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The NOVA Experiment

* Long baseline neutrino experiment, consisting of:

* High purity (anti)neutrino beam produced at Fermilab, Illinois.

* Forward horn current (FHC) mode for a muon neutrino (v,,) beam.
* Reverse horn current (RHC) mode for a muon antineutrino (17”) beam.
* Near Detector: 1km from the source.

 Far Detector: 810km from the source, at Ash River, Minnesota.

 The two detectors are both 14.6 mrad off-axis and are functionally
identical, which helps to reduce systematic uncertainties.
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* Primary goals:

155 m

e (Observe and measure the oscillation of muon neutrinos to electron

neutrinos. Y
* Determine the neutrino mass ordering. S 290 ton
* |nvestigate the matter / antimatter asymmetry. ’5-57,\\\

Far Detector
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Why are Cross Sections Important in
Oscillation Analyses?

To understand neutrino oscillations, we need to make precision measurements of the
neutrino mixing angles (e.g. 8,3 and 0,3) and mass splittings (e.g. Am3,):

Oscillation probability \ \

. " " ., 1.27@m3,) L [km] L Distance between detectors
(electron neutrino P(VM — ve) = sin @Sln Z@Sln E [GeV] E Mean neutrino beam energy
appearance)
Emax
Measured event rate R(x) = CD(EV) X O'(Ev, X) X E(.X) X P(VM — Ve)
Emin

®(E,) Neutrino flux

v,
v,

o(E,,X) Cross section (probability of neutrino-nucleus interaction)

e(X) Detector response / efficiency

V,

e
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Neutrino Interactions
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NOvVA’s neutrino flux lies in the transition region
between the main interaction processes.
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The Meson Exchange Current ) :

) ) . Formaggio and G. Zeller
(MEC) modelis a leading model (arxiv:1305.7513) (adapted)
to describe the 2p2h process.
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https://indico.fnal.gov/event/43209/contributions/187826/attachments/129093/158555/NOvA_LCremonesi_Neutrino2020.pdf
https://arxiv.org/abs/1305.7513

Why is a Zero-Meson Antineutrino Analysis
Interesting?

* We can achieve a high sample purity: charged-current (CC) v, events generally
produce protons (easily misidentified as pions), but CC 17,i events mainly
produce neutrons (largely go unseen in NOvA’s detectors).

Final state interactions due to
re-scattering inside the nucleus
can change the kinematics of
the outgoing hadrons.

e Study 2p2h processes in the antineutrino sector and compare different QE and
MEC models.

* Antineutrino cross sections are smaller by a factor of ~ 2 - 3, but NOVA has high
statistics, and we can keep statistical uncertainties reasonably small.

Charge Exchange ®
Elastic
Scattering

* Inprobing the low energy region close to the nucleus, we may also gain some u
insight into final-state interactions.

Absdrption

Pion Production T. Golan
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Zero-Meson Antineutrino Analysis

Signal: CC 17,i event with no true mesons (e.g. pions or kaons) above a threshold energy of 100 MeV (at lower
energies, NOvA’s pion reconstruction has a low efficiency). 7, u+
* Background:

* Neutral Current interactions.

* Interactions from wrong-sign (v, ) component of the beam.

* All events that contain mesons with energy > 100 MeV in the final state.

* Deliverables:
* Double-differential measurement of muon kinematics (longitudinal / transverse momentum).
 Single-differential measurements in the derived variables Q? (four-momentum transfer squared) and E,,
(incoming neutrino energy).

* Thisis ablind analysis, and we have not yet looked at data.
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Measuring a Cross Section

( d2o ) XUy [N (Py, Pp), P(PL, Pr); |
dPL dPT i E(PL, PT)i (APL)i(APT)i Ntargets¢

NS€'(P,,Pr);  Number of selected events

P(P,Pr)j  Purity of sample

NOVA Near Detector
Ul-j Unfolding Matrix — to migrate from reconstructed to truth space AN T SR

e(P,, Py); Efficiency of sample
(AP,);(AP;); Binwidth of each variable
Ntargets  Number of targets in the detector

¢ Incoming neutrino flux
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Machine Learning in NOVA S

NN
NOvVA uses Convolutional Visual Networks (CVNSs) to MuonlD is a boosted decision tree (BDT) used to identify
classify particles and events based on the topology, the likelihood of a track being a muon, with the inputs
without the need for a detailed reconstruction. Particle being the the dE/dx log-likelihood, scattering log-
CVNs are trained on single particles, to reduce model likelihood and average dE/dx near the end of the track.
dependence.
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MERMAID: Identifying Events without Mesons

* Machine-Enhanced RHC Meson Abolition ID —a novel BDT
trained to identify events without mesons. Itis trained on events
which have more than one reconstructed track (muon + hadron).

* Inputsinclude: the CVN likelihood scores for a particle in the
event being a pion, proton or electromagnetic (sum of the TMVA overtraining check for classifier: BDT_AdaBoost

electron and gamma likelihoods), the width of any identified 5 O Signal clsteamite) T <" Sianmi (haininig Sapi T
shower and the gap between the interaction vertex and the > 4.5 [L77] Background (test sample) | | + Background (training sample). ]
shower. ; ~Kolmogorov-Smirnov test: signal (background) probability = 0.778 (0.624) E
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Selection Criteria o~

* Data quality, e.g. an event must contain a minimum number of hits in the detector.

 The muon track must be fully contained in the detector to allow for energy estimation, and the interaction
vertex must lie in the fiducial volume of the detector.

* Optimised cut based on the MuonlD score, to ensure that itis a CC event.

* The event must contain either one track (the muon) or, if there are multiple tracks, it must pass the MERMAID

selection (BDT score of 2 0.04). COH
0%

RES

DIS
5%

Signal Events: 542,576

Background Events: 165,217 O(t);fr
Purity: 76.7%

Efficiency: 27.6%

44%
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Muon Longitudinal and Transverse Momentum et
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* Migration matrices for these variables are strongly diagonal, with good resolution.

 We will therefore be able to report results in a large number (~215) of 2-dimensional bins as a double-differential cross section.
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Neutrino Event Generators

GENIE 3.00.06 Local Fermi Gas Valencia Valencia Berger-Sehgal Bodek-Yang
G18_10a_02_11a (LFG) (BS) (BY)
GENIE 3.4.0 Spectral function Valencia SuSAv2 BS BY hA
AR23 _20i_02_11b LFG
NuWro 21.09.02 LFG Llewellyn-Smith Valencia NuWro RES BY NuWro FSI
(LS) model model
NEUT5.7.0 LFG Valencia Valencia BS / Rein-Sehgal BY Custom semi-
classical
intranuclear
cascade (INC)
GiBUU 2023 Modified LFG Dipole Form Factor, Semi-inclusive MAID Data-driven BUU transport
RPA corrections electron scattering (electromagnetic GiBUU model model
data form factors)
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Muon Longitudinal and Transverse Momentum &=
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* Consistent shape, but the NOvA-tuned GENIE simulation generally has slightly larger cross sections.
* Thisis consistent with NOvA’s inclusive analyses for both neutrino and antineutrino mode.
 GiBUU, followed by NuWro, appear closest to the NOvA-tuned MC.

* Itwill be fascinating to see what the real data will show!
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Double Differential Cross Section 7
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Conclusions

* New measurement of Zero-meson antineutrino charged-current interactions in the NOvVA near detector.

 We will report a double-differential cross section in muon kinematics (longitudinal and transverse
momentum), as well as single-differential cross sections in the derived variables Q2 and E,,.

* Arange of FSI, QE and MEC models used by different generators can be tested and evaluated with this
measurement.

* Next Steps:
* Unfolding and Fake Data Studies
e Detailed study of Systematic Uncertainties
* Unblinding —finally look at the real data!
* Model comparisons
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Backup
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MERMAID: Input Variables

Input variable: kPionlD Input variable: kKEMID
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Input variable: kSicMID Input variable: kKTrkMID

T T T T | T T T T 1 T T T T

m T T ] L) I T T T T l T T T T l- m N
8 2 - 8 .
(=] - (=] s
= s = 15 —
z ] 5 z |
o 1.5 s - A
z 1= 2 )
= ¢ = .
. 15 !

13 i

13 ]

05 - d = 7

’ g’ ]

R— sa by gy ] " e T ]

%0 0 5 %0 = ) 5
kSlcMID KTrkMID

\@_s’ Queen Mary

University of London

WO-Mow (8,8): {0.0, 0.00% ' {0.0, 0.0%

WO-fow (8,8): {0.0, 0.00% ' {0.0, 0.00%

Input variable: kProtoniD
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Input variable: kShowerGap
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Incoming Neutrino Energy and 4-momentum transfer -
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