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Abstract

This thesis concerns the analysis of continuous gravitational waves from neutron stars
with non-axisymmetric rotational motion using data from ground-based interferometric
gravitational wave detectors, the development of a computationally efficient algorithm
for analysis of this data and the use of this algorithm in followup searches, which were
previously too computationally expensive to consider.

Presented in this thesis is a new, computationally efficient method for down sam-
pling data from gravitational-wave detectors for use in targeted searches for continu-
ous waves from rapidly rotating neutron stars, which we call Spectral Interpolation,
or Splinter. This method is tested and compared to the existing analysis in various
situations, including an end-to-end pipeline comparison utilising hardware injections.
The limits of the application of the Spllnter algorithm are explored, including a study
into its use in the analysis of continuous waves from neutron stars in binary systems.

Next, a search is presented for signals from known pulsars in LIGO science run
6 data, with a comparison to a similar, previously performed analysis. This search
produces upper limits on the amplitude of gravitational waves from the sources which
are compared to the previous analysis and observational limits.

The first Bayesian follow up search for candidate continuous gravitational-wave
signals from all-sky and directed searches is presented. These are also the first searches
using the Bayesian pipeline to search in more than one frequency parameter, and over
sky position. We search for a prospective signal from a directed search for a possible
neutron star, and for possible signals from a deep all-sky search pointed along the
Orion spur.

The results of this work and the future of these algorithms and searches are dis-

cussed, with emphasis on enhancing the algorithm so that it is applicable to all sources.
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Chapter 1

Gravitational waves: theory,

sources and detectors

I have forgotten much that I thought I knew, and learned again much

that I had forgotten.

Gandalf, The Lord of the Rings, J.R.R. Tolkien

Gravitational Waves are ripples in the curvature of spacetime, predicted in 1916 by
Einstein as an outcome of the General Theory of Relativity (GR) [40], and the direct
detection of gravitational waves is one of the final pieces in the puzzle of evidence that
a GR-like mechanism exists as the progenitor of gravitational forces. Section gives
an outline of the derivation of gravitational waves from GR and the way in which they
interact with matter.

Gravitational waves (GWs) offer an exciting prospect for seeing the Universe in an
entirely new way, independent of the electromagnetic and astroparticle observations
we have been able to make up to now. The prospects are intriguing, from seeing
further back into the very early stages of the universe [16, 87] to providing a test
bed for competing theories of gravitation which — up until this point — will have been

experimentally indistinguishable from one another [102], probing the inside of exotic
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1.1. GRAVITATIONAL WAVES FROM GENERAL RELATIVITY 19

compact objects [63] as well as the prospect of making new, unexpected, discoveries
similar to the advent of radio astronomy leading to the discovery of pulsars. Section
describes and reviews the types of sources expected to be seen in the early years of
GW astronomy.

The observation of gravitational waves will usher in a new era of multi-messenger
astronomy, providing more evidence in support of observations which have already been
made, and providing triggers for observations of astronomical events which would have
been observed previously only due to extreme luck. Gravitational waves interact only
weakly with matter, meaning that they can travel through objects which are opaque to
electromagnetic observation and have an advantage in that they remain unretarded by
the interstellar medium; rapid sky localisation of a GW source can therefore provide
electromagnetic astronomers with a trigger to observe an event.

Gravitational waves’ weak interaction with matter also makes them extremely diffi-
cult to detect. Section|[l.3|details a brief outline of the experiments designed to perform
this task and section [1.3.1] specifically gives more detail on the interferometric detec-
tors, including the main noise sources and the ways in which the GW signal is detected

and analysed.

1.1 Gravitational waves as a consequence of general
relativity

In this section, we outline the derivation of the GW equation from Einstein’s field
equations in GR, and how GWs interact with matter. This section shall only introduce
the concepts which are important to the work in this thesis, and more comprehensive

descriptions are available in numerous books and papers (such as [40, 86] ).

1.1.1 Obtaining and solving the wave equation

The wave equation for GWs can be found by linearising the spacetime metric, this

means that we approximate the metric as a flat metric plus a small, linear perturbation.



1.1. GRAVITATIONAL WAVES FROM GENERAL RELATIVITY 20

The Einstein equation from GR in tensor notation is given by (e.g. [86])

1 8rG
Gap = Rap — §gabR - T a

Tow, (1.1.1)
where the Einstein tensor G, is given in terms of the spacetime metric, g4, the Ricci
tensor Ry, and Ricci scalar R. These are defined by the Riemann curvature tensor R},
through the relationships Ry, = Rj,. and R = g Ry respectivelyl] a and b run from
0 to 3 and denote the different dimensions, 0 for time and 1, 2 and 3 for the spatial
dimensions. T, is the stress-energy-momentum tensor. For simplicity, we ignore the
cosmological constant, A, in this discussion.

The spacetime metric g, of linearised gravity comes from a flat spacetime 7,, and

a small linear perturbation Ay,

Gab = Mab + habu (112)
where 74 is defined as
-1 0 00
0 1 00
Nap = : (1.1.3)
0 010
0 001

The perturbation h,, and its derivatives are considered to be much smaller than
the flat metric (i.e. |hg| < 1) such that we can safely ignore non-linear combinations

of these. The Riemann curvature tensor Ry, is thereford?]

1
gcd = §nae [acabhde - acaeh/bd - adabhce + 8clgehbc} ) (114)

where 0, = a%w the partial derivative with respect to dimension z¢.
By utilising gauge transformations, we can mould these equations into something
more workable. Considering the gauge transformation he, — hl, = hap — 0u&p — Obéa,

where ¢ is an arbitrary function, but its derivatives are of the same order of magnitude

"'We are using the standard notation in which we sum over repeated indices, amd we can raise or
lower indices using the spacetime metric, @ = g*®x,.
2 Appendix [A| contains some of the maths that we skip over in this introduction.
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as hgp, the Einstein equation remains valid for b, as it did with h,, as all of the terms
containing & cancel by symmetryﬂ. We can use this to set gauge conditions, where
a physical result still stands but we use a different frame of reference to simplify the
problem.

The first condition set is the harmonic gauge:

Duh = 0, (1.1.5)

given h¢ = h{ — inth, the trace reverse of the perturbations, where h = h?. When we

set this condition on the Riemann curvature tensor, the Ricci tensor becomesﬁ

1
Ry = 500has, (1.1.6)

where [ is the d’Alembertian or wave operator, 1 = 0,0*. We then use this Ry in

equation to obtain the wave equation

§ 1
Ty = — 257G (1.1.7)

A

In free space (T, = 0), solutions to this have the form
hap = A% exp (ikdxd) , (1.1.8)

where A is a constant, second order, symmetric amplitude tensor and ky is the wave

vector k¢ = (<, E) Solving the wave equation given this hg, gives

kak A" exp (ikqz?) =0, (1.1.9)

the non-trivial solutions to which are k;k¢ = 0. This is also the condition for a particle
to be light-like (c?At? = Ar?) which indicates that GWs propagate at the speed of

light.

3See footnote 2.
4See footnote 3.
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1.1.2 Wave polarisation and the transverse traceless gauge

As a 4 x 4 symmetric matrix, the amplitude tensor A% initially has 10 degrees of
freedom. Within the harmonic gauge, this number is reduced, as 9,h% = 0 leads
to the non-trivial solution of k,A% = 0. Using an example of a wave travelling in
the z (or %) direction, k; = ky = 0, kg = w and k3 = k, this leads to A% = A%,
and by symmetry A% = A3 Using gauge freedom we can set A% = 0, leading to
AN = A3 = A% = A3% = (), meaning the perturbation is transverse (i.e. there is no
perturbation along the direction of travel). One can also utilise the gauge freedom to

demand that h = 0, the traceless conditionﬂ and the perturbation becomes:

00 0 0
0 he hy O

hap = L. : (1.1.10)
00 0 0

where h, and h, are the plus and cross polarisations of the gravitational wave respec-
tively. When h, is zero, we say that the wave is plus polarised, and when h, is zero,
we say that it is cross polarised. The exact form of h, and hy will vary depending

upon the source of the gravitational wave.

1.1.3 Interaction with matter

In order to see how a gravitational wave affects matter, one needs to consider the

coordinate invariant proper distance between particles
L:/\/gabdxada:b. (1.1.11)
P

So for a GW propagating in free space, T,;, = 0, the metric, g, = Nap + hap gives

L= / V=P + (I +h)d? + (L= ho)dy? + 2h, dedy + d22. (1.1.12)
P

5When we set h = 0, we can also immediately see that hab = Pap.
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We see that for a plus polarised wave travelling in the z direction at a given time
(i.e. dt = 0, hyx = 0) for two particles lying upon the z axis, dz = dy = 0, then
dx will stretch by a factor of m If we consider two particles on the y-axis
(dz = dz = 0) then dy is stretched by m, leading to an orthogonal stretching
and squeezing motion.

This motion and the cross terms are visualised in figure for a sinusoidal GW,
which also shows that the plus and cross polarisation cases are identical but with a
7 /4 rotation about the direction of propagation. This rotational symmetry can be seen
mathematically by applying a rotation matrix with an angle of 7/4 to hg. A GW will

generally be a linear combination of a plus and cross polarised wave.
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Figure 1.1.1: A series of snapshots of a ring of test particles in the zy plane which is stretched and
squeezed by a gravitational wave coming out of the page in the z direction, shown are plus polarised
(top) and cross polarised (bottom). The red circles indicate the position of the detector mirrors in an
interferometric GW observatory, with the red lines showing the detector positions for when there are
no GWs, or the phase is zero.
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1.2 Gravitational-wave sources and associated anal-
yses

Gravitational waves are emitted by any motion with a non-zero second derivative of

the mass quadrupole term, and an approximation of the amplitude of the wave is [87]

g d2Qab

ha: y
P74 ae

(1.2.1)

where @), is the quadrupole moment and d is the distance from the source to the
detector. However only the most massive, violent, events generate signals with realistic
prospects of detection. Man-made sources are ruled out; two 10 kg masses rotating at
10Hz on each end of a 10m beam would produce GW strains of h ~ 5 x 10713 [87].
This strain is almost twenty orders of magnitude less than even the most sensitive
current concepts for detectors [19].

Gravitational-wave sources with genuine prospects for detection tend to be split
into four distinct categories, each with independent associated data analysis techniques.

The following sections describe some of the most promising candidates for GW sources.

Burst sources

Burst sources are any short duration, unmodelled source of astrophysical origin, and
are generally found by detecting excesses of power within the detectors, triggers.

The main difficulty with this search is that there can be occasional excesses of
power due to the noise of the detector, so a strong understanding of the detector and
its contributing noise components is required. To estimate the background rate from
the noise excesses in detectors, time slides are used [14, [99], where the triggers from one
detector are shifted by an amount of time greater than the wave travel time between
the detectors.

By shifting the detectors in time there will no longer be any correlated signal
present, and the correlation technique can be use to estimate a false alarm rate for
a particular signal-to-noise ratio (SNR) of signal. From this false alarm rate, a signifi-

cance can be calculated, if a standard new discovery threshold of 5o is used, this would
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correspond to a single false alarm in a million gravitational-wave networks running for
the observation time considered.

Sky localisation is performed by calculating the difference between the times of
arrival in the different detectors to triangulate a location in the sky [41]. For two
detectors the best estimate would provide a ring on the sky which would be perpen-
dicular to the straight line between the detectors, three detectors would provide two
possible locations (each is a reflection of the other in the plane passing through all of
the detector sites) and so four detectors are required to provide a single, definitive,
location. Astrophysical event rates are unknown, due to the unknown nature of the
source, but burst pipelines may in fact be able to detect compact binary coalescence

signals with high enough SNR.

Compact binary coalescence

The type of signal often considered most likely to yield the first detection is gravita-
tional waves coming from a compact binary coalescence (CBC) involving two compact
objects inspiralling and merging into one. These will most likely be a combination of
neutron stars (NS) and black holes (BH).

Analysis of these signals generally involves comparison of associated waveforms from
the different sources with the data using matched filtering techniques. The outcome
of this is similar to the burst search, giving a list of triggers, for which the time slide
technique is utilised as above to work out false alarm rates and significance estimation
[18, [99].

Sky localisation techniques are also similar, and will utilise time of arrival differences
in the same way as burst sources mentioned before [43]. Expected event rates vary for
each source type, and estimated rates with the four-detector configuration of advanced
detectors (LIGO detectors at Hanford and Livingston, Virgo and a new LIGO detector
in India) at design sensitivity range from 0.4 to 400 per year for coalescing binary
NSs, 0.4 to 1000 per year for binary BHs, and 0.2 to 300 per year for NS-BH binaries
[10]. The wide ranges of the expected observed event rates are due to the lack of
knowledge of the astrophysical populations and hence event rates, meaning that even

the non-detection of the signals can lead to interesting astronomy.
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Continuous waves from rapidly rotating neutron stars

Continuous-wave sources and their associated data analysis techniques are to be the
main focal point of this thesis, and will therefore be covered much more thoroughly
later on, particularly in chapter 2, but in keeping with the theme of this introduction,
a brief explanation of this source and analyses follows.

Rapidly rotating neutron stars with a non-axisymmetric distortion are expected to
emit continuous waves, with almost monochromatic signals modulated by the detector
motion in orbit around the solar system barycentre (SSB) and any binary motion of
the source. For signals from a non-precessing triaxial neutron star this is expected to
be at twice the rotational frequency.

Continuous-wave source analyses can have two specific advantages over analyses
for other gravitational-wave sources: The first is that we may already know many of
the source parameters such as frequency and sky location to a high degree of accuracy
from electromagnetic observations; this is known as a targeted search, and this type of
search is the main focus of chapters [2], [3] and [df The second advantage is that as the
signal has a long duration, longer integration times lead to a deeper search into the
detector noise.

Continuous-wave searches also include directed searches, where the sky position of
the source is well constrained but other source parameters such as the frequency, fre-
quency evolution and any binary parameters may be unknown; this generally searches
for a NS with unknown parameters or in a direction at which we would expect large
numbers of sources — such as the galactic centre [I], a globular cluster 7] or the Orion
spur [0]. All-sky searches, including the Einstein@Home search [3] can be computa-
tionally expensive, and will often take a grid-based approach, matching templates for
frequency and sky position. Searches for sources with unknown frequency and sky
position parameters will be discussed in more detail in chapter [6]

Sky localisation in all-sky continuous-wave searches generally comes from a fit to
the phase and amplitude evolution of the signal being affected by the antenna response
throughout the day (see section , so unlike other searches it is possible to get

good accuracy in position from only one detector.
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Stochastic background

It is unlikely that all gravitational-wave sources will be distinguishable from one an-
other, and as such, there will be what seems like a random gravitational-wave field
coming from these as well as signals from cosmological sources such as signatures of in-
flation, similarly to the cosmic microwave background. From these inseparable sources,
there will be a background which can be treated as statistical noise, which can be sep-
arated from instrumental noise through methods such as cross correlation between
detectors [12].

Stochastic gravitational waves are expected to be seen particularly in space-based
and future generation detectors, as the better sensitivity at lower frequencies means

that the galactic white dwarf binary population is within the range of detection [16].

1.3 Gravitational-wave detectors

Never fire a laser at a mirror

Larry Niven

There are numerous gravitational-wave detectors in operation around the world, falling
into a few distinct categoried’}

Interferometric detectors are currently seen as one of the most promising candi-
dates to yield the first detection and go on to produce astrophysically interesting data.
There have been multiple attempts at gravitational-wave detection using this method,
including three detectors run by LIGO, as well as GEO 600, Virgo and TAMA 300
[29, 51, 68, [74] and multiple smaller ‘test’ interferometers. At the time of writing the
LIGO detectors, Virgo and TAMA 300 have been decommissioned and only GEO 600
is operational in an ‘astrowatch’ capacity, while Advanced LIGO, Advanced Virgo and
KAGRA [5 20 60] are under construction. Proposals for future for interferometer
detectors include ET (the Einstein Telescope [19]), another LIGO detector in India
[53], and two space-based detectors, NGO [33] [42] and DECIGO [61].

Another way to detect gravitational waves is using Doppler tracking in pulsar tim-

ing arrays [49], which uses radio data from well-known millisecond pulsars to detect

6[81] contains much more detail on gravitational-wave detectors, their history and their use.
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the shifts caused by gravitational waves in the times of pulse arrivals. Finally, resonant
mass antennas, including resonant bars [24] and spheres (e.g. MiniGRAIL [35] and
Mario Schenberg [22]), have also been used to attempt to detect gravitational waves.
These work by the gravitational wave exciting particular resonance modes in the detec-
tor, and measuring the way in which the mass responds, though these are intrinsically
extremely narrow-band detectors.

So far, all of these methods have been unsuccessful in yielding the first detection of
gravitational waves.

The following sections discuss current and future interferometric detectors, partic-
ularly their operation and noise sources in section [1.3.1] and the antenna pattern which

affects the way in which we see sources in section [1.3.2]

1.3.1 Interferometric gravitational-wave detectors

Work on the use of interferometers as gravitational-wave detectors has been carried
out since 1966 [73], and once in operation, the second generation detectors will provide
the best prospect of gravitational-wave detection and analysis [72]. The basic form of
an interferometer works by using a laser shining onto a beamsplitter which is at an
angld’| with respect to the beam direction.

This beamsplitter causes half of the light to be transmitted towards one mirror,
and half to be reflected towards another. Each part of the beam then travels along
the respective interferometer arms to a mirror, at which point it is reflected back to
the centre. The light is then incident on the beamsplitter again, and the light is again
reflected or transmitted. This leads to the beam being recombined and travelling either
towards a photodetector or back toward the laser.

At this stage the light travelling toward the photodetector will undergo constructive
or destructive interference, depending on the difference in the lengths of the interfer-
ometer arms and the laser wavelength. The photodetector then measures the varying
amount of incident light, which is indicative of the amount of interference, meaning it
is possible to measure the change in the difference in length of the interferometer arms

over fractions of a wavelength. In LIGO detectors, the mirrors are positioned such that

"For initial and advanced detectors this angle is approximately /4, see [23].
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the interference is almost entirely destructive, such that the optimal signal-to-noise ra-

tio is obtained.

Optical layout

There are many optical tricks to be played with the interferometer layout in order to
improve the sensitivity, which are illustrated in figure [[.3.1} The first is to introduce
Fabry-Pérot cavities [81], these reflect the beam back and forth between the end and
input test masses. These mean that the light is kept in the detector for a much longer
timescale, increasing storage time and giving a stronger gravitational-wave signal, by
raising the equivalent laser power.

LIGCﬂ also utilises a power recycling mirror in order to enhance the laser power,
which is particularly useful when operating at a dark fringe, where the interference
is completely destructive. If we consider the conservation of energy; when the inter-
ference is almost entirely destructive, then there is a very low power going towards
the photodetector, this energy has to go somewhere, and so almost all of it goes back
towards the laser. By using the power recycling mirror, this light is sent back into the
interferometer and effectively increases the laser power.

Also shown in figure is the signal recycling mirror (SRM), this sends the
signal back into the interferometer, increasing the storage time of the signal in the
interferometer and setting up a resonant cavity, leading to the interferometer becoming
more sensitive at the cavity’s resonant frequency. The resonant frequency can be tuned
by changing the position and transmittance of the SRM.

The interference at which the mirrors are held has been described so far as be-
ing almost entirely destructive, the reason for this ‘almost’ is the way in which the
gravitational-wave data is collected and turned into a strain. A gravitational wave
will affect the interferometer readout by introducing a sideband of frequency f, =
fiaser + faw, Where fo is of order ~ 10> Hz and fiaser is ~ 10* Hz. The dark fringe is
specifically designed in terms of fi.ser, and so this change to f, introduces a change in

incident light on the photodiode.

8LIGO has appeared in many forms, so this footnote is an attempt to clarify the nomenclature.
Initial LIGO means the LIGO detector in operation from 2002 to 2007, enhanced LIGO ran from 2009
to 2010, and together these are referred to as LIGO. Advanced LIGO’s first observating run (O1) is
due to start in September 2015.
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Figure 1.3.1: Simplified diagram of the optical layout of the advanced LIGO interferometers. Shown
are the end test masses (ETM), input test masses (ITM), beam splitter (BS), power recycling mirror
(PRM) and signal recycling mirror (SRM) as well as the mode cleaners at input and output. Image
from [5].

In order to decouple the two components the sideband frequency is compared with
the laser light or, as in advanced LIGO, an output mode cleaner is used. In what
is known as a DC readout scheme, this is provided through the interferometer by

moving the readout to be slightly away from complete destructive interference. This

gravitational-wave signal is then converted into a strain h(t) using time-domain filters

43, 92].

Noise sources in interferometric gravitational-wave detectors

The detector will be affected by noise from internal and external sources, which will
limit the sensitivity of the detector. Here we discuss four significant sources of noise
in interferometric gravitational-wave detectors; seismic noise, gravity gradient noise,
thermal noise and quantum noise [81].

Figure shows the frequency dependence of the noise for ‘enhanced” LIGO and

Virgo, from which the real data discussed in this thesis is derived and figure|1.3.3|shows
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Figure 1.3.2: Plot of typical detector strain noise in enhanced LIGO (H1,L1) and Virgo (V1) noise
during LIGO S6 and Virgo VSR2/3. We can see clearly the 60 Hz line from electrical equipment AC
current in the LIGO detectors H1 and L1 and the equivalent 50 Hz line in the Virgo detector. We also
see the suspension violin modes at around 350 Hz in all detectors [9].

the projected noise budget for advanced LIGO detector and its constituent parts.

Seismic noise comes from the vibration of the Earth around the test masses, and
can be reduced by using suspensions. Even using a single-stage pendulum will make
the transfer function for horizontal motion fall off as (1/f)? above the pendulum res-
onance, and in a similar way the vertical motion can be reduced using a spring. For
example, Virgo mirrors are suspended using a seven-stage pendulum arrangement, with
six cantilever springs, allowing operation to below 10 Hz [27]. Seismic noise limits sen-
sitivity at low frequencies, below around 40 Hz in LIGO (see figure and 10 Hz in
advanced LIGO (figure [1.3.3).

Gravity gradient noise is caused by nearby mass fluctuations coupling to the mirrors,
such as a surface wave. These can be mitigated by physical environment monitoring and
subtraction (used in advanced LIGO/Virgo), by going underground (KAGRA), or by
the slightly more extreme measure of putting the detector in space (NGO/DECIGO).

Gravity gradient noise contributes significantly to the low frequency noise below around
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Figure 1.3.3: Plot of the advanced LIGO noise budget. Showing also the constituent parts of the noise
discussed in the main text. We also see the noise caused by excess gas in the vacuum system, which
is negligible, and noise from the Brownian noise of the substrate, the material onto which the mirror

is applied, which is also negligible. Image made using the Gravitational Wave Interferometer Noise
Calculator, GWINC [21].
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15Hz in LIGO (figure [1.3.3).

Thermal noise comes from the thermally excited vibration of particles in the mirror
coating, the suspension and (a little bit from) the substrate to which the coating is
attached. The way to reduce this is to carefully choose the materials for use in things
such as mirror coating, mirror substrate and suspension fibres as well as considering
bonding methods, the size and mass of the mirrors, suspension thickness and mirror
coating methods [98], as well as the possibility of using mirrors at cryogenic temper-
atures (KAGRA) [71]. Coating Brownian noise is one of the main sources of noise
at what would otherwise be advanced LIGO’s most sensitive point (~ 70 Hz, see fig-
ure . Suspension thermal noise contributes highly at low frequency, as well as

causing spikes of noise at the ‘violin” modes, where the suspension fibres resonate in

the same way as a violin string [88], which we see in figures [1.3.2| and [1.3.3]

Quantum noise comes from photon shot noise and radiation pressure noise. Reduc-
tion of one of these noise sources through changes in laser power will increase the other,
and the combination of the two noise sources at which the noise is lowest is limited
by the standard quantum limit — the Heisenberg uncertainty principle in its position-
momentum form. Quantum noise is a broadband limiting noise source in advanced
LIGO [81].

One particular noise source of interest to continuous-wave searches in LIGO is the
60 Hz electrical line from AC current in U.S. power lines and electronic equipment. This
line affects searches for the Crab pulsar and for J0900—3144, as it has occasional broad-
ened wings which overlap the Crab’s expected gravitational-wave frequency (60.45 Hz)
and a harmonic of this line affects J0900—3144’s GW frequency (180.023 Hz), these
lines can be seen in figure As the AC current frequency in Europe is 50 Hz, this
issue does not affect the search for signals from the Crab in Virgo data.

Many other methods also exist for reducing these and other noise sources, but these

are not included here for brevity.

1.3.2 Antenna response

As the detector is not one which can be ‘pointed’ in the same way that an electro-

magnetic telescope might be, we need to consider the different ways in which a signal
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would be affected, given a different source location.
All gravitational-wave signals, regardless of the source will be affected by the detec-
tor’s response to the different sky position, known as the antenna pattern, or antenna

response of the detector. The strain signal detected is

h(t) = Fy (s (t) + Fo(t)hy (L), (1.3.1)

where h, and hy are the gravitational-wave signal plus and cross polarisations, as seen
in section[I.1.2] F, and F\ are the antenna pattern functions, one for each polarisation,
relating to the relative orientation of the interferometer to the direction from which
the signal is coming — i.e. the sky position of the source.

The antenna patterns arise as a result of the way in which the test masses will
respond to a gravitational wave. Considering the ring of test particles in figure |1.1.1]
we imagine the mirrors to be at the top (Y-arm) and the right hand side (X-arm) of the
initial circle respectively — these are marked as the red and yellow circles on that figure.
We see that the cross polarised wave in this configuration does affect the mirrors, but
does so equally in both directions. This would lead to no readout in the detector, as
the interferometer measures the difference in arm length of the two mirrors. So our
sensitivity in a particular direction is also governed by the polarisation of the wave.

The antenna patterns are [55]

Fo(t;¢;050) = sin [a(t; a; §) cos 210 + b(t; a; 0) sin 2¢] (1.3.2)

Fy (t;1; a;0) = sin € [b(t; «; 6) cos 210 — a(t; av; 0) sin 2¢] (1.3.3)

where ( is the angle between the IFO arms, which is /2 for most current detectorsﬂ,
« and 0 are the right ascension and declination of the source, and 1 is the polarisation
angle of the gravitational wave. a(t; «;d) and b(t; «v; 0) are functions of time which come
from the varying detector position and orientation with respect to the sky position
of the source, the exact form of these functions is not required hereﬂ but they are

periodic, repeating once per sidereal day. The antenna response to plus and cross

9For practical reasons, GEO600 actually has ¢ = 0.5247 [23], and future detectors, such as ET,
may decide to use a triangular setup of co-located, non-aligned detectors, for which ¢ = 7/3 [19]
0The exact form of a(t; ; §) and b(t; a;8) can be found in [55]
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polarised gravitational waves are shown in figure [1.3.4]

We see that the points directly above and below an interferometer are the most
sensitive points, which is due to the transverse nature of the gravitational-wave pertur-
bations on the mirrors. The insensitive points are for waves coming from a direction

which bisects the angle between the detector arms.
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Figure 1.3.4: Sky map of the interferometer antenna response for gravitational-wave plus polarisation
(top left), cross polarisation (top right) and combined (bottom), indicated by the star is the location
of the detector, for which we used the H1 detector for this example The colour map indicates the
sensitivity of the detector to a signal from this direction, from least (blue) to most (red) sensitive.



Chapter 2

Continuous gravitational waves

Willow: Carpe diem. You told me that once.
Buffy: ‘Fish of the day’?

Willow: Not carp. Carpe. It means ‘seize the day.’

Buffy the Vampire Slayer,1998

Signals from rapidly rotating neutron stars are a promising source of gravitational
waves, with the advantage that they are expected to be very long-lived, and as such
can be searched for using coherent methods, increasing signal-to-noise ratio (SNR, p)
proportionally to the square root of observation time. These quasi-sinusoidal signals
are analysed using various methods by different groups within the LIGO and Virgo
scientific collaborations, whether for unknown sources, [II, 3 [0, [15] or targeted sources
[T7, 25, 39, 54].

Section details the signal model used for continuous-wave searches, as well as
an explanation of much of the notation used in the following chapters. This model, or
a slight variation thereof [79] [82], is used in all current continuous-wave searches as the
expected signal.

Section gives an introduction to the basics of Bayesian parameter estimation, a
statistical framework used in order to search the parameter space so that we can find

the posterior probability distribution on the values of our parameters of interest.

37
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Dupuis, Pitkin and Woan [38] 39, 83] used Bayesian techniques to develop the
‘Glasgow pipeline’ or ‘known pulsar time-domain Bayesian method’ in the early-to-
mid 2000s. This is an analysis routine to infer gravitational-wave signal parameters of
continuous sources, in particular those with known sky position and phase evolution
from radio data. This technique is described in section This method consists of
two parts, the first of which is the heterodyne stage, detailed in [2.3.1] The heterodyne
algorithm provides a drastically downsampled time series of interferometer data for a
given source which has had rotational phase dependency and relative motion effects
removed, this is the By data (notation similar to that used in [39]). This is a highly
accurate routine, but has the drawback that it can be computationally expensive. The
second part of the analysis is a Bayesian parameter estimation, much of which will be

covered in section [2.2] but the details of its use are given in section [2.3.2]

2.1 Continuous gravitational-wave signals from a
non-precessing triaxial neutron star

In order to search for a long-duration signal in the data, we need to know our expected
signal. This will be a combination of the gravitational-wave signal i/, and the antenna

pattern F. /. as given in equation these four time-dependent functions make up

our gravitational-wave strain signal, with I, /. given by equations [1.3.2| and [1.3.3/ and

hy/x dependent upon our source.

The source that we will consider is a non-precessing, triaxial neutron star. We
make this choice as there is little to no evidence of precessing behaviour in observed
neutron stars, and if the star was precessing it would be almost immediately damped
by the rotation [59]. A triaxial star is the simplest, most consistent way to see a mass
quadrupole in a rotating neutron star. The gravitational waves expected from this type

of source will have h, and hy given by [55]

hi(T) = ho (1 + cos®¢) cos ®(T; \), (2.1.1)

hy(T) = hgcostsin®(T; \), (2.1.2)



2.1. CONTINUOUS GRAVITATIONAL WAVES FROM NEUTRON STARS 39

where ®(T'; \) is the phase evolution of the gravitational wave due to source rotation,
T is a time frame of reference stationary with respect to the source and ¢ is the angle
between the source rotation axis and the line of sight from the detector to the source.
A is the set of parameters which will affect the phase evolution of the signal, and will
consist of the intrinsic rotational motion of the neutron star — characterised by the
frequency and its derivatives f(© (102 the sky position o and ¢, and any binary
parameters. A is entirely known in a targeted search, and so is omitted in the rest
of this chapter; however it is important in non-targeted searches, and so is returned
to in chapter [, which discusses follow up of all-sky and directed candidates using
Bayesian parameter estimation. The other parameters, hg, 1, ¢, are often known as the
amplitude or intrinsic parameters, as they mainly affect the amplitude of the signal,
though ¢ affects both phase and amplitude over longer duration. With somewhat
counter-intuitive nomenclature, the initial phase ¢ is often included in this set of
amplitude parameters, as this is also unknown in the search. ¢, is the gravitational-
wave phase at the reference epoch in the frame of the detector. As a point of notation,

°" represents the rotational phase at the reference time and throughout this work,

by = 205"

The reason for making the clarification between gravitational and rotational phase
is that in this work we consider only the deformation of the neutron star with spherical
harmonic | = m = 2 [I1, I7] which is a triaxial ellipsoid rotating about its axis of
inertia, and this harmonic is associated with gravitational-wave emission at twice the
rotation frequency, such that the gravitational-wave frequency, f, is twice the rotational
frequency, v, f = 2v. We make this assumption though chapters[3|and [4 are ambivalent
towards the exact emission mechanism, so long as the frequency evolution is known.
This means that it can be used in searches for the [ = 1 harmonic, such that f = v
and ¢y = ¢ [45), 57, [79]. The expected gravitational-wave strain amplitude hq from

the = m = 2 harmonic il [3]

AT2G T, f©?
A d

h() = g, 1 (213)

LOther papers such as [39] use a factor of 16 instead of 4 in the front of equation m this is
down to the use of the gravitational-wave frequency f(©) or v(9), differing by a factor of two
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where d is the distance to the source, f(© is gravitational-wave frequency, and I, is
the neutron star’s moment of inertia about its principal axis of rotation. Ellipticity e

is defined by its moments of inertia as? [39]

e T tw (2.1.4)

This means that by setting limits on hy, we can set limits on the ellipticity of the source
if we know its rotation frequency and its distance e.g. via €l,, = \/WQQQ in the
[ = m = 2 harmonic mode [56], [76].

The time-dependence of h; and hy is in the phase term ®(7'); this phase is approx-
imated by a Taylor expansion, found by fitting frequency parameters to radio/X-ray /v
ray pulse times of arrival, (preferably from data spanning the same analysis period as

the gravitational-wave search),

A
f(l) (T _ TO)H—I
O(T) ~ &y + 2 : 2.1.5
(T') =~ @ ; S (2.1.5)
where () is the [*" time derivative of the gravitational-wave frequency (f© = f,

fO = f f@ =), Ais the limit to which we utilise the Taylor expansion and Ty
is a reference time, at which ®(7,) = ®3. The true frequency evolution is generally
well-described by this Taylor expansion for our targets; however inaccuracies or noise
in this frequency evolution can be an issue for particular sources [82], but these are not
taken into account here, as they only affect a few very young pulsars (less than a few
tens of thousand years old).

Table shows order-of-magnitude ranges for the rotational frequency and its
derivatives of known isolated pulsars, where v is the [** derivative of rotational
frequency, analogously to f© and figure shows where these pulsars lie in the
fO1fM]| plane. There are two distinct populations; one which generally has higher
frequencies, containing most of our targets, is a population of recycled millisecond pul-
sars, which have been spun up by accretion from a binary companion, the rest have

not. Most LIGO targets are in the recycled millisecond pulsar population as we require

2Some papers [3] use an ellipticity with an absolute value of the numerator & = %, which
prevents a negative hg, in our case it is taken into account by ¢g, as a change in sign of hg is equivalent
to a change in ¢q of .



2.1. CONTINUOUS GRAVITATIONAL WAVES FROM NEUTRON STARS 41

Frequency derivative Range Number of pulsars
v 0.1 - 650 Hz 2150
|| ~ 10718 —1071°Hzs™! 1853
@) ~107% —10"* Hzs 400
|v®)] ~ 1073 —107?"Hzs 3 8

Table 2.1: Magnitude ranges of rotational frequency and absolute values of its frequency derivatives
for known isolated pulsars, and the number of pulsars for which this information is known (information
from [26} [67)).

our targets to be above a certain frequency in order to be within the sensitive band
of the detectors. For the initial LIGO and Virgo detectors this minimum frequency
was ~ 40 Hz and ~ 20 Hz respectively [2]; the difference this makes to the number of
sources available for targeted searches is highlighted in figure 2.1.1] For the advanced
LIGO and Virgo detectors [5], 20], their wider frequency band will open up a larger
population of sources to be considered. There are some pulsars within our frequency
range which are not used as targets,as there is no up-to-date timing information.

In table .1 v, v® and v® are given as absolute values. v will usually be
negative; only 34 out of 1847 pulsars with known ") have positive values listed, how-
ever this is usually from acceleration effects due to the source being within a globular
cluster, these cases are discussed more in chapter ??. v and v® are more equally
split between positive and negative values. v® is only known for a handful of pulsars,
and the values are so small that they barely affect our searches.

Our detector is not inertial with respect to the source, due to relative motion effects
including the orbital motion of the Earth, Earth rotation [31] and any motion of the
source in a binary system. The inertial reference frame in our solar system is at the
Solar System Barycentre (SSB), and the transformation between the time of arrival of

the gravitational wave at the SSB, T', and detector arrival time, ¢, is

T =t+6(t), (2.1.6)
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108 || - Pulsars . *
*  Targets
*  Virgo-only Targets %
* Hardware injections Crab ﬁ* + *
107°F i
vTU) 12
N~ 1071 ]
T
107} 1
107°H i

Figure 2.1.1: Locations of isolated pulsars in the f(©), |f (1)| plane, showing the two distinct populations
of recycled millisecond pulsars and younger, more slowly rotating pulsars with higher spindowns.
Targets which have had f() calculated from a characteristic spin-down age rather than their observed
spin-down are not included [2] [26] 67]. Also shown are the locations of hardware injected signals, as
discussed in section [4.1.6]

where §(¢) is made up of four termg’]

0(t) = Are + Ase + Are + Abinary- (2.1.7)

The Roemer delay Agg is the dominant term; it is the classical difference in time taken
for the signal to arrive at the detector and at the SSB. Agg is the Shapiro delay, caused
by the bending of space-time near to massive bodies, which in the case of an Earth-
based detector is dominated by the Sun’s contribution. The Einstein delay Agg is
the time dilation due to redshifts, including relative motion and gravitational redshift
caused by the Sun and other planets. Agjyary is an all-encompassing term considering
the Roemer, Shapiro and Einstein delays caused by the source’s own binary orbital
system; for isolated sources, Agjnary = 0. Considering these time effects, the phase in

the time frame of the detector is

D(t+0(t) —to) !
(I+1)! ’

A f(
O(t) = ¢+ 27 » (2.1.8)
=0

3This time conversion will look familiar to pulsar timing astronomers, but with the notable ex-
ception of Apy, the delay caused by a dispersion medium. As has been noted in section the
gravitational wave interacts very weakly with matter, this means that the wave is almost unaffected
by the interstellar medium, which would slow down an electromagnetic counterpart.
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where t is the time at which the frequency parameters are defined, and ®(tg—dt) = ¢y.

2.2 Bayesian parameter estimation

A wise man proportions his belief to the em’denceﬂ
David Hume, Scottish philosopher, 1711-1776

Bayes theorem is a cornerstone of statistical analysis, and we will use Bayes theorem
to calculate the distributions of our gravitational-wave source parameters given the
data. Using a dataset {Bg}, the provision of which we shall discuss later, we find
the posterior (i.e. after the experiment) probability distributions on some parameters.
In this section, we will use the example of the continuous-wave amplitude parameters

a = [hg, ¥, ¢o, t]. Bayes theorem states that

p(a|l)p({Bk}lal)

p(a | (Bx). )= P

(2.2.1)

where p(A|B) is probability of A given B, a is our set of parameters, I is background
information which involves our assumed model (though this is dropped from further
equations for ease of reading) and {Bg} is our dataset. Each probability term in the

above expression is as follows:

e p( a|{Bg}) (also denoted P(a)), the posterior: the degree of belief (or proba-
bility) that the data { Bx} indicates these values of a — the distribution of this

or its maximum value are generally the outcome of an analysis.

e p(a) (also denoted m(a)), the prior: our prior knowledge of the parameters,
encoded here represents previous knowledge of the values of a. For example, as

an angle ¢y must be within [0, 27].

e p({Bk}| a) (also denoted L(a)), the likelihood: this is the probability of ob-

taining the data given the parameters specified.

e p({Bxk}) (also denoted Z), the evidence: the probability of getting these values

of Bi for any a. The evidence is often unknown, and as such Bayes theorem

1

4 . . . . . .
A Bayesian statistician, however, proportions it to o ovidence
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is often stated in the form p( a |{Bk}) x p(a)p({Bk}|a ). The evidence is
very useful in Bayesian model selection, as it is the total probability that the
data comes from a signal with the defined information I, e.g. a particular model

which has been assumed in the analysis.

As the detectors have so far been unable to detect continuous-wave signals, our figure

h85%

of merit has been to set a 95% upper limit on hy, , meaning that 95% of our

probability is contained within the range zero to h85%, defined as

th%

0.95 = / p(ho | {Bxk})dho. (2.2.2)
ho=0

This was used, for example, in [I7], where the gravitational-wave energy emission from
the Crab pulsar was limited using hg5% to be less than ~ 2% of its spin-down limit.
The spin-down limit is the total amount of rotational energy being lost, and hence an
upper limit on the gravitational-wave energy being emitted. This energy is calculated
by working out the energy output required to obtain the observed decrease in rotation
frequency, or ‘spin down’. In [11], the gravitational-wave energy from the Vela pulsar
was limited to less than ~ 41% of its spin-down limit. The spin-down limit is discussed

more in chapter [5
In searches in O1 — the first observing science run of advanced LIGO — there is
a prospect of detection of continuous waves, meaning that the 95% upper limit will
therefore not tell the entire story, and thus an SNR or a Bayes factor will be stated.

The Bayes factor B;; for competing models M; and M; is defined by

B, o ZUBKI M)

= Z(Bx}y )T, (2.2.3)

which intrinsically assumes equal prior weighting for the two models. This will be used
in this thesis to compare the evidence that a signal is present against a signal not being

present, i.e.
B:p({BK}’0<h0§hmax): Z
p({BK} ’ hO - O) Znoise’

(2.2.4)

where hp.y is the maximum allowed value of hy according to the prior.
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The choice of priors for all of our parameters is important, and the least informative
priors can be the best choice, particularly when we have no prior knowledge of the
system. This choice means that our prior on the initial phase, p(¢o) is uniform over
[0, 27], leading to a prior on ¢t of [0, 71]. The polarisation angle, p(¢) is uniform over
[—7/4,7/4]; we note that p(¢) does not run over a total cycle of 27, as a change in
polarisation angle 1) of 7/2 is equivalent to a change in ¢ of 7, and we want to avoid
degeneracies. The prior on ¢ is uniform in cos¢ in the range [—1, 1], giving a uniform
probability in solid angle for the spin axis orientation.

Ideally the prior on gravitational-wave amplitude, hy, would be either astrophysi-
cally motivated or a scale-invariant Jeffreys prior, however, when considering what we
want our experiment to tell us, we decide against these as follows [79):

An astrophysically motivated prior could set limits on the value of hy far below
the sensitivity of all detectors so far, in this case the analysis would provide little or
no evidence for gravitational waves in the data, so utilising a non-astrophysical prior
may give a more informative result, as we can gain a scientifically interesting result
which is independent of other methods. There is a possibility of using astrophysically
set priors as the detection becomes more credible in the advanced detector era, but
this is not discussed here as we only discuss initial/enhanced detector results. Given
the fact that we want an interesting outcome to our analysis, we set our sights on a
95% upper limit on hg which is entirely independent of electromagnetic observation. A
scale-invariant Jeffreys prior would be the standard uninformative prior to use. As hg is
a multiplicative factor the Jeffreys prior would be p(hg) o< 1/hg for hy > 0, p(hg) =0

h3®”  for which the data genuinely

otherwise. In order to get conservative estimates for
tells us that there is a 5% chance that the gravitational-wave amplitude is larger than
this, we use a prior which is uniform in Ay up to a sensibly chosen maximum value. We
also do not want to exclude the not implausible value of hy = 0, which would imply
the non-existence of gravitational waves from that pulsar.

When we are focussed only on a single parameter, the other parameters are often
considered as nuisance parameters, to be removed from the posterior probability. The

process to remove nuisance parameters is called marginalisation, and involves integrat-

ing over the likelihood with respect to these parameters; this means that the parameter
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is allowed to take any value according the prior range. Doing this means that we do
not mistakenly ignore the value of the parameter, but use our prior knowledge of the
system. To make our hg results independent of other parameters, we must marginalise

over the nuisance parameters; in a targeted search, this would be

p( ho |{Bk}) x /// p(a) p({ Bk} |a) dy dgg d cos . (2.2.5)

In practice this integral is usually calculated numerically.

One way of combining data from separate analyses is to use the posterior results
of one analysis as the prior probability for a new one, this is numerically the same as
using a joint likelihood for the two analyses. One can also do this in an incoherent
way, using only the posteriors on hg and cos: from another analysis as the prior, with

uniform priors on ¢y and ¢ — as was done in [2].

2.2.1 Posterior distribution sampling algorithms

A posterior distribution sampling algorithm such as Markov Chain Monte Carlo [30]
(MCMC) or nested sampling [45], 80, 97] is used in order to obtain the posterior dis-
tribution given the likelihood and our chosen priors. Each will be briefly described

here:

Markov Chain Monte Carlo

The Markov Chain Monte Carlo method, or in particular the Metropolis-Hastings
algorithm of posterior sampling, has been used in the past for Bayesian parameter
estimation of continuous-wave signals [30]. The Metropolis-Hastings algorithm sets a
number of points randomly in the prior space, and from each of these points comes a
chain of points, for which a particular point in the chain, a’, is based only upon the

previous point in the chain, a,,, with a probability of acceptance given by

wfalon) — min { p(a) p({Bx} |a')aan]a) 1} | 226

p(an) p({Bx} |an)q(a’lan)’

where q(a,|a’) is the candidate generating pdf, for which a normal distribution gives

good efficiency. This means that if the posterior probability of the new point is larger
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than that of the previous point it is always accepted, but if the new point has a lower
posterior probability it is accepted with a probability given by the ratio of the two
posterior points. From these chains, we should then climb any ‘hills’ in the posterior,
as well as having a good probability of finding multi-modal peaks due to the probability

of accepting new values with lower posteriors.

Nested sampling

The nested sampling algorithm is the posterior sampling method which will be used
in this work. Nested sampling was first developed by Skilling in 2004 [94]E], intended
primarily for use in evidence calculation, however, it was found to have the useful
by-product of posterior sampling. The method involves setting N ‘live’ points in the
parameter space according to the priors, and working out the likelihood £ of each
point. Each point is then ranked in order of likelihood, and the least likely point is
assigned likelihood Ay, and removed, where 9 denotes the iteration. This point will

enclose prior mass, £(A), defined as

Ey = "'/71'(3_) da, (2.2.7)

E(a) >Ny

however L£(a) is not known during the execution of our algorithm as we have a finite
number of points. Provided the placing of new points is done in a sensible manner, we
can assume that the remaining prior mass enclosed is distributed equally to each live

point,
-1

So— > (1-8&)

o ~ b:]lv . (2.2.8)

We also assume that given a high enough number of live points, almost all of the prior
mass is enclosed, and so & ~ 1. This removed point is replaced by a randomly placed
point, given the proviso that it has a higher likelihood value than the previous point.
As the likelihood samples get more tightly distributed, it may no longer be viable
to use the priors as the limits on the placing of this point. The method of choosing

what limits to set on the random placing of this next point is defined by the proposal

A detailed explanation is also available in [93].
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distribution, and the setup of this proposal distribution is one of the most difficult and
subtle points of nested sampling, and a few different methods can be used. Codes such
as MultiNest use a clustering algorithm [44] and it is possible to use the covariance
matrix of the current datapoints to create a proposal distribution [97]. In our case, we
use an ensemble sampler [47].

As each iteration is performed, the likelihood of each new point will therefore in-
crease and the associated prior mass for removed points will decrease.

The evidence in the nested sampling algorithm is calculated by using the prior mass
and likelihood from the discarded points as an addition to the total evidence. As point
¥ with Ly = Ay is removed, the evidence contained within the removed prior mass is
added to the overall evidence total. This contained evidence AZy is then AZy = \y&y,

and the total evidence is the sum of all these points,

Z =Y AZy. (2.2.9)

The stopping point of the algorithm is decided based upon the amount of evidence that
is believed to remain in the parameter space, the tolerance. This remaining evidence
is approximated by the multiplying the maximum likelihood by the remaining prior
mass, Lnax&sN, where N is included as we remember that & is the prior mass for the
given live point.

The posterior sampling part of the nested sampling method comes from using all
of the nested samples, discarded or not, and noting their posterior value. This is
AZy for the discarded points and for the remaining points, the leftover prior mass is
divided equally between each point and multiplied by its likelihood. Each point is then

accepted as a posterior sample with a probability given by its posterior value.

2.3 Known pulsar time-domain Bayesian method

The known pulsar time-domain Bayesian method is a well studied, and well used al-
gorithm [2, 1], 17, 83] and consists of heterodyning the data and then performing
parameter estimation with nominally unknown variance at each datapoint. A brief

explanation follows, with a reminder that [38] [39] contain a lot more detail.
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2.3.1 The heterodyne algorithm

To perform a complex heterodyne, we take the real detector output, s(t), from file
frames, which contain detector data and header information such as channel infor-
mation and timestamps. s(t) is a combination of the gravitational-wave signal h(t)
and the frequency-dependent noise n(t) = N [or(f)], such that s(t) = h(t) +n(t). In
the heterodyne, each datapoint is multiplied by a time-varying complex exponential

according to its phase, calculated from equation [2.1.8, h(t) is of the form
h(t) = A(t)e'®® + A*(t)e O, (2.3.1)

where A(t) is a combination of the antenna pattern and source amplitude parameters
[39]
1 :
A(t) = F5 (6 0)ho(1+ cos” 1) - %F (t: ) ho cos ¢, (2.3.2)

and A*(t) is its complex conjugate. We then multiply the time series by a time-varying
complex phase correction term in order to remove the time dependence of the signal. To
do this we use the known Doppler parameters to calculate the way in which the phase
evolves, and multiply by its complex exponent. Because we do not know ¢y, we are
unable to use ®(t), so we define here ¢(t) = ®(t) — ¢p. Once heterodyned (multiplied

by the time-varying phase correction) the signal becomes

Shet () = s(t) exp [—io(t)]

—= A(t)e0  A*(t)e 0290 1y (1), (2.3.3)

This multiplication removes the rotational phase evolution from the first term and gives
us a rapidly varying term at twice the gravitational-wave frequency, the upper sideband.
The noise npe (t) = n(t)e~*® has also been modulated by the phase evolution, however
by the central limit theorem, this will remain approximately Gaussian. The data is then
passed through a band-pass filter, spet — 1., in order to remove the upper sideband
and most of the frequency-dependent noise (see section . After this procedure,

the signal should be completely independent of the rotational phase evolution, and the
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noise contained will remain Gaussian
Shet (1) = A(1)e™® + ny (1) (2.3.4)

The mean value of these heterodyned datapoints is taken over a time window At,
tx — At/2 <t <t + At/2 in order to downsample the data to a more manageable,
but still informative amount. tx is the centre of our time window, and At is the
separation of these points. This mean value is the By dataset used in the parameter

estimation [39],
M
1
Br =5/ D Shes(ti), (2.3.5)
i=1

where K is the index of the datapoint, and M is the number of datapoints within the
time scope of each By value.

We need to consider the limitations on the sample rate of the By values, i.e. how
large can M (or directly related, At) be? Once the By values have been obtained,

the time-varying component of h . has been removed, and the time variance is only

that of the antenna pattern functions from equations|1.3.2|and [1.3.3] F /. cycles over

timescales of a day and the new sample rate cannot be reduced to be comparable to
the time variation of these functions. This limits the separation of By values to be less
than a couple of hours.

Computationally there is an advantage to performing two separate heterodyne pro-
cedures; the first, coarse, heterodyne does not take the time delay §(¢) into account,
and downsamples to a much lower rate. In practice this is taken as downsampling from
16384 samples per second to one per second. The second, fine, heterodyne uses this
downsampled coarse data, applies detector motion corrections and downsamples again
to one per minute. This advantage comes from not having to calculate §(¢) so many
times over the course of the coarse calculation. As with our argument with regards to
the antenna pattern, §(¢) varies over time scales of a dayﬂ and is therefore treated as

constant during this coarse procedure.

6See figure
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By then fits into our wider picture of the gravitational-wave signal as
1 , ; ,
Bk = ZF+(25K; V)ho(1 + cos? 1)e' — %FX (tr;b)ho cos 1€ + ng, (2.3.6)

or

Bg = yk(a) + ng, (2.3.7)

where ng is the noise on By, a is again the set of amplitude parameters [hg, ¢y, ¢, V]

and yy is the signal we expect at time g,
) 1 ) ) )
yr(a) = A(tg)e' = Z—leL(tK; V) ho(1 + cos? 1)e — %FX (tg;)ho cos e’ (2.3.8)

tx denotes the time at which By is calculated, the centre of the time window. The
noise nx remains a zero mean Gaussian, the variance of which, %, is related to that

of n(t), o4, by the central limit theorem,

or(f©)?

2.3.
rAt (2.3.9)

oy =

where 7 is the sample rate and At is the length of the time window, the By separation.
For current searches, r = 16384 Hz and At = 60s.
Our unknown parameters a are still represented within the By values and this re-
duced dataset can be used as the basis of a Bayesian analysis as follows in section [2.3.2]
The heterodyne technique is an accurate method for calculating By from a time
series, however it is computationally expensive and so we want to find a way in which to

reduce the computational load; the way that we propose to do this follows in chapter [3]

2.3.2 Post-downsampling parameter estimation

Our By values are a signal y (a) within Gaussian noise (equation[2.3.7)). The likelihood
that each value of By, is drawn from a Gaussian distribution with known variance 0%

and for a particular parameter set is

p( By | a0k ) = — eXp(—‘BK_yK(a)P). (2.3.10)

2 2
2roy, 20%
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To combine the data for N datapoints we use p ({Bx}| a,{ox} ), the joint likelihood,

which in our case is [39]]

p({Bx}|a{ox} )=]] p(Bxla,ox)

= (27r)_NHLexp (—’BK _yK<a>’2). (2.3.11)

2 2
% 20%

This likelihood is based on the data being present in stationary Gaussian noise. The
noise from a detector is not Gaussian, but we can make this assumption over the
bandwidth we are using. This noise however may not be stationary over the duration
of our analysis, so we need to find a way to work around this. One way is to use an
estimate of ox for each datapoint, in which case we can use equation as the
likelihood.

In many cases however we will not know oy for each datapoint, so, following [39],
we can split By into ‘chunks’, each subscripted j, starting at k;(;) and running to k()
— a total of m; = ky(;) — k1(j) + 1 points. The chunk is chosen such that the noise can
be assumed to be stationary over its course, meaning that ox is a constant, oy;). For

each chunk, the likelihood is [39]

ka(5)
1 1
p ({Bk}j! a, Ok(j) ) =7\ P | T > 1Bk —yx(@) ] . (23.12)
<27T0-k(])) k(3) k::k’l(j)

We can marginalise over the constant unknown oy(;), using a scale invariant Jeffreys

prior on oyjy of p(okg)) o< 1/0k), or) > 0 to obtain

.
ka@) ’

p ({BK}J» | a ) x| Y Bk —yx(a) : (2.3.13)

k=k1(5)

This is the Student’s t-distribution with 2m; — 1 degrees of freedom, which tends

towards the underlying Gaussian as m; — o0o. The joint likelihood given all chunks is

ka() T
p({Bitla)< [T | Y. IBx—wx(@*]| . (2.3.14)
i \k=kii)

"This is equation 19 in [39], corrected as it did not account for non-constant o%-.
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Now that we have the likelihood, we can perform our parameter estimation using one

of the methods in section 2.2.1]



Chapter 3

Spectral Interpolation of fast

Fourier transforms

If we knew what it was we were doing, it would not be called research,

would 1t?

Albert Einstein

The heterodyne method used to search for continuous gravitational-wave signals can
be computationally expensive, but we can utilise frequency-domain data, which con-
tains much of the information about the signal in only a handful of datapoints. This
efficiency in terms of number of datapoints leads to massive increases in efficiency when
calculating the By of section 2.2

The method we use is the Spectral Interpolation algorithm (or Spllnter), and it
is intended as a ‘black box’ replacement for the heterodyne routine detailed in sec-
tion [2.3.1] For rapid calculation of an equivalent to By, Spllnter utilises fast Fourier
transforms (FFTs), a specific algorithm for discrete Fourier transforms (DFTs). As a
point of notation, we shall also refer to short Fourier transforms (SFTs, see [13], section
IV C 1), which are relatively short FFTs compared to the duration of the experiment,
and the form in which we access the data. We denote the result of the Spllnter algo-
rithm By, both to clarify the algorithm used, and as the time window used for each By,

value is longer than that used in the heterodyne algorithm.

o4
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The use of SFTs gives a remarkable increase in computational speeds in the calcu-
lation of Bj with little to no loss of accuracy in most situations. When we perform
this calculation, we are able to ignore swathes of data in frequency space which is of
little or no relevance to each particular source, needing less than 1 Hz of data for each
source once the SF'T has been created, rather than the equivalent of 16384 Hz of data
used in the heterodyne algorithm. The SFTs have also already been created for other
searches, e.g. [69] so use of them is free in terms of added computational expense for
the collaboration, though this reuse of SF'T's means that we must use 1800s chunks of
data, which causes issues discussed in section A flowchart showing the Spllnter
algorithm is given in figure[3.4.3] but we will discuss each part of the algorithm in turn

for clarity.

3.1 Continuous gravitational-wave signals in the fre-
quency domain

Though the method described in this work is independent of the exact form of the
signal, we require that the the phase evolution is known. For illustration, we continue
to use the signal from a non-precessing, triaxial neutron star. We know the form of
the signal in the time domain (equation and so we also know it in the frequency
domain through its Fourier transform. The discrete Fourier transform, by design, is
a series of samples of the continuous Fourier transform| and the FFT is a different
calculation of the DFT. This means the signal we expect to see in the FFT can be

analytically calculated using the Fourier transform of s(t')

S(f)=Fls(t)] = / [s(t')] exp(—2im ft') dt’ (3.1.1)
= / [A(t’)eiq)(t,) + A*(t)e ™) L n(t") | exp(—2im ft') dt’.

(3.1.2)

L Appendix [Bf shows for one of the later approximations that for sufficiently high sample rates this
approximation is the same whether calculated from the discrete or continuous Fourier transform.



3.1. CONTINUOUS-WAVE SIGNALS IN THE FREQUENCY DOMAIN 56

As addition and integration commute, S(f) = H(f) + N(f), where H(f) = F[h(t')]
and N(f) = Fn(t')].

The data has not been collected for an infinite amount of time, so we need to
consider the window we are applying to the data in the time domain. If we take
the data with equal weighting from within a certain time interval, this is known as a
rectangular window,

1, tg<t <tg
Wg = : (3.1.3)

0, elsewhere
where tg and tg are the time at the start and end of the window respectively, and
At = tg —tg is the FFT length — the t; separation, similar to tx as used before. Other
windows are in use for other searches within the collaboration, but as the standard
FFTs used in continuous-wave searches are almost rectangular, this window is the
only one considered herd?

Given the rectangular window, the Fourier Transform of the windowed signal will

be
tp—to+AL/2

Hy(f) = / [A(t')eiq’(t')+A*(t’)e’“b(t/) exp [<2imf(t' —tg)] dt’,  (3.1.4)
t—to—At/2

where t;, —t is the difference in time between the middle of the FFT, the time at which
By, is calculated, and the reference epoch of the parameters, to. Hy(f), Sk(f) and Ni(f)
denote that we are using the SF'T with the window around ¢, and hence associated
with By. The exponent in the Fourier transform term becomes —2in f(t' — tg) as the
FFT algorithm is performed in a time frame where the argument of the exponent is
zero at the start of the transform.

We now consider the expected signal and its phase evolution ¢(t'), the time-varying

part of ®(¢'), which we remember from equation to be

A ) (4 n I+1
O(t') = o +2m Y S jzzéff)! )™
1=0 ’

2Section contains more about different windows and the tests to show whether the approx-
imation still holds when Tukey windows are used in the FFT. Although rectangular windows are
notorious for spectral power leakage, our method takes this into account in the calculations.
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and move into a new time frame which is zero at the centre of the FFT, ¢/ — t =t/ — ¢}, + to,

so dt = dt’, and consider §(¢) as a linear expression
8(t) ~ 0 + Ot

where 6, = 8(t, — o), and oy, = <L8(t), 0(t)’s first derivative at ¢ = 0, the centre of the

FFT.
A I+1
FOTt+6(t) +tr — o)
ot) = 2”12 ]
=0
. +1
A fO [t(l + Ok) + ty — to + Oy,
=27
- (I+1)!

Expanding out the terms using the binomial expansion, this becomes

A I+1

.k 1
_ ) o I+1—k -
(1) 271'; f ; [t(l + 5k)] (0= to+00) " (3.1.5)
If we discard all terms higher than second order in ¢, ¢(t) approximates as
D(t) = oy + 27 fit + 7 fit?, (3.1.6)
where we have defined the following:
A
f(l) (tk‘ o tO + 6k)l+1
=2 1.
P W; I +1)! (8:-1.7)
and
A
, FO@ty, —to + 61)"
froi= (L+6)> “0 . (3.1.8)

1=0
We approximate f;, by calculating the frequency at the beginning and end of the SFT

window, and calculating the gradient between the two

o fend - fstart
- T AL

Jr: A7 (3.1.9)

where fsat and fenq are calculated in the same way as equation [3.1.8] but with
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replaced with ¢, — % and t; + % respectively (in the J; terms as well as in the explicit
calculation). This numerical calculation is used as there would be an additional term
in fk introduced by ¢? terms in §(t), Sk, the calculation of which would require a similar
numerical approximation and any resulting inaccuracies would be amplified.
By using equation [3.1.6] as the time-dependent phase in equation [3.1.4] we can
obtain an approximation for Hy(f),
At/2

Hi(f) ~ / [A(t)e#OFic0 4 A% (p)emioW=ioo] o=2mf (+57) g (3.1.10)

—At/2
We assume the signal amplitude and antenna pattern contributions to A(t) are ap-
proximately constant on timescales of a small fraction of a day, so when At is small we

can replace A(t) with A(t;). Having defined y; := A(t)e’” in equation we can

therefore write

At/2
Hy(f) = e7im/A / [ykei¢(t) - y}:e_i‘b(t)} exp [—2im ft] dt. (3.1.11)

—At)2

This is the Fourier transform which will be calculated in the following approximations.

3.1.1 Different approximations for the integration

The signal is quasi-sinusoidal, with complex amplitude y; varying slowly due to our
source moving though the antenna pattern, changes in the delay and Doppler shifts,

and intrinsic variations in the source spin rate. Using Hy(f) from equation [3.1.11| and
¢(t) from equation we can say

At/2
Hy(f) = ype ™5 / exp [z’@ + 2im(fr, — )t + iﬂfktz} dt
—At)2
At/2
+ e imIAL / exp [—iqﬁk — 2im(fr + f)t — iwfktZ] dt.
—At)2

(3.1.12)
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These expressions are not strictly analytic due to the ¢ phase-dependency of the ex-
ponent, but are forms of the familiar Fresnel integral. The limiting form, when f is
small, is the Fourier transform of a time-limited sinusoid, so we will consider this as a

special case.

Sinc approximation, assuming f, =0

The intrinsic f® of a source is generally very small, and over the course of an SFT,
the change in frequency for most sources is small compared to the frequency resolution
of the SF'T. For example the Crab pulsar, which has an unusually large spin-down of
fM =74 x 107" Hz s~!, will change in frequency by Af = 1.3 x 1075Hz over the
course of a half-hour SFT, or 0.12% of the width of a frequency bin, and a phase change
of 1.3 x 1073, Instead, f; will usually be dominated by the ), terms from source and
observer orbital motion. For an isolated sourcdﬂ this is usually negligible over ~ 1h,
so the first approximation is that fk = 0, for the duration of the integral; this means

that equation [3.1.12]is now

At/2

Hy(f) = ype™ /A / exp [igy, + 2im(fp — f)t] dt
—At)2
At/2
+ yre imIAl / exp [—igy — 2im(fi, + f)t] dt. (3.1.13)
—At/2

Solving this integral gives

Hy(f) =~ yrAtexp ligy — im fAL]sinc [7(fy, — f)At]

+ yp Atexp [—igr, — im fAt] sine [7(fr + f)AL], (3.1.14)

where we have used the sinc function!

(e = sin(x)
sine(x) : R (3.1.15)

3For binary sources, ABinary often varies enough to give significant values to fy.
4This is the convention used in this work. The sinc function is sometimes defined elsewhere as

sinc(x) := %
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We notice here that when we are around the signal frequency f = fi, the first term
will dominate the frequency-domain signal, as sinc [7(fr — f)At] > sinc [7(fr + f)At].

This means that we can safely remove this term, so equation [3.1.14] becomes

Hi(f) = yp At exp [igr — im fAt] sinc [7(fr, — f)AL] . (3.1.16)

This is what we shall refer to as the sinc approzimation.

When f; is ‘on a bin’ (equal to the central frequency of the bin) the sinc function
will be unity at f, but zero on all other bin frequencies. This can be seen by setting
fr — [ equal to a non-zero integer multiple of 1/At, and by using the small angle

approximation sin [7(fx — f)At] = 7(fr, — f)At for 7(fr — f)At =~ 0

yrAtexp ligp —in fAL], f= fi
Hy(f) = (3.1.17)

0, on all other bins.

We consider this as a special case and refer to it as the on-bin approrimation, though it
is mainly used for preventing ‘divide by zero’ errors in the algorithm. This is applied to
signals which are close to a frequency bin, within 0.1% of the bin separation. Using a
frequency evolution which is not exactly matched to that of a signal for the interpolation
will reduce the SNR, as the data would not match the correct frequency evolution
template; this SNR drop is particularly evident in a fully coherent search. We present
tests of the signal deterioration given an incorrect frequency in section [4.2.2] though we
stress at this point that the on-bin approximation does account for the error in phase
caused by incorrect frequencies, so the actual effect is an insignificant reduction in the

signal amplitude.

Fresnel approximation, assuming fk #0

If f, is not negligible, then we can approximate H, k(f) with a numerical integration.
Such circumstances would occur if the Doppler-shifted frequency is evolving signifi-
cantly on timescales of At due to relative motion between the source and observer. If
the rate of change of the signal frequency is a constant, i.e. fr = 0, we would expect

the signal to appear as a ‘Fresnel’ pattern in the spectrum, characterised by fk Fres-
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nel integrals have been studied fairly extensively, and algorithms exist for fairly rapid

calculation [84]. The Fresnel integrals comprise a pair of functions defined as [101]

et = | con () 19

and

Stul = [ sn (%) o

In order to get Hy(f) in terms of these integrals, we utilise a change of variable.
Working from equation [3.1.12| we change the variable of integration to z, through the
transformation '
t—x, 22 =4(f, — f)@t + 2| ful 22, (3.1.20)
Jr
the factor of | |/ fx is included due to complications which would otherwise arise from
the fact that we require z to be real, this is a factor of £1 depending on the sign of fx

which can be taken out of the integrals using cos(—6) = cos(f) and sin(—6) = — sin().

Using Euler’s formula and the change of variable above, equation [3.1.12]is now

Wend

Hi(f) = Yk oino / [COS (W—SCQ) +i£sin (W—:UQ)] dz, (3.1.21)

\/ 2‘fk| Wstart 2 ‘fk| 2
where
A= ¢ — mfAL— f1 (F— 1), (3.1.22)
k
\/2|f [ §
Weng = fok| (fe — f)+ |f7k|At, (3.1.23)
and
\/2f [ f
Wstart = fok| (fk: - f) - |f—2k|At (3124)

Here, we have ignored the second term in equation |3.1.12) as this term again has

negligible effect in the region f ~ f;. Using the Fresnel integrals and the fact that
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fab f(x)dz = fobf($) dz — [ f(z) dz, equation [3.1.21f becomes

Ho(f) ~ — 2 exp (ing) {C[wendmﬂsmnd}—C[wstart]—z‘iS[wsth}.
i I

27 i

We shall refer to equation [3.1.25| as the Fresnel approrimation to the signal spectrum,

(3.1.25)

and calculate the Fresnel integral terms with sufficient numerical precisionﬂ using the
algorithm in [84], which for small fk approximates the sinc approximation. Compu-
tationally, this procedure is more expensive than the sinc approximation, however it
only needs to be used rarely, during periods of large fk The value of fk we choose
to change from one approximation to the other is defined by | f,|At? = 0.1, which we

discuss in section 1.3

3.2 B, and o calculation

In order to find By, an unbiased estimate of y;, we use a least squares fit, though we
will now briefly go though why this is the best test to use from a Bayesian viewpoint.
In order to calculate the best estimate of ¥, we want to marginalise over the noise, and
maximise the posterior such that the By output is the most likely value of ¥, for any
noise level. We then find a maximum value of the posterior probability distribution of
Y-

We start by noticing that Hi(f, a), (as calculated from one of equation(3.1.16}|3.1.17
or [3.1.25)), can be expressed as a product of the unknown signal amplitude yi(a) and

a known signal shape function, which we shall call a model, pu;, defined as

_ Hi(f,a)
i (f) = @) (3.2.1)

In intrinsically noisy data, we cannot calculate gy, and so the best estimate is By,
which we remember from equation [2.3.7] as y; plus noise ng. The joint likelihood of
obtaining the spectrum of the data, Sk(f), given By and the set of model values {1}

in Gaussian noise of variance 0% is

5Tn this case, we use 100 iterations of a continued fraction.
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N
1 1
P ( {Sk} | Broor, {p} ) = 2royN P <_F > |8k — Bkukj\2> . (32.2)
F F 4

where j indicates the frequency bin, and for visual clarity we have written Si; = Si(f;)
and py; = pi(f;). We can consider op as a nuisance parameter, and marginalise over
it. Choosing a Jeffreys prior of p(or) x 1/op, o > 0 and a uniform prior on By,

which is constant anywhere in the complex plane, the posterior is

o0 N
1 1
p( Bk | {Sk}v {;uk} ) O(/ 2N+ exp <_F E |Sk] — Bkﬂ'k]‘2> dO’F. (323)
Op F
0

j=1
To solve this integral, we use a change of variables to u, defined by

. 22 [Skj — Bropuws |

2
20%

, (3.2.4)

24/ |Skj — Brpuj|?
du = \/ ’ d

2
Op

op. (3.2.5)

So we have a posterior of

o0

p<{sk}\Bk,{uk}>o<[DSM—BWF] [erian @20

0

The integral on the end of this expression is a standard integral, [T01]

o0

/ e PN qy = N1V (3.2.7)
0
so we can ignore it as a constant in the proportionality. The logarithm of equation [3.2.6

is then

log [p( {Sk} | Br, {pur} )] oc —N'log [Z |Skj — Bk,ukj|2] : (3.2.8)

J

As we want to maximise the posterior and the logarithm function is a monotonically
increasing function we can equivalently maximise the log posterior. From equation3.2.8

we see the log posterior is maximised when . [Sk; — Bypu;|* is minimised.
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In order to find the minimum, we differentiate Zj |Sk; — Brpu;|? with respect to
B; and set this derivative to be zero to find a stationary point. We differentiate with

respect to Bj as it has the simultaneous properties that
1. By — Bj is conjugate conformal, leading to :11_21% =0

2. B} and By, are mutually defined, so the most likely value of B; defines the most

likely value of Bj.

The following result can also be obtained by finding the minimum values for fRe{ By}

and Jm{ By} and combining the results, these points are discussed more in appendix|C]

d
dB; (Z |Skj — Bk#kj|2> =
j

d
dB;

> [SkiSk; — ButiiSy — SkiBiitn; + BiBiig i)

J

= Z [—Skjtn; + Brpigjies] = 0.
J

This minimum then gives us an equality which can be solved for By to obtain the

most probable value,

>_[Skjty]

By=Z—, (3.2.9)
> _[1kshmi]
J
a result that is familiar from least square analysis. This is the maximum posterior
estimator for Bj,.

If we take the derivative again, this time with respect to By, we see that the second
derivative is > i Hieg, which is always positive, and hence this stationary point is a
minimumfl

As we are using SFTs with At = 1800s, we are not able to use a Student’s-t
likelihood in the parameter estimation as there are not enough datapoints within a
time period for which the noise can be assumed to be stationary. However using the

Spllnter algorithm, it is possible to estimate the noise on By, oy, directly from the SE'T

data.

6This point can be seen more clearly in appendix when dealing with the real and imaginary
parts separately.
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In order to estimate the variance of n;, we would ideally follow a similar route,

marginalising over Bj in equation and maximising the posterior for op

o0

P( ok | {Sk}s {ir} Jmax = / p(Bx) p( ok, Br. | { Sk}, {pr} ) dBs . (3.2.10)

— 0 max

However, this integral is not analytic. We therefore choose to use the calculated value
of B}, from equation to obtain the best estimate of oy, this is equivalent to using

the Dirac delta function as the prior on By in equation [3.2.10]

> _[Skjrig]

p(Bi) =dp | Br — m (3.2.11)

The application of this is straightforward; we use most probable By calculated above
to give us back the best estimate of Hy;, Hyjvest = Brptjr. By taking Hy; pest from Sy,
we get the residuals, which are the best estimate of the noise, Ni;pest. We use the
residuals around the signal frequency and the calculate their variance to give us o%.

2 2 2

We can relate o7 to the time domain noise as 0% = 0755~ by Parseval’s theorem

and so use equation to convert 0% to o7 as
o= on—. (3.2.12)

We have now calculated B and an estimate of o, meaning that we can use the known
Gaussian likelihood, equation [2.3.11] in the posterior sampling algorithm, rather than

the Student’s-t that has generally been used previously.

3.3 Outlier removal

The noise in LIGO data contains many line features (see figure , which could
adversely affect the By estimate if they are close to the signal frequency. In order to
minimise these effects, we perform three outlier removal routines, with a threshold set
by user input:

The first outlier removal, before any calculation has taken place, removes datapoints
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with real or imaginary values with absolute values above twice the input threshold
number of standard deviations from the mean, which is assumed to be zero. This

threshold is given by

(3.3.1)

where NNV is the number of datapoints within the bandwidth used for B; and o) calcu-
lation and N, is the threshold set by the user. To have an effect on the data without
removing too much, this will normally be around four or five.

The outlier removal is implemented by setting a variable within the algorithm of

whether the datapoint is used, which we shall call U; [

U, = 0, {(IRe[Sk;]l > Sin) V (ITm[Sks]| > Sen1)} A (15 = ful > =) (332)

)

1, in all other cases

This threshold is set to be larger than that used in the other routines, as this routine
is designed to only remove very large spikes from the data. This number may seem
small but we remember that the spike itself will be involved in the calculation of Sy, 1,
artificially inflating the noise estimate. The first ten bins around the signal frequency
are not removed, in order to protect the data which will contain the most information
about a prospective signal. The type of outlier to be removed by this procedure is
illustrated in figure [3.3.1]

The second outlier removal takes place after B, and o have been calculated. Since
we have estimated the residual noise within the FFT, Ni; pest, in order to estimate the
noise on the By, values, we can use this for outlier removal. The threshold is set by the

standard deviation of the residuals,

N
Z Uj,l []\/vkj,best]2
Sth,Z - NO’ ’ )
\ ( Uj,1> L

"We use the standard logical notation of A to mean logical conjunction, ‘and’, and V to mean
inclusive disjunction, ‘or’, which we stress is not exclusive. Exclusive disjunction ‘xor’ would be &.

(3.3.3)

<M=
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—— |S(f)|

: Standard deviation
* +0 5 sigma threshold

S R Protected frequencies
‘ ( : Removed datapoint

Fourier amplitude

-20 -15 -10 -5 0 5 10 15
Frequency — Source Frequency (bins)

Figure 3.3.1: An illustration of the type of outlier removed by the first outlier removal routine. Shown
are the standard deviation of the signal, the threshold for removal, and the protected band around
the source frequency. The removed datapoint is indicated by the magenta star.

Using the calculated op and Nij best = Skj — Hij, vest We remove datapoints with

residual values above the threshold number of standard deviations.

U 0, {\fﬁe[Nkj, best” > Sth2 V ’jm[Nkj, best” > Sth,2} A (|fj - fk\ > A%)
J2 =

1, in all other cases
(3.3.4)

This means that smaller spikes nearby that may have been missed by the first outlier
removal can be removed, or we may remove a larger portion of a wider spike as the
first outlier removal is only iterated once. This process removes these spikes without
adversely affecting the signal itself; one way we ensure this is that the closest four
datapoints are kept immune from this outlier removal. If any datapoints have been
removed, then B, and o} are recalculated, and this outlier removal routine repeated,
until no more datapoints are being removed. The type of erroneous line that this
routine is designed to remove is shown in figure An example of the first and
second outlier removal routines working in tandem with real data is shown later in
figure [4.1.19 and explained in the text of section [£.1.5

Because of these outlier removal routines we must alter the previous estimator for
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—— |S(f)|
—— Estimated |H(f)|
—— Residuals
" Residual 6
v 5 g threshold
------ Protected band

Fourier amplitude

-20 —5 -10 -5 0 5 10 15
Frequency — Source Frequency (bins)
Figure 3.3.2: An illustration of the type of outlier removed by the second outlier removal routine.
Shown are the best fit of the data, the standard deviation of the residuals, the threshold for removal

calculated from the standard deviation of the residuals, and the protected band around the source
frequency. The removed datapoint is indicated by the magenta star.

B, to take these removed datapoints into account, so equation becomes

2_[Skjti;UjnUsj
By = : 3.3.5
' >t U Uso) (3.3.5)

J

The third outlier removal occurs after B, and o}, values have been calculated for all
SFTs. The mean value of all {o4},(0) is calculated, and any SFT which has PRe[B],

Jm[By| or o) above the threshold number times this mean value, i.e.

1, (0, < N,{(0)) A (Be[By] < N, (o)) A (Jm[By] < N, (o))
U, = (3.3.6)

0, otherwise

where Uy, denotes whether this By value is used or not. This outlier removal is designed
to remove outliers in the data which have an unusually high noise, but the noise is
spread evenly over the frequency range considered by the Spllnter algorithm, meaning
that the first two outlier removal routines do not see any problem in the data. This
outlier could be caused by unusually high low frequency noise, such as in figure [3.3.3

The low frequency noise is unusually high in this case, and the power bleeds into the

spectrum up to around 300 Hz. For sources with signals in this range, the noise from
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Fourier amplitude

Frequency, Hz

Figure 3.3.3: An illustration of the type of outlier removed by the third outlier removal routine,
showing the power spectra of two example SFTs. SFT1 has an unusually high low frequency noise
contribution, bleeding power into frequency channels up to around 300 Hz. Indicated by the black
dashed line is a source at 90 Hz, for which the noise on the signal would differ by an order of magnitude
between the cases.
this SFT would be extremely large compared to that in an SFT with a normal noise
profile; for sources above this frequency, the noise is normal, so would be unaffected by
this outlier removal.

This procedure removes all the By points which would be heavily suppressed in
a parameter estimation routine. This means that they do not need to be included
in the likelihood calculations, leading to a more computationally efficient parameter

estimation stage. An equivalent of this outlier removal is also present in the heterodyne

algorithm.
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3.4 Algorithm implementation

Rome wasn’t bwilt in a day, but I wasn’t on that particular job.

Brian Clough

This section will describe the way in which the Spllnter algorithm works through the
data in order to get the By and o} estimates.

The data from the detector comes with ‘quality flags’, and continuous searches tend
to use all data in science mode, this is data for which it is deemed that the quality
is good enough for scientific analysis, but the interferometer may not be at its most
sensitive. We use this as all of the data contains the signal, and the noise estimate
will decrease the importance of the datapoints (or the outlier removal routine will
remove datapoints) in times of poor quality data. During each contiguous segment of
science mode data, we use data in frequency-domain FFT format, SFTs. The main
input files for the algorithm are therefore a segment list, a set of files defining the
source parameters and an SFT cache of pointers to the Fourier data, made using
ligo data f indﬁ. Another option at this point is a directory containing an SF'T cache
for each segment of the data. Using this option drastically reduces the amount of time
taken to load the SFT catalogue in long duration searches with many segments (see
section , which will be most real analyses of continuous signals.

Figure [3.4.1] shows a histogram of the duration of segments in the LIGO Hanford
detector (H1) during science run 6, (S6), a length of time for which the detector was
taking data, between Jul 08, 2009 and Oct 20, 2010. The length of these science
segments is dependent upon the detector being stable and the interferometer cavities
being resonant, this is largely down to transient seismic activity at the detector site.
The average segment duration is 2.3 hours and ranges between one second and thirty
two hours. We also see the fraction of the total time contained within segments of this
length and the dead time as a fraction of the total time within the segments. Because
we are using 1800s SFTs there is a significant amount of time lost by requiring data to
be in integer multiples of 1800 s; for example, all of the segment time is lost if it is less

than 1800s long as we are not able to produce an SF'T in that time, or if the segment

8This and other routines (usually denoted lalapps_) are within the LALsuite software repository
https://www.lsc-group.phys.uwn.edu/daswg/projects/lalsuite.html
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is 2700s long, then 900s of data will be lost. This dead time is 9.9% of the original
amount of data in S6, and leads to a reduction in SNR of around 5%. To compare this
to the heterodyne routine, which uses At = 60s, the dead time here leads to losing
0.35% of the total available time, an SNR reduction of 0.17%. These are lower bounds
to the actual values, as the SFTs may not be taken from the very start of the segment,
so the more tightly fitting segments may not be available, also the heterodyne routine
throws away the first 60s of any segment due to the impulse response of the filters.

The dead time from using At of 60s is not plotted, as it is negligible.

6 T M T T . T
Percentage of segments -
Percentage of total time
5H==~ Dead time, using 1800s SFTs
Mean segment Length

Percentage
w

10° 10° 10
Segment Length, s

Figure 3.4.1: A histogram of the duration of segments in the H1 detector in S6 (blue). Shown also
are the fraction of the total time contained within these segments (red), and the fraction of the time
lost by using 1800s SFTs (black). Indicated by the vertical dotted lines are the 60s and 1800 s times
used in the heterodyne and Spllnter algorithms respectively.

Shown in figure [3.4.2 as a function of time, the duty cycle is the percentage of time
that the detector is in science mode. Overall for S6 this duty cycle was around 51% in
H1 and 48% in L1.

The Spllnter algorithm loops through each segment, and in each segment processes
each SFT in turn. Before going into each segment, we check that the segment falls
within the time constraints for which the source parameter files are relevant. We also
check that the source frequency is within the frequency range of the SF'T, typically

38 to 2038 Hz for LIGO SFTs. If the source frequency is outside of this range, then

we do not analyse the source with the Spllnter algorithm, and will use the heterodyne
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Figure 3.4.2: The duty cycle as a function of time for S6 in H1 (blue) and L1 (red). For this illustration
S6 was split into forty equal sections in time, and the duty cycle is the fraction of time for which the
detector is in science mode. There are periods where L1 and H1 had low or zero duty cycles, e.g.
around days 50 to 80, these are during times of maintenance and commissioning.
algorithm in its search, though sources outside of this range are in regions of very
high noise, which may rule out an analysis anyway. We also may use only the Virgo
detector to analyse the source, which has a frequency range of 9 to 2038 Hz; we see
these sources, which include Vela, in figure Within each SF'T, we also check that
the frequency has not drifted out of this range due to orbital motion, if this test fails,
then the source is ignored for this SF'T, but may be considered again later.

The file output is to a file buffer rather than the file itself; this means that we do
not overload the file system with the output, which could be accessing thousands of
files a second if not using this buffer. This buffer is emptied to the file whenever it

reaches 1 MB of data and when the algorithm finishes. Figure [3.4.3]| shows a flowchart

of how the Spllnter algorithm processes the SFTs within each segment.
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discussed more within the text.



Chapter 4

Testing of the Spectral

Interpolation algorithm

If you try and take a cat apart to see how it works, the first thing you

have on your hands is a non-working cat

Douglas Adams

In order to ascertain whether Splinter is a viable black box replacement for the het-
erodyne routine, we need to test the outputs of the two processes. There are three
categories of tests presented here; accuracy, speed and frequency response.

The first accuracy test in section [4.1.1] ensures that we can be confident that the
Bk output from the two routines is recovering the signal equivalently, we perform
the two routines in a situation where the output should be exactly the same, using
a noiseless signal with known parameters. Section [4.1.2] shows a similar test, but for
signals from sources in binary systems; these may not be recoverable by the Spllnter
algorithm, as the binary orbit may cause the frequency to change in a higher than
linear order over the course of the SF'T. We look at finding a general way to decide

whether we can analyse a signal in a binary system.

The accuracy tests performed in sections 4.1.3]and |4.1.4] check whether the assump-

tions we have made regarding spin-down and windowing effects respectively are correct.

Section shows tests devised to check the o outputagainst expected or calculated

74
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values. Then the most important test in section we test the end-to-end routine
by using short duration hardware injections in real noise.

In section [4.2.1] we then test the algorithm performance and the speed increase of
Spllnter compared to the heterodyne routine. We also profile the algorithm, giving
details on where it is spending most of its time, and hence computational effort, which
could (and did, during the work developing the algorithm) lead to improvements in
the algorithm efficiency. Section shows the frequency response of the Spllnter
algorithm, showing the errors introduced in amplitude when we use incorrect Doppler

parameters.

4.1 Accuracy testing

There is nothing new to be discovered in physics now. All that remains

s more and more precise measurement

William Thomson, 1st Baron Kelvin, 1824-1907

The Splinter algorithm is designed to replace the heterodyne algorithm, and should
only do so if it is found to be sufficiently accurate in comparison. The accuracy tests
are implemented to show that the assumptions we have made, and the general Splinter
method, are sufficient to give us an adequate replacement.

Although there is no intrinsic reason why a frequency domain analysis in general
should be in any way better or worse than its time domain equivalent, the assumptions
we have made will have an effect on the overall accuracy of the algorithm. In particuar
the assumptions to remove higher order terms than t?> — in both the phase evolution
and the barycentering terms — mean that the Spllnter output will differ from the exact
calculation of the heterodyne method.

The LIGO and Virgo scientific collaborations use hardware and software injections
for testing algorithms, and in section |4.1.6| we present a search for hardware injection
signals using both Spllnter and heterodyne methods. Section also uses the pa-
rameters of the hardware injections, as in tables and [4.2] In hardware injections

the test masses of the detector are pushed using electrostatic drives in a way which will
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mimic a gravitational-wave signal, this is advantageous over software injections, as it

is possible to check for calibration errors and any problems in obtaining s(t).

fO Hz) | fO Hzs™") | o (rad) | 6 (rad)
PULSARO 265.577 | -4.15x1071? | 1.24882 | -0.98118
PULSAR1 849.083 | -3.00x1071 | 0.65265 | -0.51404
PULSAR2 575.164 | -1.37x10713 | 3.75692 | 0.06011
PULSARS3 108.857 | -1.46x 10717 | 3.11319 | -0.58358
PULSAR4 || 1403.163 | -2.54x107% | 4.88671 | -0.21758
PULSARS5 52.808 | -4.03x10718 | 5.28183 | -1.46327
PULSARG6 148.719 | -6.73x107% | 6.26139 | -1.14184
PULSART || 1220.980 | -1.12x107% | 3.89951 | -0.35693
PULSARS 194.308 | -8.65x107% | 6.13291 | -0.58326
PULSAR9 763.847 | -1.45x10717 | 3.47121 | 1.32103

Table 4.1: Doppler parameters of hardware injections used in testing continuous-waves algorithms
(rounded to save space). f©) is defined at Nov 01, 2003, 00:01:04 GMT, f® and higher order terms
are zero in these signals.

Parameter ho oo Y cos ¢

PULSARO || 2.46649 x 1072° | 2.66 | 0.77009 | 0.7949
PULSARI1 || 1.06005 x 10725 | 1.28 | 0.35603 | 0.4638
PULSAR?2 || 4.01852 x 10724 | 4.03 | -0.22179 | -0.9286
PULSAR3 || 1.62771 x 10723 | 5.53 | 0.44428 | -0.0807
PULSARA4 || 4.56205 x 10723 | 4.83 | -0.64794 | 0.2773
PULSARS || 4.84996 x 10724 | 2.23 | -0.36395 | 0.4630
PULSARG || 6.92191 x 10725 | 0.97 | 0.47098 | -0.1537
PULSARY || 2.19820 x 10724 | 5.25 | 0.51232 | 0.7568
PULSARS || 1.58763 x 10723 | 5.89 | 0.17047 | 0.0739
PULSARYO || 8.13001 x 10725 | 1.01 | -0.00856 | -0.6192

Table 4.2: Amplitude parameters of hardware injections used in testing continuous-waves algorithms.
¢o is defined at Nov 01, 2003, 00:01:04 GMT.

4.1.1 Noiseless signal recovery - isolated pulsar signals

In the case of a noiseless signal, the heterodyne and Spllnter routines should give exactly
the same answer, given the same At, as By = y;. Figures to show the result
of using SplInter and heterodyne routines (both with At = 1800 s) on signals which have
been created without any noise, given an isolated neutron star with parameters as in ta-
bles and The frames were made using lalapps_create_pulsar_signal frame
and SFTs were made from these frames using lalapps_MakeSFTs.

For the error comparison, we take the mean value of the heterodyned Bg values

within the scope of the SFT used to create the Splintered By data. Numerically this
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is the same as using a 1800s At in the heterodyne algorithm. We denote this averaged

heterodyne B,
BK<tS <tg < tE)
N )

(4.1.1)

N

B.=)_

K

where N is the number of datapoints within At/2 of t;. The fractional error comparison

shows the difference in the absolute values of By, from the two algorithm outputs

divided by the heterodyned B, output, and the angle error comparison shows the
difference between the arguments of the two algorithms.

In the comparisons, we use the mized interpolator, which is a dynamic algorithm,
utilising the sinc approximation when appropriate and the Fresnel approximation when
it is not. The point at which we switch between the two algorithms is discussed in
sections , and We use the sinc interpolation in the case that | fk|At2 <
0.1, and the Fresnel interpolation otherwise.
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Figure 4.1.1: Comparison of By, values from Spllnter and heterodyne for a noiseless signal with
parameters given by those of hardware injection PULSARO. We see in this case that there are errors
in By introduced by the sinc approximation, but that these are not significant enough to cause the
switch to the Fresnel approximation.
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Figure 4.1.2: Comparison of By, values from Spllnter and heterodyne for a noiseless signal with
parameters given by those of hardware injection PULSAR1. We see in this case that there are errors
in By introduced by the sinc approximation, and that these are occasionally significant enough to
cause the switch to the Fresnel approximation, which recovers the signal more accurately.
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Figure 4.1.3: Comparison of By, values from Spllnter and heterodyne for a noiseless signal with
parameters given by those of hardware injection PULSAR2. We see that there are errors in By
introduced by the sinc approximation, and that for around half of the time these are significant
enough to cause the switch to the Fresnel approximation.
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Figure 4.1.4: Comparison of By, values from Spllnter and heterodyne for a noiseless signal with
parameters given by those of hardware injection PULSAR3. We see that there are no significant errors
on By introduced by the sinc approximation, and we do not need to use the Fresnel approximation

for this source.
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Figure 4.1.5: Comparison of By, values from Spllnter and heterodyne for a noiseless signal with
parameters given by those of hardware injection PULSARS5. We see in this case that there are no
significant errors on By introduced by the sinc approximation, and that we do not need to use the
Fresnel approximation for this source.
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Figure 4.1.6: Comparison of By, values from Spllnter and heterodyne for a noiseless signal with
parameters given by those of hardware injection PULSARG. We see in this case that there are no
significant errors on By introduced by the sinc approximation, and that we do not need to use the

Fresnel approximation for

this source.

4 x 10 6
f 1
x’&\‘ 4 1 %
’ oy il M
® 3: ] 2 %
— 1 ot =
E_z 2 # x F R o= %
) [ “ N0 M
1 2, ’1 x LA Spl Sinc %
’ 4 g ¥ 2 Spl Fresne \
‘%‘* * ,; X X o % Spl Mixed %
4 * - - - het ’st
0 -4
0 2 4 6 8 0 2 4 6 8
Time elapsed, s % 10* Time elapsed, s x 10*
0 x10°
10 20
Spl Sinc -~
1 Spl Fresnel 15, \/ \\ ’
< 10 -—- i /
o Spl Mixed - \ /
c © \
= . ~ /
S 10 w* 10 \ /
i} \ N \ /
< I\ r~ , - £ \ /
§ 10k P TN TN SN ! 5 O \ /
S A\ \i A | v 5 \ /
< \' v \ ] ! \ I«’
w 4 v 0 N\
10 ‘ \ < ,I
-5
0 2 4 6 8 0 2 4 6 8
Time elapsed, s x 10* Time elapsed, s x 10*

Figure 4.1.7: Comparison of By, values from Spllnter and heterodyne for a noiseless signal with
parameters given by those of hardware injection PULSARS. We see in this case that there are small
errors in By introduced by the sinc approximation, but that these are not significant enough to cause
the switch to the Fresnel approximation.
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Figure 4.1.8: Comparison of By, values from Spllnter and heterodyne for a noiseless signal with
parameters given by those of hardware injection PULSAR9. We see in this case that there are small
errors in By, introduced by the sinc approximation, but that these are not significant enough to
cause the switch to the Fresnel approximation.
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We see that the Spllnter and heterodyne B/, estimates in figures to
agree very well with one another, and that in the high SNR limit, the Spllnter and
heterodyne By /.. outputs are almost exactly equal. The Fresnel approximation is used
significantly for sources 1 and 2, but not for the others. We also see that the mixed
interpolation scheme correctly identifies the points at which it is best to use the Fresnel

approximation.

Figures 4.1.9/and 4.1.10] also show a direct comparison between the real and imagi-

nary parts of the Spllnter and heterodyne output By, as we can directly see in these
plots the effect of incorrectly making the assumption that the frequency change during
the SF'T is zero. These figures show the importance of the Fresnel approximation in
comparison to the sinc approximation for sources 4 and 7. These sources have both
a high frequency and a relatively low declination, which leads to a large frequency

derivative from detector orbital motion.
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Figure 4.1.9: Comparison of By, values from Spllnter and heterodyne for a noiseless signal with
parameters given by those of hardware injection PULSARA4. This example also includes the real and
imaginary parts explicitly so that we can see the errors introduced by the sinc approximation for this
source. We see in this case that there are major errors on By introduced by the sinc approximation,
which are particularly evident in the phase error plot and that we need to use the Fresnel approximation
for this source for almost all of the time.

We also see that the Fresnel interpolator is much more accurate than the sinc
interpolation in these cases, and that the mixed interpolation scheme correctly identifies
points at which it would be best or not to use the sinc interpolator. It should be noted
that the algorithm output is an ASCII file containing values of ¢, Re(By), Jm(By)

and oy, so an obvious discrepancy in fRe(By), as we see in figure will cause issues
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Figure 4.1.10: Comparison of By, values from Spllnter and heterodyne for a noiseless signal with
parameters given by those of hardware injection PULSAR7. We see in this case that there are
significant errors on By, introduced by the sinc approximation, which are particularly evident in the
phase error plot and that we need to use the Fresnel approximation for this source for almost all of
the time.

in the parameter estimation.
In order to compare the outputs in a more quantitative way, we introduce the

concept of mismatch, m, defined by

2k Brspl - Bt

m = |1
Zk Bn,het : Bn,het

(4.1.2)

where |...| denotes absolute value, By, gy is the By, calculated by the SplInter algorithm,
and By pet is the mean value of the By calculated from the heterodyne algorithm,
within the duration of the Spllntered SFT (the het and Spl subscripts are to clarify
the use of each algorithm).

This mismatch shows us the SNR loss caused by using incorrect parameters, or
by using approximations in the calculation of By. We make the assumption that the

heterodyne values are exactly correct in this comparison. For the noiseless injections

in figures [1.1.1] to .1.10] this mismatch was as given in table [.3]

Pulsar 0 1 2 3 4 > 6 7 8 9

Mmixea | 0.0022 | 0.0028 | 0.0016 | 0.0033 | 0.0040 | 0.0026 | 0.0029 | 0.0024 | 0.0015 | 0.0027
Mmpes | 0.0019 | 0.0027 | 0.0017 | 0.0033 | 0.0039 | 0.0026 | 0.0028 | 0.0024 | 0.0015 | 0.0026
Mgne | 0.0022 | 0.0052 | 0.0018 | 0.0033 | 0.0101 | 0.0026 | 0.0029 | 0.0062 | 0.0015 | 0.0027

Table 4.3: Mismatches of noiseless signals using heterodyne and Spllnter algorithms with the hard-
ware injection parameters. Marked in bold are the mismatches for which the Fresnel interpolator
significantly reduces the sinc interpolator mismatch.
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We see that the mismatches are all less than one percent and that the Fresnel
and mixed approximations always improve upon the sinc approximation. As such we

conclude that the Spllnter method is accurate in this recovery.

4.1.2 Noiseless signal recovery - binary pulsar signals

Signals from binary pulsars will contain an extra term in the transformation from the
time frame which is inertial with respect to the source to the topocentric time, this
term comes from the Roemer, Shapiro and Einstein delays in the source’s own orbital
system, Apgipary i equation above. This manifests as an increased variability
in the phase evolution which may not be on timescales such that it can be assumed
to be constant or even linear throughout the SF'T, with the linear approximation for
d(t) breaking down. As such, we test the Spllnter algorithm using binary signals in
comparison to the heterodyne routine, which calculates §(t) every second and hence
is accurate for all binary pulsars. We present the results of some of these analyses in
table [4.4] and figure [4.1.12]

Table [4.4] shows the mismatches over a period of time, for the noiseless signal test
as described above. B, is binary period in days, and a; is the projected semi-major

axis, which is the projection of the orbit onto the line of sight, as in figure [4.1.11}

line of sight

Projected semi-major axis

Figure 4.1.11: Diagram explaining projected semi-major axis of a neutron star in a binary system.
This binary motion is measured by differences in the time of arrival of pulses from the neutron star,
meaning that we are only able to detect line-of sight motion. This means that an orbit on a plane
which is inclined with respect to the line of sight can only be seen as the projection of that orbit onto
the line of sight, and thus a projected semi-major axis is used (binary companion not shown).

The duration of the analysis is chosen to be either a day, if the binary period is less
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than a day, the binary period, or five days if the binary period is longer than five days,

(
1, P <1d
Tanalysis = Pb7 1d < Pb < 5d (413)
D, P, >5d
\

this choice is so that we gain an accurate mismatch over the course of a binary rotation
if it has a relatively long period. We choose to analyse the source for the whole of the
science run if the mismatch in this noiseless test is below 0.1; this choice is to prevent
too large of a drop in SNR, without dismissing too many prospective targets.

The algorithm used to make the signal in this analysis is 1alapps_Makefakedata_v5,
as the previously used lalapps_create pulsar_signal frame code does not create

binary signals.

Mismatches Pulsar Parameters lAnalyse with|
Pulsar Meine Mmixed | Pb, days ai,1s v Hz v0a,/ P SplInter?
J00234-09 0.74509  0.74535 0.1388 0.0348 327.8470  4.2710x103 No
J0024—7204E | 0.39733 0.39733 2.2568 1.9818 282.7791 48.754 No
J0024—7204H | 0.43344 0.43344 2.3577 2.1528 311.4934 51.167 No
J0024—72041 0.59508  0.59508 0.2298 0.0384  286.9447 909.14 No
J0024—7204Q | 0.56030 0.56030 1.1891 1.4622 247.9432 215.64 No
J0024—7204R | 0.93394 0.93394 0.0662 0.0334 287.3181  3.2996x10* No
J0024—7204S | 0.52040 0.52040 1.2017 0.7663  353.3062 156.00 No
J0024—7204T | 0.38153 0.38153 1.1262 1.3385 131.7787 123.49 No
J0024—7204U | 0.78311 0.78311 0.4291 0.5269 230.2648  1.5357x103 No
J0024—7204Y | 0.77959 0.77959 0.5219 0.6686 455.2372  2.1406x103 No
J0034—0534 0.57837 0.58884 1.5893 1.4378 532.7134 190.80 No
J0218+4-4232 0.48940 0.48943 2.0288 1.9844  430.4611 102.29 No
J0407+1607 0.00080 0.00080 | 669.0702 106.4501  38.9079 1.3828x1075 Yes
J0437—4715 0.01168 0.01168 5.7410 3.3667 173.6879 3.0903 Yes
J0605+3757 0.00166 0.00191 | 55.6723  18.9487 366.5751 4.0255x1072 Yes
J0610—2100 0.60421 0.60511 0.2860 0.0735 258.9785 813.42 No
J0613—0200 0.69872  0.69655 1.1985 1.0914  326.6006 207.06 No
J0614—3329 0.00102  0.00202 | 53.5846  27.6388 317.5945 5.7052x1072 Yes
J06214-1002 0.00033  0.00033 8.3187  12.0321  34.6574 7.2439x107! Yes

Continued
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Mismatches Pulsar Parameters ‘Analyse with|
Pulsar Msine  Mmixed | Pb, days a;,ls v Hz v©a, /P SplInter?
JO737—3039A | 0.98665 0.98665 0.1023 1.4147  44.0541  5.8296x10% No
JO751+1807 0.83539  0.83557 0.2631 0.3966 287.4579  6.2569x10° No
J0900—3144 0.00024 0.00024 | 18.7376 ~ 17.2488  90.0118 2.3600x 1071 Yes
J1012+5307 0.63814 0.63814 0.6047 0.5818 190.2678 500.72 No
J1017—-7156 0.08106 0.08106 6.5119 4.8300 427.6219 7.4798 Yes
J1022+1001 0.00780 0.00780 7.8051  16.7654  60.7794 2.1430 Yes
J1045—4509 0.01869 0.01869 4.0835 3.0151 133.7931 5.9242 Yes
J1231—-1411 0.32977 0.33020 1.8601 2.0426  271.4530 86.148 No
J1300+1240 0.00193 0.00193 | 66.3366 0.0013  160.8097 7.4262x10~7 Yes
J1455—3330 0.00138 0.00138 | 76.1746  32.3623 125.2002 9.1667x1073 Yes
J1518+4904 0.00048  0.00048 8.6340  20.0440  24.4290 7.6077x107! Yes
J15374+1155 0.71289 0.71289 0.4207 3.7305 26.3821  1.3214x103 No
J1600—3053 0.00501  0.00532 14.3485 8.8017 277.9377 8.2813x107! Yes
J1603—7202 0.00412 0.00412 6.3086 6.8807  67.3766 1.8464 Yes
J1614—2230 0.06804 0.06675 8.6866  11.2912 317.3789 5.4672 Yes
J1623—2631 0.00089 0.00089 | 191.4428  64.8094  90.2873 8.3396x10~* Yes
J1630+3734 0.00781  0.00989 12.5250 9.0393 301.3762 1.3865 Yes
J1640+-2224 0.00134 0.00206 | 175.4607  55.3297 316.1240 3.2380x1073 Yes
J1643—1224 0.00082 0.00092 | 147.0174  25.0726 216.3733 1.7073x103 Yes
J1701—3006A | 0.06797 0.06795 3.8059 3.4837 190.7827 12.056 Yes
J1709+2313 0.00067 0.00043 | 22.7119  15.2885 215.9269 2.8178x10~1 Yes
J1713+0747 0.00095 0.00114 67.8251 32.3424 218.8118 2.2681x1072 Yes
J1719—-1438 0.04856  0.04834 0.0907 0.0018 172.7070 423.30 Yes
J1731—-1847 0.71455 0.71501 0.3111 0.1202 426.5193  1.7016x10° No
J1732—-5049 0.02627  0.02627 5.2630 3.9829 188.2335 5.1427 Yes
J17384-0333 0.73157  0.73156 0.3548 0.3434 170.9374  1.3145x103 No
J1741+1351 0.00286  0.00417 16.3353 11.0033  266.8692 6.7365x10~ ! Yes
J1745—0952 0.00010 0.00010 4.9435 2.3786 51.6094 1.0162 Yes
J1748—2446A | 0.93057 0.93057 0.0756 0.1197  86.4816  2.3915x10% No
J1748-2446E | 0.00021 0.00116 | 60.0598  23.5959 455.0004 4.9556x 1072 Yes
J1748—-24461 0.33139 0.33139 1.3278 1.8188 104.4911 81.184 No
J1748—2446M | 0.78392 0.78388 0.4431 0.5964 280.1457  1.9200x103 No
J1748—2446N | 0.82689 0.82689 0.3855 1.6192 115.3815  3.2619x103 No
J1748—-24460 | 0.81612 0.81725 0.2595 0.1118 596.4354  3.8171x10° No
J1748-2446Q | 0.00082 0.00008 | 30.2954  28.6420 355.6447 3.6635x107! Yes

Continued
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Mismatches Pulsar Parameters ‘Analyse with|
Pulsar Msine  Mmixed | Pb, days a;,ls v Hz v©a, /P SplInter?
J1748—-2446U | 0.43528 0.43455 3.5703 5.9725 304.0301 39.900 No
J1748—2446V | 0.80522 0.80281 0.5036 0.5669 482.5079  2.1412x10° No
J1748—2446W | 0.11067 0.11065 4.8768 5.8837 237.8018 12.063 No
J1748—-2446X | 0.14808 0.14765 4.9985 5.1072 333.4158 13.635 No
J1748—2446Y | 0.74824 0.74844 1.1644 1.1785 488.2434 364.44 No
J1748—-24467Z | 0.33386 0.33175 3.4881 3.5304 406.0764 33.782 No
J1748—2446ae | 0.73708 0.73703 0.1707 0.0406 273.3295  2.2311x10° No
J1748—2446ai | 0.65995 0.65995 0.8509 2.8089 47.1067 214.79 No
J1751—-2857 0.00061  0.00067 | 110.7465  32.5282 255.4361 6.1172x1073 Yes
J1756—2251 0.81752 0.81752 0.3196 2.7576  35.1351  2.9669x10° No
J1801—3210 0.00048 0.00048 | 20.7717 7.8093 134.1636 1.1690x10~* Yes
J1802—-2124 0.72593 0.72593 0.6989 3.7189 79.0664 861.34 No
J1804—0735 0.01689 0.01689 2.6168 3.9205 43.2884 9.4716 Yes
J1804—2717 0.00097 0.00097 | 11.1287 7.2815 107.0317 5.6545x1071 Yes
J1807—2459A | 0.82456 0.82586 0.0711 0.0122 326.8563  1.1119x10* No
J1810+17 0.90949  0.90984 0.1482 0.0954 601.4115  1.7637x10% No
J1810—2005 0.00068  0.00068 15.0120 11.9779 30.4671  1.0787x107! Yes
J1811—-2405 0.09974 0.09831 6.2723 5.7057  375.8560 8.6905 Yes
J1841+-0130 0.00075 0.00075 | 10.4716 3.5041  33.5877 1.0250x107! Yes
J1853+1303 0.00027  0.00059 | 115.6538  40.7695 244.3914 6.4408x1073 Yes
J1857+0943 0.00377 0.00414 | 12.3272 9.2308 186.4941 9.1900x10~* Yes
J1903+0327 0.00134 0.00321 95.1741 105.5935 465.1352 5.6972x10~2 Yes
J1909-3744 0.70448 0.70446 1.5334 1.8980 339.3157 178.60 No
J1910+1256 0.00050 0.00061 | 58.4667  21.1291 200.6588 2.1214x10~2 Yes
J1910—5959A | 0.72597 0.72613 0.8371 1.2060 306.1674 629.46 No
J1911—-1114 0.11986 0.11957 2.7166 1.7629  275.8053 24.253 No
J1918—-0642 0.00261 0.00261 10.9132 8.3505 130.7895 8.4029x10~! Yes
J19554-2908 0.00076 0.00076 | 117.3491 31.4126  163.0479 3.1694x1073 Yes
J1959+-2048 0.67574  0.68094 0.3820 0.0892 622.1220 995.84 No
J2017+0603 0.46199 0.46392 2.1985 2.1929 345.2781 71.256 No
J2019+2425 0.00058  0.00080 | 76.5116  38.7677 254.1603 2.1999x10~2 Yes
J2033+417 0.00089 0.00089 | 56.3078  20.1631 168.0967 1.8985x10~2 Yes
J2043+1711 0.63781 0.64082 1.4823 1.6240 420.1894 209.52 No
J2051—-0827 0.85634 0.85636 0.0991 0.0451 221.7963  1.0270x10% No
J2129-5721 0.01439 0.01439 6.6255 3.5006 268.3592 3.2300 Yes

Continued
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Mismatches Pulsar Parameters ‘Analyse with|
Pulsar Msine  Mmixed | Pb, days a;,ls v Hz v©a, /P SplInter?
J2140—2310A | 0.78213 0.78213 0.1740 0.2350  90.7496  4.0495x10° No
J2145—-0750 0.00523  0.00523 6.8389 10.1641 62.2959 1.9795 Yes
J2214+4-3000 0.29874  0.30458 0.4166 0.0591  320.5923 261.90 No
J2215+5135 0.94816  0.94819 0.1725 0.4681 383.1976  3.4948x10* No
J2229+-2643 0.00350  0.00402 | 93.0159  18.9125 335.8162 7.8919x1073 Yes
J2241-5236 0.75590  0.75649 0.1457 0.0258 457.3101  3.8161x103 No
J2302+-4442 0.00104 0.00104 | 125.9353 51.4300 192.5920 4.9592x10~3 Yes
J2317+1439 0.30028  0.30065 2.4593 2.3139  290.2546 45.152 No

Table 4.4: Mismatches of noiseless signals from targeted sources in binary systems, using the sinc
approximation, Msinc, and the mixed interpolation scheme, Mmpmixeq- Also shown is binary period,
Py, projected semi-major axis, a1, frequency, (9, and a value indicating the extent of the fi from
the binary motion, v a;/ P3. We also state whether this source can be analysed with the Spllnter
algorithm, based on the mismatch from the mixed interpolation scheme.

In table from an analysis of 97 signaleﬂ with parameters from real pulsars, 50
were sources for which we are unable to use the SplInter algorithm (51.5%), and of the
remaining 47, all could be analysed using the sinc approximation as the combination of
source frequency, binary period, and projected semi-major axis did not cause significant
frequency change during the SF'T. We see from these results that the use of the Fresnel
or sinc interpolator in this analysis does not produce particularly different results. We
shall see the reason for this in section [4.1.3

From the results of table [£.4] we plot figure [£.1.12] in which we see that there is
a cut-off point between the analysed and not analysed pulsars. This is not a sharp,
distinct cut-off as the ability to analyse the data is dependent upon fi, which will be
dependent upon frequency. By doing a back-of-the-envelope calculation of the time

delay caused by the binary motion, we find that

,/(0)&1

3
Pb

Jr (4.1.4)

which is included in table [£.4] Through the examples of the pulsars used in this test,

IThese are the 97 binary pulsars in [2].
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Figure 4.1.12: Binary period vs projected semi-major axis for targeted binary pulsars, indicating
which binary pulsars can be analysed using Spllnter and which cannot. We include an indication of
the empirical criteria we set for analysis of a target in a binary system, given in equation for
pulsars with source frequency of 10, 100 and 1000 Hz.

we can empirically find that the cut-off (in the units as given in table is

v q, B -3
— < 10. 4.1.5
1Hz1ls (1day> ~ ( )

Note that pulsar J1701—-3006A, with v®a, /P2 = 12.056 Hzls day >, does not pass this
criterion but can be analysed based on the results of table [1.4] so we choose a cut-off
of 10 to be conservative.

We have a list of targets which can and cannot be used in table 4.4l Though this
is useful for these targets, setting an approximate criterion such as in equation
can then be used if we are to analyse candidate continuous-wave signals from pulsars
in binary systems, such as from the TwoSpect analysis [46]. The TwoSpect minimum
binary period of B, > 2h is well below the search limits in this work. This is because
the TwoSpect search is able to dynamically choose the SFT length based on the binary

period, something we do not do in this search.
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4.1.3 Frequency derivative assumptions

We have said before in section m that for an isolated source, fk is expected to be
very small and, as such, we can assume fk = 0, the sinc approximation. This section
looks at values of fj, for which this assumption is valid, and the maximum values of f;
which can be ignored. We will also discuss what can be done in the cases where the
values of fk and fk are above these thresholds and whether these maximum values are
physical.

This test will use a model for the tests where the intrinsic spindown parameters f)
and f? are kept as constants and 6(¢) is kept as zero; meaning that we have better
control over the value of the effective spindown parameters f, = fO + f@ (t — tx) and
fk = f®. We do not need to compare the analysis to the heterodyned output in this

case, as we can use the known input value.

Assuming linear phase evolution during the SFT, f. = 0.

Firstly we consider the f, = 0 assumption, we set f& = 0 so that f, = f® and see
how the output is affected by increasing the value of f). Shown in figure is the
mismatch introduced by this assumption, testing signals with fk ranging from 2 x 10~
to 2 x 1074 Hzs L.

We see that the Fresnel interpolation model accurately recovers the signal for
all input fk and that the sinc function interpolator loses accuracy for signals with
f Z 107® Hzs™! when using 1800s SFTs, this means that the signal is spreading too
much over the course of the SFT. The important factor to consider is the signal spread
in terms of number of bins, which we see as the signals within the 60s SFTs, with much
wider frequency bins and less time for the frequency to change, are being recovered
using the sinc interpolation many orders of magnitude higher than the half hour SFTs.
We therefore use the signal spread per bin as the switching point from one algorithm
to the other.

The vertical lines of figure indicate where this switch happens — this was
chosen to be approximately the point where the phase error introduced by the sinc ap-
proximation is 0.05 radians, corresponding to a mismatch of 0.01, or a signal frequency

spreading more than 10% of a bin during the SFT, so the sinc interpolator is used for
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Figure 4.1.13: Plot showing the mismatch when using each interpolation model in the maximum
posterior estimator with increasing values of fj. for 60s and half hour SFTs. Also shown are vertical

lines corresponding to the switching point of fx = 0.1/At? and a horizontal line showing the maximum
allowed mismatch.

| frlAt? < 0.1.

The reason for not using the Fresnel interpolation model for all cases is computa-
tional efficiency — it takes more computational effort to calculate the Fresnel integrals
(one numerical integration per frequency bin) than it does to calculate the sinc func-
tion, and a mismatch of 0.01 is the point at which we decide that the accuracy error
overcomes the speed increase. Another reason is that for f, = 0, the calculation of the

Fresnel model would lead to divide-by-zero errors.

Assuming linear frequency evolution during the SFT, f, =0.

Next we consider fi, we do this by setting f) = 0so that f, = f@ and fr = f@(t, — to),
we use t; equal to the parameter file epoch such that fi = 0 at the centre of the SFT.
The interpolation assumes fk to always be zero, and so figure shows the in-
creased mismatch associated with a non-zero fk for values ranging from fk =2x10710
to 2 x 1078 Hzs 2,

We see in ﬁgurethat the interpolation for this case breaks down at fk ~ 0.01/At3,
as such we apply a cut-off threshold at this value, above which the algorithm ignores

that source in the SFT.
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Figure 4.1.14: Plot showing the mismatch when using each interpolation model in the maximum
posterior estimator with increasing values of f;, for 60s and half hour SFTs. Also shown are vertical

lines corresponding to the cut-off point of fk = 0.01/At? and a horizontal line showing the maximum
allowed mismatch.

If we look at table [2.1, the highest intrinsic value of v, (= f1)/2 for a non-
precessing, triaxial neutron star) for isolated pulsars is around 107 Hzs™!, and for
v@ is 102 Hz s 2, both of which are still well within the range of the sinc interpolator,
but we need to consider the relative motion effects on the signal phase evolution.

The orbital motion of the detector can introduce significant values of fk. and fk
For isolated sources, the 05 term is dominated by the Earth’s orbit around the Sun,
the ‘worst case scenario’ for fk is therefore a source on the ecliptic (the plane of orbit
of the Earth around the Sun). The oy term is dominated by the diurnal motion, and
the ‘worst case scenario’ for fj, is therefore a source on the celestial equator (i.e. zero
declination). In these worst case scenarios, the value of b can be up to ~ 10™* and Ok
can be up to ~ 107%s7!. Depending on the frequency of the source this will introduce
significant values of fj, and fj,. Shown in figure is the change in time of arrival Jy,
barycentred frequency f; and introduced fk and fk for an isolated source with intrinsic
frequency of f(© = 2000Hz, at the vernal point, so the worst case scenario for Earth
orbit and rotation, and around the maximum allowed frequency by the SFTs.

1

As we see, this worst case scenario will give us fj, values up to ~ 10~7 Hzs ™!, well

2

Y

above the acceptable range for the sinc approximation, and fk up to ~ 107" Hzs™
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Figure 4.1.15: Change in arrival time (top left), frequency (top right), and its first (bottom left)
and second (bottom right) derivatives introduced by the effects of orbital motion of the detector
for a source with f(©) = 2000Hz at the vernal point. The change in arrival time and frequency are
dominated by the Earth orbital motion, and so are plotted over the course of a year, while the frequency
derivatives are dominated by the Earth rotation, so are plotted over the course of a day. Included
in the bottom two figures of f; and fi are horizontal lines showing the limits from figures [4.1.13

and [4.1.14] respectively.



4.1. ACCURACY TESTING 94

which is within the range of assuming f, = 0 with half hour SFTs. This means that for
half-hour SF'Ts, the Fresnel approximation should be sufficient for all isolated sources,

and the sinc approximation should be sufficient in most cases.

4.1.4 Choice of windowing function

This work has so far considered only a rectangular (equal weighting) window applied
to the time-domain data during the creation of the FF'T. However the commonly used
window within the LIGO Scientific Collaboration continuous-waves group is the Tukey
window. The Tukey window [I3], ©5] is used in order to suppress the first and last
few samples of the time series, which will have been affected by the high-pass filters
used to remove low frequency noise in the creation of the SFTs. Very few samples are
affected by this, and so the amount of windowing is small — the fraction of the window
affected in standard half-hour SFTs is R = 0.001, which corresponds to the first 1.8s.
The Tukey window also generally provides faster sidelobe reduction than a rectangular
window, but for values of R as small as those used here this is negligible.

The Tukey window takes the form

.

1, ts+ B8 <t <ty — BO
_— t{l+cos [2m (52 - D)}, t5§t<ts+RTAt (416)
T = ) L
Ml+cos[2m (2 4+ )]}, tp— B <t<tp
0, elsewhere

\

for which the special case R = 0 is a rectangular window and R = 1 is known as a
Hann window.

The testing here considers using the rectangular window when a Tukey window
has been applied, and seeing the value of R at which we must make changes to the
estimation algorithm.

To test this, we made SFTs containing signal with f& = 0, f? = 0 with an
imagined detector at the solar system barycentre with uniform antenna pattern. We
altered R in the range [1075, 1]. We then calculated By, and compared this output value
to the injected y;. Figure shows the increasing mismatch of the signal in the By
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when assuming R = 0 for increasing values of R.
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Figure 4.1.16: Plot showing the increase in mismatch when using a rectangular window model for a
given windowing amount of a Tukey window. Also indicated are the R = 0.001 line, which is the
standardly used Tukey window for the LIGO continuous-waves SFTs, and the acceptable mismatch
limit, here defined as a 1072, corresponding to an upper limit of R = 0.02. Below a value of R ~ 1075
the mismatch is dominated by numerical precision noise, but is small enough to be safely ignored.

We see that mismatch increases significantly with large amounts of windowing,
and that if we define an acceptable mismatch of 1%, this corresponds to an upper
limit of R = 0.02. Considering this maximum value and that the typically used value
of R = 0.001 is well below this limit, we conclude that windowing effects will not

significantly affect the results.

4.1.5 Noise estimation tests

To test the noise estimation in the Splinter algorithm, we used two tests; the first was
to make SFTs and frames with known white noise and no signal. After running the
Spllnter and heterodyne algorithms, we would check that the By, x noise was consistent
with the injected value, and also with each other. We compare noise estimates from the
Spllnter routine, oy, with noise estimates from By values from the heterodyne routine
for a signal with zero amplitude with time-domain variance of 02 = 1. The estimate of
the noise on the heterodyne, oy, is made by using an average of the standard deviations
from the real and imaginary heterodyne parts which fall within the SFT time range.

To then convert into the equivalent noise value for a half hour separation of By, we
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divide by a factor of the square root of the number of datapoints used, as is consistent

with equation [2.3.9] which will be thirty if all Bx are present. Algebraically, this is

O = M{\/; %e[BK(tS <tg < tE)]2+

\/Z Jm[Bg(ts < tg < tE)]Q}, (4.1.7)

where Ny is the number of heterodyne datapoints within the range of the SFT. We
see in figure that the heterodyne and Spllnter noise estimates agree with each
other, and that these both agree with the expected distribution around the injected
value of the noise. The expected distribution is a x? distribution with n — 1 degrees of

freedom, where n is the number of datapoints used in the noise estimation,

op _x(n—1)

2
OTrue n—1

(4.1.8)

and ome is the true injected noise. The heterodyne noise estimate used thirty By
datapoints from each of the real and imaginary parts of the data, leading to an expected
x? distribution with 59 degrees of freedom, shown in the figure by the red dotted line.
In this test, we used the Spectral Interpolation algorithm with a bandwidth of 0.3 Hz
around the signal frequency, this meant that one thousand and eighty datapoints were
used, (0.3 x ﬁ from each of the real and imaginary parts), leading to a x? distribution
with 1079 degrees of freedom (shown on the figure as a blue dotted line). This tells
us that in order to get better noise estimates, we could use a wider band of data.
However, the frequency dependence of the noise leads to a limiting bandwidth, as well
as computational efficiency considerations. A frequency bandwidth of 0.3 Hz is a good
balancing point between these considerations.

For the second test software injections are used, selecting the lowest SNRs, so that
the signal should not affect the noise levels estimated for the heterodyne routine too

much. We compare the oy and o, data obtained from the two routines by taking

the maximum likelihood for a scale factor denoting the difference between the noise
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Figure 4.1.17: A histogram of standard deviation estimates of white noise from SplInter (top) and
heterodyne (bottom) output, with the mean estimated values (cyan/magenta dashed lines). Also
shown is the true value of the noise (black vertical line) and the expected distributions of the noise
estimates (dotted lines).

estimates, 3, defined by

p(f) o exp {— > BW} } , (4.1.9)

k

0, is an estimate of the noise on the standard deviation, calculated from Bpg. Fig-
ure shows the most probable values of 3 obtained from the software injections,
Bmax, and we see that the noise estimation data from the Spectral Interpolation algo-
rithm is consistent with the noise on the By values calculated from the heterodyne
routine, almost entirely lying within a ~ 4% band around the desired value of unity,
with unity lying within the 1o uncertainty on this value.

One software injection (J01544-4819) showed a value of 5 = 0.61 4 0.05, which is
significantly lower than unity, meaning that the Splinter noise estimate was a long way
below the noise estimate from the heterodyne. The injection frequency of ~ 347.7 Hz
meant that the signal was within the range of strong lines caused by resonant violin
modes of the suspension (see section[L.3.1]). Figure[d.1.19shows that the outlier removal

routine in Spllnter is working to actively remove the noisy lines, leading to a reduction
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Figure 4.1.18: Estimates, with errors, of Sy ax, the most likely ratio between the Spllnter noise estimate
and the heterodyne noise, estimated from the standard deviation of the Bg values, with an example
SEFT in the background for reference. Software injections with very low SNR were chosen so that
the signal in By, would not affect the noise estimate. Not shown in this figure is software injection
J0154+4-4819 for which Syax = 0.61 £ 0.05, the reason for this is explained in the text and is shown in

figure
in the noise of this band in the Spllnter outputﬂ and hence a reduction of 3. We see
that the Spllnter algorithm uses a smaller band of data, 0.1 Hz in this case, rather than
0.5 Hz in the heterodyne case, which excludes one of the resonant lines, the power from
which bleeds into the heterodyne By, but not the Spllnter By. The other noise peaks
are actively suppressed through the outlier removal routines.

We conclude that the Spllnter noise estimation routine is accurate in both white
noise and noise with spectral features, and that we can see the outlier removal routines
actively suppressing noise peaks for signals near to the ‘violin’ resonance modes of the

suspension.

4.1.6 Short-duration hardware injections

We show here the results of a search for the hardware injections — with Doppler and
amplitude parameters given respectively by tables [£.1] and [£.2] — using heterodyne and
Spllnter algorithmsto calculate By, and nested sampling for parameter estimation. We

use just under four months of data between Oct 19 2009 and Feb 12, 2010 which had

2This situation also occurred in the search for pulsar J1748—2446ac in [79].
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Figure 4.1.19: Noise levels in an example SFT for the 0.5 Hz band around the signal frequency of the
outlier software injection J01544-4819 used by the heterodyne routine, compared to 0.1 Hz in Splinter.
In the first plot (top left), we see that there are three strong peaks of noise, which correspond to
thermally excited violin resonance modes of the detector suspension, and that one of these peaks is
ignored by using the smaller bandwidth in the Spllnter algorithm. We also see the smaller band used
by Spllnter, (top right), with an indication of the protected Spllnter band. The bottom two plots
show the outlier removal process, in which the datapoints removed by each outlier removal routine are
highlighted (bottom left). The removal routine by which each point was removed is indicated by the
colour. The points within the thresholds which have been removed are ones for which their complex
partner is outside of the threshold. The final picture (bottom right) shows the SFT once the outlier
removal routines have been performed, we see that the summits of the peaks are removed, leading to
a reduction of the noise on the signal, and hence also of its noise estimate and the comparison factor

.
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a duty cycle of 47%; this amount of data was used so that the injections would be
recovered, but with the posteriors retaining some width. The need for the width in the
posteriors is that if the noise calculation is under- or overestimated, it would show in
the posterior distribution as a narrowing or widening of the distribution respectively.
This will be the test which replicates the end-to-end process of signal recovery most
closely, and the one which will indicate with most accuracy whether Spllnter is viable
as a black box replacement for heterodyne.

Table[4.5]shows the returned SNR values from the nested sampling procedure for the
given injections from the Spllntered and heterodyned output with Gaussian likelihood,
and the heterodyned output with Student’s-t likelihood. The At = 1800s used in the
Spllnter routine means that we must use a Gaussian likelihood function as there are
not enough B, values in periods of stationary noise to be able to accurately marginalise
over it, and so the heterodyne results are given using both the Gaussian likelihood and

the Student’s-t distribution likelihoods for fairer comparison.

By, i algorithm Spllnter | Heterodyne
Likelihood Distribution Gaussian Student’s ¢
PULSARO 9.217217 | 10.95006 | 11.10940
PULSARI1 10.62824 | 12.63175 | 12.69116
PULSAR2 80.27499 | 90.88592 | 91.04811
PULSARS3 181.3641 | 205.1734 | 205.5443
PULSAR4 230.1506 | 251.8084 | 253.2708
PULSARS5 10.78574 | 12.47511 | 12.33829
PULSARG6 15.83296 | 17.25627 | 17.25333
PULSAR7 19.88728 | 23.38489 | 23.57995
PULSARS 197.4373 | 230.6753 | 231.9372
PULSAR9 12.57220 | 13.71983 | 13.77271

Table 4.5: SNRs of hardware injections in the H1 detector from a four month analysis of S6 data,
calculated using the Nested Sampling algorithm lalapps_pulsar_parameter_estimation nested.

We see that the Spllnter output is consistent with the heterodyne output, with
SNR values generally slightly below those from the heterodyne routine — this is to be
expected as the dead time of 1800s SFT's for this stretch of time is 10.4%, which leads
to a drop of 5.3% in SNR. As well as this, the filters applied to the data are different,
and there could be some drop in SNR due to spectral leakage from the central peak in
the expected sinc function as a result of the almost rectangular windowing. It is also

worth considering that in high SNR cases it is more difficult to estimate an underlying
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noise.

Figures [£.1.20] to [£.1.24] show the posterior distributions of the four parameters

which are not fixed in targeted searches, a = [hg, ¢g, %, cost|. In all these figures, the
blue line shows posteriors made using Spllnter for the calculation of By, and the red and
green lines show use of the heterodyned By with Gaussian and Student’s ¢ distribution

respectively.
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Figure 4.1.20: Posterior distributions for hgy, ¢g, cost and v from hardware injections PULSARO
(top) and PULSARI1 (bottom) using around four months of data from the H1 detector. Posteriors
from Spllnter with a Gaussian likelihood (blue), heterodyne with a Gaussian likelihood (red) and
heterodyne with a Student’s ¢ likelihood (green). The vertical black dashed lines show the injected
parameters.

The posteriors show that we usually get very good agreement between the experi-

mental outcomes from the heterodyne By and Spllnter By calculation algorithms. The
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Figure 4.1.21: Posterior distributions for hg, ¢g, cost and 1 from hardware injections PULSAR2
(top) and PULSARS3 (bottom) using around four months of data from the H1 detector. Posteriors
from Spllnter with a Gaussian likelihood (blue), heterodyne with a Gaussian likelihood (red) and
heterodyne with a Student’s ¢ likelihood (green). The vertical black dashed lines show the injected

parameters.
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Figure 4.1.22: Posterior distributions for hgy, ¢g, cost and ¥ from hardware injections PULSAR4
(top) and PULSARS5 (bottom) using around four months of data from the H1 detector. Posteriors
from Spllnter with a Gaussian likelihood (blue), heterodyne with a Gaussian likelihood (red) and
heterodyne with a Student’s ¢ likelihood (green). The vertical black dashed lines show the injected
parameters.
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Figure 4.1.23: Posterior distributions for hg, ¢g, cost and 1 from hardware injections PULSARG
(top) and PULSARTY (bottom) using around four months of data from the H1 detector. Posteriors
from Spllnter with a Gaussian likelihood (blue), heterodyne with a Gaussian likelihood (red) and
heterodyne with a Student’s ¢ likelihood (green). The vertical black dashed lines show the injected
parameters.
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first thing to note is that the deviation of parameters from their claimed injection val-
ues could be due to different calibrations being used for the injections and the output
— it is difficult to know beforehand the calibration that will be used later on in the
experiment, but they are similar enough that it is a very small effect on the outcome.
There is a small amount of disagreement between the posterior outputs for pulsars 4
and 8, though these are minimal, and insignificant on the scales which affect searches
for true signals. We therefore conclude that for all realistic circumstances, the Splinter

algorithm is an accurate replacement for the heterodyne routine in these examples.

4.2 Performance testing

The initial aim of developing the Spllnter algorithm was to decrease the computational
expense of producing the By time series, and so we want to be able to quantify how
much faster Spllnter is compared to the heterodyne algorithm. In doing so, we also
profile the times taken in each part of the algorithm, so that we can identify and remedy
any bottlenecks.

We also want to know how the algorithm copes with signal parameters which differ
from those in the parameter input file, so that we do not have to re-perform the Splinter
algorithm for each datapoint in [f(®, f(V)] space if we wish to search in frequency space,

or in another parameter space which will affect frequency, such as sky position.

4.2.1 Speed testing

The main aim of the Splinter algorithm is to greatly reduce computation times, so
we want to know the timing statistics. The Spllnter algorithm consists of three parts

which we will time, as well as the total time taken:

e Within each segment, we will take the SF'T catalogue load time, during which we
use the XLALSFTdataFind algorithm to search for which SFTs in the provided
list or cache file are within the time constraints given — i.e. the start and end

time of the segment.

e The SFT load time is the time taken to load the Si(f) data from the SFT file.



4.2. PERFORMANCE TESTING 107

e The interpolation time is the amount of time taken to calculate By from the SFT
data, including obtaining details of barycentric time corrections, and outputting

this to a data file buffer.

Table shows the mean and median times taken in each part of the algorithm
for Splinter and heterodyne. As the heterodyne algorithm analyses the sources one
at a time it is fairest to compare the total algorithm time taken per source, and as
the Spllnter algorithm time per source is not constant for number of sources, we will
compare the total time per source for one, ten, one hundred and one thousand sources
at a time. The profiling times are not relevant (or not calculated) for the heterodyne
routine, and so are not included. The timings calculated use data from a single inter-
ferometer, and the time taken will increase linearly with the number of interferometers

used, as the algorithms are performed for one interferometer at a time.

Heterodyne Spllnter
Sources 1 1 10 [ 100 | 1000
Total Time, s

Median 4974 0.9476 1.6509 2.4710 10.6050

Mean 505.1 0.9619 1.6818 2.5247 10.8586
CPUh/N/h | 5.76x1073 | 1.10x1075 | 1.91x107¢ | 2.86x1077 | 1.23x1077
Source parameter load time, s

Median - 0.0046 0.0447 0.4544 4.6518

Mean - 0.0050 0.0471 0.4798 4.8651
Catalogue load time, s

Median - 0.0823 0.0806 0.0808 0.0852

Mean - 0.0897 0.0846 0.0900 0.0909
SF'T load time, s

Median - 0.0774 0.6568 0.6830 0.7325

Mean — 0.0807 0.6743 0.6921 0.7516
Interpolation time, s

Median — 0.0013 0.0110 0.1040 1.0442

Mean - 0.0013 0.0110 0.1041 1.0445
Other, s

Median - 0.7791 0.8544 1.1258 3.9462

Mean - 0.7852 0.8649 1.1587 4.1065

Table 4.6: Median and mean times in seconds taken to analyse a day of data using heterodyne and
Splinter for one, ten, one hundred and one thousand sources. Included is the CPU core hours per
source per hour of data, given the median computation time, followed by the amount of time spent
in each part of the algorithm; source parameter load time, SFT catalogue load time, SFT load time
and interpolation time and other, which includes initialisation of the barycentring routine, loading
ephemeris files, segment lists and other calculations.
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We also compare the time taken to load the source parameters from the parameter
file, so that we fill in as many of the blanks on the time taken to perform the algorithm
as possible, this is not included in figure but it is intuitively proportional to
number of sources.

The times used here are from analyses with the sinc interpolation scheme as this is
the method which will be used most often in real analyses. Timings for the mixed or
Fresnel interpolation schemes will be similar, as we can see that the interpolation itself
is a relatively small proportion of the overall time.

We then take the average time taken per day of data for each of the three timings

taken, which is shown in figure 4.2.1, Repeated timing values are taken to give their

distribution.
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Figure 4.2.1: Histograms of the average time taken to analyse a day of data for various parts of the
Spllnter algorithm. Times are all in seconds per SF'T, except interpolation time and total time which
are seconds per SFT per source. The different coloured histograms show the different number of
sources used in each analysis. The horizontal axis markers denote the mean values for these times for
the different numbers of sources.

We see that the catalogue load time and interpolation time per source are generally
independent of the number of sources, though the interpolation time per source has a
slight improvement for higher numbers of sources; this is due to the program saving
some of the items in RAM for faster access at a later time. The SF'T load time is

reduced when using a single source by only loading a small (~ 3Hz) band around the
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approximated signal frequency, but once we are using more than one source, the extra
time taken is small enough that it is worthwhile to load a much wider SFT band, we
load a band from 1.5 Hz below the lowest source frequency to 1.5 Hz above the highest
source frequency.

The analyses for table 4.6 and figure were run on the atlas computer cluster

hosted in the Albert Einstein Institute, Hannover.

Use of single or multiple SFT cache files

During this work, it was found that for analyses with long duration and many seg-
ments, the SFT catalogue load time was causing a major bottleneck in computational
efficiency, with a large amount of time being taken on this part of the algorithm. This
was found to be due to using a single SF'T cache file, containing paths for all of the
SFTs used throughout the duration of the analysis. The problem came from the way
the XLALSFTdataFind algorithm (for finding SFT data) works, opening the header of
each SFT in the cache file to check its timestamp details every time the function is
called. In order to work around this problem, we made it so that Spllnter could use
input of a directory containing an SF'T cache for each segment. The mean number of
SE'Ts in each segment’s cache file for H1 during S6 was 5.6 with a median of 3 SFTs,
and maximum of 63 SFTs, compared to a total of nearly 2500 in S6. A histogram of
the number of SFTs contained in each segment is given in figure 4.2.2]

The catalogue load times in table and figure are for a segment of 24 h, (i.e.
containing 48 SFTs), so this time is actually toward the higher end of the scale for real
analyses if we utilise the one-cache-per-segment configuration.

Timing tests were performed on the stretch of data used in the hardware injection
tests in section [4.1.6] These tests were to compare using the single cache input, con-
taining all SFTs found within the time range of the analysis, and the one SF'T cache
per segment input. This comparison is presented in figure 4.2.3] which shows the time
improvement using the multiple SF'T' cache files rather than the single file.

We see the vast improvement in catalogue load time by using multiple SF'T cache
files, with the mean catalogue load time per SF'T decreasing by two orders of magnitude,

from 0.2s to 0.002s. This is a major proportion of the overall time taken in long studies.
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Figure 4.2.2: Histograms of the number of SFTs in each segment for H1 (blue), L1 (red) and V1
(green).
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Figure 4.2.3: Histogram of the time taken to load the SF'T catalogue using single or multiple cache
files. The single large outlier is indicated by the red arrow in the bottom-right hand corner of the
plot.
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We also see the large outlier in the single cache file histogram, indicated by the arrow,
with an SFT catalogue load time of 8.75s per SFT. This outlier was the first segment
in the analysis, and we note that this is not unusual, there is often a very large SF'T
catalogue load time in the first segment for a large list of SF'Ts, this is again from the

program saving some variables in RAM for faster access at a later point.

4.2.2 Frequency response testing

When performing the Bayesian parameter estimation using the By and oy values, we
may wish to search in frequency space, meaning that the Spectral Interpolation or
heterodyne procedure has been performed with incorrect parameters for that parameter
space point. So that we can avoid rerunning the Spllnter algorithm for each point in the
parameter space, we can allow for this in the parameter estimation stage by considering
how the algorithms will react to an incorrect f(©, with knowledge of how the other
parameters will affect the frequency evolution of the signal. The test in this case is to
inject signals into a noiseless frame and SFT, and to use the algorithm to try to recover
this signal from a nearby frequency. This test is performed for a source with constant
antenna pattern and has had any orbital motion effects removed, so that it is easier to
control the output values in comparison to the input.

Figure shows the result of the frequency response test, and we see that the
outcome is very similar to the sinc function, which we can therefore use as the correc-
tion factor in frequency space searches, by multiplying by an appropriate amplitude
correction factor of m. The mismatch is not used in this case as it is dominated
by the contributions from the incorrect phase, which can be corrected with a complex
multiplication to unwind the phase difference caused by the frequency difference. The
frequency resolution of a search will be an extremely small fraction of this central peak
in a targeted search, for which the frequency resolution will be up to ~ 107!° Hz. Can-
didate followup searches for example as in section [6.4] can have frequency resolution
of up to 5 x 1075 Hz, which is approximately 10% of the width of a frequency bin for
a 1800s SFT. The frequency response will change according to the SF'T length, and is

best represented in terms of the number of frequency bins from the signal frequency.

The heterodyne frequency response is also determined by the At used, and its effective
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bin width is 1/60 Hz for standard searches.

For frequency differences which are a more than around half a bin width, the Splln-
ter analysis would be reperformed, as the loss in amplitude would be too significant.
As the absolute value of By is not expected to change much in these searches, we do

not update oy for each parameter space point.
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Figure 4.2.4: Loss of amplitude for an incorrect interpolation frequency over the course of a few bins
either side of the signal frequency. We see that this closely follows the sinc function, and so we use
sinc(Af) as the correction factor for the amplitude in a frequency search.



Chapter 5

Targeted searches for known
pulsars using the spectral

interpolation algorithm

[Hitting the target is] like trying to hit a puppy by throwing a live bee

at it. Which is a weird image and you should all just forget it.

Willow, Buffy the Vampire Slayer, 2001

The Bayesian analysis pipeline as described in section has so far been used ex-
clusively for targeted searches of continuous waves from neutron stars, and almost
exclusively for continuous waves with a gravitational-wave frequency at twice the ro-
tational frequency, and so we continue in that tradition in this chapter using the new
analysis algorithm.

Section presents the results of targeted searches for signals from isolated and
binary pulsars. These analyses use the entirety of ‘science mode’ data from LIGO
science run 6 (S6) from the Hanford (H1) and Livingston (L1) LIGO detectors, and
Virgo science run 2 (VSR2) of the Virgo detector, (V1). The S6 analysis runs from
Jul 08 2009 to Oct 20 2010, and VSR2 is from Jul 08 2009 UTC to Oct 22 2009.

We set the priors on the amplitude parameters to be uniform within a certain range,

the reasons for using these priors were discussed in section [2.2] The priors are set as

113
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in table we conservatively choose an upper limit on hg of 10722 as this is an order
of magnitude larger than the highest upper limits set by the Einstein@Home all-sky
search for S5 data (figure 9 of [3]). The prior on ¢ is in the range [0, 7 /2], which is
entirely equivalent to the range [—m/4, 7 /4] stated previously in section 2.2 as the

signal cycles in 1 over a period of 7/2 [58].

parameter | lower limit | upper limit
ho 0 1022
(8 0 3
gbo 0 2T
cos L -1 1

Table 5.1: Uniform prior limits in the targeted search for continuous-wave signals from pulsars in S6.

As discussed previously (also in section , we shall present the results in the form

of 95% upper limits, defined by

th%

/ p(ho | {Bk}) dhg = 0.95, (5.0.1)

ho=0

which means that there is a 95% probability that the value of hg is below this value
from the data we have. This statement implies that there is a 5% probability that
ho is higher than this value, but we remember that we are not applying astrophysical
priors, and as such we include a comparison to the spin-down limit, 3! and show the
ratio between the two. This is effectively stating how close we are to be able to make
definitive, new, claims about an astrophysical object.

In the following discussion and the rest of this chapter, we use v and © to denote
rotational frequency (previously v(?)) and its first derivative (v!)) respectively for ease
of reading.

The spin-down limit is calculated by equating the loss of kinetic energy seen in the
slowing down of the rotation to the gravitational-wave energy emitted by the source, i.e.
what would be the gravitational-wave energy if GW emission was the only mechanism

responsible for the energy loss causing the slowing down of the rotation. This luminosity
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V2 h2d?, (5.0.2)
and the observed spin-down energy — the rotational kinteic energy lost — is
E =4n°L vp, (5.0.3)

where, as before, I, is the moment of inertia about the rotational axis and ¢ is ellip-
ticity, as defined in equation [2.1.4] We therefore have the canonical spin-down limit
SN 1/2
hsd — §€£M /
0 263 d? v

]1/2 SN 1/2
=8.06 x 10719=22 <M) : (5.0.4)

kpc v

where I35 is the star’s principal moment of inertia in units of 10%® kg m? and dyy. is the
distance to the star in kiloparsecs. In the calculations presented here, we use I3z = 1,
the standard moment of inertia used in most examples of the literature.

In nature, in the vast majority of cases, we see that neutron stars are spinning
down, that their rotational frequency is decreasing. However in a few cases we see
from electromagnetic observations that the rotational frequency is increasing; in some
cases this can be explained through accretion of material onto the neutron star from
its companion in a binary system, however for an isolated source, this is not possible.
Millisecond pulsars will have been spun-up to high rotation frequencies through this
accretion, though this process will have ended if the source is now isolated.

So why is v positive? The implication from equating gravitational-wave luminosity
to the increase in kinetic energy is that this source would somehow be absorbing grav-
itational waves and using this gained energy to spin fastelﬂ. The answer is that we do
not see positive spin-downs in nature n the frame of reference of the neutron star, the

positive spin-downs we see are due to the proper motion between the source and the

1Logically this would be possible, but would require a rotational phase evolution perfectly, nega-
tively, matched to the gravitational-wave phase evolution from another source.
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detector, specifically, if the source is accelerating towards us, we will see an apparent
spin-up due to the increasing Doppler shifting.

For sources which have significant line-of-sight proper motion, we take this into
account, in the following results tables these spin-down limits are marked with a {. For
sources which are known to have significant proper motion, i.e. they are in a globular
cluster, but the true proper motion is not known, a characteristic ‘spin-down age’ of
7 = 10% years is assumed to calculate the used v [2].

The characteristic age, 7, is the period related to how much rotational energy is in

the system, and the rate at which it is being lost. It is defined by

L v (5.0.5)

n—1v’

T =

where n is the braking index, which for a magnetic dipole n = 3 and for purely
gravitational-wave quadrupole spin-down would be n = 5 [2]. In this calculation, n = 3
is used, but as we are only really concerned with an order-of-magnitude estimate, the
factor of 5/3 is unimportant. The spin-down limits for which we use a characteristic
age are indicated by 1 in the results tables.

From the h85% results of an analysis, we can also constrain the ellipticity ¢ to

95%

an upper limit containing 95% of the probability, e To do this, we rearrange

equation to obtain

h85% dkpc

95%
= 0.237 .
c 10—24 138V2

(5.0.6)

Again, we use the canonical moment of inertia of ., = 10®® kgm?, so that Isg = 1.

5.1 Results from targeted analysis

We present the upper limit results of two searches for known pulsars, with parameters as
given in [26] [67]. The difference between the analyses is only in the algorithm utilised,
so we expect similar results from the analyses. One of the searches has already been
performed by others, utilising the heterodyne routine in section and an MCMC
as in , this work was presented in [2]. The reason for presenting this work is that

we perform a similar analysis, but this time utilising the Spllnter and nested sampling
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algorithms, meaning that we want to compare the two routines. We do so with a direct
comparison of the 95% upper limits.

The heterodyne/MCMC results for h)°” are given in table 7 of [2], though as we
use an updated version of the ATNF pulsar database [26] [67] (v1.53 instead of v1.47)
for the spin-down limits, we update their comparisons to the spin-down limit hg5% /hsd
as distance estimates can vary by a large amount and these have a strong effect on the
spin-down limit value. We do not include results for the heterodyne routine ellipticity
for the same reason.

Although this analysis is similar to the one used to produce table 7 in [2], we do
not expect the 95% upper limits to be exactly the same, for a few reasons which we
shall now discuss.

The 95% upper limits are going to be intrinsically noisy; we are going to be in
the tails of the noise distribution, the region containing 95% of the probability will
be outside of 20 for a one-sided normal distribution, which means that the histogram
procedure when counting the posterior samples from nested sampling will be counting
low numbers, leading to high noise from the counting statistics of around 1 in N'/2.
Empirically this can be seen to affect the upper limits by as much as 10%, depending
upon the exact shape of the tails of the posterior.

We also expect the Spllnter upper limits to differ from those given by the heterodyne
routine for reasons stated before (e.g. in section for differences between the two
outputs, such as the dead time from only using 1800 s segments of data, and the use of a
Gaussian likelihood in the nested sampling compared to the Student’s-t likelihood used
in the MCMC. As well as this the priors on hy and cos ¢ used for the Spllnter analysis
are uniform rather than utilising the S5 results as in [2]. Not applying these priors
could lead to a higher h85% especially in cases where the source is close in frequency to
a noisy line which is present in S6 but not S5.

Table shows the result of targeted searches for continuous gravitational waves at
twice the rotation frequency of known isolated pulsars, and table |5.3| shows the result
of targeted searches for known binary pulsars. The analyses have been separated into
isolated and binary pulsars, because the results from section need to be taken

into account, and we do so on a case-by-case basis for the pulsars in binary systems
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presented in table [5.3

Splinter & Nested Sampling

heterodyne & MCMC

Pulsar v (Hz) v (Hz/s) hd R35% 9% 5% /psd R35% RY5% /hgd
J0024—7204C 173.71  1.6x1071  6.1x10728+ | 1.6x10725 5.0x107% 260 1.7x1072% 280
J0024—7204D 186.65 1.6x10716  1.8x10728%+ | 4.1x10726  1.1x107% 220 2.9x10~26 160
J0024—7204F 381.16 —9.3x1071%  9.9x10728} | 7.3x10726  4.7x10~7 73 6.7x10~26 68
J0024—7204G 24750 2.6x1071%  6.6x10728% | 6.3x10726  9.7x1077 95 8.2x10~26 120
J0024—7204L 230.09 —3.6x10715 8.0x10728% | 4.5x10726 8.1x10~7 56 4.2x10~26 53
J0024—7204M 271.99 —4.3x1071%  8.0x1072%f | 8.2x10726 1.0x10~% 100 7.0x10—26 88
J0024—7204N 327.44  25x1071%  56x1072%t | 6.5x10726 5.7x10~7 120 5.1x10—26 91
J0030+0451 205.53 —4.3x10716  41x10727t | 7.8x10726  1.2x1077 19 7.2x10~26 18
J0340+41 303.09 —6.5x10716  44x10728 | 6.4x10726 44x10~7 150 5.6x 10726 130
J0711—6830 182.12 —2.9x10716  9.8x10728+ | 4.4x10726 32x10°7 45 3.4x10~26 35
J1024—0719 193.72  1.3x1071  1.3x10727t | 5.3x10726  1.6x10~7 39 4.6x10~26 35
J10384-0032 34.66 —7.8x10717  51x1072% | 1.2x1072% 55x107% 230 1.2x10725 240
J1453+1902 172.64 —3.2x10716  1.2x10727f | 1.4x1072% 1.1x1076 120 1.4x10725 120
J1518+0204A 180.06 —2.9x1071  4.0x10728; | 8.6x10726 5.0x107% 210 7.8x10726 200
J1641+3627A 96.36 —1.5x10715  4.9x10728; | 5.8x10726 9.7x10-% 120 5.0x10~26 100
J1721-2457 285.99 —2.4x10716  4.7x10728% | 6.2x10726  28x10~7 130 5.5x10726 120
J1730—-2304 123.11 —3.1x10716  25x10727 | 3.5x10726 2.8x10~7 14 4.5%x10~26 18
J1744—-1134 245.43 —4.3x10716  25x10727t | 4.9x10726  8.1x107% 19 6.3x10~26 25
J1748—-2446C 118.54 —1.9x1071  58x107281 | 4.0x10726 3.7x10°6 68 3.8x10~26 66
J1748—-2446D 212.14 —3.4x1071%  58x10728% | 54x10726 1.6x1076 93 5.3x10726 91
J1748—2446F 180.50 —2.9x10~15  5.8x10728; | 7.0x10726 2.8x10=% 120 7.4%x10—26 130
J1748-2446G 46.14 —7.3x10716  58x10728% | 5.8x10726 35x10°% 99 4.5%x10~26 76
J1748—2446H 203.01 —3.2x1071% 5.8x10728f | 5.8x10726 1.8x10°6 99 5.8x 1026 100
J1748—2446K 336.74 —5.3x1071%  58x1072%% | 7.1x10726 8.1x10~7 120 5.9x10—26 100
J1748—2446L 44549 —7.1x1071%  58x1072%% | 1.4x1072° 9.0x10~7 240 1.1x10~25 190
J1748—2446R 198.86 —3.2x10715  58x10728% | 4.7x10726 1.6x10"¢ 81 5.1x10-26 87
J1748—24468 163.49 —2.6x1071  58x10728% | 7.2x10726  35x107% 120 5.3x10~26 87
J1748—-2446T 141.15 —2.2x10715  58x1072%f | 3.9x10726  25x1076 67 3.0x1026 52
J1748—2446aa 172.77 —2.7x1071  58x10728; | 1.5x10725 6.6x107% 260 1.5x1072% 260
J1748—2446ab 195.32 —3.1x1071  58x10728; | 7.7x10726  2.6x107% 130 4.0x10~26 69
J1748—2446ac 196.58 —3.1x1071  58x107281 | 6.7x10726 2.3x107% 110 5.6x10726 97
J1748—-2446af 302.63 —4.8x10~1% 58x10728f | 7.3x10726  1.0x1076 120 6.0x10~26 100
J1748—-2446ag 224.82 —3.6x10715 58x10728% | 45x10726 1.2x10°6 77 5.1x10726 88
J1748—-2446ah 201.40 —3.2x1071%  58x10728% | 4.5x10726  1.4x1076 76 4.0x10~26 69
J1801—1417 275.85 3.1x10716  4.8x10728% | 8.7x10726 4.9x10~7 180 7.3x10726 150
J1803—30 140.82 —2.2x1071  4.1x10728% | 5.2x10726  4.8x107% 130 4.1x10~26 100
J1823—-3021A 183.82 —2.9x107 15  27x10728% | 6.7x10726 5.6x10°% 250 3.5%x10726 130
J1824—2452A 327.41 —1.7x10713  34x10727f | 8.6x10726 1.0x1076 25 5.5x10~26 16
J1843—1113 541.81 —2.8x1071%  9.3x10728% | 1.6x1072°> 25x10~7 170 1.1x1072% 120
J19054-0400 264.24 —2.8x10716  6.3x10728% | 6.2x10726  2.8x10~7 99 5.0x10~26 79
J1910—5959B 119.65 —1.9x10~1  7.1x10728% | 3.6x10726 27x10°% 50 2.5x10~26 35
J1910—5959C 189.49 1.1x10718  1.4x10729% | 4.3x10726  1.3x10-% 3200 3.2x10~26 2300
J1910—5959D 110.68 —1.8x10~15  7.1x1072%f | 3.1x10726 2.7x10=6 43 2.1x10~26 30

Continued
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Spllnter & Nested Sampling

heterodyne & MCMC

Pulsar v (Hz) v (Hz/s) hid h>% €95%  p35% /hgd h>% h>% /hd
J1910—5959E 218.73 —3.5x1071%  7.1x10728f | 4.2x10726 9.3x10~7 59 3.6x10726 51
J19114+1347 216.17 —7.9x10716  9.6x10728 | 59x10726 4.8x10~7 61 4.8x1026 50
J1913+1011 27.85 —2.6x10712  55x10726 | 43x1072° 5.8x107* 7.7 1.6x10725 2.9
J1939+2134 641.93 —4.3x10~™  1.3x107271 | 1.3x10725 3.6x10~7 95 1.3x1072% 100
J19444-0907 192.86 —3.6x107 16  8.6x10728t | 5.5x10726 45x10°7 64 5.5x 10726 64
J2007+2722 40.82 —1.6x1071  7.4x10~28 7.6x10726  7.4x107° 100 7.1x10726 96
J2010-1323 191.45 —1.8x10716  6.0x10~28 6.9x10726  57x10~7 110 6.3x10~26 110
J2124-3358 202.79 —4.4x10716  4.0x10727f | 4.8x10726  84x1078 12 3.9%10~26 9.8
J2322+-2057 207.97 —1.8x10716  9.6x10728% | 41x10726 1.7x1077 43 5.4x 1026 56

Table 5.2: Upper limits on the gravitational-wave amplitude of continuous waves from known isolated

pulsars.

A 1 denotes that the pulsar’s spin-down is corrected for proper motion effects.
A 1 denotes that the pulsar’s spin-down is calculated using a characteristic spin-down age of 10° years.

We see that the upper limits from the Spllnter/nested sampling analysis are gen-

erally slightly higher than those from the heterodyne/MCMC analysis. This is to be

expected from the drop in SNR (leading to an increase in upper limit) from the dead

time consideration. Some pulsars have an improved upper limit in the new analysis,

which can be due to the line removal scheme, such as pulsar J0024—7204C, for which

the surrounding noise in an example SFT is plotted in figure |5.1.1], the peaks seen will

be removed by the Spllnter routine, but will adversely affect the upper limit produced

by the heterodyned analysis.

Fourier Amplitude

3.5

25

SFT

— — — signal frequenc

1 1

347.2 347.25 347.3 347.35 347.4 347.45 347.5 347.55 347.6 347.65
Frequency, Hz

Figure 5.1.1: Noise levels around the gravitational-wave frequency for J0024—7204C, these peaks
will be removed by the Spllnter routine, but will adversely affect the upper limit produced by the
heterodyned analysis.
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For an overall comparison, we use the ratio between the upper limits of the two
analyses, which would be unity if the analyses were exactly the same sensitivity. A

histogram of values for this ratio,

h95%
— 05 (5.1.1)
h95%’
0,h
is given in figure [5.1.2
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Figure 5.1.2: Histogram of 2, the ratio of 95% upper limits from the SplInter /Nested sampling analysis
and the heterodyne/MCMC analysis for isolated pulsars. Indicated by the dashed line is the mean
value of 2, and the dotted line indicates the mean value when ignoring the large outliers, which is
1.107.

The mean value of 2 (once outliers have been removed) is 1.107, and unity is within
the uncertainty of the distribution. A slightly larger than unity €2 is expected due to
the loss of the time for which data is dismissed as it is not in integer 1800 s chunks.
The extra loss of SNR and hence higher h85% values could be due to spectral leakage
from the central peak in the expected sinc function as a result of the almost rectangular
windowing

As noted in section [f.1.2] the recovery of signals from pulsars in binary systems by
Spectral Interpolation may not be as accurate as for isolated pulsars. We analyse the
pulsars in binary systems in the same way as we analyse the isolated pulsars, however
we do not analyse pulsars which have been ruled out of analysis as a result of the
discussion in section [£.1.2]

Table[5.3|shows the result of the targeted searches for continuous gravitational waves
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from binary pulsars, and figure shows a histogram of 2 for the binary analysis.

Of the sources in binary systems from table [£.4] we are unable to analyse JO605+3757

and J16304-3734 as the timing solutions are not applicable to the S6 dataset.

Spllnter & Nested Sampling heterodyne & MCMC
Pulsar v (Hz) v (Hz/s) R h9>% €95%  p35% /ngd h>% h3®% /hid
J0407+1607 38.91 —1.2x10716  3.5x1072% | 9.6x10726 6.1x107° 270 5.1x 1026 145
J0437—4715 173.69 —4.1x10716  7.8x10727+ | 1.8x1072% 22x10~7 23 1.2x10725 15
J0614—3329 317.59 —1.7x1071%  6.4x10728 | 7.0x10726 4.8x10~7 110 8.5x10726 130
J06214-1002 34.66 —5.5x10717  54x10728% | 1.1x1072% 4.2x10~% 210 9.6x10726 180
J0900—3144 90.01 —4.0x10716  2.1x10727 1.6x1072% 3.8x1076 76 1.8x1072% 86
J1017—7156 427.62 —3.8x10716  2.9x10727f | 25x1072% 8.6x1078 87 1.0x1072% 34
J1022+1001 60.78 —1.6x10716  25x10727 | 7.0x10726 23x10°6 28 4.8x10~26 19
J1045—4509 133.79 —3.1x10716  53x10727f | 3.1x10726 94x10-8 5.8 3.0x10726 5.7
J1300+1240 160.81 —7.9x10716  3.0x10727t | 4.5x10726  25x10°7 15 4.9%x10~26 16
J1455-3330 125.20 —2.5x10716  1.5x10727t | 3.6x10726  4.0x1077 24 3.6x10726 24
J1518+4904 24.43 —1.3x10717  85x10728% | 4.5x1072% 1.3x107* 540 4.5%x10725 540
J1600—3053 277.94 —6.5x10716  51x10728%% | 7.7x10726  5.7x10~7 150 6.7x10~26 130
J1603—7202 67.38 —5.4x10717  4.4x10728% | 3.8x10726 3.2x10-% 86 2.3x10—26 52
J1614—2230 317.38  3.9x10716  50x10728% | 6.9x10726 29x10~7 140 6.4x1026 130
J1623—2631 90.29 —5.1x10715  34x10727t | 3.6x1072% 19x10°% 11 5.1x10~26 15
J1640+4-2224 316.12 —1.6x10716  49%x10728% | 5.9x1026 1.7x10~7 120 5.1x10~26 100
J1643—1224 216.37 —8.5x10716  38x10727t | 52x10726  1.1x10~7 14 3.6x10~26 7.8
J1701—3006A 190.78 —3.0x10715  4.6x10728% | 4.4x10726 20x10~% 97 3.6x10~26 78
J1709+2313 215.93 —6.9x10717  25x10728% | 8.4x10726 7.8x10~7 340 9.3x10~26 370
J171340747 218.81 —3.9x10716  1.0x10727t | 5.0x10=26  26x10~7 49 3.5x1026 35
J1719-1438 172.71 —1.5x10716  4.6x10728t | 6.0x1072% 7.8x10~6 1300 1.6x10725 350
J1732—-5049 188.23 —4.2x10716  6.7x10728t | 5.8x10726 7.0x10°7 86 4.6x10726 69
J1741+1351 266.87 —2.2x1071%  2.5x10727 1.0x1072%  3.1x10~7 41 1.1x1072% 44
J1745—-0952 51.61 —7.6x10717 4.1x10728% | 6.0x10726 1.3x107° 150 6.0x 1026 150
J1748—2446E 455.00 —7.2x1071%  58x10728% | 1.0x1072% 6.6x10~7 180 7.3x10726 130
J1748-2446Q 355.64 —5.6x1071%  58x10728% | 1.0x1072° 1.1x1076 180 9.4x10~26 170
J1751-2857 255.44 —7.3x10716  9.5x1072% | 6.4x10726 3.3x107 67 6.8x 10726 72
J1801—-3210 134.16  3.1x10716  24x107281 | 4.2x10726 2.8x107% 180 3.5x10~26 150
J1804—0735 4329 —6.9x10716  41x10728% | 1.0x1072% 1.0x10~* 250 8.8x 10726 220
J1804—2717 107.03 —4.7x10716  1.4x10727 | 3.4x10726 81x10~7 23 2.2x 10726 16
J1810—2005 30.47 —5.0x10717  2.6x10728t | 2.4x1072% 25x10~* 950 1.6x10—25 620
J1811—2405 375.86 —1.9x1071% 1.1x10727 | 1.0x10725 29x10~7 97 8.5x10726 77
J1841+0130 33.59 —9.2x1071%  4.2x10727 | 1.4x1072% 94x107% 34 1.3x10725 31
J1853+1303 244.39 —5.1x10716  7.3x10728+ | 6.2x10726  39x10~7 85 8.5x 1026 120
J1857+0943 186.49 —6.1x10716  1.6x10727t | 5.6x10726 34x10~7 35 5.7x10~26 36
J1903+0327 465.14 —3.8x1071°  36x10728% | 1.2x10725 8.6x10~7 340 1.6x10725 440
J1910+1256 200.66 —3.4x10716  54x10728t | 5.8x10726  6.6x10~7 110 7.7x10726 140
J1918—-0642 130.79 —4.0x10~16  1.0x10727f | 3.4x10726 6.6x10~7 34 4.0x10~26 40
J19554-2908 163.05 —7.5x10716  3.2x10728+ | 4.9x10726 24x107% 150 5.4x10726 170
J2019+4-2425 254.16 —1.7x10716  72x10728% | 5.1x10726 1.7x1077 71 5.6x10726 78

Continued
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Spllnter & Nested Sampling

heterodyne & MCMC

Pulsar v (Hz) i (Hz/s) R h9>% €95%  p35% /nsd h>% h>% /hd
J2033+17 168.10 —2.3x10716  6.8x10728+ | 9.1x10726 1.0x10=% 130 8.0x 1026 120
J2129—-5721 268.36 —1.5x1071%  4.7x10727t | 9.0x10726  1.2x10~7 19 5.2x10~26 11
J2145-0750 62.30 —1.0x10716  1.8x10727f | 42x10726  14x10~6 23 2.9%x 1026 16
J2229+2643 335.82 1.7x10716  4.1x10728% | 6.8x10726  2.0x10~7 170 6.5x 1026 160
J2302+4442 192.59 —5.1x10716  1.8x10727 | 6.8x10726 3.2x10~7 39 4.5x1026 25

Table 5.3: Upper limits on the gravitational-wave amplitude of continuous waves from known binary

pulsars.

A t denotes that the pulsar’s spin-down is corrected for proper motion effects.

A § denotes that the pulsar’s spin-down is calculated using a characteristic spin-down age of 10° years.

number of pulsars

1

= Q histogram []

= = =Mean Q

[ 1

1.5 2

Q

25

3 3.5

Figure 5.1.3: Histogram of €, the ratio of 95% upper limits from the SplInter /Nested sampling analysis
and the heterodyne/MCMC analysis for binary pulsars. Indicated by the dashed line is the mean value
of Q, and the dotted line indicates the mean value when ignoring the large outliers, which is 1.15.

We again see that the 95% upper limits are all similar between the two searches,

when considered with the expected differences discussed previously regarding the vari-

ability of A9°”. The mean value of € in binary searches is 1.15, and unity is again

within the uncertainty of the distribution, approximately as expected.




Chapter 6

Follow up of continuous-wave
candidates from all-sky and

directed searches

Space 1s big. You just won’t believe how wvastly, hugely, mind-bogglingly
big it is. I mean, you may think it’s a long way down the road to the

chemist’s, but that’s just peanuts to space.

The Hitch-hikers Guide to the Galaxy, Douglas Adams

The speed increase of spectral interpolation compared to the heterodyne algorithm in
both the By, calculation and the knock-on effect for the parameter estimation stages
means that we are able to perform more computationally intensive procedures, such as
rapid parameter estimation and evidence calculation on gravitational-wave candidates
from all-sky and directed searches.

Using the Bayesian framework explained in section[2.2]and the SplInter algorithm in
chapter [3, we can search the surrounding parameter space using an intelligent posterior
sampling technique, rather than adaptive grid-based methods [91].

Section [6.1] introduces the all-sky and directed search methods used in the creation
of these candidates, and explains the F Statistic used in frequentist searches for con-

tinuous gravitational waves. Section [6.2] then explains the method we use to follow up

123
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these candidates, and discusses how we can interpret the results.

Section shows the results of a follow up search for a candidate from a directed
search in the direction of the apparent stellar companion of Fomalhaut, which was
found to have characteristics which could not rule out a neutron star ‘hiding” behind
the debris disk [75]. This is the first analysis using the Bayesian continuous-wave
analysis to search over more than one frequency parameter. We also use this search as
an example to show further look and detection protocols, i.e. how we take a candidate
and go through detection criteria to decide whether this is a bona-fide gravitational-
wave detection or not [65].

Section shows the follow up of candidates from the Spotlight search aimed at
two directions along the Orion spur [6]. In comparison to the Fomalhaut b search,
we also include at this point a search over a relatively small patch of sky, according
to the uncertainties for each candidate. This is the first search of its kind, using the

continuous Bayesian framework to search in sky position.

6.1 Frequentist searches for signals with unknown
origin: all-sky and directed searches

To follow up the candidates, we should understand the way in which they have been
created so that we can know the extent of the parameter space which we must search
and have an understanding of the meaning of the candidate information. An intro-
duction to the searches which generated the candidates we use follows in sections|6.1.1
and [6.1.2] and section includes a basic introduction to the F Statistic, which is a
maximum likelihood estimator widely used in continuous gravitational-wave searches

(e.g. in I} 3 111, 13, 15l 55] 69]).

6.1.1 Fully coherent directed searches for gravitational waves

The search method used to find the candidate used for section [6.3]is the fully coherent
directed F-statistic search. This search is in a particular direction which is known to
a degree of accuracy such that it can be considered as a point source, but for a source

for which the phase evolution is completely unknown. The details of the search are
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given in [4, [100], and an example of a search is given in [§].

The search templates are placed according to the three dimensional [f © M) f (2)]
parameter space metric, with a body centred cubic tilingﬂ and then the F statistic is
computed at each of these points. The templates with the largest 2F are recorded,
either by an F-statistic cut-off (2F = 33.3768 in [4]) or by selecting a proportion of
the loudest candidates (0.01% in [§]).

These initial candidates are then filtered through a series of signal consistency
checks, the first of which is an ‘Fscan veto’, which normalises SF'T's and time-averages
each frequency bin, the veto then removes any candidates within a number of bins
whenever power deviates from the expected y? distribution, this could be caused by
non-stationary noise or spectral lines, this deviation is often defined by a threshold
(£7 standard deviations in [4], or 1.5 times the expected power in [§]). The next filter
is to check consistency between the detectors, as the 2F value should increase for the
two detectors combined coherently compared to the individual detectors alond} The
remaining candidates are then assessed for statistical significance by comparing to a
Gaussian noise distribution [8] and only those with less than 5% false alarm probability
survive for human inspection. This human inspection involves comparison with known
line artefacts in the data, and a check on the normalisation of the y? distribution, as

seen in figure 1 of [].

The F Statistic

A popular tool for analysing the probability of a signal with certain Doppler parameters
is the F statistic [55] used e.g. in [Il [15].

The F statistic is a maximum likelihood statistic given the Doppler parameters of
the source, and is computed by comparing the data s(t) to four basis waveforms per

detector, hy_4. The basis waveforms are dependent upon the antenna patterns a(t)

IThough the extent of the f(2) parameter space will often be comparable to or less than the unit
cell length, meaning it is effectively a two dimensional search

2We will use an analogous argument with regard to the SNR later when discussing the results of
the follow ups.
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and b(t)ﬁ and the Doppler parameters A, and are defined as

hi(t; X) = a(t; a; 6) cos P(t; M), ho(t; \) = b(t; a; ) cos P(t; N)

hs(t; A) = a(t; o; 6) sin @(¢; N), hy(t; ) = b(t; a; ) sin @(t; N). (6.1.1)

The computation of these waveforms can be computationally limiting, and so the choice
must be made between coherent or semi-coherent methods. The coherent method will
require the same initial phase ¢ throughout the search, but a semi-coherent search will
allow the phase to change within specific intervals. This is advantageous for compu-
tational reasons as the longer phase templates are not required for the entire duration
of the search. The F-statistic method utilises an analytical maximisation over the
amplitude parameters, a, and so these are not stated in results, though a 95% upper
limit can be inferred through Monte Carlo simulations e.g. in [4].

The multi-detector F statistic is defined by [55]]

4 B|F,* + AR, — 2CRe|F,F}]

PN = N Tone D |

(6.1.2)

where Tops is the observation time, |N(f)| is the one sided spectral noise density, and

F, and Fy are defined by

Fy(f, ) = /O Bt A)e N dr (6.1.3)

Fy(f,\) = /O bt e (6.1.4)

with appropriate Doppler effects from detector and source motion applied. A, B, C

3These are a(t) and b(t) in section and are defined fully in equations (12,13) of [55].
4A more elegant derivation is given in [85], but as the notation used in much of the literature is
related to that of [55] we keep in line with that paper.
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and D are defined by

p 2 Tobs )
= a(t)”dt,
TObs A ( )

2 Tobs
B = Q/i b(t)* dt,
0

TObs

2 Tobs
C= / a(t)b(t) dt,
TObs 0

D= AB - (. (6.1.5)

The different computational implementations of this are discussed in [32, [70, [77].

The first effectively boils down to a summation estimate of the integrals of equa-

tions and [6.1.4] For F,, this summation is

Nsprs—1 ) j:j*‘i’Nte'rms
BUAN= Y altde ™ Y SPy(fA)L (6.16)
k=0 J=J3*—Nterms

and Fy is similar, j denotes SF'T frequency bin and k is the SFT, Ngprs is the number
of SFTs and Nyepms is the number of SE'T bins used, and j* is the frequency bin nearest
to the source frequency. T} is a phase correction for each SFT, Py; is the Dirichlet
kernel, effectively the signal model to compare to the data, which is similar to the sinc
interpolator we use in section [3.1.1] which both take into account the orbital motion
effects.

The resampling implementation of the F statistic heterodynes SFTs to a desired
frequency, inverts the Fourier transform to a time series which is then band-limited,
downsampled and phase shifted for each datapoint according to the relative motion
effects. This means that the F statistic can be efficiently calculated through the Fourier
transform of this data.

The loudest 2F values in a particular search will follow a x? distribution with four
degrees of freedom if searching in stationary Gaussian noise, however if there is a signal

present, then a non-centrality parameter proportional to fOTObS h(t)?dt is introduced.
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6.1.2 The Spotlight search

The second method, which is used for the candidates in section is the Spotlight
search [6], which utilises the PowerFlux method [I5] for a search pointed along the
Orion spur. Although the search is aimed in a particular direction it is not a directed
search, as the sky area searched is greater than the size of the unit cell of the template
spacing. PowerFlux is a variant of the StackSlide method [28], in which the frequency
bins of an SF'T are slid according to barycentric corrections such that the prospective
signal frequency is aligned and all of the power present is in one series of bins, the
PowerFlux differs from a traditional StackSlide method in that the contributions from
each SFT are weighted according to the sensitivity of the detector from the antenna
pattern.

The version of the PowerFlux method implemented in the Spotlight search is a
loosely coherent search, meaning that it does not use the power within each SFTE], but
includes the complex amplitude of the frequency bins, allowing the phase to vary within
a pre-determined set [36]. The reason for this loosely coherent statistic is that it is
designed to optimize processing for a set of templates rather than a single template as
used in fully coherent searches. This optimization can be done for detection efficiency
or for computational efficiency; however the gains for detection efficiency are much less

than those for computational efficiency [37].

6.2 Bayesian follow up parameter estimation

In order to perform a parameter estimation search in Doppler parameter space, we
alter the targeted search to include a narrow frequency band and a small patch of sky.
Our signal must still be near to the initial Doppler parameters used in the spectral
interpolation stage, as we require the frequency to be close enough to the used frequency
so as not to degrade the SNR (see section , we also want a fairly small search
space for computational expense reasons. In general, the candidates will come with a
small enough uncertainty that both of these considerations are already satisfied.

The searches for unknown sources provide us with candidate locations, and we use

5This allusion to coherence means that it is no longer really a flux of power.
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a nested sampling algorithm to search the amplitude parameters [hg, ¢, cost, )] as
before, but also in the Doppler parameters of the source [f©, f1) ) o (5]@

The search region for the Doppler parameters will preferably be a multivariate
Gaussian with associated errors from the candidate generating algorithm if provided
(as in section , though we can also use a uniform prior with limits set by repeated
tests to find the optimal search area (as in section [6.3)).

The most efficient way to search the parameter space would be to use an ellipsoid
in parameter space defined by a covariance or correlation matrix according to the
candidate position and the grid resolution, though these were not available for the
searches presented here.

When we search in frequency and/or frequency derivatives, the high correlation
between these parameters and the initial phase parameter ¢y mean that we will not
get much, if any, useful information about ¢y. We still retain ¢ in the illustration of
results in section [6.4] as a strong signal should have a peak in the posterior probability
of ¢g parameters.

The results of this will be a series of nest points taken during the nested sampling
algorithm (see section , which are then converted into a posterior by accepting
the nest point as a posterior point with a probability according to the prior volume
multiplied by the likelihood. This means that the points with the lowest likelihood
and the lowest prior probabilities will be mostly discarded. These posterior points are
then placed into histogram bins, with the number of points in each bin of the histogram
indicating the probability density that there is a signal with the given parameter within
that range. These histograms will then be represented either in a one dimensional plot
of the parameter value versus probability density or as a two dimensional contour
plot, in which lines of constant probability are plotted, showing correlation between

parameters.

61n this chapter we only consider the gravitational wave frequency f, not the rotational frequency
v, this is as the relationship between f and v is ostensibly unknown.
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6.3 Fomalhaut b directed search follow up

The eye was rimmed with fire, but was itself glazed, yellow as a cat’s,
watchful and intent, and the black slit of its pupil opened to a pit, a

window into nothing.

Lord of the Rings, J.R.R. Tolkien

In a 2015 paper, Neuh&user et. al, [75] postulated that an apparent companion object
in the debris disk of Fomalhaut[], known as Fomalhaut b or Fom b, could possibly be a
background neutron star hiding behind the debris disk of the star and with very similar
proper motion.

This would be an extremely interesting potential source of gravitational waves due
to its proximity to the Earth, around 11 pc [75]. Considering the closest pulsar targeted
in chapter |5 was 160 pc (J0437-4715), and the 1/r dependence of the amplitude of a
signal (equation , a signal from this pulsar would be 14.5 times stronger than a
signal from J0437-4715 and 25.5 times stronger than one from the closest isolated pulsar
J0030+0451 (280 pc) given similar source and amplitude parameters. This proximity
means that it is worth searching for, even if the likelihood is that it is not a neutron
star.

A coherent directed search for gravitational waves from Fom b [52] found a single
outlier which could not initially be attributed to lines in the data, the parameters of
which are given in table [6.1] Tion denotes the coherence time of the search, the time
from the start to the end of the search, including any time for which the detector is

not collecting data.

R.A., o (rad) | Dec, 6 (rad) f9 | (Hz) 7O (Hz/s) @ (Hz/s?)

6.0111077204 | —0.51696653 | 738.9957991249271 | —7.57352 x 10~ | —1.803 x 1077
2F ho (est.) Start (GPS time) | Finish (GPS time) Teon, days
71.1 1.31x107%4 965 529 827 967981375 28.37

Table 6.1: Candidate parameter estimates and search information for the outlier from the directed
search for Fomalhaut b [52].

"Dubbed ‘the Great Eye of Sauron’ [90] due the similarity of the images of the debris disk to the
eye in the Lord of the Rings films released in the same year.
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We perform parameter estimation using nested sampling on the candidate for the
span of time given in table[6.1] so that we can confirm that we agree with the directed
search that there could be a signal present, as well as to see the SNR and Bayes factor
(evidence ratio, equation for the signal hypothesis against the noise hypothesis.
We use uniform priors as given in table to give us all of the contained probability
ranges for the Doppler parameters, these were found by repeated tests, expanding the
prior ranges until all of the probability was contained, again we use uniform priors on
the amplitude parameters as as discussed in section to provide unbiased parameter
estimation. The choice of upper limit on Ay was so that we could conservatively take
into account the results of [3] figure 9, setting the upper limit to be over two orders of
magnitude above the all-sky upper limit at that frequency (~ 3 x 1072%).

The candidate information contained £ values, so we decide to search over f(2,
even though it is unlikely we would see strong effects from this parameter given the
range from table in this search time. We do not search over the right ascension
and declination, as these are accurately known to sub-milli-arc-second precision, and
so the search would not be able to distinguish a more accurate sky position within this
range given this coherence time. An approximate sky resolution of the search from the

estimates given in all-sky searches (such as [3]) would be

2c
A= ——— 3.1
Uf(O)Tcoh7 (6 k )

where v is the velocity of the detector, for which we use 30 000ms~*. For this frequency
and coherence time, we would get a sky patch of size df = 1.1 x 10~ sr, or 0.04 square
degrees, much larger than any uncertainties on the position of the object from EM
observation.

The results of this parameter estimation are given in figure [6.3.1} In figure [6.3.1
and in later plots (all plots to figure , we denote the frequency by the difference

between the frequency and the candidate frequency, f© — f ©)

canqs bhis is for aesthetic

reasons, as we would otherwise not be able to read the axis labels due to the numerical
precision required.

Figure shows that we are able to agree with the directed F-statistic search
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parameter lower limit | upper limit
ho 0 1021
(G 0 3
¢0 0 27
cos L -1 1
O (Hz) | 738.9957970 | 738.9958010
fO (Hzs™Y) | =8x 1071 | =7 x 1071
f® Hzs2) | —6x 10718 | 2x 10718

Table 6.2: Prior values used in the search for the Fom b outlier. Our prior choices were made to
be unbiased in amplitude parameters and to contain all of the probability in the Doppler parameter

space.

Probability Density, Hz™'

Fom b parameter estimation 965529827-967981375
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Figure 6.3.1: Posterior probability density distributions of the parameters for the Fom b candidate
from H1 (blue), L1 (red) and joint (green) analyses. The black dashed line indicates the candidate
parameters and estimated hg for the candidate from the fully coherent F-statistic search. The green

dashed lines indicate the 68% credible interval regions from the joint analysis.
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that we see what looks like a signal in the data at this approximate frequency and
spin-down, coming from both detectors. The parameter estimation shows that for hg,
fO f0 and f® the candidate parameters are within the 68% credible intervals of
the joint detector posteriors. The joint analysis uses the data from both detectors as
the By input, meaning that the posteriors come from the joint likelihoods of all the
analysis. There is a slight discrepancy between the f(?) parameters, though we should
not be too disheartened by this, as it is difficult to resolve a second order spin-down at
this coherence length. The contour plots show the approximate Gaussian distributions
with correlations as expected from the signal model, and the joint posterior for hg
has very small probability density at hy = 0. We also see from figure that ¢ is
strongly peaked and consistent between detectors, again qualitatively improving the

evidence that this is a signal.
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Figure 6.3.2: Posterior probability density distribution of the initial phase ¢g parameters for the Fom
b candidate from H1 (blue), L1 (red) and joint (green) analyses. The strong peak and the agreement
between detectors for this parameter imply a true signal. The green dashed lines indicate the 68%
credible interval regions from the joint analysis. As the probability peak is around ¢y = 0, we plot
the probability density including ¢q in the negative regions, rather than above ¢y = , this is entirely
equivalent.

The nested sampling algorithm gives us a log,, Bayes factor of 5.572 from the joint
analysis, which means that the evidence for the signal model is higher than the noise-

05572 (approximately 373,232). In the individual detectors,

only model by a factor of 1
the log Bayes factors are —0.402 and —0.724 for H1 and L1 respectively, so individually

we favour the noise model. This improved Bayes factor in the joint analysis implies a
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real signal, as the joint Bayes factor is much higher than for either of the individual
detectors, or the combined incoherent Bayes factor (—0.402 + —0.724 = —1.126).

The coherent SNR of the joint detector analysis was 8.49, of which 6.03 was from
the H1 detector and 5.98 from L1, again indicating the presence of a signal as the joint
SNR is greater than the individual values. The SNR from individual analyses was 6.59
for H1 and 6.18 for L1, as expected, these are higher than the individual interferometer
SNRs stated in the joint analysis, this is as the most likely point in parameter space is

different in the individual analyses and in the joint analysis.

6.3.1 Signal consistency check: increasing coherence time

To check for real signals we extend the coherence time of the search, for which the SNR
should scale as o< /Tron. Therefore we perform the analysis again with the coherence
length at twice and four times its initial value, which we now refer to as Tcon init-
This is a search over 56.75days of data from GPS time 964304053 to 969 207 149

and 113.5days from GPS time 961 852505 to 971 621 841 respectively. The parameter

estimation results of these analyses are presented in figures [6.3.3] and [6.3.4]

We see in figure that the islands of probability are smaller than previously
seen in figure [6.3.1] this is as the longer coherence time leads to a better resolution
in parameter space. The posterior distributions are not consistent between detectors,
which is not consistent with a true astrophysical signal.

We see in figure that the islands of probability are again smaller than previ-

ously seen in figures [6.3.1] and [6.3.3], due to the longer coherence time. The posterior

distributions are again not consistent between detectors, which is not consistent with
an astrophysical signal.

Tables and show the log,, Bayes factors and SNRs for the individual and
joint analyses as we increase the coherence times. We see that in the joint analysis, the
Bayes factor falls from 5.572 to 2.652 for Tion = 270 init but then falls to —1456.008
for Teon = 4Ton init, this means that the signal hypothesis is almost completely ruled
out for this coherence time, this implies either a transient signalﬂ or no signal at all.

In the joint analysis with Tion = 4Ttonmit We see a relatively high SNR signal

8Future work has been planned to investigate the possibility of transient continuous-wave signals.
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Fom b parameter estimation 964304053-969207149
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Figure 6.3.3: Posterior probability density distributions of parameters of the Fom b candidate with
twice the initial coherence time (GPS times 964 304 053 to 969 207 149) from H1 (blue), L1 (red) and
joint (green) analyses. The black dashed line indicates the candidate parameters and estimated hg
for the candidate from the fully coherent F-statistic search. The green dashed lines indicate the 68%
credible interval regions from the joint analysis.

Individual analysis
Detector H1 L1
Coherence time p log,(B) p log,(B)
965 529 827 to 967981 375 | 6.5866 | —0.402 | 6.1837 | —0.724
964 304 053 to 969207149 | 7.4006 | —0.887 | 6.4665 | —1.274
961852505 to 971658697 | 7.4806 | —1.263 | 7.3100 | —1458.746

Table 6.3: SNR and Bayes factor values from individual detector analyses for the initial Fom b
followup, and analyses with twice and four times the initial coherence time.
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Figure 6.3.4: Posterior probability density distributions of parameters of the Fom b candidate with
four times the initial coherence time (GPS times 961 852 505 to 971658 697) from H1 (blue), L1 (red)
and joint (green) analyses. The black dashed line indicates the candidate parameters and estimated
ho for the candidate from the fully coherent F-statistic search. The green dashed lines indicate the
68% credible interval regions from the joint analysis.

Joint analysis

Detector H1 L1 Joint
Coherence time p p p log,(B)
965 529 827 to 967981375 | 6.0308 | 5.9790 | 8.4923 5.572
964 304053 to 969207 149 | 6.2763 | 5.6093 | 8.4177 2.652
961852505 to 971658 697 | 6.0360 | 5.6182 | 8.2460 | —1456.008

Table 6.4: SNR and Bayes factor values from the joint detector analysis for the initial Fom b followup,
and analyses with twice and four times the initial coherence time.



6.3. FOMALHAUT B DIRECTED SEARCH FOLLOW UP 137

(8.2460) with an extremely disfavoured signal hypothesis (log,,(B) = —1456.008), this
seems somewhat counter-intuitive, and to investigate further, we perform the analysis
with exactly the same set-up, but on white noise. This noise was created with the By
drawn from a normal distribution characterised by the o in the spectral interpola-
tion output file from the analysis of Fom b, so that we track the same changes in the
detector sensitivity over this band.

A similar test would be to shuffle the datapoints, randomly switching the times-
tamps of the data. This would lead to each of the datapoints having the same charac-
terising noise as in the initial data, but any coherence would be removed, this version
of the check is performed in [79]. The white noise analysis results are presented in
table [6.5]

Joint analysis
Detector H1 L1 Joint
p p p log,,(B)
Real analysis | 6.0360 | 5.6182 | 8.2460 | —1456.008
White noise | 4.3728 | 3.9413 | 5.8868 | —1278.960

Table 6.5: Comparison of SNR and Bayes factor in detector data and white noise for an analysis with
four times the initial coherence time.

We see that we can find relatively high SNR values even in the region of the ex-
tremely disfavoured signal hypothesis, this is due to the SNR being calculated from

the nested sampling point with the highest likelihood value

(6.3.2)

where 0. is the parameter space point § = [a, \] with the maximum likelihood,
whereas the Bayes factor is calculated from the evidences for the signal model, which

marginalises over all the parameter space, and compares this to the noise hypothesis

as in equation [2.2.4]

_PUBRI 0 <ho <hpax)  Z
BB =0 Zom (633)

This is due to the difference between a maximum likelihood and a marginalised likeli-

hood estimate.
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Using the longest stretch of data, we set a 95% upper limit on hy, h85% on gravi-
tational waves from this direction, at this frequency and spin-down. For this analysis,
we find that h)** = 7.67 x 1025, This upper limit is greater than those in chapter ,
which is as expected considering that we use only around 24% of that coherence time
and only use two detectors (H1 and L1) instead of three (H1,L1,V1). The spin-down
limit for this source with the frequency and spin-down as in the candidate parameters
is 2.35 x 10723, so if the source is truly a neutron star, we will have constrained hq to

be less than 3.3% of the spin-down limit.

6.3.2 Finding the source of the outlier: decreasing coherence
time

As the searches for longer coherence time seem to have implied that the signal does
not last for longer than the initial search time, we consider the possibility that the
signal could be a transient, monochromatic gravitational-wave signal, or a transient
noise feature in the data. We investigate these possibilities by splitting the initial time

limits in half, each with a coherence time of Toh init/2-

Figures|6.3.5| and [6.3.6|show the results of parameter estimation in these two halves

of the data.

We see that in the first half of the data, there is no obvious signal present from
the H1 detector, and the posteriors look fairly uniform, with the contours spread over
the entire prior range, representing the small variations in the noise. From L1 however
we see a relatively strong, but not obviously signal-like posterior, which is particularly
visible in the f© vs. f and hy plots, and this is reflected in the joint posterior.

The second half of the data also shows no obvious signal, and the spread and
disagreement between the detectors leads to qualitative disfavouring of the signal hy-
pothesis. Despite this, this stretch of data had a SNR of 6.877 and a Bayes factor
of 1.546 from the joint analysis, which shows that the signal evidence in the initial
coherence time is mainly coming from this half of the data.

Tables [6.6] and [6.7] show the SNR in the first and second halves of the initial co-
herence time for individual and joint analyses. The SNR in the joint analysis of the

first half of the data for both detectors is 5.594, of which 4.156 is from H1 and 3.744 is
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Figure 6.3.5: Posterior probability density distributions of amplitude parameters of the Fom b candi-
date for the first half of the initial coherence time from H1 (blue), L1 (red) and joint (green) analyses.
Black dashed lines indicates the candidate parameters and estimated hg from the fully coherent JF-
statistic search. The green dashed lines indicate the 68% credible interval regions from the joint

analysis.
Individual analysis
Detector H1 L1
Coherence time (GPS time) p |log(B)| p |log(B)
965 529 827 to 967981 375 6.587 | —0.402 | 6.184 | —0.724
965 529 827 to 966 755601 (1°* half) | 3.606 | —2.990 | 4.521 | —2.332
966 755601 to 967981375 (2°¢ half) | 6.290 | —1.100 | 5.725 | —1.229

Table 6.6: SNR and Bayes factor values from individual detector analyses for the Fom b followup in
the first and second half of the initial coherence time.

Joint analysis

Detector H1 L1 Joint
Coherence Time (GPS time) p p p | logo(B)
965,529,827 to 967,981,375 6.031 | 5.979 | 8.492 | 5.572
965,529,827 to 966,755,601 (1% half) | 4.156 | 3.744 | 5.594 | —1.346
966,755,601 to 967,981,375 (2" half) | 4.747 | 4.972 | 6.877 | 1.546

Table 6.7: SNR and Bayes factor values from joint detector analyses for the Fom b followup in the

first and second half of the initial coherence time.
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Figure 6.3.6: Posterior probability density distributions of amplitude parameters of the Fom b can-
didate for the second half of the initial coherence time from H1 (blue), L1 (red) and joint (green)
analyses. Black dashed lines indicates the candidate parameters and estimated hg from the fully co-
herent JF-statistic search. The green dashed lines indicate the 68% credible interval regions from the

joint analysis.
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from L1. For the second half this is 6.877 for both detectors, 4.747 from H1 and 4.972
from L1, implying a signal favoured in the second half of the analysis. The log,, Bayes
factors in the joint analysis of —1.346 and 1.546 again imply that the signal evidence

is mainly coming from the second half of the coherence time.

Detector Joint

Initial time 5.572(8.492)

Halves —1.346(5.594) 1.546(6.877)
Quarters —2.620(3.796) \ —1.994(4.615) | 2.610(6.761) \ —2.059(4.581)

Table 6.8: log,, Bayes factors and SNRs (in brackets) from halves and quarters of the initial coherence
time for joint H1 and L1 analysis.

Detector H1

Initial time —0.402(6.587)

Halves —2.990(3.606) —1.100(6.290)
Quarters —2.844(3.141) \ —2.644(3.989) | —1.828(4.741) \ —6.144(3.927)
Detector L1

Initial time —0.724(6.184)

Halves —2.332(4.521) —1.229(5.725)
Quarters —2.903(2.882) \ —2.456(4.201) | —0.301(5.941) \ —77.296(3.886)

Table 6.9: log,, Bayes factors and SNRs (in brackets) from halves and quarters of the initial coherence
time for individual H1 and L1 analyses.

We then cut the coherence length down again, investigating each quarter of the
initial coherence time, performing a ‘binary chop’ to find the length of time most
affected by this transient signal or noise feature.

The breakdowns of SNR and Bayes factors into halves and quarters in tables
and show that the third quarter accounts for much of the signal evidence in both
detectors, highlighted in bold in the tables. If we are to find a physical reason behind
this outlier, whether a transient signal or a noise source, this is the best place to start
looking.

Some further investigation into this approximate frequency with this span of data
found noise lines in an auxiliary channel monitoring the output mode cleaner in L1
and a short duration artefact in H1 data from the pre-stabilised laser.

From this evidence, we conclude that this outlier is probably not an astrophysical
signal. It is possible that the postulated neutron star glitched twice in this period

of data (as in [50]), which could lead to a coherent template matching between the
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glitches and not matching outside of this period. However due to the evidence from
the auxiliary channels, it is much more likely that a coincidence between the two noise

sources is the cause of the signal evidence in this stretch of data.

6.4 Orion spur Spotlight search candidate followup

The Orion spur is a spoke-like region of the galaxy in which our solar system is found.
As neutron stars are more likely to be found in populated concentrations of stars such
as globular clusters [7] or the galactic centre [I], a speculative search has been carried
out along this spur [6].

This search analysed S6 data, aiming in two directions; these are referred to as
the ‘A’ and ‘B’ directions, specified in table [6.10f We reiterate here that although
this search is pointed along the spur it is not a directed search, as the search areas
(6.87° and 7.45° diameters respectively) are much too large to be searched with a single
coherent template in sky position.

The Spotlight search utilised the Powerflux algorithm, [15], a variant of the Stack-
Slide method, in which SFT frequency bins are shifted according to the Doppler
shift at that time and summed at the (now monochromatic) frequency. The fre-
quency range for this search was f(© = [50,1500] Hz and the spin-down range was
fO = [=5 x 107°,0] Hzs™', the time limits of this search run from GPS 951534120
(2010 Mar 02 03:01:45 UTC) to GPS 971619922 (2010 Oct 20 14:25:07 UTC), the
second half of S6. The result after four stages of post-processing from the search is a

set of seventy outliers, of which 37 come from the ‘A’ direction, and 33 from the ‘B’

direction.
Search resion Right ascension Declination Search radius
& Radians Hour angle Radians Degrees Degrees
A 5.283600 | 20h 10m 54.715s |  0.585700 | 33° 33’ 29.297" 3.438
B 2.248610 | 08h 35m 20.607s | —0.788476 | —46° 49" 25.151"” 3.724

Table 6.10: Spotlight search outlier search direction in radians and hour angle/degrees and the size
of the patch on the sky covered by this search.

Of these seventy outliers, fourteen are not readily dismissed from line artefacts
within the data; the parameters of these are given in table[6.11] The Spotlight search

computed SNRs from seven equal-length segments of S6 data, which were then com-
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bined coherently with neighbouring segments to find the highest combined SNR value,
given in the table with an indication of the inclusive range of subsegments used to
calculate this SNR. Some of the outliers have parameters outside the initial range, e.g.
A13 has f) = 9 x 107!, this is due to the initial post-processing procedure, which
searches over spin-down, so it is possible for an outlier which is initially found with

small spin-down to become a candidate with a small spin-up.

Outlier fc(gr)ld, Hz fc(ir)ld, Hzs™' | a (rad) |6 (rad) p | subsegments
A13 1138.509931 9 x 107 | 5.225329 | 0.606463 9.72 [1,6]
Al4 1404.892257 | —1.205 x 1079 | 5.299464 | 0.642611 10.03 [0,6]
A24 1321.567031 | —1.82 x 1079 | 5.318136 | 0.55852 8.83 [0,6]
A27 1474.94224 | —2.05 x 1079 | 5.293492 | 0.563278 8.67 [0,5]
A28 990.761302 | —2.705 x 107% | 5.229674 | 0.580059 8.92 [0,6]
A29 1429.678924 | —2.01 x 1079 | 5.301244 | 0.57326 8.61 [1,6]
A30 1325.509688 | —4.325 x 1079 | 5.241072 | 0.598875 8.65 [0,6]
A33 1456.266111 1.95 x 10710 | 5.276759 | 0.586927 8.49 [0,5]
B15 613.261319 | —3.95 x 107%% | 2.187829 | —0.735556 | 9.54 [0,6]
B17 933.338229 1 x 10719 | 2.226266 | —0.851431 | 9.30 [0,5]
B20 1249.438351 | —1.55 x 1079 | 2.248791 | —0.819053 | 8.64 [1,6]
B21 880.401753 | —2.865 x 10799 | 2.284457 | —0.828541 | 8.28 [1,6]
B23 1333.279063 | —1.65 x 1079 | 2.23864 | —0.835651 | 8.56 [0,6]
B30 1458.536476 —3.8 x 1079 | 2.298322 0.754296 | 8.12 [0,6]

Table 6.11: Spotlight search outlier candidate parameters, with frequency, spin-down, sky position
and the stretch of data for which they had the highest SNR [0].

The followup analysis was run using the parameters in table to define a multi-
variate Gaussian with uncertainties from table for priors on the Doppler parame-
ters, and uniform priors were used on amplitude parameters as discussed in section [2.2]
We note here that the uncertainty in sky position is dependent upon frequency, and
so the sky patch is not consistently the same size, this is as the template mismatch in

sky position increases for higher frequency, and so the template spacing is smaller.

Parameter uncertainty
fO 5 x107° Hz
o 3 x107'* Hzs!
a 8/f© radHz™!
) 8/f© radHz ™!

Table 6.12: Spotlight search outlier candidate uncertainties. The frequency and spin-down uncertain-
ties are constant for all candidates, whereas the sky position uncertainties are inversely proportional
to frequency. f(© and f() from [6], a and § from [37)].

This search was performed using the nested sampling algorithm for individual and

joint detector analyses of H1 and L1 data, for the stretch of data indicated by the
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subsegments in table [6.11] The analysis was run on the atlas cluster, and took an
average of 2.6 days for the individual analyses and 5.9 days for the joint analyses.

Figures to show the parameter estimation from the nested sampling for
the candidates A13, A14, A27 and B23E|. Shown are the results from the H1, L1 and
joint detector analyses, the candidate parameters are indicated by the solid black line,
and the priors are indicated for the Doppler parameters as black dashed lines. We also
show contour plots for f(® vs. f) and « vs. §, with contours given for the 1 and 2
o probability levels. The contour levels are found by using a best fit of the amplitude
of a normal distribution with parameters as in the priors to the posterior pdfs. As
well as this we show the 1 and 2 o contours for the prior normal distribution as the
dashed black lines. Shown by green dashed lines are the 1o credible intervals for the
parameters from the joint analysis. These credible intervals and the priors are shown
in the figures to illustrate how well the data fits a normal probability distribution.
We also include contours which are at one and a half, and five times maximum of the
best fit normal pdf and five times the best fit, which are shown by the thicker lines
on the Doppler parameter contour plots, and indicate the parameter space points with
excesses of probability compared to the parameter space around them, such as the
large spikes in the joint posterior in figure [6.4.1|

We also perform the nested sampling on white noise with the same length of data
and parameters and priors the same as candidate A13, the white noise is created in the
same way as that discussed in section [6.3.1], utilising the o}, estimates from the Splinter
algorithm to randomly select a By from that distribution. We do this so that we can
compare the results to the case in which we know that there is no signal present, the
parameter estimation for this analysis is shown in figure [6.4.5]

We see that the posterior probabilities (except hg) are dominated by the priors, with
the amplitude parameters varying over the full range and the Doppler parameters being
very close the the multivariate Gaussian used as the prior; this is visibly evidenced by
the fact that the 1 and 2 o data contours are very close to the prior contours, implying
that there is no signal present in the data. We note that the candidates from a semi-

coherent (or loosely coherent) search such as PowerFlux are more likely to give a

9The rest of the candidates in table are presented in appendix |§|, figures to [D.0.10
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candidate which looks like noise in the fully coherent data, this is as there may be a
significant jump in phase between successive coherent data stretches, and so the loosely
coherent template is favoured in a region where the fully coherent template is not. The
Bayes factors and SNRs for each of the candidates in the individual and joint analyses
are shown in table with 95% upper limits on hg for that region of parameter

space, these upper limits are indicated by black dashed lines on the hg posterior plots.

H1 L1 Joint
Outlier P log,((B) P log,(B) P log,(B) hg™
A13 5.67272 —1.4270 | 4.89238 —1.2179 | 7.05884 —1.3502 7.9270x10~%*
Al4 6.92681 —1.4287 | 5.38657 —1.3415 | 5.60011 —1.5476 5.5118x107%°
A24 6.71552 —1.5730 | 5.69546 —1.4229 | 4.58003 —1.5984 4.7701x10~%
A27 7.23744  —1.3730 | 3.77208 —1.2476 | 5.69235 —1.4648 7.1070x10~%
A28 6.06536 —1.5156 | 4.29310 —1.5196 | 5.90139 —1.5872 5.1807x107%°
A29 6.03214 —1.2712 | 6.46573 —1.3282 | 6.52650 —1.4117 8.3487x10~%
A30 5.68745 —1.4047 | 6.58232 —1.4469 | 6.53262 —1.5861 5.7512x107%°
A33 5.75062 —1.4347 | 4.92137 —1.3392 | 5.75062 —1.4347 6.4434x10~%
B15 5.77548 —1.7557 | 6.13126 —1.5156 | 6.10400 —1.7656 3.3277x10~%
B17 542201 —1.5793 | 6.24954 —1.5034 | 6.33777 —1.6786 3.5913x107%°
B20 7.17421 —1.5582 | 5.15920 —1.4315 | 6.63466 —1.5601 6.2784x10~%
B21 6.88002 —1.5702 | 6.34269 —1.4856 | 5.56983 —1.7117 3.5987x10~%
B23 5.65441 —1.5115 | 6.79574 —1.2544 | 5.49981 —1.4713 6.3183x107%°
B30 5.79615 —1.5088 | 6.52938 —1.3698 — 7.5222x107%
White Noise | 7.41321 —1.4110 | 6.42666 —1.3280 | 5.99686 —1.5700 7.3264x102°

Table 6.13: Spotlight search outlier SNRs, Bayes factors and upper limits. The joint analysis for
candidate B30 was cut off, and as such we present the individual analyses only. The h85% is the value
from incoherently combined individual analyses.

The joint analysis for candidate B30 was unfortunately cut off, without time for
reanalysis for representation in this thesis, however an incoherent upper limit was set
by multiplying the posterior pdfs on hy together and finding 95% of the integral under
the resultant posterior density function. When doing this, we must be careful not to
apply the priors twice, and we note that because the prior on hg is uniform, no ‘prior
removal’ routine is required which would affect the 95% upper limit.

From table we again see that the upper limits on the follow up candidates are
much larger than those in chapter 5], due to using only half of the coherence time and
two of the three detectors.

To be confident that we are returning the priors due to noise and not due to search-
ing a parameter range which is too small for the search we consider the sky position
accuracy of the search. If we compare the uncertainty in table of 8/ to the un-

certainty from equation [6.3.1] we can see the effective number of sky position templates
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that will fit into the prior search range,

A ¢
Ntemplates ~ 8/f(0) - 40T on .

(6.4.1)

For a coherence length of the full duration of the search, this is around 8 000 templates,
so we can be confident that the agreement between the posteriors and the priors is down
to a lack of signal. A more basic, phenomenological argument would be that as we
have single-point spikes in the data, the resolution must be smaller than the grid size
of the plot.

We also consider the frequency and spin-down accuracy of the search; the uncertain-
ties of 5 x107° Hz in frequency and 3x10~'"' Hzs™ ' in f(I), using an allowed mismatch

of 0.3 gives an approximate frequency resolution of (e.g. from [3])

B Vv 12m

AfO = T N3 X 1078 Hz and (6.4.2)
T4 coh
VT2

NG Sm ~ 107 Hzs ™, (6.4.3)
71-T‘coh

which are both many orders of magnitude less than the width of the priors. To use
the Bayes factor as a definitive detection or non-detection statistic, we would require
many repeated studies of noise given the exact same experimental conditions, which is
not feasible for the amount of repetitions needed to recreate the conditions properly.
As figure [6.4.5| gives us a direct comparison for candidate A13, and an approximate
comparison for the other candidates, we can however use this as a qualitative compar-
ison. From the negative log,, Bayes factors, we can conclude that although we cannot
entirely rule out the signal hypothesis, the noise hypothesis is favoured by factors of
16.5 (logyo(B) = —1.2179) or more even in the individual detector analysis, and so a

signal from any of these candidates is unlikely.



Chapter 7

Conclusion and future work

Bilbo: Hawve you thought of an ending?

Frodo: Yes, several, and all are dark and unpleasant.

Lord of the Rings, J.R.R Tolkien

As the anticipated observation of gravitational waves becomes more tangible, the
prospect for astrophysics is intriguing, seeing the Universe in ways not possible with
electromagnetic observation. One of the most exciting types of object to observe us-
ing gravitational waves is a neutron star. For example we can target an analysis for
quasi-sinusoidal gravitational-wave emission from a known pulsar. The observation of
these continuous waves will hopefully provide a fundamental probe of nuclear matter,
as well as providing a fascinating new window for astronomy.

Until we observe gravitational waves though, discussing the potential astrophysics
is like a song for the deaf, and therefore many algorithms have been developed for
digging deep into the detector noise for traces of these signals. This work has focussed
on the search for continuous waves from known pulsars or prospective signals using
Bayesian inference.

No gravitational waves have been found in the work of this thesis using the continuous-

wave searches presented, and we are not able to confirm or disprove their existence.
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7.1 Spectral interpolation of fast Fourier transforms

In this thesis, particularly chapters[3]and 4] a new algorithm intended as a replacement
for one of the vital cogs of one of the flagship searches for continuous gravitational waves
from neutron stars, has been introduced, tested and applied to targeted searches. The
testing of the Spectral Interpolation, Splinter, algorithm has shown that it is a viable
replacement for the current heterodyne routine in most cases, particularly showing that
the Spllnter By output produces almost identical posterior probability densities for the
amplitude parameters of hardware injected signals. The tests have also shown that we
are able to utilise a Fresnel integral-based interpolator to search for signals with high
instantaneous spin-down from the observatory’s relative motion, fi, e.g. from isolated
sources with low declination. A test was performed to see the limit to which we can
utilise Spllnter for signals from neutron stars in binary systems. Of the 97 sources in
binary systems analysed, 47 were found to be in systems which could be analysed using
the Spllnter algorithm, and from these results, an empirical limit of v(©a; < 10P? was
set for binary systems in which sources can be analysed. This limit is based on the
SFT, the Fourier transformed data, being taken using a time window of 30 mins, and
so the limit would be much larger if a B separation of 60s, as used in the heterodyne
algorithm, could be used.

This algorithm has been used to analyse data from LIGO S5 in the first search for
signals from pulsars at both twice the rotation frequency and the rotation frequency
[79], as would be expected from a triaxial neutron star with non-aligned crust and core
angular momenta, or a biaxial precessing star [57]. This work showed the advantages
of the Spllnter line removal routine, improving upon the S5 upper limits [17] for pulsar
J1748—2446ac by a factor of 1.7 (7.19 x 10720 to 4.2 x 1072%) due to a wandering
spectral line feature. This line was not present in S6 data, so this improvement is not
seen in chapter [}

This algorithm is now due to be used in the search for known pulsars with data
from the advanced generation detectors. One option for future searches would be to
develop an ‘online’ search, updating the parameter estimation regularly as data comes
from the detector. For example a weekly update would use the posterior results from

the previous week as the prior on the analysis for the new data, and by utilising a
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prior based on posteriors which involve all parameters it would remain a fully coherent
search. This may be limited by the provision of SFTs, as the creation of these data
files is currently not a regular or online occurrence.

The next stage of work to develop this algorithm would be to investigate the use of
switching between the frequency and time domains so that we can reconstruct signals
with higher f;, or fi in a more efficient way, such as sources in binaries with shorter
periods, a process which could be similar to the resampling implementation of the F-
statistic. The concept for this work is to perform an inverse FFT on the SFT data,
split the data into shorter segments, and then perform another FFT to return to the
frequency domain. Because of the efficiency of the FFT and inverse FFT algorithms,
this stage should not be particularly computationally intensive. At this point we could
carry out the Spllnter algorithm with a shorter At¢, and hence the allowed fie would
increase according to fk,max =0.1/ At? as we saw in section m For optimal compu-
tational efficiency, it may even be possible to choose the new At based on a calculated
fk and fk of the signal, leading to analysis of sources in binaries with shorter periods

and the Fresnel interpolation may no longer be required.

7.2 Targeted searches for continuous-wave signals
from known pulsars

A targeted analysis using Spectral Interpolation output with nested sampling was per-
formed in chapter [5] partly to show how the new procedure compares to the one which
it is intended to replace, and partly as an example of an astrophysical search for rep-

resentation in this thesis. We found that the 95% upper limits set on hy, h85%

were
comparable to those set by the heterodyne and MCMC routine in [2], and that S6 data
was within a factor of 10 of the spin-down limit in some of the cases presented. A total
of 97 sources were analysed, of which 45 were in binary systems; this is less than the
number indicated in section as two pulsars, J0605+3757 and J16304-3734 did not
have timing solutions during the S6 dataset. The spin-down limits for known pulsars

were found on average to be larger than those from the heterodyne and MCMC analysis

by a factor of around 1.1 in both the isolated and binary cases; this is due to the use
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of 30 min SFTs causing a significant proportion of data in science segments to be lost,
as discussed in section [3.4]

The next stage of this work could be to analyse the seven sources considered for
special attention in [2]. Such a careful analysis, taking account of multiple glitches,
is not required for the comparison between methods. If the work described above for
adjustments to the Spllnter algorithm is implemented, it would then be possible to
include all sources in binaries in this targeted search.

The switch on of the advanced LIGO detectors in late 2015, and advanced Virgo
in 2016-17 [64], should lead to a much higher probability of seeing gravitational waves,
including continuous waves. The reduction in the noise floor of the detectors by an
order of magnitude will mean more sensitive searches, and the widening of the search
band will include pulsars with frequencies down to f(®©) ~ 10Hz, meaning that it will
then be possible to analyse the population of young, non-recycled pulsars (we see this
in figure . These young pulsars generally have high spin-down values, which could
imply large gravitational-wave luminosities from kinetic energy considerations. As well
as the wider frequency band and better sensitivity, more pulsars are being observed,
which will provide more targets, increasing the likelihood of some of these targets
having detectable gravitational radiation. For example with results from LOFAR [96],
SKA [89] and AstroSAT [78], the expected number of known pulsars will increase by
at least an order of magnitude [62] in the coming years. This increase in the number of
targets increases the importance of the computational efficiency of targeted continuous-
wave analysis pipelines, and the ability of the Spllnter algorithm to analyse multiple

sources at once is vital to this effort.

7.3 Rapid Bayesian follow up of continuous-wave
candidates from all-sky and directed searches

Presented in chapter [6] was a follow up procedure for candidates from directed searches,
utilising the Spllnter algorithm for a rapid analysis of a candidate signal from a po-
tential neutron star, Fomalhaut b, and candidates from a beamed search along the

Orion spur. These searches found no evidence of continuous gravitational-wave signals
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from these candidates, and so an upper limit on hy on emission from these prospec-
tive sources was set. The search for signals from Fomalhaut b included a search over

1

a frequency range of 4 x 1079 Hz, over a spin-down range of 10~ Hzs™! and a fre-

quency second derivative of 8 x 10718 Hzs™2.

This search was the first search using
the Bayesian pipeline searching over more than one frequency parameter. The search
for the Spotlight outliers searched a frequency range set by a normal distribution with
an uncertainty of 5 x 107° Hz, over a spin-down set by a normal distribution with an

uncertainty of 3 x 10~ Hzs™!

and a patch of sky defined by a normal distribution
with an uncertainty of 8/f(®) rad Hz=!. The Spotlight follow up search was the first
using the Bayesian pipeline to search within a patch of sky. This search was intended
as an outline of a prospective follow up procedure, and more work would be required
to optimise and automate the analysis.

The next stage of this work would be to optimise and automate the analysis, and
to apply this search algorithm to candidates from other all-sky and directed searches.
Again, if the adjustments to the Spllnter algorithm as suggested above are imple-
mented, then searches for prospective signals from sources in binary systems from the
TwoSpect analysis are possible. Initially though it would be possible to make com-
parison to existing methods such as [91], and apply the follow up to upcoming results
from the Einstein@Home bucket search.

The follow up analysis of the possible neutron star companion Fomalhaut b indi-
cated an interesting line of investigation for future searches, including the possibility of

searching for a transient monochromatic signal with all of the hallmarks of a traditional

continuous wave, but with finite duration. This work is planned for the near future.



Appendix A

Regarding the derivation of the
gravitational-wave equation in

linearized gravity

Here we show a few of the points involved in the derivation of the gravitational-wave

equation in linearized gravity which were skipped over in section [1.1}

Obtaining the Riemann curvature tensor in linearised gravity

The Riemann curvature tensor is defined by the Christoffel symbols, Ffw
bed = Oclpg — Oaly, (A.0.1)
which are themselves defined by the metric

1
[y = égad [Ob9de + Ocgar — Oagoe) - (A.0.2)

If use a metric which we consider as a perturbation h,, to flat spacetime 7,,,, such that

g;LV = n'uy + h'u,/, this is then
1
I = 5(77ad + 1) [0p(Nac + hac) + Oc(map + hay) — Oa(e + Pue)] - (A.0.3)

In linearised gravity, h,, and its derivatives are small, so we remove terms of higher
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than linear order in h,, or its derivatives. Also as 7, is constant, we can remove all

terms which are a derivative of 7,
a 1 ad
Iy = 3" [Ophc + Ochap — Oahue] - (A.0.4)
We then use these I'?, in equation

1
Rgcd :é{acnae [abhde + adhbe - aehbd] - adnae [abhce + achbe — aehbc] }
1
:Enae{acabhde + acadhbe - acaehbd - adabhce - 8clachbe + adaehbc}

1
:§nae{acabhde — 0:0chyg — BaOphee + 0aOechie }, (A.0.5)

where the +0,.04hy. and —0,0.hy. terms cancel because the partial derivatives commute.

This final line is the result we stated in equation [I.1.4]

Gauge transformations

In the gauge transformation hq, — hly = hap — 0uép — Op€,, We state that the Einstein
equation remains valid as all the £ terms cancel by symmetry, we see this in the Riemann

curvature tensor. Equation [I.1.4] gives us

QRch = nae{acabhile - acabadge - acabaefd - acaehfgd + acaeabgd + acaead&a

— 04Dyl + 0adhDele + DaOhDele + DaDehty, — 0aD.0nEe — 020.0:8}, (A.0.6)

for which many of the terms on the brackets cancel — the second with the eighth (the
& terms) the third with the fifth (the &, terms), the sixth with the final term (the &,

terms) and the ninth and the eleventh (the &, terms) leading to

1
chﬁn“{(‘?ﬁbh’de — &ﬁehgd — adabh/ce + (9d(96h§,c}, (AO?)

which is the same as equation but in the A’ gauge, meaning that the physical

results of being in the A’ gauge are the same as in the original frame of reference.
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The Ricci tensor in the harmonic gauge

We now consider obtaining equation for the Ricci tensor in the harmonic gauge.

Given Ry. = Ry, from equation [1.1.4] (or |[A.0.5)), we can see that

2Ry,

bea

:ﬁae {acabhae - acaehba - aaabhce + aaaehbc}
2 Rye =8,05h% — D,0uh® — BuBph? + 0,0 hy

—0,05h — 0.0ahg — 0a0ph? + Ohye, (A.0.8)

where h = h? and O = 9,0 as in section [L.1]
We then use the trace-reverse of the perturbation, h_l‘f = hi — %n,‘}h, and analogously

h¢ = hg — %ngﬁ, and the Ricci tensor becomes

_ _ _ 1 _ _ _
2Ry =Ohie + 0:0ph = 0cOahy — DaObh — 5 (8:0pm2h — 0:0umyh — B Opnh)
=0hye + 0.0ph — 0.0,h — 0,05h — % (40.0,h — 0.05h — 0.0h)

_ _ -1 _
=0hpe — 0.0,hf — 0,0,h% + 0.0ph — 3 (20.05h)

=0hpe — 0.0,hf — 0,0,h%.

(A.0.9)
In the harmonic gauge, d,h¢ = 0, so the final two terms are zero, leaving
1
Rbc - §|:|h/bc; (AO].O)

which is equation [1.1.6, When we use this in the Einstein equation [1.1.1] we get

1
Gab :Rab - §gabR
1 1 1
— 2 Ohgy — = gay=Th
g —tab T paby

1 1

=—0( hap — up=h
50 (= nagh)
1

=5 0ha, (A.0.11)
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where we have replaced g, with 7, on the third line by remembering that in lin-
earised gravity, anything higher than linear order in h is zero. We can therefore use

equation to relate this to the stress-energy-momentum tensor Ty,

- 1
o, 167G

T (A.0.12)

which is equation m, and which is Ohg = 0 in free space and Ohy = 0 in the

transverse traceless gauge.



Appendix B

Regarding the use of discrete
Fourier transforms as a sample of

the continuous Fourier transform

This appendix concerns the use of continuous Fourier transforms to approximate the
outcome of a discrete Fourier transform, and shows that the sinc approximation would
be the same whether it is calculated using discrete or continuous methods. We follow
a similar method to that used in [66].

The discrete Fourier transform is an algorithm which translates a series of data into
its inverse domain, i.e. a time series into the frequency domain or a displacement series

into wave number space. The discrete Fourier transform is defined by

=z

-1

Fj =)  foe 2min/N, (B.0.1)

3
Il
=)

where Fj is the Fourier amplitude of the j™ frequency bin of the FFT, N is the total
number of datapoints (such that N = rAt) and f,, is the discretised function being
transformed.

Using the sinc approximation, and only using the equivalent of the first part of
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equation |3.1.13| the function being transformed is

where ¢, is the n'? time point, t, = n/r, r is the sample rate, and N is the total number

of datapoints, N = rAt. This means that Fj is

N-1
. . n
By = pesplion] 3 exp 2im = (fe— )] (B.0.3)
where f; = L is the frequency of the j™ bin.

Fortunately, the summation here has a closed form, and can be rewritten as

1 —exp [22# (fr — fj) }
1 —exp [22% (fx — fj)}

F; = yi, exp [igy] (B.0.4)

By factoring out appropriate half angles in the numerator and denominator, one can
modify this to a simpler form, here (so that the equations fit on the page) we use a

symbolic substitution of ¢ = 71 (fk — )

exp [igN] {exp [—igN] — exp [igN]}

F; = yrexplio . ; : B.0.5
3= P o = Tl {exp —ia] — oxp i) (B0.5)
Using Euler’s formula, the terms in the braces can be rewritten as sinusoids,
Coyexplim (fy — fi) At] sin
F; = gy expich] p| -({k f3) At] | ™ (1 i) At] (B.0.6)
€xp [”T; (fk - fj)] sin [ T (fk: - f])]

If we make the assumption that r is large, we can use the small angle approximation

for the sinusoid in the denominator, and assume that the exponent in the denominator

is zero
o sin [ (f — f;) At]
F; = ypexpligr +im (fr — f;) At B.0.7
= vl in (= )M o Ty B0T)
Using the sinc function as defined before, sinc(x) := Sinxﬂ, we rewrite as
F; = yprAtexp [igy + im (fi — f;) At]sinc [7 (fr — f;) At]. (B.0.8)

IThis is the same assumption we made in the continuous case, but doing so at an earlier stage of
the calculation.
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In section[3.1.1] we calculated H(f) in the sinc approximation as (this is equation|3.1.16)

Hi(f) ~ yeltexplioy + in(fe — )M sine [r(fi — HA,  (B.0.9)

and comparing the two, we see a spurious factor of r remaining in the discrete calcu-
lation which is not in the continuous form. This is expected, and within the LIGO

collaboration, the 1alapps_MakeSFTs code removes this factor.



Appendix C

Regarding the derivation of the B,

estimator

Some people in the review of this work for the collaboration have raised doubts over
the legitimacy of taking the derivative of something with respect to its conjugate, and
that this would be zero, as was done in section to find an estimator for By from
the least squares fit. In fact this is something that can be shown fairly easily. By using

the Wirtinger derivatives with the complex variable z = x + iy

d 1/ d d d 1/ d d
= d = — +i— C.0.1
T 2(d$ Zdy) an L 2(dx+ldy>’ ( )
we see that
dz 1/ d d
P 2(dx+zdy> (x +iy) (C.0.2)
1 /de dz . dy ,dy
I et i _J - C.0.3
2(d9@’+2dy—|_zdac+Z dy) ( )
1
=3 (1+0+0-1)=0, (C.04)
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and equivalently

dz* 1/ d o d .
1 (dx . dx . dy ,dy
1
——(1+0+0—1)=0. (C.0.7)
2

In case the reader still has the same doubts, the derivation is repeated here sepa-
rately for the real and imaginary parts of B, and then recombined.

The least squares fit means that we must find the minimum value of ) | ; |Skj — Brptkj ?
given different By. To do this, we differentiate here with respect to each of the real
and imaginary parts of Bj and set these to zero. Firstly, we expand the terms of the

sum
> ISk = Bug* =D SkiStj — BitkiSui — Butui Sty + BiBuiging.  (C.0.8)
J J

which, with the real and imaginary parts of By explicitly separated becomes

D 1Sk = Bug P =Y SkpSi; — Re(Br) [ + 1xs Siy]
j j

+ ij(Bk) [szskj - ukjS,;*j} + [%€<Bk)2 -+ Jm(Bk)ﬂ ,u”,;j,ukj. (009)

We then take the derivative with respect to the real part of By, PRe(By),

d . )
d9Re(By) Z [Skj — B |* = Z{_ [147Sk; + x5 S7; ]
J J

+ 2Re( By ) pyihiri y = 0, (C.0.10)

which can be solved for Re(By) as

> L1k Sk + 11 S35

Re(By) =
(Be) QZj/v‘Zj:ukj

. (C.0.11)
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Next we take the derivative with respect to the imaginary part of By, Jm(By),
d 9 T .
W(Bk) Z |Skj — Brprs]” = Z{Z [:ukjskj - Wsjskj]
j j
+ 20m(By) pgiins y = 0, (C.0.12)

which can be solved for Jm(By) as

> [0Sk — 1y Siy]
203 b

Jm(By) = . (C.0.13)

This placing of the imaginary unit in the denominator helps us to compare equa-

tions [C.0.11] and [C.0.13] to z, an arbitrary complex number, for which we can easily

see
z+ z2* z—z*

Re(z) = 5 and Jm(z) = ——, (C.0.14)

21

so we can equivalently see from equations [C.0.11] and [C.0.13

>_[Skjmig)

)= C.0.15
b= S ] (C.0-15)
J

which is equation |3.2.9,

In this separated real and imaginary method, it is more intuitive than it was in the
previous method to see that this stationary point will always be a minimum. If we take
the next (second) derivative of Y7 |Sk; — Brpusl® = 2puj 5 with respect to Re(By)

and Jm(By), we find

d? *
ARe(By)2 > 1Sk = Bupua* = 2410y (C.0.16)
J
d? )
dJm(By)? D 1Sk = Bupg? = 2uii 5. (C.0.17)
J

As pu;pixg will always be positive ( iy pw; = [pry]?), these stationary points will always

be a minimum.



Appendix D

Additional results from the

Spotlight outlier search

The Spotlight outlier plots in section were all very similar, as such we presented
a representative example at that time. For completeness we present the rest of the

parameter estimation plots here in figures [D.0.1] to [D.0.10]

We plot the posterior probability densities for individual detector analyses from
H1 and L1 and a joint analysis from H1 and L1. This is shown in the form of one
dimensional pdfs and two dimensional contour plots for frequency against frequency
first derivative f© vs. £ and right ascension against declination o vs. §. We plot
fO — fc(gr)ld for aesthetic reasons, as the numerical precision required would not be
representable on the figure.

The joint analysis for candidate B30 was unfortunately cut off, without time for re-
analysis, as such figure[D.0.10] contains an incoherent joint posterior on the parameters.
This difference has been visually highlighted by plotting the incoherent joint posterior
in magenta, rather than green as used in the other figures. The incoherent posterior
is found by multiplying the two posterior pdfs together, effectively using one analysis
as the prior on the other. We must be careful about applying the priors twice though,
as applying a Gaussian prior twice will effectively reduce the width of the Gaussian.

In consideration of the priors, we divide each point on the combined posterior by the

prior value at that point.
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sky position parameters
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Figure D.0.1: Posterior probability density distribution and contour plots for parameters of Spotlight

candidate A24, from individual analyses for H1 (blue) and L1 (red), and a joint analysis (green).
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sky position parameters
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Figure D.0.2: Posterior probability density distribution and contour plots for parameters of Spotlight

candidate A28, from individual analyses for H1 (blue) and L1 (red), and a joint analysis (green).
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Figure D.0.3: Posterior probability density distribution and contour plots for parameters of Spotlight

candidate A29, from individual analyses for H1 (blue) and L1 (red), and a joint analysis (green).
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Figure D.0.4: Posterior probability density distribution and contour plots for parameters of Spotlight
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Figure D.0.5: Posterior probability density distribution and contour plots for parameters of Spotlight

candidate A33, from individual analyses for H1 (blue) and L1 (red), and a joint analysis (green).
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Figure D.0.6: Posterior probability density distribution and contour plots for parameters of Spotlight
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Figure D.0.7: Posterior probability density distribution and contour plots for parameters of Spotlight

candidate B17, from individual analyses for H1 (blue) and L1 (red), and a joint analysis (green).
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Abbreviations and Symbols

Presented here is a list of definitions and abbreviations used throughout the text. All
definitions and abbreviations are indicated at the point of their first use in the main

body of the text, but are included here for reference.

Abbreviations

Abbreviation Meaning

ANTF Australia Telescope National Facility, the Commonwealth Sci-
entific and Industrial Research Organisation’s radio astronomy
observatories, most often used to discuss the pulsar catalogue,
[26, [67].

CBC Compact Binary Coalescence. The inspiral and merging of two
compact objects such as neutron stars or black holes.

DFT Discrete Fourier Transform. An algorithm for transforming a
discretely sampled series of data from the time domain to the
frequency domain.

EM Electromagnetic, often referring to optical, X-ray and ~-ray ob-
servations of astrophysical objects.

FFT Fast Fourier Transform. An algorithm for fast computation of a
discrete Fourier transform, also used to describe its output.

GR General Relativity, Einstein’s theory of.

GW Gravitational Wave, a solution to the wave equation of General

Relativity, and its effect on the spacetime metric.

H1 LIGO detector at Hanford, WA.

Continued
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Abbreviation Meaning

IFO Interferometer.

L1 LIGO detector at Livingston, LA.

pdf probability density function.

MCMC Markov-Chain Monte Carlo. A method for sampling a probability

distribution, used mostly in this thesis to describe the use of
MCMC to explore posterior probability distribution parameter
space.

SFT Short Fourier Transform. A specific form of FFT, used in the
LIGO and Virgo Scientific collaborations for storing frequency-
domain data.

S5 Science run five. A time period (4'* Nov 05, 4pm UTC to 30" Sep
07, 0:00am UTC) for which the LIGO detectors were collecting
scientifically useful data from the detectors.

S6 Science run six. A time period (7*" Jul 09, 9pm UTC to 20*"" Oct
10, 3:04pm UTC) for which the LIGO detectors were collecting
scientifically useful data from the detectors.

Spllnter Spectral Interpolation, a method of downsampling gravitational
wave data for a prospective continuous-wave source, removing
rotation and relative motion effects.

SSB Solar System Barycentre, an inertial frame of reference at the
centre of mass of the solar system. Generally very close to, but
not neccessarily at, the centre of the Sun.

Vi1 Virgo detector, at Cascina, Tuscany.

VSR2 Virgo Science Run two. A time period (7 Jul 09, 9pm UTC
to 22%4 Oct 09, 7:36am UTC) for which the Virgo detector was

collecting data at or close to design sensitivity.

Symbols

This table presents a list of commonly used symbols throughout the text. Other sym-

bols are used, but their scope is limited to use in and around the point of first definition,
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so are not included here. Some symbols are utilised for more than one meaning in dif-
ferent chapters, though their different meanings are defined at that point and usually

separated by different chapters in the text.

Symbol ~ Meaning

A The GW amplitude tensor, equation [1.1.8]

A(t) The complex amplitude of a gravitational wave at the detector, equa-
tion @

By, The output of the Spllnter routine. Noisy estimate of complex ampli-

tude of GW signal at the detector, vy, By = yi + ny, equation .
Bk The output of the heterodyne routine. Noisy estimate of complex

amplitude of GW signal at the detector, yx, Bx = yx + ng, equa-

tions |2.3.5| and |2.3.6}

B. The output of the heterodyne routine with half hour data separation.

Found by averaging By during the window associated with each B,

equation @

Clw] Fresnel cosine integral, equation [3.1.18]

Fy Antenna functions for plus and cross polarisations respectively, equa-

tions |1.3.2| and |1.3.3}

F The F statistic, the maximum likelihood probability for a given set

of Doppler parameters for a continuous-wave signal, see section W

H(f) Fourier transform of h(t), as in equation [3.1.1}

Hi(f) Fourier  transform  of h(t) during the time window

tr — % <t <ty + %, equation |3.1.4

Jm|z] Imaginary part of z, e.g. in|3.3.1}

N(f) Fourier transform of the noise, n(t), Ni(f) is frequency-domain noise

in the k* SFT, introduced in section ﬁ|

bed Riemann Curvature Tensor, equation [1.1.4

Ry Ricci Tensor and similarly the Ricci Scalar R = R, defined in sec-
tion @
NRelz] Real part of z, e.g. in|3.3.1

Continued
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Symbol ~ Meaning

S(f) Fourier transformed data from the detector, S(f) = FFT[s(t)], de-
fined in equation w

Se(f) Fourier transformed data, S(f) in the k' SFT.

S[w] Fresnel sine integral, equation [3.1.19,

Teon coherent observation time, used in Fomalhaut b search, defined in
table .

A evidence, the probability of the data given the information I,
p({ Bk}, ), defined in section .

a set of parameters [ho, 1, ¢o, ¢], define in section ’;‘

£ GW frequency, n'* derivative, defined in sectioﬁ 2..1.

fx instantaneous GW frequency at time t, equation |3.1.8|

i instantaneous GW frequency derivative at time t;, calculated using
equation m

Fr instantaneous GW frequency second derivative at time ¢, see sec-
tion @

I spacetime metric, equation |1.1.2]

Py a small perturbation to the metric, equation |1.1.2]

fLW trace reverse of the metric perturbation, equation |1.1.5

h(t) GW strain in detector, equation [2.3.1}

ho GW strain amplitude, equation [2.1.3|

h85% 95% upper limit on hg, i.e. 95% of the probability for values of hy is
below this point, equation .

k subscript to denote a specific By, , used for summation in the likelihood

calculation. This subscript also used to indicate values or variables
specifically related to this By, value, such as t; being the centre of the
time window, px(f) and Si(f) for model and data related to the k™
SFT. First used in equation ’m‘

Continued
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Symbol ~ Meaning

K subscript to denote a specific Bx or to indicate values or variables
specifically related to this Bx value, such as tx being the centre of
the time window. Defined e.g in equations .

m mismatch between Spllnter and heterodyne values, indication of drop
in SNR, defined in equation m

n(t) noise on h(t), defined section [2.3.1}

p(A|B)  probability of A given B, equation [2.2.1]

r sample rate, equation |2.3.9

s(t) signal in detector = h(t) + n(t), defined section [2.3.1

tk time associated with By = time halfway through window, defined
section [2.3.1] similarly ¢x and ¢, for the time windows for By and
B..

Yk complex amplitude of the gravitational wave at the detector at time
t, including initial phase component y, = A(ty)exp(i¢y), equa-
tion @

« right ascension, defined in section

) declination, defined in section H

o(t) time difference from SSB to detector, equation [2.1.7]

At tr/Kk/x spacing, the length of the time window during which each
By kr 1s calculated.

€ ellipticity, equation [2.1.4}

um flat spacetime metric, equation [1.1.2]

L source inclination angle, defined in section .

A Doppler parameters of a continuous-wave signal, defined in sec-
tion |ZI|

K subscript to denote use of the heterodyne routine with half hour t,

separation, equation Fl_l_fl

Continued
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Symbol ~ Meaning

w(f) model of the expected GW signal in the frequency domain, amplitude

removed u(f) = 2L 1 (f) denotes p(f) in the k™ SFT. Defined in

Yk
equation @
m(a) the prior p(all), as in section .

p signal to noise ratio, SNR, defined in section .
Ok standard deviation on values of By, also used as Spllnter estimate of

this value, see section , first used equation [2.3.9]

or standard deviation of n(t), the noise in the time domain [2.3.9

oF standard deviation of noise in the frequency domain, N(f), defined
in equation @

o(t) GW phase ®(t) minus the constant ¢, equation [2.3.3]

o the constant offset of GW phase, defined in section \d

O(t,\) GW phase, a function of time and the Doppler parameters, equa-

tion m

P GW polarisation angle, defined in section ’;‘




Bibliography

1]

J. Aasi, J. Abadie, B. P. Abbott, R. Abbott, T. Abbott, et al. Directed search
for continuous gravitational waves from the Galactic center. Phys. Rev. D,

88(10):102002, November 2013. doi:10.1103/PhysRevD.88.102002.

J. Aasi, J. Abadie, B. P. Abbott, R. Abbott, T. Abbott, et al. Gravitational
Waves from Known Pulsars: Results from the Initial Detector Era. Astrophys.

J., 785:119, April 2014. doi:10.1088,/0004-637X/785,/2/119.

J. Aasi, J. Abadie, B. P. Abbott, R. Abbott, T. D. Abbott, et al. Einstein@Home
all-sky search for periodic gravitational waves in LIGO S5 data. Phys. Rev. D,
87(4):042001, February 2013. doi:10.1103/PhysRevD.87.042001.

J. Aasi, B. P. Abbott, R. Abbott, T. Abbott, M. R. Abernathy, et al. Searches
for continuous gravitational waves from nine young supernova remnants. ArXiv

e-prints, submitted to ApJ, December 2014.

J. Aasi, B. P. Abbott, R. Abbott, T. Abbott, M. R. Abernathy, et al. Advanced
LIGO. Class. Quant .Grav., 32(7):074001, April 2015. doi:10.1088/0264-9381/
32/7/074001.

J. Aasi, B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, et al. A loosely
coherent search of the Orion spur using sixth science run LIGO data. 2015. In

the LIGO Document Control Center https://dcc.ligo.org/P1500034.

J. Aasi, B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, et al. Search

for Gravitational Waves From Nearby Globular Clusters. 2016. In Preparation,

see also presentation at https://dcc.ligo.org/LIGO-G1500006.

184


https://dcc.ligo.org/P1500034
https://dcc.ligo.org/LIGO-G1500006

BIBLIOGRAPHY 185

8]

[10]

[11]

[12]

[13]

[14]

[15]

J. Abadie, B. Abbott, R. Abbott, M. Abernathy, C. Adams, et al. First search
for gravitational waves from the youngest known neutron star. The Astrophysical

Journal, 722(2):1504, 2010.

J. Abadie, B. P. Abbott, R. Abbott, T. D. Abbott, M. Abernathy, et al. Search
for gravitational waves from low mass compact binary coalescence in LIGO’s
sixth science run and Virgo’s science runs 2 and 3. Phys. Rev. D, 85(8):082002,
April 2012. doi:10.1103/PhysRevD.85.082002.

J. Abadie, B. P. Abbott, R. Abbott, M. Abernathy, T. Accadia, et al. TOPICAL
REVIEW: Predictions for the rates of compact binary coalescences observable

by ground-based gravitational-wave detectors. Classical and Quantum Gravity,

27(17):173001, September 2010. doi:10.1088/0264-9381/27/17/173001.

J. Abadie, B. P. Abbott, R. Abbott, M. Abernathy, T. Accadia, et al. Beat-
ing the Spin-down Limit on Gravitational Wave Emission from the Vela Pulsar.

Astrophys. J., 737:93, August 2011. doi:10.1088,/0004-637X/737/2/93.

J. Abadie, B. P. Abbott, R. Abbott, M. Abernathy, T. Accadia, et al. Directional
Limits on Persistent Gravitational Waves Using LIGO S5 Science Data. Phys.

Rev. Lett., 107:271102, Dec 2011. doi:10.1103 /PhysRevLett.107.271102.

B. Abbott, R. Abbott, R. Adhikari, A. Ageev, B. Allen, et al. Setting upper
limits on the strength of periodic gravitational waves from PSR J1939+42134
using the first science data from the GEO 600 and LIGO detectors. Phys. Rev
D, 69(8):082004, April 2004. doi:10.1103/PhysRevD.69.082004.

B. Abbott, R. Abbott, R. Adhikari, J. Agresti, P. Ajith, et al. Search for
gravitational-wave bursts in ligo data from the fourth science run. Classical

and Quantum Gravity, 24(22):5343, 2007.

B. Abbott, R. Abbott, R. Adhikari, J. Agresti, P. Ajith, et al. All-sky search
for periodic gravitational waves in LIGO S4 data. Phys. Rev. D, 77(2):022001,

January 2008. doi:10.1103/PhysRevD.77.022001.



BIBLIOGRAPHY 186

[16]

[17]

[18]

[19]

[22]

23]

[24]

B. P. Abbott, R. Abbott, F. Acernese, R. Adhikari, P. Ajith, et al. An upper limit
on the stochastic gravitational-wave background of cosmological origin. Nature,

460:990-994, August 2009. doi:10.1038 /nature08278.

B. P. Abbott, R. Abbott, F. Acernese, R. Adhikari, P. Ajith, et al. Searches
for Gravitational Waves from Known Pulsars with Science Run 5 LIGO Data.

Astrophys. J., 713:671-685, April 2010. doi:10.1088/0004-637X/713/1/671.

B. P. Abbott, R. Abbott, R. Adhikari, P. Ajith, B. Allen, et al. Search for
gravitational waves from low mass binary coalescences in the first year of LIGO’s

S5 data. Phys. Rev. D, 79:122001, Jun 2009. doi:10.1103/PhysRevD.79.122001.

M. Abernathy, F. Acernese, P. Ajith, B. Allen, P. Amaro-Seoane, et al. Einstein
gravitational wave Telescope conceptual design study, 2011. ET SCIENCE TEAM

[ET-0106C-10] https://tds.ego-gw.it/ql/?7c=7954, cited: 28 Oct 2014.

F. Acernese, M. Agathos, K. Agatsuma, D. Aisa, N. Allemandou, et al. Advanced
Virgo: a second-generation interferometric gravitational wave detector. Classical
and Quantum Gravity, 32(2):024001, January 2015. doi:10.1088/0264-9381/32/
2/024001.

R. Adhikari, S. Ballmer, E. Campagna, M. Evans, P. Fritschel, et al. Gravi-
tational Wave Interferometer Noise Calculator. |awiki.ligo-wa.caltech.edu/

aLIGO/GWINC [accessed 22 Jan 2015].

O. Aguiar, L. Andrade, J. Barroso, F. Bortoli, L. Carneiro, et al. The Brazilian
gravitational wave detector Mario Schenberg: Status report. Class. Quant. Grav.,

23:9239-5244, 2006. doi:10.1088/0264-9381/23/8/S30.

B. Allen. Gravitational Wave Detector Sites. ArXiw General Relativity and

Quantum Cosmology e-prints, July 1996.

P. Astone, L. Baggio, M. Bassan, M. Bignotto, M. Bonaldi, et al. IGEC2:
A 17-month search for gravitational wave bursts in 2005-2007. Phys. Rev. D,

82(2):022003, July 2010. doi:10.1103/PhysRevD.82.022003.


https://tds.ego-gw.it/ql/?c=7954
awiki.ligo-wa.caltech.edu/aLIGO/GWINC
awiki.ligo-wa.caltech.edu/aLIGO/GWINC

BIBLIOGRAPHY 187

[25]

[26]

[27]

28]

[31]

32]

[33]

P. Astone, A. Colla, S. D’Antonio, S. Frasca, and C. Palomba. Coherent search
of continuous gravitational wave signals: extension of the 5-vectors method to a
network of detectors. Journal of Physics Conference Series, 363(1):012038, June
2012. doi:10.1088/1742-6596/363/1/012038.

Australia Telescope National Facility. The ATNF pulsar database. www.atnf .

csiro.au/people/pulsar/psrcat/.

S. Braccini, C. Bradaschia, R. Del Fabbro, A. Di Virgilio, I. Ferrante, et al.
Seismic vibrations mechanical filters for the gravitational waves detector virgo.
Review of Scientific Instruments, 67(8):2899-2902, 1996. doi:http://dx.doi.org/
10.1063,/1.1147069.

P. R. Brady and T. Creighton. Searching for periodic sources with LIGO. II. Hi-
erarchical searches. Phys. Rev. D, 61:082001, Feb 2000. doi:10.1103/PhysRevD.
61.082001.

California Institute of Technology. “LIGO Laboratory Home Page”, project

homepage . www.ligo.caltech.edu/.

N. Christensen, R. J. Dupuis, G. Woan, and R. Meyer. Metropolis-Hastings algo-
rithm for extracting periodic gravitational wave signals from laser interferometric
detector data. Phys. Rev. D, 70(2):022001, July 2004. doi:10.1103/PhysRevD.
70.022001.

N. Copernicus. De revolutionibus orbium coelestium. Johannes Petreius, Nurem-

berg, Holy Roman Empire, 1543.

J. Creighton, B. Allen, W. G. Anderson, D. Ausmus, R. Balasubramanian, et al.
LALSoftware Documentation, 2004. http://www.lsc-group.phys.uwn.edu/

lal/1lsd.pdf.

K. Danzmann and the LISA study team. LISA: Laser Interferometer Space
Antenna for gravitational wave measurements. Classical and Quantum Gravity,

13(11A):A247, 1996.


www.atnf.csiro.au/people/pulsar/psrcat/
www.atnf.csiro.au/people/pulsar/psrcat/
www.ligo.caltech.edu/
http://www.lsc-group.phys.uwm.edu/lal/lsd.pdf
http://www.lsc-group.phys.uwm.edu/lal/lsd.pdf

BIBLIOGRAPHY 188

[34]

[35]

[41]

[42]

[43]

G. S. Davies, M. Pitkin, and G. Woan. A targeted spectral interpolation algo-

rithm for the detection of continuous gravitational waves. 2015. In Preparation.

A. de Waard, L. Gottardi, J. van Houwelingen, A. Shumack, and G. Frossati.
MiniGRAIL, the first spherical detector. Classical and Quantum Gravity, 20:143,
May 2003. doi:10.1088,/0264-9381/20/10/317.

V. Dergachev. On blind searches for noise dominated signals: a loosely coherent
approach. Classical and Quantum Gravity, 27(20):205017, October 2010. doi:
10.1088/0264-9381/27/20/205017.

V. Dergachev. Private Communication, 2015.

R. Dupuis. Bayesian searches for gravitational waves from pulsars. Ph.D. thesis,

University of Glasgow, 2004.

R. J. Dupuis and G. Woan. Bayesian estimation of pulsar parameters from
gravitational wave data. Phys. Rev. D, 72(10):102002, November 2005. doi:
10.1103/PhysRevD.72.102002.

A. Einstein. Approximative Integration of the Field Equations of Gravitation.
Koéniglich Preuf$ische Akademie der Wissenschaften: Sitzungberichte, pages 688—
692, 1916. Conference Proceedings of Prussian Academy of Sciences. Available
online in Volume 6: The Berlin Years: Writings, 1914-1917 (English transla-
tion supplement) Translated by Alfred Engel http://einsteinpapers.press.

princeton.edu/vol6-trans.

R. Essick, S. Vitale, E. Katsavounidis, G. Vedovato, and S. Klimenko. Lo-
calization of Short Duration Gravitational-wave Transients with the Early Ad-
vanced LIGO and Virgo Detectors. Astrophys. J., 800:81, February 2015. doi:
10.1088/0004-637X/800/2/81.

European Space Agency. “Next steps for LISA”, NGO project homepage. http:

//sci.esa.int/science-e/www/object/index.cfm?fobjectid=48728, 2012.

S. Fairhurst. Source localization with an advanced gravitational wave detector

network. Classical and Quantum Gravity, 28(10):105021, 2011.


http://einsteinpapers.press.princeton.edu/vol6-trans
http://einsteinpapers.press.princeton.edu/vol6-trans
http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=48728
http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=48728

BIBLIOGRAPHY 189

[44]

[49]

[50]

[51]
[52]

[53]

F. Feroz, M. P. Hobson, and M. Bridges. MULTINEST: an efficient and robust
Bayesian inference tool for cosmology and particle physics. Monthly Notices of

the RAS, 398:1601-1614, October 2009. doi:10.1111/;.1365-2966.2009.14548 x.

C. Gill. Searching for Gravitational Waves from Pulsars. Ph.D. thesis, University

of Glasgow, 2012.

E. Goetz and K. Riles. An all-sky search algorithm for continuous gravitational
waves from spinning neutron stars in binary systems. Classical and Quantum

Gravity, 28(21):215006, November 2011. doi:10.1088/0264-9381/28/21/215006.

J. Goodman and J. Weare. Ensemble samplers with affine invariance. Commu-

nications in Applied Mathematics and Computational Science, 5(1):6-80, 2010.

M. Hewitson, H. Grote, S. Hild, H. Liick, P. Ajith, et al. Optimal time-domain
combination of the two calibrated output quadratures of GEO 600. Classical and
Quantum Gravity, 22:4253-4261, October 2005. doi:10.1088/0264-9381/22/20/
007.

G. Hobbs, A. Archibald, Z. Arzoumanian, D. Backer, M. Bailes, et al. The
International Pulsar Timing Array project: using pulsars as a gravitational wave
detector. Classical and Quantum Gravity, 27(8):084013, April 2010. doi:10.1088/
0264-9381/27/8/084013.

Y.-M. Hu, M. Pitkin, I. S. Heng, and M. A. Hendry. Glitch or Anti-glitch: A
Bayesian View. Astrophys. J. Lett., 784:1.41, April 2014. doi:10.1088/2041-8205/
784/2/1A41.

INFN. “Virgo”, project homepage. wwwcascina.virgo.infn.it/.
R. Inta and B. Owen. Private Communication, 2015.

B. Iyer, T. Souradeep, C. Unnikrishnan, S. Dhurandhar, S. Raja, A. Kumar,
and A. Sengupta. LIGO-India, Proposal of the Consortium for Indian Initia-
tive in Gravitational-wave Observations, 2011. INDIGO CoNSORTIUM COUN-
CIL https://dcc.ligo.org/public/0075/M1100296/002/LIG0-India_lw-v2.

pdf.


wwwcascina.virgo.infn.it/
https://dcc.ligo.org/public/0075/M1100296/002/LIGO-India_lw-v2.pdf
https://dcc.ligo.org/public/0075/M1100296/002/LIGO-India_lw-v2.pdf

BIBLIOGRAPHY 190

[54]

[55]

[56]

[57]

[62]

[63]

P. Jaranowski and A. Krélak. Searching for gravitational waves from known pul-
sars using the F and G statistics. Classical and Quantum Gravity, 27(19):194015,
October 2010. doi:10.1088/0264-9381/27/19/194015.

P. Jaranowski, A. Kroélak, and B. F. Schutz. Data analysis of gravitational-wave
signals from spinning neutron stars: The signal and its detection. Phys. Rev. D,

58(6):063001, September 1998. doi:10.1103/PhysRevD.58.063001.

N. K. Johnson-McDaniel. Gravitational wave constraints on the shape of neu-
tron stars. Phys. Rev. D, 88(4):044016, August 2013. doi:10.1103/PhysRevD.88.
044016.

D. I. Jones. Gravitational wave emission from rotating superfluid neutron
stars. Mon. Not. Roy. Astron. Soc., 402:2503-2519, March 2010. doi:10.1111/j.
1365-2966.2009.16059.x.

D. I. Jones. Parameter choices and ranges for continuous gravitational wave
searches for steadily spinning neutron stars. 2015. http://arxiv.org/abs/

1501.056832.

P. B. Jones. Comment on “constraining hadronic superfluidity with neutron star
precession”. Phys. Rev. Lett., 92:149001, Apr 2004. doi:10.1103/PhysRevLett.
92.149001.

KAGRA. Kagra project homepage. http://gwcenter.icrr.u-tokyo.ac.jp/

en/|

S. Kawamura, M. Ando, N. Seto, S. Sato, T. Nakamura, et al. The japanese
space gravitational wave antenna: DECIGO. Classical and Quantum Gravity,

28(9):094011, 2011.

M. Kramer and B. Stappers. Pulsar Science with the SKA. Advancing Astro-
physics with the Square Kilometre Array (AASKA14), 36, 2015.

P. D. Lasky. Gravitational Waves from Neutron Stars: A Review. 2015. In the

LIGO Document Control Center https://dcc.ligo.org/P1500152.


http://arxiv.org/abs/1501.05832
http://arxiv.org/abs/1501.05832
http://gwcenter.icrr.u-tokyo.ac.jp/en/
http://gwcenter.icrr.u-tokyo.ac.jp/en/
https://dcc.ligo.org/P1500152

BIBLIOGRAPHY 191

[64]

[65]

[66]

[67]

[72]

LIGO Scientific Collaboration, Virgo Collaboration, J. Aasi, J. Abadie, B. P.
Abbott, et al. Prospects for Localization of Gravitational Wave Transients by
the Advanced LIGO and Advanced Virgo Observatories. ArXiv e-prints, April
2013.

LSC-Virgo Continuous Waves Search Group. Establishing Detection Confidence
for a Continuous Wave Signal in the Advanced Detector Era. 2015. In the LIGO

Document Control Center https://dcc.ligo.org/T1500151.

R. G. Lyons. Understanding Digital Signal Processing (2nd Edition). Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2004. ISBN 0131089897.

R. N. Manchester, G. B. Hobbs, A. Teoh, and M. Hobbs. The Australia Telescope
National Facility Pulsar Catalogue. Astron. J., 129:1993-2006, April 2005. doi:
10.1086,/428488.

Max Planck Institute for Gravitational Physics (Albert Einstein Institute).
“GEO600: The German-British Gravitational Wave Detector”, project home-

page. www.geo600.o0rg/.

G. Mendell and K. Wette. Using generalized PowerFlux methods to estimate
the parameters of periodic gravitational waves. Classical and Quantum Gravity,

25(11):114044, June 2008. doi:10.1088/0264-9381/25/11/114044.

C. Messenger. Gravitational Wave Data Analysis: Searching for Gravitational
Waves from Low Mass X-Ray Binaries. Ph.D. thesis, University of Birmingham,
2006.

S. Miyoki. Large scale cryogenic gravitational wave telescope. Nuclear Physics
B - Proceedings Supplements, 138:439 — 442, 2005. ISSN 0920-5632. doi:
http://dx.doi.org/10.1016 /j.nuclphysbps.2004.11.101. Proceedings of the Eighth

International Workshop on Topics in Astroparticle and Undeground Physics.

C. J. Moore, R. H. Cole, and C. P. L. Berry. Gravitational-wave sensitivity
curves. Classical and Quantum Gravity, 32(1):015014, January 2015. doi:10.
1088/0264-9381/32/1/015014.


https://dcc.ligo.org/T1500151
www.geo600.org/

BIBLIOGRAPHY 192

(73]

[74]

[75]

(78]

[79]

[80]

G. E. Moss, L. R. Miller, and R. L. Forward. Photon-noise-limited laser trans-
ducer for gravitational antenna. Applied Optics, 10:2495-2498, 1971. doi:
10.1364/A0.10.002495.

M. Musha, A. Ueda, M. Ohashi, and K.-I. Ueda. Interferometric gravitational
wave detector TAMA-300 and the frequency-stabilized laser with high-finesse
optical resonator. In A. V. Kudryashov, editor, Laser Resonators II, volume
3611 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference
Series, pages 65-72. May 1999.

R. Neuhauser, M. M. Hohle, C. Ginski, J. G. Schmidt, V. V. Hambaryan, and
T. O. B. Schmidt. The companion candidate near Fomalhaut - a background
neutron star?  Mon. Not. Roy. Astron. Soc., 448:376-389, March 2015. doi:
10.1093 /mnras/stu2751.

B. J. Owen. Maximum Elastic Deformations of Compact Stars with Exotic
Equations of State. Physical Review Letters, 95(21):211101, November 2005.

d0i:10.1103/PhysRevLett.95.211101.

P. Patel. Search for Gravitational Waves from a nearby neutron star us-
ing barycentric resampling. Ph.D. thesis, California Institute of Technology,
Pasadena, California, 2011. http://thesis.library.caltech.edu/6030/2/

ppatel_thesis_ver2.pdfl

B. Paul. Astrosat: Some Key Science Prospects. International Journal of Modern

Physics D, 22:1341009, January 2013. doi:10.1142/S0218271813410095.

M. Pitkin, C. Gill, D. I. Jones, G. Woan, and G. S. Davies. First results and
future prospects for dual-harmonic searches for gravitational waves from spinning

neutron stars. ArXiv e-prints, August 2015. Submitted to MNRAS.

M. Pitkin, C. Gill, J. Veitch, E. Macdonald, and G. Woan. A new code for
parameter estimation in searches for gravitational waves from known pulsars.
Journal of Physics Conference Series, 363(1):012041, June 2012. doi:10.1088/
1742-6596/363/1/012041.


http://thesis.library.caltech.edu/6030/2/ppatel_thesis_ver2.pdf
http://thesis.library.caltech.edu/6030/2/ppatel_thesis_ver2.pdf

BIBLIOGRAPHY 193

[81]

[82]

[83]

[84]

[38]

[89]

[90]

M. Pitkin, S. Reid, S. Rowan, and J. Hough. Gravitational Wave Detection by
Interferometry (Ground and Space). Living Rev. Relativity, 14:5, 2011. [Online

Article] http://www.livingreviews.org/lrr-2011-5, cited: 17 Oct 2014.

M. Pitkin and G. Woan. Searching for gravitational waves from the Crab pulsar
— the problem of timing noise. Classical and Quantum Gravity, 21:843, March
2004. doi:10.1088/0264-9381/21/5/069.

M. D. Pitkin. Searches for continuous and transient gravitational waves from
known neutron stars and their astrophysical implications. Ph.D. thesis, University

of Glasgow, 2006.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes in C (2nd Ed.): The Art of Scientific Computing. Cambridge University
Press, New York, NY, USA, 1992. ISBN 0-521-43108-5.

R. Prix. Search for continuous gravitational waves: Metric of the multidetector
F-statistic. Phys. Rev. D, 75(2):023004, January 2007. doi:10.1103/PhysRevD.
75.023004.

W. Rindler. Relativity: Special, General and Cosmological. Oxford University

Press, Oxford, United Kingdom, second edition, 2006.

B. S. Sathyaprakash and B. F. Schutz. Physics, Astrophysics and Cosmology
with Gravitational Waves. Living Rev. Relativity, 12:2, 2009. [Online Article]

http://www.livingreviews.org/lrr-2009-2, cited: 17 Oct 2014.

P. R. Saulson. Thermal noise in mechanical experiments. Phys. Rev. D, 42:2437—
2445, Oct 1990. doi:10.1103/PhysRevD.42.2437.

R. T. Schilizzi, P. E. F. Dewdney, and T. J. W. Lazio. The square kilometre
array. Proc. SPIFE, 7012:701211-701211-13, 2008. doi:10.1117/12.786780.

[. Semeniuk. Hubble spies lord of the stellar rings, 2005. http://www.

newscientist.com/article/dn7564 cited: 15 May 2015.


http://www.livingreviews.org/lrr-2011-5
http://www.livingreviews.org/lrr-2009-2
http://www.newscientist.com/article/dn7564
http://www.newscientist.com/article/dn7564

BIBLIOGRAPHY 194

[91]

[92]

[93]

[94]

(98]

[99]

M. Shaltev, P. Leaci, M. A. Papa, and R. Prix. Fully coherent follow-up of contin-
uous gravitational-wave candidates: An application to Einstein@Home results.

Phys. Rev. D, 89(12):124030, June 2014. doi:10.1103/PhysRevD.89.124030.

X. Siemens, B. Allen, J. Creighton, M. Hewitson, and M. Landry. Making h(t)
for LIGO. Classical and Quantum Gravity, 21:1723, October 2004. doi:10.1088/
0264-9381/21/20/015.

D. S. Sivia and J. Skilling. Data analysis a Bayesian tu-
torial. Oxford science publications. Oxford University Press, Ox-
ford, New York, 2006. ISBN 0-19-856831-2. Table des matires
http://www.loc.gov/catdir/enhancements/fy0627/2006284782-t.html.

J. Skilling. American Institute of Physics Conference Series Vol. 365. In R. Fis-
cher, R. Preuss, and U. Toussaint, editors, American Institute of Physics Con-

ference Series, pages 395-405. 2004.

J. W. Tukey. An introduction to the calculations of numerical spectrum analysis.
In B. Harris, editor, Spectral Analysis of Time Series, pages 25-46. Wiley, New
York, 1967.

M. P. van Haarlem, M. W. Wise, A. W. Gunst, G. Heald, J. P. McKean, et al.
LOFAR: The LOw-Frequency ARray. Astron. Astrophys., 556:A2, August 2013.
do0i:10.1051/0004-6361/201220873.

J. Veitch and A. Vecchio. Bayesian coherent analysis of in-spiral gravitational
wave signals with a detector network. Phys. Rev. D, 81(6):062003, March 2010.
d0i:10.1103/PhysRevD.81.062003.

S. J. Waldman. The Advanced LIGO Gravitational Wave Detector. ArXiv e-

prints, March 2011.

M. Was, M.-A. Bizouard, V. Brisson, F. Cavalier, M. Davier, et al. On the
background estimation by time slides in a network of gravitational wave de-
tectors.  Classical and Quantum Gravity, 27(1):015005, January 2010. doi:
10.1088/0264-9381/27/1/015005.



BIBLIOGRAPHY 195

[100] K. Wette, B. J. Owen, B. Allen, M. Ashley, J. Betzwieser, et al. Searching
for gravitational waves from Cassiopeia A with LIGO. Classical and Quantum

Gravity, 25(23):235011, December 2008. doi:10.1088/0264-9381/25/23/235011.

[101] G. Woan. The Cambridge Handbook of Physics Formulas. Cambridge University
Press, 2000. ISBN 9780511755828. Cambridge Books Online.

[102] N. Yunes and X. Siemens. Gravitational-Wave Tests of General Relativity with
Ground-Based Detectors and Pulsar-Timing Arrays. Living Rev. Relativity, 16:9,
2013. [Online Article] http://www.livingreviews.org/lrr-2013-9, cited: 29

Jan 2015.


http://www.livingreviews.org/lrr-2013-9

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Author's Declaration
	Gravitational waves: theory, sources and detectors
	Gravitational waves from General Relativity
	Obtaining and solving the wave equation
	Wave polarisation and the transverse traceless gauge
	Interaction with matter

	Gravitational-wave sources
	Gravitational-wave detectors
	Interferometric gravitational-wave detectors
	Antenna response


	Continuous gravitational waves
	Continuous gravitational waves from neutron stars
	Bayesian parameter estimation
	Posterior sampling algorithms

	Known pulsar time-domain Bayesian method
	The heterodyne algorithm
	Post-downsampling parameter estimation


	Spectral Interpolation of fast Fourier transforms
	Continuous-wave signals in the frequency domain
	Different approximations for the integration

	Bk and k calculation
	Outlier removal
	Algorithm implementation

	Testing of the Spectral Interpolation algorithm
	Accuracy testing
	Noiseless signal recovery - isolated pulsar signals
	Noiseless signal recovery - binary pulsar signals
	Frequency derivative assumptions
	Choice of windowing function
	Noise estimation tests
	Short-duration hardware injections

	Performance testing
	Speed testing
	Frequency response testing


	Searches for known pulsars using spectral interpolation
	Results from targeted analysis

	Follow up of continuous-wave candidates from all-sky and directed searches
	All-sky and directed Searches
	Fully coherent directed searches for gravitational waves
	The Spotlight search

	Bayesian follow up parameter estimation
	Fomalhaut b directed search follow up
	Signal consistency check: increasing coherence time
	Finding the source of the outlier: decreasing coherence time

	Orion spur Spotlight search candidate followup

	Conclusion and future work
	Spectral interpolation of fast Fourier transforms
	Targeted searches for known pulsars
	Follow up of continuous-wave candidates

	Regarding the derivation of the gravitational-wave equation in linearized gravity
	Regarding the use of discrete Fourier transforms as a sample of the continuous Fourier transform
	Regarding the derivation of the Bk estimator
	Additional results from the Spotlight outlier search
	Abbreviations and Symbols

