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Interacting topological quantum chemistry
in 2D with many-body real space invariants

Jonah Herzog-Arbeitman 1 , B. Andrei Bernevig 1,2,3 & Zhi-Da Song1,4

The topological phases of non-interacting fermions have been classified by
their symmetries, culminating in a modern electronic band theory where
wavefunction topology can be obtained from momentum space. Recently,
Real Space Invariants (RSIs) have provided a spatially local description of the
global momentum space indices. The present work generalizes this real space
classification to interacting 2D states. We construct many-body local RSIs as
the quantumnumbers of a set of symmetry operators on openboundaries, but
which are independent of the choice of boundary. Using the U(1) particle
number, they yield many-body fragile topological indices, which we use to
identify which single-particle fragile states aremany-body topological or trivial
at weak coupling. To this end, we construct an exactly solvable Hamiltonian
with single-particle fragile topology that is adiabatically connected to a trivial
state through strong coupling. We then define global many-body RSIs on
periodic boundary conditions. They reduce to Chern numbers in the band
theory limit, but also identify strongly correlated stable topological phases
with no single-particle counterpart. Finally, we show that the many-body local
RSIs appear as quantized coefficients of Wen-Zee terms in the topological
quantum field theory describing the phase.

The symmetries of a Hamiltonian are essential to the classification of
topological phases in crystals. For instance, the Ten-Fold Way1,2,
Topological Quantum Chemistry (TQC)3,4, and symmetry indicators5–8

have redefined our understanding of non-interacting electronic states
of matter with the symmetry group of the Hamiltonian taking center
stage. The success of this programmotivates us to extend its reach to
interacting Hamiltonians where many-body effects accompany band
topology in the groundstate9–38. This work focuses on 2D systems with
space group G and U(1) charge conservation at an integer filling per
unit cell.

The classifications of single-particle topology originally relied on
momentum space calculations such as the Wilson loop39–46 and band
structure irreps7,8,47–50. Physically, however, nontrivial topology is
completely diagnosed in real spacewhere a topological index serves as
an obstruction to the atomic limit, defined by a representation of the
groundstate with localized, symmetric Wannier states51–53. Recently,

ref. 54 extended this idea to symmetry-protected phases by develop-
ing Real Space Invariants (RSIs) — local indices which can be con-
sidered as Noether charges associated to discrete symmetries—which
may be calculated from the irreps formed by theWannier states in the
unit cell, even in fragile phases55,56. These RSIs are gauge-invariant and
classify all 2D and 3D symmetry eigenvalue-indicated single-particle
topology5,6,57–59, but may not detect some topological states which are
classified by cohomology or not protected by symmetry60–64. Our
paper extends this technique by defining many-body RSIs (henceforth
referred to as RSIs for brevity) of two types.

First, we construct local RSIs on open boundary conditions
(OBCs) in all 2D point groups. These RSIs classify adiabatically distinct
many-body atomic states9,45,65–68. We then define many-body fragile
topological states6,9,41,69–72 by an obstruction to all many-body atomic
limit states and derive their topological invariants in terms of
inequalities between the RSIs and the U(1) particle number. We also
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present an exactly solvable model verifying that interactions trivialize
certain fragile non-interacting states identified by our classification. To
study many-body stable topological states3,73–75, we introduce global
RSIs defined on periodic boundary conditions and show that they are
many-body stable topological invariants. Finally,we showthat the local
RSIs appear as quantized coefficients in the topological response
theory generalizing the Chern-Simons action of a Chern insulator.

Our theory provides an elementary classification of symmetry-
protected Chern and fragile topological phases, provides an explicit
connection between many-body and single-particle topological indi-
ces substantiated by exactly solvable model Hamiltonians, and pro-
poses a fundamental relation between these topological indices
defined on the lattice and the topological quantum field theory that
describes their universal behavior.

Results
Many-body local RSIs
Axiomatically, we define a many-body topological state by an
obstruction to adiabatically deforming it into a many-body atomic
(trivial) state while respecting the symmetries of the space group G.
The results of this paper rely on the following definition. Amany-body
atomic state is any state which is adiabatically connected to a trivial
many-body atomic limit which is (1) non-degenerate, (2) spatially
decoupled, and (3) endowed with a many-body gap. This limit allows
for arbitrarily strong interactions in theHamiltonian as long as they are
strictly local. A many-body atomic limit is the groundstate of the tight-
binding Hamiltonian

HAL =
X

R,r

HR,r, HR,r =TRHrT
y
R ð1Þ

where R are the lattice vectors, TR∈G are the translation operators, r
are the locations of orbitals in the unit cell, and HR,r is supported only
on the orbitals at R + r (there are no hoppings). This ensures
½HR,r,HR0 ,r0 �=0 and thus the groundstate of H can be written as
∣GSi=QR,rOR,r∣0i and OR,r creates the (possibly correlated) ground-
state of HR,r. In the thermodynamic limit, the filling is ν =Nocc/Norb

where Norb is the number of orbitals per unit cell and Nocc is the filling,
e.g.

Q
rOR,r creates Nocc electrons. Eq. (1) ensures (2) holds, and we

require that (1) and (3) are satisfied, as is natural in an insulator (see
Supplementary Note 2).

We now define local RSIs in many-body atomic limits at aWyckoff
position xprotected only by the symmetries of the point groupGx∈G.
To do so, we identify a set of discrete symmetry operators whose
eigenvalues are the local RSIs. This ensures the local RSIs are adiabatic

invariants since they are discrete quantum numbers. To ensure local-
ity, wedefine the local RSI onOBCs by imposing a spatial cutoff around
x and requiring invariance under the particular choice of cutoff.

Let ∣GS,Ri be the groundstate of HAL but restricted to OBCs by
including only sites ∣R + r − x∣ ≤ R in Eq. (1) (see Fig. 1a). The cutoff
breaks translational symmetry but preserves the point group symme-
tries g∈Gx⊂G. The quantum numbers of ∣GS,Ri are

N̂∣GS,Ri=N∣GS,Ri,g∣GS,Ri= eiλ½g�∣GS,Ri ð2Þ

where N̂ is the number operator and eiλ[g] is a 1D irrep of Gx. Note that
∣GS,Ri is a non-degenerate trivial many-body atomic limit and must
transform in a 1D irrep (1). However, the quantum numbers N and λ[g]
are not independent of the cutoff, as we now show, so they cannot be
local RSIs. Consider the spinless rotation groups Gx = n generated by
the operator Cn. Because all terms in HAL are strictly local (2), we can
write the groundstate at a larger cutoff R0 >R as

∣GS,R0�=
Qn�1

i=0
Oi ∣GS,Ri, Oi =

Q
R + r2D

Ci
nOR,rC

yi
n ð3Þ

whereD is the annulus sector between R and R0 of angle 2π/n shown in
Fig. 1a andCn 2 Gx,C

n
n = + 1 is ann-fold rotation. Define the total charge

NO by ½N̂,Oi�=NOOi so thatOiOj = ð�1ÞNOOjOi. Since the operators Oi

commute/anti-commute if NO is even/odd, Eq. (3) gives

Cn∣GS,R
0�= eiλ½Cn�ð�1ÞNO ∣GS,R0�, ðn even Þ: ð4Þ

Thus the Cn eigenvalue λ[Cn] is not invariant (for even n) under
expanding the cutoff because NO is arbitrary. Similarly,
N̂∣GS,R0�= ðN +nNOÞ∣GS,R0� so N is clearly not invariant. However, we
can easily produce symmetry operators which are invariant under an
arbitrary expansion of the cutoff. Indeed, ei

π
nN̂Cn is invariant because

GS,R0jeiπnN̂CnjGS,R0
D E

= ei
π
nðN +nNOÞð�1ÞNOeiλ½Cn �

1em= ei
π
nNeiλ½Cn � = GS,RjeiπnN̂CnjGS,R

D E
,

ð5Þ

and from Eq. (4), we see immediately that C2
n is also invariant (for n

even). Hence we have found elementary symmetry operators whose
eigenvalues only depend on the local properties of the groundstate
near x but are invariant under the imposed cutoff. Their eigenvalues
are the local RSIs defined by

ei
π
nN̂Cn∣GSi= ei

π
nΔ1 ∣GSi, Δ1 2 Z2n

C2
n∣GSi= ei

2π
n=2Δ2 ∣GSi, Δ2 2 Zn=2

ð6Þ

using ðeiπnN̂CnÞ
2n

= ðC2
nÞ

n=2
= + 1 which quantizes Δ1,Δ2. Although we

derived Eq. (6) inmany-body atomic limits,wenowprove the localRSIs
remain well-defined in general many-body atomic states. First, observe
that the operators in Eq. (6) remain symmetries as hoppings and off-
site interactions are added toHAL and their eigenvalues (the local RSIs)
remain well-defined. Then because we assume a many-body gap (3)
and the local RSIs are quantized, they cannot change as HAL is
adiabatically deformed out of the strict atomic limit.

We have explicitly constructed local RSIs at a single Wyckoff
position x on OBCs. But on infinite boundary conditions, the unit cell
containsmultipleWyckoff positions and it shouldbepossible to define
local RSIsΔx,1,Δx,2 at each x. For instance in thewallpaper groupG = p2
which is generated by C2 and translations, there are four Wyckoff
positions 1a = (0, 0), 1b = (1/2, 0), 1c = (0, 1/2), and 1d = (1/2, 1/2) whose
point groups are generated by C2, T1C2, T2C2 and T1T2C2 respectively.
Even though imposing OBCs at one Wyckoff position breaks the
symmetries of the others, we argue that the local RSIs are still well-

Fig. 1 | Local quantum numbers. aWe depict the groundstate ∣GS,Ri onOBCs and
the additional symmetry-related operators which are included upon expanding the
cutoff to R0. Themany-body local RSIs are invariant under the expansion. bGiven a
fixed cutoff R, all operators inside of R but not at the Cn-invariant point x are
symmetry-related and so do not contribute to the many-body local RSI. Only the
operator Ox at x transforms locally under x. Its quantum numbers determine the
many-body local RSI.
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defined on infinite boundary conditions. This is because the local RSIs
are independent of the cutoff, so sending the cutoff to infinity recovers
the full space group by restoring translations.

In Supplementary Note 2, we extend our results to construct local
RSIs in all 2D spinless and spinful point groups (see Supplementary
Tables 3 and 4). In the spinless groups, we find that mirrors and time-
reversal restrict the Cn eigenvalue on the groundstate to be real,
reducing the Z2n ×Zn=2 classification of Eq. (6) to Z2n for even n. For
odd n, we find aZn ×Zn classification which is reduced toZn. For even
n in the spinful groups, mirrors and time-reversal also force Cn = ± 1 to
be real on any non-degenerate state, which yields a Z2 factor in the
local RSI classification. We check that Cn = + 1 holds on all product
states (Slater determinants). The − 1 eigenvalue is only possible with
strong interactions, and can be obtained in trivial atomic Mott
insulators’38,76. In all cases, the classifying groups are abelian, so the
local RSIs are additive: the local RSIs of a tensor product of states is the
sum of their individual local RSIs. This is crucial for defining many-
body fragile topology.

Many-body fragile topology
We now consider a state on infinite boundary conditions with charge
density ν =Nocc/Norb. Recall that single-particle fragile topology is
characterized by an obstruction to adiabatic deformation into an
atomic state, but this obstruction is removed if additional (trivial)
orbitals in a specific representation are added6. The topological indices
for the single-particle fragile states are inequalities andmod equations
relating Nocc and the RSIs in the unit cell54.

This structure extends to the many-body case. We define a
topological state with Nocc particles per unit cell as many-body fragile
iff it can be adiabatically connected to amany-body trivial atomic state
with Nocc + ~N particles per unit cell by the addition of ~N>0 many-body
atomic states9,77. Let ΔNocc + ~N (resp. Δ~N) denote the set of RSIs of the
trivial state with Nocc + ~N particles (resp. the trivial state of the addi-
tional ~N orbitals) at all Wyckoff positions in the unit cell. The local RSIs
of the Nocc-particle many-body fragile state are defined by
Δf rag =ΔNocc + ~N � Δ~N (see Supplementary Note 3 for details). Crucially,
ΔNocc + ~N is well-defined because the Nocc + ~N-particle state is trivial
atomic. This underlies the essentially difference between fragile and
stable topological many-body states (to be defined shortly), where the
latter cannot be connected to any many-body atomic state via the
addition of any many-body atomic states54.

To assess whether a state is topological given a set of local RSIs,
we can enumerate all possible atomic limits in G formed from Nocc

orbitals—note that only afinite number arepossible. If the localRSIs of
the groundstate do not appear in this set, then the statemust be fragile
topological by definition. In practice, we find a simpler method by
deriving inequality constraints that relate the local RSIs and the U(1)
electron density. To illustrate this, we again consider G = p2 with
Wyckoff positions x = 1a,1b,1c,1d. There are four RSIs given by the
eigenvalues ei

π
2Δ1,x of ei

π
2N̂C2,x where C2,x is a rotation centered at x. It is

convenient to define Δ1,x∈ { − 1, 0, 1, 2}. For many-body atomic states
on arbitraryOBCs respectingGx, it is easy toprove (see Supplementary
Note 3) that Nx ≥ ∣Δ1,x∣ where Nx is the total number of particles. Note
that Δ1x is does not depend on the OBC cutoff, whereas Nx obviously
does. In a many-body atomic limit where we can take Nx =NO (see Eq.
(3))bychoosing a cutoff surroundingxonly (see Fig. 1b),wecanbound
the total density by summing over the number of states at the high-
symmetry Wyckoff positions in a single unit cell:

Nocc ≥
P

x= 1a,1b,1c,1d
Nx ≥

P
x= 1a,1b,1c,1d

jΔ1,xj ð7Þ

which is a lower bound because only the high-symmetry Wyckoff
positions are counted. The bound in Eq. (7) is ultimately written in
terms of RSIs and the charge density which are well-defined quantum

numbers in anymany-body atomic state. Eq. (7) holds in all many-body
atomic states. Hence if Eq. (7) is violated, then the RSIs impose an
obstruction to deformation into a many-body atomic state, proving
many-body fragile topology.

We cannowprove that certain single-particle fragile states remain
fragile topological as interactions are added. As a first step, we deter-
mine a formula for the local RSI when acting on product states (which
are groundstates without interactions). With C2, the irreps are A and B
which are even and odd under C2 respectively. Noting that
ei

π
2N̂C2∣GSi= ei

π
2ðmðAÞ+mðBÞÞ + iπmðBÞ∣GSi, Eq. (6) yields

Δ1 =mðAÞ �mðBÞmod 4 ð8Þ

wherem(ρ) is themultiplicity of the ρ irrep in the product state. In fact,
this expression can be understood perturbatively. The single-particle
RSI with C2 is δ1 =mðBÞ �mðAÞ 2 Z54. With interactions, a state with
m(A) = 2 can be scattered into a state with m(B) = 2 since both have
even parity. Thus states with δ1 = ± 2 are identified with interactions78,
and only δ1 mod 4=Δ1 is invariant. Let us now consider the single-
particle Nocc = 2 fragile state 2Γ1⊕ 2X1⊕ 2Y1⊕ 2M2 = (A1a⊕A1b⊕
A1c⊖A1d)↑G which can be thought as stacking a Chern + 1 state with
a Chern− 1 state. (Here ↑ denotes the Frobenius induction47,54 of the
irreps ρx∈Gx to the full wallpaper group G containing all Wyckoff
positions x as high symmetry points). Although their total Chern
number vanishes, there is still fragile topology protected by C2. We
compute the RSIs to be Δ1a = Δ1b = Δ1c = 1, Δ1d = − 1. Evaluating the
topological obstruction ∑x∣Δx∣ = 4 in Eq. (7), we find that this
single-particle state violates the inequality since Nocc = 2 and is
many-body fragile. Adiabatically adding interactions cannot
trivialize the state.

We generalize the inequality criterion of Eq. (7) to all wallpaper
groups in Supplementary Note 3, obtaining topological invariants
of many-body fragile phases. In Supplementary Table 5, we give
expressions for the local RSIs on product states in terms of irrep
multiplicities and also single-particle RSIs which are readily com-
puted from momentum space irreps54. Our results determine the
stability of any single-particle fragile phase when interactions
are added.

Trivializing Single-Particle Fragile Topology
If the local RSIs are compatible with a many-body atomic state, our
method indicates there is no obstruction to trivialization even if the
single-particle RSIs are nontrivial. We now present an exactly sol-
vable model where we adiabatically deform a single-particle fragile
state into a single-particle trivial state through a strong coupling
region64.

Our strategy is to build a non-interacting Hamiltonian with fragile
valence bands and obstructed atomic conduction bands. Importantly,
we choose the conduction bands to have Wannier functions which are
nonzero on a finite number of orbitals79. We choose G = p3 which has
threeWyckoff positions shown in Fig. 2a. Eachhas spinless PG 3,whose
irreps we denote A, 1E, 2E carrying C3 eigenvalues 1, ei2π/3, e−i2π/3 respec-
tively. We create the atomic orbitals A1b,

2E1b, 2E1c and form the state

wy
0,A1a

∣0i= 1
3

P2

j =0
Cj
3ðcy0,A1b

+ cy0,2E1b
+ cy0,2E1c

Þ∣0i ð9Þ

in theR =0 unit cell andwy
R,A1a

=TRw
y
0,A1a

Ty
R.w

y
0,A1a

creates an A irrep at
1a (see Fig. 2a). The complementary two bands on the A1b,

2E1b, 2E1c
orbitals are fragile and cannot be induced from local orbitals (see
Supplementary Note 5). We also add the atomic orbitals 1E1a and 2E1a to
the valence band (which do not not trivialize the fragile topology)
and a A1a orbital to the conduction band. Note that A1awould trivialize
the valence band. To construct the non-interactingHamiltonianH0, we
choose all bands to be perfectly flat soH0 is local in theWannier basis.
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As discussed in Supplementary Note 5, we set

H0 =
X

R

ð1�MÞwy
R,A1a

wR,A1a

1em+MðnR,1E1a
+nR,2E1a

Þ+ ð1�MÞnR,A1a

ð10Þ

where nR,ρ = c
y
R,ρcR,ρ. All terms in H0 are strictly local because wR,A1a

is
finitely supported. At filling ν =Nocc/Norb = 4/6,M tunes between a fra-
gile phase:

1E1a�2E1a � ½A1b�2E1b�2E1c � A1a� " G ð11Þ

forM∈ (0, 1/2) and a trivial phase A1a⊕A1b⊕
2E1b⊕ 2E1c forM∈ (1/2, 1).

The two fragile bands in Eq. (11) are in brackets. A gap closing atM = 1/
2 separates the twophases.However SupplementaryTable 5 shows the
RSIs are the same in both phases: Δ1a = (1, 0),Δ1b = (2, 1),Δ1c = (1, 1) and
indicate a many-body atomic limit (as can be checked using the
topological indices in Supplementary Table 8). Accordingly, the single-
particle fragile phase can be connected to the trivial phase without a
gap closing by adding interactions. We now add the symmetry-
preserving term

HI =U
X

R

wy
R,A1a

cyR,A1a
cR,1E1a

cR,2E1a
+h:c: ð12Þ

which is strictly local. Physically, HI implements the interaction-
allowed conversion91 E1a⊕ 2E1a→A1a⊕A1a and removes the fragile
obstruction symbolized as⊖A1a in Eq. (11) (but note thatHI annihilates
the fragile bands). Because H0 +HI acts independently on the Wannier
states in each unit cell, the Hamiltonian is entirely decoupled and is
trivial to solve80.We show the phase diagram in Fig. 2b and see that the
gap closing at U =0 separating the single-particle phases can be
opened with interactions, adiabatically connecting the phases.

Many-body stable topology
Non-interacting stable topological states (such as Chern and
quantum spin Hall insulators where many-body invariants are
known81–85) cannot be trivialized by coupling to any local orbitals –
unlike fragile topology. This is reflected in the single-particle RSIs,

which take on fractional values in stable states54. For instance with
C2, the real-space derivation of the single-particle RSI δ1 =mðAÞ �
mðBÞ 2 Z relies on the existence of Wannier functions such that
m(A),m(B) are well-defined integers. It is only by generalizing the
definition of δ1 to momentum space (on periodic boundary condi-
tions) that the possibility of fractional values emerges. In analogy to
the non-interacting case, we define a many-body stable topological
phase to be robust against coupling to all many-body atomic states.
It is impossible to compute local (many-body) RSIs on OBCs in this
case because the edge states, a signature of stable topology, pre-
vent our assumption (1) of non-degeneracy and cannot be removed
by coupling to any atomic states.

We now propose a definition of global RSIs ΔG
x,i in many-body

stable topological phases at Wyckoff position x in the unit cell. Their
definition is identical to Eq. (6) but evaluated on a spatial torus, i.e.
periodic boundary conditions (PBCs). Explicitly, with Cn∈Gx for n
even,

ei
π
nN̂Cn∣GS,PBCi= ei

π
nΔ

G
x,1 ∣GS,PBCi,

C2
n∣GS,PBCi= ei

2π
n=2Δ

G
x,2 ∣GS, PBCi

ð13Þ

defines the global RSIs. The PBCs are essential for ∣GS,PBCi to be non-
degenerate so ΔG

x,i are quantum numbers. We claim that if
ΔG
x,i≠0,∣GS, PBCi is many-body stable topological. In other words, the

global RSIs are topological invariants.
To support this claim, we prove two properties of ΔG

x,i: (1) All 2D
many-body atomic phases have ΔG

x,i =0, from which it follows that all
many-body fragile topological phases also have ΔG

x,i =0 and (2): ΔG
x,i is

determined by the Chern number C in non-interacting Slater deter-
minant states. This demonstrates the well-known fact that Chern
insulators are robust to weak interactions.

We will first prove (1). Consider a many-body atomic limitQ
R,rOR,g∣0i with G = p2 generated by C2, TR where C2∈Gx is a rotation

around the point x = (0, 0). Now consider placing the state on L1 × L2
PBCs with L1, L2 even. Observe that there are four points invariant
under C2 denoted xG = {(0, 0), (L1/2, 0), (0, L2/2), (L1/2, L2/2)}. Since the
C2 operator is a symmetry of each point, it protects a local RSI Δx,1

givenby ei
π
2Δ1,xOx = ðei

π
2N̂C2ÞOxðei

π
2N̂C2Þ

y
for eachx∈ xG. In fact, theΔ1,x is

the same at each x∈ xG because of translations: Ox =TxOð0,0ÞT
y
x and

C2TxC
y
2 =Tx since x = − x for x∈ xG on PBCs.

Now we compute the global RSI of the many-body atomic limit.
Using the Cn symmetry, the atomic limit groundstate can generically
be written as (see Fig. 3)

∣GS,PBCi= Q
x2xG

Ox
Q2

i = 1
Ci
2OCiy

2 ∣0i ð14Þ

for someOwhich creates the correlated but strictly local groundstates
in one half of the spatial torus shown in Fig. 3. The operatorsOx create
the states at the corners of the torus which are locally C2 symmetric.
Following Eq. (4), we compute

ei
π
2N̂C2∣GS, PBCi=

Q
x2xG

ei
π
2Δx,1 ∣GS,PBCi ð15Þ

which is intuitive because operators O off the C2 centers contribute
trivially. Using Eq. (13), the global RSI of the many-body atomic state is

ΔG
x,1 =

P
x2xG

Δx,1 = 4Δx,1 = 0mod 4 ð16Þ

since we proved that Δx,1 are all equal. The cancelation shown here is
due to unexpected coincidence of the global RSI being definedmod 4,
and the 4 C2 symmetric points on PBCs each contributing an equal

Fig. 2 | Trivializing fragile topology. a Orbitals and Wyckoff positions with wy
A1a

shown in orange.b Phase diagramofH0 +HIwhere shading denotes themany-body
gap. The only gapless point (blue) occurs atM = 1/2,U =0 separating the single-
particle fragile and trivial phases atU =0. Both phases have the same (trivial) many-
body RSIs. Along the dashed line, the many-body gap is equal to 1 (see Supple-
mentary Note 5).
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(integer) local RSI to the global RSIs. We extend this proof to all point
groups in Supplementary Note 4.

Next to prove (2), we relateΔG
x,1 to the Chern number C in product

states. We need two existing results. With C2, (−1)
C is equal to the

product of inversion eigenvalues at the high-symmetry points in the
Brillouin zone (BZ)7,28,47,57,86, and secondly C2∣GS,PBCi= ð�1ÞC ð�1ÞN=2∣
GS, PBCiwhereN is the number of states in the BZwhichmust be even
since L1, L2 are even87. Evaluating the global RSI with Eq. (13) yields
ΔG
1a,1 = 2Cmod 4. We can also compute ΔG

x,1 at other Wyckoff positions
taking e.g. C2→ T1C2. Then because ∣GS, PBCi has zero total many-body
momentum in 2D, we find

ΔG
1a,1 =Δ

G
1b,1 =Δ

G
1c,1 =Δ

G
1d,1 = 2Cmod 4: ð17Þ

This result is reminiscent of the half-integer valued single-particle
RSIs in Chern insulators: Eq. (16) gives ΔG

x,1 = 4Δx,1 when local RSIs are
well-defined, so Eq. (17) is suggestive of a half-integer local RSI in odd
Chern states.

We compute the global RSIs of all Slater determinants in Sup-
plementary Note 4. Our classification reveals the possibility of many
stable topological phases which cannot exist in band theory but are
enabled by strong interactions, agreeing with and extending earlier
results78,88,89. We give a three illustrative examples. In p2, a state ∣ψ

�

with ΔG
1a,1 =Δ

G
1d,1 = 2,Δ

G
1b,1 =Δ

G
1c,1 = 0 obeys ei

π
2N̂Cn∣ψ

�
= � ∣ψ

�
like in a

Chern state, but with nonzero total momentum T 1∣ψ
�
=T2∣ψ

�
= � ∣ψ

�
.

Such a state carries a many-body Chern number28, but is adiabatically
disconnected from any single-particle Chern state. In p2mm, mirrors
ensure C = −C =0 without interactions. But the global RSI ΔG

1 retains a
Z4 classification after adding mirrors, allowing an interaction-enabled
state like Eq. (17) following theheuristic 2C = � 2Cmod 490. Finally, Eq.
(17) shows thatΔG

x,1 must be even in gapped Slater determinants. Since
an ΔG

x,1 odd requires odd particle number but L1, L2 are even, this
suggests a gapless state. This is evidence that odd ΔG

x,1, defined by Eq.
(13), is a many-body semi-metal invariant91,92.

Topological response theory
RSIs are quantized, symmetry-protected invariants beyond the Chern
number. Then, since a nonzero Chern number is encoded in the con-
tinuum topological response theory as a Chern-Simons term93, itmight
be expected that RSIs appear as well. In the presence of crystalline
symmetries, the response theory includes Wen-Zee-type
terms14,19,31,94–102:

L=
C
4π

AdA+
s
2π

Adω+
‘

4π
ωdω ð18Þ

where A =Aμdxμ is the U(1) gauge field and ω =ωμdxμ is the rotational
gauge field, or spin connection10,31,97,103. Physically, ∫ dA and ∫ dω are the
total flux and total disclination angle. Eq. (18) neglects translational
gauge fields95,104 and hence ignores the unit cell structure, so L
describes an expansion around a fixed Wyckoff position x. We will
show that s and ℓ are the local RSIs at x.

The coefficients s and ℓ can be understood from the equation of
motion for the charge density ρ and angular momentum density L:

ρ=
δL
δA0

=
C
2π

dA+
s
2π

dω, L=
δL
δω0

=
s
2π

dA+
‘

2π
dω: ð19Þ

Let us first consider ρ. If dω =0, Eq. (19) reduces to the Streda
formula105. If dA =0, s describes the charge bound to a disclination
center. A partial disclination with s ≠0 reveals the fractional charge at
x33,98,106,107. As such, taking ∫ dω = 2π to be a complete disclination (in
analogy to inserting a full flux), Eq. (19) shows s = ∫ρ is the total charge
at x. Since the total charge is related to the local RSIs, Eq. (6) gives (for
n even)

ei
2π
n s = ei

2π
n N̂ = ðeiπnN̂CnÞ

2ðC2
nÞ

y
= ei

2π
n ðΔ1,x�2Δ2,xÞ ð20Þ

acting on ∣GSi with OBCs. Hence s is the local charge

s =Δ1,x � 2Δ2,x mod n ðn evenÞ: ð21Þ

We remark that the physical charge bound to the disclination core
is a well-defined local observable and can take any (rational) value.
However, Eq. (21) shows that its value mod n is determined solely by
the many-body RSIs of the defect-less groundstate and is universal.
This can be understood from the Lagrangian in Eq. (18): although L is
well-defined for all s, adiabatic deformations of the groundstate leave
only smod n constant. Inmany-body fragile or atomic stateswhereΔi,x

are integers, s 2 Zn. Eq. (21) suggests a straightforward generalization
to Chern states. Without interactions, the single-particle local RSIs are
well-defined but fractional, and a formula for the charge s at x is
known54,59. Proving the many-body extension of this result will be the
subject of forthcoming work. For now in the C2 case, note that Eq. (16)
(proved only at C =0) shows 4Δx,1 =Δ

G
x,1, while Eq. (17) shows

ΔG
x,1 = 2Cmod 4. Then at least heuristically, the local RSI

Δx,1 =C=2mod 4 can be half-integer in agreement with ref. 98.
Wenowconsider L in Eq. (19). Settingdω = 0 shows that s shifts the

angular momentum after inserting a full flux. Indeed, single-particle
RSIs can enforce irrep flow due to angular momentum pumping in
flux59,108. Setting dA =0 shows that ℓ describes the angular momentum
bound to a disclination center and should be identified with the
eigenvalue of the rotation operator ei

π
nN̂Cn. Hencewepropose ‘=Δ1,x 2

Z2n for n even, matching the classification of ref. 98.

Discussion
TQC is a unifying theory of non-interacting materials. Given atomic
orbitals, their symmetries, and the number of electrons, the topolo-
gical invariants of TQC classify possible gapped, degenerate, and
gapless phases. The present work achieves the first case in interacting

Fig. 3 | Local Operators on Periodic Boundary Conditions.We depict the parti-
tioning of a many-body atomic limit state on a spatial torus (PBCs) into rotation-
related operatorsO,C2OCy

2 and the locally-transforming operatorsOx operators at
fixed points of the rotation x∈ xG.
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Hamiltonians by defining local and global RSIs, many-body topological
indices, and the effective field theory that governs them. In so doing,
we revealed which single-particle fragile phases survive interactions
and identified undiscovered stable topological states with no single-
particle counterpart. We anticipate that many features of single-
particle topologymay be generalized to themany-body case using this
formalism, for instance regarding bounds on quantum
geometry15,109–114. Another perspective is offered by ref. 28, which
shows that a generalization of the single-particle Brillouin zone is the
flux torus obtained from twisted boundary conditions (on which the
gapped, many-body groundstate can smoothly be defined), since in
both cases the Berry curvature and symmetry eigenvalues can be
defined. This connectionmay facilitate the computation ofmany-body
RSIs without open boundary conditions and reveal connections
between the momentum space and real space theories. We leave the
study of global and magnetic symmetries, spontaneous symmetry
breaking, the numerical investigation of interaction-enabled many-
body stable topology, and the study of boundary signatures to
future work.
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