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Abstract

This thesis concerns the analysis of continuous gravitational waves from neutron stars

with non-axisymmetric rotational motion using data from ground-based interferometric

gravitational wave detectors, the development of a computationally efficient algorithm

for analysis of this data and the use of this algorithm in followup searches, which were

previously too computationally expensive to consider.

Presented in this thesis is a new, computationally efficient method for down sam-

pling data from gravitational-wave detectors for use in targeted searches for continu-

ous waves from rapidly rotating neutron stars, which we call Spectral Interpolation,

or SplInter. This method is tested and compared to the existing analysis in various

situations, including an end-to-end pipeline comparison utilising hardware injections.

The limits of the application of the SplInter algorithm are explored, including a study

into its use in the analysis of continuous waves from neutron stars in binary systems.

Next, a search is presented for signals from known pulsars in LIGO science run

6 data, with a comparison to a similar, previously performed analysis. This search

produces upper limits on the amplitude of gravitational waves from the sources which

are compared to the previous analysis and observational limits.

The first Bayesian follow up search for candidate continuous gravitational-wave

signals from all-sky and directed searches is presented. These are also the first searches

using the Bayesian pipeline to search in more than one frequency parameter, and over

sky position. We search for a prospective signal from a directed search for a possible

neutron star, and for possible signals from a deep all-sky search pointed along the

Orion spur.

The results of this work and the future of these algorithms and searches are dis-

cussed, with emphasis on enhancing the algorithm so that it is applicable to all sources.
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tion, compared to the Fresnel approximation. . . . . . . . . . . . . . . 91

4.1.14 Increasing mismatch of a signal with f̈k 6= 0 with the sinc and Fresnel

approximations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.1.15 Change in arrival time, frequency, and its derivatives introduced by

the orbital motion of the detector. . . . . . . . . . . . . . . . . . . . . 93

4.1.16 Increase of mismatch when using a rectangular window model for a

given windowing amount of a Tukey window. . . . . . . . . . . . . . . 95

4.1.17 Standard deviation estimates of white noise from SplInter and hetero-

dyne output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.1.18 Best estimates of β, the ratio between the SplInter noise estimate and

the calculated heterodyne noise. . . . . . . . . . . . . . . . . . . . . . 98

8



4.1.19 Noise levels in an example SFT around the signal frequency of the β

outlier, software injection J0154+4819, and the outlier removal process

in action on real data. . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.1.20 Posterior distributions of amplitude parameters for hardware injections

PULSAR0 and PULSAR1 from an analysis of four months of data. . 101

4.1.21 Posterior distributions of amplitude parameters for hardware injections

PULSAR2 and PULSAR3 from an analysis of four months of data. . 102

4.1.22 Posterior distributions of amplitude parameters for hardware injections

PULSAR4 and PULSAR5 from an analysis of four months of data. . 103

4.1.23 Posterior distributions of amplitude parameters for hardware injections

PULSAR6 and PULSAR7 from an analysis of four months of data. . 104

4.1.24 Posterior distributions of amplitude parameters for hardware injections

PULSAR8 and PULSAR9 from an analysis of four months of data. . 105

4.2.1 Histograms of the average time taken to analyse a day of data for

various parts of the SplInter algorithm. . . . . . . . . . . . . . . . . . 108

4.2.2 Histograms of the number of SFTs in each segment. . . . . . . . . . . 110

4.2.3 Histogram of the time taken to load the SFT catalogue using single or

multiple cache files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.2.4 Loss of amplitude for an incorrect interpolation frequency. . . . . . . 112

5.1.1 Noise levels around the gravitational-wave frequency for J0024=7204C. 119

5.1.2 Histogram of ratios of 95% upper limits from SplInter and heterodyne

analyses for isolated pulsars. . . . . . . . . . . . . . . . . . . . . . . . 120

5.1.3 Histogram of ratios of 95% upper limits from SplInter and heterodyne

analyses for binary pulsars. . . . . . . . . . . . . . . . . . . . . . . . . 122

6.3.1 Posterior probability density distributions of parameters of the Fom b

candidate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.3.2 Posterior probability density distribution of φ0 for the Fom b candidate.133

6.3.3 Posterior probability density distributions of parameters of the Fom b

candidate with twice the initial coherence time. . . . . . . . . . . . . 135

9



6.3.4 Posterior probability density distributions of parameters of the Fom b

candidate with four times the initial coherence time. . . . . . . . . . . 136

6.3.5 Posterior probability density distributions of amplitude parameters of

the Fom b candidate for the first half of the initial coherence time. . . 139

6.3.6 Posterior probability density distributions of amplitude parameters of

the Fom b candidate for the second half of the initial coherence time. 140

6.4.1 Posterior probability density distributions and contour plots for pa-

rameters of Spotlight candidate A13. . . . . . . . . . . . . . . . . . . 145

6.4.2 Posterior probability density distributions and contour plots for pa-

rameters of Spotlight candidate A14. . . . . . . . . . . . . . . . . . . 146

6.4.3 Posterior probability density distributions and contour plots for pa-

rameters of Spotlight candidate A27. . . . . . . . . . . . . . . . . . . 147

6.4.4 Posterior probability density distributions and contour plots for pa-

rameters of Spotlight candidate B23. . . . . . . . . . . . . . . . . . . 148

6.4.5 Posterior probability density distributions and contour plots for white

noise analysed in the same way as Spotlight candidate A13. . . . . . . 149

D.0.1 Posterior probability density distribution and contour plots for param-

eters of Spotlight candidate A24. . . . . . . . . . . . . . . . . . . . . 168

D.0.2 Posterior probability density distribution and contour plots for param-

eters of Spotlight candidate A28. . . . . . . . . . . . . . . . . . . . . 169

D.0.3 Posterior probability density distribution and contour plots for param-

eters of Spotlight candidate A29. . . . . . . . . . . . . . . . . . . . . 170

D.0.4 Posterior probability density distribution and contour plots for param-

eters of Spotlight candidate A30. . . . . . . . . . . . . . . . . . . . . 171

D.0.5 Posterior probability density distribution and contour plots for param-

eters of Spotlight candidate A33. . . . . . . . . . . . . . . . . . . . . 172

D.0.6 Posterior probability density distribution and contour plots for param-

eters of Spotlight candidate B15. . . . . . . . . . . . . . . . . . . . . . 173

D.0.7 Posterior probability density distribution and contour plots for param-

eters of Spotlight candidate B17. . . . . . . . . . . . . . . . . . . . . . 174

10



D.0.8 Posterior probability density distribution and contour plots for param-

eters of Spotlight candidate B20. . . . . . . . . . . . . . . . . . . . . . 175

D.0.9 Posterior probability density distribution and contour plots for param-

eters of Spotlight candidate B21. . . . . . . . . . . . . . . . . . . . . . 176

D.0.10 Posterior probability density distribution and contour plots for param-

eters of Spotlight candidate B30. . . . . . . . . . . . . . . . . . . . . . 177

11



Acknowledgements

I don’t know half of you half as well as I should like; and I like less than

half of you half as well as you deserve.

Bilbo Baggins, Lord of the Rings, J.R.R Tolkien

There are many people who deserve a lot of credit and thanks for their help during

my time at the University of Glasgow, both directly in my work and indirectly for

encouragement and support. I shall try to thank those who deserve it without going

over the top – after all it was still me who did the work.

First and foremost I thank my supervisor, Graham Woan, whose guidance, encour-

agement, support and understanding have been vital for my work and allowed me to

explore projects without getting too hung up on details.

Next, I’d like to thank Siong Heng, my second supervisor, for providing general

advice and helping me to socialise at conferences. I wish that I had been able to

realistically and sensibly use Siong’s suggestion to name the Spectral Interpolation

algorithm ‘SpIDERMAN’ (SPectral Interpolation for Downsampling, Efficent Recovery

in the Manipulation of Analysis of Neutron stars). I’d also like to thank my masters

project supervisor, David Burton at Lancaster University, for introducing me to the

world of gravitational waves, and helping me to begin to pretend to understand general

relativity.

There aren’t any sufficient words to convey the debt of gratitude I owe to Matt

Pitkin for his help during my PhD. Barely a day went by without me asking him for

advice on programming, statistics, physics, writing, presentations or simple life skills.

12



He has been a mentor, office mate and a font of wisdom and knowledge, but above all

he has been a friend. I know I’m not the first PhD student at Glasgow that has been

helped massively by Matt and I certainly won’t be the last.

I’d like to thank my fellow students in the Institute for Gravitational Research

at Glasgow, many of whom have been inspirations in terms of the hard work and

dedication they have put into their work, and many of whom have provided me with

fantastic memories of my time as a PhD student. Remembering the look on Ignacio

(Nacho) Santiago Prieto’s face after he passed his viva has kept me going when I’ve

wondered if the effort was worth it. Josh Logue has been wonderful in welcoming me

to Glasgow, even if I had to explain to more than a few people at conferences over the

years that we were not the same person. Craig Lawrie, Colin Gill, Mervyn Chan and

Brynley Pearlstone have always been great to talk to. A special thanks also goes to

Yiming Hu, one of the happiest, hardest working and most intelligent people I have

ever met.

In particular I’d like to thank Erin MacDonald and Jade Powell for being excellent

office mates, Jade is one of the hardest workers I have ever seen, and puts me to shame,

and Erin’s consistent optimism and passion for science was infectious.

Chris Messenger has been a great source of knowledge, without whom I would never

have been able to begin to think I could understand the F statistic, and I have had

quite a few interesting conversations with Xilong Fan over the years.

Outside of the data analysts, I’d like to thank Neil Gordon, Jan Hennig and Sean

Leavey for a wonderful post-conference road trip in California. Thanks also to Morag

Casey, for giving me the chance to tutor undergraduate students and to all of my fellow

tutors.

To all of the people above, I say this: it has been wonderful getting to know you

over the years, thank you for your help and encouragement and I wish you all the best

for your future.

As an addition in my corrections, I would like to thank Martin Hendry and Patrick

Sutton for examining my thesis, and Ken Strain for convening my viva. Thank you

very much for making my viva an oddly enjoyable experience.

Outside of Glasgow, I want to thank the continuous-waves group in the LIGO and

13



Virgo Scientific collaborations, particularly Ra Inta and Vladimir Dergachev for your

help in providing the followup candidates, and Reinhard Prix and Damir Buskulic for

your suggestions in the review of the Spectral Interpolation algorithm.

My parents, Eric and Hilary Davies have been a constant support throughout my

life and have always helped but not pushed. They first piqued my interest in science,

and have always encouraged my curiosity for how the world works.

Thanks to the rest of my family, both biological and otherwise, for their support

throughout my PhD. My sisters, Megan and Deborah, were clever enough and tal-

ented enough to allow me to go about my business without any weight of expectation.

Sarah’s parents, brothers and grandparents have all been there to help and support us

throughout our time here, for which I will always be grateful.

Without my amazing partner Sarah Jane Cabourn, I would not be here, in fact I

would barely be anywhere. Sarah is my partner in the truest sense of the word, my

best friend and my better half. I could not list all that Sarah has done for me without

at least another 195 pages. Sarah, thank you so much for everything.

14



In memory of my grandparents, Edna, Ethel, Fred and Roy.

I wish you could have been here to see this.

I hope that you would have been proud of me.

Also in memory of Lawrence Harold Cabourn,

who has been like a grandfather to me

21st February 1929 – 22nd October 2015.



Author’s Declaration

It doesn’t matter if it’s been said, it’s never been said by me.

Josh Homme, Queens of the Stone Age, 2009

I, Gareth Stephen Davies, confirm that the work presented in this thesis is my own.

Where information or figures have been derived from other sources, appropriate refer-

ences have been given.

Chapter 1 gives an introduction to the concept of gravitational waves, a brief

derivation of the gravitational-wave equation from general relativity, gravitational-

wave sources and detectors. All figures are either my own or appropriately referenced.

Information comes from referenced sources.

Chapter 2 discusses and introduces Bayesian formalism and parameter estimation,

as well as more specific discussions on continuous gravitational waves and their analysis.

The only figure is my own, containing data from the sources specified. Information in

the text is cited as appropriate.

Some of the work in chapters 3 and 4 is being prepared for publication in [34].

Figures 3.3.1 to 3.3.3, 3.4.3 and 4.1.17, were created by myself for use in both this

thesis and the planned publication, and are used with permission of the other authors.

Figures 4.1.6, 4.1.9, 4.1.22, 4.1.23 and 4.2.1 are also created by myself and parts of

which or slightly different versions of which are to be utilised in the mentioned paper,

reproduced with permission of the other authors.

Chapter 3 introduces continuous waves in the frequency domain, the Spectral In-

terpolation method and algorithm, and explains some of the details with regard to the

16



implementation of the algorithm. Information is cited as appropriate, and figures are

all my own.

Chapter 4 presents tests performed to compare the Spectral Interpolation algorithm

to the heterodyne routine. Citations are made as appropriate, and all figures are my

own.

Chapter 5 contains results of a search for known pulsars in LIGO data, and includes

tables (5.2 and 5.3) indicating h95%
0 upper limits from the heterodyne and MCMC

search (as in [2]) and from Spectral Interpolation and nested sampling, which are my

own work. The heterodyne and MCMC results have been reproduced with permission

of the main author. All other results and discussion are my own.

Chapter 6 describes a follow up analysis of candidate continuous-wave signals from

all-sky and directed searches. These candidates come from [6, 52], and are used with

permission of the authors. All figures are my own and information has been referenced

as appropriate.

The conclusions given in chapter 7 are my own analysis of the work and results

in this thesis. The future work stated for the Spectral Interpolation algorithm is an
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Prix. The rest of the discussion of the future prospects of the work is my own.
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Chapter 1

Gravitational waves: theory,

sources and detectors

I have forgotten much that I thought I knew, and learned again much

that I had forgotten.

Gandalf, The Lord of the Rings, J.R.R. Tolkien

Gravitational Waves are ripples in the curvature of spacetime, predicted in 1916 by

Einstein as an outcome of the General Theory of Relativity (GR) [40], and the direct

detection of gravitational waves is one of the final pieces in the puzzle of evidence that

a GR-like mechanism exists as the progenitor of gravitational forces. Section 1.1 gives

an outline of the derivation of gravitational waves from GR and the way in which they

interact with matter.

Gravitational waves (GWs) offer an exciting prospect for seeing the Universe in an

entirely new way, independent of the electromagnetic and astroparticle observations

we have been able to make up to now. The prospects are intriguing, from seeing

further back into the very early stages of the universe [16, 87] to providing a test

bed for competing theories of gravitation which – up until this point – will have been

experimentally indistinguishable from one another [102], probing the inside of exotic

18
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compact objects [63] as well as the prospect of making new, unexpected, discoveries

similar to the advent of radio astronomy leading to the discovery of pulsars. Section

1.2 describes and reviews the types of sources expected to be seen in the early years of

GW astronomy.

The observation of gravitational waves will usher in a new era of multi-messenger

astronomy, providing more evidence in support of observations which have already been

made, and providing triggers for observations of astronomical events which would have

been observed previously only due to extreme luck. Gravitational waves interact only

weakly with matter, meaning that they can travel through objects which are opaque to

electromagnetic observation and have an advantage in that they remain unretarded by

the interstellar medium; rapid sky localisation of a GW source can therefore provide

electromagnetic astronomers with a trigger to observe an event.

Gravitational waves’ weak interaction with matter also makes them extremely diffi-

cult to detect. Section 1.3 details a brief outline of the experiments designed to perform

this task and section 1.3.1 specifically gives more detail on the interferometric detec-

tors, including the main noise sources and the ways in which the GW signal is detected

and analysed.

1.1 Gravitational waves as a consequence of general

relativity

In this section, we outline the derivation of the GW equation from Einstein’s field

equations in GR, and how GWs interact with matter. This section shall only introduce

the concepts which are important to the work in this thesis, and more comprehensive

descriptions are available in numerous books and papers (such as [40, 86]).

1.1.1 Obtaining and solving the wave equation

The wave equation for GWs can be found by linearising the spacetime metric, this

means that we approximate the metric as a flat metric plus a small, linear perturbation.
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The Einstein equation from GR in tensor notation is given by (e.g. [86])

Gab = Rab −
1

2
gabR = −8πG

c4
Tab, (1.1.1)

where the Einstein tensor Gab is given in terms of the spacetime metric, gab, the Ricci

tensor Rab and Ricci scalar R. These are defined by the Riemann curvature tensor Ra
bcd

through the relationships Rab = Rc
abc and R = gabRab respectively1. a and b run from

0 to 3 and denote the different dimensions, 0 for time and 1, 2 and 3 for the spatial

dimensions. Tab is the stress-energy-momentum tensor. For simplicity, we ignore the

cosmological constant, Λ, in this discussion.

The spacetime metric gab of linearised gravity comes from a flat spacetime ηab and

a small linear perturbation hab,

gab = ηab + hab, (1.1.2)

where ηab is defined as

ηab =



−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


. (1.1.3)

The perturbation hab and its derivatives are considered to be much smaller than

the flat metric (i.e. |hab| � 1) such that we can safely ignore non-linear combinations

of these. The Riemann curvature tensor Ra
bcd is therefore2

Ra
bcd =

1

2
ηae [∂c∂bhde − ∂c∂ehbd − ∂d∂bhce + ∂d∂ehbc] , (1.1.4)

where ∂a = ∂
∂xa

, the partial derivative with respect to dimension xa.

By utilising gauge transformations, we can mould these equations into something

more workable. Considering the gauge transformation hab → h′ab = hab − ∂aξb − ∂bξa,

where ξ is an arbitrary function, but its derivatives are of the same order of magnitude

1We are using the standard notation in which we sum over repeated indices, amd we can raise or
lower indices using the spacetime metric, xa = gabxb.

2Appendix A contains some of the maths that we skip over in this introduction.
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as hab, the Einstein equation remains valid for h′ab as it did with hab as all of the terms

containing ξ cancel by symmetry3. We can use this to set gauge conditions, where

a physical result still stands but we use a different frame of reference to simplify the

problem.

The first condition set is the harmonic gauge:

∂ah̄ab = 0, (1.1.5)

given h̄ab = hab − 1
2
ηabh, the trace reverse of the perturbations, where h = haa. When we

set this condition on the Riemann curvature tensor, the Ricci tensor becomes4

Rab =
1

2
�hab, (1.1.6)

where � is the d’Alembertian or wave operator, � = ∂a∂
a. We then use this Rab in

equation 1.1.1 to obtain the wave equation

�h̄ab = −16πG

c4
Tab. (1.1.7)

In free space (Tab = 0), solutions to this have the form

h̄ab = Aab exp
(
ikdx

d
)
, (1.1.8)

where Aab is a constant, second order, symmetric amplitude tensor and kd is the wave

vector kd = (ω
c
, ~k). Solving the wave equation given this h̄ab gives

kdk
dAab exp

(
ikdx

d
)

= 0, (1.1.9)

the non-trivial solutions to which are kdk
d = 0. This is also the condition for a particle

to be light-like (c2∆t2 = ∆r2) which indicates that GWs propagate at the speed of

light.

3See footnote 2.
4See footnote 3.
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1.1.2 Wave polarisation and the transverse traceless gauge

As a 4 × 4 symmetric matrix, the amplitude tensor Aab initially has 10 degrees of

freedom. Within the harmonic gauge, this number is reduced, as ∂ah̄
ab = 0 leads

to the non-trivial solution of kaA
ab = 0. Using an example of a wave travelling in

the z (or x3) direction, k1 = k2 = 0, k0 = ω and k3 = k, this leads to Aa0 = Aa3,

and by symmetry A0a = A3a. Using gauge freedom we can set A00 = 0, leading to

Aa0 = Aa3 = A0a = A3a = 0, meaning the perturbation is transverse (i.e. there is no

perturbation along the direction of travel). One can also utilise the gauge freedom to

demand that h = 0, the traceless condition5, and the perturbation becomes:

hab =



0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0


, (1.1.10)

where h+ and h× are the plus and cross polarisations of the gravitational wave respec-

tively. When h× is zero, we say that the wave is plus polarised, and when h+ is zero,

we say that it is cross polarised. The exact form of h+ and h× will vary depending

upon the source of the gravitational wave.

1.1.3 Interaction with matter

In order to see how a gravitational wave affects matter, one needs to consider the

coordinate invariant proper distance between particles

L =

∫
P

√
gab dxa dxb. (1.1.11)

So for a GW propagating in free space, Tab = 0, the metric, gab = ηab + hab gives

L =

∫
P

√
− dt2 + (1 + h+) dx2 + (1− h+) dy2 + 2h× dx dy + dz2. (1.1.12)

5When we set h = 0, we can also immediately see that h̄ab = hab.
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We see that for a plus polarised wave travelling in the z direction at a given time

(i.e. dt = 0, h× = 0) for two particles lying upon the x axis, dz = dy = 0, then

dx will stretch by a factor of
√

1 + h+. If we consider two particles on the y-axis

( dx = dz = 0) then dy is stretched by
√

1− h+, leading to an orthogonal stretching

and squeezing motion.

This motion and the cross terms are visualised in figure 1.1.1 for a sinusoidal GW,

which also shows that the plus and cross polarisation cases are identical but with a

π/4 rotation about the direction of propagation. This rotational symmetry can be seen

mathematically by applying a rotation matrix with an angle of π/4 to hab. A GW will

generally be a linear combination of a plus and cross polarised wave.
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Figure 1.1.1: A series of snapshots of a ring of test particles in the xy plane which is stretched and
squeezed by a gravitational wave coming out of the page in the z direction, shown are plus polarised
(top) and cross polarised (bottom). The red circles indicate the position of the detector mirrors in an
interferometric GW observatory, with the red lines showing the detector positions for when there are
no GWs, or the phase is zero.
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1.2 Gravitational-wave sources and associated anal-

yses

Gravitational waves are emitted by any motion with a non-zero second derivative of

the mass quadrupole term, and an approximation of the amplitude of the wave is [87]

hab =
2

d

d2Qab

dt2
, (1.2.1)

where Qab is the quadrupole moment and d is the distance from the source to the

detector. However only the most massive, violent, events generate signals with realistic

prospects of detection. Man-made sources are ruled out; two 103 kg masses rotating at

10 Hz on each end of a 10 m beam would produce GW strains of h ∼ 5 × 10−43 [87].

This strain is almost twenty orders of magnitude less than even the most sensitive

current concepts for detectors [19].

Gravitational-wave sources with genuine prospects for detection tend to be split

into four distinct categories, each with independent associated data analysis techniques.

The following sections describe some of the most promising candidates for GW sources.

Burst sources

Burst sources are any short duration, unmodelled source of astrophysical origin, and

are generally found by detecting excesses of power within the detectors, triggers.

The main difficulty with this search is that there can be occasional excesses of

power due to the noise of the detector, so a strong understanding of the detector and

its contributing noise components is required. To estimate the background rate from

the noise excesses in detectors, time slides are used [14, 99], where the triggers from one

detector are shifted by an amount of time greater than the wave travel time between

the detectors.

By shifting the detectors in time there will no longer be any correlated signal

present, and the correlation technique can be use to estimate a false alarm rate for

a particular signal-to-noise ratio (SNR) of signal. From this false alarm rate, a signifi-

cance can be calculated, if a standard new discovery threshold of 5σ is used, this would



1.2. GRAVITATIONAL-WAVE SOURCES 25

correspond to a single false alarm in a million gravitational-wave networks running for

the observation time considered.

Sky localisation is performed by calculating the difference between the times of

arrival in the different detectors to triangulate a location in the sky [41]. For two

detectors the best estimate would provide a ring on the sky which would be perpen-

dicular to the straight line between the detectors, three detectors would provide two

possible locations (each is a reflection of the other in the plane passing through all of

the detector sites) and so four detectors are required to provide a single, definitive,

location. Astrophysical event rates are unknown, due to the unknown nature of the

source, but burst pipelines may in fact be able to detect compact binary coalescence

signals with high enough SNR.

Compact binary coalescence

The type of signal often considered most likely to yield the first detection is gravita-

tional waves coming from a compact binary coalescence (CBC) involving two compact

objects inspiralling and merging into one. These will most likely be a combination of

neutron stars (NS) and black holes (BH).

Analysis of these signals generally involves comparison of associated waveforms from

the different sources with the data using matched filtering techniques. The outcome

of this is similar to the burst search, giving a list of triggers, for which the time slide

technique is utilised as above to work out false alarm rates and significance estimation

[18, 99].

Sky localisation techniques are also similar, and will utilise time of arrival differences

in the same way as burst sources mentioned before [43]. Expected event rates vary for

each source type, and estimated rates with the four-detector configuration of advanced

detectors (LIGO detectors at Hanford and Livingston, Virgo and a new LIGO detector

in India) at design sensitivity range from 0.4 to 400 per year for coalescing binary

NSs, 0.4 to 1000 per year for binary BHs, and 0.2 to 300 per year for NS-BH binaries

[10]. The wide ranges of the expected observed event rates are due to the lack of

knowledge of the astrophysical populations and hence event rates, meaning that even

the non-detection of the signals can lead to interesting astronomy.
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Continuous waves from rapidly rotating neutron stars

Continuous-wave sources and their associated data analysis techniques are to be the

main focal point of this thesis, and will therefore be covered much more thoroughly

later on, particularly in chapter 2, but in keeping with the theme of this introduction,

a brief explanation of this source and analyses follows.

Rapidly rotating neutron stars with a non-axisymmetric distortion are expected to

emit continuous waves, with almost monochromatic signals modulated by the detector

motion in orbit around the solar system barycentre (SSB) and any binary motion of

the source. For signals from a non-precessing triaxial neutron star this is expected to

be at twice the rotational frequency.

Continuous-wave source analyses can have two specific advantages over analyses

for other gravitational-wave sources: The first is that we may already know many of

the source parameters such as frequency and sky location to a high degree of accuracy

from electromagnetic observations; this is known as a targeted search, and this type of

search is the main focus of chapters 2, 3 and 4. The second advantage is that as the

signal has a long duration, longer integration times lead to a deeper search into the

detector noise.

Continuous-wave searches also include directed searches, where the sky position of

the source is well constrained but other source parameters such as the frequency, fre-

quency evolution and any binary parameters may be unknown; this generally searches

for a NS with unknown parameters or in a direction at which we would expect large

numbers of sources – such as the galactic centre [1], a globular cluster [7] or the Orion

spur [6]. All-sky searches, including the Einstein@Home search [3] can be computa-

tionally expensive, and will often take a grid-based approach, matching templates for

frequency and sky position. Searches for sources with unknown frequency and sky

position parameters will be discussed in more detail in chapter 6.

Sky localisation in all-sky continuous-wave searches generally comes from a fit to

the phase and amplitude evolution of the signal being affected by the antenna response

throughout the day (see section 1.3.2), so unlike other searches it is possible to get

good accuracy in position from only one detector.
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Stochastic background

It is unlikely that all gravitational-wave sources will be distinguishable from one an-

other, and as such, there will be what seems like a random gravitational-wave field

coming from these as well as signals from cosmological sources such as signatures of in-

flation, similarly to the cosmic microwave background. From these inseparable sources,

there will be a background which can be treated as statistical noise, which can be sep-

arated from instrumental noise through methods such as cross correlation between

detectors [12].

Stochastic gravitational waves are expected to be seen particularly in space-based

and future generation detectors, as the better sensitivity at lower frequencies means

that the galactic white dwarf binary population is within the range of detection [16].

1.3 Gravitational-wave detectors

Never fire a laser at a mirror

Larry Niven

There are numerous gravitational-wave detectors in operation around the world, falling

into a few distinct categories6.

Interferometric detectors are currently seen as one of the most promising candi-

dates to yield the first detection and go on to produce astrophysically interesting data.

There have been multiple attempts at gravitational-wave detection using this method,

including three detectors run by LIGO, as well as GEO 600, Virgo and TAMA 300

[29, 51, 68, 74] and multiple smaller ‘test’ interferometers. At the time of writing the

LIGO detectors, Virgo and TAMA 300 have been decommissioned and only GEO 600

is operational in an ‘astrowatch’ capacity, while Advanced LIGO, Advanced Virgo and

KAGRA [5, 20, 60] are under construction. Proposals for future for interferometer

detectors include ET (the Einstein Telescope [19]), another LIGO detector in India

[53], and two space-based detectors, NGO [33, 42] and DECIGO [61].

Another way to detect gravitational waves is using Doppler tracking in pulsar tim-

ing arrays [49], which uses radio data from well-known millisecond pulsars to detect

6[81] contains much more detail on gravitational-wave detectors, their history and their use.
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the shifts caused by gravitational waves in the times of pulse arrivals. Finally, resonant

mass antennas, including resonant bars [24] and spheres (e.g. MiniGRAIL [35] and

Mário Schenberg [22]), have also been used to attempt to detect gravitational waves.

These work by the gravitational wave exciting particular resonance modes in the detec-

tor, and measuring the way in which the mass responds, though these are intrinsically

extremely narrow-band detectors.

So far, all of these methods have been unsuccessful in yielding the first detection of

gravitational waves.

The following sections discuss current and future interferometric detectors, partic-

ularly their operation and noise sources in section 1.3.1 and the antenna pattern which

affects the way in which we see sources in section 1.3.2.

1.3.1 Interferometric gravitational-wave detectors

Work on the use of interferometers as gravitational-wave detectors has been carried

out since 1966 [73], and once in operation, the second generation detectors will provide

the best prospect of gravitational-wave detection and analysis [72]. The basic form of

an interferometer works by using a laser shining onto a beamsplitter which is at an

angle7 with respect to the beam direction.

This beamsplitter causes half of the light to be transmitted towards one mirror,

and half to be reflected towards another. Each part of the beam then travels along

the respective interferometer arms to a mirror, at which point it is reflected back to

the centre. The light is then incident on the beamsplitter again, and the light is again

reflected or transmitted. This leads to the beam being recombined and travelling either

towards a photodetector or back toward the laser.

At this stage the light travelling toward the photodetector will undergo constructive

or destructive interference, depending on the difference in the lengths of the interfer-

ometer arms and the laser wavelength. The photodetector then measures the varying

amount of incident light, which is indicative of the amount of interference, meaning it

is possible to measure the change in the difference in length of the interferometer arms

over fractions of a wavelength. In LIGO detectors, the mirrors are positioned such that

7For initial and advanced detectors this angle is approximately π/4, see [23].
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the interference is almost entirely destructive, such that the optimal signal-to-noise ra-

tio is obtained.

Optical layout

There are many optical tricks to be played with the interferometer layout in order to

improve the sensitivity, which are illustrated in figure 1.3.1. The first is to introduce

Fabry-Pérot cavities [81], these reflect the beam back and forth between the end and

input test masses. These mean that the light is kept in the detector for a much longer

timescale, increasing storage time and giving a stronger gravitational-wave signal, by

raising the equivalent laser power.

LIGO8 also utilises a power recycling mirror in order to enhance the laser power,

which is particularly useful when operating at a dark fringe, where the interference

is completely destructive. If we consider the conservation of energy; when the inter-

ference is almost entirely destructive, then there is a very low power going towards

the photodetector, this energy has to go somewhere, and so almost all of it goes back

towards the laser. By using the power recycling mirror, this light is sent back into the

interferometer and effectively increases the laser power.

Also shown in figure 1.3.1 is the signal recycling mirror (SRM), this sends the

signal back into the interferometer, increasing the storage time of the signal in the

interferometer and setting up a resonant cavity, leading to the interferometer becoming

more sensitive at the cavity’s resonant frequency. The resonant frequency can be tuned

by changing the position and transmittance of the SRM.

The interference at which the mirrors are held has been described so far as be-

ing almost entirely destructive, the reason for this ‘almost’ is the way in which the

gravitational-wave data is collected and turned into a strain. A gravitational wave

will affect the interferometer readout by introducing a sideband of frequency fs =

flaser + fgw, where fgw is of order ∼ 102 Hz and flaser is ∼ 1014 Hz. The dark fringe is

specifically designed in terms of flaser, and so this change to fs introduces a change in

incident light on the photodiode.

8LIGO has appeared in many forms, so this footnote is an attempt to clarify the nomenclature.
Initial LIGO means the LIGO detector in operation from 2002 to 2007, enhanced LIGO ran from 2009
to 2010, and together these are referred to as LIGO. Advanced LIGO’s first observating run (O1) is
due to start in September 2015.
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Figure 1.3.1: Simplified diagram of the optical layout of the advanced LIGO interferometers. Shown
are the end test masses (ETM), input test masses (ITM), beam splitter (BS), power recycling mirror
(PRM) and signal recycling mirror (SRM) as well as the mode cleaners at input and output. Image
from [5].

In order to decouple the two components the sideband frequency is compared with

the laser light or, as in advanced LIGO, an output mode cleaner is used. In what

is known as a DC readout scheme, this is provided through the interferometer by

moving the readout to be slightly away from complete destructive interference. This

gravitational-wave signal is then converted into a strain h(t) using time-domain filters

[48, 92].

Noise sources in interferometric gravitational-wave detectors

The detector will be affected by noise from internal and external sources, which will

limit the sensitivity of the detector. Here we discuss four significant sources of noise

in interferometric gravitational-wave detectors; seismic noise, gravity gradient noise,

thermal noise and quantum noise [81].

Figure 1.3.2 shows the frequency dependence of the noise for ‘enhanced’ LIGO and

Virgo, from which the real data discussed in this thesis is derived and figure 1.3.3 shows
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Figure 1.3.2: Plot of typical detector strain noise in enhanced LIGO (H1,L1) and Virgo (V1) noise
during LIGO S6 and Virgo VSR2/3. We can see clearly the 60 Hz line from electrical equipment AC
current in the LIGO detectors H1 and L1 and the equivalent 50 Hz line in the Virgo detector. We also
see the suspension violin modes at around 350 Hz in all detectors [9].

the projected noise budget for advanced LIGO detector and its constituent parts.

Seismic noise comes from the vibration of the Earth around the test masses, and

can be reduced by using suspensions. Even using a single-stage pendulum will make

the transfer function for horizontal motion fall off as (1/f)2 above the pendulum res-

onance, and in a similar way the vertical motion can be reduced using a spring. For

example, Virgo mirrors are suspended using a seven-stage pendulum arrangement, with

six cantilever springs, allowing operation to below 10 Hz [27]. Seismic noise limits sen-

sitivity at low frequencies, below around 40 Hz in LIGO (see figure 1.3.2) and 10 Hz in

advanced LIGO (figure 1.3.3).

Gravity gradient noise is caused by nearby mass fluctuations coupling to the mirrors,

such as a surface wave. These can be mitigated by physical environment monitoring and

subtraction (used in advanced LIGO/Virgo), by going underground (KAGRA), or by

the slightly more extreme measure of putting the detector in space (NGO/DECIGO).

Gravity gradient noise contributes significantly to the low frequency noise below around
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Figure 1.3.3: Plot of the advanced LIGO noise budget. Showing also the constituent parts of the noise
discussed in the main text. We also see the noise caused by excess gas in the vacuum system, which
is negligible, and noise from the Brownian noise of the substrate, the material onto which the mirror
is applied, which is also negligible. Image made using the Gravitational Wave Interferometer Noise
Calculator, GWINC [21].
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15 Hz in LIGO (figure 1.3.3).

Thermal noise comes from the thermally excited vibration of particles in the mirror

coating, the suspension and (a little bit from) the substrate to which the coating is

attached. The way to reduce this is to carefully choose the materials for use in things

such as mirror coating, mirror substrate and suspension fibres as well as considering

bonding methods, the size and mass of the mirrors, suspension thickness and mirror

coating methods [98], as well as the possibility of using mirrors at cryogenic temper-

atures (KAGRA) [71]. Coating Brownian noise is one of the main sources of noise

at what would otherwise be advanced LIGO’s most sensitive point (∼ 70 Hz, see fig-

ure 1.3.3). Suspension thermal noise contributes highly at low frequency, as well as

causing spikes of noise at the ‘violin’ modes, where the suspension fibres resonate in

the same way as a violin string [88], which we see in figures 1.3.2 and 1.3.3.

Quantum noise comes from photon shot noise and radiation pressure noise. Reduc-

tion of one of these noise sources through changes in laser power will increase the other,

and the combination of the two noise sources at which the noise is lowest is limited

by the standard quantum limit – the Heisenberg uncertainty principle in its position-

momentum form. Quantum noise is a broadband limiting noise source in advanced

LIGO [81].

One particular noise source of interest to continuous-wave searches in LIGO is the

60 Hz electrical line from AC current in U.S. power lines and electronic equipment. This

line affects searches for the Crab pulsar and for J0900=3144, as it has occasional broad-

ened wings which overlap the Crab’s expected gravitational-wave frequency (60.45 Hz)

and a harmonic of this line affects J0900=3144’s GW frequency (180.023 Hz), these

lines can be seen in figure 1.3.2. As the AC current frequency in Europe is 50 Hz, this

issue does not affect the search for signals from the Crab in Virgo data.

Many other methods also exist for reducing these and other noise sources, but these

are not included here for brevity.

1.3.2 Antenna response

As the detector is not one which can be ‘pointed’ in the same way that an electro-

magnetic telescope might be, we need to consider the different ways in which a signal
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would be affected, given a different source location.

All gravitational-wave signals, regardless of the source will be affected by the detec-

tor’s response to the different sky position, known as the antenna pattern, or antenna

response of the detector. The strain signal detected is

h(t) = F+(t)h+(t) + F×(t)h×(t), (1.3.1)

where h+ and h× are the gravitational-wave signal plus and cross polarisations, as seen

in section 1.1.2. F+ and F× are the antenna pattern functions, one for each polarisation,

relating to the relative orientation of the interferometer to the direction from which

the signal is coming – i.e. the sky position of the source.

The antenna patterns arise as a result of the way in which the test masses will

respond to a gravitational wave. Considering the ring of test particles in figure 1.1.1,

we imagine the mirrors to be at the top (Y-arm) and the right hand side (X-arm) of the

initial circle respectively – these are marked as the red and yellow circles on that figure.

We see that the cross polarised wave in this configuration does affect the mirrors, but

does so equally in both directions. This would lead to no readout in the detector, as

the interferometer measures the difference in arm length of the two mirrors. So our

sensitivity in a particular direction is also governed by the polarisation of the wave.

The antenna patterns are [55]

F+(t;ψ;α; δ) = sin ζ [a(t;α; δ) cos 2ψ + b(t;α; δ) sin 2ψ] , (1.3.2)

F×(t;ψ;α; δ) = sin ζ [b(t;α; δ) cos 2ψ − a(t;α; δ) sin 2ψ] , (1.3.3)

where ζ is the angle between the IFO arms, which is π/2 for most current detectors9,

α and δ are the right ascension and declination of the source, and ψ is the polarisation

angle of the gravitational wave. a(t;α; δ) and b(t;α; δ) are functions of time which come

from the varying detector position and orientation with respect to the sky position

of the source, the exact form of these functions is not required here10 but they are

periodic, repeating once per sidereal day. The antenna response to plus and cross

9For practical reasons, GEO600 actually has ζ = 0.524π [23], and future detectors, such as ET,
may decide to use a triangular setup of co-located, non-aligned detectors, for which ζ = π/3 [19]

10The exact form of a(t;α; δ) and b(t;α; δ) can be found in [55]
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polarised gravitational waves are shown in figure 1.3.4.

We see that the points directly above and below an interferometer are the most

sensitive points, which is due to the transverse nature of the gravitational-wave pertur-

bations on the mirrors. The insensitive points are for waves coming from a direction

which bisects the angle between the detector arms.
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Figure 1.3.4: Sky map of the interferometer antenna response for gravitational-wave plus polarisation
(top left), cross polarisation (top right) and combined (bottom), indicated by the star is the location
of the detector, for which we used the H1 detector for this example The colour map indicates the
sensitivity of the detector to a signal from this direction, from least (blue) to most (red) sensitive.



Chapter 2

Continuous gravitational waves

Willow: Carpe diem. You told me that once.

Buffy: ‘Fish of the day’?

Willow: Not carp. Carpe. It means ‘seize the day.’

Buffy the Vampire Slayer,1998

Signals from rapidly rotating neutron stars are a promising source of gravitational

waves, with the advantage that they are expected to be very long-lived, and as such

can be searched for using coherent methods, increasing signal-to-noise ratio (SNR, ρ)

proportionally to the square root of observation time. These quasi-sinusoidal signals

are analysed using various methods by different groups within the LIGO and Virgo

scientific collaborations, whether for unknown sources, [1, 3, 6, 15] or targeted sources

[17, 25, 39, 54].

Section 2.1 details the signal model used for continuous-wave searches, as well as

an explanation of much of the notation used in the following chapters. This model, or

a slight variation thereof [79, 82], is used in all current continuous-wave searches as the

expected signal.

Section 2.2 gives an introduction to the basics of Bayesian parameter estimation, a

statistical framework used in order to search the parameter space so that we can find

the posterior probability distribution on the values of our parameters of interest.

37
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Dupuis, Pitkin and Woan [38, 39, 83] used Bayesian techniques to develop the

‘Glasgow pipeline’ or ‘known pulsar time-domain Bayesian method’ in the early-to-

mid 2000s. This is an analysis routine to infer gravitational-wave signal parameters of

continuous sources, in particular those with known sky position and phase evolution

from radio data. This technique is described in section 2.3. This method consists of

two parts, the first of which is the heterodyne stage, detailed in 2.3.1. The heterodyne

algorithm provides a drastically downsampled time series of interferometer data for a

given source which has had rotational phase dependency and relative motion effects

removed, this is the BK data (notation similar to that used in [39]). This is a highly

accurate routine, but has the drawback that it can be computationally expensive. The

second part of the analysis is a Bayesian parameter estimation, much of which will be

covered in section 2.2, but the details of its use are given in section 2.3.2.

2.1 Continuous gravitational-wave signals from a

non-precessing triaxial neutron star

In order to search for a long-duration signal in the data, we need to know our expected

signal. This will be a combination of the gravitational-wave signal h+/× and the antenna

pattern F+/× as given in equation 1.3.1; these four time-dependent functions make up

our gravitational-wave strain signal, with F+/× given by equations 1.3.2 and 1.3.3 and

h+/× dependent upon our source.

The source that we will consider is a non-precessing, triaxial neutron star. We

make this choice as there is little to no evidence of precessing behaviour in observed

neutron stars, and if the star was precessing it would be almost immediately damped

by the rotation [59]. A triaxial star is the simplest, most consistent way to see a mass

quadrupole in a rotating neutron star. The gravitational waves expected from this type

of source will have h+ and h× given by [55]

h+(T ) = h0

(
1 + cos2 ι

)
cos Φ(T ;λ), (2.1.1)

h×(T ) = h0 cos ι sin Φ(T ;λ), (2.1.2)
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where Φ(T ;λ) is the phase evolution of the gravitational wave due to source rotation,

T is a time frame of reference stationary with respect to the source and ι is the angle

between the source rotation axis and the line of sight from the detector to the source.

λ is the set of parameters which will affect the phase evolution of the signal, and will

consist of the intrinsic rotational motion of the neutron star – characterised by the

frequency and its derivatives f (0),(1),(2)..., the sky position α and δ, and any binary

parameters. λ is entirely known in a targeted search, and so is omitted in the rest

of this chapter; however it is important in non-targeted searches, and so is returned

to in chapter 6, which discusses follow up of all-sky and directed candidates using

Bayesian parameter estimation. The other parameters, h0, ψ, ι, are often known as the

amplitude or intrinsic parameters, as they mainly affect the amplitude of the signal,

though ψ affects both phase and amplitude over longer duration. With somewhat

counter-intuitive nomenclature, the initial phase φ0 is often included in this set of

amplitude parameters, as this is also unknown in the search. φ0 is the gravitational-

wave phase at the reference epoch in the frame of the detector. As a point of notation,

φrot
0 represents the rotational phase at the reference time and throughout this work,

φ0 = 2φrot
0 .

The reason for making the clarification between gravitational and rotational phase

is that in this work we consider only the deformation of the neutron star with spherical

harmonic l = m = 2 [11, 17] which is a triaxial ellipsoid rotating about its axis of

inertia, and this harmonic is associated with gravitational-wave emission at twice the

rotation frequency, such that the gravitational-wave frequency, f , is twice the rotational

frequency, ν, f = 2ν. We make this assumption though chapters 3 and 4 are ambivalent

towards the exact emission mechanism, so long as the frequency evolution is known.

This means that it can be used in searches for the l = 1 harmonic, such that f = ν

and φ0 = φrot
0 [45, 57, 79]. The expected gravitational-wave strain amplitude h0 from

the l = m = 2 harmonic is1 [3]

h0 =
4π2G

c4

Izzf
(0)2

d
ε, 1 (2.1.3)

1Other papers such as [39] use a factor of 16 instead of 4 in the front of equation 2.1.3, this is
down to the use of the gravitational-wave frequency f (0) or ν(0), differing by a factor of two
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where d is the distance to the source, f (0) is gravitational-wave frequency, and Izz is

the neutron star’s moment of inertia about its principal axis of rotation. Ellipticity ε

is defined by its moments of inertia as2 [39]

ε =
Ixx − Iyy
Izz

. (2.1.4)

This means that by setting limits on h0, we can set limits on the ellipticity of the source

if we know its rotation frequency and its distance e.g. via εIzz =
√

8π/15Q22 in the

l = m = 2 harmonic mode [56, 76].

The time-dependence of h+ and h× is in the phase term Φ(T ); this phase is approx-

imated by a Taylor expansion, found by fitting frequency parameters to radio/X-ray/γ

ray pulse times of arrival, (preferably from data spanning the same analysis period as

the gravitational-wave search),

Φ(T ) ≈ Φ0 + 2π
Λ∑
l=0

f (l)(T − T0)l+1

(l + 1)!
, (2.1.5)

where f (l), is the lth time derivative of the gravitational-wave frequency (f (0) = f ,

f (1) = ḟ , f (2) = f̈ . . .), Λ is the limit to which we utilise the Taylor expansion and T0

is a reference time, at which Φ(T0) = Φ0. The true frequency evolution is generally

well-described by this Taylor expansion for our targets; however inaccuracies or noise

in this frequency evolution can be an issue for particular sources [82], but these are not

taken into account here, as they only affect a few very young pulsars (less than a few

tens of thousand years old).

Table 2.1 shows order-of-magnitude ranges for the rotational frequency and its

derivatives of known isolated pulsars, where ν(l) is the lth derivative of rotational

frequency, analogously to f (0) and figure 2.1.1 shows where these pulsars lie in the

f (0),|f (1)| plane. There are two distinct populations; one which generally has higher

frequencies, containing most of our targets, is a population of recycled millisecond pul-

sars, which have been spun up by accretion from a binary companion, the rest have

not. Most LIGO targets are in the recycled millisecond pulsar population as we require

2Some papers [3] use an ellipticity with an absolute value of the numerator ε =
|Ixx−Iyy|

Izz
, which

prevents a negative h0, in our case it is taken into account by φ0, as a change in sign of h0 is equivalent
to a change in φ0 of π.
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Frequency derivative Range Number of pulsars

ν(0) 0.1 - 650 Hz 2150
|ν(1)| ∼ 10−18 − 10−10 Hz s−1 1853
|ν(2)| ∼ 10−29 − 10−20 Hz s−2 400
|ν(3)| ∼ 10−33 − 10−27 Hz s−3 8

Table 2.1: Magnitude ranges of rotational frequency and absolute values of its frequency derivatives
for known isolated pulsars, and the number of pulsars for which this information is known (information
from [26, 67]).

our targets to be above a certain frequency in order to be within the sensitive band

of the detectors. For the initial LIGO and Virgo detectors this minimum frequency

was ∼ 40 Hz and ∼ 20 Hz respectively [2]; the difference this makes to the number of

sources available for targeted searches is highlighted in figure 2.1.1. For the advanced

LIGO and Virgo detectors [5, 20], their wider frequency band will open up a larger

population of sources to be considered. There are some pulsars within our frequency

range which are not used as targets,as there is no up-to-date timing information.

In table 2.1, ν(1), ν(2) and ν(3) are given as absolute values. ν(1) will usually be

negative; only 34 out of 1847 pulsars with known ν(1) have positive values listed, how-

ever this is usually from acceleration effects due to the source being within a globular

cluster, these cases are discussed more in chapter ??. ν(2) and ν(3) are more equally

split between positive and negative values. ν(3) is only known for a handful of pulsars,

and the values are so small that they barely affect our searches.

Our detector is not inertial with respect to the source, due to relative motion effects

including the orbital motion of the Earth, Earth rotation [31] and any motion of the

source in a binary system. The inertial reference frame in our solar system is at the

Solar System Barycentre (SSB), and the transformation between the time of arrival of

the gravitational wave at the SSB, T , and detector arrival time, t, is

T = t+ δ(t), (2.1.6)
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Figure 2.1.1: Locations of isolated pulsars in the f (0), |f (1)| plane, showing the two distinct populations
of recycled millisecond pulsars and younger, more slowly rotating pulsars with higher spindowns.
Targets which have had f (1) calculated from a characteristic spin-down age rather than their observed
spin-down are not included [2, 26, 67]. Also shown are the locations of hardware injected signals, as
discussed in section 4.1.6.

where δ(t) is made up of four terms3

δ(t) = ∆R� + ∆S� + ∆E� + ∆Binary. (2.1.7)

The Roemer delay ∆R� is the dominant term; it is the classical difference in time taken

for the signal to arrive at the detector and at the SSB. ∆S� is the Shapiro delay, caused

by the bending of space-time near to massive bodies, which in the case of an Earth-

based detector is dominated by the Sun’s contribution. The Einstein delay ∆E� is

the time dilation due to redshifts, including relative motion and gravitational redshift

caused by the Sun and other planets. ∆Binary is an all-encompassing term considering

the Roemer, Shapiro and Einstein delays caused by the source’s own binary orbital

system; for isolated sources, ∆Binary = 0. Considering these time effects, the phase in

the time frame of the detector is

Φ(t) = φ0 + 2π
Λ∑
l=0

f (l)(t+ δ(t)− t0)l+1

(l + 1)!
, (2.1.8)

3This time conversion will look familiar to pulsar timing astronomers, but with the notable ex-
ception of ∆DM, the delay caused by a dispersion medium. As has been noted in section 1.1.3, the
gravitational wave interacts very weakly with matter, this means that the wave is almost unaffected
by the interstellar medium, which would slow down an electromagnetic counterpart.
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where t0 is the time at which the frequency parameters are defined, and Φ(t0−δt) = φ0.

2.2 Bayesian parameter estimation

A wise man proportions his belief to the evidence4.

David Hume, Scottish philosopher, 1711-1776

Bayes theorem is a cornerstone of statistical analysis, and we will use Bayes theorem

to calculate the distributions of our gravitational-wave source parameters given the

data. Using a dataset {BK}, the provision of which we shall discuss later, we find

the posterior (i.e. after the experiment) probability distributions on some parameters.

In this section, we will use the example of the continuous-wave amplitude parameters

a = [h0, ψ, φ0, ι]. Bayes theorem states that

p( a | {BK} , I ) =
p( a | I ) p({BK} | a, I )

p({BK} | I )
, (2.2.1)

where p(A|B) is probability of A given B, a is our set of parameters, I is background

information which involves our assumed model (though this is dropped from further

equations for ease of reading) and {BK} is our dataset. Each probability term in the

above expression is as follows:

� p( a | {BK}) (also denoted P (a)), the posterior: the degree of belief (or proba-

bility) that the data {BK} indicates these values of a – the distribution of this

or its maximum value are generally the outcome of an analysis.

� p(a) (also denoted π(a)), the prior: our prior knowledge of the parameters,

encoded here represents previous knowledge of the values of a. For example, as

an angle φ0 must be within [0, 2π].

� p({BK} | a ) (also denoted L(a)), the likelihood: this is the probability of ob-

taining the data given the parameters specified.

� p({BK}) (also denoted Z), the evidence: the probability of getting these values

of BK for any a. The evidence is often unknown, and as such Bayes theorem

4A Bayesian statistician, however, proportions it to 1
the evidence .



2.2. BAYESIAN PARAMETER ESTIMATION 44

is often stated in the form p( a | {BK}) ∝ p(a) p({BK} | a ). The evidence is

very useful in Bayesian model selection, as it is the total probability that the

data comes from a signal with the defined information I, e.g. a particular model

which has been assumed in the analysis.

As the detectors have so far been unable to detect continuous-wave signals, our figure

of merit has been to set a 95% upper limit on h0, h95%
0 , meaning that 95% of our

probability is contained within the range zero to h95%
0 , defined as

0.95 =

h95%
0∫

h0=0

p(h0 | {BK}) dh0. (2.2.2)

This was used, for example, in [17], where the gravitational-wave energy emission from

the Crab pulsar was limited using h95%
0 to be less than ∼ 2% of its spin-down limit.

The spin-down limit is the total amount of rotational energy being lost, and hence an

upper limit on the gravitational-wave energy being emitted. This energy is calculated

by working out the energy output required to obtain the observed decrease in rotation

frequency, or ‘spin down’. In [11], the gravitational-wave energy from the Vela pulsar

was limited to less than ∼ 41% of its spin-down limit. The spin-down limit is discussed

more in chapter 5.

In searches in O1 – the first observing science run of advanced LIGO – there is

a prospect of detection of continuous waves, meaning that the 95% upper limit will

therefore not tell the entire story, and thus an SNR or a Bayes factor will be stated.

The Bayes factor Bij for competing models Mi and Mj is defined by

Bij :=
Z({BK} |Mi)

Z({BK} |Mj)
, (2.2.3)

which intrinsically assumes equal prior weighting for the two models. This will be used

in this thesis to compare the evidence that a signal is present against a signal not being

present, i.e.

B =
p({BK} | 0 < h0 ≤ hmax)

p({BK} | h0 = 0)
=

Z

Znoise

, (2.2.4)

where hmax is the maximum allowed value of h0 according to the prior.
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The choice of priors for all of our parameters is important, and the least informative

priors can be the best choice, particularly when we have no prior knowledge of the

system. This choice means that our prior on the initial phase, p(φ0) is uniform over

[0, 2π], leading to a prior on φrot
0 of [0, π]. The polarisation angle, p(ψ) is uniform over

[−π/4, π/4]; we note that p(ψ) does not run over a total cycle of 2π, as a change in

polarisation angle ψ of π/2 is equivalent to a change in φ0 of π, and we want to avoid

degeneracies. The prior on ι is uniform in cos ι in the range [−1, 1], giving a uniform

probability in solid angle for the spin axis orientation.

Ideally the prior on gravitational-wave amplitude, h0, would be either astrophysi-

cally motivated or a scale-invariant Jeffreys prior, however, when considering what we

want our experiment to tell us, we decide against these as follows [79]:

An astrophysically motivated prior could set limits on the value of h0 far below

the sensitivity of all detectors so far, in this case the analysis would provide little or

no evidence for gravitational waves in the data, so utilising a non-astrophysical prior

may give a more informative result, as we can gain a scientifically interesting result

which is independent of other methods. There is a possibility of using astrophysically

set priors as the detection becomes more credible in the advanced detector era, but

this is not discussed here as we only discuss initial/enhanced detector results. Given

the fact that we want an interesting outcome to our analysis, we set our sights on a

95% upper limit on h0 which is entirely independent of electromagnetic observation. A

scale-invariant Jeffreys prior would be the standard uninformative prior to use. As h0 is

a multiplicative factor the Jeffreys prior would be p(h0) ∝ 1/h0 for h0 > 0, p(h0) = 0

otherwise. In order to get conservative estimates for h95%
0 , for which the data genuinely

tells us that there is a 5% chance that the gravitational-wave amplitude is larger than

this, we use a prior which is uniform in h0 up to a sensibly chosen maximum value. We

also do not want to exclude the not implausible value of h0 = 0, which would imply

the non-existence of gravitational waves from that pulsar.

When we are focussed only on a single parameter, the other parameters are often

considered as nuisance parameters, to be removed from the posterior probability. The

process to remove nuisance parameters is called marginalisation, and involves integrat-

ing over the likelihood with respect to these parameters; this means that the parameter
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is allowed to take any value according the prior range. Doing this means that we do

not mistakenly ignore the value of the parameter, but use our prior knowledge of the

system. To make our h0 results independent of other parameters, we must marginalise

over the nuisance parameters; in a targeted search, this would be

p( h0 | {BK}) ∝
∫ ∫ ∫

p(a) p({BK} |a) dψ dφ0 d cos ι. (2.2.5)

In practice this integral is usually calculated numerically.

One way of combining data from separate analyses is to use the posterior results

of one analysis as the prior probability for a new one, this is numerically the same as

using a joint likelihood for the two analyses. One can also do this in an incoherent

way, using only the posteriors on h0 and cos ι from another analysis as the prior, with

uniform priors on φ0 and ψ – as was done in [2].

2.2.1 Posterior distribution sampling algorithms

A posterior distribution sampling algorithm such as Markov Chain Monte Carlo [30]

(MCMC) or nested sampling [45, 80, 97] is used in order to obtain the posterior dis-

tribution given the likelihood and our chosen priors. Each will be briefly described

here:

Markov Chain Monte Carlo

The Markov Chain Monte Carlo method, or in particular the Metropolis-Hastings

algorithm of posterior sampling, has been used in the past for Bayesian parameter

estimation of continuous-wave signals [30]. The Metropolis-Hastings algorithm sets a

number of points randomly in the prior space, and from each of these points comes a

chain of points, for which a particular point in the chain, a′, is based only upon the

previous point in the chain, an, with a probability of acceptance given by

α(a′|an) = min

{
p(a′) p({BK} |a′)q(an|a′)
p(an) p({BK} |an)q(a′|an)

, 1

}
, (2.2.6)

where q(an|a′) is the candidate generating pdf, for which a normal distribution gives

good efficiency. This means that if the posterior probability of the new point is larger
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than that of the previous point it is always accepted, but if the new point has a lower

posterior probability it is accepted with a probability given by the ratio of the two

posterior points. From these chains, we should then climb any ‘hills’ in the posterior,

as well as having a good probability of finding multi-modal peaks due to the probability

of accepting new values with lower posteriors.

Nested sampling

The nested sampling algorithm is the posterior sampling method which will be used

in this work. Nested sampling was first developed by Skilling in 2004 [94]5, intended

primarily for use in evidence calculation, however, it was found to have the useful

by-product of posterior sampling. The method involves setting N ‘live’ points in the

parameter space according to the priors, and working out the likelihood L of each

point. Each point is then ranked in order of likelihood, and the least likely point is

assigned likelihood λϑ, and removed, where ϑ denotes the iteration. This point will

enclose prior mass, ξ(λ), defined as

ξϑ :=

∫
· · ·
∫

L(a)>λϑ

π(a) da, (2.2.7)

however L(a) is not known during the execution of our algorithm as we have a finite

number of points. Provided the placing of new points is done in a sensible manner, we

can assume that the remaining prior mass enclosed is distributed equally to each live

point,

ξϑ ≈
ξ0 −

ϑ−1∑
b=1

(1− ξb)

N
. (2.2.8)

We also assume that given a high enough number of live points, almost all of the prior

mass is enclosed, and so ξ0 ≈ 1. This removed point is replaced by a randomly placed

point, given the proviso that it has a higher likelihood value than the previous point.

As the likelihood samples get more tightly distributed, it may no longer be viable

to use the priors as the limits on the placing of this point. The method of choosing

what limits to set on the random placing of this next point is defined by the proposal

5A detailed explanation is also available in [93].
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distribution, and the setup of this proposal distribution is one of the most difficult and

subtle points of nested sampling, and a few different methods can be used. Codes such

as MultiNest use a clustering algorithm [44] and it is possible to use the covariance

matrix of the current datapoints to create a proposal distribution [97]. In our case, we

use an ensemble sampler [47].

As each iteration is performed, the likelihood of each new point will therefore in-

crease and the associated prior mass for removed points will decrease.

The evidence in the nested sampling algorithm is calculated by using the prior mass

and likelihood from the discarded points as an addition to the total evidence. As point

ϑ with Lϑ = λϑ is removed, the evidence contained within the removed prior mass is

added to the overall evidence total. This contained evidence ∆Zϑ is then ∆Zϑ = λϑξϑ,

and the total evidence is the sum of all these points,

Z =
∑
ϑ

∆Zϑ. (2.2.9)

The stopping point of the algorithm is decided based upon the amount of evidence that

is believed to remain in the parameter space, the tolerance. This remaining evidence

is approximated by the multiplying the maximum likelihood by the remaining prior

mass, LmaxξϑN , where N is included as we remember that ξϑ is the prior mass for the

given live point.

The posterior sampling part of the nested sampling method comes from using all

of the nested samples, discarded or not, and noting their posterior value. This is

∆Zϑ for the discarded points and for the remaining points, the leftover prior mass is

divided equally between each point and multiplied by its likelihood. Each point is then

accepted as a posterior sample with a probability given by its posterior value.

2.3 Known pulsar time-domain Bayesian method

The known pulsar time-domain Bayesian method is a well studied, and well used al-

gorithm [2, 11, 17, 83] and consists of heterodyning the data and then performing

parameter estimation with nominally unknown variance at each datapoint. A brief

explanation follows, with a reminder that [38, 39] contain a lot more detail.



2.3. KNOWN PULSAR TIME-DOMAIN BAYESIAN METHOD 49

2.3.1 The heterodyne algorithm

To perform a complex heterodyne, we take the real detector output, s(t), from file

frames, which contain detector data and header information such as channel infor-

mation and timestamps. s(t) is a combination of the gravitational-wave signal h(t)

and the frequency-dependent noise n(t) = N [σT (f)], such that s(t) = h(t) + n(t). In

the heterodyne, each datapoint is multiplied by a time-varying complex exponential

according to its phase, calculated from equation 2.1.8. h(t) is of the form

h(t) = A(t)eiΦ(t) + A∗(t)e−iΦ(t), (2.3.1)

where A(t) is a combination of the antenna pattern and source amplitude parameters

[39]

A(t) =
1

4
F+(t;ψ)h0(1 + cos2 ι)− i

2
F×(t;ψ)h0 cos ι, (2.3.2)

and A∗(t) is its complex conjugate. We then multiply the time series by a time-varying

complex phase correction term in order to remove the time dependence of the signal. To

do this we use the known Doppler parameters to calculate the way in which the phase

evolves, and multiply by its complex exponent. Because we do not know φ0, we are

unable to use Φ(t), so we define here φ(t) = Φ(t)− φ0. Once heterodyned (multiplied

by the time-varying phase correction) the signal becomes

shet(t) = s(t) exp [−iφ(t)]

= A(t)eiφ0 + A∗(t)e−iφ0−2iφ(t) + nhet(t). (2.3.3)

This multiplication removes the rotational phase evolution from the first term and gives

us a rapidly varying term at twice the gravitational-wave frequency, the upper sideband.

The noise nhet(t) = n(t)e−iφ(t) has also been modulated by the phase evolution, however

by the central limit theorem, this will remain approximately Gaussian. The data is then

passed through a band-pass filter, shet → s′het, in order to remove the upper sideband

and most of the frequency-dependent noise (see section 1.3.1). After this procedure,

the signal should be completely independent of the rotational phase evolution, and the
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noise contained will remain Gaussian

s′het(t) = A(t)eiφ0 + n′het(t). (2.3.4)

The mean value of these heterodyned datapoints is taken over a time window ∆t,

tK −∆t/2 < t < tK + ∆t/2 in order to downsample the data to a more manageable,

but still informative amount. tK is the centre of our time window, and ∆t is the

separation of these points. This mean value is the BK dataset used in the parameter

estimation [39],

BK =
1

M

M∑
i=1

s′het(ti), (2.3.5)

where K is the index of the datapoint, and M is the number of datapoints within the

time scope of each BK value.

We need to consider the limitations on the sample rate of the BK values, i.e. how

large can M (or directly related, ∆t) be? Once the BK values have been obtained,

the time-varying component of h+/× has been removed, and the time variance is only

that of the antenna pattern functions from equations 1.3.2 and 1.3.3. F+/× cycles over

timescales of a day and the new sample rate cannot be reduced to be comparable to

the time variation of these functions. This limits the separation of BK values to be less

than a couple of hours.

Computationally there is an advantage to performing two separate heterodyne pro-

cedures; the first, coarse, heterodyne does not take the time delay δ(t) into account,

and downsamples to a much lower rate. In practice this is taken as downsampling from

16384 samples per second to one per second. The second, fine, heterodyne uses this

downsampled coarse data, applies detector motion corrections and downsamples again

to one per minute. This advantage comes from not having to calculate δ(t) so many

times over the course of the coarse calculation. As with our argument with regards to

the antenna pattern, δ(t) varies over time scales of a day6 and is therefore treated as

constant during this coarse procedure.

6See figure 4.1.15.
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BK then fits into our wider picture of the gravitational-wave signal as

BK =
1

4
F+(tK ;ψ)h0(1 + cos2 ι)eiφ0 − i

2
F×(tK ;ψ)h0 cos ιeiφ0 + nK , (2.3.6)

or

BK = yK(a) + nK , (2.3.7)

where nK is the noise on BK , a is again the set of amplitude parameters [h0, φ0, ι, ψ]

and yK is the signal we expect at time tK ,

yK(a) := A(tK)eiφ0 =
1

4
F+(tK ;ψ)h0(1 + cos2 ι)eiφ0 − i

2
F×(tK ;ψ)h0 cos ιeiφ0 , (2.3.8)

tK denotes the time at which BK is calculated, the centre of the time window. The

noise nK remains a zero mean Gaussian, the variance of which, σ2
K , is related to that

of n(t), σ2
T , by the central limit theorem,

σ2
K =

σT (f (0))2

r∆t
, (2.3.9)

where r is the sample rate and ∆t is the length of the time window, the BK separation.

For current searches, r = 16384 Hz and ∆t = 60 s.

Our unknown parameters a are still represented within the BK values and this re-

duced dataset can be used as the basis of a Bayesian analysis as follows in section 2.3.2.

The heterodyne technique is an accurate method for calculating BK from a time

series, however it is computationally expensive and so we want to find a way in which to

reduce the computational load; the way that we propose to do this follows in chapter 3.

2.3.2 Post-downsampling parameter estimation

OurBK values are a signal yK(a) within Gaussian noise (equation 2.3.7). The likelihood

that each value of Bk is drawn from a Gaussian distribution with known variance σ2
K

and for a particular parameter set is

p ( BK | a, σK ) =
1

2πσ2
K

exp

(
−|BK − yK(a)|2

2σ2
K

)
. (2.3.10)
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To combine the data for N datapoints we use p ({BK} | a, {σK} ), the joint likelihood,

which in our case is [39]7

p ({BK} | a, {σK} ) =
N∏
k

p (BK | a, σK )

= (2π)−N
N∏
K

1

σ2
K

exp

(
−|BK − yK(a)|2

2σ2
K

)
. (2.3.11)

This likelihood is based on the data being present in stationary Gaussian noise. The

noise from a detector is not Gaussian, but we can make this assumption over the

bandwidth we are using. This noise however may not be stationary over the duration

of our analysis, so we need to find a way to work around this. One way is to use an

estimate of σK for each datapoint, in which case we can use equation 2.3.11 as the

likelihood.

In many cases however we will not know σK for each datapoint, so, following [39],

we can split BK into ‘chunks’, each subscripted j, starting at k1(j) and running to k2(j)

– a total of mj = k2(j) − k1(j) + 1 points. The chunk is chosen such that the noise can

be assumed to be stationary over its course, meaning that σK is a constant, σk(j). For

each chunk, the likelihood is [39]

p
(
{BK}j | a, σk(j)

)
=

1(
2πσ2

k(j)

)mj
exp

− 1

2σ2
k(j)

k2(j)∑
k=k1(j)

|BK − yK(a)|2
 . (2.3.12)

We can marginalise over the constant unknown σk(j), using a scale invariant Jeffreys

prior on σk(j) of p(σk(j)) ∝ 1/σk(j), σk(j) > 0 to obtain

p
(
{BK}j | a

)
∝

 k2(j)∑
k=k1(j)

|BK − yK(a)|2
−mj

. (2.3.13)

This is the Student’s t-distribution with 2mj − 1 degrees of freedom, which tends

towards the underlying Gaussian as mj →∞. The joint likelihood given all chunks is

p ({BK} | a ) ∝
∏
j

 k2(j)∑
k=k1(j)

|BK − yK(a)|2
−mj

. (2.3.14)

7This is equation 19 in [39], corrected as it did not account for non-constant σ2
K .
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Now that we have the likelihood, we can perform our parameter estimation using one

of the methods in section 2.2.1.



Chapter 3

Spectral Interpolation of fast

Fourier transforms

If we knew what it was we were doing, it would not be called research,

would it?

Albert Einstein

The heterodyne method used to search for continuous gravitational-wave signals can

be computationally expensive, but we can utilise frequency-domain data, which con-

tains much of the information about the signal in only a handful of datapoints. This

efficiency in terms of number of datapoints leads to massive increases in efficiency when

calculating the BK of section 2.2.

The method we use is the Spectral Interpolation algorithm (or SplInter), and it

is intended as a ‘black box’ replacement for the heterodyne routine detailed in sec-

tion 2.3.1. For rapid calculation of an equivalent to BK , SplInter utilises fast Fourier

transforms (FFTs), a specific algorithm for discrete Fourier transforms (DFTs). As a

point of notation, we shall also refer to short Fourier transforms (SFTs, see [13], section

IV C 1), which are relatively short FFTs compared to the duration of the experiment,

and the form in which we access the data. We denote the result of the SplInter algo-

rithm Bk, both to clarify the algorithm used, and as the time window used for each Bk

value is longer than that used in the heterodyne algorithm.

54
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The use of SFTs gives a remarkable increase in computational speeds in the calcu-

lation of Bk with little to no loss of accuracy in most situations. When we perform

this calculation, we are able to ignore swathes of data in frequency space which is of

little or no relevance to each particular source, needing less than 1 Hz of data for each

source once the SFT has been created, rather than the equivalent of 16384 Hz of data

used in the heterodyne algorithm. The SFTs have also already been created for other

searches, e.g. [69] so use of them is free in terms of added computational expense for

the collaboration, though this reuse of SFTs means that we must use 1800 s chunks of

data, which causes issues discussed in section 3.4. A flowchart showing the SplInter

algorithm is given in figure 3.4.3, but we will discuss each part of the algorithm in turn

for clarity.

3.1 Continuous gravitational-wave signals in the fre-

quency domain

Though the method described in this work is independent of the exact form of the

signal, we require that the the phase evolution is known. For illustration, we continue

to use the signal from a non-precessing, triaxial neutron star. We know the form of

the signal in the time domain (equation 2.3.2) and so we also know it in the frequency

domain through its Fourier transform. The discrete Fourier transform, by design, is

a series of samples of the continuous Fourier transform1 and the FFT is a different

calculation of the DFT. This means the signal we expect to see in the FFT can be

analytically calculated using the Fourier transform of s(t′)

S(f) = F [s(t′)] =

∞∫
−∞

[s(t′)] exp(−2iπft′) dt′ (3.1.1)

=

∞∫
−∞

[
A(t′)eiΦ(t′) + A∗(t′)e−iΦ(t′) + n(t′)

]
exp(−2iπft′) dt′.

(3.1.2)

1Appendix B shows for one of the later approximations that for sufficiently high sample rates this
approximation is the same whether calculated from the discrete or continuous Fourier transform.
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As addition and integration commute, S(f) = H(f) +N(f), where H(f) = F [h(t′)]

and N(f) = F [n(t′)].

The data has not been collected for an infinite amount of time, so we need to

consider the window we are applying to the data in the time domain. If we take

the data with equal weighting from within a certain time interval, this is known as a

rectangular window,

WR =


1, tS ≤ t′ < tE

0, elsewhere

, (3.1.3)

where tS and tE are the time at the start and end of the window respectively, and

∆t = tE− tS is the FFT length – the tk separation, similar to tK as used before. Other

windows are in use for other searches within the collaboration, but as the standard

FFTs used in continuous-wave searches are almost rectangular, this window is the

only one considered here2.

Given the rectangular window, the Fourier Transform of the windowed signal will

be

Hk(f) =

tk−t0+∆t/2∫
tk−t0−∆t/2

[
A(t′)eiΦ(t′) + A∗(t′)e−iΦ(t′)

]
exp [−2iπf(t′ − tS)] dt′, (3.1.4)

where tk−t0 is the difference in time between the middle of the FFT, the time at which

Bk is calculated, and the reference epoch of the parameters, t0. Hk(f), Sk(f) and Nk(f)

denote that we are using the SFT with the window around tk and hence associated

with Bk. The exponent in the Fourier transform term becomes −2iπf(t′ − tS) as the

FFT algorithm is performed in a time frame where the argument of the exponent is

zero at the start of the transform.

We now consider the expected signal and its phase evolution φ(t′), the time-varying

part of Φ(t′), which we remember from equation 2.1.8 to be

Φ(t′) = φ0 + 2π
Λ∑
l=0

f (l)(t′ + δ(t′)− t0)l+1

(l + 1)!
,

2Section 4.1.4 contains more about different windows and the tests to show whether the approx-
imation still holds when Tukey windows are used in the FFT. Although rectangular windows are
notorious for spectral power leakage, our method takes this into account in the calculations.
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and move into a new time frame which is zero at the centre of the FFT, t′ → t = t′ − tk + t0,

so dt = dt′, and consider δ(t) as a linear expression

δ(t) ≈ δk + δ̇kt,

where δk = δ(tk − t0), and δ̇k = d
dt
δ(t), δ(t)’s first derivative at t = 0, the centre of the

FFT.

φ(t) = 2π
Λ∑
l=0

f (l) [t+ δ(t) + tk − t0]l+1

(l + 1)!

= 2π
Λ∑
l=0

f (l)
[
t(1 + δ̇k) + tk − t0 + δk

]l+1

(l + 1)!
.

Expanding out the terms using the binomial expansion, this becomes

φ(t) = 2π
Λ∑
l=0

f (l)

l+1∑
κ=0

[
t(1 + δ̇k)

]κ
(tk − t0 + δk)

l+1−κ 1

κ!(l + 1− κ)!
. (3.1.5)

If we discard all terms higher than second order in t, φ(t) approximates as

φ(t) ≈ φk + 2πfkt+ πḟkt
2, (3.1.6)

where we have defined the following:

φk := 2π
Λ∑
l=0

f (l)(tk − t0 + δk)
l+1

(l + 1)!
(3.1.7)

and

fk := (1 + δ̇k)
Λ∑
l=0

f (l)(tk − t0 + δk)
l

l!
. (3.1.8)

We approximate ḟk by calculating the frequency at the beginning and end of the SFT

window, and calculating the gradient between the two

ḟk :=
fend − fstart

∆t
, (3.1.9)

where fstart and fend are calculated in the same way as equation 3.1.8, but with tk
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replaced with tk− ∆t
2

and tk + ∆t
2

respectively (in the δk terms as well as in the explicit

calculation). This numerical calculation is used as there would be an additional term

in ḟk introduced by t2 terms in δ(t), δ̈k, the calculation of which would require a similar

numerical approximation and any resulting inaccuracies would be amplified.

By using equation 3.1.6 as the time-dependent phase in equation 3.1.4, we can

obtain an approximation for Hk(f),

Hk(f) ≈
∆t/2∫

−∆t/2

[
A(t)eiφ(t)+iφ0 + A∗(t)e−iφ(t)−iφ0

]
e−2iπf(t+ ∆t

2 ) dt. (3.1.10)

We assume the signal amplitude and antenna pattern contributions to A(t) are ap-

proximately constant on timescales of a small fraction of a day, so when ∆t is small we

can replace A(t) with A(tk). Having defined yk := A(tk)e
iφ0 in equation 2.3.8 we can

therefore write

Hk(f) ≈ e−iπf∆t

∆t/2∫
−∆t/2

[
yke

iφ(t) + y∗ke
−iφ(t)

]
exp [−2iπft] dt. (3.1.11)

This is the Fourier transform which will be calculated in the following approximations.

3.1.1 Different approximations for the integration

The signal is quasi-sinusoidal, with complex amplitude yk varying slowly due to our

source moving though the antenna pattern, changes in the delay and Doppler shifts,

and intrinsic variations in the source spin rate. Using Hk(f) from equation 3.1.11 and

φ(t) from equation 3.1.6 we can say

Hk(f) ≈ yke
−iπf∆t

∆t/2∫
−∆t/2

exp
[
iφk + 2iπ(fk − f)t+ iπḟkt

2
]

dt

+ y∗ke
−iπf∆t

∆t/2∫
−∆t/2

exp
[
−iφk − 2iπ(fk + f)t− iπḟkt2

]
dt.

(3.1.12)
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These expressions are not strictly analytic due to the t2 phase-dependency of the ex-

ponent, but are forms of the familiar Fresnel integral. The limiting form, when ḟk is

small, is the Fourier transform of a time-limited sinusoid, so we will consider this as a

special case.

Sinc approximation, assuming ḟk = 0

The intrinsic f (1) of a source is generally very small, and over the course of an SFT,

the change in frequency for most sources is small compared to the frequency resolution

of the SFT. For example the Crab pulsar, which has an unusually large spin-down of

f (1) = 7.4 × 10−10 Hz s−1, will change in frequency by ∆f = 1.3 × 10−6 Hz over the

course of a half-hour SFT, or 0.12% of the width of a frequency bin, and a phase change

of 1.3 × 10−3. Instead, ḟk will usually be dominated by the δ̇k terms from source and

observer orbital motion. For an isolated source3 this is usually negligible over ∼ 1 h,

so the first approximation is that ḟk = 0, for the duration of the integral; this means

that equation 3.1.12 is now

Hk(f) ≈ yke
−iπf∆t

∆t/2∫
−∆t/2

exp [iφk + 2iπ(fk − f)t] dt

+ y∗ke
−iπf∆t

∆t/2∫
−∆t/2

exp [−iφk − 2iπ(fk + f)t] dt. (3.1.13)

Solving this integral gives

Hk(f) ≈ yk∆t exp [iφk − iπf∆t] sinc [π(fk − f)∆t]

+ y∗k∆t exp [−iφk − iπf∆t] sinc [π(fk + f)∆t] , (3.1.14)

where we have used the sinc function4

sinc(x) :=
sin(x)

(x)
. (3.1.15)

3For binary sources, ∆Binary often varies enough to give significant values to ḟk.
4This is the convention used in this work. The sinc function is sometimes defined elsewhere as

sinc(x) := sin(πx)
π(x) .
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We notice here that when we are around the signal frequency f ≈ fk, the first term

will dominate the frequency-domain signal, as sinc [π(fk − f)∆t]� sinc [π(fk + f)∆t].

This means that we can safely remove this term, so equation 3.1.14 becomes

Hk(f) ≈ yk∆t exp [iφk − iπf∆t] sinc [π(fk − f)∆t] . (3.1.16)

This is what we shall refer to as the sinc approximation.

When fk is ‘on a bin’ (equal to the central frequency of the bin) the sinc function

will be unity at fk, but zero on all other bin frequencies. This can be seen by setting

fk − f equal to a non-zero integer multiple of 1/∆t, and by using the small angle

approximation sin [π(fk − f)∆t] ≈ π(fk − f)∆t for π(fk − f)∆t ≈ 0

Hk(f) ≈


yk∆t exp [iφk − iπf∆t] , f = fk

0, on all other bins.

(3.1.17)

We consider this as a special case and refer to it as the on-bin approximation, though it

is mainly used for preventing ‘divide by zero’ errors in the algorithm. This is applied to

signals which are close to a frequency bin, within 0.1% of the bin separation. Using a

frequency evolution which is not exactly matched to that of a signal for the interpolation

will reduce the SNR, as the data would not match the correct frequency evolution

template; this SNR drop is particularly evident in a fully coherent search. We present

tests of the signal deterioration given an incorrect frequency in section 4.2.2, though we

stress at this point that the on-bin approximation does account for the error in phase

caused by incorrect frequencies, so the actual effect is an insignificant reduction in the

signal amplitude.

Fresnel approximation, assuming ḟk 6= 0

If ḟk is not negligible, then we can approximate Hk(f) with a numerical integration.

Such circumstances would occur if the Doppler-shifted frequency is evolving signifi-

cantly on timescales of ∆t due to relative motion between the source and observer. If

the rate of change of the signal frequency is a constant, i.e. f̈k = 0, we would expect

the signal to appear as a ‘Fresnel’ pattern in the spectrum, characterised by ḟk. Fres-
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nel integrals have been studied fairly extensively, and algorithms exist for fairly rapid

calculation [84]. The Fresnel integrals comprise a pair of functions defined as [101]

C[w] :=

w∫
0

cos

(
πx2

2

)
dx (3.1.18)

and

S[w] :=

w∫
0

sin

(
πx2

2

)
dx. (3.1.19)

In order to get Hk(f) in terms of these integrals, we utilise a change of variable.

Working from equation 3.1.12 we change the variable of integration to x, through the

transformation

t→ x, x2 = 4(fk − f)
|ḟk|
ḟk

t+ 2|ḟk|t2, (3.1.20)

the factor of |ḟk|/ḟk is included due to complications which would otherwise arise from

the fact that we require x to be real, this is a factor of ±1 depending on the sign of ḟk

which can be taken out of the integrals using cos(−θ) = cos(θ) and sin(−θ) = − sin(θ).

Using Euler’s formula and the change of variable above, equation 3.1.12 is now

Hk(f) ≈ yk√
2|ḟk|

ei∆φ
wend∫

wstart

[
cos

(
πx2

2

)
+ i

ḟk

|ḟk|
sin

(
πx2

2

)]
dx, (3.1.21)

where

∆φ = φk − πf∆t− π

ḟk
(fk − f)2 , (3.1.22)

wend =

√
2|ḟk|

ḟk
(fk − f) +

√
|ḟk|
2

∆t, (3.1.23)

and

wstart =

√
2|ḟk|

ḟk
(fk − f)−

√
|ḟk|
2

∆t. (3.1.24)

Here, we have ignored the second term in equation 3.1.12, as this term again has

negligible effect in the region f ' fk. Using the Fresnel integrals and the fact that
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∫ b
a
f(x) dx =

∫ b
0
f(x) dx−

∫ a
0
f(x) dx, equation 3.1.21 becomes

Hk(f) ≈ yk√
2|ḟk|

exp (i∆φ)

{
C[wend] + i

ḟk

|ḟk|
S[wend]− C[wstart]− i

ḟk

|ḟk|
S[wstart]

}
.

(3.1.25)

We shall refer to equation 3.1.25 as the Fresnel approximation to the signal spectrum,

and calculate the Fresnel integral terms with sufficient numerical precision5 using the

algorithm in [84], which for small ḟk approximates the sinc approximation. Compu-

tationally, this procedure is more expensive than the sinc approximation, however it

only needs to be used rarely, during periods of large ḟk. The value of ḟk we choose

to change from one approximation to the other is defined by |ḟk|∆t2 = 0.1, which we

discuss in section 4.1.3.

3.2 Bk and σk calculation

In order to find Bk, an unbiased estimate of yk, we use a least squares fit, though we

will now briefly go though why this is the best test to use from a Bayesian viewpoint.

In order to calculate the best estimate of yk, we want to marginalise over the noise, and

maximise the posterior such that the Bk output is the most likely value of yk for any

noise level. We then find a maximum value of the posterior probability distribution of

yk.

We start by noticing that Hk(f, a), (as calculated from one of equation 3.1.16, 3.1.17

or 3.1.25), can be expressed as a product of the unknown signal amplitude yk(a) and

a known signal shape function, which we shall call a model, µk, defined as

µk(f) :=
Hk(f, a)

yk(a)
. (3.2.1)

In intrinsically noisy data, we cannot calculate yk, and so the best estimate is Bk,

which we remember from equation 2.3.7 as yk plus noise nk. The joint likelihood of

obtaining the spectrum of the data, Sk(f), given Bk and the set of model values {µk}

in Gaussian noise of variance σ2
F is

5In this case, we use 100 iterations of a continued fraction.
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p ( {Sk} | Bk, σF , {µk} ) =
1

(2πσ2
F )N

exp

(
− 1

2σ2
F

N∑
j=1

|Skj −Bkµkj|2
)
, (3.2.2)

where j indicates the frequency bin, and for visual clarity we have written Skj ≡ Sk(fj)

and µkj ≡ µk(fj). We can consider σF as a nuisance parameter, and marginalise over

it. Choosing a Jeffreys prior of p(σF ) ∝ 1/σF , σF > 0 and a uniform prior on Bk,

which is constant anywhere in the complex plane, the posterior is

p ( Bk | {Sk}, {µk} ) ∝
∞∫

0

1

σ
(2N+1)
F

exp

(
− 1

2σ2
F

N∑
j=1

|Skj −Bkµkj|2
)

dσF . (3.2.3)

To solve this integral, we use a change of variables to u, defined by

u2 =

∑
j |Skj −Bkµkj|2

2σ2
F

, (3.2.4)

du =
2
√∑

j |Skj −Bkµkj|2

σ2
F

dσF . (3.2.5)

So we have a posterior of

p ( {Sk} | Bk, {µk} ) ∝

[∑
j

|Skj −Bkµkj|2
]−N ∞∫

0

e−u
2

u2N+1 du. (3.2.6)

The integral on the end of this expression is a standard integral, [101]

∞∫
0

e−u
2

u2N+1 du = N !2N+1, (3.2.7)

so we can ignore it as a constant in the proportionality. The logarithm of equation 3.2.6

is then

log [ p ( {Sk} | Bk, {µk} )] ∝ −N log

[∑
j

|Skj −Bkµkj|2
]
. (3.2.8)

As we want to maximise the posterior and the logarithm function is a monotonically

increasing function we can equivalently maximise the log posterior. From equation 3.2.8

we see the log posterior is maximised when
∑

j |Skj −Bkµkj|2 is minimised.
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In order to find the minimum, we differentiate
∑

j |Skj −Bkµkj|2 with respect to

B∗k and set this derivative to be zero to find a stationary point. We differentiate with

respect to B∗k as it has the simultaneous properties that

1. Bk → B∗k is conjugate conformal, leading to
dB∗k
dBk

= 0

2. B∗k and Bk are mutually defined, so the most likely value of B∗k defines the most

likely value of Bk.

The following result can also be obtained by finding the minimum values for Re{Bk}

and Im{Bk} and combining the results, these points are discussed more in appendix C.

d

dB∗k

(∑
j

|Skj −Bkµkj|2
)

=

d

dB∗k

∑
j

[
SkjS

∗
kj −BkµkjS

∗
kj − SkjB∗kµ∗kj +BkB

∗
kµ
∗
kjµkj

]
=
∑
j

[
−Skjµ∗kj +Bkµ

∗
kjµkj

]
= 0.

This minimum then gives us an equality which can be solved for Bk to obtain the

most probable value,

Bk =

∑
j

[Skjµ
∗
kj]∑

j

[µ∗kjµkj]
, (3.2.9)

a result that is familiar from least square analysis. This is the maximum posterior

estimator for Bk.

If we take the derivative again, this time with respect to Bk, we see that the second

derivative is
∑

j µ
∗
kjµkj, which is always positive, and hence this stationary point is a

minimum6.

As we are using SFTs with ∆t = 1800 s, we are not able to use a Student’s-t

likelihood in the parameter estimation as there are not enough datapoints within a

time period for which the noise can be assumed to be stationary. However using the

SplInter algorithm, it is possible to estimate the noise on Bk, σk, directly from the SFT

data.

6This point can be seen more clearly in appendix C, when dealing with the real and imaginary
parts separately.
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In order to estimate the variance of nk, we would ideally follow a similar route,

marginalising over Bk in equation 3.2.2 and maximising the posterior for σF

p( σk | {Sk}, {µk} )max =

 ∞∫
−∞

p(Bk) p( σk, Bk | {Sk}, {µk} ) dBk


max

. (3.2.10)

However, this integral is not analytic. We therefore choose to use the calculated value

of Bk from equation 3.2.9 to obtain the best estimate of σk, this is equivalent to using

the Dirac delta function as the prior on Bk in equation 3.2.10,

p(Bk) = δD

Bk −

∑
j

[Skjµ
∗
kj]∑

j

[µ∗kjµkj]

 (3.2.11)

The application of this is straightforward; we use most probable Bk calculated above

to give us back the best estimate of Hkj, Hkj,best = Bkµjk. By taking Hkj,best from Skj,

we get the residuals, which are the best estimate of the noise, Nkj,best. We use the

residuals around the signal frequency and the calculate their variance to give us σ2
F .

We can relate σ2
F to the time domain noise as σ2

F = σ2
T

2
∆t2r

by Parseval’s theorem

and so use equation 2.3.9 to convert σ2
F to σ2

k as

σ2
k = σ2

F

∆t

2
. (3.2.12)

We have now calculated Bk and an estimate of σk, meaning that we can use the known

Gaussian likelihood, equation 2.3.11, in the posterior sampling algorithm, rather than

the Student’s-t that has generally been used previously.

3.3 Outlier removal

The noise in LIGO data contains many line features (see figure 1.3.2), which could

adversely affect the Bk estimate if they are close to the signal frequency. In order to

minimise these effects, we perform three outlier removal routines, with a threshold set

by user input:

The first outlier removal, before any calculation has taken place, removes datapoints
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with real or imaginary values with absolute values above twice the input threshold

number of standard deviations from the mean, which is assumed to be zero. This

threshold is given by

Sth,1 = 2Nσ

√√√√√ N∑
j

S2
kj

N − 1
, (3.3.1)

where N is the number of datapoints within the bandwidth used for Bk and σk calcu-

lation and Nσ is the threshold set by the user. To have an effect on the data without

removing too much, this will normally be around four or five.

The outlier removal is implemented by setting a variable within the algorithm of

whether the datapoint is used, which we shall call Uj
7

Uj,1 =


0, {(|Re[Skj]| > Sth,1) ∨ (|Im[Skj]| > Sth,1)} ∧

(
|fj − fk| > 5

∆t

)
1, in all other cases

(3.3.2)

This threshold is set to be larger than that used in the other routines, as this routine

is designed to only remove very large spikes from the data. This number may seem

small but we remember that the spike itself will be involved in the calculation of Sth,1,

artificially inflating the noise estimate. The first ten bins around the signal frequency

are not removed, in order to protect the data which will contain the most information

about a prospective signal. The type of outlier to be removed by this procedure is

illustrated in figure 3.3.1.

The second outlier removal takes place after Bk and σk have been calculated. Since

we have estimated the residual noise within the FFT, Nkj, best, in order to estimate the

noise on the Bk values, we can use this for outlier removal. The threshold is set by the

standard deviation of the residuals,

Sth,2 = Nσ

√√√√√√√√√
N∑
j

Uj,1 [Nkj,best]
2

(
N∑
j

Uj,1

)
− 1

, (3.3.3)

7We use the standard logical notation of ∧ to mean logical conjunction, ‘and’, and ∨ to mean
inclusive disjunction, ‘or’, which we stress is not exclusive. Exclusive disjunction ‘xor’ would be ⊕.
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Figure 3.3.1: An illustration of the type of outlier removed by the first outlier removal routine. Shown
are the standard deviation of the signal, the threshold for removal, and the protected band around
the source frequency. The removed datapoint is indicated by the magenta star.

Using the calculated σF and Nkj, best = Skj − Hkj, best we remove datapoints with

residual values above the threshold number of standard deviations.

Uj,2 =


0, {|Re[Nkj, best]| > Sth,2 ∨ |Im[Nkj, best]| > Sth,2} ∧

(
|fj − fk| > 2

∆t

)
1, in all other cases

(3.3.4)

This means that smaller spikes nearby that may have been missed by the first outlier

removal can be removed, or we may remove a larger portion of a wider spike as the

first outlier removal is only iterated once. This process removes these spikes without

adversely affecting the signal itself; one way we ensure this is that the closest four

datapoints are kept immune from this outlier removal. If any datapoints have been

removed, then Bk and σk are recalculated, and this outlier removal routine repeated,

until no more datapoints are being removed. The type of erroneous line that this

routine is designed to remove is shown in figure 3.3.2. An example of the first and

second outlier removal routines working in tandem with real data is shown later in

figure 4.1.19 and explained in the text of section 4.1.5.

Because of these outlier removal routines we must alter the previous estimator for
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Figure 3.3.2: An illustration of the type of outlier removed by the second outlier removal routine.
Shown are the best fit of the data, the standard deviation of the residuals, the threshold for removal
calculated from the standard deviation of the residuals, and the protected band around the source
frequency. The removed datapoint is indicated by the magenta star.

Bk to take these removed datapoints into account, so equation 3.2.9 becomes

Bk =

∑
j

[Skjµ
∗
kjUj,1Uj,2]∑

j

[µ∗kjµkjUj,1Uj,2]
. (3.3.5)

The third outlier removal occurs after Bk and σk values have been calculated for all

SFTs. The mean value of all {σk},〈σ〉 is calculated, and any SFT which has Re[Bk],

Im[Bk] or σk above the threshold number times this mean value, i.e.

Uk =


1, (σk < Nσ〈σ〉) ∧ (Re[Bk] < Nσ〈σ〉) ∧ (Im[Bk] < Nσ〈σ〉)

0, otherwise

(3.3.6)

where Uk denotes whether this Bk value is used or not. This outlier removal is designed

to remove outliers in the data which have an unusually high noise, but the noise is

spread evenly over the frequency range considered by the SplInter algorithm, meaning

that the first two outlier removal routines do not see any problem in the data. This

outlier could be caused by unusually high low frequency noise, such as in figure 3.3.3.

The low frequency noise is unusually high in this case, and the power bleeds into the

spectrum up to around 300 Hz. For sources with signals in this range, the noise from
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Figure 3.3.3: An illustration of the type of outlier removed by the third outlier removal routine,
showing the power spectra of two example SFTs. SFT1 has an unusually high low frequency noise
contribution, bleeding power into frequency channels up to around 300 Hz. Indicated by the black
dashed line is a source at 90 Hz, for which the noise on the signal would differ by an order of magnitude
between the cases.

this SFT would be extremely large compared to that in an SFT with a normal noise

profile; for sources above this frequency, the noise is normal, so would be unaffected by

this outlier removal.

This procedure removes all the Bk points which would be heavily suppressed in

a parameter estimation routine. This means that they do not need to be included

in the likelihood calculations, leading to a more computationally efficient parameter

estimation stage. An equivalent of this outlier removal is also present in the heterodyne

algorithm.
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3.4 Algorithm implementation

Rome wasn’t built in a day, but I wasn’t on that particular job.

Brian Clough

This section will describe the way in which the SplInter algorithm works through the

data in order to get the Bk and σk estimates.

The data from the detector comes with ‘quality flags’, and continuous searches tend

to use all data in science mode, this is data for which it is deemed that the quality

is good enough for scientific analysis, but the interferometer may not be at its most

sensitive. We use this as all of the data contains the signal, and the noise estimate

will decrease the importance of the datapoints (or the outlier removal routine will

remove datapoints) in times of poor quality data. During each contiguous segment of

science mode data, we use data in frequency-domain FFT format, SFTs. The main

input files for the algorithm are therefore a segment list, a set of files defining the

source parameters and an SFT cache of pointers to the Fourier data, made using

ligo data find8. Another option at this point is a directory containing an SFT cache

for each segment of the data. Using this option drastically reduces the amount of time

taken to load the SFT catalogue in long duration searches with many segments (see

section 4.2.1), which will be most real analyses of continuous signals.

Figure 3.4.1 shows a histogram of the duration of segments in the LIGO Hanford

detector (H1) during science run 6, (S6), a length of time for which the detector was

taking data, between Jul 08, 2009 and Oct 20, 2010. The length of these science

segments is dependent upon the detector being stable and the interferometer cavities

being resonant, this is largely down to transient seismic activity at the detector site.

The average segment duration is 2.3 hours and ranges between one second and thirty

two hours. We also see the fraction of the total time contained within segments of this

length and the dead time as a fraction of the total time within the segments. Because

we are using 1800 s SFTs there is a significant amount of time lost by requiring data to

be in integer multiples of 1800 s; for example, all of the segment time is lost if it is less

than 1800 s long as we are not able to produce an SFT in that time, or if the segment

8This and other routines (usually denoted lalapps ) are within the LALsuite software repository
https://www.lsc-group.phys.uwm.edu/daswg/projects/lalsuite.html

https://www.lsc-group.phys.uwm.edu/daswg/projects/lalsuite.html
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is 2700 s long, then 900 s of data will be lost. This dead time is 9.9% of the original

amount of data in S6, and leads to a reduction in SNR of around 5%. To compare this

to the heterodyne routine, which uses ∆t = 60 s, the dead time here leads to losing

0.35% of the total available time, an SNR reduction of 0.17%. These are lower bounds

to the actual values, as the SFTs may not be taken from the very start of the segment,

so the more tightly fitting segments may not be available, also the heterodyne routine

throws away the first 60 s of any segment due to the impulse response of the filters.

The dead time from using ∆t of 60 s is not plotted, as it is negligible.
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Figure 3.4.1: A histogram of the duration of segments in the H1 detector in S6 (blue). Shown also
are the fraction of the total time contained within these segments (red), and the fraction of the time
lost by using 1800 s SFTs (black). Indicated by the vertical dotted lines are the 60 s and 1800 s times
used in the heterodyne and SplInter algorithms respectively.

Shown in figure 3.4.2 as a function of time, the duty cycle is the percentage of time

that the detector is in science mode. Overall for S6 this duty cycle was around 51% in

H1 and 48% in L1.

The SplInter algorithm loops through each segment, and in each segment processes

each SFT in turn. Before going into each segment, we check that the segment falls

within the time constraints for which the source parameter files are relevant. We also

check that the source frequency is within the frequency range of the SFT, typically

38 to 2038 Hz for LIGO SFTs. If the source frequency is outside of this range, then

we do not analyse the source with the SplInter algorithm, and will use the heterodyne
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Figure 3.4.2: The duty cycle as a function of time for S6 in H1 (blue) and L1 (red). For this illustration
S6 was split into forty equal sections in time, and the duty cycle is the fraction of time for which the
detector is in science mode. There are periods where L1 and H1 had low or zero duty cycles, e.g.
around days 50 to 80, these are during times of maintenance and commissioning.

algorithm in its search, though sources outside of this range are in regions of very

high noise, which may rule out an analysis anyway. We also may use only the Virgo

detector to analyse the source, which has a frequency range of 9 to 2038 Hz; we see

these sources, which include Vela, in figure 2.1.1. Within each SFT, we also check that

the frequency has not drifted out of this range due to orbital motion, if this test fails,

then the source is ignored for this SFT, but may be considered again later.

The file output is to a file buffer rather than the file itself; this means that we do

not overload the file system with the output, which could be accessing thousands of

files a second if not using this buffer. This buffer is emptied to the file whenever it

reaches 1 MB of data and when the algorithm finishes. Figure 3.4.3 shows a flowchart

of how the SplInter algorithm processes the SFTs within each segment.
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Figure 3.4.3: Flowchart showing the Spectral Interpolation algorithm during each SFT; each step is
discussed more within the text.



Chapter 4

Testing of the Spectral

Interpolation algorithm

If you try and take a cat apart to see how it works, the first thing you

have on your hands is a non-working cat

Douglas Adams

In order to ascertain whether SplInter is a viable black box replacement for the het-

erodyne routine, we need to test the outputs of the two processes. There are three

categories of tests presented here; accuracy, speed and frequency response.

The first accuracy test in section 4.1.1 ensures that we can be confident that the

Bk/K output from the two routines is recovering the signal equivalently, we perform

the two routines in a situation where the output should be exactly the same, using

a noiseless signal with known parameters. Section 4.1.2 shows a similar test, but for

signals from sources in binary systems; these may not be recoverable by the SplInter

algorithm, as the binary orbit may cause the frequency to change in a higher than

linear order over the course of the SFT. We look at finding a general way to decide

whether we can analyse a signal in a binary system.

The accuracy tests performed in sections 4.1.3 and 4.1.4 check whether the assump-

tions we have made regarding spin-down and windowing effects respectively are correct.

Section 4.1.5 shows tests devised to check the σk outputagainst expected or calculated

74
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values. Then the most important test in section 4.1.6, we test the end-to-end routine

by using short duration hardware injections in real noise.

In section 4.2.1 we then test the algorithm performance and the speed increase of

SplInter compared to the heterodyne routine. We also profile the algorithm, giving

details on where it is spending most of its time, and hence computational effort, which

could (and did, during the work developing the algorithm) lead to improvements in

the algorithm efficiency. Section 4.2.2 shows the frequency response of the SplInter

algorithm, showing the errors introduced in amplitude when we use incorrect Doppler

parameters.

4.1 Accuracy testing

There is nothing new to be discovered in physics now. All that remains

is more and more precise measurement

William Thomson, 1st Baron Kelvin, 1824-1907

The SplInter algorithm is designed to replace the heterodyne algorithm, and should

only do so if it is found to be sufficiently accurate in comparison. The accuracy tests

are implemented to show that the assumptions we have made, and the general SplInter

method, are sufficient to give us an adequate replacement.

Although there is no intrinsic reason why a frequency domain analysis in general

should be in any way better or worse than its time domain equivalent, the assumptions

we have made will have an effect on the overall accuracy of the algorithm. In particuar

the assumptions to remove higher order terms than t2 – in both the phase evolution

and the barycentering terms – mean that the SplInter output will differ from the exact

calculation of the heterodyne method.

The LIGO and Virgo scientific collaborations use hardware and software injections

for testing algorithms, and in section 4.1.6 we present a search for hardware injection

signals using both SplInter and heterodyne methods. Section 4.1.1 also uses the pa-

rameters of the hardware injections, as in tables 4.1 and 4.2. In hardware injections

the test masses of the detector are pushed using electrostatic drives in a way which will
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mimic a gravitational-wave signal, this is advantageous over software injections, as it

is possible to check for calibration errors and any problems in obtaining s(t).

f (0) (Hz) f (1) (Hz s−1) α (rad) δ (rad)
PULSAR0 265.577 -4.15×10−12 1.24882 -0.98118
PULSAR1 849.083 -3.00×10−10 0.65265 -0.51404
PULSAR2 575.164 -1.37×10−13 3.75692 0.06011
PULSAR3 108.857 -1.46×10−17 3.11319 -0.58358
PULSAR4 1403.163 -2.54×10−08 4.88671 -0.21758
PULSAR5 52.808 -4.03×10−18 5.28183 -1.46327
PULSAR6 148.719 -6.73×10−09 6.26139 -1.14184
PULSAR7 1220.980 -1.12×10−09 3.89951 -0.35693
PULSAR8 194.308 -8.65×10−09 6.13291 -0.58326
PULSAR9 763.847 -1.45×10−17 3.47121 1.32103

Table 4.1: Doppler parameters of hardware injections used in testing continuous-waves algorithms
(rounded to save space). f (0) is defined at Nov 01, 2003, 00:01:04 GMT, f (2) and higher order terms
are zero in these signals.

Parameter h0 φ0 ψ cos ι
PULSAR0 2.46649× 10−25 2.66 0.77009 0.7949
PULSAR1 1.06005× 10−25 1.28 0.35603 0.4638
PULSAR2 4.01852× 10−24 4.03 -0.22179 -0.9286
PULSAR3 1.62771× 10−23 5.53 0.44428 -0.0807
PULSAR4 4.56205× 10−23 4.83 -0.64794 0.2773
PULSAR5 4.84996× 10−24 2.23 -0.36395 0.4630
PULSAR6 6.92191× 10−25 0.97 0.47098 -0.1537
PULSAR7 2.19820× 10−24 5.25 0.51232 0.7568
PULSAR8 1.58763× 10−23 5.89 0.17047 0.0739
PULSAR9 8.13001× 10−25 1.01 -0.00856 -0.6192

Table 4.2: Amplitude parameters of hardware injections used in testing continuous-waves algorithms.
φ0 is defined at Nov 01, 2003, 00:01:04 GMT.

4.1.1 Noiseless signal recovery - isolated pulsar signals

In the case of a noiseless signal, the heterodyne and SplInter routines should give exactly

the same answer, given the same ∆t, as Bk = yk. Figures 4.1.1 to 4.1.8 show the result

of using SplInter and heterodyne routines (both with ∆t = 1800 s) on signals which have

been created without any noise, given an isolated neutron star with parameters as in ta-

bles 4.1 and 4.2. The frames were made using lalapps create pulsar signal frame

and SFTs were made from these frames using lalapps MakeSFTs.

For the error comparison, we take the mean value of the heterodyned BK values

within the scope of the SFT used to create the SplIntered Bk data. Numerically this
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is the same as using a 1800 s ∆t in the heterodyne algorithm. We denote this averaged

heterodyne Bκ,

Bκ =
N∑
K

BK(tS ≤ tK < tE)

N
, (4.1.1)

where N is the number of datapoints within ∆t/2 of tk. The fractional error comparison

shows the difference in the absolute values of Bk/κ from the two algorithm outputs

divided by the heterodyned Bκ output, and the angle error comparison shows the

difference between the arguments of the two algorithms.

In the comparisons, we use the mixed interpolator, which is a dynamic algorithm,

utilising the sinc approximation when appropriate and the Fresnel approximation when

it is not. The point at which we switch between the two algorithms is discussed in

sections 3.1.1, 3.4 and 4.1.3. We use the sinc interpolation in the case that |ḟk|∆t2 <

0.1, and the Fresnel interpolation otherwise.
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Figure 4.1.1: Comparison of Bk/κ values from SplInter and heterodyne for a noiseless signal with
parameters given by those of hardware injection PULSAR0. We see in this case that there are errors
in Bk introduced by the sinc approximation, but that these are not significant enough to cause the
switch to the Fresnel approximation.
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Figure 4.1.2: Comparison of Bk/κ values from SplInter and heterodyne for a noiseless signal with
parameters given by those of hardware injection PULSAR1. We see in this case that there are errors
in Bk introduced by the sinc approximation, and that these are occasionally significant enough to
cause the switch to the Fresnel approximation, which recovers the signal more accurately.
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Figure 4.1.3: Comparison of Bk/κ values from SplInter and heterodyne for a noiseless signal with
parameters given by those of hardware injection PULSAR2. We see that there are errors in Bk
introduced by the sinc approximation, and that for around half of the time these are significant
enough to cause the switch to the Fresnel approximation.
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Figure 4.1.4: Comparison of Bk/κ values from SplInter and heterodyne for a noiseless signal with
parameters given by those of hardware injection PULSAR3. We see that there are no significant errors
on Bk introduced by the sinc approximation, and we do not need to use the Fresnel approximation
for this source.
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Figure 4.1.5: Comparison of Bk/κ values from SplInter and heterodyne for a noiseless signal with
parameters given by those of hardware injection PULSAR5. We see in this case that there are no
significant errors on Bk introduced by the sinc approximation, and that we do not need to use the
Fresnel approximation for this source.
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Figure 4.1.6: Comparison of Bk/κ values from SplInter and heterodyne for a noiseless signal with
parameters given by those of hardware injection PULSAR6. We see in this case that there are no
significant errors on Bk introduced by the sinc approximation, and that we do not need to use the
Fresnel approximation for this source.
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Figure 4.1.7: Comparison of Bk/κ values from SplInter and heterodyne for a noiseless signal with
parameters given by those of hardware injection PULSAR8. We see in this case that there are small
errors in Bk introduced by the sinc approximation, but that these are not significant enough to cause
the switch to the Fresnel approximation.
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Figure 4.1.8: Comparison of Bk/κ values from SplInter and heterodyne for a noiseless signal with
parameters given by those of hardware injection PULSAR9. We see in this case that there are small
errors in Bk/κ introduced by the sinc approximation, but that these are not significant enough to
cause the switch to the Fresnel approximation.
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We see that the SplInter and heterodyne Bk/κ estimates in figures 4.1.1 to 4.1.8

agree very well with one another, and that in the high SNR limit, the SplInter and

heterodyne Bk/κ outputs are almost exactly equal. The Fresnel approximation is used

significantly for sources 1 and 2, but not for the others. We also see that the mixed

interpolation scheme correctly identifies the points at which it is best to use the Fresnel

approximation.

Figures 4.1.9 and 4.1.10 also show a direct comparison between the real and imagi-

nary parts of the SplInter and heterodyne output Bk/κ, as we can directly see in these

plots the effect of incorrectly making the assumption that the frequency change during

the SFT is zero. These figures show the importance of the Fresnel approximation in

comparison to the sinc approximation for sources 4 and 7. These sources have both

a high frequency and a relatively low declination, which leads to a large frequency

derivative from detector orbital motion.
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Figure 4.1.9: Comparison of Bk/κ values from SplInter and heterodyne for a noiseless signal with
parameters given by those of hardware injection PULSAR4. This example also includes the real and
imaginary parts explicitly so that we can see the errors introduced by the sinc approximation for this
source. We see in this case that there are major errors on Bk introduced by the sinc approximation,
which are particularly evident in the phase error plot and that we need to use the Fresnel approximation
for this source for almost all of the time.

We also see that the Fresnel interpolator is much more accurate than the sinc

interpolation in these cases, and that the mixed interpolation scheme correctly identifies

points at which it would be best or not to use the sinc interpolator. It should be noted

that the algorithm output is an ASCII file containing values of tk, Re(Bk), Im(Bk)

and σk, so an obvious discrepancy in Re(Bk), as we see in figure 4.1.9 will cause issues
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Figure 4.1.10: Comparison of Bk/κ values from SplInter and heterodyne for a noiseless signal with
parameters given by those of hardware injection PULSAR7. We see in this case that there are
significant errors on Bk introduced by the sinc approximation, which are particularly evident in the
phase error plot and that we need to use the Fresnel approximation for this source for almost all of
the time.

in the parameter estimation.

In order to compare the outputs in a more quantitative way, we introduce the

concept of mismatch, m, defined by

m =

∣∣∣∣1− ∑k Bk,Spl ·Bκ,het∑
k Bκ,het ·Bκ,het

∣∣∣∣ . (4.1.2)

where |. . .| denotes absolute value, Bk,Spl is the Bk calculated by the SplInter algorithm,

and Bκ, het is the mean value of the BK calculated from the heterodyne algorithm,

within the duration of the SplIntered SFT (the het and Spl subscripts are to clarify

the use of each algorithm).

This mismatch shows us the SNR loss caused by using incorrect parameters, or

by using approximations in the calculation of Bk. We make the assumption that the

heterodyne values are exactly correct in this comparison. For the noiseless injections

in figures 4.1.1 to 4.1.10 this mismatch was as given in table 4.3.

Pulsar 0 1 2 3 4 5 6 7 8 9
mmixed 0.0022 0.0028 0.0016 0.0033 0.0040 0.0026 0.0029 0.0024 0.0015 0.0027
mFres 0.0019 0.0027 0.0017 0.0033 0.0039 0.0026 0.0028 0.0024 0.0015 0.0026
msinc 0.0022 0.0052 0.0018 0.0033 0.0101 0.0026 0.0029 0.0062 0.0015 0.0027

Table 4.3: Mismatches of noiseless signals using heterodyne and SplInter algorithms with the hard-
ware injection parameters. Marked in bold are the mismatches for which the Fresnel interpolator
significantly reduces the sinc interpolator mismatch.
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We see that the mismatches are all less than one percent and that the Fresnel

and mixed approximations always improve upon the sinc approximation. As such we

conclude that the SplInter method is accurate in this recovery.

4.1.2 Noiseless signal recovery - binary pulsar signals

Signals from binary pulsars will contain an extra term in the transformation from the

time frame which is inertial with respect to the source to the topocentric time, this

term comes from the Roemer, Shapiro and Einstein delays in the source’s own orbital

system, ∆Binary in equation 2.1.7 above. This manifests as an increased variability

in the phase evolution which may not be on timescales such that it can be assumed

to be constant or even linear throughout the SFT, with the linear approximation for

δ(t) breaking down. As such, we test the SplInter algorithm using binary signals in

comparison to the heterodyne routine, which calculates δ(t) every second and hence

is accurate for all binary pulsars. We present the results of some of these analyses in

table 4.4 and figure 4.1.12.

Table 4.4 shows the mismatches over a period of time, for the noiseless signal test

as described above. Pb is binary period in days, and a1 is the projected semi-major

axis, which is the projection of the orbit onto the line of sight, as in figure 4.1.11.

inclination,  

Projected semi-major axis 

line of sight 

Figure 4.1.11: Diagram explaining projected semi-major axis of a neutron star in a binary system.
This binary motion is measured by differences in the time of arrival of pulses from the neutron star,
meaning that we are only able to detect line-of sight motion. This means that an orbit on a plane
which is inclined with respect to the line of sight can only be seen as the projection of that orbit onto
the line of sight, and thus a projected semi-major axis is used (binary companion not shown).

The duration of the analysis is chosen to be either a day, if the binary period is less
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than a day, the binary period, or five days if the binary period is longer than five days,

Tanalysis =


1, Pb ≤ 1 d

Pb, 1 d < Pb ≤ 5 d

5, Pb > 5 d

, (4.1.3)

this choice is so that we gain an accurate mismatch over the course of a binary rotation

if it has a relatively long period. We choose to analyse the source for the whole of the

science run if the mismatch in this noiseless test is below 0.1; this choice is to prevent

too large of a drop in SNR, without dismissing too many prospective targets.

The algorithm used to make the signal in this analysis is lalapps Makefakedata v5,

as the previously used lalapps create pulsar signal frame code does not create

binary signals.

Mismatches Pulsar Parameters Analyse with

Pulsar msinc mmixed Pb, days a1, ls ν(0), Hz ν(0)a1/P
3
b SplInter?

J0023+09 0.74509 0.74535 0.1388 0.0348 327.8470 4.2710×103 No

J0024=7204E 0.39733 0.39733 2.2568 1.9818 282.7791 48.754 No

J0024=7204H 0.43344 0.43344 2.3577 2.1528 311.4934 51.167 No

J0024=7204I 0.59508 0.59508 0.2298 0.0384 286.9447 909.14 No

J0024=7204Q 0.56030 0.56030 1.1891 1.4622 247.9432 215.64 No

J0024=7204R 0.93394 0.93394 0.0662 0.0334 287.3181 3.2996×104 No

J0024=7204S 0.52040 0.52040 1.2017 0.7663 353.3062 156.00 No

J0024=7204T 0.38153 0.38153 1.1262 1.3385 131.7787 123.49 No

J0024=7204U 0.78311 0.78311 0.4291 0.5269 230.2648 1.5357×103 No

J0024=7204Y 0.77959 0.77959 0.5219 0.6686 455.2372 2.1406×103 No

J0034=0534 0.57837 0.58884 1.5893 1.4378 532.7134 190.80 No

J0218+4232 0.48940 0.48943 2.0288 1.9844 430.4611 102.29 No

J0407+1607 0.00080 0.00080 669.0702 106.4501 38.9079 1.3828×10−5 Yes

J0437=4715 0.01168 0.01168 5.7410 3.3667 173.6879 3.0903 Yes

J0605+3757 0.00166 0.00191 55.6723 18.9487 366.5751 4.0255×10−2 Yes

J0610=2100 0.60421 0.60511 0.2860 0.0735 258.9785 813.42 No

J0613=0200 0.69872 0.69655 1.1985 1.0914 326.6006 207.06 No

J0614=3329 0.00102 0.00202 53.5846 27.6388 317.5945 5.7052×10−2 Yes

J0621+1002 0.00033 0.00033 8.3187 12.0321 34.6574 7.2439×10−1 Yes

Continued
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Mismatches Pulsar Parameters Analyse with

Pulsar msinc mmixed Pb, days a1, ls ν(0), Hz ν(0)a1/P
3
b SplInter?

J0737=3039A 0.98665 0.98665 0.1023 1.4147 44.0541 5.8296×104 No

J0751+1807 0.83539 0.83557 0.2631 0.3966 287.4579 6.2569×103 No

J0900=3144 0.00024 0.00024 18.7376 17.2488 90.0118 2.3600×10−1 Yes

J1012+5307 0.63814 0.63814 0.6047 0.5818 190.2678 500.72 No

J1017=7156 0.08106 0.08106 6.5119 4.8300 427.6219 7.4798 Yes

J1022+1001 0.00780 0.00780 7.8051 16.7654 60.7794 2.1430 Yes

J1045=4509 0.01869 0.01869 4.0835 3.0151 133.7931 5.9242 Yes

J1231=1411 0.32977 0.33020 1.8601 2.0426 271.4530 86.148 No

J1300+1240 0.00193 0.00193 66.3366 0.0013 160.8097 7.4262×10−7 Yes

J1455=3330 0.00138 0.00138 76.1746 32.3623 125.2002 9.1667×10−3 Yes

J1518+4904 0.00048 0.00048 8.6340 20.0440 24.4290 7.6077×10−1 Yes

J1537+1155 0.71289 0.71289 0.4207 3.7305 26.3821 1.3214×103 No

J1600=3053 0.00501 0.00532 14.3485 8.8017 277.9377 8.2813×10−1 Yes

J1603=7202 0.00412 0.00412 6.3086 6.8807 67.3766 1.8464 Yes

J1614=2230 0.06804 0.06675 8.6866 11.2912 317.3789 5.4672 Yes

J1623=2631 0.00089 0.00089 191.4428 64.8094 90.2873 8.3396×10−4 Yes

J1630+3734 0.00781 0.00989 12.5250 9.0393 301.3762 1.3865 Yes

J1640+2224 0.00134 0.00206 175.4607 55.3297 316.1240 3.2380×10−3 Yes

J1643=1224 0.00082 0.00092 147.0174 25.0726 216.3733 1.7073×10−3 Yes

J1701=3006A 0.06797 0.06795 3.8059 3.4837 190.7827 12.056 Yes

J1709+2313 0.00067 0.00043 22.7119 15.2885 215.9269 2.8178×10−1 Yes

J1713+0747 0.00095 0.00114 67.8251 32.3424 218.8118 2.2681×10−2 Yes

J1719=1438 0.04856 0.04834 0.0907 0.0018 172.7070 423.30 Yes

J1731=1847 0.71455 0.71501 0.3111 0.1202 426.5193 1.7016×103 No

J1732=5049 0.02627 0.02627 5.2630 3.9829 188.2335 5.1427 Yes

J1738+0333 0.73157 0.73156 0.3548 0.3434 170.9374 1.3145×103 No

J1741+1351 0.00286 0.00417 16.3353 11.0033 266.8692 6.7365×10−1 Yes

J1745=0952 0.00010 0.00010 4.9435 2.3786 51.6094 1.0162 Yes

J1748=2446A 0.93057 0.93057 0.0756 0.1197 86.4816 2.3915×104 No

J1748=2446E 0.00021 0.00116 60.0598 23.5959 455.0004 4.9556×10−2 Yes

J1748=2446I 0.33139 0.33139 1.3278 1.8188 104.4911 81.184 No

J1748=2446M 0.78392 0.78388 0.4431 0.5964 280.1457 1.9200×103 No

J1748=2446N 0.82689 0.82689 0.3855 1.6192 115.3815 3.2619×103 No

J1748=2446O 0.81612 0.81725 0.2595 0.1118 596.4354 3.8171×103 No

J1748=2446Q 0.00082 0.00008 30.2954 28.6420 355.6447 3.6635×10−1 Yes

Continued
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Mismatches Pulsar Parameters Analyse with

Pulsar msinc mmixed Pb, days a1, ls ν(0), Hz ν(0)a1/P
3
b SplInter?

J1748=2446U 0.43528 0.43455 3.5703 5.9725 304.0301 39.900 No

J1748=2446V 0.80522 0.80281 0.5036 0.5669 482.5079 2.1412×103 No

J1748=2446W 0.11067 0.11065 4.8768 5.8837 237.8018 12.063 No

J1748=2446X 0.14808 0.14765 4.9985 5.1072 333.4158 13.635 No

J1748=2446Y 0.74824 0.74844 1.1644 1.1785 488.2434 364.44 No

J1748=2446Z 0.33386 0.33175 3.4881 3.5304 406.0764 33.782 No

J1748=2446ae 0.73708 0.73703 0.1707 0.0406 273.3295 2.2311×103 No

J1748=2446ai 0.65995 0.65995 0.8509 2.8089 47.1067 214.79 No

J1751=2857 0.00061 0.00067 110.7465 32.5282 255.4361 6.1172×10−3 Yes

J1756=2251 0.81752 0.81752 0.3196 2.7576 35.1351 2.9669×103 No

J1801=3210 0.00048 0.00048 20.7717 7.8093 134.1636 1.1690×10−1 Yes

J1802=2124 0.72593 0.72593 0.6989 3.7189 79.0664 861.34 No

J1804=0735 0.01689 0.01689 2.6168 3.9205 43.2884 9.4716 Yes

J1804=2717 0.00097 0.00097 11.1287 7.2815 107.0317 5.6545×10−1 Yes

J1807=2459A 0.82456 0.82586 0.0711 0.0122 326.8563 1.1119×104 No

J1810+17 0.90949 0.90984 0.1482 0.0954 601.4115 1.7637×104 No

J1810=2005 0.00068 0.00068 15.0120 11.9779 30.4671 1.0787×10−1 Yes

J1811=2405 0.09974 0.09831 6.2723 5.7057 375.8560 8.6905 Yes

J1841+0130 0.00075 0.00075 10.4716 3.5041 33.5877 1.0250×10−1 Yes

J1853+1303 0.00027 0.00059 115.6538 40.7695 244.3914 6.4408×10−3 Yes

J1857+0943 0.00377 0.00414 12.3272 9.2308 186.4941 9.1900×10−1 Yes

J1903+0327 0.00134 0.00321 95.1741 105.5935 465.1352 5.6972×10−2 Yes

J1909-3744 0.70448 0.70446 1.5334 1.8980 339.3157 178.60 No

J1910+1256 0.00050 0.00061 58.4667 21.1291 200.6588 2.1214×10−2 Yes

J1910=5959A 0.72597 0.72613 0.8371 1.2060 306.1674 629.46 No

J1911=1114 0.11986 0.11957 2.7166 1.7629 275.8053 24.253 No

J1918=0642 0.00261 0.00261 10.9132 8.3505 130.7895 8.4029×10−1 Yes

J1955+2908 0.00076 0.00076 117.3491 31.4126 163.0479 3.1694×10−3 Yes

J1959+2048 0.67574 0.68094 0.3820 0.0892 622.1220 995.84 No

J2017+0603 0.46199 0.46392 2.1985 2.1929 345.2781 71.256 No

J2019+2425 0.00058 0.00080 76.5116 38.7677 254.1603 2.1999×10−2 Yes

J2033+17 0.00089 0.00089 56.3078 20.1631 168.0967 1.8985×10−2 Yes

J2043+1711 0.63781 0.64082 1.4823 1.6240 420.1894 209.52 No

J2051=0827 0.85634 0.85636 0.0991 0.0451 221.7963 1.0270×104 No

J2129=5721 0.01439 0.01439 6.6255 3.5006 268.3592 3.2300 Yes

Continued
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Mismatches Pulsar Parameters Analyse with

Pulsar msinc mmixed Pb, days a1, ls ν(0), Hz ν(0)a1/P
3
b SplInter?

J2140=2310A 0.78213 0.78213 0.1740 0.2350 90.7496 4.0495×103 No

J2145=0750 0.00523 0.00523 6.8389 10.1641 62.2959 1.9795 Yes

J2214+3000 0.29874 0.30458 0.4166 0.0591 320.5923 261.90 No

J2215+5135 0.94816 0.94819 0.1725 0.4681 383.1976 3.4948×104 No

J2229+2643 0.00350 0.00402 93.0159 18.9125 335.8162 7.8919×10−3 Yes

J2241=5236 0.75590 0.75649 0.1457 0.0258 457.3101 3.8161×103 No

J2302+4442 0.00104 0.00104 125.9353 51.4300 192.5920 4.9592×10−3 Yes

J2317+1439 0.30028 0.30065 2.4593 2.3139 290.2546 45.152 No

Table 4.4: Mismatches of noiseless signals from targeted sources in binary systems, using the sinc
approximation, msinc, and the mixed interpolation scheme, mmixed. Also shown is binary period,
Pb, projected semi-major axis, a1, frequency, ν(0), and a value indicating the extent of the f̈k from
the binary motion, ν(0)a1/P

3
b . We also state whether this source can be analysed with the SplInter

algorithm, based on the mismatch from the mixed interpolation scheme.

In table 4.4, from an analysis of 97 signals1 with parameters from real pulsars, 50

were sources for which we are unable to use the SplInter algorithm (51.5%), and of the

remaining 47, all could be analysed using the sinc approximation as the combination of

source frequency, binary period, and projected semi-major axis did not cause significant

frequency change during the SFT. We see from these results that the use of the Fresnel

or sinc interpolator in this analysis does not produce particularly different results. We

shall see the reason for this in section 4.1.3.

From the results of table 4.4, we plot figure 4.1.12, in which we see that there is

a cut-off point between the analysed and not analysed pulsars. This is not a sharp,

distinct cut-off as the ability to analyse the data is dependent upon f̈k, which will be

dependent upon frequency. By doing a back-of-the-envelope calculation of the time

delay caused by the binary motion, we find that

f̈k ∝
ν(0)a1

P 3
b

, (4.1.4)

which is included in table 4.4. Through the examples of the pulsars used in this test,

1These are the 97 binary pulsars in [2].
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Figure 4.1.12: Binary period vs projected semi-major axis for targeted binary pulsars, indicating
which binary pulsars can be analysed using SplInter and which cannot. We include an indication of
the empirical criteria we set for analysis of a target in a binary system, given in equation 4.1.5, for
pulsars with source frequency of 10, 100 and 1000 Hz.

we can empirically find that the cut-off (in the units as given in table 4.4) is

ν(0)

1 Hz

a1

1 ls

(
Pb

1 day

)−3

. 10. (4.1.5)

Note that pulsar J1701=3006A, with ν(0)a1/P
3
b = 12.056 Hz ls day−3, does not pass this

criterion but can be analysed based on the results of table 4.4, so we choose a cut-off

of 10 to be conservative.

We have a list of targets which can and cannot be used in table 4.4. Though this

is useful for these targets, setting an approximate criterion such as in equation 4.1.5

can then be used if we are to analyse candidate continuous-wave signals from pulsars

in binary systems, such as from the TwoSpect analysis [46]. The TwoSpect minimum

binary period of Pb > 2 h is well below the search limits in this work. This is because

the TwoSpect search is able to dynamically choose the SFT length based on the binary

period, something we do not do in this search.
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4.1.3 Frequency derivative assumptions

We have said before in section 3.1.1 that for an isolated source, ḟk is expected to be

very small and, as such, we can assume ḟk = 0, the sinc approximation. This section

looks at values of ḟk for which this assumption is valid, and the maximum values of f̈k

which can be ignored. We will also discuss what can be done in the cases where the

values of ḟk and f̈k are above these thresholds and whether these maximum values are

physical.

This test will use a model for the tests where the intrinsic spindown parameters f (1)

and f (2) are kept as constants and δ(t) is kept as zero; meaning that we have better

control over the value of the effective spindown parameters ḟk = f (1) + f (2)(t− tk) and

f̈k = f (2). We do not need to compare the analysis to the heterodyned output in this

case, as we can use the known input value.

Assuming linear phase evolution during the SFT, ḟk = 0.

Firstly we consider the ḟk = 0 assumption, we set f (2) = 0 so that ḟk = f (1) and see

how the output is affected by increasing the value of f (1). Shown in figure 4.1.13 is the

mismatch introduced by this assumption, testing signals with ḟk ranging from 2×10−9

to 2× 10−4 Hz s−1.

We see that the Fresnel interpolation model accurately recovers the signal for

all input ḟk and that the sinc function interpolator loses accuracy for signals with

ḟk ' 10−8 Hz s−1 when using 1800 s SFTs, this means that the signal is spreading too

much over the course of the SFT. The important factor to consider is the signal spread

in terms of number of bins, which we see as the signals within the 60 s SFTs, with much

wider frequency bins and less time for the frequency to change, are being recovered

using the sinc interpolation many orders of magnitude higher than the half hour SFTs.

We therefore use the signal spread per bin as the switching point from one algorithm

to the other.

The vertical lines of figure 4.1.13 indicate where this switch happens – this was

chosen to be approximately the point where the phase error introduced by the sinc ap-

proximation is 0.05 radians, corresponding to a mismatch of 0.01, or a signal frequency

spreading more than 10% of a bin during the SFT, so the sinc interpolator is used for
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Figure 4.1.13: Plot showing the mismatch when using each interpolation model in the maximum
posterior estimator with increasing values of ḟk for 60 s and half hour SFTs. Also shown are vertical
lines corresponding to the switching point of ḟk = 0.1/∆t2 and a horizontal line showing the maximum
allowed mismatch.

|ḟk|∆t2 < 0.1.

The reason for not using the Fresnel interpolation model for all cases is computa-

tional efficiency – it takes more computational effort to calculate the Fresnel integrals

(one numerical integration per frequency bin) than it does to calculate the sinc func-

tion, and a mismatch of 0.01 is the point at which we decide that the accuracy error

overcomes the speed increase. Another reason is that for ḟk = 0, the calculation of the

Fresnel model would lead to divide-by-zero errors.

Assuming linear frequency evolution during the SFT, f̈k = 0.

Next we consider f̈k, we do this by setting f (1) = 0 so that f̈k = f (2) and ḟk = f (2)(tk − t0),

we use tk equal to the parameter file epoch such that ḟk = 0 at the centre of the SFT.

The interpolation assumes f̈k to always be zero, and so figure 4.1.14 shows the in-

creased mismatch associated with a non-zero f̈k for values ranging from f̈k = 2× 10−10

to 2× 10−8 Hz s−2.

We see in figure 4.1.14 that the interpolation for this case breaks down at f̈k ≈ 0.01/∆t3,

as such we apply a cut-off threshold at this value, above which the algorithm ignores

that source in the SFT.
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Figure 4.1.14: Plot showing the mismatch when using each interpolation model in the maximum
posterior estimator with increasing values of f̈k for 60 s and half hour SFTs. Also shown are vertical
lines corresponding to the cut-off point of f̈k = 0.01/∆t3 and a horizontal line showing the maximum
allowed mismatch.

If we look at table 2.1, the highest intrinsic value of ν(1), (= f (1)/2 for a non-

precessing, triaxial neutron star) for isolated pulsars is around 10−10 Hz s−1, and for

ν(2) is 10−20 Hz s−2, both of which are still well within the range of the sinc interpolator,

but we need to consider the relative motion effects on the signal phase evolution.

The orbital motion of the detector can introduce significant values of ḟk and f̈k.

For isolated sources, the δ̇k term is dominated by the Earth’s orbit around the Sun,

the ‘worst case scenario’ for ḟk is therefore a source on the ecliptic (the plane of orbit

of the Earth around the Sun). The δ̈k term is dominated by the diurnal motion, and

the ‘worst case scenario’ for f̈k is therefore a source on the celestial equator (i.e. zero

declination). In these worst case scenarios, the value of δ̇k can be up to ∼ 10−4 and δ̈k

can be up to ∼ 10−10 s−1. Depending on the frequency of the source this will introduce

significant values of ḟk, and f̈k. Shown in figure 4.1.15 is the change in time of arrival δk,

barycentred frequency fk and introduced ḟk and f̈k for an isolated source with intrinsic

frequency of f (0) = 2 000 Hz, at the vernal point, so the worst case scenario for Earth

orbit and rotation, and around the maximum allowed frequency by the SFTs.

As we see, this worst case scenario will give us ḟk values up to ∼ 10−7 Hz s−1, well

above the acceptable range for the sinc approximation, and f̈k up to ∼ 10−11 Hz s−2,
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which is within the range of assuming f̈k = 0 with half hour SFTs. This means that for

half-hour SFTs, the Fresnel approximation should be sufficient for all isolated sources,

and the sinc approximation should be sufficient in most cases.

4.1.4 Choice of windowing function

This work has so far considered only a rectangular (equal weighting) window applied

to the time-domain data during the creation of the FFT. However the commonly used

window within the LIGO Scientific Collaboration continuous-waves group is the Tukey

window. The Tukey window [13, 95] is used in order to suppress the first and last

few samples of the time series, which will have been affected by the high-pass filters

used to remove low frequency noise in the creation of the SFTs. Very few samples are

affected by this, and so the amount of windowing is small – the fraction of the window

affected in standard half-hour SFTs is R = 0.001, which corresponds to the first 1.8 s.

The Tukey window also generally provides faster sidelobe reduction than a rectangular

window, but for values of R as small as those used here this is negligible.

The Tukey window takes the form

WT =



1, tS + R∆t
2
≤ t < tE − R∆t

2

1
2

{
1 + cos

[
2π
(
t−tS
R∆t
− 1

2

)]}
, tS ≤ t < tS + R∆t

2

1
2

{
1 + cos

[
2π
(
t−tE
R∆t

+ 1
2

)]}
, tE − R∆t

2
≤ t < tE

0, elsewhere

, (4.1.6)

for which the special case R = 0 is a rectangular window and R = 1 is known as a

Hann window.

The testing here considers using the rectangular window when a Tukey window

has been applied, and seeing the value of R at which we must make changes to the

estimation algorithm.

To test this, we made SFTs containing signal with f (1) = 0, f (2) = 0 with an

imagined detector at the solar system barycentre with uniform antenna pattern. We

altered R in the range [10−6, 1]. We then calculated Bk and compared this output value

to the injected yk. Figure 4.1.16 shows the increasing mismatch of the signal in the Bk
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when assuming R = 0 for increasing values of R.
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Figure 4.1.16: Plot showing the increase in mismatch when using a rectangular window model for a
given windowing amount of a Tukey window. Also indicated are the R = 0.001 line, which is the
standardly used Tukey window for the LIGO continuous-waves SFTs, and the acceptable mismatch
limit, here defined as a 10−2, corresponding to an upper limit of R = 0.02. Below a value of R ∼ 10−5

the mismatch is dominated by numerical precision noise, but is small enough to be safely ignored.

We see that mismatch increases significantly with large amounts of windowing,

and that if we define an acceptable mismatch of 1%, this corresponds to an upper

limit of R = 0.02. Considering this maximum value and that the typically used value

of R = 0.001 is well below this limit, we conclude that windowing effects will not

significantly affect the results.

4.1.5 Noise estimation tests

To test the noise estimation in the SplInter algorithm, we used two tests; the first was

to make SFTs and frames with known white noise and no signal. After running the

SplInter and heterodyne algorithms, we would check that the Bk/K noise was consistent

with the injected value, and also with each other. We compare noise estimates from the

SplInter routine, σk, with noise estimates from BK values from the heterodyne routine

for a signal with zero amplitude with time-domain variance of σ2
T = 1. The estimate of

the noise on the heterodyne, σH , is made by using an average of the standard deviations

from the real and imaginary heterodyne parts which fall within the SFT time range.

To then convert into the equivalent noise value for a half hour separation of Bk, we
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divide by a factor of the square root of the number of datapoints used, as is consistent

with equation 2.3.9, which will be thirty if all BK are present. Algebraically, this is

σH =
1

2(NK − 1)

{√∑
K

Re[BK(tS < tK < tE)]2+

√∑
K

Im[BK(tS < tK < tE)]2
}
, (4.1.7)

where NK is the number of heterodyne datapoints within the range of the SFT. We

see in figure 4.1.17 that the heterodyne and SplInter noise estimates agree with each

other, and that these both agree with the expected distribution around the injected

value of the noise. The expected distribution is a χ2 distribution with n− 1 degrees of

freedom, where n is the number of datapoints used in the noise estimation,

σ2
k

σ2
True

∼ χ2(n− 1)

n− 1
. (4.1.8)

and σTrue is the true injected noise. The heterodyne noise estimate used thirty BK

datapoints from each of the real and imaginary parts of the data, leading to an expected

χ2 distribution with 59 degrees of freedom, shown in the figure by the red dotted line.

In this test, we used the Spectral Interpolation algorithm with a bandwidth of 0.3 Hz

around the signal frequency, this meant that one thousand and eighty datapoints were

used, (0.3× 1
1800

from each of the real and imaginary parts), leading to a χ2 distribution

with 1079 degrees of freedom (shown on the figure as a blue dotted line). This tells

us that in order to get better noise estimates, we could use a wider band of data.

However, the frequency dependence of the noise leads to a limiting bandwidth, as well

as computational efficiency considerations. A frequency bandwidth of 0.3 Hz is a good

balancing point between these considerations.

For the second test software injections are used, selecting the lowest SNRs, so that

the signal should not affect the noise levels estimated for the heterodyne routine too

much. We compare the σH and σk data obtained from the two routines by taking

the maximum likelihood for a scale factor denoting the difference between the noise
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Figure 4.1.17: A histogram of standard deviation estimates of white noise from SplInter (top) and
heterodyne (bottom) output, with the mean estimated values (cyan/magenta dashed lines). Also
shown is the true value of the noise (black vertical line) and the expected distributions of the noise
estimates (dotted lines).

estimates, β, defined by

p(β) ∝ exp

{
−
∑
k

[
1

2

(σHβ − σk)2

σ2
σ

]}
, (4.1.9)

σσ is an estimate of the noise on the standard deviation, calculated from BK . Fig-

ure 4.1.18 shows the most probable values of β obtained from the software injections,

βmax, and we see that the noise estimation data from the Spectral Interpolation algo-

rithm is consistent with the noise on the BK values calculated from the heterodyne

routine, almost entirely lying within a ∼ 4% band around the desired value of unity,

with unity lying within the 1σ uncertainty on this value.

One software injection (J0154+4819) showed a value of β = 0.61 ± 0.05, which is

significantly lower than unity, meaning that the SplInter noise estimate was a long way

below the noise estimate from the heterodyne. The injection frequency of ∼ 347.7 Hz

meant that the signal was within the range of strong lines caused by resonant violin

modes of the suspension (see section 1.3.1). Figure 4.1.19 shows that the outlier removal

routine in SplInter is working to actively remove the noisy lines, leading to a reduction
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Figure 4.1.18: Estimates, with errors, of βmax, the most likely ratio between the SplInter noise estimate
and the heterodyne noise, estimated from the standard deviation of the BK values, with an example
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the signal in Bk/κ would not affect the noise estimate. Not shown in this figure is software injection
J0154+4819 for which βmax = 0.61± 0.05, the reason for this is explained in the text and is shown in
figure 4.1.19.

in the noise of this band in the SplInter output2, and hence a reduction of β. We see

that the SplInter algorithm uses a smaller band of data, 0.1 Hz in this case, rather than

0.5 Hz in the heterodyne case, which excludes one of the resonant lines, the power from

which bleeds into the heterodyne BK , but not the SplInter Bk. The other noise peaks

are actively suppressed through the outlier removal routines.

We conclude that the SplInter noise estimation routine is accurate in both white

noise and noise with spectral features, and that we can see the outlier removal routines

actively suppressing noise peaks for signals near to the ‘violin’ resonance modes of the

suspension.

4.1.6 Short-duration hardware injections

We show here the results of a search for the hardware injections – with Doppler and

amplitude parameters given respectively by tables 4.1 and 4.2 – using heterodyne and

SplInter algorithmsto calculate Bk, and nested sampling for parameter estimation. We

use just under four months of data between Oct 19 2009 and Feb 12, 2010 which had

2This situation also occurred in the search for pulsar J1748=2446ac in [79].
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Figure 4.1.19: Noise levels in an example SFT for the 0.5 Hz band around the signal frequency of the
outlier software injection J0154+4819 used by the heterodyne routine, compared to 0.1 Hz in SplInter.
In the first plot (top left), we see that there are three strong peaks of noise, which correspond to
thermally excited violin resonance modes of the detector suspension, and that one of these peaks is
ignored by using the smaller bandwidth in the SplInter algorithm. We also see the smaller band used
by SplInter, (top right), with an indication of the protected SplInter band. The bottom two plots
show the outlier removal process, in which the datapoints removed by each outlier removal routine are
highlighted (bottom left). The removal routine by which each point was removed is indicated by the
colour. The points within the thresholds which have been removed are ones for which their complex
partner is outside of the threshold. The final picture (bottom right) shows the SFT once the outlier
removal routines have been performed, we see that the summits of the peaks are removed, leading to
a reduction of the noise on the signal, and hence also of its noise estimate and the comparison factor
β.
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a duty cycle of 47%; this amount of data was used so that the injections would be

recovered, but with the posteriors retaining some width. The need for the width in the

posteriors is that if the noise calculation is under- or overestimated, it would show in

the posterior distribution as a narrowing or widening of the distribution respectively.

This will be the test which replicates the end-to-end process of signal recovery most

closely, and the one which will indicate with most accuracy whether SplInter is viable

as a black box replacement for heterodyne.

Table 4.5 shows the returned SNR values from the nested sampling procedure for the

given injections from the SplIntered and heterodyned output with Gaussian likelihood,

and the heterodyned output with Student’s-t likelihood. The ∆t = 1800 s used in the

SplInter routine means that we must use a Gaussian likelihood function as there are

not enough Bk values in periods of stationary noise to be able to accurately marginalise

over it, and so the heterodyne results are given using both the Gaussian likelihood and

the Student’s-t distribution likelihoods for fairer comparison.

Bk/K algorithm SplInter Heterodyne
Likelihood Distribution Gaussian Student’s t

PULSAR0 9.217217 10.95006 11.10940
PULSAR1 10.62824 12.63175 12.69116
PULSAR2 80.27499 90.88592 91.04811
PULSAR3 181.3641 205.1734 205.5443
PULSAR4 230.1506 251.8084 253.2708
PULSAR5 10.78574 12.47511 12.33829
PULSAR6 15.83296 17.25627 17.25333
PULSAR7 19.88728 23.38489 23.57995
PULSAR8 197.4373 230.6753 231.9372
PULSAR9 12.57220 13.71983 13.77271

Table 4.5: SNRs of hardware injections in the H1 detector from a four month analysis of S6 data,
calculated using the Nested Sampling algorithm lalapps pulsar parameter estimation nested.

We see that the SplInter output is consistent with the heterodyne output, with

SNR values generally slightly below those from the heterodyne routine – this is to be

expected as the dead time of 1800 s SFTs for this stretch of time is 10.4%, which leads

to a drop of 5.3% in SNR. As well as this, the filters applied to the data are different,

and there could be some drop in SNR due to spectral leakage from the central peak in

the expected sinc function as a result of the almost rectangular windowing. It is also

worth considering that in high SNR cases it is more difficult to estimate an underlying
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noise.

Figures 4.1.20 to 4.1.24 show the posterior distributions of the four parameters

which are not fixed in targeted searches, a = [h0, φ0, ψ, cos ι]. In all these figures, the

blue line shows posteriors made using SplInter for the calculation of Bk, and the red and

green lines show use of the heterodyned BK with Gaussian and Student’s t distribution

respectively.
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Figure 4.1.20: Posterior distributions for h0, φ0, cos ι and ψ from hardware injections PULSAR0
(top) and PULSAR1 (bottom) using around four months of data from the H1 detector. Posteriors
from SplInter with a Gaussian likelihood (blue), heterodyne with a Gaussian likelihood (red) and
heterodyne with a Student’s t likelihood (green). The vertical black dashed lines show the injected
parameters.

The posteriors show that we usually get very good agreement between the experi-

mental outcomes from the heterodyne BK and SplInter Bk calculation algorithms. The
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Figure 4.1.21: Posterior distributions for h0, φ0, cos ι and ψ from hardware injections PULSAR2
(top) and PULSAR3 (bottom) using around four months of data from the H1 detector. Posteriors
from SplInter with a Gaussian likelihood (blue), heterodyne with a Gaussian likelihood (red) and
heterodyne with a Student’s t likelihood (green). The vertical black dashed lines show the injected
parameters.
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Figure 4.1.22: Posterior distributions for h0, φ0, cos ι and ψ from hardware injections PULSAR4
(top) and PULSAR5 (bottom) using around four months of data from the H1 detector. Posteriors
from SplInter with a Gaussian likelihood (blue), heterodyne with a Gaussian likelihood (red) and
heterodyne with a Student’s t likelihood (green). The vertical black dashed lines show the injected
parameters.
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Figure 4.1.23: Posterior distributions for h0, φ0, cos ι and ψ from hardware injections PULSAR6
(top) and PULSAR7 (bottom) using around four months of data from the H1 detector. Posteriors
from SplInter with a Gaussian likelihood (blue), heterodyne with a Gaussian likelihood (red) and
heterodyne with a Student’s t likelihood (green). The vertical black dashed lines show the injected
parameters.
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Figure 4.1.24: Posterior distributions for h0, φ0, cos ι and ψ from hardware injections PULSAR8
(top) and PULSAR9 (bottom) using around four months of data from the H1 detector. Posteriors
from SplInter with a Gaussian likelihood (blue), heterodyne with a Gaussian likelihood (red) and
heterodyne with a Student’s t likelihood (green). The vertical black dashed lines show the injected
parameters.
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first thing to note is that the deviation of parameters from their claimed injection val-

ues could be due to different calibrations being used for the injections and the output

– it is difficult to know beforehand the calibration that will be used later on in the

experiment, but they are similar enough that it is a very small effect on the outcome.

There is a small amount of disagreement between the posterior outputs for pulsars 4

and 8, though these are minimal, and insignificant on the scales which affect searches

for true signals. We therefore conclude that for all realistic circumstances, the SplInter

algorithm is an accurate replacement for the heterodyne routine in these examples.

4.2 Performance testing

The initial aim of developing the SplInter algorithm was to decrease the computational

expense of producing the BK time series, and so we want to be able to quantify how

much faster SplInter is compared to the heterodyne algorithm. In doing so, we also

profile the times taken in each part of the algorithm, so that we can identify and remedy

any bottlenecks.

We also want to know how the algorithm copes with signal parameters which differ

from those in the parameter input file, so that we do not have to re-perform the SplInter

algorithm for each datapoint in [f (0), f (1)] space if we wish to search in frequency space,

or in another parameter space which will affect frequency, such as sky position.

4.2.1 Speed testing

The main aim of the SplInter algorithm is to greatly reduce computation times, so

we want to know the timing statistics. The SplInter algorithm consists of three parts

which we will time, as well as the total time taken:

� Within each segment, we will take the SFT catalogue load time, during which we

use the XLALSFTdataFind algorithm to search for which SFTs in the provided

list or cache file are within the time constraints given – i.e. the start and end

time of the segment.

� The SFT load time is the time taken to load the Sk(f) data from the SFT file.
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� The interpolation time is the amount of time taken to calculate Bk from the SFT

data, including obtaining details of barycentric time corrections, and outputting

this to a data file buffer.

Table 4.6 shows the mean and median times taken in each part of the algorithm

for SplInter and heterodyne. As the heterodyne algorithm analyses the sources one

at a time it is fairest to compare the total algorithm time taken per source, and as

the SplInter algorithm time per source is not constant for number of sources, we will

compare the total time per source for one, ten, one hundred and one thousand sources

at a time. The profiling times are not relevant (or not calculated) for the heterodyne

routine, and so are not included. The timings calculated use data from a single inter-

ferometer, and the time taken will increase linearly with the number of interferometers

used, as the algorithms are performed for one interferometer at a time.

Heterodyne SplInter
Sources 1 1 10 100 1000

Total Time, s
Median 497.4 0.9476 1.6509 2.4710 10.6050
Mean 505.1 0.9619 1.6818 2.5247 10.8586

CPUh/N/h 5.76×10−3 1.10×10−5 1.91×10−6 2.86×10−7 1.23×10−7

Source parameter load time, s
Median – 0.0046 0.0447 0.4544 4.6518
Mean – 0.0050 0.0471 0.4798 4.8651

Catalogue load time, s
Median – 0.0823 0.0806 0.0808 0.0852
Mean – 0.0897 0.0846 0.0900 0.0909

SFT load time, s
Median – 0.0774 0.6568 0.6830 0.7325
Mean – 0.0807 0.6743 0.6921 0.7516

Interpolation time, s
Median – 0.0013 0.0110 0.1040 1.0442
Mean – 0.0013 0.0110 0.1041 1.0445

Other, s
Median – 0.7791 0.8544 1.1258 3.9462
Mean – 0.7852 0.8649 1.1587 4.1065

Table 4.6: Median and mean times in seconds taken to analyse a day of data using heterodyne and
SplInter for one, ten, one hundred and one thousand sources. Included is the CPU core hours per
source per hour of data, given the median computation time, followed by the amount of time spent
in each part of the algorithm; source parameter load time, SFT catalogue load time, SFT load time
and interpolation time and other, which includes initialisation of the barycentring routine, loading
ephemeris files, segment lists and other calculations.
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We also compare the time taken to load the source parameters from the parameter

file, so that we fill in as many of the blanks on the time taken to perform the algorithm

as possible, this is not included in figure 4.2.1 but it is intuitively proportional to

number of sources.

The times used here are from analyses with the sinc interpolation scheme as this is

the method which will be used most often in real analyses. Timings for the mixed or

Fresnel interpolation schemes will be similar, as we can see that the interpolation itself

is a relatively small proportion of the overall time.

We then take the average time taken per day of data for each of the three timings

taken, which is shown in figure 4.2.1. Repeated timing values are taken to give their

distribution.
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Figure 4.2.1: Histograms of the average time taken to analyse a day of data for various parts of the
SplInter algorithm. Times are all in seconds per SFT, except interpolation time and total time which
are seconds per SFT per source. The different coloured histograms show the different number of
sources used in each analysis. The horizontal axis markers denote the mean values for these times for
the different numbers of sources.

We see that the catalogue load time and interpolation time per source are generally

independent of the number of sources, though the interpolation time per source has a

slight improvement for higher numbers of sources; this is due to the program saving

some of the items in RAM for faster access at a later time. The SFT load time is

reduced when using a single source by only loading a small (∼ 3 Hz) band around the
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approximated signal frequency, but once we are using more than one source, the extra

time taken is small enough that it is worthwhile to load a much wider SFT band, we

load a band from 1.5 Hz below the lowest source frequency to 1.5 Hz above the highest

source frequency.

The analyses for table 4.6 and figure 4.2.1 were run on the atlas computer cluster

hosted in the Albert Einstein Institute, Hannover.

Use of single or multiple SFT cache files

During this work, it was found that for analyses with long duration and many seg-

ments, the SFT catalogue load time was causing a major bottleneck in computational

efficiency, with a large amount of time being taken on this part of the algorithm. This

was found to be due to using a single SFT cache file, containing paths for all of the

SFTs used throughout the duration of the analysis. The problem came from the way

the XLALSFTdataFind algorithm (for finding SFT data) works, opening the header of

each SFT in the cache file to check its timestamp details every time the function is

called. In order to work around this problem, we made it so that SplInter could use

input of a directory containing an SFT cache for each segment. The mean number of

SFTs in each segment’s cache file for H1 during S6 was 5.6 with a median of 3 SFTs,

and maximum of 63 SFTs, compared to a total of nearly 2500 in S6. A histogram of

the number of SFTs contained in each segment is given in figure 4.2.2.

The catalogue load times in table 4.6 and figure 4.2.1 are for a segment of 24 h, (i.e.

containing 48 SFTs), so this time is actually toward the higher end of the scale for real

analyses if we utilise the one-cache-per-segment configuration.

Timing tests were performed on the stretch of data used in the hardware injection

tests in section 4.1.6. These tests were to compare using the single cache input, con-

taining all SFTs found within the time range of the analysis, and the one SFT cache

per segment input. This comparison is presented in figure 4.2.3, which shows the time

improvement using the multiple SFT cache files rather than the single file.

We see the vast improvement in catalogue load time by using multiple SFT cache

files, with the mean catalogue load time per SFT decreasing by two orders of magnitude,

from 0.2 s to 0.002 s. This is a major proportion of the overall time taken in long studies.
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Figure 4.2.2: Histograms of the number of SFTs in each segment for H1 (blue), L1 (red) and V1
(green).
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files. The single large outlier is indicated by the red arrow in the bottom-right hand corner of the
plot.
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We also see the large outlier in the single cache file histogram, indicated by the arrow,

with an SFT catalogue load time of 8.75 s per SFT. This outlier was the first segment

in the analysis, and we note that this is not unusual, there is often a very large SFT

catalogue load time in the first segment for a large list of SFTs, this is again from the

program saving some variables in RAM for faster access at a later point.

4.2.2 Frequency response testing

When performing the Bayesian parameter estimation using the Bk and σk values, we

may wish to search in frequency space, meaning that the Spectral Interpolation or

heterodyne procedure has been performed with incorrect parameters for that parameter

space point. So that we can avoid rerunning the SplInter algorithm for each point in the

parameter space, we can allow for this in the parameter estimation stage by considering

how the algorithms will react to an incorrect f (0), with knowledge of how the other

parameters will affect the frequency evolution of the signal. The test in this case is to

inject signals into a noiseless frame and SFT, and to use the algorithm to try to recover

this signal from a nearby frequency. This test is performed for a source with constant

antenna pattern and has had any orbital motion effects removed, so that it is easier to

control the output values in comparison to the input.

Figure 4.2.4 shows the result of the frequency response test, and we see that the

outcome is very similar to the sinc function, which we can therefore use as the correc-

tion factor in frequency space searches, by multiplying by an appropriate amplitude

correction factor of 1
sinc(∆f)

. The mismatch is not used in this case as it is dominated

by the contributions from the incorrect phase, which can be corrected with a complex

multiplication to unwind the phase difference caused by the frequency difference. The

frequency resolution of a search will be an extremely small fraction of this central peak

in a targeted search, for which the frequency resolution will be up to ∼ 10−10 Hz. Can-

didate followup searches for example as in section 6.4, can have frequency resolution

of up to 5 × 10−5 Hz, which is approximately 10% of the width of a frequency bin for

a 1800 s SFT. The frequency response will change according to the SFT length, and is

best represented in terms of the number of frequency bins from the signal frequency.

The heterodyne frequency response is also determined by the ∆t used, and its effective
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bin width is 1/60 Hz for standard searches.

For frequency differences which are a more than around half a bin width, the SplIn-

ter analysis would be reperformed, as the loss in amplitude would be too significant.

As the absolute value of Bk is not expected to change much in these searches, we do

not update σk for each parameter space point.
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Figure 4.2.4: Loss of amplitude for an incorrect interpolation frequency over the course of a few bins
either side of the signal frequency. We see that this closely follows the sinc function, and so we use
sinc(∆f) as the correction factor for the amplitude in a frequency search.



Chapter 5

Targeted searches for known

pulsars using the spectral

interpolation algorithm

[Hitting the target is] like trying to hit a puppy by throwing a live bee

at it. Which is a weird image and you should all just forget it.

Willow, Buffy the Vampire Slayer, 2001

The Bayesian analysis pipeline as described in section 2.3 has so far been used ex-

clusively for targeted searches of continuous waves from neutron stars, and almost

exclusively for continuous waves with a gravitational-wave frequency at twice the ro-

tational frequency, and so we continue in that tradition in this chapter using the new

analysis algorithm.

Section 5.1 presents the results of targeted searches for signals from isolated and

binary pulsars. These analyses use the entirety of ‘science mode’ data from LIGO

science run 6 (S6) from the Hanford (H1) and Livingston (L1) LIGO detectors, and

Virgo science run 2 (VSR2) of the Virgo detector, (V1). The S6 analysis runs from

Jul 08 2009 to Oct 20 2010, and VSR2 is from Jul 08 2009 UTC to Oct 22 2009.

We set the priors on the amplitude parameters to be uniform within a certain range,

the reasons for using these priors were discussed in section 2.2. The priors are set as

113
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in table 5.1, we conservatively choose an upper limit on h0 of 10−22 as this is an order

of magnitude larger than the highest upper limits set by the Einstein@Home all-sky

search for S5 data (figure 9 of [3]). The prior on ψ is in the range [0, π/2], which is

entirely equivalent to the range [−π/4, π/4] stated previously in section 2.2, as the

signal cycles in ψ over a period of π/2 [58].

parameter lower limit upper limit
h0 0 10−22

ψ 0 π
2

φ0 0 2π
cos ι −1 1

Table 5.1: Uniform prior limits in the targeted search for continuous-wave signals from pulsars in S6.

As discussed previously (also in section 2.2), we shall present the results in the form

of 95% upper limits, defined by

h95%
0∫

h0=0

p(h0 | {Bk}) dh0 = 0.95, (5.0.1)

which means that there is a 95% probability that the value of h0 is below this value

from the data we have. This statement implies that there is a 5% probability that

h0 is higher than this value, but we remember that we are not applying astrophysical

priors, and as such we include a comparison to the spin-down limit, hsd
0 and show the

ratio between the two. This is effectively stating how close we are to be able to make

definitive, new, claims about an astrophysical object.

In the following discussion and the rest of this chapter, we use ν and ν̇ to denote

rotational frequency (previously ν(0)) and its first derivative (ν(1)) respectively for ease

of reading.

The spin-down limit is calculated by equating the loss of kinetic energy seen in the

slowing down of the rotation to the gravitational-wave energy emitted by the source, i.e.

what would be the gravitational-wave energy if GW emission was the only mechanism

responsible for the energy loss causing the slowing down of the rotation. This luminosity
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Ėgw is

Ėgw =
2048π6

5

G

c5
ν6I2

zzε
2

=
8π2

5

c3

G
ν2h2

0d
2, (5.0.2)

and the observed spin-down energy – the rotational kinteic energy lost – is

Ė = 4π2Izzνν̇, (5.0.3)

where, as before, Izz is the moment of inertia about the rotational axis and ε is ellip-

ticity, as defined in equation 2.1.4. We therefore have the canonical spin-down limit

hsd
0 =

(
5

2

G

c3

Izz
d2

|ν̇|
ν

)1/2

= 8.06× 10−19 I
1/2
38

dkpc

(
|ν̇|
ν

)1/2

, (5.0.4)

where I38 is the star’s principal moment of inertia in units of 1038 kg m2 and dkpc is the

distance to the star in kiloparsecs. In the calculations presented here, we use I38 = 1,

the standard moment of inertia used in most examples of the literature.

In nature, in the vast majority of cases, we see that neutron stars are spinning

down, that their rotational frequency is decreasing. However in a few cases we see

from electromagnetic observations that the rotational frequency is increasing; in some

cases this can be explained through accretion of material onto the neutron star from

its companion in a binary system, however for an isolated source, this is not possible.

Millisecond pulsars will have been spun-up to high rotation frequencies through this

accretion, though this process will have ended if the source is now isolated.

So why is ν̇ positive? The implication from equating gravitational-wave luminosity

to the increase in kinetic energy is that this source would somehow be absorbing grav-

itational waves and using this gained energy to spin faster1. The answer is that we do

not see positive spin-downs in nature in the frame of reference of the neutron star, the

positive spin-downs we see are due to the proper motion between the source and the

1Logically this would be possible, but would require a rotational phase evolution perfectly, nega-
tively, matched to the gravitational-wave phase evolution from another source.
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detector, specifically, if the source is accelerating towards us, we will see an apparent

spin-up due to the increasing Doppler shifting.

For sources which have significant line-of-sight proper motion, we take this into

account, in the following results tables these spin-down limits are marked with a †. For

sources which are known to have significant proper motion, i.e. they are in a globular

cluster, but the true proper motion is not known, a characteristic ‘spin-down age’ of

τ = 109 years is assumed to calculate the used ν̇ [2].

The characteristic age, τ , is the period related to how much rotational energy is in

the system, and the rate at which it is being lost. It is defined by

τ =
1

n− 1

ν

ν̇
, (5.0.5)

where n is the braking index, which for a magnetic dipole n = 3 and for purely

gravitational-wave quadrupole spin-down would be n = 5 [2]. In this calculation, n = 3

is used, but as we are only really concerned with an order-of-magnitude estimate, the

factor of 5/3 is unimportant. The spin-down limits for which we use a characteristic

age are indicated by ‡ in the results tables.

From the h95%
0 results of an analysis, we can also constrain the ellipticity ε to

an upper limit containing 95% of the probability, ε95%. To do this, we rearrange

equation 2.1.3 to obtain

ε95% = 0.237
h95%

0

10−24

dkpc

I38ν2
. (5.0.6)

Again, we use the canonical moment of inertia of Izz = 1038 kg m2, so that I38 = 1.

5.1 Results from targeted analysis

We present the upper limit results of two searches for known pulsars, with parameters as

given in [26, 67]. The difference between the analyses is only in the algorithm utilised,

so we expect similar results from the analyses. One of the searches has already been

performed by others, utilising the heterodyne routine in section 2.3.1 and an MCMC

as in 2.2.1, this work was presented in [2]. The reason for presenting this work is that

we perform a similar analysis, but this time utilising the SplInter and nested sampling
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algorithms, meaning that we want to compare the two routines. We do so with a direct

comparison of the 95% upper limits.

The heterodyne/MCMC results for h95%
0 are given in table 7 of [2], though as we

use an updated version of the ATNF pulsar database [26, 67] (v1.53 instead of v1.47)

for the spin-down limits, we update their comparisons to the spin-down limit h95%
0 /hsd

0 ,

as distance estimates can vary by a large amount and these have a strong effect on the

spin-down limit value. We do not include results for the heterodyne routine ellipticity

for the same reason.

Although this analysis is similar to the one used to produce table 7 in [2], we do

not expect the 95% upper limits to be exactly the same, for a few reasons which we

shall now discuss.

The 95% upper limits are going to be intrinsically noisy; we are going to be in

the tails of the noise distribution, the region containing 95% of the probability will

be outside of 2σ for a one-sided normal distribution, which means that the histogram

procedure when counting the posterior samples from nested sampling will be counting

low numbers, leading to high noise from the counting statistics of around 1 in N1/2.

Empirically this can be seen to affect the upper limits by as much as 10%, depending

upon the exact shape of the tails of the posterior.

We also expect the SplInter upper limits to differ from those given by the heterodyne

routine for reasons stated before (e.g. in section 4.1.6) for differences between the two

outputs, such as the dead time from only using 1800 s segments of data, and the use of a

Gaussian likelihood in the nested sampling compared to the Student’s-t likelihood used

in the MCMC. As well as this the priors on h0 and cos ι used for the SplInter analysis

are uniform rather than utilising the S5 results as in [2]. Not applying these priors

could lead to a higher h95%
0 especially in cases where the source is close in frequency to

a noisy line which is present in S6 but not S5.

Table 5.2 shows the result of targeted searches for continuous gravitational waves at

twice the rotation frequency of known isolated pulsars, and table 5.3 shows the result

of targeted searches for known binary pulsars. The analyses have been separated into

isolated and binary pulsars, because the results from section 4.1.2 need to be taken

into account, and we do so on a case-by-case basis for the pulsars in binary systems
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presented in table 5.3.

SplInter & Nested Sampling heterodyne & MCMC

Pulsar ν (Hz) ν̇ (Hz/s) hsd
0 h95%

0 ε95% h95%
0 /hsd

0 h95%
0 h95%

0 /hsd
0

J0024=7204C 173.71 1.6×10−15 6.1×10−28† 1.6×10−25 5.0×10−6 260 1.7×10−25 280

J0024=7204D 186.65 1.6×10−16 1.8×10−28† 4.1×10−26 1.1×10−6 220 2.9×10−26 160

J0024=7204F 381.16 −9.3×10−15 9.9×10−28† 7.3×10−26 4.7×10−7 73 6.7×10−26 68

J0024=7204G 247.50 2.6×10−15 6.6×10−28† 6.3×10−26 9.7×10−7 95 8.2×10−26 120

J0024=7204L 230.09 −3.6×10−15 8.0×10−28‡ 4.5×10−26 8.1×10−7 56 4.2×10−26 53

J0024=7204M 271.99 −4.3×10−15 8.0×10−28‡ 8.2×10−26 1.0×10−6 100 7.0×10−26 88

J0024=7204N 327.44 2.5×10−15 5.6×10−28† 6.5×10−26 5.7×10−7 120 5.1×10−26 91

J0030+0451 205.53 −4.3×10−16 4.1×10−27† 7.8×10−26 1.2×10−7 19 7.2×10−26 18

J0340+41 303.09 −6.5×10−16 4.4×10−28 6.4×10−26 4.4×10−7 150 5.6×10−26 130

J0711=6830 182.12 −2.9×10−16 9.8×10−28† 4.4×10−26 3.2×10−7 45 3.4×10−26 35

J1024=0719 193.72 1.3×10−16 1.3×10−27† 5.3×10−26 1.6×10−7 39 4.6×10−26 35

J1038+0032 34.66 −7.8×10−17 5.1×10−28 1.2×10−25 5.5×10−5 230 1.2×10−25 240

J1453+1902 172.64 −3.2×10−16 1.2×10−27† 1.4×10−25 1.1×10−6 120 1.4×10−25 120

J1518+0204A 180.06 −2.9×10−15 4.0×10−28‡ 8.6×10−26 5.0×10−6 210 7.8×10−26 200

J1641+3627A 96.36 −1.5×10−15 4.9×10−28‡ 5.8×10−26 9.7×10−6 120 5.0×10−26 100

J1721=2457 285.99 −2.4×10−16 4.7×10−28† 6.2×10−26 2.8×10−7 130 5.5×10−26 120

J1730=2304 123.11 −3.1×10−16 2.5×10−27 3.5×10−26 2.8×10−7 14 4.5×10−26 18

J1744=1134 245.43 −4.3×10−16 2.5×10−27† 4.9×10−26 8.1×10−8 19 6.3×10−26 25

J1748=2446C 118.54 −1.9×10−15 5.8×10−28‡ 4.0×10−26 3.7×10−6 68 3.8×10−26 66

J1748=2446D 212.14 −3.4×10−15 5.8×10−28‡ 5.4×10−26 1.6×10−6 93 5.3×10−26 91

J1748=2446F 180.50 −2.9×10−15 5.8×10−28‡ 7.0×10−26 2.8×10−6 120 7.4×10−26 130

J1748=2446G 46.14 −7.3×10−16 5.8×10−28‡ 5.8×10−26 3.5×10−5 99 4.5×10−26 76

J1748=2446H 203.01 −3.2×10−15 5.8×10−28‡ 5.8×10−26 1.8×10−6 99 5.8×10−26 100

J1748=2446K 336.74 −5.3×10−15 5.8×10−28‡ 7.1×10−26 8.1×10−7 120 5.9×10−26 100

J1748=2446L 445.49 −7.1×10−15 5.8×10−28‡ 1.4×10−25 9.0×10−7 240 1.1×10−25 190

J1748=2446R 198.86 −3.2×10−15 5.8×10−28‡ 4.7×10−26 1.6×10−6 81 5.1×10−26 87

J1748=2446S 163.49 −2.6×10−15 5.8×10−28‡ 7.2×10−26 3.5×10−6 120 5.3×10−26 87

J1748=2446T 141.15 −2.2×10−15 5.8×10−28‡ 3.9×10−26 2.5×10−6 67 3.0×10−26 52

J1748=2446aa 172.77 −2.7×10−15 5.8×10−28‡ 1.5×10−25 6.6×10−6 260 1.5×10−25 260

J1748=2446ab 195.32 −3.1×10−15 5.8×10−28‡ 7.7×10−26 2.6×10−6 130 4.0×10−26 69

J1748=2446ac 196.58 −3.1×10−15 5.8×10−28‡ 6.7×10−26 2.3×10−6 110 5.6×10−26 97

J1748=2446af 302.63 −4.8×10−15 5.8×10−28‡ 7.3×10−26 1.0×10−6 120 6.0×10−26 100

J1748=2446ag 224.82 −3.6×10−15 5.8×10−28‡ 4.5×10−26 1.2×10−6 77 5.1×10−26 88

J1748=2446ah 201.40 −3.2×10−15 5.8×10−28‡ 4.5×10−26 1.4×10−6 76 4.0×10−26 69

J1801=1417 275.85 3.1×10−16 4.8×10−28† 8.7×10−26 4.9×10−7 180 7.3×10−26 150

J1803=30 140.82 −2.2×10−15 4.1×10−28‡ 5.2×10−26 4.8×10−6 130 4.1×10−26 100

J1823=3021A 183.82 −2.9×10−15 2.7×10−28‡ 6.7×10−26 5.6×10−6 250 3.5×10−26 130

J1824=2452A 327.41 −1.7×10−13 3.4×10−27† 8.6×10−26 1.0×10−6 25 5.5×10−26 16

J1843=1113 541.81 −2.8×10−15 9.3×10−28† 1.6×10−25 2.5×10−7 170 1.1×10−25 120

J1905+0400 264.24 −2.8×10−16 6.3×10−28† 6.2×10−26 2.8×10−7 99 5.0×10−26 79

J1910=5959B 119.65 −1.9×10−15 7.1×10−28‡ 3.6×10−26 2.7×10−6 50 2.5×10−26 35

J1910=5959C 189.49 1.1×10−18 1.4×10−29† 4.3×10−26 1.3×10−6 3200 3.2×10−26 2300

J1910=5959D 110.68 −1.8×10−15 7.1×10−28‡ 3.1×10−26 2.7×10−6 43 2.1×10−26 30

Continued
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SplInter & Nested Sampling heterodyne & MCMC

Pulsar ν (Hz) ν̇ (Hz/s) hsd
0 h95%

0 ε95% h95%
0 /hsd

0 h95%
0 h95%

0 /hsd
0

J1910=5959E 218.73 −3.5×10−15 7.1×10−28‡ 4.2×10−26 9.3×10−7 59 3.6×10−26 51

J1911+1347 216.17 −7.9×10−16 9.6×10−28 5.9×10−26 4.8×10−7 61 4.8×10−26 50

J1913+1011 27.85 −2.6×10−12 5.5×10−26 4.3×10−25 5.8×10−4 7.7 1.6×10−25 2.9

J1939+2134 641.93 −4.3×10−14 1.3×10−27† 1.3×10−25 3.6×10−7 95 1.3×10−25 100

J1944+0907 192.86 −3.6×10−16 8.6×10−28† 5.5×10−26 4.5×10−7 64 5.5×10−26 64

J2007+2722 40.82 −1.6×10−15 7.4×10−28 7.6×10−26 7.4×10−5 100 7.1×10−26 96

J2010=1323 191.45 −1.8×10−16 6.0×10−28 6.9×10−26 5.7×10−7 110 6.3×10−26 110

J2124=3358 202.79 −4.4×10−16 4.0×10−27† 4.8×10−26 8.4×10−8 12 3.9×10−26 9.8

J2322+2057 207.97 −1.8×10−16 9.6×10−28† 4.1×10−26 1.7×10−7 43 5.4×10−26 56

Table 5.2: Upper limits on the gravitational-wave amplitude of continuous waves from known isolated
pulsars.
A † denotes that the pulsar’s spin-down is corrected for proper motion effects.
A ‡ denotes that the pulsar’s spin-down is calculated using a characteristic spin-down age of 109 years.

We see that the upper limits from the SplInter/nested sampling analysis are gen-

erally slightly higher than those from the heterodyne/MCMC analysis. This is to be

expected from the drop in SNR (leading to an increase in upper limit) from the dead

time consideration. Some pulsars have an improved upper limit in the new analysis,

which can be due to the line removal scheme, such as pulsar J0024=7204C, for which

the surrounding noise in an example SFT is plotted in figure 5.1.1, the peaks seen will

be removed by the SplInter routine, but will adversely affect the upper limit produced

by the heterodyned analysis.
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Figure 5.1.1: Noise levels around the gravitational-wave frequency for J0024=7204C, these peaks
will be removed by the SplInter routine, but will adversely affect the upper limit produced by the
heterodyned analysis.
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For an overall comparison, we use the ratio between the upper limits of the two

analyses, which would be unity if the analyses were exactly the same sensitivity. A

histogram of values for this ratio,

Ω =
h95%

0,S

h95%
0,h

, (5.1.1)

is given in figure 5.1.2.
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Figure 5.1.2: Histogram of Ω, the ratio of 95% upper limits from the SplInter/Nested sampling analysis
and the heterodyne/MCMC analysis for isolated pulsars. Indicated by the dashed line is the mean
value of Ω, and the dotted line indicates the mean value when ignoring the large outliers, which is
1.107.

The mean value of Ω (once outliers have been removed) is 1.107, and unity is within

the uncertainty of the distribution. A slightly larger than unity Ω is expected due to

the loss of the time for which data is dismissed as it is not in integer 1800 s chunks.

The extra loss of SNR and hence higher h95%
0 values could be due to spectral leakage

from the central peak in the expected sinc function as a result of the almost rectangular

windowing

As noted in section 4.1.2, the recovery of signals from pulsars in binary systems by

Spectral Interpolation may not be as accurate as for isolated pulsars. We analyse the

pulsars in binary systems in the same way as we analyse the isolated pulsars, however

we do not analyse pulsars which have been ruled out of analysis as a result of the

discussion in section 4.1.2.

Table 5.3 shows the result of the targeted searches for continuous gravitational waves
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from binary pulsars, and figure 5.1.3 shows a histogram of Ω for the binary analysis.

Of the sources in binary systems from table 4.4, we are unable to analyse J0605+3757

and J1630+3734 as the timing solutions are not applicable to the S6 dataset.

SplInter & Nested Sampling heterodyne & MCMC

Pulsar ν (Hz) ν̇ (Hz/s) hsd
0 h95%

0 ε95% h95%
0 /hsd

0 h95%
0 h95%

0 /hsd
0

J0407+1607 38.91 −1.2×10−16 3.5×10−28 9.6×10−26 6.1×10−5 270 5.1×10−26 145

J0437=4715 173.69 −4.1×10−16 7.8×10−27† 1.8×10−25 2.2×10−7 23 1.2×10−25 15

J0614=3329 317.59 −1.7×10−15 6.4×10−28 7.0×10−26 4.8×10−7 110 8.5×10−26 130

J0621+1002 34.66 −5.5×10−17 5.4×10−28† 1.1×10−25 4.2×10−5 210 9.6×10−26 180

J0900=3144 90.01 −4.0×10−16 2.1×10−27 1.6×10−25 3.8×10−6 76 1.8×10−25 86

J1017=7156 427.62 −3.8×10−16 2.9×10−27† 2.5×10−25 8.6×10−8 87 1.0×10−25 34

J1022+1001 60.78 −1.6×10−16 2.5×10−27 7.0×10−26 2.3×10−6 28 4.8×10−26 19

J1045=4509 133.79 −3.1×10−16 5.3×10−27† 3.1×10−26 9.4×10−8 5.8 3.0×10−26 5.7

J1300+1240 160.81 −7.9×10−16 3.0×10−27† 4.5×10−26 2.5×10−7 15 4.9×10−26 16

J1455=3330 125.20 −2.5×10−16 1.5×10−27† 3.6×10−26 4.0×10−7 24 3.6×10−26 24

J1518+4904 24.43 −1.3×10−17 8.5×10−28† 4.5×10−25 1.3×10−4 540 4.5×10−25 540

J1600=3053 277.94 −6.5×10−16 5.1×10−28† 7.7×10−26 5.7×10−7 150 6.7×10−26 130

J1603=7202 67.38 −5.4×10−17 4.4×10−28† 3.8×10−26 3.2×10−6 86 2.3×10−26 52

J1614=2230 317.38 3.9×10−16 5.0×10−28† 6.9×10−26 2.9×10−7 140 6.4×10−26 130

J1623=2631 90.29 −5.1×10−15 3.4×10−27† 3.6×10−26 1.9×10−6 11 5.1×10−26 15

J1640+2224 316.12 −1.6×10−16 4.9×10−28† 5.9×10−26 1.7×10−7 120 5.1×10−26 100

J1643=1224 216.37 −8.5×10−16 3.8×10−27† 5.2×10−26 1.1×10−7 14 3.6×10−26 7.8

J1701=3006A 190.78 −3.0×10−15 4.6×10−28‡ 4.4×10−26 2.0×10−6 97 3.6×10−26 78

J1709+2313 215.93 −6.9×10−17 2.5×10−28† 8.4×10−26 7.8×10−7 340 9.3×10−26 370

J1713+0747 218.81 −3.9×10−16 1.0×10−27† 5.0×10−26 2.6×10−7 49 3.5×10−26 35

J1719=1438 172.71 −1.5×10−16 4.6×10−28† 6.0×10−25 7.8×10−6 1300 1.6×10−25 350

J1732=5049 188.23 −4.2×10−16 6.7×10−28† 5.8×10−26 7.0×10−7 86 4.6×10−26 69

J1741+1351 266.87 −2.2×10−15 2.5×10−27 1.0×10−25 3.1×10−7 41 1.1×10−25 44

J1745=0952 51.61 −7.6×10−17 4.1×10−28† 6.0×10−26 1.3×10−5 150 6.0×10−26 150

J1748=2446E 455.00 −7.2×10−15 5.8×10−28‡ 1.0×10−25 6.6×10−7 180 7.3×10−26 130

J1748=2446Q 355.64 −5.6×10−15 5.8×10−28‡ 1.0×10−25 1.1×10−6 180 9.4×10−26 170

J1751=2857 255.44 −7.3×10−16 9.5×10−28 6.4×10−26 3.3×10−7 67 6.8×10−26 72

J1801=3210 134.16 3.1×10−16 2.4×10−28† 4.2×10−26 2.8×10−6 180 3.5×10−26 150

J1804=0735 43.29 −6.9×10−16 4.1×10−28‡ 1.0×10−25 1.0×10−4 250 8.8×10−26 220

J1804=2717 107.03 −4.7×10−16 1.4×10−27 3.4×10−26 8.1×10−7 23 2.2×10−26 16

J1810=2005 30.47 −5.0×10−17 2.6×10−28† 2.4×10−25 2.5×10−4 950 1.6×10−25 620

J1811=2405 375.86 −1.9×10−15 1.1×10−27 1.0×10−25 2.9×10−7 97 8.5×10−26 77

J1841+0130 33.59 −9.2×10−15 4.2×10−27 1.4×10−25 9.4×10−5 34 1.3×10−25 31

J1853+1303 244.39 −5.1×10−16 7.3×10−28† 6.2×10−26 3.9×10−7 85 8.5×10−26 120

J1857+0943 186.49 −6.1×10−16 1.6×10−27† 5.6×10−26 3.4×10−7 35 5.7×10−26 36

J1903+0327 465.14 −3.8×10−15 3.6×10−28† 1.2×10−25 8.6×10−7 340 1.6×10−25 440

J1910+1256 200.66 −3.4×10−16 5.4×10−28† 5.8×10−26 6.6×10−7 110 7.7×10−26 140

J1918=0642 130.79 −4.0×10−16 1.0×10−27† 3.4×10−26 6.6×10−7 34 4.0×10−26 40

J1955+2908 163.05 −7.5×10−16 3.2×10−28† 4.9×10−26 2.4×10−6 150 5.4×10−26 170

J2019+2425 254.16 −1.7×10−16 7.2×10−28† 5.1×10−26 1.7×10−7 71 5.6×10−26 78

Continued
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SplInter & Nested Sampling heterodyne & MCMC

Pulsar ν (Hz) ν̇ (Hz/s) hsd
0 h95%

0 ε95% h95%
0 /hsd

0 h95%
0 h95%

0 /hsd
0

J2033+17 168.10 −2.3×10−16 6.8×10−28† 9.1×10−26 1.0×10−6 130 8.0×10−26 120

J2129=5721 268.36 −1.5×10−15 4.7×10−27† 9.0×10−26 1.2×10−7 19 5.2×10−26 11

J2145=0750 62.30 −1.0×10−16 1.8×10−27† 4.2×10−26 1.4×10−6 23 2.9×10−26 16

J2229+2643 335.82 1.7×10−16 4.1×10−28† 6.8×10−26 2.0×10−7 170 6.5×10−26 160

J2302+4442 192.59 −5.1×10−16 1.8×10−27 6.8×10−26 3.2×10−7 39 4.5×10−26 25

Table 5.3: Upper limits on the gravitational-wave amplitude of continuous waves from known binary
pulsars.
A † denotes that the pulsar’s spin-down is corrected for proper motion effects.
A ‡ denotes that the pulsar’s spin-down is calculated using a characteristic spin-down age of 109 years.
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Figure 5.1.3: Histogram of Ω, the ratio of 95% upper limits from the SplInter/Nested sampling analysis
and the heterodyne/MCMC analysis for binary pulsars. Indicated by the dashed line is the mean value
of Ω, and the dotted line indicates the mean value when ignoring the large outliers, which is 1.15.

We again see that the 95% upper limits are all similar between the two searches,

when considered with the expected differences discussed previously regarding the vari-

ability of h95%
0 . The mean value of Ω in binary searches is 1.15, and unity is again

within the uncertainty of the distribution, approximately as expected.



Chapter 6

Follow up of continuous-wave

candidates from all-sky and

directed searches

Space is big. You just won’t believe how vastly, hugely, mind-bogglingly

big it is. I mean, you may think it’s a long way down the road to the

chemist’s, but that’s just peanuts to space.

The Hitch-hikers Guide to the Galaxy, Douglas Adams

The speed increase of spectral interpolation compared to the heterodyne algorithm in

both the Bk/K calculation and the knock-on effect for the parameter estimation stages

means that we are able to perform more computationally intensive procedures, such as

rapid parameter estimation and evidence calculation on gravitational-wave candidates

from all-sky and directed searches.

Using the Bayesian framework explained in section 2.2 and the SplInter algorithm in

chapter 3, we can search the surrounding parameter space using an intelligent posterior

sampling technique, rather than adaptive grid-based methods [91].

Section 6.1 introduces the all-sky and directed search methods used in the creation

of these candidates, and explains the F Statistic used in frequentist searches for con-

tinuous gravitational waves. Section 6.2 then explains the method we use to follow up

123
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these candidates, and discusses how we can interpret the results.

Section 6.3 shows the results of a follow up search for a candidate from a directed

search in the direction of the apparent stellar companion of Fomalhaut, which was

found to have characteristics which could not rule out a neutron star ‘hiding’ behind

the debris disk [75]. This is the first analysis using the Bayesian continuous-wave

analysis to search over more than one frequency parameter. We also use this search as

an example to show further look and detection protocols, i.e. how we take a candidate

and go through detection criteria to decide whether this is a bona-fide gravitational-

wave detection or not [65].

Section 6.4 shows the follow up of candidates from the Spotlight search aimed at

two directions along the Orion spur [6]. In comparison to the Fomalhaut b search,

we also include at this point a search over a relatively small patch of sky, according

to the uncertainties for each candidate. This is the first search of its kind, using the

continuous Bayesian framework to search in sky position.

6.1 Frequentist searches for signals with unknown

origin: all-sky and directed searches

To follow up the candidates, we should understand the way in which they have been

created so that we can know the extent of the parameter space which we must search

and have an understanding of the meaning of the candidate information. An intro-

duction to the searches which generated the candidates we use follows in sections 6.1.1

and 6.1.2, and section 6.1.1 includes a basic introduction to the F Statistic, which is a

maximum likelihood estimator widely used in continuous gravitational-wave searches

(e.g. in [1, 3, 11, 13, 15, 55, 69]).

6.1.1 Fully coherent directed searches for gravitational waves

The search method used to find the candidate used for section 6.3 is the fully coherent

directed F -statistic search. This search is in a particular direction which is known to

a degree of accuracy such that it can be considered as a point source, but for a source

for which the phase evolution is completely unknown. The details of the search are
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given in [4, 100], and an example of a search is given in [8].

The search templates are placed according to the three dimensional [f (0), f (1),f (2)]

parameter space metric, with a body centred cubic tiling1, and then the F statistic is

computed at each of these points. The templates with the largest 2F are recorded,

either by an F -statistic cut-off (2F = 33.3768 in [4]) or by selecting a proportion of

the loudest candidates (0.01% in [8]).

These initial candidates are then filtered through a series of signal consistency

checks, the first of which is an ‘Fscan veto’, which normalises SFTs and time-averages

each frequency bin, the veto then removes any candidates within a number of bins

whenever power deviates from the expected χ2 distribution, this could be caused by

non-stationary noise or spectral lines, this deviation is often defined by a threshold

(±7 standard deviations in [4], or 1.5 times the expected power in [8]). The next filter

is to check consistency between the detectors, as the 2F value should increase for the

two detectors combined coherently compared to the individual detectors alone2. The

remaining candidates are then assessed for statistical significance by comparing to a

Gaussian noise distribution [8] and only those with less than 5% false alarm probability

survive for human inspection. This human inspection involves comparison with known

line artefacts in the data, and a check on the normalisation of the χ2 distribution, as

seen in figure 1 of [4].

The F Statistic

A popular tool for analysing the probability of a signal with certain Doppler parameters

is the F statistic [55] used e.g. in [1, 15].

The F statistic is a maximum likelihood statistic given the Doppler parameters of

the source, and is computed by comparing the data s(t) to four basis waveforms per

detector, h1...4. The basis waveforms are dependent upon the antenna patterns a(t)

1Though the extent of the f (2) parameter space will often be comparable to or less than the unit
cell length, meaning it is effectively a two dimensional search

2We will use an analogous argument with regard to the SNR later when discussing the results of
the follow ups.
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and b(t),3 and the Doppler parameters λ, and are defined as

h1(t;λ) = a(t;α; δ) cos Φ(t;λ), h2(t;λ) = b(t;α; δ) cos Φ(t;λ)

h3(t;λ) = a(t;α; δ) sin Φ(t;λ), h4(t;λ) = b(t;α; δ) sin Φ(t;λ). (6.1.1)

The computation of these waveforms can be computationally limiting, and so the choice

must be made between coherent or semi-coherent methods. The coherent method will

require the same initial phase φ0 throughout the search, but a semi-coherent search will

allow the phase to change within specific intervals. This is advantageous for compu-

tational reasons as the longer phase templates are not required for the entire duration

of the search. The F -statistic method utilises an analytical maximisation over the

amplitude parameters, a, and so these are not stated in results, though a 95% upper

limit can be inferred through Monte Carlo simulations e.g. in [4].

The multi-detector F statistic is defined by [55]4

F(s;λ) :=
4

|N(f)|TObs

B|Fa|2 + A|Fb|2 − 2CRe[FaF
∗
b ]

D
, (6.1.2)

where TObs is the observation time, |N(f)| is the one sided spectral noise density, and

Fa and Fb are defined by

Fa(f, λ) =

∫ Tobs

0

s(t)a(t;λ)e−iΦ(t;λ) dt, (6.1.3)

Fb(f, λ) =

∫ Tobs

0

s(t)b(t;λ)e−iΦ(t;λ) dt, (6.1.4)

with appropriate Doppler effects from detector and source motion applied. A, B, C

3These are a(t) and b(t) in section 1.3.2, and are defined fully in equations (12,13) of [55].
4A more elegant derivation is given in [85], but as the notation used in much of the literature is

related to that of [55] we keep in line with that paper.
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and D are defined by

A =
2

TObs

∫ TObs

0

a(t)2 dt,

B =
2

TObs

∫ TObs

0

b(t)2 dt,

C =
2

TObs

∫ TObs

0

a(t)b(t) dt,

D = AB − C2. (6.1.5)

The different computational implementations of this are discussed in [32, 70, 77].

The first effectively boils down to a summation estimate of the integrals of equa-

tions 6.1.3 and 6.1.4. For Fa, this summation is

Fa(f, λ) =

NSFTs−1∑
k=0

a(tk)e
−iΥk

j=j∗+Nterms∑
j=j∗−Nterms

SkjPkj(f, λ), (6.1.6)

and Fb is similar, j denotes SFT frequency bin and k is the SFT, NSFTs is the number

of SFTs and Nterms is the number of SFT bins used, and j∗ is the frequency bin nearest

to the source frequency. Υk is a phase correction for each SFT, Pkj is the Dirichlet

kernel, effectively the signal model to compare to the data, which is similar to the sinc

interpolator we use in section 3.1.1, which both take into account the orbital motion

effects.

The resampling implementation of the F statistic heterodynes SFTs to a desired

frequency, inverts the Fourier transform to a time series which is then band-limited,

downsampled and phase shifted for each datapoint according to the relative motion

effects. This means that the F statistic can be efficiently calculated through the Fourier

transform of this data.

The loudest 2F values in a particular search will follow a χ2 distribution with four

degrees of freedom if searching in stationary Gaussian noise, however if there is a signal

present, then a non-centrality parameter proportional to
∫ TObs

0
h(t)2 dt is introduced.
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6.1.2 The Spotlight search

The second method, which is used for the candidates in section 6.4 is the Spotlight

search [6], which utilises the PowerFlux method [15] for a search pointed along the

Orion spur. Although the search is aimed in a particular direction it is not a directed

search, as the sky area searched is greater than the size of the unit cell of the template

spacing. PowerFlux is a variant of the StackSlide method [28], in which the frequency

bins of an SFT are slid according to barycentric corrections such that the prospective

signal frequency is aligned and all of the power present is in one series of bins, the

PowerFlux differs from a traditional StackSlide method in that the contributions from

each SFT are weighted according to the sensitivity of the detector from the antenna

pattern.

The version of the PowerFlux method implemented in the Spotlight search is a

loosely coherent search, meaning that it does not use the power within each SFT5, but

includes the complex amplitude of the frequency bins, allowing the phase to vary within

a pre-determined set [36]. The reason for this loosely coherent statistic is that it is

designed to optimize processing for a set of templates rather than a single template as

used in fully coherent searches. This optimization can be done for detection efficiency

or for computational efficiency; however the gains for detection efficiency are much less

than those for computational efficiency [37].

6.2 Bayesian follow up parameter estimation

In order to perform a parameter estimation search in Doppler parameter space, we

alter the targeted search to include a narrow frequency band and a small patch of sky.

Our signal must still be near to the initial Doppler parameters used in the spectral

interpolation stage, as we require the frequency to be close enough to the used frequency

so as not to degrade the SNR (see section 4.2.2), we also want a fairly small search

space for computational expense reasons. In general, the candidates will come with a

small enough uncertainty that both of these considerations are already satisfied.

The searches for unknown sources provide us with candidate locations, and we use

5This allusion to coherence means that it is no longer really a flux of power.
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a nested sampling algorithm to search the amplitude parameters [h0, φ0, cos ι, ψ] as

before, but also in the Doppler parameters of the source [f (0), f (1), f (2), α, δ]6.

The search region for the Doppler parameters will preferably be a multivariate

Gaussian with associated errors from the candidate generating algorithm if provided

(as in section 6.4), though we can also use a uniform prior with limits set by repeated

tests to find the optimal search area (as in section 6.3).

The most efficient way to search the parameter space would be to use an ellipsoid

in parameter space defined by a covariance or correlation matrix according to the

candidate position and the grid resolution, though these were not available for the

searches presented here.

When we search in frequency and/or frequency derivatives, the high correlation

between these parameters and the initial phase parameter φ0 mean that we will not

get much, if any, useful information about φ0. We still retain φ0 in the illustration of

results in section 6.4, as a strong signal should have a peak in the posterior probability

of φ0 parameters.

The results of this will be a series of nest points taken during the nested sampling

algorithm (see section 2.2.1), which are then converted into a posterior by accepting

the nest point as a posterior point with a probability according to the prior volume

multiplied by the likelihood. This means that the points with the lowest likelihood

and the lowest prior probabilities will be mostly discarded. These posterior points are

then placed into histogram bins, with the number of points in each bin of the histogram

indicating the probability density that there is a signal with the given parameter within

that range. These histograms will then be represented either in a one dimensional plot

of the parameter value versus probability density or as a two dimensional contour

plot, in which lines of constant probability are plotted, showing correlation between

parameters.

6In this chapter we only consider the gravitational wave frequency f , not the rotational frequency
ν, this is as the relationship between f and ν is ostensibly unknown.
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6.3 Fomalhaut b directed search follow up

The eye was rimmed with fire, but was itself glazed, yellow as a cat’s,

watchful and intent, and the black slit of its pupil opened to a pit, a

window into nothing.

Lord of the Rings, J.R.R. Tolkien

In a 2015 paper, Neuhäuser et. al, [75] postulated that an apparent companion object

in the debris disk of Fomalhaut7, known as Fomalhaut b or Fom b, could possibly be a

background neutron star hiding behind the debris disk of the star and with very similar

proper motion.

This would be an extremely interesting potential source of gravitational waves due

to its proximity to the Earth, around 11 pc [75]. Considering the closest pulsar targeted

in chapter 5 was 160 pc (J0437-4715), and the 1/r dependence of the amplitude of a

signal (equation 2.1.3), a signal from this pulsar would be 14.5 times stronger than a

signal from J0437-4715 and 25.5 times stronger than one from the closest isolated pulsar

J0030+0451 (280 pc) given similar source and amplitude parameters. This proximity

means that it is worth searching for, even if the likelihood is that it is not a neutron

star.

A coherent directed search for gravitational waves from Fom b [52] found a single

outlier which could not initially be attributed to lines in the data, the parameters of

which are given in table 6.1. Tcoh denotes the coherence time of the search, the time

from the start to the end of the search, including any time for which the detector is

not collecting data.

R.A., α (rad) Dec, δ (rad) f
(0)
cand (Hz) f

(1)
cand (Hz/s) f

(2)
cand (Hz/s2)

6.0111077204 =0.51696653 738.9957991249271 −7.57352× 10−11 −1.803× 10−19

2F h0 (est.) Start (GPS time) Finish (GPS time) Tcoh, days
71.1 1.31×10−24 965 529 827 967 981 375 28.37

Table 6.1: Candidate parameter estimates and search information for the outlier from the directed
search for Fomalhaut b [52].

7Dubbed ‘the Great Eye of Sauron’ [90] due the similarity of the images of the debris disk to the
eye in the Lord of the Rings films released in the same year.
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We perform parameter estimation using nested sampling on the candidate for the

span of time given in table 6.1, so that we can confirm that we agree with the directed

search that there could be a signal present, as well as to see the SNR and Bayes factor

(evidence ratio, equation 2.2.4) for the signal hypothesis against the noise hypothesis.

We use uniform priors as given in table 6.2 to give us all of the contained probability

ranges for the Doppler parameters, these were found by repeated tests, expanding the

prior ranges until all of the probability was contained, again we use uniform priors on

the amplitude parameters as as discussed in section 2.2 to provide unbiased parameter

estimation. The choice of upper limit on h0 was so that we could conservatively take

into account the results of [3] figure 9, setting the upper limit to be over two orders of

magnitude above the all-sky upper limit at that frequency (∼ 3× 10−24).

The candidate information contained f (2) values, so we decide to search over f (2),

even though it is unlikely we would see strong effects from this parameter given the

range from table 2.1 in this search time. We do not search over the right ascension

and declination, as these are accurately known to sub-milli-arc-second precision, and

so the search would not be able to distinguish a more accurate sky position within this

range given this coherence time. An approximate sky resolution of the search from the

estimates given in all-sky searches (such as [3]) would be

∆θ =
2c

vf (0)Tcoh

, (6.3.1)

where v is the velocity of the detector, for which we use 30 000 ms−1. For this frequency

and coherence time, we would get a sky patch of size dθ = 1.1×10−5 sr, or 0.04 square

degrees, much larger than any uncertainties on the position of the object from EM

observation.

The results of this parameter estimation are given in figure 6.3.1. In figure 6.3.1

and in later plots (all plots to figure 6.4.5), we denote the frequency by the difference

between the frequency and the candidate frequency, f (0) − f (0)
cand, this is for aesthetic

reasons, as we would otherwise not be able to read the axis labels due to the numerical

precision required.

Figure 6.3.1 shows that we are able to agree with the directed F -statistic search
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parameter lower limit upper limit
h0 0 10−21

ψ 0 π
2

φ0 0 2π
cos ι −1 1

f (0) (Hz) 738.9957970 738.9958010
f (1) (Hz s−1) −8× 10−11 −7× 10−11

f (2) (Hz s−2) −6× 10−18 2× 10−18

Table 6.2: Prior values used in the search for the Fom b outlier. Our prior choices were made to
be unbiased in amplitude parameters and to contain all of the probability in the Doppler parameter
space.
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Figure 6.3.1: Posterior probability density distributions of the parameters for the Fom b candidate
from H1 (blue), L1 (red) and joint (green) analyses. The black dashed line indicates the candidate
parameters and estimated h0 for the candidate from the fully coherent F-statistic search. The green
dashed lines indicate the 68% credible interval regions from the joint analysis.
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that we see what looks like a signal in the data at this approximate frequency and

spin-down, coming from both detectors. The parameter estimation shows that for h0,

f (0), f (1) and f (2) the candidate parameters are within the 68% credible intervals of

the joint detector posteriors. The joint analysis uses the data from both detectors as

the Bk input, meaning that the posteriors come from the joint likelihoods of all the

analysis. There is a slight discrepancy between the f (2) parameters, though we should

not be too disheartened by this, as it is difficult to resolve a second order spin-down at

this coherence length. The contour plots show the approximate Gaussian distributions

with correlations as expected from the signal model, and the joint posterior for h0

has very small probability density at h0 = 0. We also see from figure 6.3.2 that φ0 is

strongly peaked and consistent between detectors, again qualitatively improving the

evidence that this is a signal.
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Figure 6.3.2: Posterior probability density distribution of the initial phase φ0 parameters for the Fom
b candidate from H1 (blue), L1 (red) and joint (green) analyses. The strong peak and the agreement
between detectors for this parameter imply a true signal. The green dashed lines indicate the 68%
credible interval regions from the joint analysis. As the probability peak is around φ0 = 0, we plot
the probability density including φ0 in the negative regions, rather than above φ0 = π, this is entirely
equivalent.

The nested sampling algorithm gives us a log10 Bayes factor of 5.572 from the joint

analysis, which means that the evidence for the signal model is higher than the noise-

only model by a factor of 105.572 (approximately 373, 232). In the individual detectors,

the log Bayes factors are =0.402 and =0.724 for H1 and L1 respectively, so individually

we favour the noise model. This improved Bayes factor in the joint analysis implies a
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real signal, as the joint Bayes factor is much higher than for either of the individual

detectors, or the combined incoherent Bayes factor (−0.402 +−0.724 = −1.126).

The coherent SNR of the joint detector analysis was 8.49, of which 6.03 was from

the H1 detector and 5.98 from L1, again indicating the presence of a signal as the joint

SNR is greater than the individual values. The SNR from individual analyses was 6.59

for H1 and 6.18 for L1, as expected, these are higher than the individual interferometer

SNRs stated in the joint analysis, this is as the most likely point in parameter space is

different in the individual analyses and in the joint analysis.

6.3.1 Signal consistency check: increasing coherence time

To check for real signals we extend the coherence time of the search, for which the SNR

should scale as ∝
√
Tcoh. Therefore we perform the analysis again with the coherence

length at twice and four times its initial value, which we now refer to as Tcoh,init.

This is a search over 56.75 days of data from GPS time 964 304 053 to 969 207 149

and 113.5 days from GPS time 961 852 505 to 971 621 841 respectively. The parameter

estimation results of these analyses are presented in figures 6.3.3 and 6.3.4.

We see in figure 6.3.3 that the islands of probability are smaller than previously

seen in figure 6.3.1, this is as the longer coherence time leads to a better resolution

in parameter space. The posterior distributions are not consistent between detectors,

which is not consistent with a true astrophysical signal.

We see in figure 6.3.4 that the islands of probability are again smaller than previ-

ously seen in figures 6.3.1 and 6.3.3, due to the longer coherence time. The posterior

distributions are again not consistent between detectors, which is not consistent with

an astrophysical signal.

Tables 6.3 and 6.4 show the log10 Bayes factors and SNRs for the individual and

joint analyses as we increase the coherence times. We see that in the joint analysis, the

Bayes factor falls from 5.572 to 2.652 for Tcoh = 2Tcoh,init but then falls to =1456.008

for Tcoh = 4Tcoh,init, this means that the signal hypothesis is almost completely ruled

out for this coherence time, this implies either a transient signal8, or no signal at all.

In the joint analysis with Tcoh = 4Tcoh,init we see a relatively high SNR signal

8Future work has been planned to investigate the possibility of transient continuous-wave signals.



6.3. FOMALHAUT B DIRECTED SEARCH FOLLOW UP 135

0 0.5 1

x 10
−24h

0

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

0 0.5 1 1.5
ψ

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

 

 

L1

H1

Joint

−1 0 1

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

cos ι

−2 −1 0 1

x 10
−6f

(0)
−f

(0)

cand

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y
, 

H
z−

1

−8 −7.8 −7.6 −7.4 −7.2 −7

x 10
−11f

(1)

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y
, 

s
 H

z−
1

Probability Density, s
2
 Hz

−1

−2 −1 0 1

x 10
−6

−8

−7.8

−7.6

−7.4

−7.2

−7

f
(0)

−f
(0)

cand
 Hz 

f(1
) , 

1
0

−
1

1
 H

z
 s

−
1

−2 −1 0 1

x 10
−6

−6

−4

−2

0

2

f
(0)

−f
(0)

cand
 Hz 

f(2
) , 

1
0

−
1

8
 H

z
 s

−
2

−8 −7.8 −7.6 −7.4 −7.2 −7

f
(1)

, 10
−11

 Hz s
−1

Fom b parameter estimation 964304053−969207149

Figure 6.3.3: Posterior probability density distributions of parameters of the Fom b candidate with
twice the initial coherence time (GPS times 964 304 053 to 969 207 149) from H1 (blue), L1 (red) and
joint (green) analyses. The black dashed line indicates the candidate parameters and estimated h0
for the candidate from the fully coherent F-statistic search. The green dashed lines indicate the 68%
credible interval regions from the joint analysis.

Individual analysis
Detector H1 L1
Coherence time ρ log10(B) ρ log10(B)
965 529 827 to 967 981 375 6.5866 =0.402 6.1837 =0.724
964 304 053 to 969 207 149 7.4006 =0.887 6.4665 =1.274
961 852 505 to 971 658 697 7.4806 =1.263 7.3100 =1458.746

Table 6.3: SNR and Bayes factor values from individual detector analyses for the initial Fom b
followup, and analyses with twice and four times the initial coherence time.
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Figure 6.3.4: Posterior probability density distributions of parameters of the Fom b candidate with
four times the initial coherence time (GPS times 961 852 505 to 971 658 697) from H1 (blue), L1 (red)
and joint (green) analyses. The black dashed line indicates the candidate parameters and estimated
h0 for the candidate from the fully coherent F-statistic search. The green dashed lines indicate the
68% credible interval regions from the joint analysis.

Joint analysis
Detector H1 L1 Joint
Coherence time ρ ρ ρ log10(B)
965 529 827 to 967 981 375 6.0308 5.9790 8.4923 5.572
964 304 053 to 969 207 149 6.2763 5.6093 8.4177 2.652
961 852 505 to 971 658 697 6.0360 5.6182 8.2460 =1456.008

Table 6.4: SNR and Bayes factor values from the joint detector analysis for the initial Fom b followup,
and analyses with twice and four times the initial coherence time.



6.3. FOMALHAUT B DIRECTED SEARCH FOLLOW UP 137

(8.2460) with an extremely disfavoured signal hypothesis (log10(B) = −1456.008), this

seems somewhat counter-intuitive, and to investigate further, we perform the analysis

with exactly the same set-up, but on white noise. This noise was created with the Bk

drawn from a normal distribution characterised by the σk in the spectral interpola-

tion output file from the analysis of Fom b, so that we track the same changes in the

detector sensitivity over this band.

A similar test would be to shuffle the datapoints, randomly switching the times-

tamps of the data. This would lead to each of the datapoints having the same charac-

terising noise as in the initial data, but any coherence would be removed, this version

of the check is performed in [79]. The white noise analysis results are presented in

table 6.5.

Joint analysis
Detector H1 L1 Joint

ρ ρ ρ log10(B)
Real analysis 6.0360 5.6182 8.2460 =1456.008
White noise 4.3728 3.9413 5.8868 =1278.960

Table 6.5: Comparison of SNR and Bayes factor in detector data and white noise for an analysis with
four times the initial coherence time.

We see that we can find relatively high SNR values even in the region of the ex-

tremely disfavoured signal hypothesis, this is due to the SNR being calculated from

the nested sampling point with the highest likelihood value

ρ =

√√√√ N∑
i=1

yi(~θmax)2

σ2
i

, (6.3.2)

where ~θmax is the parameter space point ~θ = [a, λ] with the maximum likelihood,

whereas the Bayes factor is calculated from the evidences for the signal model, which

marginalises over all the parameter space, and compares this to the noise hypothesis

as in equation 2.2.4

B =
p({Bk} | 0 < h0 ≤ hmax)

p({Bk} | h0 = 0)
=

Z

Znoise

. (6.3.3)

This is due to the difference between a maximum likelihood and a marginalised likeli-

hood estimate.
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Using the longest stretch of data, we set a 95% upper limit on h0, h95%
0 on gravi-

tational waves from this direction, at this frequency and spin-down. For this analysis,

we find that h95%
0 = 7.67× 10−25. This upper limit is greater than those in chapter 5,

which is as expected considering that we use only around 24% of that coherence time

and only use two detectors (H1 and L1) instead of three (H1,L1,V1). The spin-down

limit for this source with the frequency and spin-down as in the candidate parameters

is 2.35× 10−23, so if the source is truly a neutron star, we will have constrained h0 to

be less than 3.3% of the spin-down limit.

6.3.2 Finding the source of the outlier: decreasing coherence

time

As the searches for longer coherence time seem to have implied that the signal does

not last for longer than the initial search time, we consider the possibility that the

signal could be a transient, monochromatic gravitational-wave signal, or a transient

noise feature in the data. We investigate these possibilities by splitting the initial time

limits in half, each with a coherence time of Tcoh,init/2.

Figures 6.3.5 and 6.3.6 show the results of parameter estimation in these two halves

of the data.

We see that in the first half of the data, there is no obvious signal present from

the H1 detector, and the posteriors look fairly uniform, with the contours spread over

the entire prior range, representing the small variations in the noise. From L1 however

we see a relatively strong, but not obviously signal-like posterior, which is particularly

visible in the f (0) vs. f (1) and h0 plots, and this is reflected in the joint posterior.

The second half of the data also shows no obvious signal, and the spread and

disagreement between the detectors leads to qualitative disfavouring of the signal hy-

pothesis. Despite this, this stretch of data had a SNR of 6.877 and a Bayes factor

of 1.546 from the joint analysis, which shows that the signal evidence in the initial

coherence time is mainly coming from this half of the data.

Tables 6.6 and 6.7 show the SNR in the first and second halves of the initial co-

herence time for individual and joint analyses. The SNR in the joint analysis of the

first half of the data for both detectors is 5.594, of which 4.156 is from H1 and 3.744 is
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Figure 6.3.5: Posterior probability density distributions of amplitude parameters of the Fom b candi-
date for the first half of the initial coherence time from H1 (blue), L1 (red) and joint (green) analyses.
Black dashed lines indicates the candidate parameters and estimated h0 from the fully coherent F-
statistic search. The green dashed lines indicate the 68% credible interval regions from the joint
analysis.

Individual analysis
Detector H1 L1
Coherence time (GPS time) ρ log10(B) ρ log10(B)
965 529 827 to 967 981 375 6.587 =0.402 6.184 =0.724
965 529 827 to 966 755 601 (1st half) 3.606 =2.990 4.521 =2.332
966 755 601 to 967 981 375 (2nd half) 6.290 =1.100 5.725 =1.229

Table 6.6: SNR and Bayes factor values from individual detector analyses for the Fom b followup in
the first and second half of the initial coherence time.

Joint analysis
Detector H1 L1 Joint
Coherence Time (GPS time) ρ ρ ρ log10(B)
965,529,827 to 967,981,375 6.031 5.979 8.492 5.572
965,529,827 to 966,755,601 (1st half) 4.156 3.744 5.594 =1.346
966,755,601 to 967,981,375 (2nd half) 4.747 4.972 6.877 1.546

Table 6.7: SNR and Bayes factor values from joint detector analyses for the Fom b followup in the
first and second half of the initial coherence time.
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Figure 6.3.6: Posterior probability density distributions of amplitude parameters of the Fom b can-
didate for the second half of the initial coherence time from H1 (blue), L1 (red) and joint (green)
analyses. Black dashed lines indicates the candidate parameters and estimated h0 from the fully co-
herent F-statistic search. The green dashed lines indicate the 68% credible interval regions from the
joint analysis.
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from L1. For the second half this is 6.877 for both detectors, 4.747 from H1 and 4.972

from L1, implying a signal favoured in the second half of the analysis. The log10 Bayes

factors in the joint analysis of =1.346 and 1.546 again imply that the signal evidence

is mainly coming from the second half of the coherence time.

Detector Joint
Initial time 5.572(8.492)
Halves =1.346(5.594) 1.546(6.877)
Quarters =2.620(3.796) =1.994(4.615) 2.610(6.761) =2.059(4.581)

Table 6.8: log10 Bayes factors and SNRs (in brackets) from halves and quarters of the initial coherence
time for joint H1 and L1 analysis.

Detector H1
Initial time =0.402(6.587)
Halves =2.990(3.606) =1.100(6.290)
Quarters =2.844(3.141) =2.644(3.989) =1.828(4.741) =6.144(3.927)

Detector L1
Initial time =0.724(6.184)
Halves =2.332(4.521) =1.229(5.725)
Quarters =2.903(2.882) =2.456(4.201) =0.301(5.941) =77.296(3.886)

Table 6.9: log10 Bayes factors and SNRs (in brackets) from halves and quarters of the initial coherence
time for individual H1 and L1 analyses.

We then cut the coherence length down again, investigating each quarter of the

initial coherence time, performing a ‘binary chop’ to find the length of time most

affected by this transient signal or noise feature.

The breakdowns of SNR and Bayes factors into halves and quarters in tables 6.8

and 6.9 show that the third quarter accounts for much of the signal evidence in both

detectors, highlighted in bold in the tables. If we are to find a physical reason behind

this outlier, whether a transient signal or a noise source, this is the best place to start

looking.

Some further investigation into this approximate frequency with this span of data

found noise lines in an auxiliary channel monitoring the output mode cleaner in L1

and a short duration artefact in H1 data from the pre-stabilised laser.

From this evidence, we conclude that this outlier is probably not an astrophysical

signal. It is possible that the postulated neutron star glitched twice in this period

of data (as in [50]), which could lead to a coherent template matching between the
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glitches and not matching outside of this period. However due to the evidence from

the auxiliary channels, it is much more likely that a coincidence between the two noise

sources is the cause of the signal evidence in this stretch of data.

6.4 Orion spur Spotlight search candidate followup

The Orion spur is a spoke-like region of the galaxy in which our solar system is found.

As neutron stars are more likely to be found in populated concentrations of stars such

as globular clusters [7] or the galactic centre [1], a speculative search has been carried

out along this spur [6].

This search analysed S6 data, aiming in two directions; these are referred to as

the ‘A’ and ‘B’ directions, specified in table 6.10. We reiterate here that although

this search is pointed along the spur it is not a directed search, as the search areas

(6.87◦ and 7.45◦ diameters respectively) are much too large to be searched with a single

coherent template in sky position.

The Spotlight search utilised the Powerflux algorithm, [15], a variant of the Stack-

Slide method, in which SFT frequency bins are shifted according to the Doppler

shift at that time and summed at the (now monochromatic) frequency. The fre-

quency range for this search was f (0) = [50, 1500] Hz and the spin-down range was

f (1) = [−5 × 10−9, 0] Hz s−1, the time limits of this search run from GPS 951534120

(2010 Mar 02 03:01:45 UTC) to GPS 971619922 (2010 Oct 20 14:25:07 UTC), the

second half of S6. The result after four stages of post-processing from the search is a

set of seventy outliers, of which 37 come from the ‘A’ direction, and 33 from the ‘B’

direction.

Search region
Right ascension Declination Search radius

Radians Hour angle Radians Degrees Degrees
A 5.283600 20h 10m 54.715s 0.585700 33◦ 33′ 29.297′′ 3.438
B 2.248610 08h 35m 20.607s =0.788476 =46◦ 49′ 25.151′′ 3.724

Table 6.10: Spotlight search outlier search direction in radians and hour angle/degrees and the size
of the patch on the sky covered by this search.

Of these seventy outliers, fourteen are not readily dismissed from line artefacts

within the data; the parameters of these are given in table 6.11. The Spotlight search

computed SNRs from seven equal-length segments of S6 data, which were then com-
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bined coherently with neighbouring segments to find the highest combined SNR value,

given in the table with an indication of the inclusive range of subsegments used to

calculate this SNR. Some of the outliers have parameters outside the initial range, e.g.

A13 has f (1) = 9 × 10−11, this is due to the initial post-processing procedure, which

searches over spin-down, so it is possible for an outlier which is initially found with

small spin-down to become a candidate with a small spin-up.

Outlier f
(0)
cand, Hz f

(1)
cand, Hz s−1 α (rad) δ (rad) ρ subsegments

A13 1138.509931 9× 10−11 5.225329 0.606463 9.72 [1,6]
A14 1404.892257 −1.205× 10−09 5.299464 0.642611 10.03 [0,6]
A24 1321.567031 −1.82× 10−09 5.318136 0.55852 8.83 [0,6]
A27 1474.94224 −2.05× 10−09 5.293492 0.563278 8.67 [0,5]
A28 990.761302 −2.705× 10−09 5.229674 0.580059 8.92 [0,6]
A29 1429.678924 −2.01× 10−09 5.301244 0.57326 8.61 [1,6]
A30 1325.509688 −4.325× 10−09 5.241072 0.598875 8.65 [0,6]
A33 1456.266111 1.95× 10−10 5.276759 0.586927 8.49 [0,5]
B15 613.261319 −3.95× 10−09 2.187829 =0.735556 9.54 [0,6]
B17 933.338229 1× 10−10 2.226266 =0.851431 9.30 [0,5]
B20 1249.438351 −1.55× 10−09 2.248791 =0.819053 8.64 [1,6]
B21 880.401753 −2.865× 10−09 2.284457 =0.828541 8.28 [1,6]
B23 1333.279063 −1.65× 10−09 2.23864 =0.835651 8.56 [0,6]
B30 1458.536476 −3.8× 10−09 2.298322 =0.754296 8.12 [0,6]

Table 6.11: Spotlight search outlier candidate parameters, with frequency, spin-down, sky position
and the stretch of data for which they had the highest SNR [6].

The followup analysis was run using the parameters in table 6.11 to define a multi-

variate Gaussian with uncertainties from table 6.12 for priors on the Doppler parame-

ters, and uniform priors were used on amplitude parameters as discussed in section 2.2.

We note here that the uncertainty in sky position is dependent upon frequency, and

so the sky patch is not consistently the same size, this is as the template mismatch in

sky position increases for higher frequency, and so the template spacing is smaller.

Parameter uncertainty

f (0) 5 ×10−5 Hz
f (1) 3 ×10−11 Hz s−1

α 8/f (0) rad Hz−1

δ 8/f (0) rad Hz−1

Table 6.12: Spotlight search outlier candidate uncertainties. The frequency and spin-down uncertain-
ties are constant for all candidates, whereas the sky position uncertainties are inversely proportional
to frequency. f (0) and f (1) from [6], α and δ from [37].

This search was performed using the nested sampling algorithm for individual and

joint detector analyses of H1 and L1 data, for the stretch of data indicated by the
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subsegments in table 6.11. The analysis was run on the atlas cluster, and took an

average of 2.6 days for the individual analyses and 5.9 days for the joint analyses.

Figures 6.4.1 to 6.4.4 show the parameter estimation from the nested sampling for

the candidates A13, A14, A27 and B239. Shown are the results from the H1, L1 and

joint detector analyses, the candidate parameters are indicated by the solid black line,

and the priors are indicated for the Doppler parameters as black dashed lines. We also

show contour plots for f (0) vs. f (1) and α vs. δ, with contours given for the 1 and 2

σ probability levels. The contour levels are found by using a best fit of the amplitude

of a normal distribution with parameters as in the priors to the posterior pdfs. As

well as this we show the 1 and 2 σ contours for the prior normal distribution as the

dashed black lines. Shown by green dashed lines are the 1σ credible intervals for the

parameters from the joint analysis. These credible intervals and the priors are shown

in the figures to illustrate how well the data fits a normal probability distribution.

We also include contours which are at one and a half, and five times maximum of the

best fit normal pdf and five times the best fit, which are shown by the thicker lines

on the Doppler parameter contour plots, and indicate the parameter space points with

excesses of probability compared to the parameter space around them, such as the

large spikes in the joint posterior in figure 6.4.1.

We also perform the nested sampling on white noise with the same length of data

and parameters and priors the same as candidate A13, the white noise is created in the

same way as that discussed in section 6.3.1, utilising the σk estimates from the SplInter

algorithm to randomly select a Bk from that distribution. We do this so that we can

compare the results to the case in which we know that there is no signal present, the

parameter estimation for this analysis is shown in figure 6.4.5.

We see that the posterior probabilities (except h0) are dominated by the priors, with

the amplitude parameters varying over the full range and the Doppler parameters being

very close the the multivariate Gaussian used as the prior; this is visibly evidenced by

the fact that the 1 and 2 σ data contours are very close to the prior contours, implying

that there is no signal present in the data. We note that the candidates from a semi-

coherent (or loosely coherent) search such as PowerFlux are more likely to give a

9The rest of the candidates in table 6.11 are presented in appendix D, figures D.0.1 to D.0.10.
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Figure 6.4.1: Posterior probability density distributions and contour plots for parameters of Spotlight

candidate A13. f
(0)
cand = 1138.509931 Hz.
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Figure 6.4.2: Posterior probability density distributions and contour plots for parameters of Spotlight

candidate A14. f
(0)
cand = 1404.892257 Hz.
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Figure 6.4.3: Posterior probability density distributions and contour plots for parameters of Spotlight

candidate A27. f
(0)
cand = 1474.94224 Hz.
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Figure 6.4.4: Posterior probability density distributions and contour plots for parameters of Spotlight

candidate B23. f
(0)
cand = 1333.279063 Hz.
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Figure 6.4.5: Posterior probability density distributions and contour plots for white noise analysed in

the same way as Spotlight candidate A13. f
(0)
cand = 1138.509931 Hz.



6.4. ORION SPUR SPOTLIGHT SEARCH CANDIDATE FOLLOWUP 150

candidate which looks like noise in the fully coherent data, this is as there may be a

significant jump in phase between successive coherent data stretches, and so the loosely

coherent template is favoured in a region where the fully coherent template is not. The

Bayes factors and SNRs for each of the candidates in the individual and joint analyses

are shown in table 6.13, with 95% upper limits on h0 for that region of parameter

space, these upper limits are indicated by black dashed lines on the h0 posterior plots.

Outlier
H1 L1 Joint

ρ log10(B) ρ log10(B) ρ log10(B) h95%
0

A13 5.67272 =1.4270 4.89238 =1.2179 7.05884 =1.3502 7.9270×10−25

A14 6.92681 =1.4287 5.38657 =1.3415 5.60011 =1.5476 5.5118×10−25

A24 6.71552 =1.5730 5.69546 =1.4229 4.58003 =1.5984 4.7701×10−25

A27 7.23744 =1.3730 3.77208 =1.2476 5.69235 =1.4648 7.1070×10−25

A28 6.06536 =1.5156 4.29310 =1.5196 5.90139 =1.5872 5.1807×10−25

A29 6.03214 =1.2712 6.46573 =1.3282 6.52650 =1.4117 8.3487×10−25

A30 5.68745 =1.4047 6.58232 =1.4469 6.53262 =1.5861 5.7512×10−25

A33 5.75062 =1.4347 4.92137 =1.3392 5.75062 =1.4347 6.4434×10−25

B15 5.77548 =1.7557 6.13126 =1.5156 6.10400 =1.7656 3.3277×10−25

B17 5.42201 =1.5793 6.24954 =1.5034 6.33777 =1.6786 3.5913×10−25

B20 7.17421 =1.5582 5.15920 =1.4315 6.63466 =1.5601 6.2784×10−25

B21 6.88002 =1.5702 6.34269 =1.4856 5.56983 =1.7117 3.5987×10−25

B23 5.65441 =1.5115 6.79574 =1.2544 5.49981 =1.4713 6.3183×10−25

B30 5.79615 =1.5088 6.52938 =1.3698 —— 7.5222×10−25

White Noise 7.41321 =1.4110 6.42666 =1.3280 5.99686 =1.5700 7.3264×10−25

Table 6.13: Spotlight search outlier SNRs, Bayes factors and upper limits. The joint analysis for
candidate B30 was cut off, and as such we present the individual analyses only. The h95%0 is the value
from incoherently combined individual analyses.

The joint analysis for candidate B30 was unfortunately cut off, without time for

reanalysis for representation in this thesis, however an incoherent upper limit was set

by multiplying the posterior pdfs on h0 together and finding 95% of the integral under

the resultant posterior density function. When doing this, we must be careful not to

apply the priors twice, and we note that because the prior on h0 is uniform, no ‘prior

removal’ routine is required which would affect the 95% upper limit.

From table 6.13 we again see that the upper limits on the follow up candidates are

much larger than those in chapter 5, due to using only half of the coherence time and

two of the three detectors.

To be confident that we are returning the priors due to noise and not due to search-

ing a parameter range which is too small for the search we consider the sky position

accuracy of the search. If we compare the uncertainty in table 6.12 of 8/f (0) to the un-

certainty from equation 6.3.1, we can see the effective number of sky position templates
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that will fit into the prior search range,

Ntemplates ≈
∆θ

8/f (0)
=

c

4vTcoh

. (6.4.1)

For a coherence length of the full duration of the search, this is around 8 000 templates,

so we can be confident that the agreement between the posteriors and the priors is down

to a lack of signal. A more basic, phenomenological argument would be that as we

have single-point spikes in the data, the resolution must be smaller than the grid size

of the plot.

We also consider the frequency and spin-down accuracy of the search; the uncertain-

ties of 5 ×10−5 Hz in frequency and 3×10−11 Hz s−1 in f (1), using an allowed mismatch

of 0.3 gives an approximate frequency resolution of (e.g. from [3])

∆f (0) =

√
12m

πTcoh

≈ 3× 10−8 Hz and (6.4.2)

∆f (1) =

√
720m

πT 2
coh

≈ 10−14 Hz s−1, (6.4.3)

which are both many orders of magnitude less than the width of the priors. To use

the Bayes factor as a definitive detection or non-detection statistic, we would require

many repeated studies of noise given the exact same experimental conditions, which is

not feasible for the amount of repetitions needed to recreate the conditions properly.

As figure 6.4.5 gives us a direct comparison for candidate A13, and an approximate

comparison for the other candidates, we can however use this as a qualitative compar-

ison. From the negative log10 Bayes factors, we can conclude that although we cannot

entirely rule out the signal hypothesis, the noise hypothesis is favoured by factors of

16.5 (log10(B) = −1.2179) or more even in the individual detector analysis, and so a

signal from any of these candidates is unlikely.



Chapter 7

Conclusion and future work

Bilbo: Have you thought of an ending?

Frodo: Yes, several, and all are dark and unpleasant.

Lord of the Rings, J.R.R Tolkien

As the anticipated observation of gravitational waves becomes more tangible, the

prospect for astrophysics is intriguing, seeing the Universe in ways not possible with

electromagnetic observation. One of the most exciting types of object to observe us-

ing gravitational waves is a neutron star. For example we can target an analysis for

quasi-sinusoidal gravitational-wave emission from a known pulsar. The observation of

these continuous waves will hopefully provide a fundamental probe of nuclear matter,

as well as providing a fascinating new window for astronomy.

Until we observe gravitational waves though, discussing the potential astrophysics

is like a song for the deaf, and therefore many algorithms have been developed for

digging deep into the detector noise for traces of these signals. This work has focussed

on the search for continuous waves from known pulsars or prospective signals using

Bayesian inference.

No gravitational waves have been found in the work of this thesis using the continuous-

wave searches presented, and we are not able to confirm or disprove their existence.

152
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7.1 Spectral interpolation of fast Fourier transforms

In this thesis, particularly chapters 3 and 4, a new algorithm intended as a replacement

for one of the vital cogs of one of the flagship searches for continuous gravitational waves

from neutron stars, has been introduced, tested and applied to targeted searches. The

testing of the Spectral Interpolation, SplInter, algorithm has shown that it is a viable

replacement for the current heterodyne routine in most cases, particularly showing that

the SplInter Bk output produces almost identical posterior probability densities for the

amplitude parameters of hardware injected signals. The tests have also shown that we

are able to utilise a Fresnel integral-based interpolator to search for signals with high

instantaneous spin-down from the observatory’s relative motion, ḟk, e.g. from isolated

sources with low declination. A test was performed to see the limit to which we can

utilise SplInter for signals from neutron stars in binary systems. Of the 97 sources in

binary systems analysed, 47 were found to be in systems which could be analysed using

the SplInter algorithm, and from these results, an empirical limit of ν(0)a1 < 10P 3
b was

set for binary systems in which sources can be analysed. This limit is based on the

SFT, the Fourier transformed data, being taken using a time window of 30 mins, and

so the limit would be much larger if a Bk separation of 60 s, as used in the heterodyne

algorithm, could be used.

This algorithm has been used to analyse data from LIGO S5 in the first search for

signals from pulsars at both twice the rotation frequency and the rotation frequency

[79], as would be expected from a triaxial neutron star with non-aligned crust and core

angular momenta, or a biaxial precessing star [57]. This work showed the advantages

of the SplInter line removal routine, improving upon the S5 upper limits [17] for pulsar

J1748=2446ac by a factor of 1.7 (7.19 × 10−26 to 4.2 × 10−26) due to a wandering

spectral line feature. This line was not present in S6 data, so this improvement is not

seen in chapter 5.

This algorithm is now due to be used in the search for known pulsars with data

from the advanced generation detectors. One option for future searches would be to

develop an ‘online’ search, updating the parameter estimation regularly as data comes

from the detector. For example a weekly update would use the posterior results from

the previous week as the prior on the analysis for the new data, and by utilising a
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prior based on posteriors which involve all parameters it would remain a fully coherent

search. This may be limited by the provision of SFTs, as the creation of these data

files is currently not a regular or online occurrence.

The next stage of work to develop this algorithm would be to investigate the use of

switching between the frequency and time domains so that we can reconstruct signals

with higher ḟk or f̈k in a more efficient way, such as sources in binaries with shorter

periods, a process which could be similar to the resampling implementation of the F -

statistic. The concept for this work is to perform an inverse FFT on the SFT data,

split the data into shorter segments, and then perform another FFT to return to the

frequency domain. Because of the efficiency of the FFT and inverse FFT algorithms,

this stage should not be particularly computationally intensive. At this point we could

carry out the SplInter algorithm with a shorter ∆t, and hence the allowed f̈k would

increase according to f̈k,max = 0.1/∆t3 as we saw in section 4.1.3. For optimal compu-

tational efficiency, it may even be possible to choose the new ∆t based on a calculated

ḟk and f̈k of the signal, leading to analysis of sources in binaries with shorter periods

and the Fresnel interpolation may no longer be required.

7.2 Targeted searches for continuous-wave signals

from known pulsars

A targeted analysis using Spectral Interpolation output with nested sampling was per-

formed in chapter 5, partly to show how the new procedure compares to the one which

it is intended to replace, and partly as an example of an astrophysical search for rep-

resentation in this thesis. We found that the 95% upper limits set on h0, h95%
0 were

comparable to those set by the heterodyne and MCMC routine in [2], and that S6 data

was within a factor of 10 of the spin-down limit in some of the cases presented. A total

of 97 sources were analysed, of which 45 were in binary systems; this is less than the

number indicated in section 4.1.2 as two pulsars, J0605+3757 and J1630+3734 did not

have timing solutions during the S6 dataset. The spin-down limits for known pulsars

were found on average to be larger than those from the heterodyne and MCMC analysis

by a factor of around 1.1 in both the isolated and binary cases; this is due to the use
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of 30 min SFTs causing a significant proportion of data in science segments to be lost,

as discussed in section 3.4.

The next stage of this work could be to analyse the seven sources considered for

special attention in [2]. Such a careful analysis, taking account of multiple glitches,

is not required for the comparison between methods. If the work described above for

adjustments to the SplInter algorithm is implemented, it would then be possible to

include all sources in binaries in this targeted search.

The switch on of the advanced LIGO detectors in late 2015, and advanced Virgo

in 2016-17 [64], should lead to a much higher probability of seeing gravitational waves,

including continuous waves. The reduction in the noise floor of the detectors by an

order of magnitude will mean more sensitive searches, and the widening of the search

band will include pulsars with frequencies down to f (0) ' 10 Hz, meaning that it will

then be possible to analyse the population of young, non-recycled pulsars (we see this

in figure 2.1.1). These young pulsars generally have high spin-down values, which could

imply large gravitational-wave luminosities from kinetic energy considerations. As well

as the wider frequency band and better sensitivity, more pulsars are being observed,

which will provide more targets, increasing the likelihood of some of these targets

having detectable gravitational radiation. For example with results from LOFAR [96],

SKA [89] and AstroSAT [78], the expected number of known pulsars will increase by

at least an order of magnitude [62] in the coming years. This increase in the number of

targets increases the importance of the computational efficiency of targeted continuous-

wave analysis pipelines, and the ability of the SplInter algorithm to analyse multiple

sources at once is vital to this effort.

7.3 Rapid Bayesian follow up of continuous-wave

candidates from all-sky and directed searches

Presented in chapter 6 was a follow up procedure for candidates from directed searches,

utilising the SplInter algorithm for a rapid analysis of a candidate signal from a po-

tential neutron star, Fomalhaut b, and candidates from a beamed search along the

Orion spur. These searches found no evidence of continuous gravitational-wave signals
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from these candidates, and so an upper limit on h0 on emission from these prospec-

tive sources was set. The search for signals from Fomalhaut b included a search over

a frequency range of 4 × 10−6 Hz, over a spin-down range of 10−11 Hz s−1 and a fre-

quency second derivative of 8 × 10−18 Hz s−2. This search was the first search using

the Bayesian pipeline searching over more than one frequency parameter. The search

for the Spotlight outliers searched a frequency range set by a normal distribution with

an uncertainty of 5 × 10−5 Hz, over a spin-down set by a normal distribution with an

uncertainty of 3 × 10−11 Hz s−1 and a patch of sky defined by a normal distribution

with an uncertainty of 8/f (0) rad Hz−1. The Spotlight follow up search was the first

using the Bayesian pipeline to search within a patch of sky. This search was intended

as an outline of a prospective follow up procedure, and more work would be required

to optimise and automate the analysis.

The next stage of this work would be to optimise and automate the analysis, and

to apply this search algorithm to candidates from other all-sky and directed searches.

Again, if the adjustments to the SplInter algorithm as suggested above are imple-

mented, then searches for prospective signals from sources in binary systems from the

TwoSpect analysis are possible. Initially though it would be possible to make com-

parison to existing methods such as [91], and apply the follow up to upcoming results

from the Einstein@Home bucket search.

The follow up analysis of the possible neutron star companion Fomalhaut b indi-

cated an interesting line of investigation for future searches, including the possibility of

searching for a transient monochromatic signal with all of the hallmarks of a traditional

continuous wave, but with finite duration. This work is planned for the near future.



Appendix A

Regarding the derivation of the

gravitational-wave equation in

linearized gravity

Here we show a few of the points involved in the derivation of the gravitational-wave

equation in linearized gravity which were skipped over in section 1.1.

Obtaining the Riemann curvature tensor in linearised gravity

The Riemann curvature tensor is defined by the Christoffel symbols, Γθµν

Ra
bcd = ∂cΓ

a
bd − ∂dΓabc, (A.0.1)

which are themselves defined by the metric

Γabc =
1

2
gad [∂bgdc + ∂cgdb − ∂dgbc] . (A.0.2)

If use a metric which we consider as a perturbation hµν to flat spacetime ηµν , such that

gµν = ηµν + hµν , this is then

Γabc =
1

2
(ηad + had) [∂b(ηdc + hdc) + ∂c(ηdb + hdb)− ∂d(ηbc + hbc)] . (A.0.3)

In linearised gravity, hµν and its derivatives are small, so we remove terms of higher
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than linear order in hµν or its derivatives. Also as ηµν is constant, we can remove all

terms which are a derivative of ηµν

Γabc =
1

2
ηad [∂bhdc + ∂chdb − ∂dhbc] . (A.0.4)

We then use these Γabc in equation A.0.1

Ra
bcd =

1

2

{
∂cη

ae [∂bhde + ∂dhbe − ∂ehbd]− ∂dηae [∂bhce + ∂chbe − ∂ehbc]
}

=
1

2
ηae
{
∂c∂bhde + ∂c∂dhbe − ∂c∂ehbd − ∂d∂bhce − ∂d∂chbe + ∂d∂ehbc

}
=

1

2
ηae
{
∂c∂bhde − ∂c∂ehbd − ∂d∂bhce + ∂d∂ehbc

}
, (A.0.5)

where the +∂c∂dhbe and−∂d∂chbe terms cancel because the partial derivatives commute.

This final line is the result we stated in equation 1.1.4.

Gauge transformations

In the gauge transformation hab → h′ab = hab − ∂aξb − ∂bξa, we state that the Einstein

equation remains valid as all the ξ terms cancel by symmetry, we see this in the Riemann

curvature tensor. Equation 1.1.4 gives us

2Ra
bcd = ηae

{
∂c∂bh

′
de − ∂c∂b∂dξe − ∂c∂b∂eξd − ∂c∂eh′bd + ∂c∂e∂bξd + ∂c∂e∂dξb

− ∂d∂bh′ce + ∂d∂b∂cξe + ∂d∂b∂eξc + ∂d∂eh
′
bc − ∂d∂e∂bξc − ∂d∂e∂cξb

}
, (A.0.6)

for which many of the terms on the brackets cancel – the second with the eighth (the

ξe terms) the third with the fifth (the ξd terms), the sixth with the final term (the ξb

terms) and the ninth and the eleventh (the ξc terms) leading to

Ra
bcd

1

2
ηae
{
∂c∂bh

′
de − ∂c∂eh′bd − ∂d∂bh′ce + ∂d∂eh

′
bc

}
, (A.0.7)

which is the same as equation 1.1.4, but in the h′ gauge, meaning that the physical

results of being in the h′ gauge are the same as in the original frame of reference.
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The Ricci tensor in the harmonic gauge

We now consider obtaining equation 1.1.6 for the Ricci tensor in the harmonic gauge.

Given Rbc = Ra
bca, from equation 1.1.4 (or A.0.5), we can see that

2Ra
bca =ηae {∂c∂bhae − ∂c∂ehba − ∂a∂bhce + ∂a∂ehbc}

2Rbc =∂c∂bh
a
a − ∂c∂ahab − ∂a∂bhac + ∂a∂

ahbc

=∂c∂bh− ∂c∂ahab − ∂a∂bhac +�hbc, (A.0.8)

where h = haa and � = ∂a∂
a as in section 1.1.

We then use the trace-reverse of the perturbation, h̄ab = hab − 1
2
ηabh, and analogously

hab = h̄ab − 1
2
ηab h̄, and the Ricci tensor becomes

2Rbc =�hbc + ∂c∂bh̄− ∂c∂ah̄ab − ∂a∂bh̄ac −
1

2

(
∂c∂bη

a
ah̄− ∂c∂aηab h̄− ∂a∂bηac h̄

)
=�hbc + ∂c∂bh̄− ∂c∂ah̄ab − ∂a∂bh̄ac −

1

2

(
4∂c∂bh̄− ∂c∂bh̄− ∂c∂bh̄

)
=�hbc − ∂c∂ah̄ab − ∂a∂bh̄ac + ∂c∂bh̄−

1

2

(
2∂c∂bh̄

)
=�hbc − ∂c∂ah̄ab − ∂a∂bh̄ac .

(A.0.9)

In the harmonic gauge, ∂ah̄
a
b = 0, so the final two terms are zero, leaving

Rbc =
1

2
�hbc, (A.0.10)

which is equation 1.1.6. When we use this in the Einstein equation 1.1.1, we get

Gab =Rab −
1

2
gabR

=
1

2
�hab −

1

2
gab

1

2
�h

=
1

2
�

(
hab − ηab

1

2
h

)
=

1

2
�h̄ab, (A.0.11)



160

where we have replaced gab with ηab on the third line by remembering that in lin-

earised gravity, anything higher than linear order in h is zero. We can therefore use

equation 1.1.1 to relate this to the stress-energy-momentum tensor Tab

�h̄ab = −16πG

c4
Tab, (A.0.12)

which is equation 1.1.7, and which is �h̄ab = 0 in free space and �hab = 0 in the

transverse traceless gauge.



Appendix B

Regarding the use of discrete

Fourier transforms as a sample of

the continuous Fourier transform

This appendix concerns the use of continuous Fourier transforms to approximate the

outcome of a discrete Fourier transform, and shows that the sinc approximation would

be the same whether it is calculated using discrete or continuous methods. We follow

a similar method to that used in [66].

The discrete Fourier transform is an algorithm which translates a series of data into

its inverse domain, i.e. a time series into the frequency domain or a displacement series

into wave number space. The discrete Fourier transform is defined by

Fj :=
N−1∑
n=0

fne
−2iπjn/N , (B.0.1)

where Fj is the Fourier amplitude of the jth frequency bin of the FFT, N is the total

number of datapoints (such that N = r∆t) and fn is the discretised function being

transformed.

Using the sinc approximation, and only using the equivalent of the first part of
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equation 3.1.131 the function being transformed is

fn = yk exp [iφk + 2iπfktn] , (B.0.2)

where tn is the nth time point, tn = n/r, r is the sample rate, and N is the total number

of datapoints, N = r∆t. This means that Fj is

Fj = yk exp [iφk]
N−1∑
n=0

exp
[
2iπ

n

r
(fk − fj)

]
, (B.0.3)

where fj = j
∆t

is the frequency of the jth bin.

Fortunately, the summation here has a closed form, and can be rewritten as

Fj = yk exp [iφk]
1− exp

[
2iπ 1

r
(fk − fj)N

]
1− exp

[
2iπ 1

r
(fk − fj)

] . (B.0.4)

By factoring out appropriate half angles in the numerator and denominator, one can

modify this to a simpler form, here (so that the equations fit on the page) we use a

symbolic substitution of q = π 1
r

(fk − fj)

Fj = yk exp [iφk]
exp [iqN ] {exp [−iqN ]− exp [iqN ]}

exp [iq] {exp [−iq]− exp [iq]}
. (B.0.5)

Using Euler’s formula, the terms in the braces can be rewritten as sinusoids,

Fj = yk exp [iφk]
exp [iπ (fk − fj) ∆t] sin [π (fk − fj) ∆t]

exp
[
iπ 1

r
(fk − fj)

]
sin
[
π 1
r

(fk − fj)
] . (B.0.6)

If we make the assumption that r is large, we can use the small angle approximation

for the sinusoid in the denominator, and assume that the exponent in the denominator

is zero

Fj = yk exp [iφk + iπ (fk − fj) ∆t]
sin [π (fk − fj) ∆t]

exp[0]1
r
π (fk − fj)

. (B.0.7)

Using the sinc function as defined before, sinc(x) := sin(x)
x

, we rewrite as

Fj = ykr∆t exp [iφk + iπ (fk − fj) ∆t] sinc [π (fk − fj) ∆t] . (B.0.8)

1This is the same assumption we made in the continuous case, but doing so at an earlier stage of
the calculation.
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In section 3.1.1, we calculatedH(f) in the sinc approximation as (this is equation 3.1.16)

Hk(f) ≈ yk∆t exp [iφk + iπ(fk − f)∆t] sinc [π(fk − f)∆t] , (B.0.9)

and comparing the two, we see a spurious factor of r remaining in the discrete calcu-

lation which is not in the continuous form. This is expected, and within the LIGO

collaboration, the lalapps MakeSFTs code removes this factor.



Appendix C

Regarding the derivation of the Bk

estimator

Some people in the review of this work for the collaboration have raised doubts over

the legitimacy of taking the derivative of something with respect to its conjugate, and

that this would be zero, as was done in section 3.2 to find an estimator for Bk from

the least squares fit. In fact this is something that can be shown fairly easily. By using

the Wirtinger derivatives with the complex variable z = x+ iy

d

dz
=

1

2

(
d

dx
− i d

dy

)
and

d

dz∗
=

1

2

(
d

dx
+ i

d

dy

)
, (C.0.1)

we see that

dz

dz∗
=

1

2

(
d

dx
+ i

d

dy

)
(x+ iy) (C.0.2)

=
1

2

(
dx

dx
+ i

dx

dy
+ i

dy

dx
+ i2

dy

dy

)
(C.0.3)

=
1

2
(1 + 0 + 0− 1) = 0, (C.0.4)
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and equivalently

dz∗

dz
=

1

2

(
d

dx
− i d

dy

)
(x− iy) (C.0.5)

=
1

2

(
dx

dx
− i dx

dy
− i dy

dx
+ i2

dy

dy

)
(C.0.6)

=
1

2
(1 + 0 + 0− 1) = 0. (C.0.7)

In case the reader still has the same doubts, the derivation is repeated here sepa-

rately for the real and imaginary parts of Bk and then recombined.

The least squares fit means that we must find the minimum value of
∑

j |Skj −Bkµkj|2

given different Bk. To do this, we differentiate here with respect to each of the real

and imaginary parts of Bk and set these to zero. Firstly, we expand the terms of the

sum

∑
j

|Skj −Bkµkj|2 =
∑
j

SkjS
∗
kj −B∗kµ∗kjSkj −BkµkjS

∗
kj +B∗kBkµ

∗
kjµkj, (C.0.8)

which, with the real and imaginary parts of Bk explicitly separated becomes

∑
j

|Skj −Bkµkj|2 =
∑
j

SkjS
∗
kj −Re(Bk)

[
µ∗kjSkj + µkjS

∗
kj

]
+ iIm(Bk)

[
µ∗kjSkj − µkjS∗kj

]
+
[
Re(Bk)

2 + Im(Bk)
2
]
µ∗kjµkj. (C.0.9)

We then take the derivative with respect to the real part of Bk, Re(Bk),

d

dRe(Bk)

∑
j

|Skj −Bkµkj|2 =
∑
j

{−
[
µ∗kjSkj + µkjS

∗
kj

]
+ 2Re(Bk)µ

∗
kjµkj} = 0, (C.0.10)

which can be solved for Re(Bk) as

Re(Bk) =

∑
j

[
µ∗kjSkj + µkjS

∗
kj

]
2
∑

j µ
∗
kjµkj

. (C.0.11)
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Next we take the derivative with respect to the imaginary part of Bk, Im(Bk),

d

dIm(Bk)

∑
j

|Skj −Bkµkj|2 =
∑
j

{i
[
µ∗kjSkj − µkjS∗kj

]
+ 2Im(Bk)µ

∗
kjµkj} = 0, (C.0.12)

which can be solved for Im(Bk) as

Im(Bk) =

∑
j

[
µ∗kjSkj − µkjS∗kj

]
2i
∑

j µ
∗
kjµkj

. (C.0.13)

This placing of the imaginary unit in the denominator helps us to compare equa-

tions C.0.11 and C.0.13 to z, an arbitrary complex number, for which we can easily

see

Re(z) =
z + z∗

2
and Im(z) =

z − z∗

2i
, (C.0.14)

so we can equivalently see from equations C.0.11 and C.0.13

Bk =

∑
j

[Skjµ
∗
kj]∑

j

[µ∗kjµkj]
. (C.0.15)

which is equation 3.2.9.

In this separated real and imaginary method, it is more intuitive than it was in the

previous method to see that this stationary point will always be a minimum. If we take

the next (second) derivative of
∑

j |Skj − Bkµkj|2 = 2µ∗kjµkj with respect to Re(Bk)

and Im(Bk), we find

d2

dRe(Bk)2

∑
j

|Skj −Bkµkj|2 = 2µ∗kjµkj (C.0.16)

d2

dIm(Bk)2

∑
j

|Skj −Bkµkj|2 = 2µ∗kjµkj. (C.0.17)

As µ∗kjµkj will always be positive ( µ∗kjµkj = |µkj|2), these stationary points will always

be a minimum.



Appendix D

Additional results from the

Spotlight outlier search

The Spotlight outlier plots in section 6.4 were all very similar, as such we presented

a representative example at that time. For completeness we present the rest of the

parameter estimation plots here in figures D.0.1 to D.0.10.

We plot the posterior probability densities for individual detector analyses from

H1 and L1 and a joint analysis from H1 and L1. This is shown in the form of one

dimensional pdfs and two dimensional contour plots for frequency against frequency

first derivative f (0) vs. f (1) and right ascension against declination α vs. δ. We plot

f (0) − f
(0)
cand for aesthetic reasons, as the numerical precision required would not be

representable on the figure.

The joint analysis for candidate B30 was unfortunately cut off, without time for re-

analysis, as such figure D.0.10 contains an incoherent joint posterior on the parameters.

This difference has been visually highlighted by plotting the incoherent joint posterior

in magenta, rather than green as used in the other figures. The incoherent posterior

is found by multiplying the two posterior pdfs together, effectively using one analysis

as the prior on the other. We must be careful about applying the priors twice though,

as applying a Gaussian prior twice will effectively reduce the width of the Gaussian.

In consideration of the priors, we divide each point on the combined posterior by the

prior value at that point.
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Figure D.0.1: Posterior probability density distribution and contour plots for parameters of Spotlight
candidate A24, from individual analyses for H1 (blue) and L1 (red), and a joint analysis (green).
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Figure D.0.2: Posterior probability density distribution and contour plots for parameters of Spotlight
candidate A28, from individual analyses for H1 (blue) and L1 (red), and a joint analysis (green).
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Figure D.0.3: Posterior probability density distribution and contour plots for parameters of Spotlight
candidate A29, from individual analyses for H1 (blue) and L1 (red), and a joint analysis (green).
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Figure D.0.4: Posterior probability density distribution and contour plots for parameters of Spotlight
candidate A30, from individual analyses for H1 (blue) and L1 (red), and a joint analysis (green).
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Figure D.0.5: Posterior probability density distribution and contour plots for parameters of Spotlight
candidate A33, from individual analyses for H1 (blue) and L1 (red), and a joint analysis (green).
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Figure D.0.6: Posterior probability density distribution and contour plots for parameters of Spotlight
candidate B15, from individual analyses for H1 (blue) and L1 (red), and a joint analysis (green).
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Figure D.0.7: Posterior probability density distribution and contour plots for parameters of Spotlight
candidate B17, from individual analyses for H1 (blue) and L1 (red), and a joint analysis (green).
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Figure D.0.8: Posterior probability density distribution and contour plots for parameters of Spotlight
candidate B20, from individual analyses for H1 (blue) and L1 (red), and a joint analysis (green).
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Figure D.0.9: Posterior probability density distribution and contour plots for parameters of Spotlight
candidate B21, from individual analyses for H1 (blue) and L1 (red), and a joint analysis (green).
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Figure D.0.10: Posterior probability density distribution and contour plots for parameters of Spotlight
candidate B30, from individual analyses for H1 (blue) and L1 (red), and an incoherent joint posterior

(magenta). f
(0)
cand = 1458.536476 Hz.



Abbreviations and Symbols

Presented here is a list of definitions and abbreviations used throughout the text. All

definitions and abbreviations are indicated at the point of their first use in the main

body of the text, but are included here for reference.

Abbreviations

Abbreviation Meaning

ANTF Australia Telescope National Facility, the Commonwealth Sci-

entific and Industrial Research Organisation’s radio astronomy

observatories, most often used to discuss the pulsar catalogue,

[26, 67].

CBC Compact Binary Coalescence. The inspiral and merging of two

compact objects such as neutron stars or black holes.

DFT Discrete Fourier Transform. An algorithm for transforming a

discretely sampled series of data from the time domain to the

frequency domain.

EM Electromagnetic, often referring to optical, X-ray and γ-ray ob-

servations of astrophysical objects.

FFT Fast Fourier Transform. An algorithm for fast computation of a

discrete Fourier transform, also used to describe its output.

GR General Relativity, Einstein’s theory of.

GW Gravitational Wave, a solution to the wave equation of General

Relativity, and its effect on the spacetime metric.

H1 LIGO detector at Hanford, WA.

Continued
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Abbreviation Meaning

IFO Interferometer.

L1 LIGO detector at Livingston, LA.

pdf probability density function.

MCMC Markov-Chain Monte Carlo. A method for sampling a probability

distribution, used mostly in this thesis to describe the use of

MCMC to explore posterior probability distribution parameter

space.

SFT Short Fourier Transform. A specific form of FFT, used in the

LIGO and Virgo Scientific collaborations for storing frequency-

domain data.

S5 Science run five. A time period (4th Nov 05, 4pm UTC to 30th Sep

07, 0:00am UTC) for which the LIGO detectors were collecting

scientifically useful data from the detectors.

S6 Science run six. A time period (7th Jul 09, 9pm UTC to 20th Oct

10, 3:04pm UTC) for which the LIGO detectors were collecting

scientifically useful data from the detectors.

SplInter Spectral Interpolation, a method of downsampling gravitational

wave data for a prospective continuous-wave source, removing

rotation and relative motion effects.

SSB Solar System Barycentre, an inertial frame of reference at the

centre of mass of the solar system. Generally very close to, but

not neccessarily at, the centre of the Sun.

V1 Virgo detector, at Cascina, Tuscany.

VSR2 Virgo Science Run two. A time period (7th Jul 09, 9pm UTC

to 22nd Oct 09, 7:36am UTC) for which the Virgo detector was

collecting data at or close to design sensitivity.

Symbols

This table presents a list of commonly used symbols throughout the text. Other sym-

bols are used, but their scope is limited to use in and around the point of first definition,
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so are not included here. Some symbols are utilised for more than one meaning in dif-

ferent chapters, though their different meanings are defined at that point and usually

separated by different chapters in the text.

Symbol Meaning

Aab The GW amplitude tensor, equation 1.1.8.

A(t) The complex amplitude of a gravitational wave at the detector, equa-

tion 2.3.2.

Bk The output of the SplInter routine. Noisy estimate of complex ampli-

tude of GW signal at the detector, yk, Bk = yk + nk, equation 3.2.9.

BK The output of the heterodyne routine. Noisy estimate of complex

amplitude of GW signal at the detector, yK , BK = yK + nK , equa-

tions 2.3.5 and 2.3.6.

Bκ The output of the heterodyne routine with half hour data separation.

Found by averaging BK during the window associated with each Bk,

equation 4.1.1.

C[w] Fresnel cosine integral, equation 3.1.18.

F+/× Antenna functions for plus and cross polarisations respectively, equa-

tions 1.3.2 and 1.3.3.

F The F statistic, the maximum likelihood probability for a given set

of Doppler parameters for a continuous-wave signal, see section 6.1.1.

H(f) Fourier transform of h(t), as in equation 3.1.1.

Hk(f) Fourier transform of h(t) during the time window

tk − ∆t
2
< t < tk + ∆t

2
, equation 3.1.4.

Im[z] Imaginary part of z, e.g. in 3.3.1.

N(f) Fourier transform of the noise, n(t), Nk(f) is frequency-domain noise

in the kth SFT, introduced in section 3.1.

Ra
bcd Riemann Curvature Tensor, equation 1.1.4.

Rab Ricci Tensor and similarly the Ricci Scalar R = Ra
a, defined in sec-

tion 1.1.1.

Re[z] Real part of z, e.g. in 3.3.1

Continued
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Symbol Meaning

S(f) Fourier transformed data from the detector, S(f) = FFT[s(t)], de-

fined in equation 3.1.1.

Sk(f) Fourier transformed data, S(f) in the kth SFT.

S[w] Fresnel sine integral, equation 3.1.19.

Tcoh coherent observation time, used in Fomalhaut b search, defined in

table 6.1.

Z evidence, the probability of the data given the information I,

p({Bk} , I), defined in section 2.2.

a set of parameters [h0, ψ, φ0, ι], define in section 2.2.

f (n) GW frequency, nth derivative, defined in section 2.1.

fk instantaneous GW frequency at time tk, equation 3.1.8.

ḟk instantaneous GW frequency derivative at time tk, calculated using

equation 3.1.9.

f̈k instantaneous GW frequency second derivative at time tk, see sec-

tion 4.1.3.

gµν spacetime metric, equation 1.1.2.

hµν a small perturbation to the metric, equation 1.1.2.

h̄µν trace reverse of the metric perturbation, equation 1.1.5.

h(t) GW strain in detector, equation 2.3.1.

h0 GW strain amplitude, equation 2.1.3.

h95%
0 95% upper limit on h0, i.e. 95% of the probability for values of h0 is

below this point, equation 2.2.2.

k subscript to denote a specificBk , used for summation in the likelihood

calculation. This subscript also used to indicate values or variables

specifically related to this Bk value, such as tk being the centre of the

time window, µk(f) and Sk(f) for model and data related to the kth

SFT. First used in equation 3.1.3.

Continued
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Symbol Meaning

K subscript to denote a specific BK or to indicate values or variables

specifically related to this BK value, such as tK being the centre of

the time window. Defined e.g in equations 2.3.5, 2.3.12.

m mismatch between SplInter and heterodyne values, indication of drop

in SNR, defined in equation 4.1.2.

n(t) noise on h(t), defined section 2.3.1.

p(A|B) probability of A given B, equation 2.2.1.

r sample rate, equation 2.3.9.

s(t) signal in detector = h(t) + n(t), defined section 2.3.1.

tk time associated with Bk = time halfway through window, defined

section 2.3.1, similarly tK and tκ for the time windows for BK and

Bκ.

yk complex amplitude of the gravitational wave at the detector at time

tk, including initial phase component yk := A(tk) exp(iφ0), equa-

tion 2.3.8.

α right ascension, defined in section 2.1.

δ declination, defined in section 2.1.

δ(t) time difference from SSB to detector, equation 2.1.7.

∆t tk/K/κ spacing, the length of the time window during which each

Bk/K/κ is calculated.

ε ellipticity, equation 2.1.4.

ηνµ flat spacetime metric, equation 1.1.2.

ι source inclination angle, defined in section 2.1.

λ Doppler parameters of a continuous-wave signal, defined in sec-

tion 2.1.

κ subscript to denote use of the heterodyne routine with half hour tκ

separation, equation 4.1.1.

Continued
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Symbol Meaning

µ(f) model of the expected GW signal in the frequency domain, amplitude

removed µ(f) = H(f)
yk

. µk(f) denotes µ(f) in the kth SFT. Defined in

equation 3.2.1.

π(a) the prior p(a|I), as in section 2.2.

ρ signal to noise ratio, SNR, defined in section 2.2.

σk standard deviation on values of Bk, also used as SplInter estimate of

this value, see section 3.2, first used equation 2.3.9.

σT standard deviation of n(t), the noise in the time domain 2.3.9.

σF standard deviation of noise in the frequency domain, N(f), defined

in equation 3.2.2.

φ(t) GW phase Φ(t) minus the constant φ0, equation 2.3.3.

φ0 the constant offset of GW phase, defined in section 2.1.

Φ(t, λ) GW phase, a function of time and the Doppler parameters, equa-

tion 2.1.8.

ψ GW polarisation angle, defined in section 2.1.
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