=0 ny,ny=0 m=
where
0 = eZﬂi(Z(p—HL), 0, = 2TiCe—1) (4.28)

We checked that N, , are in agreement with the known data of the Gopakumar—Vafa invariants for

the local P! x P! (see [50], for example).

5. Conclusion and discussion

In this paper we have developed a general method of computing topological string amplitudes for the
local %K3 surface. We have demonstrated that the amplitudes can be concisely expressed in terms
of the Seiberg—Witten curve, which manifestly exhibits good modular properties and the affine Eg
Weyl group invariance. We have clarified the general structure of the amplitudes. The amplitudes at
g =0, 1 are given in Egs. (3.18), (3.39), while higher-genus amplitudes F, (g > 2) are written as a
polynomial in generators expressed in terms of the Seiberg—Witten curve. Given the structure, one
can determine the coefficients of the polynomials by solving the holomorphic anomaly equation and
the gap condition. We have explicitly computed the form of the amplitudes for g = 2,3. We have
also found that the holomorphic anomaly equation takes a very simple form if we adopt notations in
which the amplitudes at low genus are slightly modified.

The topological strings on the local %K3 surface encompass those on all local del Pezzo surfaces.
We have elucidated how to reduce the amplitudes to those for the local del Pezzo surfaces. By way of
illustration, we have explicitly constructed the amplitudes for three simple cases. These amplitudes
correctly reproduce the known Gopakumar—Vafa invariants.

There are several directions for further investigation. We have proposed that the conjectures (3.46),
(3.64) on the structure of the amplitudes hold for general g. It is important to prove them and clarify
how they are related to the general scheme of the polynomial structure [36]. Another point to be
clarified is the precise conditions needed to determine the amplitudes at arbitrarily high genus. For
general g, the gap condition used in this paper is not likely to be sufficient for fixing the amplitude.
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On the other hand, it is known that regularity at the orbifold point and the large radius point and the
leading behavior at the conifold points suffice to determine the holomorphic ambiguities at least for
local del Pezzo surfaces with one or two moduli parameters [47]. We expect that the same sort of
argument will apply to the case of the most general local %K3 surface.

The direct integration method has been applied to the four-dimensional SU(2) Seiberg—Witten
theories with matters [39—41]. We know from Nekrasov partition functions that by taking a certain
limit topological string amplitudes on the toric del Pezzo surfaces reproduce the prepotential and
the gravitational corrections of the four-dimensional theories. It is interesting to see how our general
formulas reproduce those results. The cases of non-toric local del Pezzo surfaces are of particular
interest. In terms of the Seiberg—Witten curves, we know how the four-dimensional SU(2) theories
with an £, global symmetry [51-53] are reproduced from the five-dimensional ones [10,42]. It would
be interesting to construct the gravitational corrections to these four-dimensional theories with an
E, flavor symmetry.

The topological recursion [20], or more specifically the “remodeling the B-model” conjecture
[19], is a powerful method of computing topological string amplitudes. This method is free of the
holomorphic ambiguity and also computes the open string amplitudes. It would be very interesting
if our expressions for the amplitudes F, can be derived by a method similar to the topological
recursion.
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Appendix A. Seiberg—Witten curve for E-string theory

The low-energy effective theory of the E-string theory in R* x T2 is described as SU(2) Seiberg—
Witten theory with nine parameters, T and g = (1, . . ., ug). T isregarded as the bare gauge coupling
and p are the masses of fundamental matters. The theory possesses an Eg flavor symmetry, and the
Weyl group W (Eg) acts on g as an automorphism. On the other hand, from the point of view of the
six-dimensional theory, T is the modulus of the 72 in the 5,6-directions and the p are interpreted
as Wilson lines along these directions. The theory therefore admits modular properties in T and
double periodicity in p. These symmetries become manifest if we express the dependence on these
parameters through W (Eg)-invariant Jacobi forms.

A.1. W (Ey)-invariant Jacobi forms

Let ¢y (7, ) denote W (Eg)-invariant Jacobi forms of weight k and index m. They are holomorphic
int (Imt > 0), u € C3, and satisfy the following properties [54,55]:

(1) Weyl invariance:
(T, W) = Qem(T, ), W€ W(Eg). (A.1)
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(i1) Quasi-periodicity:

—mri(Tw 2 puw)

Ok (T, +V+TW) =€ Ok (T, 1), v,we Iy. (A.2)

(iii)) Modular properties:

at+b n X , 2
= d ) A3
Phem (Cr+d,cr+d> (ct 4+ d)" exp (mmcﬂrdu Prem (T, 1) (A.3)
(iv) @k m(T, u) admit a Fourier expansion as
P (T, 1) = Z > e, vy, (A4)
= velyg
v2 < 2ml

. . a
Here, I's is the E§g root lattice and (
c

coincides with the level of the affine £ Lie algebra.
Among others, the most fundamental W (Eg)-invariant Jacobi form is the theta function associated
with the lattice I'g,

cbz’ ) € SL(2,7Z). Note that in this convention the index m

O(t,p) = Z exp (mrw +2mip - w Znﬂk(uj,r) (A.5)

wel'8 k 1j=1

One can see from the properties of the Jacobi theta functions that ®(z, p) is of weight 4 and index
1. Jacobi forms of higher indices can be constructed from ®(z, u) as follows.
To construct more general W (Eg)-invariant Jacobi forms, we introduce the functions

e1(r) = 15 (930" + 94(0)?),
er (1) = 15 (2(0)* — 9a(0)?),
e3(7) = 5 (=2(0)* — ¥3(0)%), (A.6)

and
h(t) = 93(21)93(67) + 9 (2T) 1 (67). (A7)

Let us then define the following nine W (Eg)-invariant Jacobi forms:
AT, p) = O, p), Aa(v,p) = §A(OQT.20)},  A3(t,p) = ZA{OGT,3p)),
As(t, ) = O(t,20), As(t, 1) = 13410 (57,51)}
Ba(t,p) = 2H(e1(1)OQT,20)},  Bi(r,p) = A {h(n)*OGT,3p)}),
Ba(t,p) = 2 A{9420)*O@1,41)},  Bo(r,n) = 5 {h(1)*O(67,61)} . (A.8)

Here, 5Z{-} denotes the sum of all possible distinct SL(2, Z) transforms of the argument. Explicitly,
they read

AT, p) = O(,m),  Aa(r,p) = O(r,2m),
3 e
(e m) = 2 (O + LYITi0CE w), =235,
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Ba(r,m) = 2 (10027, 2p) + Fres(OG, 1) + He2(DOCF, W),
Bs(r,w) = 5 (h(020G7,30) — £ Y3 h(FH20HE w),
Ba(t,p) = 18 (194(21)4@(41,4;:,) — S 9421)*O(t + 3.2m)
— i (e W),
Be(T, 1) = % (h(r)2(~)(6t,6u) + %Z/lc:oh(f + k)2®(¥,3u)
— b Y oh(HE) 20 (242 o)

—ﬁZizoh(%")z@(%,u)). (A.9)

Ay, By, are of index n and weight 4, 6, respectively. If we set u = 0, these Jacobi forms reduce to
ordinary modular forms. We have determined the normalization of 4,,, By, so that they reduce to the
Eisenstein series

An(7,0) = E4(7),  Bu(7,0) = Eg(7). (A.10)

Ay, By, generate all the W (Eg)-invariant Jacobi forms appearing in the coefficients of the Seiberg—

Witten curve.*

A.2.  Seiberg—Witten curve

The Seiberg—Witten curve for the E-string theory was constructed in Ref. [42]. Here we present the
same curve expressed in terms of the W (Eg)-invariant Jacobi forms introduced above:

V=4 —fi—g, (A.11)
4 6
f=Yaqut,  g=Y bus, (A.12)
Jj=0 '
Ly 0 6 ( Ao +A>
ag = — ay = a —
0 12 0, 1 ) 2 = E4A 042
a3 = 742BoAs — 204383 — 940BoA1 43 + 30424,B +6BA)
3 9EZA2( 013 — 0DP3 0D0A1A2 102 0
1
ay = ——————( (48 — A3B2)A4 + (5647 — 5642B2)A1A3 — 274345
4 864E2A3<(0 00)4 ( 0 00) 143 0412
— 9043BoA2By — T544B3 + (18043 — 3640B5) A4,
+ 24043BoA3B; + (—21043 + 18B )A4>
1 4 5
bo=—By, by =——d4,, b <A23 BA2>,
0 216 0 1 E4 1 2 = 6E2 2 — DoAy

4 There are alternative choices for the generators 4, B,. For instance, one can take 256% {ei(r)®4r,4p)}
instead of B, and/or 2 %{h(21)2®(6t 6[,L)} instead of Bg.
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1
by = —<—7A5A — 2043ByB
T l0sEiaz\ R 0703

— 9434145 4 3043BoA1 By + (1645 — 10B2) A3 )

1
b =—( 5A] + SALBY) By + (8045 — 8043B2) 41 B
4 1728E2A3( 0 0)Ba + ( 0By)A1B3

+ 943BoA3 + 3045425 + 2543B0B3 — 48Bo A AT A4,

+ (—14043 4 6043B2)43B, + (7443By — 1033)/1‘1‘),

bs = m((—zug + 2143B3)As — 294484245 — T704¢BoBaA3
4
— 8404¢BoA2B3 — 220043 B2 B3 + 168434343 + 480Bo A3 A3 B;
— 621434145 + 35254341 B3 + 1224434345 — 24043Bo A3 B,
+ (—45643 + 2433)/1?),
1
be = —( —2041% + 404382 — 204584 B
© = T3a3e0z8Esas \ 2 050 — 204050)Be

+ (—1894°By 4 3784} B3 — 18943B3) 4, 45
+ (=94°Bo + 94 B3) A2 A4 + (—154}" + 1545B%) By 44
+ (—1804} + 18048 B3)42B4 + (—30047Bo + 3004 B3)B2By
+ (2243 B — 2248B3) A7 44 + (1504L° + 1204] B} — 27043 B3) A3 B4
+ (1964°By — 1964]B3) A3 + (112044! — 112043B3)43B;
+ (160049Bo — 160045B3)B3 + (—298243 By + 298243B3) 414245
4 (—25204.° — 44104] B3 + 693043B3)A41B24;
+ (33604, — 109204 Bj + 756043B3)A142B3
+ (—1980045 By + 1980043B3)41B2B3 + (201645 By — 201643B3) 43 43
+ (—592047 + 736045B3 — 144043 B3) A3 B3 4 (40547 Bo + 16245B3) 43
+ (121541° + 16204]B3) 438, + 472545BoA2B5
+ (112549 + 150045B3)B3 + (—947745Bo + 510343B3) 4343
+ (—91804] — 540045B%)A342B> + (209254] By — 3307543B3) 43 B3
+ (203044 By — 907243B3) 414,
+ (1278045 + 540043 B3 + 54043 B5) A1 B,

+ (—1107643Bo + 151243B3 — 3633)A?). (A.13)

Note that a,, b, satisfy most of the properties of the W (Eg)-invariant Jacobi forms except the
condition v? < 2ml in the Fourier expansion. ay, b, are of index n and weight 4 — 6n,6 — 6n,
respectively. It is useful to let the variables u,x,y transform formally as Jacobi forms of weights
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Appendix B. Derivative formulas

dlA_E
—InA =Ej,
‘]dq 2

dE—l(E2 E4)
T2~ 12—

d 1
—FE4 = = (E4E) — Ey),
qdq4 3(42 6)

d 1 ,
q——FE¢ = —(EcE> — EY).

dg 2
(%1), =
( a))u = 2wt,
(aé(p)u - 28

(ag In A) — 24,
u

agEZk = 4ktE2k + 2451,k .

(2 (35 mw)) = —2% (ki 1) 8kt 0n " Inw + 2341,
()= 22| (,2) 2 ()t @z

Appendix C. Genus three amplitude

Fy= 0jn0) (5ak3 + ss5rF4)

+ (8&2 In )(3y In w) (1152 2~ 69112E4>
+ (95 Inw)’ (2304E2 + 20736E4)
+ (030 0) (B9 In)* (g B3 + n5tsE4)
+ (83, In w)(3p1) <ﬁE2 + 82944E E — 82944E6)

921 dp 1 0s0) (5ir B3 — =22 FE4Fy + s E
+ (35 In ) (3p In @) (1) \ 13523 E2 — magsza EaL2 + 2aggan o
+ 0 0 00) (a7 3 — 573 Eaflz + 1rares )

2 20 (1 77 7
+ (85 In ) (351) (62208E4E2 - 62208E6)

2 2 131
+ (95 In ) (91) ( 776l + T EaEs — ssssbeln + 2985984E4)
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+ (9 In)*(351) (2485832E4E2 248832E6)

209 12
+ (9 In )" (341) ( imels + mesosabaEd — tashen Eeka + 186624E4>

+ (8 Inw)(@30) (“13%2‘4];3 + _1941140E4E2 + 62%880E6)

+ @ In “))(aaﬁt)(%t) < 165888 2 + 497664E4E2 248832E6E2 248832E4)
+ (3 In ) (9p1)° (‘ wrcea s + usom ks

110592E6E2 995328E4%E2 + 2985984E6E4)
+ (831‘) (‘ ﬁES 1241142&60E4E2 87(1);?20E6>

3 287 361
+ (950 (3p1) ( 497664E2 3732480E4E2 + 6531840E6E2 + 10450944E4>

202
+ @50 < 55296E2 331776E4E2 + 387072E6E2 + 2322432E4)

2 2
+ (050)(951) < 90656 £2 — 27635 LA

22 2 B
Jr331776E6E2 1990656E4E2 995328E6E4)

4 7 76 181 7 74 19 7 &3
+ (9p1) <_23887872E2 — 71663616 L4E2 T 7730285 £6 £

=2 7 1+ 7 F 73 23 1 72
7962624E4E2 ssos72 L6 E4E2 + Fr663616 L4 T 995328E6>'
(C.1)

Appendix D. Conventions

We define the Eisenstein series, the modular discriminant, and the j-invariant by their Fourier

expansion:
B (27.”~)2n k2n 1 k i
E2n(f) =1+ (2}’1 — 1)' {(2}’1) — 1— q q=ce > (Dl)
00 1
2@ =q[[T7,0 -] = 15 (a0 - Eo(0?), (D2)
o B
i =3 (D.3)

We often omit the argument of these functions, as far as it is . When the argument is 7, we use the
following abbreviations:

By = En(®), A:=AGR), j:=j&. (D4)

The Weierstrass go-function is defined as

1

P 2rw,2rwt) = —+ Z |:( )2 o 2], Qup=2nw@m+nt). (D.5)
z—Q m,n

m,n
m, nez? £(0,0)
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This function satisfies the differential equation

Eq(7) Es(7)

d.0)% = dp° — - : D.6
(0-) P T ot ® T 21600 (D.6)
The Jacobi theta functions are defined as
D1z 1) =i Y (— 1)y 2127, (D.7)
nez
Dz, Ty = Yy, (D.8)
nez
%) =Y Vg, (D.9)
nez
Daz,T) = Y (=1)"y"q" 2, (D.10)
nez
where y = >, g = ¢*™*. We also use the following abbreviated notation:
V(1) 1= 94(0, 7). (D.11)
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