
Prog. Theor. Exp. Phys. 2017, 033B09 (29 pages)
DOI: 10.1093/ptep/ptx027

Topological string amplitudes for the local 1
2K3

surface

Kazuhiro Sakai∗

Institute of Physics, Meiji Gakuin University, 1518 Kamikurata-cho, Totsuka-ku, Yokohama-shi, Kanagawa
244-8539, Japan
∗E-mail: kzhrsakai@gmail.com

Received January 31, 2017; Accepted February 14, 2017; Published March 30, 2017

... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We study topological string amplitudes for the local 1

2 K3 surface. We develop a method of
computing higher genus amplitudes along the lines of the direct integration formalism, making
full use of the Seiberg–Witten curve expressed in terms of modular forms and E8-invariant Jacobi
forms. The Seiberg–Witten curve was constructed previously for the low-energy effective theory
of the non-critical E-string theory in R

4 × T 2. We clarify how the amplitudes are written as
polynomials in a finite number of generators expressed in terms of the Seiberg–Witten curve.
We determine the coefficients of the polynomials by solving the holomorphic anomaly equation
and the gap condition, and construct the amplitudes explicitly up to genus three. The results
encompass topological string amplitudes for all local del Pezzo surfaces.
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1. Introduction

Topological string theory on the local 1
2K3 surface provides us with a unified description of the low-

energy effective theory of four-dimensional N = 2 SU(2) gauge theories [1,2] and their extensions
to five and six dimensions. The local 1

2K3 surface is a non-compact Calabi–Yau threefold in which the
1
2K3 surface appears as a divisor. By blowing down exceptional curves, one can reduce 1

2K3 to any
del Pezzo surface Bn (n ≤ 8), including P

2 and P
1 × P

1. Topological string theory on the local 1
2K3

describes the low-energy effective theory of the six-dimensional (1, 0) supersymmetric non-critical
E-string theory in R

4×T 2 [3–8]. Similarly, topological string theory on the local Bn corresponds to the
non-critical En string theory in R

4 ×T 2 with one of the cycles of the T 2 shrinking to zero size [9,10].
This theory shares the same moduli space with the five-dimensional N = 1 SU(2) gauge theory on
R

4 × S1 with n − 1 fundamental matters [11–13]. For the toric case (n ≤ 5), the topological string
amplitudes have been well studied. In particular, the all-genus topological string partition function
in this case is given by the Nekrasov partition function for the above five-dimensional gauge theory
[14–17].

For toric Calabi–Yau threefolds, the construction of topological string amplitudes has been well
understood. One can use the topological vertex formalism [18] to construct the all-genus partition
function as a sum over partitions on the A-model side. The “remodeling the B-model” conjecture
[19], which is based on the topological recursion for matrix models [20], enables us to gener-
ate the amplitudes on the B-model side recursively with respect to the genus [21,22]. Indeed,
for toric local del Pezzo surfaces, topological string amplitudes have been studied both in the
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former approach [23] and in the latter approach [24–26]. For non-toric Calabi–Yau threefolds,
however, such a universal prescription is lacking at present. The purpose of this paper is to for-
mulate a method of constructing the topological string amplitudes for the most general local 1

2K3
surface.

A generalization of the topological vertex formalism was proposed [27] and applied to the con-
struction of the topological string partition functions for non-toric local del Pezzo surfaces [28].
(See also [29] for another construction for the local B6.) Remarkably, this formalism enables us to
construct the all-genus partition function as a sum over partitions. The partition function in this form
is, however, not suitable for obtaining the topological string amplitude at each genus in a closed form.
Also these constructions do not seem to apply directly to the case of the general local 1

2K3 surface.
On the other hand, one can construct the topological string amplitude at each genus by solving the
holomorphic anomaly equation [30]. Higher-genus amplitudes have been constructed explicitly for
some special cases with one or two moduli parameters [31–33]. Moreover, a simple, specific form of
the holomorphic anomaly equation was proposed for the topological string amplitudes for the local
1
2K3 surface [8,32]. By solving this equation one can construct higher-genus amplitudes for the most
general case with manifest affine E8 symmetry [8,34]. In this construction, however, the amplitudes
are obtained not in a closed form, but rather in the form of an instanton expansion with respect to
one of the Kähler moduli parameters.

Recently, it has been discovered and proved that topological string amplitudes for any Calabi–Yau
threefold are polynomials in a finite number of generators [35,36]. By making use of this remarkable
fact and taking account of the symmetry, in particular modular properties of the amplitudes [37],
one can directly solve the holomorphic anomaly equation and efficiently determine the amplitude at
each genus in a closed form [38]. This method, which we will call the direct integration method, is
applicable, in principle, to topological strings on any Calabi–Yau threefold. It has also been applied
to the gravitational corrections to Seiberg–Witten theories [38–41].

There are many examples of non-compact Calabi–Yau threefolds for which the mirror geometries
are essentially described by Seiberg–Witten curves. In this case, the symmetry of the topological
string amplitudes can naturally be understood in terms of the Seiberg–Witten curve. The Seiberg–
Witten curve turns out to be useful to construct the topological string amplitude not only at genus
zero, but also at higher genus. All these arguments apply to the local 1

2K3 surface: The mirror
geometry in this case is described by the Seiberg–Witten curve for the E-string theory [7,42]. In
particular, the most general form expressed in terms of modular forms and E8-invariant Jacobi forms
was constructed [42]. Making full use of this Seiberg–Witten curve, we are able to formulate a
method of constructing the topological string amplitudes at higher genus in a closed form for the
most general local 1

2K3.
Let us briefly summarize our construction in the following. We first clarify the polynomial structure

of the higher-genus amplitudes and identify the generators of the polynomials. The generators are
expressed in terms of one of the periods and the complex structure modulus of the torus associated
with the Seiberg–Witten curve. We elucidate the modular anomaly of the generators, which can be
interpreted as the holomorphic anomaly. This enables us to evaluate the holomorphic anomaly of
the ansätze for the higher-genus amplitudes. Each time we solve the holomorphic anomaly equation,
there appears a holomorphic ambiguity that cannot be fixed by the equation. We fix them by imposing
a gap condition. The gap condition for the topological strings on the local 1

2K3 surface is known
[8]. This comes from the geometric property of the local 1

2K3. Using this method, we construct the
amplitudes explicitly up to genus three.
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While the basic idea of our construction is the same as that of the direct integration method, ours is
rather different from the standard one in appearance.We start from the holomorphic anomaly equation
of Hosono–Saito–Takahashi [32] specific to the present model, rather than that of Bershadsky–
Cecotti–Ooguri–Vafa (BCOV) [30]. We use our original generators when constructing ansätze for
the amplitudes. In terms of these generators the amplitudes can be concisely expressed. Despite
these differences, both methods should be essentially equivalent. We show that the amplitudes and
the holomorphic anomaly equation can be written in a form akin to what have been obtained for
other models by the standard direct integration method [37–40].

As we mentioned in the beginning, the topological string theory on the local 1
2K3 surface encom-

passes that on all local del Pezzo surfaces. Remarkably, when the topological string amplitudes for
the local 1

2K3 are expressed in terms of the Seiberg–Witten curve, their forms are universal to all local
del Pezzo surfaces. To obtain the amplitudes for any local del Pezzo surface, we have only to reduce
the Seiberg–Witten curve correspondingly [10,43]. By way of illustration, we present explicit forms
of amplitudes for three basic examples, the massless local B8, the local P

2 and the local P
1 × P

1.
This paper is organized as follows. In Sect. 2, we review some basic properties of the topological

string amplitudes for the local 1
2K3 surface. In Sect. 3, we describe the method of constructing

topological string amplitudes for the local 1
2K3 in a closed form. First we review how the topological

string amplitude at genus zero is constructed from the Seiberg–Witten curve. We then study the
modular anomaly of fundamental quantities and interpret them as the holomorphic anomaly. With
these data, we solve the holomorphic anomaly equation at low genus. We make a conjecture on the
general structure of the amplitudes, which greatly simplifies the problem of solving the holomorphic
anomaly equation. We present two other expressions for the amplitudes and the holomorphic anomaly
equation. In particular, the last expression is similar to what is found in the standard direct integration
method. In Sect. 4, we study how to reduce our general results to the topological string amplitudes
for all local del Pezzo surfaces. We present explicit forms of amplitudes for three basic examples:
the massless local B8, the local P

2, and the local P
1 × P

1. Section 5 is devoted to the conclusion and
discussion. In Appendix A, we present explicitly the generators of E8-invariant Jacobi forms and
the Seiberg–Witten curve for the present model. Appendix B is a collection of derivative formulas.
In Appendix C, we present the explicit form of the amplitude at genus three. In Appendix D, we
summarize our conventions of special functions.

2. Properties of topological string amplitudes for local 1
2K3

In this section we review some basic properties of the topological string amplitudes for the local
1
2K3 surface. The reader is referred to Refs. [8,32,33] for further details.

The 1
2K3 surface, also known as the rational elliptic surface or the almost del Pezzo surface B9, is

obtained by blowing up nine base points of a pencil of cubic curves in P
2. The 1

2K3 surface admits
an elliptic fibration over P

1. A generic 1
2K3 surface has 12 singular fibers, while a generic elliptic

K3 surface has 24 singular fibers.
The second homology group H2(

1
2K3, Z) is generated by the class of a line in P

2 and the nine
classes of the exceptional curves.With an inner product given by the intersection number, H2(

1
2K3, Z)

acquires the structure of the ten-dimensional odd unimodular Lorentzian lattice �9,1 (also denoted
by I9,1). The automorphism group of �9,1 contains the Weyl group of the affine E8 root system. This
property is crucial to our construction of the topological string amplitudes for the local 1

2K3. It is also
useful to note that the lattice decomposes as �9,1 = �1,1 ⊕ �8, where �1,1 is the two-dimensional
odd unimodular Lorentzian lattice and �8 is the E8 root lattice. �1,1 is generated by [B], [E] with
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[B] · [E] = 1, [B] · [B] = −1, [E] · [E] = 0, where [B] and [E] can be viewed as the classes of the
base and the fiber of the elliptic fibration. The automorphism group of �8 is given by the Weyl group
of the E8 root system, which will be denoted by W (E8).

By a local 1
2K3 surface we mean the total space of the canonical bundle of a generic 1

2K3 surface.
It is a non-compact Calabi–Yau threefold. We consider the A-model topological string theory on
it. In this paper we let Fg denote the instanton part of the topological string amplitude at genus g.
What we mean by the instanton part will be explained soon. We consider the amplitudes in real
polarization, namely, Fg are holomorphic functions. As we will see below, the holomorphic anomaly
of the amplitudes can be read from the modular anomaly.

Let F denote the all-genus topological string partition function defined as

F =
∞∑

g=0

Fgx2g−2. (2.1)

F can be viewed as the generating function of the Gopakumar–Vafa invariants [44]. By taking account
of the W (E8) symmetry, F can be expressed as

F(ϕ, τ , μ; x) =
∞∑

r=0

∞∑
n=1

∞∑
k=0

∑
λ∈P+

∑
w∈Oλ

N r
n,k ,λ

∞∑
m=1

1

m

(
2 sin

mx

2

)2r−2
e2π im(nϕ+kτ+w·μ). (2.2)

Here, P+ denotes the set of all dominant weights of E8, and the sum with respect to weights w is taken
over the Weyl orbit of λ; ϕ and τ denote the Kähler moduli corresponding to the base and the fiber of
the elliptic fibration, respectively, while μ = (μ1, . . . , μ8) denote the orthogonal coordinates for the
complexified root space of E8. The Gopakumar–Vafa invariants N r

n,k ,λ are integers. They count the
BPS multiplicities of the five-dimensional N = 1 supersymmetric theory obtained by compactifying
the M-theory on the local 1

2K3 surface. This five-dimensional theory is identified with the effective
theory of the six-dimensional E-string theory on R

5 × S1.
We defined Fg as the instanton part, which means that Fg is expanded as

Fg(ϕ, τ , μ) =
∞∑

n=1

Zg,n(τ , μ) e2π inϕ (2.3)

and does not contain any polynomial (including constant) term in ϕ. From the point of view of the
E-string theory, Zn := e−π inτ Z0,n is the BPS partition function of the E-strings wound n times [5,8].
Zn is also interpreted as the partition function of N = 4 U(n) topologicalYang–Mills theory on 1

2K3
[8]. Throughout this paper, we refer to this Fg as the topological string amplitude at genus g.

At present, the most general way of computing higher-genus amplitudes applicable to any Calabi–
Yau threefold is to solve the BCOV holomorphic anomaly equation [30]. In this paper we define the
topological string amplitudes as holomorphic functions, but one could adopt the standard definition
in terms of twisted N = 2 superconformal field theories, in which the amplitudes also possess
anti-holomorphic dependence on moduli parameters. It is well known that this anti-holomorphic
dependence, or the holomorphic anomaly, is governed by the BCOV holomorphic anomaly
equation

∂̄ı̄Fg = 1

2
C̄ı̄ j̄ k̄ e2K Gjj̄ Gkk̄

⎛
⎝DjDkFg−1 +

g−1∑
h=1

DjFhDkFg−h

⎞
⎠. (2.4)
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Here, Fg denotes the amplitudes at genus g, K is the Kähler potential, Gij̄ = ∂i∂̄j̄ K is the Kähler
metric, Di denotes a certain covariant derivative, and C̄ı̄ j̄ k̄ = Cijk with Cijk = DiDjDkF0. One can
recursively solve this differential equation to construct higher-genus amplitudes Fg up to holomorphic
ambiguities. It is worth noting that Fg are polynomials in a finite number of generators [35,36], which
greatly helps the construction.

In practice, however, it is rather hard to solve a topological string model with ten Kähler moduli
parameters, in particular when the target space is not a local toric Calabi–Yau threefold. Nevertheless,
in the case of the local 1

2K3 one can make full use of the symmetry to construct the amplitudes much
more efficiently than in generic cases. As is explained below, Fg at low g are fully characterized by
the symmetry, the holomorphic anomaly equation, and the gap condition.

Let us start with the symmetry. Due to the automorphism of the homology lattice of 1
2K3, the

partition function exhibits the affine E8 symmetry. Moreover, it possesses good modular properties
in τ . It is known that Zg,n has the following structure [33]:

Zg,n(τ , μ) = Tg,n(τ , μ)[∏∞
k=1(1 − qk)

]12n , (2.5)

where

q = e2π iτ . (2.6)

Tg,n is a W (E8)-invariant quasi-Jacobi form of weight 2g − 2 + 6n and index n. The reader is
referred to Appendix A for the basic properties of the W (E8)-invariant Jacobi form. By W (E8)-
invariant quasi-Jacobi forms we mean those which are generated by the generators of the ordinary
W (E8)-invariant Jacobi forms and the Eisenstein series E2(τ ).

E2(τ ) is not strictly a modular form, as it transforms as

E2

(
−1

τ

)
= τ 2

(
E2(τ ) + 6

π iτ

)
. (2.7)

However, the non-holomorphic function

Ê2(τ , τ̄ ) := E2(τ ) + 6

π i(τ − τ̄ )
(2.8)

transforms as a modular form of weight 2,

Ê2

(
−1

τ
, −1

τ̄

)
= τ 2Ê2(τ , τ̄ ). (2.9)

By replacing all E2(τ ) by Ê2(τ , τ̄ ), the amplitude Fg transforms as a modular function of weight
2g −2 at the cost of losing holomorphicity. This non-holomorphicity is regarded as the holomorphic
anomaly of the amplitude. In other words, the modular/holomorphic anomaly of the amplitude always
appears through E2. For later convenience, we introduce a normalized notation ξ := 1

24E2 and let

∂ξ = 24∂E2 (2.10)

measure the holomorphic anomaly. We also introduce a normalized variable φ = 2π iϕ +φ0, so that

∂φ = 1

2π i
∂ϕ . (2.11)
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The precise relation between φ and ϕ will be given in Sect. 3. Throughout this paper we hold τ and
μ constant when we take partial derivatives with respect to ξ and φ. In terms of these normalized
variables, the holomorphic anomaly equation for the partition function F is written as [32]

∂ξ eF = x2∂φ(∂φ + 1)eF . (2.12)

By expanding the equation in x, it becomes a set of recursive equations:

∂ξ Fg = ∂2
φFg−1 + ∂φFg−1 +

g∑
h=0

∂φFh∂φFg−h. (2.13)

The equation for g = 0 should be understood with F−1 = 0. In terms of Zg,n, the holomorphic
anomaly equations read

∂ξ Zg,n = n(n + 1)Zg−1,n +
g∑

h=0

n−1∑
k=1

k(n − k)Zh,kZg−h,n−k . (2.14)

Again, the equation for g = 0 should be understood with Z−1,n = 0.
The above form of holomorphic anomaly equation was first proposed for g = 0 [8] and later

extended for general g [32]. The validity of the equation has been further confirmed in Refs. [33,34].
It is expected that the above equation is equivalent to the BCOV holomorphic anomaly equation for
the local 1

2K3 [34,45].
As the holomorphic anomaly equation is a differential equation, one needs to fix the integration

constant, i.e. the holomorphic ambiguity, at each genus. For the present model, it is known that the
following gap condition can be used for this purpose:

F =
∞∑

n=1

e2π inϕ

(
1

n(2 sin nx
2 )2 + O(qn)

)
. (2.15)

This condition is equivalent to the following constraint on the Gopakumar–Vafa invariants:

N g
n,k ,λ = 0 for k < n except N 0

1,0,0 = 1. (2.16)

This follows from the geometric structure of the local 1
2K3 [8]. In terms of Zg,n the gap condition

reads

Zg,n = βgn2g−3 + O(qn), (2.17)

where βg are rational numbers defined by the following expansion:

∞∑
g=0

βgx2g = x2

4 sin2 x
2

= 1 + 1

12
x2 + 1

240
x4 + 1

6048
x6 + O(x8). (2.18)

It has been checked [8,33,34] for low g and n that Zg,n can be determined uniquely by the symmetry
(2.5), the holomorphic anomaly equations (2.14), and the gap conditions (2.17).1 Based on this fact,
we will develop a method of constructing Fg in a closed form in the next section.

1 For general g, however, these conditions are not likely to be sufficient for determining the amplitude
completely. See the discussion at the end of Sect. 3.3.
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3. Closed expressions for amplitudes
3.1. Genus zero amplitude and instanton expansion

It is known that the genus zero amplitude F0 for the local 1
2K3 surface is obtained as the prepotential

associated with the Seiberg–Witten curve of the form

y2 = 4x3 − fx − g, (3.1)

with

f =
4∑

j=0

aju
4−j, g =

6∑
j=0

bju
6−j. (3.2)

Actually, a Seiberg–Witten curve of this form itself describes an elliptic fibration of the 1
2K3 surface.

It can be viewed as a sort of local mirror symmetry between one 1
2K3 and another 1

2K3 [8,33]. We
present the explicit form of the Seiberg–Witten curve in Appendix A. It was determined in Ref. [42]
so that the instanton expansion of the prepotential correctly reproduces Z0,n at low n calculated by
the method of [8], which we summarized in the last section.

Let us recall how the prepotential is obtained from the Seiberg–Witten curve of the above general
form. Given the Seiberg–Witten curve (3.1), the expectation value of the scalar component of the
N = 2 vector multiplet is expressed as

φ = − 1

2π

∫
du
∮

α

dx

y
, (3.3)

where α is one of the fundamental cycles of the curve. The complexified gauge coupling constant τ̃

is given by the complex structure modulus of the Seiberg–Witten curve. On the other hand, τ̃ is given
by the second derivative of the prepotential. In terms of the instanton part F0 of the prepotential, τ̃

is expressed as

τ̃ = τ + i

2π
∂2
φF0, (3.4)

where τ is the bare gauge coupling constant. By solving these relations, one obtains the prepotential
from the Seiberg–Witten curve.

The practical calculation can be organized as follows [10,42,46]. Since the present Seiberg–Witten
curve is elliptic, one can make full use of the explicit map between an elliptic curve and a torus. Let
(2πω, 2πωτ̃ ) denote the fundamental periods of the torus. The map from the torus to the elliptic
curve in the Weierstrass form (3.1) is given in terms of the Weierstrass ℘-function by

x = ℘(z; 2πω, 2πωτ̃ ), y = ∂z℘(z; 2πω, 2πωτ̃ ). (3.5)

The coefficients of the elliptic curve and the periods of the torus are related as

f = 1

12

Ẽ4

ω4 , g = 1

216

Ẽ6

ω6 , (3.6)

where we use the notation

Ẽ2n := E2n(τ̃ ). (3.7)
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One can express τ̃ and ω in terms of the Seiberg–Witten curve by inverting the modular functions.
First, we eliminate ω from the two equations (3.6) by taking the ratio f 3/g2. Equivalently, we can
look at the j-invariant. We expand it in u−1 as

1

j̃
= Ẽ3

4 − Ẽ2
6

1728Ẽ3
4

= f 3 − 27g2

1728f 3

= 1

j
− E6b1

4E3
4

1

u
+ O

(
1

u2

)
. (3.8)

Here we have used a0 = 1
12E4, b0 = 1

216E6, a1 = 0.2 On the other hand, the j-invariant has the
following expansion:

j̃ = 1

q̃
+ 744 + 196884q̃ + O (

q̃2), q̃ = e2π iτ̃ . (3.9)

Inverting this expansion and using (3.8), we obtain the expansion of τ̃ in u−1. By introducing the
notation

t := 2π i(τ̃ − τ), (3.10)

the expansion is expressed as

t = −E4b1

4�

1

u
+
(

E6a2

48�
− E4b2

4�
− E4(E4E2 + 5E6)b1

2

192�2

)
1

u2 + O
(

1

u3

)
. (3.11)

Substituting this into (3.6), one obtains the expansion of ω in u−1. We choose the sign of ω in such
a way that ω is expanded as

ω = 1

u
− (E4E2 − E6)b1

48�

1

u2 + O
(

1

u3

)
. (3.12)

Integrating this by u, one obtains φ. We define φ with the normalization

φ := −
∫

ωdu (3.13)

so that eφ has the expansion

eφ = 1

u
− (E4E2 − E6)b1

48�

1

u2 + O
(

1

u3

)
. (3.14)

Inverting this relation, we have

1

u
= eφ + (E4E2 − E6)b1

48�
e2φ + O (

e3φ
)
. (3.15)

Substituting this into (3.11), we obtain

t = −E4b1

4�
eφ +

(
E6a2

48�
− E4b2

4�
− E4(E4E2 + 2E6)b2

1

96�2

)
e2φ + O (

e3φ
)
. (3.16)

2 This is the convention of the Seiberg–Witten curve adopted in Ref. [42]. By suitable rescaling and shift
of variables one can always recast a generic Seiberg–Witten curve of the form (3.1), (3.2) as this form without
loss of generality.
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Similarly, from (3.12) and (3.15) we obtain

ln ω = φ +
(

(E6E2 − E2
4)a2

1152�
− (E4E2 − E6)b2

96�

+ (−2E2
4E2

2 − 8E6E4E2 + 5E3
4 + 5E2

6)b2
1

9216�2

)
e2φ + O (

e3φ
)
, (3.17)

which will be used later. As explained in the beginning, the instanton part of the prepotential is
given by

F0 = −∂−2
φ t. (3.18)

Here ∂−1
φ denotes integration with respect to φ of a power series in eφ .

This prepotential is identified with the genus zero amplitude F0 for the local 1
2K3 surface. The bare

gauge coupling τ is interpreted as the Kähler modulus τ of the original 1
2K3. The scalar expectation

value φ is identified with the Kähler modulus ϕ as [46]

eφ = −q
[∏∞

k=1
(1 − qk)

]12
e2π iϕ . (3.19)

Taking this into account, F0 is expanded as

F0 = − E4b1

4
[∏∞

k=1(1 − qk)
]12 e2π iϕ

+ −2E6�a2 + 24E4�b2 + (E2
4E2 + 2E6E4)b2

1

384
[∏∞

k=1(1 − qk)
]24 e4π iϕ + O (

e6π iϕ). (3.20)

By substituting the coefficients an, bn of the Seiberg–Witten curve presented in Appendix A, one
obtains the genus zero amplitude for the local 1

2K3 as a series expansion in e2π iϕ up to any desired
order.

3.2. Modular anomaly

The Seiberg–Witten curve transforms as a W (E8)-invariant Jacobi form (see Appendix A). On the
other hand, the genus zero amplitude F0 contains E2 and therefore exhibits the modular anomaly.
The E2’s appear when one expands the j-invariant j(τ̃ ) around τ̃ = τ . Thus, the modulus τ̃ and the
period ω of the Seiberg–Witten curve do exhibit the modular anomaly when expanded in u−1. In
Ref. [46], the modular anomaly of τ̃ and ω was studied in the course of proving the holomorphic
anomaly equation for the genus zero amplitude. Extending the analysis, here we study the modular
anomaly of various quantities derived from the Seiberg–Witten curve. We will use this to solve the
holomorphic anomaly equation for higher-genus amplitudes.

As mentioned above, the Seiberg–Witten curve transforms as a Jacobi form. This means that the
modulus τ̃ (u, τ , μ) of the curve transforms in precisely the same way as τ does under the action of
SL(2, Z). It then follows that t = 2π i(τ̃ − τ) is invariant under τ → τ + 1, τ̃ → τ̃ + 1, while it
transforms as

1

t
→ τ 2

(
1

t
+ 1

2π iτ

)
for τ → −1

τ
, τ̃ → −1

τ̃
. (3.21)

9/29
Downloaded from https://academic.oup.com/ptep/article-abstract/2017/3/033B09/3096141/Topological-string-amplitudes-for-the-local-frac-1
by CERN - European Organization for Nuclear Research user
on 03 October 2017



PTEP 2017, 033B09 K. Sakai

This anomalous behavior is expected since E2’s appear in the coefficients of the expansion (3.11).
Moreover, one finds that the transformation of t−1 is very similar to that of E2 as in Eq. (2.7). This
suggests that t−1 depends on E2 as

t−1 = 1

12
E2 + (modular function of weight 2). (3.22)

One can explicitly check this using the series expansion (3.11). Let us express it as

(
∂ξ t−1)

u = 2, (3.23)

or

(
∂ξ t
)

u = −2t2. (3.24)

Here,
(
∂ξ t
)

u denotes the partial derivative of t with respect to ξ , holding u constant.
Next let us consider modular properties of the combination

ωt =
(

Ẽ4

12f

)1/4

t. (3.25)

We have used (3.6). One can see that this transforms as a modular form of weight 4 in τ , since the
constituents transform as

Ẽ4 → τ̃ 4Ẽ4, f → τ−20f , t → τ̃−1τ−1t (3.26)

under the S-transformation τ → −1/τ , τ̃ → −1/τ̃ . This means that the combination ωt is free of
the modular anomaly, namely

(
∂ξ (ωt)

)
u = 0. (3.27)

Using (3.24), one obtains

(
∂ξω

)
u = 2ωt. (3.28)

Furthermore, combining (3.28) with (3.13) one obtains

(
∂ξφ

)
u = 2∂−1

φ t, (3.29)(
∂2
ξ φ
)

u
= 0. (3.30)

Based on these formulas and (3.6), one can evaluate the modular anomaly of various quantities. We
present a list of formulas in Appendix B.

So far in this subsection, we have regarded u and ξ as independent variables and taken the derivative
∂ξ holding u constant. Let us say we are in the (u, ξ) frame. On the other hand, the holomorphic
anomaly equations (2.13) are given in the (φ, ξ) frame. It is useful to see how expressions in these
frames are transformed into each other. The derivative of a function A with respect to ξ is transformed
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between these frames by the simple chain rule(
∂ξ A

)
φ

= −(∂ξφ)u
(
∂φA

)
ξ

+ (
∂ξ A

)
u , (3.31)

= −2(∂−1
φ t)

(
∂φA

)+ (
∂ξ A

)
u . (3.32)

We have used (3.29) in the second equality. We sometimes omit the subscript ξ , as we always hold
ξ constant when we take derivatives ∂u and ∂φ . Applying this formula to ∂φF0 = −∂−1

φ t and using
(3.29), (3.30), we see that

(
∂ξ

(
∂φF0

))
φ

= 2
(
∂φF0

) (
∂2
φF0

)
. (3.33)

By integrating both sides by φ, we obtain the holomorphic anomaly equation (2.13) at g = 0,

∂ξ F0 = (
∂φF0

)2 . (3.34)

3.3. Higher-genus amplitudes

The expression (2.13) of the holomorphic anomaly equation is not convenient for practical purposes,
since derivatives of Fg appear on both sides of the equation. Using ∂φF0 = −∂−1

φ t and the chain
rule (3.32), one can rewrite the equation into the recursive form

(
∂ξ Fg

)
u = ∂2

φFg−1 + ∂φFg−1 +
g−1∑
h=1

∂φFh∂φFg−h (3.35)

for g ≥ 1. In the following, we solve this equation and construct Fg for low g.
Let us first consider the case of g = 1. In this case, the equation simply reads(

∂ξ F1
)

u = ∂2
φF0 + ∂φF0

= −t − ∂−1
φ t. (3.36)

With the help of the derivative formulas (B.5)–(B.9), one immediately finds a solution of the form

F1 = c1 ln ω −
(

c1

12
+ 1

24

)
ln �̃ − 1

2
φ + f1(τ ). (3.37)

The constant c1 and the function f1(τ ) can be determined by the condition that F1 takes the form
(2.3), namely it does not contain any polynomial term in φ. From (3.16) and (3.17) we see that

ln �̃ = ln � + O(e2π iϕ), ln ω = φ + O(e4π iϕ). (3.38)

Using these we can determine the unknowns as c1 = 1/2, f1 = (ln �)/12 and obtain

F1 = 1

2
ln ω − 1

12
ln �̃ + 1

12
ln � − 1

2
φ. (3.39)

While this is not a rigorous derivation, we have checked that the above form is the correct answer.
Combined with (3.15)–(3.17) and (3.19), the above expression correctly reproduces Z1,n, which we
explicitly calculated up to n = 5 using the method explained in the last section. It also reproduces
the result for μ = 0 presented in Ref. [34]. Note that a similar expression has been presented for
four-dimensional Seiberg–Witten theories [17,40].
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To compute amplitudes for g ≥ 2 by solving (3.35), we point out an interesting fact that the term
−φ/2 in F1 precisely cancels the linear term ∂φFg−1 on the right-hand side of (3.35). Therefore, if
we introduce the notation

F1 = F1 + 1

2
φ, F2 = F2 + 1

96
E2, Fg = Fg for g ≥ 3, (3.40)

the holomorphic anomaly equation (3.35) turns into the very simple form

(
∂ξFg

)
u = ∂2

φFg−1 +
g−1∑
h=1

∂φFh∂φFg−h (3.41)

for g ≥ 2. Note that this form has already been presented in Ref. [40] in the case of four-dimensional
SU(2) Seiberg–Witten theories. It is natural that the holomorphic anomaly equation takes the same
form in the present case, since the definition (3.13) of φ through the Seiberg–Witten curve is common
in both cases.

Based on this simple form, let us construct the amplitude at g = 2. Equation (3.41) in this case
reads

(∂ξF2)u = ∂2
φF1 + (∂φF1)

2

= 1

2
∂2
φ ln ω + 1

4
(∂φ ln ω)2 − 1

12
Ẽ2 ∂φ t ∂φ ln ω − 1

12
Ẽ2 ∂2

φ t + 1

144
Ẽ4(∂φ t)2. (3.42)

Note that the last expression is a polynomial in (quasi-)modular forms Ẽ2k and derivatives
∂m
φ ln ω, ∂n

φ t. The polynomial is constrained so that each term contains two ∂φ’s and is of weight 0.

Note that after every E2 is replaced by Ê2, a modular function in τ̃ transforms as that in τ with the
same weight. Thus, the weights of the generators of the polynomial read

[Ẽ2k ] = 2k , [∂m
φ ln ω] = 0, [∂n

φ t] = −2. (3.43)

We see from (3.42) that F2 is of weight 2, since ξ is of weight 2. Let us make an ansatz that F2 has
the same polynomial structure as (3.42), namely a polynomial in Ẽ2k , ∂m

φ ln ω, ∂n
φ t with two ∂φ’s.

Explicitly, the ansatz reads

F2 = c1Ẽ2 ∂2
φ ln ω + c2Ẽ2(∂φ ln ω)2 + (c3Ẽ2

2 + c4Ẽ4)∂φ t ∂φ ln ω

+ (c5Ẽ2
2 + c6Ẽ4)∂

2
φ t + (c7Ẽ3

2 + c8Ẽ4Ẽ2 + c9Ẽ6)(∂φ t)2. (3.44)

Substituting this ansatz into (3.42), one can partly determine the coefficients cj. The derivatives of
the generators with respect to ξ are summarized in Appendix B. One has to be careful when taking
derivatives of ∂n

φ ln ω and ∂n
φ t with respect to ξ . We differentiate them in the (u, ξ) frame, where ∂ξ

and ∂φ do not commute. The explicit forms of these derivatives for general n are given in Eq. (B.10),
(B.11), which can be shown by using the chain rule (3.32).

The holomorphic anomaly equation (3.42) reduces the number of undetermined parameters to
three. These remaining parameters can be fixed by the condition that F2 takes the form (2.3) and by
the gap conditions (2.17) at n = 1, 2. In the end, one obtains

F2 = 1

48
Ẽ2 ∂2

φ ln ω + 1

96
Ẽ2(∂φ ln ω)2 − 1

576
(Ẽ2

2 − Ẽ4)∂φ t ∂φ ln ω

− 1

1920
(5Ẽ2

2 + 3Ẽ4)∂
2
φ t − 1

207360
(35Ẽ3

2 + 51Ẽ4Ẽ2 − 86Ẽ6)(∂φ t)2. (3.45)
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In the same way, we are able to determine the amplitude at genus three. The most general ansatz for
F3 is written with 68 unknown parameters. The holomorphic anomaly equation gives 45 relations
and leaves 23 undetermined parameters. These are fixed completely by the condition that F3 takes
the form (2.3) and by the gap conditions (2.17) up to n = 4. The explicit form of F3 is presented
in Appendix C. We checked for low n that Zg,n calculated from the above-obtained F2, F3 are in
agreement with the results obtained by the method described in Sect. 2. In the next section we will
also reproduce the higher-genus amplitudes for local del Pezzo surfaces from these results, which
serves as another consistency check.

Based on the above explicit construction of Fg at low genera, we propose the following conjecture:

Fg (g ≥ 2) is a polynomial in Ẽ2k , ∂m
φ ln ω, ∂n

φ t (k = 1, 2, 3, m, n ∈ Z>0), in which
each term contains 2g − 2 ∂φ’s and is of weight 2g − 2.

(3.46)

Note that the form of the polynomial is no longer unique for g ≥ 4, since not all of ∂m
φ ln ω, ∂n

φ t are
independent. Actually, they are finitely generated. This can be seen as follows. Recall that f , g are
polynomials of degree 4, 6 in u, respectively. Since ∂u = −ω∂φ , this means that

(
ω∂φ

)k Ẽ4

ω4 = 0, for k > 4, (3.47)

(
ω∂φ

)k Ẽ6

ω6 = 0, for k > 6. (3.48)

These relations give rise to non-trivial relations among the derivatives ∂m
φ ln ω, ∂n

φ t. Using these
relations, one can express all ∂m

φ ln ω and ∂n
φ t with m, n ∈ Z>0 in terms of those with m = 1, . . . , 6

and n = 1, . . . , 4 and Ẽ2, Ẽ4, Ẽ6. Therefore, by assuming the above conjecture, Fg can also be
expressed in terms of these generators. In this expression Fg (g ≥ 4) is still a polynomial in ∂m

φ ln ω

and ∂n
φ t, but becomes a rational function in Ẽ2k . In Sect. 3.5 we will introduce another expression in

which Fg is indeed written as a polynomial of a finite number of generators.
The polynomial structure of Fg is expected, since topological string amplitudes for any Calabi–Yau

threefold are polynomials in a finite number of generators [36]. The significance of the conjecture
(3.46) is that the generators are explicitly given in terms of the Seiberg–Witten curve. This allows us
to study topological string amplitudes for not only the local 1

2K3 but all local del Pezzo surfaces in a
unified way, as we will see in the next section. The conjecture (3.46) provides us with a systematic
construction of the ansatz for general Fg . In particular, the holomorphic anomaly equations and
the gap conditions will be sufficient for completely fixing the form of Fg at low genus, as we have
explicitly seen for g = 2, 3.

On the other hand, it is not likely that these conditions suffice to determine Fg at general g. In
fact, if we apply the method to the special case with μ = 0, where Tg,n(τ , 0) are now ordinary quasi-
modular forms, an undetermined coefficient appears already at g = 4. To determine the amplitude
completely at general g, one needs additional conditions, such as gap conditions imposed at the
conifold loci of the moduli space. This is indeed the case for some simple local del Pezzo surfaces
[47,48].

3.4. Expression in (u, ξ) frame

Equation (3.41) looks somewhat irregular, as the left-hand side is written in the (u, ξ) frame while
the right-hand side is in the (φ, ξ) frame. For practical purposes, this is actually a convenient form
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since the derivatives of Fg are assembled in a single term in the (u, ξ) frame while the gap condition
can be explicitly expressed in the (φ, ξ) frame. On the other hand, it is also useful to express the
equation entirely in the (u, ξ) frame. By using ∂φ = − 1

ω
∂u, (3.41) can be rewritten as

(
∂ξFg

)
u = 1

ω2

⎛
⎝∂2

uFg−1 − ∂u ln ω ∂uFg−1 +
g−1∑
h=1

∂uFh∂uFg−h

⎞
⎠ (3.49)

for g ≥ 2. In this frame, it is easier to take derivatives with respect to ξ , while the gap condition
cannot be expressed in a simple manner. F2 is expressed as

F2 = 1

ω2

(
1

48
Ẽ2 ∂2

u ln ω − 1

96
Ẽ2(∂u ln ω)2 + 1

5760
(5Ẽ2

2 + 19Ẽ4)∂ut ∂u ln ω

− 1

1920
(5Ẽ2

2 + 3Ẽ4)∂
2
u t − 1

207360
(35Ẽ3

2 + 51Ẽ4Ẽ2 − 86Ẽ6)(∂ut)2
)

, (3.50)

which is almost as simple as the previous expression (3.45).

3.5. Expression in direct integration style

There is another interesting expression of the topological string amplitudes and the holomorphic
anomaly equation. One can express the amplitudes directly in terms of the coefficients of the Seiberg–
Witten curve. To see this, let us start with studying the transformation rules for the generators.

From (3.6) and

D := f 3 − 27g2 = �̃

ω12 , (3.51)

we see that

∂u ln f = ∂u ln Ẽ4 − 4∂u ln ω

= 1

3

(
Ẽ2 − Ẽ6

Ẽ4

)
∂ut − 4∂u ln ω, (3.52)

∂u ln D = ∂u ln �̃ − 12∂u ln ω

= Ẽ2 ∂ut − 12∂u ln ω. (3.53)

Solving these relations, one obtains

∂ut = 1

ω2

−6fg′ + 9f ′g
2D

, (3.54)

∂u ln ω = (−2fg′ + 3f ′g)X + (−2f 2f ′ + 36gg′)
8D

, (3.55)

where

X := Ẽ2

ω2 . (3.56)

The derivative of X in u is computed as

∂uX = (2fg′ − 3f ′g)X 2 + (4f 2f ′ − 72gg′)X + (24f 2g′ − 36ff ′g)

8D
. (3.57)
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With the help of these relations and ∂φ = − 1
ω
∂u, it is straightforward to express higher derivatives

of t and ln ω in terms of X and f (m)(u), g(n)(u). Note that Ẽ4, Ẽ6 can also be rewritten in terms of
f , g, ω by using (3.6). After all this, F2 is expressed as

F2 = 1

92160D2

(
(100f 2g′2 − 300f f ′gg′ + 225f ′2g2)X 3

+ (240f 4g′′ − 780f 3f ′g′ − 360f 3f ′′g + 990f 2f ′2g

− 6480fg2g′′ + 11880fgg′2 − 14580f ′g2g′ + 9720f ′′g3)X 2

+ (−480f 5f ′′ + 420f 4f ′2 + 8640f 3gg′′ + 10080f 3g′2 − 54000f 2f ′gg′

+ 12960f 2f ′′g2 + 29160f f ′2g2 − 233280g3g′′ + 213840g2g′2)X

+ (5184f 5g′′ − 12816f 4f ′g′ − 7776f 4f ′′g + 15336f 3f ′2g − 139968f 2g2g′′

+258336f 2gg′2 − 428976f f ′g2g′ + 209952f f ′′g3 + 167184f ′2g3)
)

. (3.58)

Note that ω does not appear explicitly in this expression. The same type of expression for F3 is
immediately obtained by rewriting the result in Appendix C. We do not present its lengthy expression
here, but the calculation is straightforward.

The holomorphic anomaly equations can be written in a form more suited to the above expres-
sion. Observe that when the Fg are expressed as in Eq. (3.58), holomorphic anomalies appear only
through X . Hence, one can simply replace ∂ξ by

∂ξ = (∂ξ X )u∂X = 24

ω2 ∂X (3.59)

in the holomorphic anomaly equation (3.49). For g = 2, the equation is now written as

24∂X F2 = ∂2
uF1 − ∂u ln ω ∂uF1 + (∂uF1)

2 . (3.60)

By using

∂uF1 = −1

2
∂u ln ω − 1

12
∂u ln D

= (2fg′ − 3f ′g)X + (−2f 2f ′ + 36gg′)
16D

(3.61)

and (3.55), (3.57), one can evaluate the right-hand side of (3.60) as a quadratic polynomial in X .
Then, integrating directly both sides of (3.60) in X , one obtains (3.58) up to the “constant” part in
X . For g ≥ 3, let us introduce the notation

F̌1 = F1 − 1

2
ln ω, F̌g = Fg for g ≥ 2. (3.62)

The holomorphic anomaly equations can then be written again in a very simple form:

24∂X F̌g = ∂2
u F̌g−1 +

g−1∑
h=1

∂uF̌h∂uF̌g−h, g ≥ 3. (3.63)

Regarding the explicit form of Fg at g = 2, 3 and the above equation, we present our conjecture
on the structure of the amplitudes in another form: Fg (g ≥ 2) can be expressed as

Fg = 1

D2g−2

3g−3∑
k=0

Pg,k [∂2g−2
u , f , g]X k . (3.64)
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Here, Pg,k [∂2g−2
u , f , g] denotes a polynomial in ∂m

u f , ∂n
u g (m, n ∈ Z≥0) in which each term contains

2g − 2 ∂u’s. The form of the polynomial is constrained so that Fg transforms as a W (E8)-invariant
quasi-Jacobi form of index 0. Note that the constituents of the amplitudes are of the following indices
(see Appendix A):

[X ] = 2, [ f ] = 4, [g] = 6, [D] = 12, [∂u] = −1. (3.65)

Recall that f , g are polynomials of degree 4, 6 in u, respectively. Therefore, in this expression it is
manifest that Fg is a polynomial in a finite number of generators, namely,

1

D
, X , ∂m

u f , ∂n
u g, m = 0, . . . , 4, n = 0, . . . , 6. (3.66)

We find that the above structure of the amplitudes and the holomorphic anomaly equation is akin
to what has been obtained for other models by the direct integration method [37–40]. While we
have taken a different path from the standard approach, both constructions should be essentially
equivalent.

4. Topological string amplitudes for local del Pezzo surfaces

The topological string amplitudes for the local 1
2K3 surface encompass those for all local del Pezzo

surfaces. In this section we see how the former reduce to the latter. In fact, when the topological
string amplitudes for the local 1

2K3 are expressed in terms of the Seiberg–Witten curve, their forms
are universal to all local del Pezzo surfaces. We obtain the amplitudes for any local del Pezzo surface
by merely replacing the Seiberg–Witten curve with the corresponding one. The mirror pair of the
local del Pezzo surface Bn is given by the Seiberg–Witten curve for the five-dimensional En strings
[10]. It is also easy to reduce the most general Seiberg–Witten curve to that for any del Pezzo surface
[10,43,49]. We first discuss the general cases and then present explicit forms of amplitudes for three
basic examples: the massless local B8, the local P

2, and the local P
1 × P

1.

4.1. General cases

The Seiberg–Witten curve for the local B8 is obtained from that for the local 1
2K3 by simply taking

the limit q → 0. Curves for the other local Bn (n ≤ 7) are immediately obtained by a suitable
rescaling [10,43]. The construction of the topological string amplitudes from the Seiberg–Witten
curve is essentially the same as in the case of the local 1

2K3. In particular, the mirror map between
u and φ for Bn (n ≤ 8) is simply given by the q → 0 limit of (3.15).

Below we present the minor modifications needed for the local Bn (n ≤ 8). The instanton parts of
the topological string amplitudes at g = 0, 1 are slightly modified as follows:

F0 = −∂−2
φ t + 9 − n

6
φ3, (4.1)

F1 = 1

2
ln ω − 1

12
ln �̃ − 1

2
φ + 9 − n

12
φ, (4.2)

with

t := 2π iτ̃ (4.3)
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instead of (3.10). Expressions for higher-genus amplitudes Fg (g ≥ 2) hold as they stand, where the
Fg are now related to Fg as

F1 = F1 + 1

2
φ, F2 = F2 + 1

96
, Fg = Fg for g ≥ 3. (4.4)

We also need to modify the relation (3.19) between φ and ϕ, since it is no longer valid in the limit
q = 0. Instead of (3.19), we identify them by

eφ = −e2π iϕ . (4.5)

4.2. Massless local B8

As an illustration we first consider the case of local B8 with μ = 0. In this case the corresponding
Seiberg–Witten curve is extremely simple. The coefficients are given by

f = 1

12
u4, g = 1

216
u6 − 4u5. (4.6)

The amplitudes at g = 0, 1 are given by (4.1), (4.2) with n = 8. By substituting the above f , g into
(3.58) one obtains

F2 = 1

207360u4(u − 432)2

(
25X 3 + 15u(−25u + 6048)X 2

+ 75u2(29u2 − 22464u + 5225472)X + u5(335u − 273888)
)

. (4.7)

Similarly, from the expression of F3 in Appendix C, one obtains

F3 = 1

5016453120u8(u − 432)4

(
525X 6 − 8400u2X 5

+ 315u2(175u2 + 5184u + 5225472)X 4

+ 560u3(−325u3 + 18360u2 − 89859456u + 11851370496)X 3

+ 63u4(4625u4 − 5008896u3 + 8491143168u2

− 2300402073600u + 260052929740800)X 2

+ 672u7(−325u3 + 284796u2 − 623837376u + 7054387200)X

+ u8(61775u4 − 96755904u3 + 219325750272u2

+ 15910182715392u + 9788763779629056)
)

. (4.8)

From these expressions one can compute Gopakumar–Vafa invariants. The instanton expansions in
this case read

1

u
= eφ − 60e2φ − 1530e3φ − 274160e4φ − 50519055e5φ + O (

e6φ
)
, (4.9)

ω = eφ + 5130e3φ + 1347520e4φ + 372046365e5φ + O (
e6φ
)
, (4.10)

t = φ + 252eφ + 36882e2φ + 7637736e3φ + 1828258569e4φ + O (
e5φ
)
. (4.11)
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Table 1. Gopakumar–Vafa invariants for the massless local B8.

N r
n n 1 2 3 4 5 · · ·

r
0 252 −9252 848628 −114265008 18958064400
1 −2 760 −246790 76413833 −23436186176
2 0 -4 30464 −26631112 16150498760
3 0 0 -1548 5889840 −7785768630
...

. . .

The Gopakumar–Vafa invariants are computed by recasting F as

∞∑
g=0

Fgx2g−2 =
∞∑

r=0

∞∑
n=1

N r
n

∞∑
m=1

1

m

(
2 sin

mx

2

)2r−2
e2π imnϕ . (4.12)

We present the Gopakumar–Vafa invariants N r
n at low degrees in Table 1. This reproduces the

known result, for example found in Refs. [5,33].3 Moreover, it is easy to compute N r
n up to an

arbitrarily large degree of n, as we now have the exact form of the amplitudes Fg .
We have performed the expansion around the large volume point u = ∞ to compute the

Gopakumar–Vafa invariants, but we could expand the amplitudes at arbitrary u. It would be inter-
esting to study the behavior of the amplitudes around the other points such as the orbifold point, as
in Ref. [25].

4.3. Local P
2

The coefficients of the Seiberg–Witten curve are given by

f = 1

12
u4 − 2u, g = 1

216
u6 − 1

6
u3 + 1. (4.13)

The amplitudes at g = 0, 1 are given by (4.1), (4.2) with n = 0. By substituting the above f , g into
(3.58), one obtains

F2 = 75X 3 − 165u2X 2 + 125u4X + 9(5u6 − 464u3 + 6192)

7680(u3 − 27)2 . (4.14)

Similarly, from the expression of F3 in Appendix C, one obtains

F3 = 1

20643840(u3 − 27)4

(
14175X 6 − 75600u2X 5 + 315u(533u3 + 3024)X 4

− 560(355u6 + 6750u3 + 8748)X 3

+ 21u2(6305u6 + 257472u3 + 1181952)X 2

− 672u(70u9 + 5007u6 + 49086u3 + 34992)X

+ 6965u12 + 774992u9 + 13201920u6 + 27993600u3 + 20155392
)

. (4.15)

3 The Gopakumar–Vafa invariants N r
n at r = 1 and the instanton numbers Ñ g

n for g = 1 curves found in
[5,33] are related by N 1

n = ∑
k|n Ñ 1

(n/k) [33].
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Table 2. Gopakumar–Vafa invariants for the local P
2.

N r
n n 1 2 3 4 5 · · ·

r
0 3 −6 27 −192 1695
1 0 0 −10 231 −4452
2 0 0 0 −102 5430
3 0 0 0 15 −3672
...

. . .

The instanton expansions in this case are given by

1

u
= eφ − 2e4φ − e7φ − 20e10φ − 177e13φ + O (

e16φ
)
, (4.16)

ω = eφ + 4e4φ + 41e7φ + 520e10φ + 7275e13φ + O (
e16φ

)
, (4.17)

t = 9φ + 27e3φ + 405

2
e6φ + 2196e9φ + 110997

4
e12φ + O (

e15φ
)
. (4.18)

The all-genus topological string partition function can be expressed as

∞∑
g=0

Fgx2g−2 =
∞∑

r=0

∞∑
n=1

N r
n

∞∑
m=1

1

m

(
2 sin

mx

2

)2r−2
Qmn, (4.19)

where

Q = e6π iϕ = −e3φ . (4.20)

Table 2 shows the Gopakumar–Vafa invariants N r
n at low r and n. These are in agreement with the

known result (see [31,50], for example) of the Gopakumar–Vafa invariants for local P
2.

4.4. Local P
1 × P

1

The coefficients of the Seiberg–Witten curve are given by

f = 1

12
u4 − 2

3
χu2 + 4

3
χ2 − 4,

g = 1

216
u6 − 1

18
χu4 +

(
2

9
χ2 − 1

3

)
u2 +

(
− 8

27
χ3 + 4

3
χ

)
, (4.21)

where

χ = e2π iμ + e−2π iμ. (4.22)

The amplitudes at g = 0, 1 are given by (4.1), (4.2) with n = 1. Substituting the above f , g into
(3.58), one obtains

F2 = 1

12960(u2 − 4χ + 8)2(u2 − 4χ − 8)2

(
100u2X 3

+ 120
(−2u4 + 5χu2 + 12χ2 − 48

)
X 2
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+ 15
(
13u6 − 80χu4 + (16χ2 + 768)u2 + 384χ3 − 1536χ

)
X

+ 8
(
10u8 − 201u6χ + (1452χ2 − 2808)u4

+(−4528χ3 + 20304χ)u2 + 5184χ4 − 36288χ2 + 62208
))

. (4.23)

We do not present the explicit form of F3 since it is slightly lengthy, but the calculation is
straightforward. The instanton expansions in this case read

1

u
= eφ − χe3φ + (χ2 − 3)e5φ + (−χ3 + χ)e7φ + O (

e9φ
)
, (4.24)

ω = eφ + χe3φ + (χ2 + 9)e5φ + (χ3 + 43χ)e7φ + O (
e9φ
)
, (4.25)

t = 8φ + 8χe2φ + (4χ2 + 56)e4φ +
(

8

3
χ3 + 208χ

)
e6φ + O (

e8φ
)
. (4.26)

The all-genus topological string partition function can be expressed as

∞∑
g=0

Fgx2g−2 =
∞∑

r=0

∞∑
n1,n2=0

N r
n1,n2

∞∑
m=1

1

m

(
2 sin

mx

2

)2r−2
Qmn1

1 Qmn2
2 , (4.27)

where

Q1 = e2π i(2ϕ+μ), Q2 = e2π i(2ϕ−μ). (4.28)

We checked that N r
n1,n2

are in agreement with the known data of the Gopakumar–Vafa invariants for
the local P

1 × P
1 (see [50], for example).

5. Conclusion and discussion

In this paper we have developed a general method of computing topological string amplitudes for the
local 1

2K3 surface. We have demonstrated that the amplitudes can be concisely expressed in terms
of the Seiberg–Witten curve, which manifestly exhibits good modular properties and the affine E8

Weyl group invariance. We have clarified the general structure of the amplitudes. The amplitudes at
g = 0, 1 are given in Eqs. (3.18), (3.39), while higher-genus amplitudes Fg (g ≥ 2) are written as a
polynomial in generators expressed in terms of the Seiberg–Witten curve. Given the structure, one
can determine the coefficients of the polynomials by solving the holomorphic anomaly equation and
the gap condition. We have explicitly computed the form of the amplitudes for g = 2, 3. We have
also found that the holomorphic anomaly equation takes a very simple form if we adopt notations in
which the amplitudes at low genus are slightly modified.

The topological strings on the local 1
2K3 surface encompass those on all local del Pezzo surfaces.

We have elucidated how to reduce the amplitudes to those for the local del Pezzo surfaces. By way of
illustration, we have explicitly constructed the amplitudes for three simple cases. These amplitudes
correctly reproduce the known Gopakumar–Vafa invariants.

There are several directions for further investigation. We have proposed that the conjectures (3.46),
(3.64) on the structure of the amplitudes hold for general g. It is important to prove them and clarify
how they are related to the general scheme of the polynomial structure [36]. Another point to be
clarified is the precise conditions needed to determine the amplitudes at arbitrarily high genus. For
general g, the gap condition used in this paper is not likely to be sufficient for fixing the amplitude.

20/29
Downloaded from https://academic.oup.com/ptep/article-abstract/2017/3/033B09/3096141/Topological-string-amplitudes-for-the-local-frac-1
by CERN - European Organization for Nuclear Research user
on 03 October 2017



PTEP 2017, 033B09 K. Sakai

On the other hand, it is known that regularity at the orbifold point and the large radius point and the
leading behavior at the conifold points suffice to determine the holomorphic ambiguities at least for
local del Pezzo surfaces with one or two moduli parameters [47]. We expect that the same sort of
argument will apply to the case of the most general local 1

2K3 surface.
The direct integration method has been applied to the four-dimensional SU(2) Seiberg–Witten

theories with matters [39–41]. We know from Nekrasov partition functions that by taking a certain
limit topological string amplitudes on the toric del Pezzo surfaces reproduce the prepotential and
the gravitational corrections of the four-dimensional theories. It is interesting to see how our general
formulas reproduce those results. The cases of non-toric local del Pezzo surfaces are of particular
interest. In terms of the Seiberg–Witten curves, we know how the four-dimensional SU(2) theories
with an En global symmetry [51–53] are reproduced from the five-dimensional ones [10,42]. It would
be interesting to construct the gravitational corrections to these four-dimensional theories with an
En flavor symmetry.

The topological recursion [20], or more specifically the “remodeling the B-model” conjecture
[19], is a powerful method of computing topological string amplitudes. This method is free of the
holomorphic ambiguity and also computes the open string amplitudes. It would be very interesting
if our expressions for the amplitudes Fg can be derived by a method similar to the topological
recursion.
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Appendix A. Seiberg–Witten curve for E-string theory

The low-energy effective theory of the E-string theory in R
4 × T 2 is described as SU(2) Seiberg–

Witten theory with nine parameters, τ and μ = (μ1, . . . , μ8). τ is regarded as the bare gauge coupling
and μ are the masses of fundamental matters. The theory possesses an E8 flavor symmetry, and the
Weyl group W (E8) acts on μ as an automorphism. On the other hand, from the point of view of the
six-dimensional theory, τ is the modulus of the T 2 in the 5,6-directions and the μ are interpreted
as Wilson lines along these directions. The theory therefore admits modular properties in τ and
double periodicity in μ. These symmetries become manifest if we express the dependence on these
parameters through W (E8)-invariant Jacobi forms.

A.1. W (E8)-invariant Jacobi forms

Let ϕk ,m(τ , μ) denote W (E8)-invariant Jacobi forms of weight k and index m. They are holomorphic
in τ (Im τ > 0), μ ∈ C

8, and satisfy the following properties [54,55]:

(i) Weyl invariance:

ϕk ,m(τ , w(μ)) = ϕk ,m(τ , μ), w ∈ W (E8). (A.1)
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(ii) Quasi-periodicity:

ϕk ,m(τ , μ + v + τw) = e−mπ i(τw2+2μ·w)ϕk ,m(τ , μ), v, w ∈ �8. (A.2)

(iii) Modular properties:

ϕk ,m

(
aτ + b

cτ + d
,

μ

cτ + d

)
= (cτ + d)k exp

(
mπ i

c

cτ + d
μ2
)

ϕk ,m(τ , μ). (A.3)

(iv) ϕk ,m(τ , μ) admit a Fourier expansion as

ϕk ,m(τ , μ) =
∞∑

l=0

∑
v ∈ �8

v2 ≤ 2ml

c(l, v)e2π i(lτ+v·μ). (A.4)

Here, �8 is the E8 root lattice and
( a b

c d

)
∈ SL(2, Z). Note that in this convention the index m

coincides with the level of the affine E8 Lie algebra.
Among others, the most fundamental W (E8)-invariant Jacobi form is the theta function associated

with the lattice �8,

�(τ , μ) =
∑

w∈�8

exp
(
π iτw2 + 2π iμ · w

) = 1

2

4∑
k=1

8∏
j=1

ϑk(μj, τ). (A.5)

One can see from the properties of the Jacobi theta functions that �(τ , μ) is of weight 4 and index
1. Jacobi forms of higher indices can be constructed from �(τ , μ) as follows.

To construct more general W (E8)-invariant Jacobi forms, we introduce the functions

e1(τ ) = 1
12

(
ϑ3(τ )4 + ϑ4(τ )4),

e2(τ ) = 1
12

(
ϑ2(τ )4 − ϑ4(τ )4),

e3(τ ) = 1
12

(−ϑ2(τ )4 − ϑ3(τ )4), (A.6)

and

h(τ ) = ϑ3(2τ)ϑ3(6τ) + ϑ2(2τ)ϑ2(6τ). (A.7)

Let us then define the following nine W (E8)-invariant Jacobi forms:

A1(τ , μ) = �(τ , μ), A2(τ , μ) = 8
9H {�(2τ , 2μ)} , A3(τ , μ) = 27

28H {�(3τ , 3μ)} ,

A4(τ , μ) = �(τ , 2μ), A5(τ , μ) = 125
126H {�(5τ , 5μ)} ,

B2(τ , μ) = 32
5 H {e1(τ )�(2τ , 2μ)} , B3(τ , μ) = 81

80H
{
h(τ )2�(3τ , 3μ)

}
,

B4(τ , μ) = 16
15H

{
ϑ4(2τ)4�(4τ , 4μ)

}
, B6(τ , μ) = 9

10H
{
h(τ )2�(6τ , 6μ)

}
. (A.8)

Here, H {·} denotes the sum of all possible distinct SL(2, Z) transforms of the argument. Explicitly,
they read

A1(τ , μ) = �(τ , μ), A4(τ , μ) = �(τ , 2μ),

An(τ , μ) = n3

n3+1

(
�(nτ , nμ) + 1

n4

∑n−1
k=0�(τ+k

n , μ)
)

, n = 2, 3, 5,
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B2(τ , μ) = 32
5

(
e1(τ )�(2τ , 2μ) + 1

24 e3(τ )�(τ
2 , μ) + 1

24 e2(τ )�(τ+1
2 , μ)

)
,

B3(τ , μ) = 81
80

(
h(τ )2�(3τ , 3μ) − 1

35

∑2
k=0h( τ+k

3 )2�(τ+k
3 , μ)

)
,

B4(τ , μ) = 16
15

(
ϑ4(2τ)4�(4τ , 4μ) − 1

24 ϑ4(2τ)4�(τ + 1
2 , 2μ)

− 1
22·44

∑3
k=0ϑ2(

τ+k
2 )4�(τ+k

4 , μ)
)

,

B6(τ , μ) = 9
10

(
h(τ )2�(6τ , 6μ) + 1

24

∑1
k=0h(τ + k)2�(3τ+3k

2 , 3μ)

− 1
3·34

∑2
k=0h( τ+k

3 )2�(2τ+2k
3 , 2μ)

− 1
3·64

∑5
k=0h( τ+k

3 )2�(τ+k
6 , μ)

)
. (A.9)

An, Bn are of index n and weight 4, 6, respectively. If we set μ = 0, these Jacobi forms reduce to
ordinary modular forms. We have determined the normalization of An, Bn so that they reduce to the
Eisenstein series

An(τ , 0) = E4(τ ), Bn(τ , 0) = E6(τ ). (A.10)

An, Bn generate all the W (E8)-invariant Jacobi forms appearing in the coefficients of the Seiberg–
Witten curve.4

A.2. Seiberg–Witten curve

The Seiberg–Witten curve for the E-string theory was constructed in Ref. [42]. Here we present the
same curve expressed in terms of the W (E8)-invariant Jacobi forms introduced above:

y2 = 4x3 − fx − g, (A.11)

f =
4∑

j=0

aju
4−j, g =

6∑
j=0

bju
6−j, (A.12)

a0 = 1

12
A0, a1 = 0, a2 = 6

E4�

(
−A0A2 + A2

1

)
,

a3 = 1

9E2
4�2

(
−7A2

0B0A3 − 20A3
0B3 − 9A0B0A1A2 + 30A2

0A1B2 + 6B0A3
1

)
,

a4 = 1

864E3
4�3

(
(A6

0 − A3
0B2

0)A4 + (56A5
0 − 56A2

0B2
0)A1A3 − 27A5

0A2
2

− 90A3
0B0A2B2 − 75A4

0B2
2 + (180A4

0 − 36A0B2
0)A

2
1A2

+ 240A2
0B0A2

1B2 + (−210A3
0 + 18B2

0)A
4
1

)
,

b0 = 1

216
B0, b1 = − 4

E4
A1, b2 = 5

6E2
4�

(
A2

0B2 − B0A2
1

)
,

4 There are alternative choices for the generators An, Bn. For instance, one can take 256
45 H {e1(τ )�(4τ , 4μ)}

instead of B4 and/or 54
55H

{
h(2τ)2�(6τ , 6μ)

}
instead of B6.
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b3 = 1

108E3
4�2

(
−7A5

0A3 − 20A3
0B0B3

− 9A4
0A1A2 + 30A2

0B0A1B2 + (16A3
0 − 10B2

0)A
3
1

)
,

b4 = 1

1728E4
4�3

(
(−5A7

0 + 5A4
0B2

0)B4 + (80A6
0 − 80A3

0B2
0)A1B3

+ 9A5
0B0A2

2 + 30A6
0A2B2 + 25A4

0B0B2
2 − 48B0A4

0A2
1A2

+ (−140A5
0 + 60A2

0B2
0)A

2
1B2 + (74A3

0B0 − 10B3
0)A

4
1

)
,

b5 = 1

72E5
4�3

(
(−21A7

0 + 21A4
0B2

0)A5 − 294A6
0A2A3 − 770A4

0B0B2A3

− 840A4
0B0A2B3 − 2200A5

0B2B3 + 168A5
0A2

1A3 + 480B0A3
0A2

1B3

− 621A5
0A1A2

2 + 3525A4
0A1B2

2 + 1224A4
0A3

1A2 − 240A2
0B0A3

1B2

+ (−456A3
0 + 24B2

0)A
5
1

)
,

b6 = 1

13436928E6
4�5

(
(−20A12

0 + 40A9
0B2

0 − 20A6
0B4

0)B6

+ (−189A10
0 B0 + 378A7

0B3
0 − 189A4

0B5
0)A1A5

+ (−9A10
0 B0 + 9A7

0B3
0)A2A4 + (−15A11

0 + 15A8
0B2

0)B2A4

+ (−180A11
0 + 180A8

0B2
0)A2B4 + (−300A9

0B0 + 300A6
0B3

0)B2B4

+ (22A9
0B0 − 22A6

0B3
0)A

2
1A4 + (150A10

0 + 120A7
0B2

0 − 270A4
0B4

0)A
2
1B4

+ (196A10
0 B0 − 196A7

0B3
0)A

2
3 + (1120A11

0 − 1120A8
0B2

0)A3B3

+ (1600A9
0B0 − 1600A6

0B3
0)B

2
3 + (−2982A9

0B0 + 2982A6
0B3

0)A1A2A3

+ (−2520A10
0 − 4410A7

0B2
0 + 6930A4

0B4
0)A1B2A3

+ (3360A10
0 − 10920A7

0B2
0 + 7560A4

0B4
0)A1A2B3

+ (−19800A8
0B0 + 19800A5

0B3
0)A1B2B3 + (2016A8

0B0 − 2016A5
0B3

0)A
3
1A3

+ (−5920A9
0 + 7360A6

0B2
0 − 1440A3

0B4
0)A

3
1B3 + (405A9

0B0 + 162A6
0B3

0)A
3
2

+ (1215A10
0 + 1620A7

0B2
0)A

2
2B2 + 4725A8

0B0A2B2
2

+ (1125A9
0 + 1500A6

0B2
0)B

3
2 + (−9477A8

0B0 + 5103A5
0B3

0)A
2
1A2

2

+ (−9180A9
0 − 5400A6

0B2
0)A

2
1A2B2 + (20925A7

0B0 − 33075A4
0B3

0)A
2
1B2

2

+ (20304A7
0B0 − 9072A4

0B3
0)A

4
1A2

+ (12780A8
0 + 5400A5

0B2
0 + 540A2

0B4
0)A

4
1B2

+ (−11076A6
0B0 + 1512A3

0B3
0 − 36B5

0)A
6
1

)
. (A.13)

Note that an, bn satisfy most of the properties of the W (E8)-invariant Jacobi forms except the
condition v2 ≤ 2ml in the Fourier expansion. an, bn are of index n and weight 4 − 6n, 6 − 6n,
respectively. It is useful to let the variables u, x, y transform formally as Jacobi forms of weights
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−6, −10, −15 and index 1, 2, 3, respectively. The whole curve then transforms as a Jacobi form of
weight −30 and index 6. f , g are of weight −20, −30 and index 4, 6, respectively.

Appendix B. Derivative formulas

q
d

dq
ln � = E2, (B.1)

q
d

dq
E2 = 1

12
(E2

2 − E4), (B.2)

q
d

dq
E4 = 1

3
(E4E2 − E6), (B.3)
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dq
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2
(E6E2 − E2

4). (B.4)

(
∂ξ t
)

u = −2t2, (B.5)(
∂ξω

)
u = 2ωt, (B.6)(

∂ξφ
)

u = 2∂−1
φ t, (B.7)(

∂ξ ln �̃
)

u
= 24t, (B.8)

∂ξ Ẽ2k = 4ktẼ2k + 24δ1,k . (B.9)
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(
∂n
φ ln ω

))
u

= −2
n−1∑
k=0

(
n

k + 1

)
∂k
φ t ∂n−k

φ ln ω + 2∂n
φ t, (B.10)

(
∂ξ

(
∂n
φ t
))

u
= −2

n−1∑
k=0

[(
n

k + 1

)
+ 2

(
n − 1

k

)]
∂k
φ t ∂n−k

φ t (n ≥ 1). (B.11)

Appendix C. Genus three amplitude

F3 = (∂4
φ ln ω)

(
1

2304 Ẽ2
2 + 1

2592 Ẽ4

)
+ (∂3

φ ln ω)(∂φ ln ω)
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)
+ (∂2

φ ln ω)(∂2
φ t)

(
7

62208 Ẽ4Ẽ2 − 7
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4

)
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4

)
+ (∂φ ln ω)(∂3

φ t)
(
− 1

13824 Ẽ3
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2 − 181

71663616 Ẽ4Ẽ4
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(C.1)

Appendix D. Conventions

We define the Eisenstein series, the modular discriminant, and the j-invariant by their Fourier
expansion:

E2n(τ ) = 1 + (2π i)2n

(2n − 1)! ζ(2n)

∞∑
k=1

k2n−1qk

1 − qk
, q = e2π iτ , (D.1)

�(τ) = q
[∏∞

k=1
(1 − qk)

]24 = 1

1728

(
E4(τ )3 − E6(τ )2

)
, (D.2)

j(τ ) = E4(τ )3

�(τ)
. (D.3)

We often omit the argument of these functions, as far as it is τ . When the argument is τ̃ , we use the
following abbreviations:

Ẽ2n := E2n(τ̃ ), �̃ := �(τ̃ ), j̃ := j(τ̃ ). (D.4)

The Weierstrass ℘-function is defined as

℘(z|2πω, 2πωτ) = 1

z2 +
∑

m,n∈Z
2
=(0,0)

[
1

(z − �m,n)2 − 1

�m,n
2

]
, �m,n = 2πω(m + nτ). (D.5)
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This function satisfies the differential equation

(∂z℘)2 = 4℘3 − E4(τ )

12ω4 ℘ − E6(τ )

216ω6 . (D.6)

The Jacobi theta functions are defined as

ϑ1(z, τ) = i
∑
n∈Z

(−1)nyn−1/2q(n−1/2)2/2, (D.7)

ϑ2(z, τ) =
∑
n∈Z

yn−1/2q(n−1/2)2/2, (D.8)

ϑ3(z, τ) =
∑
n∈Z

ynqn2/2, (D.9)

ϑ4(z, τ) =
∑
n∈Z

(−1)nynqn2/2, (D.10)

where y = e2π iz, q = e2π iτ . We also use the following abbreviated notation:

ϑk(τ ) := ϑk(0, τ). (D.11)
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